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Mode generating mechanism in inflation with a cutoff
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In most inflationary models, space-time inflated to the extent that modes of cosmological size originated as
modes of wavelengths at least several orders of magnitude smaller than the Planck length. Recent studies
confirmed that, therefore, inflationary predictions for the cosmic microwave background perturbations are
generally sensitive to what is assumed about the Planck scale. Here, we propose a framework for field theories
on curved backgrounds with a plausible type of ultraviolet cutoff. We find an explicit mechanism by which
during cosmic expansion new~comoving! modes are generated continuously.
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Several problems of standard big bang cosmology, s
as the horizon and the flatness problems, can be expla
under the assumption that the very early universe underw
a period of extremely rapid inflation, driven by the potent
of some assumed inflaton field. In particular, the inflation
scenario is also able to explain the observed perturbation
the cosmic microwave background~CMB!, namely as origi-
nating ultimately from quantum fluctuations of the inflato
field. Indeed, the inflationarily predicted Gaussianity a
near scale invariance of the perturbations’ spectrum clo
matches the current experimental evidence; see e.g.@1#.

However, it has also been pointed out that in typical
flationary models, such as simple models of chaotic inflati
space-time inflated to the extent that modes which are n
of cosmological size originated as modes with waveleng
that were at least several orders of magnitude smaller
the Planck length. Until recently, reason to believe that
inflationary prediction of the CMB spectrum might be inse
sitive to structure at the Planck scale was provided by
analogy with black hole radiation, which suffers from a sim
lar trans-Planckian problem: any asymptotic Hawking ph
ton with a medium range frequency should have had a
trans-Planckian proper frequency close to the event horiz
even at distances from the horizon which are farther tha
Planck length. This problem has been investigated in de
see e.g.@2#. The current consensus appears to be that
derivation of Hawking radiation is indeed essentially rob
to changes in the assumed Planck scale structure. Likely
reason for this insensitivity is that there are basic thermo
namical arguments for the properties of black hole radiati

In the case of inflation, however, there does not seem
exist any basic thermodynamic reason why the derivation
the particle production should be insensitive to what is
sumed about the Planck scale. Indeed, recent studies~see
@3,4#! independently found that the inflationary CMB predi
tion is in general sensitive. Those studies calculated the
fects ofad hocultraviolet modified dispersion relations sim
lar to those which had been shown not to affect black h
radiation.

Interestingly, this means that if the inflationary scenario
true, then the currently rapidly improving experimental e
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dence about the CMB could provide a window to at le
some aspects of particle physics at energies as high as
Planck scale. Therefore, our aim here is to formulate qu
tum field theory on curved backgrounds with some plausi
type of ultraviolet cutoff. The aim is to obtain a framewo
in which all the usual entities of interest such as propagat
correlators, vacuum fluctuations and eventually the CM
perturbation spectrum can be calculated explicitly and co
pared to experiment.

We will need good arguments for choosing a particu
type of cutoff. One obvious option would be to choose t
lattice cutoff. However, apart from breaking translation a
rotation invariance, the lattice cutoff faces further proble
on expanding space-times: As has been pointed out ea
~see e.g.@4#!, if space-time were a discrete lattice with
spacing of say one Planck length, then it is not clear h
during the expansion new discrete lattice points could
created continuously. Indeed, whatever form of natural ul
violet cutoff we assume, we will need to address the follo
ing questions: How does the expansion continuously ge
ate new modes? What is the initial vacuum of these mod
And, once this is clarified, which CMB perturbation spe
trum is predicted?

Our starting point for choosing a type of cutoff is an o
servation made in@5#: The short-distance structure of spac
time can only be one of very few types — if we make
certain assumption. The assumption is that the fundame
theory of quantum gravity will possess for each space-ti
coordinate a linear operatorXi whose formal expectation val
ues^Xi& are real. TheXi may or may not commute. One ca
prove on functional analytic grounds that the short-dista
structure of any such coordinate, considered separately,
only be continuous, discrete, or ‘‘unsharp’’ in one of tw
ways. All other cases are mixtures of these.

