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Evolution of a massless scalar field in Reissner-Nordstrn anti—de Sitter spacetimes
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We investigate the evolution of a scalar field propagating in Reissner-Namisinti—de Sitter spacetime.
Because of the characteristic of spacetime geometry, the radiative tails associated with a massless scalar field
propagation have an oscillatory exponential decay. The object picture of the quasinormal ringing has also been
obtained. For small charges, the approach to thermal equilibrium is faster for larger charges. However, after the
black-hole charge reaches a critical value, we get the opposite behavior for the imaginary frequencies of the
quasinormal modes. Some possible explanations concerning the wiggle of the imaginary frequencies have been
given. The picture of the quasinormal modes depending on the multipole index has also been illustrated.
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[. INTRODUCTION which indicates the same late time pattern of decay.
Extending the basic scenario to study the asymptotic evo-
The study of wave dynamics outside black holes has beelution of charged fields and self-interacting massive scalar
an intriguing subject for the last few decadésr a review, field around a RN black hole, Hod and Pirgi?,13 found
see Ref[1]). By virtue of previous works, we now have the that although usual inverse power-law relations of these
schematic picture regarding the dynamics of waves outside felds present at timelike infinity and null infinity, along the
spherical collapsing object. A static observer outside thduture black-hole event horizon this power-law tail is accom-
black hole can indicate three successive stages of the waymnied by an oscillatory behavior. Recently, Bragly al.
evolution. First the exact shape of the wave front depends ofil4,15 studied scalar wave dynamics in nonasymptotically
the initial pulse. This stage is followed by a quasinormalflat exteriors of Schwarzschild—de Sitter and RN de Sitter
ringing, which carries information about the structure of theblack holes. Contrary to the asymptotically flat geometries,
background spacetime and is believed to be a unique fingeno power-law tails were detected in these cases. Instead the
print to directly identify the black hole’s existence. Detection waves were found to decay exponentially at late times. For
of these quasinormal modes is expected to be realized=0, they found that the field does not decay, but settles
through gravitational wave observation in the near fufdle = down to a nonzero constant. Moreover, for a field strongly
Finally, at late times, quasinormal oscillations are swampedoupled to curvature, they obtained that the wave function
by the relaxation process. This relaxation is the requirementscillates with an exponentially decaying amplitude. These
of the black hole no-hair theorefi2]. In addition, the dy- observations support the earlier argument by Chingl.
namical mechanism of shedding the perturbation hair nedrl6], that usual inverse power-law tails, as seen in asymp-
the black hole event horizon is of direct interest to the prob+otically flat black hole spacetimes, are not a general feature
lem of stability of Cauchy horizong3]. of wave propagation in curved spacetime. Besides some re-
The mechanism responsible for the relaxation of neutralation to the perturbative field, the relaxation process reflects
external perturbations was first exhibited by Pfide Study-  a characteristic of the background geometry.
ing the behavior of a massless scalar field propagating on a It is of interest to extend this study to anti—de Si{t&dS)
fixed Schwarzschild background, he showed that for a fixedpacetime. In addition to three major aspects that the evolu-
position the field dies off with a power-law tail. The behavior tion of test field is associated with, including the no-hair
of neutral perturbations along null infinity and a future eventtheorem, the stability of Cauchy horizon, and direct evidence
horizon was further studied by Gundlach, Price, and Pullirof the existence of black hole provided by quasinormal ring-
[5] and similar power-law tails have been obtained. Theséng, the recent discovery of the anti—de Sitter—conformal-
results were later confirmed using several different techfield-theory(AdS/CFT) correspondence makes the investiga-
niques, both analytic and numerid&—8], and were gener- tion in AdS black-hole background more appealing. The
alized to Reissner-Nordstmo (RN) background[5,9]. The  quasinormal frequencies of AdS black hole have direct inter-
application of linear approaches is encouraged by numericalretation in terms of the dual CFT. In terms of the AdS/CFT
analysis of the fully nonlinear dynamics of the fie[d9,11,  correspondencgl7-194, the black hole corresponds to an
approximately thermal state in the field theory, and the decay
of the test field corresponds to the decay of the perturbation

