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Mode generating mechanism in inflation with a cutoff
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In most inflationary models, space-time inflated to the extent that modes of cosmological size originated as
modes of wavelengths at least several orders of magnitude smaller than the Planck length. Recent studies
confirmed that, therefore, inflationary predictions for the cosmic microwave background perturbations are
generally sensitive to what is assumed about the Planck scale. Here, we propose a framework for field theories
on curved backgrounds with a plausible type of ultraviolet cutoff. We find an explicit mechanism by which
during cosmic expansion ne(@omoving modes are generated continuously.
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Several problems of standard big bang cosmology, suctdence about the CMB could provide a window to at least
as the horizon and the flatness problems, can be explainebme aspects of particle physics at energies as high as the
under the assumption that the very early universe underweilanck scale. Therefore, our aim here is to formulate quan-
a period of extremely rapid inflation, driven by the potentialtum field theory on curved backgrounds with some plausible
of some assumed inflaton field. In particular, the inflationarytype of ultraviolet cutoff. The aim is to obtain a framework
scenario is also able to explain the observed perturbations im which all the usual entities of interest such as propagators,
the cosmic microwave backgroutt@MB), namely as origi- correlators, vacuum fluctuations and eventually the CMB
nating ultimately from quantum fluctuations of the inflaton perturbation spectrum can be calculated explicitly and com-
field. Indeed, the inflationarily predicted Gaussianity andpared to experiment.
near scale invariance of the perturbations’ spectrum closely We will need good arguments for choosing a particular
matches the current experimental evidence; sed &lg. type of cutoff. One obvious option would be to choose the

However, it has also been pointed out that in typical in-lattice cutoff. However, apart from breaking translation and
flationary models, such as simple models of chaotic inflationfotation invariance, the lattice cutoff faces further problems
space-time inflated to the extent that modes which are nown expanding space-times: As has been pointed out earlier
of cosmological size originated as modes with wavelengthg¢see e.g[4]), if space-time were a discrete lattice with a
that were at least several orders of magnitude smaller thaspacing of say one Planck length, then it is not clear how
the Planck length. Until recently, reason to believe that theduring the expansion new discrete lattice points could be
inflationary prediction of the CMB spectrum might be insen-created continuously. Indeed, whatever form of natural ultra-
sitive to structure at the Planck scale was provided by theiolet cutoff we assume, we will need to address the follow-
analogy with black hole radiation, which suffers from a simi- ing questions: How does the expansion continuously gener-
lar trans-Planckian problem: any asymptotic Hawking pho- ate new modes? What is the initial vacuum of these modes?
ton with a medium range frequency should have had a faAnd, once this is clarified, which CMB perturbation spec-
trans-Planckian proper frequency close to the event horizontrum is predicted?
even at distances from the horizon which are farther than a Our starting point for choosing a type of cutoff is an ob-
Planck length. This problem has been investigated in detaikervation made ifi5]: The short-distance structure of space-
see e.g[2]. The current consensus appears to be that théme can only be one of very few types — if we make a
derivation of Hawking radiation is indeed essentially robustcertain assumption. The assumption is that the fundamental
to changes in the assumed Planck scale structure. Likely, tibeory of quantum gravity will possess for each space-time
reason for this insensitivity is that there are basic thermodyeoordinate a linear operatéf whose formal expectation val-
namical arguments for the properties of black hole radiationues{X') are real. Thex' may or may not commute. One can

In the case of inflation, however, there does not seem tprove on functional analytic grounds that the short-distance
exist any basic thermodynamic reason why the derivation o$tructure of any such coordinate, considered separately, can
the particle production should be insensitive to what is asenly be continuous, discrete, or “unsharp” in one of two
sumed about the Planck scale. Indeed, recent studess ways. All other cases are mixtures of these.

