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Evolution of a massless scalar field in Reissner-Nordstro¨m anti–de Sitter spacetimes
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We investigate the evolution of a scalar field propagating in Reissner-Nordstro¨m anti–de Sitter spacetime.
Because of the characteristic of spacetime geometry, the radiative tails associated with a massless scalar field
propagation have an oscillatory exponential decay. The object picture of the quasinormal ringing has also been
obtained. For small charges, the approach to thermal equilibrium is faster for larger charges. However, after the
black-hole charge reaches a critical value, we get the opposite behavior for the imaginary frequencies of the
quasinormal modes. Some possible explanations concerning the wiggle of the imaginary frequencies have been
given. The picture of the quasinormal modes depending on the multipole index has also been illustrated.
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I. INTRODUCTION

The study of wave dynamics outside black holes has b
an intriguing subject for the last few decades~for a review,
see Ref.@1#!. By virtue of previous works, we now have th
schematic picture regarding the dynamics of waves outsi
spherical collapsing object. A static observer outside
black hole can indicate three successive stages of the w
evolution. First the exact shape of the wave front depends
the initial pulse. This stage is followed by a quasinorm
ringing, which carries information about the structure of t
background spacetime and is believed to be a unique fin
print to directly identify the black hole’s existence. Detecti
of these quasinormal modes is expected to be real
through gravitational wave observation in the near future@1#.
Finally, at late times, quasinormal oscillations are swam
by the relaxation process. This relaxation is the requirem
of the black hole no-hair theorem@2#. In addition, the dy-
namical mechanism of shedding the perturbation hair n
the black hole event horizon is of direct interest to the pr
lem of stability of Cauchy horizons@3#.

The mechanism responsible for the relaxation of neu
external perturbations was first exhibited by Price@4#. Study-
ing the behavior of a massless scalar field propagating o
fixed Schwarzschild background, he showed that for a fi
position the field dies off with a power-law tail. The behavi
of neutral perturbations along null infinity and a future eve
horizon was further studied by Gundlach, Price, and Pu
@5# and similar power-law tails have been obtained. Th
results were later confirmed using several different te
niques, both analytic and numerical@6–8#, and were gener-
alized to Reissner-Nordstro¨m ~RN! background@5,9#. The
application of linear approaches is encouraged by nume
analysis of the fully nonlinear dynamics of the fields@10,11#,
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which indicates the same late time pattern of decay.
Extending the basic scenario to study the asymptotic e

lution of charged fields and self-interacting massive sca
field around a RN black hole, Hod and Piran@12,13# found
that although usual inverse power-law relations of the
fields present at timelike infinity and null infinity, along th
future black-hole event horizon this power-law tail is acco
panied by an oscillatory behavior. Recently, Bradyet al.
@14,15# studied scalar wave dynamics in nonasymptotica
flat exteriors of Schwarzschild–de Sitter and RN de Sit
black holes. Contrary to the asymptotically flat geometri
no power-law tails were detected in these cases. Instead
waves were found to decay exponentially at late times.
l 50, they found that the field does not decay, but set
down to a nonzero constant. Moreover, for a field stron
coupled to curvature, they obtained that the wave funct
oscillates with an exponentially decaying amplitude. The
observations support the earlier argument by Chinget al.
@16#, that usual inverse power-law tails, as seen in asym
totically flat black hole spacetimes, are not a general fea
of wave propagation in curved spacetime. Besides some
lation to the perturbative field, the relaxation process refle
a characteristic of the background geometry.