The mathematical origin of the two ‘‘unsharp’’ cases li
in the fact that such an operator is not necessarily self-adj
and may be merely what is called a symmetric operator. IfXi

is self-adjoint, then it is diagonalizable and its spectrum c
only be discrete~i.e., point! or continuous. Correspondingly
the short-distance structure of the coordinate which is
scribed byXi is therefore also discrete or continuous~or a
mixture, including, e.g., fractals!. However, if Xi is merely
symmetric, then, crucially, it is not diagonalizable. Such c
ordinates are unsharp because a merely symmetric ope
©2001 The American Physical Society14-1
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Xi need not possess eigenvectors, and the eigenvectors
adjoint (Xi)* need not be orthogonal.~Technically, the two
unsharp cases are distinguished by the so-called defici
indices ofXi being either equal or unequal; see@5#.!

Given the generality of the argument, namely the fact t
the sharpness or unsharpness of indeedany real entity de-
scribed by a linear operator falls into this classification, it
not surprising that such unsharp short-distance structure
occur ubiquitously. For example, the aperture induced
sharpness of optical images is of this kind, as is, e.g.,
unsharpness in the time resolution of band-limited electro
signals; see@6#.

In fact, also a number of studies in quantum gravity a
string theory point towards one of these unsharp cases: T
point towards the case of coordinatesX whose formal uncer-
tainty DX(f)5^fu(X2^fuXuf&)2uf&1/2 possesses a finit
lower bound at a Planck or string scale,DX(f)>DXmin
5 l Pl , wheref is any unit vector on which the operatorX
can act.~Technically, this is a case of equal deficiency ind
ces.!

In a first-principles quantum gravity theory such as str
theory this behavior may of course arise from a complica
dynamics where space-time is a derived concept. Never
less, it has been argued~see e.g.@7#! that, effectively, this
short-distance structure can be modeled as arising f
quantum gravity correction terms to the uncertainty relat

DxDp>
1

2
@11b~Dp!21•••#. ~1!

The positive constantb implies a constant positive lowe
boundDxmin5Ab. Usually,b is assumed such that the cu
off Dxmin is at a Planck or string scale. As first discussed
@8#, the type of uncertainty relation of Eq.~1! can then be
viewed as arising from corrections to the canonical comm
tation relations:

@x,p#5 i ~11bp2
••• !. ~2!

This commutation relation can be represented, e.g., with
operatorsx andp acting on fields over some auxiliary var
abler asxf(r)5 i ]rf(r), pf(r)5tan(rAb)/Ab on the
space of fieldsf(r) over the interval@2rmax,rmax#, where
rmax5p/(2Ab), with scalar product ^f1uf2&
5*

2rmax

rmax drf1* (r)f2(r). The requirement of symmetry ofx

~i.e., that all formal expectation values are real! yields the
boundary conditionsf(6rmax)50. As expected,x is not
self-adjoint: what would be its~now normalizable! eigenvec-
tors ‘‘ux),’’ namely the plane waves inr space, are no
in its domain and are not orthogonal on the interv
@2rmax,rmax#. In the ‘‘position representation,’’ the field
f(x)5(x,f)5p21/2b1/4*dreixr exhibit a finite minimum
wavelength. Modes whose wavelengths are close to the m
mum wavelength are energetically exceedingly expensivep
diverges!.

It would be a drawback of our approach if it covered on
this perfectly translation invariant case in which Four
theory applies. Let us therefore also mention, for comple
ness, that in this class of unsharp short-distance structure
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lower bound on the position uncertainty,DXmin , is in gen-
eral some function of the position̂X& around which one
tries to localize the particle:DXmin5DXmin(^X&). In this
case, the situation is no longer describable as an ove
wavelength cutoff. But it has been shown in@6# that in all
cases whereDXmin(x).0, fields over such unsharp coord
nates can be described as possessing an ultraviolet cuto
the sense that they contain only a finite density of degree
freedom. Namely, such fields can be reconstructed at
points if known only on a set of discrete points — if the
points are sufficiently tightly spaced. The minimum spaci
varies over space and is small where the minimum posi
uncertaintyDXmin(x) is small and vice versa. Thus, field
over such unsharp coordinates, while being continuous,
ways possess regularity properties similar to fields over
tices.