[3,4]) independently found that the inflationary CMB predic- The mathematical origin of the two “unsharp” cases lies
tion is in general sensitive. Those studies calculated the efin the fact that such an operator is not necessarily self-adjoint
fects ofad hocultraviolet modified dispersion relations simi- and may be merely what is called a symmetric operatof! If

lar to those which had been shown not to affect black holéas self-adjoint, then it is diagonalizable and its spectrum can
radiation. only be discretdi.e., poin) or continuous. Correspondingly,

Interestingly, this means that if the inflationary scenario isthe short-distance structure of the coordinate which is de-
true, then the currently rapidly improving experimental evi- scribed byX' is therefore also discrete or continuo(s a

mixture, including, e.g., fractalsHowever, if X' is merely
symmetric, then, crucially, it is not diagonalizable. Such co-
*Email address: kempf@phys.ufl.edu ordinates are unsharp because a merely symmetric operator
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X' need not possess eigenvectors, and the eigenvectors of itaver bound on the position uncertain{X,;,, is in gen-
adjoint (X')* need not be orthogonalTechnically, the two eral some function of the positiofiX) around which one
unsharp cases are distinguished by the so-called deficiendsies to localize the particleA Xp,i,=AXqyin((X)). In this
indices ofX' being either equal or unequal; sgg.) case, the situation is no longer describable as an overall
Given the generality of the argument, namely the fact thatvavelength cutoff. But it has been shown[#)] that in all
the sharpness or unsharpness of indaeyg real entity de- cases wheré\ X,i,(X)>0, fields over such unsharp coordi-
scribed by a linear operator falls into this classification, it isnates can be described as possessing an ultraviolet cutoff in
not surprising that such unsharp short-distance structures dhe sense that they contain only a finite density of degrees of
occur ubiquitously. For example, the aperture induced unfreedom. Namely, such fields can be reconstructed at all
sharpness of optical images is of this kind, as is, e.g., thgoints if known only on a set of discrete points — if these
unsharpness in the time resolution of band-limited electronipoints are sufficiently tightly spaced. The minimum spacing
signals; se¢6]. varies over space and is small where the minimum position
In fact, also a number of studies in quantum gravity anduncertaintyAX,,;,(x) is small and vice versa. Thus, fields
string theory point towards one of these unsharp cases: Theyer such unsharp coordinates, while being continuous, al-
point towards the case of coordinadésvhose formal uncer- ways possess regularity properties similar to fields over lat-
tainty AX(p)=(d|(X—(d|X|$))? ¢)*? possesses a finite tices.
lower bound at a Planck or string scal&X(®)=AXnin We now begin by recalling that the calculation of infla-
=lp;, Whereg is any unit vector on which the operat¥r tionary scalar density perturbations effectively reduces in the
can act(Technically, this is a case of equal deficiency indi- simplest case to the study of a minimally coupled massless
ces) real scalar field on a fixed curved background space-time
In a first-principles quantum gravity theory such as stringsuch as, e.g., de Sitter space. For simplicity, we will assume
theory this behavior may of course arise from a complicatedhe case of spatial flatness. It is usually most convenient to
dynamics where space-time is a derived concept. Neverthehoose comoving coordinatgsand the conformal time co-
less, it has been arguddee e.g[7]) that, effectively, this ordinates. The metric then readg=diaga(7)?, —a(7)?,
short-distance structure can be modeled as arising from a(7)?,—a(7)?) with a(#) being the scale factor, and the
guantum gravity correction terms to the uncertainty relationaction takes the form

1 2 3
AXAp=Z[1+BAP*H -], @ szjdn ay 27 ((and))z—iEl(am)z NE)

The positive constanB implies a constant positive lower

boundAx,,;,= yB. Usually, 3 is assumed such that the cut- Since our aim is to introduce a short-distance cutoff in
min . 1 . . . . . .
off AXnipn is at a Planck or string scale. As first discussed inProper distancegwhile leaving the time coordinate as,isve

[8], the type of uncertainty relation of E¢l) can then be :ra_\nsform the action into proper space coordinateso ob-
viewed as arising from corrections to the canonical commudn

tation relations:

_ 3,
[x,p]=i(1+Bp2-- ). @ S‘fd”d X %a

2 3
operatorsx and p acting on fields over some auxiliary vari- —azgl (&xid’)z]
ablep asx¢(p)=id,b(p), Pd(p)=tan(p\B)/\p on the

space of fieldsp(p) over the interval — pmax, Pmaxl, Where (4)
pma=(2y/B),  with  scalar  product (¢|e,)
= fp_”;ifaxdpqsf (p) d2(p). The requirement of symmetry af

(i.e., that all formal expectation values are jegklds the
boundary conditionsp(* pma) =0. As expectedx is not (¢1.02) ==f d3x ¢ (X) Po(X) 5
self-adjoint: what would be itthow normalizablgeigenvec-
tors “|x),” namely the plane waves ip space, are not
in its domain and are not orthogonal on the interval
[ —Pmax.Pmaxl- In the “position representation,” the fields - .
B(X)=(x, ) =7 Y28Y4[dpel*® exhibit a finite minimum P'd(x):=—1dx¢(X) @)
wavelength. Modes whose wavelengths are close to the mini- . L
mum wavelength are energetically exceedingly expengive (W€ can write the action in the form
diverges. 1

It would be a drawback of our approach if it covered only _ il t _ a2 2
this perfectly translation invariant case in which Fourier S fdn Za{(d)'A (MA(me)-a (e} ®
theory applies. Let us therefore also mention, for complete-
ness, that in this class of unsharp short-distance structures tidere the operatoh(») is defined as

This commutation relation can be represented, e.g., with the [
X

a 2 3a’
+— X — —
dyt ;1 dxx = — )d)

where the prime stands far,. By defining

X (X) =X p(X) (6)
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a 2 3y mum Wavelengtmmin=27r\/ﬁ for the fields ¢(x) = (X, ¢)
A=|d,ti— 21 pX——]. 9 =3/(4m)B%*1d%p #(p)e** over position space and a cor-
=

responding finite minimum position uncertainty.

The action, as given in its abstract form, E(,(9), with
e new commutation relations Eg&ll) underlying, can
now be written in thep representation

In Eq. (8), the fields are time dependent abstract vectors in %

Hilbert space representation of the commutation relations t
[X,pl]=i6". (10) 1

Thi . . : S=j dnf d®p —

is only means that, as in quantum mechanics, also in p2<p1 2a

quantum field theory the commutation relations of ELp) ' )

are setting the stage, albeit without the simple quantum me- a p _ 3a’ a%p?|¢|?

chanical interpretation of thg' andp' as observables. For Iy~ a 1- Bp? Ipi— “a ¢ - (1-Bp2)?|

example, to express the action in momentum space is to

choose the spectral representation of phe (16)

Our ansatz now is to the keep the scalar field action Xhe presence ob derivatives means that the modes are
actly as given in Eqs(8),(9), but to modify the underlying P

three-dimensional position-momentum commutation rela.coUPled. Fortunately, it is still possible to find new variables

tions, Eq.(10), for large momenta, such as to introduce the(7:K), namely »= 7, ki:api_eXp(__/?Pz/Z)’ in which thek
type of cutoff which we discussed above. While we will modes decouple. As is readily verified,
break Lorentz invariance by introducing the cutoff, we will

’ i

maintain translation and rotation invariance through the an- 9 — a p 9.i=0-
satz 7 a 1— Bp? p K
[X,p!]=i[f(p?) &' +g(p*)p'p’] (1)) we will use the common index notatiafy, for those decou-

pling modes. The realness of the figfgx) then translates

.. | ] — — | J . .
and by requiring that[x',x!]=0=[p',p'], for all i,j through ¢(p)* = ¢(— p) into (ﬁikf:(ﬁ:k. We observe that

=1,2,3. As was first shown i[B], the Jacobi identities then

relate the function$ andg as follows: the’k modes coincide with the usual comoving modes that
are obtained by scaling'=ap', only on large scales, i.e.,
2f g pf only for smallp?, i.e., only for small momentum eigenvalues
9= - (12) p2. Conversely, this means that the comovingodes only
f—2p%dpet decouple at large proper distance scales, but do couple at

small scales.