It is of interest to extend this study to anti–de Sitter~AdS!
spacetime. In addition to three major aspects that the ev
tion of test field is associated with, including the no-ha
theorem, the stability of Cauchy horizon, and direct eviden
of the existence of black hole provided by quasinormal rin
ing, the recent discovery of the anti–de Sitter–conform
field-theory~AdS/CFT! correspondence makes the investig
tion in AdS black-hole background more appealing. T
quasinormal frequencies of AdS black hole have direct in
pretation in terms of the dual CFT. In terms of the AdS/CF
correspondence@17–19a#, the black hole corresponds to a
approximately thermal state in the field theory, and the de
of the test field corresponds to the decay of the perturba
of the state. The first study of the scalar quasinormal mo
in AdS space was performed by Chan and Mann@19b#. In
@19c#, topological black holes were included. Recent
©2001 The American Physical Society01-1
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Horowtiz and Hubeny@20# considered the problem of quas
normal modes on the background of Schwarzschild A
black holes in four, five, and seven dimensions. Th
claimed that for large black holes both the real and ima
nary parts of the quasinormal frequencies scale linearly w
the black-hole temperature. The time scale for approach
the thermal equilibrium is detected by the imaginary part
the lowest quasinormal frequency and is proportional to
inverse of the black-hole temperature. Considering that
RN AdS solution provides a better framework than t
Schwarzschild AdS geometry and may contribute sign
cantly to our understanding of space and time, we gene
ized the study made in our previous work@22#. We found
that the charge in RN AdS black hole showed a richer ph
ics concerning quasinormal modes and further informat
on AdS/CFT correspondence. The bigger the black h
charge is, the quicker for their approach to thermal equi
rium in CFT. However these studies focused much on
quencies of the quasinormal modes, the object picture of
evolution of test field around the AdS background is lackin

The intention of this paper is to analyze in detail the wa
propagation of massless scalar field in RN AdS spaceti
We will show that the direct picture of the evolution prese
us with a perfect agreement on quasinormal frequencies
those obtained by using approximation method suggeste
Ref. @20#. Moreover, our paper will show object pictures
the behavior of quasinormal modes as a function of
chargeQ and of the multipole order of the fieldl. We will
also address some discussions on the highly charged b
ground case. In addition, the relaxation process at the e
horizon will also be discussed in our direct picture. W
found that the decay has the pattern of oscillatory expon
tial tail. This result supports Horowitz’s claim that there a
no power-law tails at late times in AdS space. Some phys
explanation related to this result will be given.

II. EQUATIONS AND NUMERICAL METHODS

The Reissner-Nordstro¨m black-hole solution of Einstein’s
equations in free space with a negative cosmological c
stantL523/R2 is given by

ds252hdt21h21dr 21r 2dV2, ~1!

with

h512
r 1

r
2

r 1
3

R2r
2

Q2

r 1r
1

Q2

r 2
1

r 2

R2
. ~2!

The asymptotic form of this spacetime is AdS. The mass
the black hole is

M5
1

2 S r 11
r 1

3

R2
1

Q2

r 1
D . ~3!

The Hawking temperature is given by the expression
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TH5

12
Q2

r 1
2

1
3r 1

2

R2

4pr 1
~4!

and the potential by

f5
Q

r 1
. ~5!

In the extreme caser 1 andQ satisfy the relation

12
Q2

r 1
2

1
3r 1

2

R2
50. ~6!

For a nonextreme RN AdS black hole, the spacetime p
sesses two horizons, namely, the black-hole event horizonr 1

and Cauchy horizonr 2 . For the extreme case where Eq.~6!
is satisfied, these two horizons degenerate. The functioh
has four zeros atr 1 ,r 2 and r 1 ,r 2, where r 1 ,r 2 are two
complex roots with no physical meaning. The relations b
tween these four roots are

r 11r 252~r 11r 2!

r 1r 25R21r 1r 21r 1
2 1r 2

2 . ~7!

In terms of these quantities,h can be expressed as

h5
1

R2r 2
~r 2r 1!~r 2r 2!~r 2r 1!~r 2r 2!. ~8!

Introducing the surface gravityk i associated withr i by the
relationk i5

1
2 udh/drur 5r i

, we have

k r 1
5

1

2R2

~r 12r 2!~r 12r 1!~r 12r 2!

r 1
2

,

k r 2
5

1

2R2

~r 12r 2!~r 22r 1!~r 22r 2!

r 2
2

,

k r 1
5

1

2R2

~r 12r 1!~r 22r 1!~r 12r 2!

r 1
2

,

k r 2
5

1

2R2

~r 12r 2!~r 22r 2!~r 22r 1!

r 2
2

. ~9!

These quantities allow us to write

h215
1

2k r 1
~r 2r 1!

2
1

2k r 2
~r 2r 2!

1
1

2k r 1
~r 2r 1!

2
1

2k r 2
~r 2r 2!

