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Self-intersections and gravitational properties of chiral cosmic strings in Minkowski space
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~Received 28 November 2000; published 27 March 2001!

Chiral cosmic strings are naturally produced at the end ofD-term inflation and they may have interesting
cosmological consequences. As was first proved by Carter and Peter, the equations of motion for chiral cosmic
strings in Minkowski space are integrable~just as for Nambu-Goto strings!. Their solutions are labeled by a
functionk(s2t) wheret is time ands is the invariant length along the string, and the constraints onk, which
determines the charge on the string, are that 0<k2<1. We review the origin of this parameter and also discuss
some general properties of such strings, which can be deduced from the equations of motion. The metric
around infinite chiral strings is then constructed in the weak-field limit, and studied as a function ofk. We also
consider the angular momentum of circular chiral loops, and extend previous work to consider the evolution
and self-intersection properties of a more general family of chiral cosmic string loops for whichk2(s2t) is not
constant.
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I. INTRODUCTION

In the last few years the scenario of structure format
from cosmic strings has become increasingly tenuous, s
its predictions differ significantly from the new high acc
racy measurements of the temperature fluctuations in
cosmic microwave background radiation. Most studies
such observational consequences of strings have focuse
structureless Nambu-Goto~NG! strings @1–5# and global
strings @6,7#, and in each case the recent predictions
based on numerical simulations of the evolution of the str
network postulated to form at the grand unified theo
~GUT! phase transition. One should recall though that th
are some unresolved and potentially important uncertain
in the simulations—it is very difficult, for example, to re
solve the very disparate scales which characterize the
work, as well as to deal with gravitational backreacti
effects—and hence a combination of numerical work w
analytical modeling@1,4,5# has also been used to make pr
dictions from NG strings.

Our focus here is not on NG strings but rather onchiral
cosmic strings. These strings are a type of current carryi
string @8# for which the world-sheet currentj i is null:

j i j i5 j 250.

@Here i 5(0,1) and the two-dimensional~2D! world-sheet
metricg i j defined below raises and lowers indices.# One mo-
tivation for studying such chiral strings comes from the we
known supersymmetricD-term inflation model. In this
model, strings are produced at the end of inflation@9# so that
both mechanisms contribute to producing density fluct
tions. However, the strings produced are chiral cosm
strings and not NG strings@10#. Hence in order to make
predictions for theCl ’s from this ‘‘strings plus inflation’’
model, the evolution and cosmological consequences of
ral cosmic string networks must be understood.~There may
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exist models in which the strings formed at the end of infl
tion are NG ones, however this is not true ofD-term infla-
tion. In the case of ‘‘inflation plus NG strings,’’ prediction
may be found in Ref.@11#.!

There are a number of differences between the prope
of chiral cosmic strings and NG strings. One such regards
evolution of the strings themselves; the null current on ch
strings can, as in the case of other current-carrying strin
lead to the formation of nonself-intersecting stable loo
called vortons.1 This is potentially catastrophic as the ener
density in the chiral string network could quickly domina
the energy density in the universe if stable vortons
present. It is therefore important to see if vortons are p
duced, and in Sec. IV we study the self-intersection prop
ties of a family of chiral cosmic string loops. Another diffe
ence between NG and chiral strings is that these line
sources of energy generate different metrics about them~Sec.
III B !.2 One might therefore expect them to produce differe
perturbations in the matter and radiation through which th
pass.

Recently a number of steps have been made which all
for a quantitative study of chiral cosmic string dynamic
First, a well-defined unique 2D effective action exists f
these strings@12,15#. From this action it was shown, with
suitable gauge choices, that the equations of motion are
tegrable in Minkowski space@15# ~see also Refs.@16,17# for
different presentations of the same result!. They are

1As will be come clearer later, by a vorton we mean a stable lo
of arbitrary shape that never self-intersects. This definition is
ferent from that of Martins and Shellard@12# who also require that
these loops move nonrelativistically, suggesting that otherwise
charge on the loops could be ‘‘thrown off.’’ We are not able
comment on such a mechanism, however see Ref.@13# for a dis-
cussion of the scattering of zero modes from chiral strings.