. . 2
The behavior of the functionisandg for p< small compared The action now reads

to the Planck momentum is required to be:1 andg—0.
The functionsf and g are then unique to first order i,
namely f=1+ Bp?+0O(B?) and g=28+0(B%). We note Szj d77f~ d’kc (17)
that corresponding to the ambiguity in choosihghere is ke<a?lep

also an ordering ambiguity of theé andp! in the action of  \yith

Eqgs.(8),(9). Equation(12) shows thagy may develop singu-

larities. We avoid this by choosing, e.@=28. This then 1 a’ 2 5
yields from Eq.(12) that f(p2) =28p%/(J1+48p2—1). A L=svil| dy=3 ] dum)| —uldun)l (18
convenient Hilbert space representation of the new commu-
tation relations is on fieldg(p) over auxiliary variablep',  where we defined
X $(p)=id,i¢(p) (13 ~ a2 plog( — gk/a?)
p(,K) =~ - (19
_ o BL1+plog(— Bk/a)]
p'b(p)= 5b(p), (14) B
1=kp o, &~ plog — K/a%)] 20
with scalar product v k):= a*[1+plog(— Bk%/a?)]

_ 3 and where the function plog, the “product log,” being the
(d1.¢2)= fpz<51d P ¢1(p)balp). (15 inverse of the function—xe, allowed us to express? in

_ . ~ terms of 5 andk? through
The symmetry of thex' requires the boundary condition

#(p?>=1/8)=0. Thex' are not self-adjoint: Their would-be p?=— B plog( — gk?/a?). (21)
eigenvectors {x),” i.e., the now normalizable plane waves

in p space, are not in their domain and are not orthogonalBefore we proceed, let us remark that this action reduces for
The finiteness op spacep? =B %, implies a finite mini- 8—0 to the standard action
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2

—k2|¢|2]. H= Jizqz,eﬁds? [m(ndg(m—L] (@9
22)

B 5 1 a’
Sﬁ:O_J d?]d k E o"n—3g 1)

o . ._explicitly in terms of¢ and . We quantize by imposing the
To see that this is the standard action, recall that Fourier PHCTEY I lati ¢ - T ved i sk y Imposing h
transforming and scaling commute only up to a scaling facCOMmutation re ‘."‘t'or[d’k.( 77)’7’7(77).]_' (k=r). (A pat .

tegral formulation of field theories over unsharp coordi-

tor. We Fourier transformed the proper positions and ther! ) !
scaled. Thus, our differs by a factor ofa® from the ¢  nates has been developed 19].) The Heisenberg equations
obtained as usual by first scaling and then Fourier transform@g=i[H, ¢x] and m=i[H,m%] then yield Eq.(23) as an
ing. equation for operator-valued fields.

The equation of motion for the action of Eq47),(18) is We can now answer the first question which we raised in

the beginning, namely by which mechanism new modes are
2=0. (23 generated: Automatically, the quantum fiebd,x) and the
K quantum Hamiltoniam of Eq. (25) contain thek mode, i.e.,

We recognize the damped harmonic oscillator form, with itsthe fields 4i(#) andmi(7), only after thek mode’s “cre-

friction term and with its variable mass term in which the ation” time, 7(k) ' which is whena(7) has grown enough
contributions from the momentum and from the expansiorso thatk?<a?/ep, i.e., when the proper wavelength of tke
comp_ete. Comparing_ this modifie_d moqle equation to theénode becomes larger thay,;,. The action ofH on the

modified wave equations of the pioneering wofBs4] we  yiiert subspace of modes wikl>a?/(ep) is zero: i.e., the

note certain differences in its derivation and in its form: e evolution operator leaves the respective Hilbert sub-
First, in[3,4] the new mode equations are derived esseNgpace invariant.