. ~10!
1-2



f
nt
f
s
l-

t
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FIG. 1. ~Left! Diagram of the
numerical grid and the domain o
interest. The black spots represe
the grid points where the value o
the field is known. The gray spot
represent the grid points to be ca
culated. The points in the lineu
5umax are the results shown in
this paper.~Right! Detail of the
previous diagram, showing the
relative positionsN, S, E, andW.
The gray point would be the nex
one to be calculated.
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Combining the last two terms in Eq.~10!, we express the
transformation betweenr and the ‘‘tortoise coordinate’’r *
5*h21dr in the form

r * 5
1

2k r 1

ln~r 2r 1!2
1

2k r 2

ln~r 2r 2!

1
R2@~r 1r 2!22r 1r 2r 1r 2#

@r 1
2 2r 1~r 11r 2!1r 1r 2#@r 2

2 2r 2~r 11r 2!1r 1r 2#

3E dr

r 22r ~r 11r 2!1r 1r 2

1
R2@r 1r 2~r 11r 2!2r 1r 1r 22r 2r 1r 2#

@r 1
2 2r 1~r 11r 2!1r 1r 2#@r 2

2 2r 2~r 11r 2!1r 1r 2#

3E r dr

r 22r ~r 11r 2!1r 1r 2

. ~11!

In terms of t and r * we introduce null coordinatesu5t
2r * and v5t1r * so that the future black-hole horizon
located atu5`. Since the quasinormal modes of AdS spa
are defined to be modes with only ingoing waves near
horizon, we will pay more attention to the wave dynam
near the event horizon.

Let us consider a massless scalar fieldF in the RN AdS
spacetime, obeying the wave equation

hF50, ~12!

where h5gab
“a“b is the d’Alembertian operator. If we

decompose the scalar field according to

F5(
lm

1

r
c l~ t,r !Ylm~u,f! ~13!

then each wave functionc l(r ) satisfies the equation

2
]2c l

]t2
1

]2c l

]r * 2
5Vlc l , ~14!

where
08400
e
e

Vl5hF l ~ l 11!

r 2
1

1

r

dh

dr G
5hF l ~ l 11!

r 2
1

r 11r 1
3 /R21Q2/r 1

r 3
2

2Q2

r 4
1

2

R2G .

~15!

The potentialVl has the same characteristic as that in
Schwarzschild AdS black hole. It is positive and vanishes
the horizon, but diverges atr→`, which requires thatF
vanishes at infinity. This is the boundary condition to
satisfied by the wave equation for the scalar field in A
space. In terms of the radial coordinater * , it is seen that
whenr tends to infinity,r * tends to a finite constant~which
we denoter as* ). It means that our region of interest in th
(u2v) diagram is above the linev2u52r as* , as shown in
Fig. 1. In this line~wherer→`) we setF50.

The behavior of the potential differs quite a lot from th
of asymptotically flat space and de Sitter space. As argue
Ref. @16#, it is this peculiarity that contributes to the speci
wave propagation as will be shown later.

Using the null coordinatesu andv, Eq. ~14! can be recast
as

24
]2

]u]v
c l~u,v !5Vl~r !c l~u,v ! ~16!

in which r is determined by inverting the relationr * (r )
5(v2u)/2.

The two-dimensional wave equation~16! can be inte-
grated numerically, using for example the finite differen
method suggested in Refs.@5,21#. Using Taylor’s theorem, it
is discretized as

cN5cE1cW2cS2dudvVl S vN1vW2uN2uE

4 D cW1cE

8

1O~e4!, ~17!

where the pointsN,S,E, andW form a null rectangle with
relative positions as N:(u1du,v1dv),W:(u1du,v),
E:(u,v1dv), and S:(u,v). The parametere is an overall
grid scalar factor, so thatdu;dv;e.
1-3
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FIG. 2. Semilog graph of the absolute value of the wave function for small values ofv ~left! and the late time behavior~right!, with
r 150.4 andQ50.
o

ce

n
u-
od

th
e

a
ob
e
te
s

m
n
de
s

n
ol
s

the
t-
ck-

D
nt

wn

ef.
he

the
in

gh
e

e-
at
ri-
of
ing

r-
Considering that the behavior of the wave function is n
sensitive to the choice of initial data, we setc l(u,v5v0)
50 and use a Gaussian pulse as an initial perturbation,
tered onvc and with widths on u5u0 as

c l~u5u0 ,v !5expF2
~v2vc!

