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Self-intersections and gravitational properties of chiral cosmic strings in Minkowski space
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Chiral cosmic strings are naturally produced at the en®-eérm inflation and they may have interesting
cosmological consequences. As was first proved by Carter and Peter, the equations of motion for chiral cosmic
strings in Minkowski space are integrakjest as for Nambu-Goto stringsTheir solutions are labeled by a
functionk(o—t) wheret is time ando is the invariant length along the string, and the constraintk, evhich
determines the charge on the string, are thakd< 1. We review the origin of this parameter and also discuss
some general properties of such strings, which can be deduced from the equations of motion. The metric
around infinite chiral strings is then constructed in the weak-field limit, and studied as a funckiowefalso
consider the angular momentum of circular chiral loops, and extend previous work to consider the evolution
and self-intersection properties of a more general family of chiral cosmic string loops for kfifich t) is not
constant.
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I. INTRODUCTION exist models in which the strings formed at the end of infla-
tion are NG ones, however this is not true @fterm infla-
In the last few years the scenario of structure formationtion. In the case of “inflation plus NG strings,” predictions

from cosmic strings has become increasingly tenuous, sino@ay be found in Ref{11].)
its predictions differ significantly from the new high accu-  There are a number of differences between the properties
racy measurements of the temperature fluctuations in thgf chiral cosmic strings and NG strings. One such regards the
cosmic microwave background radiation. Most studies ofeyolution of the strings themselves; the null current on chiral
such observational consequences of strings have focused 8ftings can, as in the case of other current-carrying strings,
structureless Nambu-GottNG) strings [1-5] and global |eaq to the formation of nonself-intersecting stable loops
strings [6,7], and in each case the recent predictions arggjieq vortond. This is potentially catastrophic as the energy

based on numerical simulations of the evolution of the stringdensity in the chiral string network could quickly dominate
network postulated to form at the grand unified theorythe energy density in the universe if stable vortons are

(GUT) phase transition. One should recall though that there resent. It is therefore important to see if vortons are pro-

are some unresolved and potentially important uncertamtleguced’ and in Sec. IV we study the self-intersection proper-

in the simulations—it is very difficult, for example, to re- ¢ 2 familv of chiral i string | Another diff
solve the very disparate scales which characterize the nepes of a family of chiral cosmic string loops. Another differ-
ence between NG and chiral strings is that these linelike

work, as well as to deal with gravitational backreaction i ,
effects—and hence a combination of numerical work withSources of energy generate different metrics about 8.

analytical modeling1,4,5 has also been used to make pre_III B).2 One might therefore expect them to produce different
dictions from NG strings. perturbations in the matter and radiation through which they

Our focus here is not on NG strings but ratherairal ~ Pass. _
cosmic strings These strings are a type of current carrying Recently a number of steps have been made which allows

string[8] for which the world-sheet curreijt is null: for a quantitative study of chiral cosmic string dynamics.
. First, a well-defined unique 2D effective action exists for
i'ii=j%=0. these stringg12,15. From this action it was shown, with

suitable gauge choices, that the equations of motion are in-
[Here i=(0,1) and the two-dimensiondPD) world-sheet tegrable in Minkowski spacgl5] (see also Refg16,17] for
metric y;; defined below raises and lowers indidg8ne mo-  different presentations of the same regulthey are
tivation for studying such chiral strings comes from the well-
known supersymmetricD-term inflation model. In this
model, strings are produced at the end of inflafi®hso that

both mechanisms contribute to producing density fluctua- 1As will be come clearer later, by a vorton we mean a stable loop
P 9 Y . of arbitrary shape that never self-intersects. This definition is dif-

tlo_ns. However, the St.“”gs produced_ are chiral COSMIGerent from that of Martins and Shellafd2] who also require that
Str'”gs_a”d not NG strlngélo].. He”‘?e In order to make these loops move nonrelativistically, suggesting that otherwise the
predictions for theCy's from this “strings plus inflation”  cparge on the loops could be “thrown off.” We are not able to
model, the evolution and cosmological consequences of chizgmment on such a mechanism, however see R&l. for a dis-
ral cosmic string networks must be understo@there may  cussjon of the scattering of zero modes from chiral strings.
2| am aware that this comment disagrees with the one | made in
Ref. [14]. | would like to thank P. Peter and T. Vachaspati for
*Email address: daniele.steer@physics.unige.ch pointing out an error in my previous determination of the metric.
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wheret is background time, and- measures the invariant
length or energy along the string as in the NG dd€8. The
constraints are