*Email address: binwang@fma.if.usp.br of the state. The first study of the scalar quasinormal modes
"Email address: cmolina@fma.if.usp.br in AdS space was performed by Chan and Mah8hb]. In
*Email address: eabdalla@fma.if.usp.br [19c¢], topological black holes were included. Recently,

0556-2821/2001/68)/0840018)/$20.00 63 084001-1 ©2001 The American Physical Society



B. WANG, C. MOLINA, AND E. ABDALLA PHYSICAL REVIEW D 63 084001

Horowtiz and Hubeny20] considered the problem of quasi- Q? 3r2

normal modes on the background of Schwarzschild AdS 1__2+_2+

black holes in four, five, and seven dimensions. They T.— rx R @
=

claimed that for large black holes both the real and imagi-
nary parts of the quasinormal frequencies scale linearly with
the black-hole temperature. The time scale for approachingnd the potential by

the thermal equilibrium is detected by the imaginary part of

the lowest quasinormal frequency and is proportional to the

inverse of the black-hole temperature. Considering that the b= : )
RN AdS solution provides a better framework than the

Schwarzschild AdS geometry and may contribute signifi-|n the extreme case, andQ satisfy the relation
cantly to our understanding of space and time, we general-

4ar

ized the study made in our previous wdrk2]. We found Q? 3r?
that the charge in RN AdS black hole showed a richer phys- 1-—+ —2+ =0. (6)
ics concerning quasinormal modes and further information ri.. R

on AdS/CFT correspondence. The bigger the black hole

charge is, the quicker for their approach to thermal equilibFor a nonextreme RN AdS black hole, the spacetime pos-

rium in CFT. However these studies focused much on fresesses two horizons, namely, the black-hole event horizon

quencies of the quasinormal modes, the object picture of thand Cauchy horizon_ . For the extreme case where E6)

evolution of test field around the AdS background is lacking.is satisfied, these two horizons degenerate. The fundtion
The intention of this paper is to analyze in detail the wavehas four zeros at, ,r_ andr,,r,, wherery,r, are two

propagation of massless scalar field in RN AdS spacetimezomplex roots with no physical meaning. The relations be-

We will show that the direct picture of the evolution presentstween these four roots are

us with a perfect agreement on quasinormal frequencies with

those obtained by using approximation method suggested in Fitry=—(ry+r-)
Ref. [20]. Moreover, our paper will show object pictures of
the behavior of quasinormal modes as a function of the r1r2=R2+r+r,+ri+rz_. )

chargeQ and of the multipole order of the field We will N
also address some discussions on the highly charged back terms of these quantitiek,can be expressed as
ground case. In addition, the relaxation process at the event

horizon will also be discussed in our direct picture. We

found that the decay has the pattern of oscillatory exponen- h=———r)r—r)r—ry(r—ry). (8)
. . . o . R“r

tial tail. This result supports Horowitz’s claim that there are

no power-law tails at late times in AdS space. Some physic

. . . . aIlntroducin the surface gravity; associated withr; by the
explanation related to this result will be given. g gravity; i Y

relation «; = z|dh/dr|,_,,, we have

Il. EQUATIONS AND NUMERICAL METHODS 1 (r =t ) —r)(rs—1)

The Reissner-Nordstno black-hole solution of Einstein’s K, = 2R?
equations in free space with a negative cosmological con-
stantA = —3/R? is given by

r

L))y

Ky

__ 2 2 )
ds2= — hdt2+h~1dr2+r2dQ?2, (1) 2R re
with _ 1 mr)(r—ra)(ri—rp)
T oR? r2 ’

h=1— —— —*© _ — i+t (2 _i(u—fz)(r—_rz)(rz_rl) ©)
Kr2_2R2 rg ’

The asymptotic form of this spacetime is AdS. The mass of " .
the black hole is These quantities allow us to write