2I am aware that this comment disagrees with the one I mad
Ref. @14#. I would like to thank P. Peter and T. Vachaspati f
pointing out an error in my previous determination of the metric
©2001 The American Physical Society17-1
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]2x

]t22
]2x

]s2 50 ⇒ x~ t,s!5
1

2
@a~ t1s!1b~ t2s!#, ~1.1!

where t is background time, ands measures the invarian
length or energy along the string as in the NG case@16#. The
constraints are

á251, ~1.2!

b́2<1, ~1.3!

where for instanceá(q)[da(q)/dq. If one defines

k2
ªb́2 ~1.4!

so thatk5k(t2s), then it can be shown thatk2 determines
the conserved charge on the string~see also below!. Further-
more, if k5const51 then this charge vanishes as require
since b́51 is just the Nambu-Goto limit. In Ref.@16#, the
self-intersection properties of chiral cosmic string loops w
also studied in the special case ofk5const. In particular the
strings were shown never to self-intersect fork50; this case
corresponds to maximal charge on the strings and to vo
solutions.

Here that work is extended, though we still consid
Minkowski space~with metrichmn5(1,2,2,2)! through-
out. First, for completeness, we indicate in Sec. II how
equations of motion~1.1!–~1.3! are obtained from the chira
action and how the charge mentioned above is defined.
necessarily follows parts of reference@16# rather closely,
though a small error in that paper is corrected. We also c
pare the chiral charge with the charges used for more gen
current carrying strings. In Sec. III we summarize so
properties of chiral cosmic strings which result from t
equations of motion. The metric around infinite chiral strin
is then studied as a function ofk and we comment on pos
sible consequences it may have for structure formation
cosmic microwave background anisotropies from chiral c
mic strings. In Sec. III C, the effect of angular momentum
the motion of circular loops is considered by looking at t
effective potential introduced in@18#. In Sec. IV we investi-
gate the self-intersection properties of loops with no
constantk. Finally conclusions are given in Sec. V.

II. REVIEW OF CHIRAL STRING EQUATIONS OF
MOTION AND CHARGES

A. Action and charges

The effective 2D chiral string action has two terms: t
first is the usual NG action, and the second results from
zero modes moving along the string. Letf be a dimension-
less real scalar field~the phase of the charge carriers! living
on the 2D string world sheet labeled by coordinatess i . Then
the action, which was first proposed by Carter and Peter@15#,
is

S52E d2sA2gS m22
1

2
c2g i j f ,if , j D , ~2.1!

whereg i j 5hmnx,i
mx, j

n is the induced world-sheet metric an
xm(s0,s1) the position of the string. The dimensionle
Lagrange multiplierc2 sets the constraint
08351
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g i j f ,if , j50 ⇒ 1

A2g
] i~A2gg i j f , j !50 ~2.2!

so thatJi5g i j f , j is a conserved null current. The equatio
of motion dS/df50 defines another conserved null curre
zi by

] i~A2gc2g i j f , j !50 ⇒ zi5c2g i j f , j . ~2.3!

As noted in Ref.@16#, the action~2.1! in fact has an infinite
number of null conserved currentsj i5 f (f)f ,i since Eqs.
~2.2! and~2.3! imply thatc5c(f). The degeneracy of cur
rents is broken by observing that Eq.~2.1! is invariant, not
only under coordinate reparametrizations,s i→s̃ i5s̃ i(s j ),
but also under transformations

f→f̃~f!, with c→c̃5S df̃

dg
D 21

c. ~2.4!

These freedoms are removed by making gauge choices~see
Refs.@15,16# and below!, so that the only definition of cur-
rent, which is invariant under Eq.~2.4!, and hence indepen
dent of gauge choice, is

j i5cf ,i . ~2.5!

This is null and conserved and, from Green’s theorem,
corresponding conserved charge is

C5E ds ie ik j k, ~2.6!

wheree is the antisymmetric surface measure tensor wh
square gives the induced metricg i j 5e ike j

k @15#.
For current-carrying strings with timelike or spacelik

currents, this degeneracy of possible conserved charge
broken. These strings are characterized by two indepen
conserved quantum numbers~see for example Ref.@18#!.
The first,Z, is defined through the Noether currentzi given
in Eq. ~2.3!: Z5*ds ie ikzk. The second,N, the integer wind-
ing number, is defined by the topological current̃ i

5e i j f , j /2p, which is automatically conserved in 111D:
N5*ds ie ik ̃

k5(1/2p)*df ~f is defined modulo 2p!. As
noted above,neither of these currents and correspondin
charges are gauge invariant for chiral strings. The ch
chargeC is closely related toN andZ if one works in a gauge
in which c~f! is constant: on definingk05c2 then

C5
Z

Ak0

52pAk0N @c~f!5constant#. ~2.7!