so that)'=y'I¢ ; is a conserved null current. The equation
of motion 6S/5¢=0 defines another conserved null current
I

a2=1, 1y 29 ) | )

b1 13 =Py e p=0=2=yy¢;. (23

) ) _ As noted in Ref[16], the action(2.1) in fact has an infinite

where for instancé(q)=da(q)/dq. If one defines number of null conserved currenf§=f(¢)¢' since Egs.
K2:= b2 (1.4 (2.2 and(2.3) imply that = ¢/(¢). The degeneracy of cur-

' rents is broken by observing that EQ.1) is invariant, not

so thatk=k(t— o), then it can be shown th&f determines only under coordinate reparametrizationd—o'=5'(o’),

the conserved charge on the strisge also beloy Further-  but also under transformations

more, if k=const=1 then this charge vanishes as required, ~\ -1

sinceb=1 is just the Nambu-Goto limit. In Ref16], the d—d(¢), with (/,_j,:(d_(ﬁ) . (2.9

self-intersection properties of chiral cosmic string loops were dy

also studied in the special caselof const. In particular the  These freedoms are removed by making gauge choess

strings were shown never to self-intersectierO; this case  Refs [15,16 and below, so that the only definition of cur-

corresponds to maximal charge on the strings and to vortopant, which is invariant under Eq2.4), and hence indepen-

solutions. _ _ ~ dent of gauge choice, is
Here that work is extended, though we still consider y :
Minkowski spacewith metric 5,,,= (+,—,—,—)) through- I'=ve’. (2.9

out. First, for completeness, we indicate in Sec. Il how theryg js null and conserved and, from Green's theorem, the
equations of motiori1.1)—(1.3) are obtained from the chiral corresponding conserved charge is

action and how the charge mentioned above is defined. This
necessarily follows parts of referen¢@6] rather closely,
though a small error in that paper is corrected. We also com-
pare the chiral charge with the charges used for more general
current carrying strings. In Sec. Ill we summarize somewheree is the antisymmetric surface measure tensor whose
properties of chiral cosmic strings which result from thesquare gives the induced metrig = ece; [15].

equations of motion. The metric around infinite chiral strings  For current-carrying strings with timelike or spacelike

is then studied as a function &fand we comment on pos- currents, this degeneracy of possible conserved charges is
sible consequences it may have for structure formation anbiroken. These strings are characterized by two independent
cosmic microwave background anisotropies from chiral cosconserved quantum numbefsee for example Ref.18]).

mic strings. In Sec. 111 C, the effect of angular momentum onThe first, Z, is defined through the Noether currehtgiven

the motion of circular loops is considered by looking at thein Eq. (2.3: Z= fdo'€;,z. The secondN, the integer wind-
effective potential introduced if18]. In Sec. IV we investi- ing number, is defined by the topological currept

gate the self-intersection properties of loops with non-= ¢ ¢ /2, which is automatically conserved in+1D:

c=J do'€,j %, (2.6)

constantk. Finally conclusions are given in Sec. V. N=fdo e, ] =(1/27) [d¢ (¢ is defined modulo 2). As
i .
noted aboveneither of these currents and corresponding
Il. REVIEW OF CHIRAL STRING EQUATIONS OF charges are gauge invariant for chiral strings. The chiral
MOTION AND CHARGES chargeC is closely related tdN andZ if one works in a gauge
A. Action and charges in which ¢(¢) is constant: on defining,= ¢ then
The effective 2D chiral string action has two terms: the 4
first is the usual NG action, and the second results from the C= \/K—ZZW\FON [4(¢)=constant.  (2.7)
0

zero modes moving along the string. Letbe a dimension-

less real scalar fielthe phase of the charge carriglising This gauge was in particular chosen in Rgf2].34 As was

on the 2D string world sheet labeled by coordinattsThen discussed in detail in Reff15,16, and as we now summa-
the action, which was first proposed by Carter and Héf&r