We now begin by recalling that the calculation of infl
tionary scalar density perturbations effectively reduces in
simplest case to the study of a minimally coupled mass
real scalar field on a fixed curved background space-t
such as, e.g., de Sitter space. For simplicity, we will assu
the case of spatial flatness. It is usually most convenien
choose comoving coordinatesy and the conformal time co
ordinateh. The metric then readsg5diag„a(h)2,2a(h)2,
2a(h)2,2a(h)2

… with a(h) being the scale factor, and th
action takes the form

S5E dh d3y
a~h!2

2 S ~]hf!22(
i 51

3

~]yif!2D . ~3!

Since our aim is to introduce a short-distance cutoff
proper distances~while leaving the time coordinate as is!, we
transform the action into proper space coordinatesxi , to ob-
tain

S5E dh d3x
1

2a

3H F S ]h1
a8

a (
i 51

3

]xixi2
3a8

a DfG2

2a2(
i 51

3

~]xif!2J
~4!

where the prime stands for]h . By defining

~f1 ,f2!ªE d3x f1* ~x!f2~x! ~5!

xif~x!ªxif~x! ~6!

pif~x!ª2 i ]xif~x! ~7!

we can write the action in the form

S5E dh
1

2a
$„f,A†~h!A~h!f…2a2~f,p2f!% ~8!

where the operatorA(h) is defined as
4-2
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A5S ]h1 i
a8

a (
i 51

3

pixi2
3a8

a D . ~9!

In Eq. ~8!, the fields are time dependent abstract vectors
Hilbert space representation of the commutation relation

@xi ,p j #5 id i j . ~10!

This only means that, as in quantum mechanics, also
quantum field theory the commutation relations of Eq.~10!
are setting the stage, albeit without the simple quantum
chanical interpretation of thexi and pi as observables. Fo
example, to express the action in momentum space i
choose the spectral representation of thepi .

Our ansatz now is to the keep the scalar field action
actly as given in Eqs.~8!,~9!, but to modify the underlying
three-dimensional position-momentum commutation re
tions, Eq.~10!, for large momenta, such as to introduce t
type of cutoff which we discussed above. While we w
break Lorentz invariance by introducing the cutoff, we w
maintain translation and rotation invariance through the
satz

@xi ,p j #5 i @ f ~p2!d i j 1g~p2!pip j # ~11!

and by requiring that@xi ,x j #505@pi ,p j #, for all i , j
51,2,3. As was first shown in@9#, the Jacobi identities then
relate the functionsf andg as follows:

g5
2 f ]p2f

f 22p2]p2f
. ~12!

The behavior of the functionsf andg for p2 small compared
to the Planck momentum is required to bef→1 andg→0.
The functionsf and g are then unique to first order inb,
namely f 511bp21O(b2) and g52b1O(b2). We note
that corresponding to the ambiguity in choosingf there is
also an ordering ambiguity of thexi andp j in the action of
Eqs.~8!,~9!. Equation~12! shows thatg may develop singu-
larities. We avoid this by choosing, e.g.,g52b. This then
yields from Eq.~12! that f (p2)52bp2/(A114bp221). A
convenient Hilbert space representation of the new com
tation relations is on fieldsf(r) over auxiliary variablesr i ,

xif~r!5 i ]r if~r! ~13!

pif~r!5
r i

12br2
f~r!, ~14!

with scalar product

~f1 ,f2!5E
r2,b21

d3r f1* ~r!f2~r!. ~15!

The symmetry of thexi requires the boundary conditio
f(r251/b)50. Thexi are not self-adjoint: Their would-be
eigenvectors ‘‘ux),’’ i.e., the now normalizable plane wave
in r space, are not in their domain and are not orthogo
The finiteness ofr space,rmax

2 5b21, implies a finite mini-
08351
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mum wavelengthlmin52pAb for the fieldsf(x)5(x,f)
5A3/(4p)b3/4*d3r f(r)eixr over position space and a co
responding finite minimum position uncertainty.