This gauge was in particular chosen in Ref.@12#.3,4 As was
discussed in detail in Refs.@15,16#, and as we now summa

3Of course ifc5const,f can always be rescaled in the actio
such thatc251/2p andN5Z52pC as is usually assumed in th
study of vortons.

4We have labeled the chiral charge byC as for circular loops it
coincides with the Bernoulli-type constant of motion considered
Ref. @18#.
7-2
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SELF-INTERSECTIONS AND GRAVITATIONAL . . . PHYSICAL REVIEW D 63 083517
rize briefly, the equations of motion resulting from Eq.~2.1!
simplify greatly in a gauge for whichc~f! is not constant.
@Indeed in this gauge,c~f! is closely related to functionk
mentioned in the introduction—see below.# Then there is no
simple relation betweenN, Z, andC, and one must work with
this latter gauge-independent charge.

B. Equations of motion

As was discussed in Refs.@15,16#, the equation of motion
obtained by varying the action with respect toxm,

] iFA2gS g i j 1
c2

m2 f ,if , j D x, j
mG50, ~2.8!

simplifies greatly if reparametrization invariance is used
choose one of the coordinates to beh5m21f. It then fol-
lows from Eq.~2.2! that ghh50 and, again as discussed
Refs. @15,16#, there is also freedom to choosec25ghh
5x,h•x,h . As a result, Eq.~2.8! simplifies to

]q]hxm50, ~2.9!

where the second world-sheet coordinate has been den
by q. Equation~2.9! still allows the coordinatesq andh each
to be transformed separately so that one can let

q5t1s, h5t2s,

wheret5x0 is background time. In that case the wave eq
tion ~2.9! takes the familiar form given in Eq.~1.1!:

]2x

]t22
]2x

]s2 50 ⇒ x~ t,s!5
1

2
@a~ t1s!1b~ t2s!#.

The constraints coming fromghh50 andc25ghh are, re-
spectively, Eqs.~1.2! and ~1.3!:

á2~q!51, b́2~h!5k2~h!<1.

Observe thatc25x,h•x,h5@12k2(h)#/4.
In Ref. @16# it was further shown that with these choic

of coordinates, the stress energy tensor is given by

Tmn~ t,y!5m2E ds~ ẋmẋn2xm8xn8!d3@y2x~ t,s!#.

~2.10!

ThusE, the constant energy, is given byE5m2*ds so that
s measures the energy or invariant length along the str
Below, in Sec. III A, we will discuss the contribution of th
null current to the energy density, and the metric arou
infinite chiral strings will also be considered~Sec. III B!.

Finally, in these (t,s) coordinates, the chargeC is given
by

C5E dsA2g j t5E ds mc~s!5
m

2 E ds@12k2~s!#1/2

~2.11!

and hence that it is determined byk(h). The right-hand side
of Eq. ~2.11! differs from the one given in Ref.@16# by a
08351
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factor of 2: the reason is thatA2g is coordinate dependen
so if g(j0,j1) denotes the determinant of the metric in
specific (j0,j1) coordinate system, thenA2g(t,s)
52A2g(q,h). This factor of 2 was missing in Ref.@16#.5

III. PROPERTIES OF CHIRAL STRINGS, METRICS, AND
ANGULAR MOMENTUM

A. Some general properties of chiral strings

As observed in Refs.@16, 17#, it follows immediately
from Eq. ~1.1! that x8Þ0 and uẋuÞ1 so that there are no
cusps on chiral cosmic strings.

Also ẋÞ0, though this does not mean that the string ca
not appear to be at rest, since the only visible componen
velocity is that perpendicular to the string. For example
static infinite chiral string parallel to theẑ axis is given by

a5~ t1s!ẑ, b52k~ t2s!ẑ,

wherek is constant. These satisfy Eq.~1.3! and give

x~ t,s!5
1

2
@ t~12k!1s~11k!# ẑ. ~3.1!

In the NG limit (k51), x5s ẑ so that points of constants
are at fixed values ofẑ ~and ẋ50!. For anyk,1, points of
constants move along thez axis with time andẋÞ0, though
the string itself never changes position. Below, in Sec. III
we will look at Tmn given in Eq.~2.10! for the infinite string
~3.1! and hence consider the metric about the string.