. hot 1 1 N 1
1 ri Q? T2k, (1—14) 2Kk, (r—1_) 2k, (r—ry)
|\/|:E r++¥+:. ©)) ry + r_ r
1
; P : 2k (r=ry)’ (10
The Hawking temperature is given by the expression r 2
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FIG. 1. (Left) Diagram of the
numerical grid and the domain of
interest. The black spots represent
the grid points where the value of
the field is known. The gray spots
represent the grid points to be cal-
culated. The points in the lina
=Upax are the results shown in
this paper.(Right) Detail of the

=2r% |-
as ,

Combining the last two terms in E¢10), we express the
transformation between and the “tortoise coordinate’t*
=[h~1dr in the form

o I ! I
r—ZKr+ nr—r,) En(r r_)

R[(rar)%=rr_ryry]
2 2
[rE—r o (rytry)+raro]re—r_(ry+ry)+rqr;]

dr
X
r2—r(ry+ry)+rqr,

RIr r_(ry+rp)—r riro—r_rqry]
2 2
[re—ra(rotr)+rarp]rs—r_(ry+ry)+rar,]

XJ' rdr (11)
F2—r(ry+rp)+ror,

In terms oft and r* we introduce null coordinatea=t

X
\ [ ]

previous diagram, showing the
oo relative positionsN, S, E, andW.
The gray point would be the next
one to be calculated.

i+ 1dn

N v ar

_hI(I+1)+r++ri/R2+Q2/r+_2Q2 2

- r2 rs ¢ R2|
(15

The potentialV, has the same characteristic as that in the
Schwarzschild AdS black hole. It is positive and vanishes at
the horizon, but diverges at—, which requires thatb
vanishes at infinity. This is the boundary condition to be
satisfied by the wave equation for the scalar field in AdS
space. In terms of the radial coordinate, it is seen that
whenr tends to infinity,r* tends to a finite constarivhich
we denoter},). It means that our region of interest in the
(u—v) diagram is above the line—u=2r%,, as shown in
Fig. 1. In this line(wherer — ) we set®=0.

The behavior of the potential differs quite a lot from that
of asymptotically flat space and de Sitter space. As argued in
Ref.[16], it is this peculiarity that contributes to the special

—r* andv=t+r* so that the future black-hole horizon is wave propagation as will be shown later.
located ati=. Since the quasinormal modes of AdS space Using the null coordinates andv, Eq.(14) can be recast
are defined to be modes with only ingoing waves near th@&s

horizon, we will pay more attention to the wave dynamics

near the event horizon.
Let us consider a massless scalar fiéldn the RN AdS
spacetime, obeying the wave equation
Od=0, (12)
whereng“BVaVB is the d’Alembertian operator. If we
decompose the scalar field according to

1
® =2 (6D Yin(6,¢) (13
then each wave functiogy (r) satisfies the equation
Py P
- =Viy, (14)
a2 gz W

where

2
~4

P(u,v)=V(r)¢y(u,v) (16)

Jdudv

in which r is determined by inverting the relatiort (r)
=(v—u)/2.

The two-dimensional wave equatigil6) can be inte-
grated numerically, using for example the finite difference
method suggested in Ref&,21]. Using Taylor's theorem, it
is discretized as

untUw— Un—Ug| dwT ¢
UN= et pw— Ps— SudvV, 2 8

+0(e"), 17)
where the pointdN,S,E, andW form a null rectangle with
relative positions as N:(u+éu,v+ év),W:(u+ déu,v),
E:(u,v+6v), andS:(u,v). The parametee is an overall
grid scalar factor, so thaiu~ v ~ €.
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FIG. 2. Semilog graph of the absolute value of the wave function for small values(left) and the late time behavidright), with
r.=0.4 andQ=0.
Considering that the behavior of the wave function is not A. Behavior of wave evolution forl=0
sensitive to the choice of initial data, we sgf(u,v=vo) In the first series of numerical experiments, we choose the
=0 and use a Gaussian pulse as an initial perturbation, CeMultipole index| =0 and examine the behavior of the test-
tered onv and with widtha onu=u, as field propagation with the increase of the charge of the back-
ground spacetime.

2 Figure 2 displays the quasinormal ringing on the 4D
(U= Ug,v)=exg — (v—ve) . (18  Schwarzschild-AdS background. From plots using different
o 207 values ofr , we can read off values for the imaginar,(

and real @g) parts of the frequency. The results are shown
in Table I.