IS

= 2 2 L 2.jij 30f course if y=const, ¢ can always be rescaled in the action
S J d U\/_y( m 2 vy i) @3 such thaty?=1/27 andN=Z=2=C as is usually assumed in the
_ ) ) study of vortons.
where Y= 7,,XXj is the induced world-sheet metric and  4we have labeled the chiral charge Byas for circular loops it
x#(a°0%) the position of the string. The dimensionless coincides with the Bernoulli-type constant of motion considered in
Lagrange multiplier)? sets the constraint Ref.[18].
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rize briefly, the equations of motion resulting from E8.1)  factor of 2: the reason is that— y is coordinate dependent
simplify greatly in a gauge for whichi(¢) is not constant. ~so if y(£°¢") denotes the determinant of the metric in a
[Indeed in this gaugey(¢) is closely related to functiok  specific ¢°,&') coordinate system, theny—y(t,o)

mentioned in the introduction—see beldWhen there isno  —=2,/=(q, 7). This factor of 2 was missing in Ref16].>
simple relation betweeN, Z, andC, and one must work with

this latter gauge-independent charge. lll. PROPERTIES OF CHIRAL STRINGS, METRICS, AND

) ) ANGULAR MOMENTUM
B. Equations of motion

A. Some general properties of chiral strings

As was discussed in Refisl5,16], the equation of motion

obtained by varying the action with respectxt, As observed in Refs[16, 17, it follows immediately

P from Eq. (1.1) thatx’#0 and|x|#1 so that there are no

i - cusps on chiral cosmic strings.

aN=A A+ HZ‘ZS'I‘#J)X,’T =0, (2.8 Also x# 0, though this does not mean that the string can-
not appear to be at rest, since the only visible component of

simplifies greatly if reparametrization invariance is used tovelocity is that perpendicular to the string. For example, a

choose one of the coordinates to heem~1¢. It then fol-  static infinite chiral string parallel to th axis is given by

lows from Eq.(2.2) that y””=0 and, again as discussed in . A

Refs. [15,16], there is also freedom to choos#=y,, a=(t+o0)z, b=—k(t—0)z,

=X, X ,. As a result, Eq(2.8) simplifies to ) ) )
wherek is constant. These satisfy E@..3) and give

9qd X" =0, (2.9

1
where the second world-sheet coordinate has been denoted X(t,o)= E[t(l—k)+0(1+ k)]z. (3.0
by g. Equation(2.9) still allows the coordinateg and 5 each

to be transformed separately so that one can let In the NG limit (k=1), x= 2 so that points of constarnt

are at fixed values df (andx=0). For anyk<1, points of
constanto move along the axis with time andk+ 0, though
wheret=x° is background time. In that case the wave equathe string itself never changes position. Below, in Sec. Il B,
tion (2.9 takes the familiar form given in Eq1.1): we will look at T#” given in Eq.(2.10 for the infinite string
(3.1) and hence consider the metric about the string.

In the particular case of the infinite stririg.1), x andx’
were parallel. More generally, and again as noted in Refs.
[16,17, for any arbitrary shaped cosmic strifigfinite or a
The constraints coming fromy?”=0 andy?=1y,, are, re- |oop), the limit k=0¥ 7 is special; herex=x" with ||

q=t+o, p=t—o,

X 97X

1
W—P=O:>x(t,o-)=E[a(t+0)+b(t_0')]-

spectively, Eqs(1.2) and(1.3): =|x’|=1/2. Thus theonly component of velocity is parallel
- - 5 to the string, which moves along itself at half the speed of
a(q)=1, b*(n)=k(n)<1. light. The string, whatever its shape, therefore appears to be

stationary and it can never self-intersétd]. If the string
forms a loop, these are called vortorige., nonself-
intersecting solutions that need not be circulahich radiate
neither gravitational energy or gravitational angular momen-
tum.
T“V(t,y)zmzf do (XX —x*'x"") 8y —x(t,0)]. We note one minor difference between such “static”
(2.10 =0 chiral strings and static NG stringthat havek=1 and

a=—b). The physical length of the string is related to- by

Observe thayy*=x ,-x ,=[1—k?*(n)]/4.
In Ref.[16] it was further shown that with these choices
of coordinates, the stress energy tensor is given by