In the particular case of the infinite string~3.1!, ẋ andx8
were parallel. More generally, and again as noted in R
@16,17#, for any arbitrary shaped cosmic string~infinite or a
loop!, the limit k50;h is special; hereẋ5x8 with uẋu
5ux8u51/2. Thus theonly component of velocity is paralle
to the string, which moves along itself at half the speed
light. The string, whatever its shape, therefore appears to
stationary and it can never self-intersect@16#. If the string
forms a loop, these are called vortons~i.e., nonself-
intersecting solutions that need not be circular! which radiate
neither gravitational energy or gravitational angular mom
tum.

We note one minor difference between such ‘‘static’’k
50 chiral strings and static NG strings~that havek51 and
á52b́!. The physical lengthl of the string is related tos by

dl5A2gss ds5
1

2
@211k212~12b8•a8!#1/2ds

so that of coursedl5ds for static NG strings. For static
chiral strings withk50, dl5ds/2, the string energy is eq
uipartitioned between tension and angular momentum~due
to the current! as will be discussed in Sec. III C. From Eq
~2.11! it follows that the chargeC on a vorton is given by

5Equations~2.11! and ~2.6! do indeed agree since in (t,s) coor-
dinates,e ts5A2g(t,s)52est .
7-3
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D. A. STEER PHYSICAL REVIEW D 63 083517
C5mE dl5mLphys, ~k50!,

whereLphys is the constant physical length of the vorton.

B. Metric around infinite chiral strings

From Eq.~2.10!, the stress-energy tensor for the infini
string given in Eq.~3.1! is

Tmn5
2m2

~11k!S 1 0 0
12k

2

0 0 0 0

0 0 0 0

12k

2
0 0 2k

D d~x!d~y!.

~3.2!

The normalization factor of2/(11k) comes from the inte-
gral over the delta function in theẑ direction in Eq.~2.10!.
Note that T00Þ2T33 unlessk51 in which case the off-
diagonal terms also vanish. These off-diagonal terms re
sent the momentum along the string~in this case it is the
only momentum! given by ẋ5 1

2 (12k) ẑ. For k,1, Tmn

cannot be put into diagonal form by a Lorentz transformat
along the string, as the boost would have to be to a fra
moving at the speed of light. The off-diagonal terms are
consequence of the null current on the string.~Off-diagonal
terms are not present for spacelike or timelike current ca
ing cosmic strings—see, for example, Ref.@19#.!

Metrics generated by stress-energy tensors of the f
~3.2! have been considered in Refs.@20–22#. Here we com-
ment on a few properties of the weak-field metric obtain
from Eq. ~3.2!; further details will be presented elsewhe
@23#.

In the weak-field approximation,gmn5hmn1hmn , where
uhu!1, and in the de Donder gaugehmn satisfies@24#

hhmn516pGS Tmn2
1

2
hmnTa

aD
5

16pGm2

~11k!

3S 12k 0 0 2~12k!

0 11k 0 0

0 0 11k 0

2~12k! 0 0 12k

D d~x!d~y!.

~3.3!

On writing r 25x21y2, the solutions to Eq.~3.3! can be
written as

htt52htz5hzz5
..X~r ,K !58Gm2

~12k!

~11k!
ln~r /r 0!,

~3.4!
08351
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hxx5hyy5
..Q~r ,k!58Gm2 ln~r /r 0!, ~3.5!

wherer 0 is an integration constant, which can be thought
as the width of the string. The metric obtained from Eq
~3.4! and ~3.5! can be simplified by using the familiar coo
dinate transformation@12Q(r ,k)#r 25@124Gm2#2R2 @25#
which gives

ds25dt2@11X~R,k!#2dz2@12X~R,k!#2dR2

2~124Gm2!2R2du222X~R,k!dt dz. ~3.6!

The first line of Eq.~3.6! is familiar—it is the metric one
obtains for wiggly NG cosmic strings that haveT00Þ2T33

but T0350 @26#. Just as in that case, the coefficient of t
du2 term gives a deficit angle

d~k!58pGm2,

which is nowk independent.
The equations of motion for nonrelativistic particle

~Newtonian limit! in the metric ~3.6! can be straightfor-
wardly written down. As expected, there is a Newtonian p
tential F(R,k)5X(R,k)/2 that leads to an attractive New
tonian force

F~R,k!5
4G

R

~12k!