The action, as given in its abstract form, Eqs.~8!,~9!, with
the new commutation relations Eqs.~11! underlying, can
now be written in ther representation

S5E dhE
r2,b21

d3r
1

2a

3H US ]h2
a8

a

r i

12br2
]r i2

3a8

a D fU2

2
a2r2ufu2

~12br2!2J .

~16!

The presence ofr derivatives means that ther modes are
coupled. Fortunately, it is still possible to find new variabl
(h̃,k̃), namelyh̃5h, k̃i5ar i exp(2br2/2), in which thek̃
modes decouple. As is readily verified,

]h2
a8

a

r i

12br2
]r i5]h̃ .

We will use the common index notationf k̃ for those decou-
pling modes. The realness of the fieldf(x) then translates
through f(r)* 5f(2r) into f k̃

* 5f2 k̃ . We observe that

the k̃ modes coincide with the usual comoving modes t
are obtained by scaling,ki5api , only on large scales, i.e.
only for smallr2, i.e., only for small momentum eigenvalue
p2. Conversely, this means that the comovingk modes only
decouple at large proper distance scales, but do coupl
small scales.

The action now reads

S5E dhE
k̃2,a2/eb

d3k̃L ~17!

with

L5
1

2
nH US ]h23

a8

a Df k̃~h!U2

2muf k̃~h!u2J ~18!

where we defined

m~h,k̃!ª2
a2 plog~2b k̃2/a2!

b@11plog~2b k̃2/a2!#2
~19!

n~h,k̃!ª
exp@2 3

2 plog~2b k̃2/a2!#

a4@11plog~2b k̃2/a2!#
~20!

and where the function plog, the ‘‘product log,’’ being th
inverse of the functionx°xex, allowed us to expressr2 in
terms ofh and k̃2 through

r252b21plog~2b k̃2/a2!. ~21!

Before we proceed, let us remark that this action reduces
b→0 to the standard action
4-3
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Sb505E dhd3k
1

2a4 H US ]h23
a8

a DfU2

2k2ufu2J .

~22!

To see that this is the standard action, recall that Fou
transforming and scaling commute only up to a scaling f
tor. We Fourier transformed the proper positions and th
scaled. Thus, ourf differs by a factor ofa3 from the f
obtained as usual by first scaling and then Fourier transfo
ing.

The equation of motion for the action of Eqs.~17!,~18! is

f k̃
91

n8

n
f k̃

81Fm23S a8

a D 8
29S a8

a D 2

2
3a8n8

an Gf k̃50. ~23!

We recognize the damped harmonic oscillator form, with
friction term and with its variable mass term in which th
contributions from the momentum and from the expans
compete. Comparing this modified mode equation to
modified wave equations of the pioneering works@3,4# we
note certain differences in its derivation and in its form:

First, in @3,4# the new mode equations are derived ess
tially by transforming comoving momentum variablesk into
proper momentum variablesp5k/a(h), by then applying a
nontrivial dispersion relationF„k/a(h)… and by finally trans-
forming back into effective comoving momentum variabl
ke f f5a(h)F„k/a(h)…. Our approach here has been simi
in spirit. However, we here transformed not only the mom
tum variablesbut the entire action and wave equation fro
comoving to proper coordinates and back. Since the trans
mation to proper coordinates is time dependent, even
time derivatives thereby pick up terms, such as e.g. in
first quadratic term of Eq.~4!. These terms involve spatia
coordinates and derivatives, and therefore spatial mome
As Eqs. ~9!,~11! show, in our approach the short-distan
structure modification entered through those terms into
derivation of the modified mode equation~23!. Recall also
that at small distances we here distinguish the comoving
menta k from the momentak̃ which are defined as thos
variables in terms of which the wave equation actually
couples into independent modes.