ThusE, the constant energy, is given B=m?[do so that

o measures the energy or invariant length along the string. 1

Below, in Sec. Il A, we will discuss the contribution of the dI=V=7y, do=5[-1+ k?+2(1-b'"-a")]"do

null current to the energy density, and the metric around

infinite chiral strings will also be consideré8ec. 111 B). so that of coursall=do for static NG strings. For static
Finally, in these (,o7) coordinates, the chargeis given  chirg) strings withk=0, di=do7/2, the string energy is eq-

by uipartitioned between tension and angular momentdoe

m to the current as will be discussed in Sec. IlIC. From Eq.
c:J dov— yjt:j do my(o)= §J’ do[1—k?(o)]Y? (2.1 it follows that the charge€C on a vorton is given by

(2.11

and hence that it is determined kg#). The right-hand side  SEquations(2.11) and (2.6) do indeed agree since it, ) coor-
of Eqg. (2.1 differs from the one given in Refl6] by a  dinates,e,,=v— y(t,0)=— €.
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C=mf di=mLpys,  (k=0), hyx=hyy=:Q(r k) =8GmIn(r/ry), (3.5

wherer is an integration constant, which can be thought of

whereL s is the constant physical length of the vorton.  as the width of the string. The metric obtained from Egs.
(3.4) and (3.5 can be simplified by using the familiar coor-

B. Metric around infinite chiral strings dinate transformatiofil — Q(r k) Jr?=[1—4Gn¥]?R* [25]
which gives
From Eq.(2.10, the stress-energy tensor for the infinite g
string given in Eq(3.1) is ds?=dt[1+X(R,k)]-dZ[1—-X(R,k)]—dR?
L0 o 1-k —(1-4Gm?)?R?d#?— 2X(R,k)dt dz (3.6)
2

The first line of Eq.(3.6) is familiar—it is the metric one

o 2m? 0 00 O obtains for wiggly NG cosmic strings that hafd@®+ — 733
™=a5] o o0 0 o o(X) 8(y). but T®=0 [26]. Just as in that case, the coefficient of the
Lk d#? term gives a deficit angle
;- 00 Kk 8(k)=8mGn?,

(3.2 o :
which is nowk independent.

The normalization factor o2/(1+k) comes from the inte- The equations of motion for nonrelativistic particles
gral over the delta function in the direction in Eq.(2.10.  (Newtonian limiy in the metric (3.6) can be straightfor-
Note thatT% —T33 unlessk=1 in which case the off- wardly written down. As expected, there is a Newtonian po-
diagonal terms also vanish. These off-diagonal terms repréential ®(R,k) =X(R,k)/2 that leads to an attractive New-
sent the momentum along the strifig this case it is the tonian force

only momentum given by x=3 (1—k)2. For k<1, T*”

cannot be put into diagonal form by a Lorentz transformation F(RK) = f (1—k)

along the string, as the boost would have to be to a frame '
moving at the speed of light. The off-diagonal terms are a . ) ] ] )
consequence of the null current on the strif@ff-diagonal ~ towards the string. This force is ndndependent; it vanishes
terms are not present for spacelike or timelike current carryfor NG strings and is maximal whek=0. Thus one might

ing cosmic strings—see, for example, Ref9].) expect chiral strings with a large charge to be more effective
Metrics generated by stress-energy tensors of the forri) forming wakes than ones with a smaller chafg8].
(3.2) have been considered in Ref20—22. Here we com- The less familiar term in the metri@®.6) is the last one,

ment on a few properties of the weak-field metric obtained®X(R,k)dtdz (This vanishes both for wiggly and straight

from Eq. (3.2); further details will be presented elsewhere NG strings) While this term has no effect on the motion of

[23]. nonrelativistic particles, it does affect the motion of relativ-
In the weak-field approximatiorg,,,= 7,,+h,,, where istic particles and in particular photoiisee also Refd20],

|h|<1, and in the de Donder gauge,, satisfies 24] [22]). To see that, note from Ed3.6) that geodesics are
characterized by three conserved quantities, the energy

1 angular momentunt, andz component of momenturp, .
thzmﬂ'G(TW— > n,wTi) These are given, respectively, by
=t(1+X)—X:
167G e=t(1+X)—-Xz,
(1+k) L=[1-4Gm?]?R?¥,

-k 0 0 —(1-Kk
0 1+k 0 0
“I o 0 11k o |90y

—(1-k) © 0 1-k

p,=2z(1—X)+Xt,

where for simplicity we have writteX(R,k) =X, and a dot
means derivative with respect to an affine parameter in the
case of photons, and proper time for particles. Consider now
(3.3 photons for which the equations of motion are