2

2s2 G . ~18!

The inversion of the relationr * (r ) needed in the evaluatio
of the potentialVl(r ) is the most tedious part in the comp
tation. We overcome this difficulty by employing the meth
suggested in Refs.@5,14#.

After the integration is completed, the valuec l(umax,v)
is extracted, whereumax is the maximum value ofu on the
numerical grid. Taking sufficiently largeumax, c l(umax,v)
represents a good approximation for the wave function at
event horizon (u→`), which carries information about th
quasinormal modes for the AdS space of our interest. It w
observed in our numerical experiments that the plots
tained converged in a given range ofv, as expected, but th
rate of convergence varied with the parameters of the sys
It should be noted that the term ‘‘convergence’’ in the la
sentence refers to the limit ofF asumax is taken bigger and
bigger. As commented, the regionumax→` corresponds to
the event horizon, in which we are interested. Some co
ments about the convergence of the numerical code, mea
the evolution of the wave function with the grid size, is ma
in Appendix. In order to compare our results here with tho
in Refs.@20,22#, we fix R51 in the following.

III. NUMERICAL RESULTS

We now report on the results of our numerical simulatio
of evolving massless scalar field on a RN AdS black-h
background. TakingQ→0, our results reflect the propertie
on Schwarzschild AdS background.
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A. Behavior of wave evolution for lÄ0

In the first series of numerical experiments, we choose
multipole indexl 50 and examine the behavior of the tes
field propagation with the increase of the charge of the ba
ground spacetime.

Figure 2 displays the quasinormal ringing on the 4
Schwarzschild-AdS background. From plots using differe
values ofr 1 we can read off values for the imaginary (v I)
and real (vR) parts of the frequency. The results are sho
in Table I.

The agreement with the frequencies calculated in R
@20# is good. A small difference can be attributed to t
different methods employed.

We studied the late-time decay of the test field on
Schwarzschild-AdS black hole and the results are shown
Fig. 2. It was first predicted in Ref.@20# that the decay is
always exponential and with no power-law tails. Throu
careful study, we got a result that supports their claim. W
obtain that the late-time falloff is oscillatory exponential. R
call that for the AdS black hole, the potential diverges
infinity but vanishes exponentially near the black-hole ho
zon. This boundary condition differs completely from that
asymptotically flat spacetime. Using the argument of Ch

TABLE I. The lowest quasinormal mode frequency for fou
dimensional Schwarzschild-AdS black hole forl 50. The real part
is vR

1 and the imaginary part isv I
1 .

r 1 v I
1 vR

1

100 274.61 185.38
50 133.68 91.38
10 26.79 18.85
5 13.41 9.99
1 2.67 2.79
0.8 2.15 2.58
0.6 1.58 2.41
0.4 1.006 2.362
1-4
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EVOLUTION OF A MASSLESS SCALAR FIELD IN . . . PHYSICAL REVIEW D63 084001
et al. @16#, it is not difficult to understand the reason that t
usual power-law tail is replaced by exponential decay. Si
that potential also falls off exponentially on the black-ho
horizon in de Sitter space, the pattern of decay exhibited h
on the AdS black-hole event horizon is similar to that in
Sitter space@14,15#. However due to the waves bouncing o
the divergent potential barrier at larger in AdS space, the
oscillation appears in the exponential tail. With the late-tim
behavior in hand, it is possible to improve previous stud
on Cauchy horizon stability problems in AdS black hol
@23,24# along the lines of Brady and Smith@25#.

Figure 3 demonstrates the behaviors of the field with
increase of the charge in the RN AdS black-hole ba
ground. In Table II we listed values of imaginary and re
parts of quasinormal frequencies read from the plots. Th
frequencies together with the entire picture presented in
3 agree perfectly with the result given in Ref.@22#, since the
imaginary and real parts of the quasinormal frequencies
late to the damping time scale (t151/v i) and oscillation

FIG. 3. Semilog graphs ofuCu with r 150.4 and small values o
Q. The extreme value forQ2 is 0.2368.