tially by transforming comoving momentum variableto

proper momentum variablgs=k/a(#), by then applying @ 15 gjgenvalue 0) is infinite dimensional and shrinks during
nontrmal dlsp¢r5|on relqtloﬁ(k/a(vz)) and by finally trans-  cosmic expansion. Conversely, during a cosmic contraction
forming back into effective comoving momentum variablesihe kernel enlarges. It should be interesting to calculate the
kesr=a(n)F(k/a(7)). Our approach here has been similar correspondingly changing zero-point energy of the Hamil-
in spirit. However, we here transformed not only the momenygnian as it picks up or loses modes. In this scenario, we live
tum variablesbut the entire action and wave equation from quite literally in a universe which resembles “Hilbert's ho-
comoving to proper coordinates and back. Since the transfogg, (which can welcome guests even if full, because it has
mation to proper coordinates is time dependent, even thg, infinite number of rooms

time derivatives thereby pick up terms, such as e.g. in the We can solve for the dynamics of the quantized figlds
first quadratic term of Eq(4). These terms involve spatial ) ] i i ~
coordinates and derivatives, and therefore spatial moment4Sual, by using a complex classical solutigrio write thek
As Egs.(9),(11) show, in our approach the short-distancemode of the quantum fielgh as

structure modification entered through those terms into the

derivation of the modified mode equati¢®3). Recall also . -

that at small distances we here distinguish the comoving mo- d(n)=[agdi(n)+a_t¢ w(n)]. (26)

mentak from the moment&k which are defined as those
variables in terms of which the wave equation actually de- L + -
couples into independent modes. The time |.ndepender1ce af and.a|~( guarJranteesjhiﬁ solves
Second, our equatiof23) can be transformed, as usual, to the equation of motion. Imposinigy ,a; 1= 8°(k—r) guar-
new variables in which the friction term is absent. This isantees that the field commutation relation is obeyed ¢ if

being pursued in forthcoming work. Let us note already thabpeys (5, K)[ #i( 7) G ()= ¢ (m) ¢ 7(m)]=i. Nor-

even in this formulation a new feature of our approach "®mally, this Wronskian condition does not determigeand
mains, namely the fact that in our case each mode possesses

its own starting time therefore¢ uniquely; i.e., the choice of a classical complex
We now continue our investigation by noting that the fielgSolution and correspondingly the choice of a quantum

2

! !

-9

!

3a’'v’
av

a
a

m—3

v’
n !
¢E+7¢T<+

Technically, the kernel of the Hamiltonidits eigenspace

(), canonically conjugate teh(7), reads vacuum are not unique. Here, however, ekcimode auto-
matically possesses a creation timg,(k), at which both
, a' d thek mode’s equation of motion are singular. This
= () —3v—d_% 24 v,p and th ) quatior X 9
M =ve y(m) =3y a ¢ (24 opens the interesting possibility, answering our second ques-

tion from the beginning, that the requirement of the regular-
(recall that the canonical conjugate of the Fourier transfornity of ¢ or other physical quantities at this singularity deter-
is the complex or Hermitian conjugate of the Fourier trans-mines the vacuum uniquely.

form of the canonical conjugateWe can now use that Once the vacuum is fixed, it is then possible to calculate
¢>ﬁ(77)= v lo_w(n)+3(a’'/a) ¢i(n) to express the Hamil- arbitrary quantum field theoretic entities, such as the magni-
tonian tude of(0|<}£<}>p|0> after horizon crossing, which yields the
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prediction for the CMB perturbation spectrum. This was ourance and canonically too large amplitude.
third question, and it can certainly be addressed at least nu- The author is happy to thank J. C. Niemeyer, J. R.

merically. The results should be very interesting to comparg|,uder. Ch. Thorn. K. Bering and W. H. Kinney for valu-
with the standard inflationary prediction of near scale invari-gp|e suégestions and comments.
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