~11k!

towards the string. This force is nowk dependent; it vanishe
for NG strings and is maximal whenk50. Thus one might
expect chiral strings with a large charge to be more effec
in forming wakes than ones with a smaller charge@23#.

The less familiar term in the metric~3.6! is the last one,
2X(R,k)dtdz. ~This vanishes both for wiggly and straigh
NG strings.! While this term has no effect on the motion o
nonrelativistic particles, it does affect the motion of relati
istic particles and in particular photons~see also Refs.@20#,
@22#!. To see that, note from Eq.~3.6! that geodesics are
characterized by three conserved quantities, the energe,
angular momentumL, and z component of momentumpz .
These are given, respectively, by

e5 ṫ~11X!2Xż,

L5@124Gm2#2R2u̇,

pz5 ż~12X!1Xṫ,

where for simplicity we have writtenX(R,k)5X, and a dot
means derivative with respect to an affine parameter in
case of photons, and proper time for particles. Consider n
photons for which the equations of motion are

ṫ5e~12X!1pzX,

ż5pz~11X!2eX,

u̇5
L

~124Gm2!2R2 ,
7-4
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Ṙ25e2~12X!2pz
2~11X!12epzX2

L2

R2~124Gm2!2 .

Combiningż with ṫ gives

dz

dt
5

2eX1pz~11X!

e~12X!1pzX
. ~3.7!

Suppose a photon travels in a plane perpendicular to
string at someR5R0 so that dz/dtuR5R0

50, and denote

X(R0 ,k)5X̃. Substituting into Eq.~3.7! gives

e51
pz~11X̃!

X̃

so that from Eq.~3.7!

dz

dt
5

X̃2X

12X1X̃
.

The denominator is positive and the numerator also foR
,R0 . Therefore as the photon moves towards the strin
gets dragged in the positivez direction.@This effect vanishes
in the NG limit as thenX5X̃50 from Eq.~3.4!.#

It would be interesting to understand the effect of th
dragging on the temperature anisotropy caused by a si
chiral cosmic string. In this weak-field limit, a preliminar
calculation seems to suggest that there is no effect—the
anisotropy is caused by the deficit angled and is given by
@26#

dT

T
58pGm2vg,

whereg is the usual Lorentz factor, andv is the velocity of
the string that moves perpendicular to the line connecting
string and the source. A complete calculation would requ
one to go beyond the weak-field approximation. The effe
on the lensing produced by chiral strings could then also
considered. This study is in progress@23#.

C. Angular momentum and loops

In the rest of this paper we consider the dynamics
chiral cosmic loops. First note that in this gauge, the fact t
there is a component of velocity along the string itself~since
ẋ•x85@12k2(h)#/4! suggests that closed strings—loops
will carry angular momentum.~Of course, NG loops can als
carry angular momentum.! Recall next that a string of invari
ant lengthL forms a loop if

x~ t,s1L !5x~ t,s!. ~3.8!

In the center of mass frame whererds ẋ50, the functionsa
andb are also periodic with periodL; chiral strings like NG
ones have periodic motion with periodL/2. The vectorsá
and b́ can be expanded in a Fourier series; forL52p,
08351
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á~q!5 (
n>1

~An cosnq1Bn sinnq!,

b́~h!5 (
n>1

~Cn cosnh1Dn sinnh!, ~3.9!

and the constraints onAn and Bn are such thatá251 @Eq.
~1.2!#. The vectorsCn and Dn are less constrained sinceb́
itself satisfiesb́2(h)5k2(h)<1 @Eq. ~1.3!#.

Let us consider the angular momentum of a circular lo
of invariant length 2p and hence corresponding total co
served energyE52pm2. Such a loop is given by

a~q!5~cosq, sinq,0!; b~h!5~k cosh,2k sinh,0!,
~3.10!

wherek must be constant. The loop oscillates between
maximum and minimum radii of (16k)/2, so that fork
50, it is stationary with fixed lengthp ~see the discussion
above!. An energyE5pm2 is stored in the string tension
whenk50, so the rest of the energy must be stored in an
lar momentumJ:

J5m2 R ds~x∧ ẋ!, ~3.11!

which is conserved by the equation of motion~1.1!. On sub-
stitution of a andb from Eq. ~3.10! this gives

J5
C2

2p
~5NZ!