The inversion of the relation* (r) needed in the evaluation The agreement with the frequencies calculated in Ref.
of the potentialV(r) is the most tedious part in the compu- [20] is good. A small difference can be attributed to the
tation. We overcome this difficulty by employing the method different methods employed.
suggested in Ref$5,14]. We studied the late-time decay of the test field on the

After the integration is completed, the valyg(Umax,v)  Schwarzschild-AdS black hole and the results are shown in
is extracted, wherein,y is the maximum value ofi on the  Fig. 2. It was first predicted in Ref20] that the decay is
numerical grid. Taking sufficiently largen.x, #1(Unax,v)  always exponential and with no power-law tails. Through
represents a good approximation for the wave function at theareful study, we got a result that supports their claim. We
event horizon (—), which carries information about the obtain that the late-time falloff is oscillatory exponential. Re-
quasinormal modes for the AdS space of our interest. It wagall that for the AdS black hole, the potential diverges at
observed in our numerical experiments that the plots obinfinity but vanishes exponentially near the black-hole hori-
tained converged in a given rangewfas expected, but the zon. This boundary condition differs completely from that of
rate of convergence varied with the parameters of the systerasymptotically flat spacetime. Using the argument of Ching
It should be noted that the term “convergence” in the last
sentence refers to the limit @ asu,,,y is taken bigger and TABLE I. The lowest quasinormal mode frequency for four-
bigger. As commented, the regian,,,— % corresponds to dimensional Schwarzschild-AdS black hole fer0. The real part
the event horizon, in which we are interested. Some comis ok and the imaginary part is; .
ments about the convergence of the numerical code, meanirg

the evolution of the wave function with the grid size, is made ry of 0k

!2 gz?f?géng orglef_r t% Eolrn_pr)]atrﬁeoft:)r"(r)es_LrJ]Its here with those 100 274 61 185.38
! 120,24, We ix R=L 1 wing. 50 133.68 91.38
10 26.79 18.85

IIl. NUMERICAL RESULTS 5 13.41 9.99

1 2.67 2.79

We now report on the results of our numerical simulations 0.8 2.15 2.58

of evolving massless scalar field on a RN AdS black-hole 0.6 1.58 2.41
background. Takingd— 0, our results reflect the properties 0.4 1.006 2.362

on Schwarzschild AdS background.
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FIG. 3. Semilog graphs d¢f’| with r , =0.4 and small values of FIG. 4. Semilog graph of the wave function in tQe=0 case for
Q. The extreme value fo®? is 0.2368. r,=0.4, with| =0,1,2.

et al.[16], it is not difficult to understand the reason that thetime scale f,=1/w,), respectively. We learned that &

usual power-law tail is replaced by exponential decay. Sincécreasesw; increases as well, which corresponds to the

that potential also falls off exponentially on the black-holedecrease of the damping time scale. According to the AdS/

horizon in de Sitter space, the pattern of decay exhibited hereFT correspondence, this means that for big@erit is

on the AdS black-hole event horizon is similar to that in dequicker for the quasinormal ringing to settle down to thermal

Sitter spac¢14,15. However due to the waves bouncing off equilibrium. From Fig. 3 it is easy to see this property. Be-

the divergent potential barrier at largein AdS space, the sides, Table Il and Fig. 3 also tell us that the big@eis, the

oscillation appears in the exponential tail. With the late-timelower frequencies of oscillation will be. This object picture

behavior in hand, it is possible to improve previous studiesupports the argument in R¢R2] that if we perturb a RN

on Cauchy horizon stability problems in AdS black holesAdS black hole with high charge, the surrounding geometry

[23,24] along the lines of Brady and Smif25]. will not “ring” as much and as long as that of the black hole
Figure 3 demonstrates the behaviors of the field with thevith small Q. It is easy for the perturbation on the high

increase of the charge in the RN AdS black-hole backcharged AdS black-hole background to return to thermal

ground. In Table Il we listed values of imaginary and realequilibrium. However this relation seems not to hold well

parts of quasinormal frequencies read from the plots. Thesehen the charge is sufficiently big and near the extreme

frequencies together with the entire picture presented in Figralue described by relatiof). We will address this behav-