TABLE II. The behavior of the lowest quasinormal mode fr
quency with the increase of the charge in the RN AdS black-h
background forl 50. The real part isvR

1 and the imaginary part is
v I

1 .

r 150.4 (Qext
2 50.2368)

Q2 r 2 v I
1 vR

1

0 0 1.007 2.363
0.01 2.14E-2 1.034 2.327
0.1 0.196 1.42 2.05
0.125 0.238 1.53 2.04

r 151 (Qext
2 54)

Q2 r 2 v I
1 vR

1

0 0 2.67 2.79
0.01 4.9875E-003 2.68 2.78
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time scale (t251/v r), respectively. We learned that asQ
increases,v i increases as well, which corresponds to t
decrease of the damping time scale. According to the A
CFT correspondence, this means that for biggerQ, it is
quicker for the quasinormal ringing to settle down to therm
equilibrium. From Fig. 3 it is easy to see this property. B
sides, Table II and Fig. 3 also tell us that the biggerQ is, the
lower frequencies of oscillation will be. This object pictu
supports the argument in Ref.@22# that if we perturb a RN
AdS black hole with high charge, the surrounding geome
will not ‘‘ring’’ as much and as long as that of the black ho
with small Q. It is easy for the perturbation on the hig
charged AdS black-hole background to return to therm
equilibrium. However this relation seems not to hold w
when the charge is sufficiently big and near the extre
value described by relation~6!. We will address this behav
ior later.

B. Behavior of wave evolution with the increase ofl

We have so far discussed only the lowest multipole ind
l 50. In the following we show the wave dynamics on th
RN AdS background for different multipole indicesl. For
simplicity we present here the results forl 50,1,2, but the
basic characteristics of the dependence of the wave func
with the multipole index have already been uncovered a
are discussed in this section.

Figures 4–6 exhibit a striking consistent picture wi
those given in Refs.@20,22#. Increasingl, the evolution of
the test field experiences an increase of the damping t
scale and a decrease of the oscillation time scale. These
ures gave us an object lesson on the evolution of the test
with the increase of multipole index. It is worth noting th
the behavior shown here differs quite a lot from that of t
asymptotically flat case@5#, where the perturbation settle
down faster with the increase ofl. These differences can b
used to further support the argument that the last two p
cesses of the wave evolution reflect directly on the ba
ground spacetime property.

le

FIG. 4. Semilog graph of the wave function in theQ50 case for
r 150.4, with l 50,1,2.
1-5
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C. Quasinormal modes for highly charged AdS black hole

In our previous work@22#, we found that there is a nu
merical convergence problem when the chargeQ approaches
the extreme value. We claimed that the problem is relate
the method we adopted there. Using the numerical stra
proposed in Ref.@5# to directly describe the wave dynamic
we can step further on this problem.

The behavior we read from Fig. 7 is quite different fro
that exhibited in Fig. 3 and discussed in Sec. III A. Here
see that over some critical value ofQ, the damping time
scale increases with the increase ofQ, corresponding to the
decrease of imaginary frequency. This means that over s
critical value ofQ, the larger the black-hole charge is, th
slower the outside perturbation dies out. This qualitat
change in the characteristic of the imaginary frequency aQ
increases agrees with the normal-mode frequencies of
black hole described in Refs.@26,27#.

FIG. 5. Semilog graph of the wave function forQ250.1 and
r 150.4, with l 50,1,2.
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We found in the numerical calculation that the compu
tion time becomes bigger whenQ is large enough. This hap
pens because we are forced to take a biggerumax, and also
because the numerical routine that calculates the func
r (r * ) is more time consuming in this range ofQ. Moreover,
the precision cannot be improved for taking smaller g
scale factor whenQ is close to the extreme value. Som
plateaus appear in the late time leading us to suspect
there may be a failure in the numerical method in this regi
In spite of this, the convergence of the numerical code
pears to be good even in this limit, as commented in App
dix. However the question whether there is a plausible
planation for the ‘‘wiggle’’ of the imaginary frequency as th
charge is large enough and close to the extreme value is
open.