5
m2

4
~12k2!,

which is maximal fork50 ~vorton solution!, and vanishes
when k51 ~NG limit!. As for a point particle moving in a
circular orbit, one can construct an effective potential for t
loop motion @18#. This has a contribution from the inwar
tensionm2 and another from the centrifugal force. Letr (t)
be the radius of the loop at timet so that 0<r<1. Then the
effective potentialY(r ,k) is given by@18#

Y~r ,k!52prm21
J

r

5m2F2pr 1
p

2r
~12k2!G ,

which is plotted in Fig. 1 for different values ofk. Note that
Y52pm2 at r 5(16k)/2 as observed above. In this chir
case, the situation is much more simple than that studie
Ref. @18# for strings with timelike and spacelike current
here the loop motion is characterized by two parameterC
andE rather than three.

As we have noted, in generalk(h) need not be constant
An example of a loop solution for which this is the case
given by
7-5
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a~q!5~cosq, sinq,0!;

b~h!5S 0,2
1

2
sinh,0D↔k2~h!5

1

4
cos2 h,

~3.12!

see Fig. 2. This loop has angular momentumJ5m2p/2
(,C2/2p) and does not self-intersect. The figure also in
cates one of the two points on the loop for whichk50 ~and

FIG. 1. Effective potential for loop motion as a function ofk.
The thick solid line indicates the total conserved energy of
system, measured in units ofm2. The maximum radius isr 51.

FIG. 2. Evolution of the loop given in Eq.~3.12! through half a
period. At t50 the loop is symmetric about the vertical axis; at
5L/25p it is symmetric about the horizontal axis. Intermedia
times increase in stepsp/8. At each time, a point on the loop i
labeled by ad. This is the pointk50 ~there are two points with
k50. The other is not labeled and is diametrically opposite! and it
executes a circle of radius 1/2.
08351
-

so uẋu5ux8u51/2!; this point executes a circular trajectory o
radius 1/2. Below we will see that any loop with this form
b(h) does not self-intersect.

We now study the self-intersection probability of loop
with nonconstantk.

IV. SELF-INTERSECTION PROPERTIES

The self-intersection probability,Pint , of loops with given
numbers of harmonics ona andb but constantk was studied
in Ref. @16#. This was done through a simple adaptation
the code of Siemens and Kibble@27# who studied the same
question for NG loops~i.e., whenk51!. Their work was in
turn based on methods developed by DeLanleyet al. @28–
30# who showed how, for a fixed number of harmonics, t
Fourier series~3.9! could be generated such that constra
~1.2! is satisfied. Here we use a modified form of the sa
code to studyPint whenk(h) is not constant.

As seen in Sec. II B,k(h) can be any periodic function
provided 0<k2(h)<1. Nonconstantk means that the charg
per unit length varies along the string and this seems ph
cally reasonable, especially for strings whose length is lar
than the horizon or for loops formed as the result of se
intersection of other strings; fluctuations in charge will occ
during the phase transition, which produces the strings,
charge can be builtup in self-intersections.

For nonconstantk(h), the self-intersection probability
Pint might be expected to depend on the number of zerosn0
in the functionk(h) ~since whenk50 the loop never self-
intersects!, and also on maximum amplitude,A, of k(h). The
dependence ofPint on these parameters will be studied.

Unfortunately, oncekÞconstant, the freedom in possib
loop solutions increases since there is no longer any c
straint on the coefficientsCn andDn in the Fourier expansion
of b́ other than 0<b́2<1. One way to proceed is just to pic
out, by hand, specific functional forms ofk(h) ~of which a
constant is just one case! and then try to construct all pos
sible coefficientsCn and Dn consistent with thatk(h), as
was done in Refs.@28–30# for constantk.6 One such simple
function is

k2~h!5A2 cos2 nh ~A,1!, ~4.1!

which has 2n zeros. An example of a nonself-intersectin
loop with n51 and A51/2 is shown in Fig. 2. To see i
intersection is possible for anyA and n recall that self-
intersection occurs if there is a solution to

6However, we have so far been unable to generalize the meth
of Ref. @28# to this case. Any simple attempt always genera
unwanted center of mass~constant! terms in the Fourier expansio