On writing r?=x?+y?, the solutions to Eq(3.3) can be t=e(1-X)+p,X,
written as
z=p,(1+X)—eX,
(1-k)
htt:_htZ:hZZ::X(rlK):SGm2(1+k) |n(r/r0), 6: L
(3.4) (1—4GmP)?R%’
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: L2
2 22015\ 2 _ Al ) — :
Re=e“(1—X)—pz(1+X)+2ep,X RE(1—4GA? aq) ngl (A,cosng+B,sinnQ),
Combiningz with t gives ; _
b(7)= >, (C,cosnn+D,sinny), (3.9
n=1

dz  —eX+p,(1+X) @7
dt  e(1-=X)+pX ' and the constraints oA, and B, are such thaé’=1 [Eq.

Suppose a photon travels in a plane perpendicular to th_{el'z)]' Tr.le.ve,cztorscn ?nd Dp, are less constrained sinte
string at someR=R, so thatdz/dt|z_g =0, and denote itself satisfiesb*(7)=k*(7)=<1 [Eq. (1.3)]. _

~ o 0 Let us consider the angular momentum of a circular loop
X(Ro,k)=X. Substituting into Eq(3.7) gives of invariant length 2 and hence corresponding total con-
served energf=27m?. Such a loop is given by

pL(1+X)
e=+——— a(q)=(cosq, sinqg,0); b(#n)=(kcosn,—ksinn,0),
X (3.10
so that from Eq(3.7) wherek must be constant. The loop oscillates between the
maximum and minimum radii of (£k)/2, so that fork
dz X—X =0, it is stationary with fixed lengthr (see the discussion
a: m above. An energyE=mm? is stored in the string tension

whenk=0, so the rest of the energy must be stored in angu-

. . . lar momentumJ:
The denominator is positive and the numerator alsoRor

<Ry. Therefore as the photon moves towards the string it
gets dragged in the positivedirection.[This effect vanishes J=m? é; do(x[x), (3.11

in the NG limit as therX=X=0 from Eq.(3.4).]

It would be interesting to understand the effect of thiswhich is conserved by the equation of motidn1). On sub-
dragging on the temperature anisotropy caused by a singlgitution ofa andb from Eq. (3.10 this gives
chiral cosmic string. In this weak-field limit, a preliminary

calculation seems to suggest that there is no effect—the only c?
anisotropy is caused by the deficit angleand is given by J=5— (=N2)
[26]
m2
oT = (1—k2
?:SWGmZU’y, 4 (1-k%),

which is maximal fork=0 (vorton solution, and vanishes
whenk=1 (NG limit). As for a point particle moving in a

Gircular orbit, one can construct an effective potential for the

string and the source. A complete calculation would requirqoop motion[18]. This has a contribution from the inward
one to go beyond the weak-field approximation. The effea?ensionmz and another from the centrifugal force. Ligt)

on the lensing produceq by chiral strings could then also b%e the radius of the loop at tinteso that O<r=<1. Then the
considered. This study is in progrefs3]. effective potentialY (r,k) is given by[18]

wherey is the usual Lorentz factor, andis the velocity of

C. Angular momentum and loops

J
_ 2, 5
In the rest of this paper we consider the dynamics of Y(r,k)=2mrm Jrr

chiral cosmic loops. First note that in this gauge, the fact that

there is a component of velocity along the string itgsifice _ mz[ 21 + 1(1_ k?)
x-x"=[1—k?(7)]/4) suggests that closed strings—loops— 2r

will carry angular momentun{Of course, NG loops can also

carry angular momentuimRecall next that a string of invari- which is plotted in Fig. 1 for different values &f Note that

ant lengthL forms a loop if Y=2mm? atr=(1+k)/2 as observed above. In this chiral
case, the situation is much more simple than that studied in
X(t,o+L)=x(t,0). (3.8 Ref.[18] for strings with timelike and spacelike currents;

) ) here the loop motion is characterized by two paramegers
In the center of mass frame whefdox=0, the function®  andE rather than three.

andb are also periodiC with periOU; chiral Stl‘ings like NG As we have noted, in generh( 77) need not be constant.
ones have periodic motion with peridd2. The vectorsa  An example of a loop solution for which this is the case is
andb can be expanded in a Fourier series; lfer 2, given by
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so|X|=|x’|=1/2); this point executes a circular trajectory of
radius 1/2. Below we will see that any loop with this form of
b(#%) does not self-intersect.