3 agree perfectly with the result given in RE22], since the  ior later.

imaginary and real parts of the quasinormal frequencies re-

late to the damping time scalery(=1/w;) and oscillation B. Behavior of wave evolution with the increase of

We have so far discussed only the lowest multipole index
TABLE II. The behavior of the lowest quasinormal mode fre- I=0. In the following we show the wave dynamics on the
quency with the increase of the charge in the RN AdS black-holeq AdS background for different multipole indicés For

belckground fol =0. The real part iSo:FL{ and the imaginary part is simplicity we present here the results for0,1,2, but the

@ basic characteristics of the dependence of the wave function
r.=04 (Q%,=0.2368) with t.he multipple ilndex have already been uncovered and
) 1 1 are discussed in this section.
Q - @i “R Figures 4—-6 exhibit a striking consistent picture with
0 0 1.007 2.363 those given in Refs[20,22. Increasingl, the evolution of
0.01 2 14E-2 1.034 2.327 the test field experiences an increase of the damping time
01 0.196 1.42 205 scale and a decrease of the oscillation time scale. These fig-
0.125 0.238 1.53 204 ures gave us an object lesson on the evolution of the test field
with the increase of multipole index. It is worth noting that
=1 (Q2,=4) the beha\_/ior shown here differs quite a lot from that of the
Q2 ; ex ol Wl asymptotically flat cas¢5], where the perturbation settles
- : R down faster with the increase bf These differences can be
0 0 2.67 2.79 used to further support the argument that the last two pro-
0.01 4.9875E-003 2.68 2.78 cesses of the wave evolution reflect directly on the back-

ground spacetime property.
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FIG. 5. Semilog graph of the wave function f@?=0.1 and FIG. 6. Semilog graph of the wave function f@¢=0.125 and
r,=0.4, with|=0,1,2. r,=0.4, with| =0,1,2.

We found in the numerical calculation that the computa-
tion time becomes bigger wheépis large enough. This hap-

In our previous work22], we found that there is a nu- pens because we are forced to take a biggey,, and also
merical convergence problem when the cha@gapproaches because the numerical routine that calculates the function
the extreme value. We claimed that the problem is related to(r*) is more time consuming in this range @f Moreover,
the method we adopted there. Using the numerical strategjhe precision cannot be improved for taking smaller grid
proposed in Refl5] to directly describe the wave dynamics, scale factor wherQ is close to the extreme value. Some
we can step further on this problem. plateaus appear in the late time leading us to suspect that

The behavior we read from Fig. 7 is quite different from there may be a failure in the numerical method in this region.
that exhibited in Fig. 3 and discussed in Sec. Ill A. Here weln spite of this, the convergence of the numerical code ap-
see that over some critical value @, the damping time pears to be good even in this limit, as commented in Appen-
scale increases with the increase(@fcorresponding to the dix. However the question whether there is a plausible ex-
decrease of imaginary frequency. This means that over sonmanation for the “wiggle” of the imaginary frequency as the
critical value ofQ, the larger the black-hole charge is, the charge is large enough and close to the extreme value is still
slower the outside perturbation dies out. This qualitativeopen.
change in the characteristic of the imaginary frequenc@as  We know that the frequencies and damping times of the
increases agrees with the normal-mode frequencies of Rjuasinormal modes are entirely fixed by the black hole, and

C. Quasinormal modes for highly charged AdS black hole

black hole described in Reff26,27]. are independent of the initial perturbation. It has been shown
10° 10°
7
i
*’i S
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10° Iifi R el 10
N T~
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E | ‘l“\‘ \\\\ - i
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FIG. 7. (left) Semilog graph of the wave function with, =0.4, |=0, and several values @. The extreme value fo®? is 0.2368.
(right) Detail of previous plot, with two values @.