~3.9! of b́. For example, suppose one had generated a vectord́ of

modulus 1 using Ref.@28#, and then setb́5A cosh d́ (A,1). This
givesk2(h)5A2 cos2 h. The problem is that the Fourier expansio

of b́ now has a complicated constant term; for example, the te

C1 cosh in the expansion ofd́ leads to a constant termC1A/2 in the

Fourier expansion ofb́. Below we use a more simple approach.

e
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a~T1s1!1b~T2s1!5a~T1s2!1b~T2s2! ~4.2!

for some 0,s1Þs2,L and 0,T,L/2. Let x and F be
arbitrary angles and consider

a~q!5
1

m
~cosmq, cosx sinmq, sinx sinmq!,

b~h!5
A

n
~cosF sinnh, sinF sinnh,0!, ~4.3!
n

r

c
e

-

08351
which givesk(h) as in Eq.~4.1!. Now let c5(s11s2)/2,
d5(s12s2)/2, q5T1c, andh5T2c. Then the self inter-
section condition~4.2! becomes

a~q1d!2a~q2d!5b~h1d!2b~h2d!

for which we must find solutions forh,q,d with 0,d
,2p. On substitution of Eq.~4.3!, this condition becomes
1

m
~2sinmqsinmd, cosmqsinmd cosx, cosmqsinmd sinx!5

A

n
~cosF cosnd sinnd, sinF cosnh sinnd,0!

for which the only solution isd50. Thus forb given in Eq.~4.3! there are no self-intersections.
Let us instead consider a slightly more general form ofb(h);

b~h!5
A

n S sinnh,2
cos 2dnh

2d
cosF,2

cos 2dnh

2d
sinF D , ~4.4!

whered is an integer greater than or equal to 1. The corresponding functionk2(h) once again 2n zeros, but the larger thed
the more oscillations there are ink2(h) ~Fig. 3!.

The self-intersection condition now becomes~we setF50 for simplicity!

1

m
~2sinmqsinmd, cosmqsinmd cosx, cosmqsinmd sinx!5

A

n S cosnh sinnd,
1

2d
sin 2dnh sin 2dnd,0D ,
-

10
elf-
age
ard
by
which implies that

cosmq505sin 2dnh ⇔

sinmq5615cos 2dnh ~↔cosnh50,61!,

whered must satisfy~for cosnhÞ0!

6
1

m
sinmd5

A

n
sinnd.

If n andm have no common factors there are solutions a
hence self-intersections.

A. Numerical results

The self-intersection probability,Pint of loops with b of
the form given in Eq.~4.4! was studied numerically. Fo
such loopsPint is therefore a function ofn052n, d, A, and
also ofNa , the maximum number of harmonics on the ve
tor a. ~This vector was generated using the methods of R
@28#!. Note that in this case the chargeC is given by

C5
m

2 R ds@12A2~cos2 ns1sin2 2dns!#1/2, ~4.5!

which is essentially independent of the values ofn andd for
A&0.5. Thus for a given chargeC on the loop, the depen
d

-
f.

dence ofPint on n andd can be investigated, and also com
pared with the case in whichk is constant@16#.

Figure 4 shows the dependence ofPint on Na for n52
andd51. Each point shown was obtained by generating
samples, each containing 100 loops, and looking for s
intersections of each of these loops; the point is the aver
number of self-intersections, and the error bar is the stand
deviation of this mean. This is exactly the procedure used

FIG. 3. Plot of k2(h)5A2(cos2 nh1sin2 2dnh) for A51/2, n
51, d51 ~solid line!, andd52 ~dotted line!.
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D. A. STEER PHYSICAL REVIEW D 63 083517
Siemens and Kibble, and details can be found in their pa
For fixed b ~hence fixed charge!, the self-intersection prob
ability increases as the number of harmonics ina increases.
This is the expected behavior as the loops are more conto
for larger Na . InterestinglyPint is only fractionally smaller
here than that obtained in Ref.@16# for the same charge an
constantk ~corresponding ton050!.