We now study the self-intersection probability of loops
with nonconstank.

IV. SELF-INTERSECTION PROPERTIES

The self-intersection probability;,;, of loops with given
numbers of harmonics caandb but constank was studied
in Ref. [16]. This was done through a simple adaptation of
the code of Siemens and Kibbl27] who studied the same
question for NG loopsi.e., whenk=1). Their work was in
turn based on methods developed by Delardéwl. [28—

The thick solid line indicates the total conserved energy of the3g] who showed how, for a fixed number of harmonics, the

system, measured in units of2. The maximum radius is= 1.

a(q)=(cosq, sinq,0);

1
5 sin 1;,0) —kA(n)=7 cog 7,

b(7)= ( 0,
(3.12

see Fig. 2. This loop has angular momenturs m?m/2

(< C?/27r) and does not self-intersect. The figure also indi-

cates one of the two points on the loop for whick 0 (and

1

FIG. 2. Evolution of the loop given in Eq43.12) through half a
period. Att=0 the loop is symmetric about the vertical axis;tat
=L/2=1 it is symmetric about the horizontal axis. Intermediate
times increase in steps/8. At each time, a point on the loop is
labeled by a®. This is the pointk=0 (there are two points with
k=0. The other is not labeled and is diametrically opposiied it
executes a circle of radius 1/2.

Fourier serieq3.9) could be generated such that constraint
(1.2 is satisfied. Here we use a modified form of the same
code to studyP;,; whenk( ) is not constant.

As seen in Sec. IIBk(#7) can be any periodic function
provided O<k?()=<1. Nonconstank means that the charge
per unit length varies along the string and this seems physi-
cally reasonable, especially for strings whose length is larger
than the horizon or for loops formed as the result of self-
intersection of other strings; fluctuations in charge will occur
during the phase transition, which produces the strings, and
charge can be builtup in self-intersections.

For nonconstank(#), the self-intersection probability
Pint might be expected to depend on the number of zagos
in the functionk(#) (since wherk=0 the loop never self-
intersecty and also on maximum amplitud&, of k(7). The
dependence oP;,; on these parameters will be studied.

Unfortunately, oncé&# constant, the freedom in possible
loop solutions increases since there is no longer any con-
straint on the coefficient§,, andD,, in the Fourier expansion

of b other than 8zb?<1. One way to proceed is just to pick
out, by hand, specific functional forms &f ) (of which a
constant is just one casand then try to construct all pos-
sible coefficientsC, and D,, consistent with thak(»), as
was done in Refd.28—3( for constantk.® One such simple
function is

k’(p)=A%2cogny (A<1), (4.1
which has 21 zeros. An example of a nonself-intersecting
loop with n=1 andA=1/2 is shown in Fig. 2. To see if
intersection is possible for anj and n recall that self-
intersection occurs if there is a solution to

SHowever, we have so far been unable to generalize the methods
of Ref. [28] to this case. Any simple attempt always generated
unwanted center of magsonstank terms in the Fourier expansion

(3.9 of b. For example, suppose one had generated a velctdr

modulus 1 using Ref28], and then seb=A cosyd (A<1). This
givesk?( ) =A? cog 7. The problem is that the Fourier expansion

of b now has a complicated constant term; for example, the term
C, cosnin the expansion ofl leads to a constant ter@,A/2 in the
Fourier expansion ob. Below we use a more simple approach.
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aT+o)+b(T—0o)=aT+o0,)+b(T—0y) (4.2 which givesk(#) as in Eq.(4.1). Now letc=(o,+05)/2,
6=(o,—0,)/2,q=T+c, andp=T—c. Then the self inter-
for some O<o;#o0,<L and OKT<L/2. Let y and® be  section condition(4.2) becomes
arbitrary angles and consider

1 _
a(q) = —(cosmg, cosy sinmg, siny sinma), a(q+d)—a(q—9)=b(n+)—b(n—9)

for which we must find solutions forp,q,8 with 0<$

A . . .
b(7)= H(COS(D sinnz, sin® sinn»,0), 4.3 < 24r. On substitution of Eq(4.3), this condition becomes