We know that the frequencies and damping times of
quasinormal modes are entirely fixed by the black hole, a
are independent of the initial perturbation. It has been sho

FIG. 6. Semilog graph of the wave function forQ250.125 and
r 150.4, with l 50,1,2.
FIG. 7. ~left! Semilog graph of the wave function withr 150.4, l 50, and several values ofQ. The extreme value forQ2 is 0.2368.
~right! Detail of previous plot, with two values ofQ.
1-6
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EVOLUTION OF A MASSLESS SCALAR FIELD IN . . . PHYSICAL REVIEW D63 084001
that there is a second-order phase transition in the extr
limit of black holes @28–30#. This result has been furthe
supported in a recent study for the charged AdS black h
@31,32#. Whether different properties of imaginary freque
cies with the increase of the chargeQ reflect different phase
characteristics is a question to be answered. We are tryin
improve our numerical code to increase convergence rate
precision. These results can be compared to those of
@33# where it has been shown that in the Kerr solution, wh
the rotation parametera of the black hole approaches th
critical value, the quasinormal modes decay time gets lon
These results support the claims of the present paper.
will address this problem in detail in a forthcoming paper

IV. CONCLUSIONS AND DISCUSSIONS

We have studied the wave evolution in Reissn
Nordström anti–de Sitter spacetimes and revealed consis
but interesting results. The radiative tails associated wit
massless scalar field propagation on a fixed background o
AdS black hole experience an oscillatory exponential de
at the black-hole event horizon. This result of exponen
decay supports Ref.@20# and is similar to that on the black
hole horizon in de Sitter case because of the similar beha
of the exponentially falling off of the potential at event h
rizon. When one considers the conclusions of Chinget al.
@16#, this late-time tail is not surprising. Accompanied wi
the exponentially decay, there is a special oscillation in
tail in linear analysis in AdS. This can be attributed to wav
bouncing off the potential at larger, because the potentia
diverges at infinity in AdS space. The property of the la
time behavior on the event horizon of AdS black hole c
help us better understand the stability of Cauchy horizon
AdS spacetimes.

We have also learned an object lesson of the quasino
modes on the background of RN AdS black hole. For sm
values ofQ the picture we obtained is consistent with th
derived in Ref.@22#. The larger the black hole charge is, th
quicker is the approach to thermal equilibrium. The cons
tent picture of the quasinormal modes, depending on
multipole indexl, has also been illustrated. Increasingl, we
obtain the effect of increasing the damping time scale
decreasing the oscillation time scale.

When the charge in background RN AdS black hole
large enough, we get an opposite result for the character
of imaginary frequencies. This wiggle of the imaginary fr
quencies as the charge increases on the background a
with earlier results of normal-mode frequency study for R
black hole. Since the type of quasinormal mode is de
mined by the background spacetimes and it has been fo
that a second-order phase transition appears when the
AdS black hole becomes extreme, we speculate that the
ferent behavior of the quasinormal frequencies may refl
the characteristic of two different phases. Further study
this subject is called for.
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APPENDIX: CONVERGENCE OF THE CODE

As shown in expression~17!, the local truncation error for
CN scales ase4, assuming that the exact functionC l has a
Taylor expansion in the null rectangle. Although we ha
little control over the global error atu5umax, we can make
a rough estimate. The first point in the lineu5umax, which
is C(umax,v1), is obtained using only points in the linev
5v1. Since there areO(e21) points in this line, the global
error inC l(umax,v1) should scale ase3. On the other hand
since there areO(e22) grid points, the last point in the line
u5umax, which depends on all the grid points, should sc
ase2.

FIG. 8. Graph ofC l for v52.9824,r 150.4, l 50, and several
values ofQ.

FIG. 9. Graph ofC l for v59.6157,r 150.4, l 50, and several
values ofQ.
1-7



er

9
tw

and
ed
the

B. WANG, C. MOLINA, AND E. ABDALLA PHYSICAL REVIEW D 63 084001
We can improve on this estimate by calculating conv
gence curves. In these curves, we plot the value ofC l at a
given point as the grid spacinge is reduced. In Figs. 8 and
we show some curves for three values of the charges in
points. The parameterN is the number of points in the line
er

ois

a

ys

ys

08400
-

o

u5u0. It is therefore inversely proportional toe.
These diagrams clearly show numerical convergence,

a quite fast one. This indicates that the global error inde
tends to zero as we decrease the grid spacing, even in
limit when Q gets near the extreme limit.
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