Second, our equation~23! can be transformed, as usual,
new variables in which the friction term is absent. This
being pursued in forthcoming work. Let us note already t
even in this formulation a new feature of our approach
mains, namely the fact that in our case each mode posse
its own starting time.

We now continue our investigation by noting that the fie
p k̃(h), canonically conjugate tof k̃(h), reads

p k̃~h!5nf
2 k̃
8 ~h!23n

a8

a
f2 k̃~h! ~24!

~recall that the canonical conjugate of the Fourier transfo
is the complex or Hermitian conjugate of the Fourier tra
form of the canonical conjugate!. We can now use tha
f k̃

8(h)5n21p2 k̃(h)13(a8/a)f k̃(h) to express the Hamil-
tonian
08351
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H5E
k̃2,a2/eb

d3k̃ @p k̃~h!f k̃
8~h!2L# ~25!

explicitly in terms off andp. We quantize by imposing the
commutation relation@f̂ k̃(h),p̂ r̃(h)#5 id3( k̃2 r̃ ). ~A path
integral formulation of field theories over unsharp coor
nates has been developed in@10#.! The Heisenberg equation
f̂ k̃

85 i @Ĥ,f̂ k̃# and p̂ k̃
85 i @Ĥ,p̂ k̃# then yield Eq.~23! as an

equation for operator-valued fields.
We can now answer the first question which we raised

the beginning, namely by which mechanism new modes
generated: Automatically, the quantum fieldf̂(h,x) and the
quantum HamiltonianĤ of Eq. ~25! contain thek̃ mode, i.e.,
the fieldsf̂ k̃(h) and p̂ k̃(h), only after thek̃ mode’s ‘‘cre-
ation’’ time, hc( k̃), which is whena(h) has grown enough
so thatk̃2,a2/eb, i.e., when the proper wavelength of thek̃

mode becomes larger thanlmin . The action ofĤ on the
Hilbert subspace of modes withk̃2.a2/(eb) is zero; i.e., the
time evolution operator leaves the respective Hilbert s
space invariant.

Technically, the kernel of the Hamiltonian~its eigenspace
to eigenvalue 0) is infinite dimensional and shrinks duri
cosmic expansion. Conversely, during a cosmic contrac
the kernel enlarges. It should be interesting to calculate
correspondingly changing zero-point energy of the Ham
tonian as it picks up or loses modes. In this scenario, we
quite literally in a universe which resembles ‘‘Hilbert’s ho
tel’’ ~which can welcome guests even if full, because it h
an infinite number of rooms!.

We can solve for the dynamics of the quantized fieldf̂ as
usual, by using a complex classical solutionf to write thek̃

mode of the quantum fieldf̂ as

f̂ k̃~h!5@ak̃f k̃~h!1a
2 k̃
†

f
2 k̃
* ~h!#. ~26!

The time independence ofak̃ andak̃
† guarantees thatf̂ solves

the equation of motion. Imposing@ak̃ ,ar̃
†
#5d3( k̃2 r̃ ) guar-

antees that the field commutation relation is obeyed — iff

obeys n(h,k̃)@f k̃(h)f k̃
8* (h)2f

2 k̃
* (h)f

2 k̃
8 (h)#5 i . Nor-

mally, this Wronskian condition does not determinef and
thereforef̂ uniquely; i.e., the choice of a classical comple
solution and correspondingly the choice of a quant
vacuum are not unique. Here, however, eachk̃ mode auto-
matically possesses a creation time,hc( k̃), at which both
n,m and thek̃ mode’s equation of motion are singular. Th
opens the interesting possibility, answering our second qu
tion from the beginning, that the requirement of the regul
ity of f or other physical quantities at this singularity dete
mines the vacuum uniquely.

Once the vacuum is fixed, it is then possible to calcul
arbitrary quantum field theoretic entities, such as the mag
tude of ^0uf̂ k̃

†
f̂ k̃u0& after horizon crossing, which yields th
4-4
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prediction for the CMB perturbation spectrum. This was o
third question, and it can certainly be addressed at least
merically. The results should be very interesting to comp
with the standard inflationary prediction of near scale inva
-

tin
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