1 A
E(—sinmqsinm&, cosmg@sinmé cosy, cosmqgsinmaésiny) = ﬁ(costb cosnésinné, sind cosnz sinng,0)

for which the only solution isS=0. Thus forb given in Eq.(4.3) there are no self-intersections.
Let us instead consider a slightly more general fornb@#);

Al cosdny cosdny
b(n)= o sinny,— —————cosd, — >

>4 sin(I)), (4.4

whered is an integer greater than or equal to 1. The corresponding funkfioy) once again 8 zeros, but the larger the
the more oscillations there are k3( ) (Fig. 3.
The self-intersection condition now becomese set® =0 for simplicity)

%(—sinmqsin md, cosmqsinmé cosy, cosmgsinmésiny) = %(cosm; sinné, %sin 2dnznsin2dnés,0/,
|
which implies that dence ofP;,, on n andd can be investigated, and also com-
_ pared with the case in whidkis constan{16].
cosmg=0=sin2dny <« Figure 4 shows the dependenceRjf, on N, for n=2
andd=1. Each point shown was obtained by generating 10
sinmg=*1=cosdny («<cosny=0,£1), samples, each containing 100 loops, and looking for self-
intersections of each of these loops; the point is the average
where 6 must satisfy(for cosnz+0) number of self-intersections, and the error bar is the standard

1 A deviation of this mean. This is exactly the procedure used by
+—sinmé= —sinné.
m n 05

T T T T T T T T T T

If n andm have no common factors there are solutions and
hence self-intersections. 0.4

A. Numerical results

0.3 |- ]
The self-intersection probability?;,; of loops withb of k2(n) N ]
the form given in Eq.(4.4) was studied numerically. For o ]
such loopsP;,, is therefore a function ofi,=2n, d, A and 0.2 I- ]
also ofN,, the maximum number of harmonics on the vec- r ]
tor a. (This vector was generated using the methods of Ref. o1 b -l
[28]). Note that in this case the char@eis given by T 1
m _ i ]
C=> é do[1—A?(cog no+sir? 2dno) 1Y (4.5 % o
]
which is essentially independent of the values@ndd for FIG. 3. Plot ofk?(7)=A?(cog ny+sir? 2dny) for A=1/2, n

A=<0.5. Thus for a given charg€ on the loop, the depen- =1,d=1 (solid line), andd=2 (dotted ling.
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FIG. 4. Self-intersection probability as a function Nf, the
number of harmonics oma. All loops considered have the same

chargeC.
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fixing N, (=3) but increasing the number of zeroskifwy).
The probabilityP;,; decreases as expected since each point
for which k=0 has a very constrained motion. The graph
shows results for three different values/for equivalently
C); asC increasesP;, decreases—for a give@, the self-
intersection probability of a loop depends on the form of
k(7). The right-hand plot of Fig. 5 is similar to the left-hand
plot, and shows how, for fixe@, P;, increases witiN, but
decreases with. These effects are equally strong, in that if
N,=n, P;, tends to a constant value. For comparison the
results obtained in Refl16] for constantk are plotted also.
Finally, we investigated the dependencergf on d. Fig-
ure 6 shows that for fixed, A andN,, the self-intersection
probability initially decreases asincreases but then seems
to have an upturn. We are unable to explain this behavior at
present.

V. CONCLUSIONS

In this paper we have attempted to study and clarify a
number of points regarding the evolution and gravitational
properties of chiral cosmic strings. As was summarized in
Sec. Il, the crucial difference between the equations of mo-
tion for NG and chiral cosmic strings is the constraint on the

vector b; for NG stringsb?(7)=1V 5, whereas for chiral

Siemens and Kibble, and details can be found in their papestrings bz(n)[zkz(n)]sl. Equation (2.11) shows that
For fixedb (hence fixed chargethe self-intersection prob- k?(#) determines the charge on the chiral string.

ability increases as the number of harmonicaiimcreases.

We saw in Sec. Il A that chiral strings witk=0(V 7)

This is the expected behavior as the loops are more contortatove along themselves and never self-intersect. If the string

for larger N, . InterestinglyP; is only fractionally smaller

forms a loop, the energy of this arbitrary shaped vorton is

here than that obtained in R¢fL6] for the same charge and equipartitioned between tension and angular momentum. The

constantk (corresponding tay=0).

charge on the vortons is given &= mL,s, whereL ,pnis

The left-hand plot in Fig. 5 shows instead the effect ofthe constant physical length of the vorton.