084001-6



EVOLUTION OF A MASSLESS SCALAR FIELD IN . .. PHYSICAL REVIEW D63 084001

that there is a second-order phase transition in the extrem 0.1 .
limit of black holes[28—-30. This result has been further
supported in a recent study for the charged AdS black hole F.
[31,32. Whether different properties of imaginary frequen-  0.09 - = e .
cies with the increase of the char@ereflect different phase
characteristics is a question to be answered. We are trying ti
improve our numerical code to increase convergence rate an g7 L Qo 02 _
precision. These results can be compared to those of Re _
[33] where it has been shown that in the Kerr solution, when®

the rotation parametea of the black hole approaches the 0.05
critical value, the quasinormal modes decay time gets longer
These results support the claims of the present paper. W
will address this problem in detail in a forthcoming paper.

0.03 r 1

IV. CONCLUSIONS AND DISCUSSIONS L
0.01

0 100 200 300

We have studied the wave evolution in Reissner- N

Nordstran anti—de Sitter spacetimes and revealed consistent
but interesting results. The radiative tails associated with a FIG. 8. Graph of¥, for v=2.9824,r . =0.4,1=0, and several
massless scalar field propagation on a fixed background of aralues ofQ.
AdS black hole experience an oscillatory exponential decay
at the black-hole event horizon. This result of exponentiakelho Nacional de Desenvolvimento Cidieb e Tecno-
decay supports Ref20] and is similar to that on the black- l6gico (CNPQ. B. Wang would like to acknowledge the
hole horizon in de Sitter case because of the similar behaviagupport given by Shanghai Science and Technology Com-
of the exponentially falling off of the potential at event ho- mission, as well as NNSF, China under Contract 10005004.
rizon. When one considers the conclusions of Chatgl.
[16], this late-time tail is not surprising. Accompanied with
the exponentially decay, there is a special oscillation in the
tail in linear analysis in AdS. This can be attributed to waves As shown in expressiofl7), the local truncation error for
bouncing off the potential at large because the potential ¥ scales ag®, assuming that the exact functidh, has a
diverges at infinity in AdS space. The property of the late-Taylor expansion in the null rectangle. Although we have
time behavior on the event horizon of AdS black hole caniittle control over the global error at=uy,,., we can make
help us better understand the stability of Cauchy horizon ira rough estimate. The first point in the line= u,,,,, Which
AdS spacetimes. is W(Umax,v1), is obtained using only points in the line
We have also learned an object lesson of the quasinormat ;. Since there aré@(e %) points in this line, the global
modes on the background of RN AdS black hole. For smalkrror in W, (u,,.y,v1) should scale ag®. On the other hand,
values ofQ the picture we obtained is consistent with thatsince there ar@(e?) grid points, the last point in the line

derived in Ref[22] The Iarger the black hole Charge is, the U= Unax which depends on all the gr|d pointS, should scale
quicker is the approach to thermal equilibrium. The consisyg 2.

tent picture of the quasinormal modes, depending on the
multipole indexl, has also been illustrated. Increasingve

APPENDIX: CONVERGENCE OF THE CODE

obtain the effect of increasing the damping time scale and _4 — Q=

decreasing the oscillation time scale. 500107 — Q§=0.1 i
When the charge in background RN AdS black hole is — Q=02

large enough, we get an opposite result for the characteristi \\

of imaginary frequencies. This wiggle of the imaginary fre- or ¥ ]

guencies as the charge increases on the background agre
with earlier results of normal-mode frequency study for RN
black hole. Since the type of quasinormal mode is deter-5.0x10
mined by the background spacetimes and it has been foun

that a second-order phase transition appears when the RI

AdS black hole becomes extreme, we speculate that the dif ; o ;53 | | i
ferent behavior of the quasinormal frequencies may reflect \

the characteristic of two different phases. Further study on
this subject is called for.

-1.5x10°8 * ‘ ‘
0 100 200 300 400
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We can improve on this estimate by calculating conver-u=uy. It is therefore inversely proportional t@
gence curves. In these curves, we plot the valu&pfat a These diagrams clearly show numerical convergence, and
given point as the grid spacingis reduced. In Figs. 8 and 9 a quite fast one. This indicates that the global error indeed
we show some curves for three values of the charges in twtends to zero as we decrease the grid spacing, even in the
points. The parametéX is the number of points in the line limit when Q gets near the extreme limit.
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