The left-hand plot in Fig. 5 shows instead the effect

FIG. 4. Self-intersection probability as a function ofNa , the
number of harmonics ona. All loops considered have the sam
chargeC.
08351
r.

ed

f

fixing Na (53) but increasing the number of zeros ink(h).
The probabilityPint decreases as expected since each p
for which k50 has a very constrained motion. The gra
shows results for three different values ofA ~or equivalently
C!; as C increases,Pint decreases—for a givenC, the self-
intersection probability of a loop depends on the form
k(h). The right-hand plot of Fig. 5 is similar to the left-han
plot, and shows how, for fixedC, Pint increases withNa but
decreases withn. These effects are equally strong, in that
Na5n, Pint tends to a constant value. For comparison
results obtained in Ref.@16# for constantk are plotted also.

Finally, we investigated the dependence ofPint on d. Fig-
ure 6 shows that for fixedn, A andNa , the self-intersection
probability initially decreases asd increases but then seem
to have an upturn. We are unable to explain this behavio
present.

V. CONCLUSIONS

In this paper we have attempted to study and clarify
number of points regarding the evolution and gravitatio
properties of chiral cosmic strings. As was summarized
Sec. II, the crucial difference between the equations of m
tion for NG and chiral cosmic strings is the constraint on t
vector b́; for NG strings b́2(h)51;h, whereas for chiral
strings b́2(h)@5k2(h)#<1. Equation ~2.11! shows that
k2(h) determines the charge on the chiral string.

We saw in Sec. III A that chiral strings withk50(;h)
move along themselves and never self-intersect. If the st
forms a loop, the energy of this arbitrary shaped vorton
equipartitioned between tension and angular momentum.
charge on the vortons is given byC5mLphys, whereLphys is
the constant physical length of the vorton.
FIG. 5. ~a! This figure shows how, for a given chargeC ~determined byA!, the self-intersection probability decreases withn. ~b! The
dependence onNa and n for fixed C. For comparison we have also plotted the results obtained in Ref.@16# for constantk ~upper circle:
Na525, lower circleNa511!.
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Infinite straight chiral strings were studied in Sec. III
We saw that the energy-momentum tensor contains no
agonal termsTtzÞ0. These represent the momentum alo
the string. Furthermore,TttÞTzz ~if kÞ1!, which is reminis-
cent of the situation that occurs with wiggly NG strings. A
a consequence of the form ofTmn, the weak-field metric
around the string was shown to contain adt dz term, which
means that photons~and relativistic particles! moving near
the string are dragged in the direction of the string. We a
observed that there is ak-independent deficit angle as well a
a k-dependent Newtonian potential.

Regarding the evolution of a chiral cosmic string netwo
~which could be formed at the end ofD-term inflation!, it is
important to understand whether or not the loops can s
intersect and then decay. If they cannot decay, this wo
lead to a cosmological catastrophe as they would domin
the energy density of the universe. In Sec. III C we stud
the effective potential for the motion of a nonse
intersecting circular loop for which 0<k<1. In Sec. IV we
considered loops with nonconstantk; the physical reason fo
which one might expectk not to be constant is that charg

FIG. 6. Dependence ofPint on d.
tt
t,

tt
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will build up as a result of self-intersections, and also flu
tuate during the phase transition which forms the stri
Analysis of specific form ofk(h) @given via Eq. ~4.4!#
showed that self-intersection is possible for these loops.
ensuing numerical analysis showed that the self-intersec
probability depends on the form ofk(h) and is not uniquely
determined by the chargeC of the loop. This unfortunately
suggests that even if one were able to estimateC for the
strings in a chiral cosmic string network, this would not
sufficient to determine the self-intersection properties of
loops. As a further problem it still remains to understand
fate of the daughter loops.

A number of interesting questions remain to be studi
Regarding the metric~Sec. III B!, it would be interesting to
go beyond the weak-field approximation and also to stu
carefully the potential cosmological consequences of
dt dz term @23#. This cross term is the main difference b
tween the metric for NG and chiral strings. Concerning t
evolution of a network of chiral cosmic strings, it is cle
that if the network is formed withk(h)50;h and for all
strings, then this leads to a cosmological catastrophe; th
the only case in which the answer forPint is unique and
zero—the strings cannot self-intersect and are frozen. Sim
problems occur if this state is reached anytime during
evolution of the network. This vorton problem was studied
Ref. @31# where it was noted that the quantum numberC
should be larger for chiral strings than for strings with tim
like or spacelike currents. However, work still needs to
done to see ifC is maximal or not@32#. If it is not maximal
~i.e., kÞ0;h! it still remains to understand the ultimate fa
of the daughter loops, and hence that of the network itse
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