0.6

o
»
T

self—intersection probatility
o
[
T

ol

(a)

0.8 -OA S . - -

o
@
T

""""""

self—intersection probability
o
£
T

02 -

A=0.5, d=1

PRSI NS SS WG GUUNE VU TS S U ST SR S S ST S SO SR SN VR S |
(b) 5 10 15 20 25

FIG. 5. (a) This figure shows how, for a given char@e(determined byA), the self-intersection probability decreases withb) The
dependence ohl, andn for fixed C. For comparison we have also plotted the results obtained in[R&ffor constantk (upper circle:
N,=25, lower circleN,=11).
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06 M T T v o T will build up as a result of self-intersections, and also fluc-
tuate during the phase transition which forms the string.
Analysis of specific form ofk(%) [given via Eq.(4.4)]
showed that self-intersection is possible for these loops. The
ensuing numerical analysis showed that the self-intersection
probability depends on the form &{ ) and is not uniquely
determined by the chargé of the loop. This unfortunately
suggests that even if one were able to estin@téor the
strings in a chiral cosmic string network, this would not be
sufficient to determine the self-intersection properties of the
loops. As a further problem it still remains to understand the
fate of the daughter loops.

A number of interesting questions remain to be studied.
Regarding the metri¢Sec. Il B), it would be interesting to
| ] go beyond the weak-field approximation and also to study
carefully the potential cosmological consequences of the
dt dzterm [23]. This cross term is the main difference be-
tween the metric for NG and chiral strings. Concerning the
evolution of a network of chiral cosmic strings, it is clear
that if the network is formed witlk(#) =0V » and for all

o

»

T v v
—y

i

self—intersection probability

Na=n =5, A=0.5 o

o
N
T

2 4 8 8 . . . .
d strings, then this leads to a cosmological catastrophe; this is
the only case in which the answer fé%, is unique and
FIG. 6. Dependence d?,, ond. zero—the strings cannot self-intersect and are frozen. Similar

roblems occur if this state is reached anytime during the

We saw that the energy-momentum tensor contains nond ovolution of the n.etwork. This vorton problem was studied in
agonal termsT'?#0. These represent the momentum along ef. [31] where it was noteq that the quantum nqmlﬁ_iar
the string. Furthermorer'+ T2 (if k# 1), which is reminis- should be Iarger for chiral strings than for str|.ngs with time-
cent of the situation that occurs with wiggly NG strings. As like or space_llk_e currents. However, W(.)rl.( sl neeo_ls to be
a consequence of the form @#*”, the weak-field metric d_one to see 't.: IS _mammgl or no(32]. If it is not maX|maI
around the string was shown to contairizdz term, which (i.e.,k# 0V ) it still remains to understand the ultlmate_ fate
means that photon&nd relativistic particldsmoving near of the daughter loops, and hence that of the network itself.
the string are dragged in the direction of the string. We also
observed that there iskaindependent deficit angle as well as
a k-dependent Newtonian potential. I am particularly grateful to T. Vachaspati for critically

Regarding the evolution of a chiral cosmic string networkreading a previous version of this paper, for interesting cor-
(which could be formed at the end BFterm inflation, it is respondence, and for much advice and encouragement. |
important to understand whether or not the loops can selfwould also like to thank P. Peter who spotted a mistake in
intersect and then decay. If they cannot decay, this would*”, again in a previous version of this paper, and T. Kibble
lead to a cosmological catastrophe as they would dominat®r useful comments on that version. My thanks also to O.
the energy density of the universe. In Sec. Ill C we studiedlornkvist and M. Parry for useful discussions, and finally |
the effective potential for the motion of a nonself- must mention M. Pickles and A. Davis who have since told
intersecting circular loop for which€k=<1. In Sec. IVwe me that they may be able to generalize the methods of Ref.
considered loops with nonconstdqtthe physical reason for [29] to nonconstank’s. This work was supported in part by
which one might expedk not to be constant is that charge the Swiss NSF and an ESF network.

Infinite straight chiral strings were studied in Sec. Il B. P
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