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1Département d’Astrophysique Relativiste et de Cosmologie, UMR 8629 du Centre National de la Recherche Scientifique
Observatoire de Paris, 92195 Meudon, France

2Institut des Hautes Etudes Scientifiques, 91140 Bures-sur-Yvette, France
3Centre for Mathematical Sciences, DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, England

4Institute of Theoretical Physics, Charles University, V Holesˇovičkách 2, 18000 Prague 8, Czech Republic
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We consider cosmological models where the universe, governed by Einstein’s equations, is a piece of a five
dimensional double-sided anti–de Sitter spacetime~that is, a ‘‘Z2-symmetric bulk’’! with matter confined to its
four dimensional Robertson-Walker boundary or ‘‘brane.’’ We study the perturbations of such models. We use
conformally Minkowskian coordinates to disentangle the contributions of the bulk gravitons and of the motion
of the brane. We find the restrictions put on the bulk gravitons when matter on the brane is taken to be a scalar
field and we solve in this case the brane perturbation equations.
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I. INTRODUCTION

In a now classic paper@1# Randall and Sundrum indicate
how one could recover the linearized Einstein equations o
four dimensional Minkowskian ‘‘brane,’’ a brane being
that context a boundary of a five dimensional double-sid
anti–de Sitter spacetime (AdS5), that is, of a ‘‘Z2-symmetric
bulk.’’ This discovery was soon followed by the building o
cosmological models, where the brane, instead of flat
taken to be a Robertson-Walker spacetime, and it was sh
that such ‘‘brane worlds’’ can tend at late times to the st
dard big bang model and hence represent the observed
verse~see e.g.@2# for early models and@3–5# for fully rela-
tivistic ones!.

More recently various theoretical setups to study the p
turbations of such cosmological models have been propo
@6–13#. The purpose of these analyses is, in particular,
eventually calculate the cosmic microwave backgrou
anisotropies predicted by brane worlds. However, they
have up to now stalled on the problem of solving, in a ge
eral manner, the Lanczos-Darmois-Israel equations~that is
the Einstein equations integrated across the brane, o
called ‘‘junction conditions’’! which relate the matter pertur
bations on the brane and the perturbations in the bulk.

In order to be in a position to solve these equations,
present in this paper the perturbation theory of brane wo
from a geometrical point of view, in the line of@6,7# and
@10#. This approach, which uses conformally Minkowski
coordinates that are well adapted to the geometry of the b
will first allow a clear and simple distinction between th
perturbations in the brane due to perturbations in the b
and the perturbations in the brane due to its motion.~As we
shall comment upon, the latter, so-called ‘‘brane-bendin
effect, is more difficult to describe when Gaussian coor
nates are used, as in e.g.@8,9,11# or @13#.!

We shall then write the Lanczos-Darmois-Israel equati
and see that only a sub-class of bulk gravitational wave
compatible with a given type of matter on the brane. As
0556-2821/2001/63~8!/083513~10!/$20.00 63 0835
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example we shall consider the case when matter on the b
is imposed to be a scalar field and find explicitly in that ca
the allowed bulk gravitational waves. We shall then solve
Lanczos-Darmois-Israel equations and give in a closed fo
the perturbed metric and scalar field in the brane.

The paper is organized as follows. In Sec. II we pres
the formalism and notations used and describe the ba
ground brane and bulk. Section III treats the geometry a
matter perturbations in the brane induced by a bending of
brane in a strictly anti–de Sitter bulk. As for Sec. IV,
considers the changes in the brane induced by perturba
of the bulk. There is nothing essentially new in these Se
III and IV, but the presentation is, we hope, more straig
forward and pedagogical than some. In Sec. V we dwell
gauge issues, count the degrees of freedom of the pertu
tions in the brane and comment upon the use of Gaus
normal coordinates in which, as we shall argue, the br
bending effect is described in a fairly awkward manner. W
recall in Sec. VI standard results of the linearized Einst
equations in an anti–de Sitter spacetime in conforma
Minkowskian coordinates. In Sec. VII the Lanczos-Darmo
Israel equations are written and solved when matter on
brane is taken to be a scalar field.

II. THE BACKGROUND BULK AND BRANE
IN CONFORMALLY MINKOWSKIAN COORDINATES

The ‘‘bulk’’ is a piece of a five dimensional spacetime
which the four dimensional edge, or ‘‘brane,’’ is supposed
represent our universe. At zeroth order in perturbation the
this background bulk will be chosen to be an anti–de Si
spacetime~see below a reason why we do not consider a
Sitter bulk and e.g.@14,15# and references therein for mor
general backgrounds!.

Many different coordinate systems can be used to
scribe anti–de Sitter spacetime: see e.g.@1# or @5# for normal
Gaussian coordinates in which the surfacey50 represents
the brane, e.g.@16# for Schwarzschild-like coordinates an
©2001 The American Physical Society13-1
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@17# for their local equivalence. In this paper we shall u
conformally Minkowskian coordinatesXA, in which the met-
ric of a five dimensional anti–de Sitter spacetime reads

ds̄2u55ḡAB dXAdXB with ḡAB5
1

~KX4!2
hAB ~1!

where the upper case indicesA,B run from 0 to 4, hAB
5diag(21,1,1,1,1) andK is a positive constant. Note tha
the coordinatesXA do not cover the whole AdS5 spacetime;
see Appendix A for details.

The background brane is a four dimensional surface
AdS5 with maximally symmetric spatial sections. We sh
restrict our attention to those Robertson-Walker bra
which have euclidean spatial sections. The equation for s
a braneS̄ is

XA5X̄A~xm! with X̄05T~h!, X̄i5xi ,

X̄45A~h! ~2!

where the four coordinatesxm (x0[h,xi), lower case latin
indices running from 1 to 3, parametrize the brane, wh
A(h) is ana priori arbitrary function ofh and whereT(h)
is defined up to an arbitrary constant by

T85A11A82 ~3!

a prime denoting a derivative with respect toh. This condi-
tion definesh as conformal time. Four independent tange
vectors to the brane are

V̄m
A[

]X̄A

]xm
that is V̄h

A5~T8,0,0,0,A8!, V̄i
A5~0,d i

A,0!.

~4!

The induced metric on the brane is also conforma
Minkowskian and reads

ds̄2u45ḡABuS̄ V̄m
AV̄n

B dxmdxn5
1

~KA!2
hmn dxmdxn. ~5!

It will be useful in the following to introduce the scale fact
a(h), the cosmic timet, and the Hubble parameterH defined
by

a[
1

KA
, dt[a dh, H[

ȧ

a
~6!

where an overdot denotes a derivative with respect tot.
At this stage one can note in passing that if the bulk h

been chosen to be a de Sitter rather than an anti–de S
spacetime, given by metric~1! with conformal factor
(KX0)22 instead of (KX4)22, then the induced metric on
brane defined byX05A(h), Xi5xi , X45T(h) would have
been Eq. ~5! with the condition ~3! replaced by T8
5AA8221⇒A82>1⇒H>K, a condition which is not sat
isfied by standard cosmological scenarios. Hence the b
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cannot be chosen to be a de Sitter spacetime, at least w
the branes are defined as above. A Minkowski bulk does
lead either to an acceptable cosmological scenario, see@3#
and e.g.@18#.

Let us recall now how the extrinsic curvature of a brane
calculated. One introduces the normaln̄A(xm) to the brane as

ḡABuS̄ n̄AV̄m
B50, ḡABuS̄ n̄An̄B51 that is

n̄A5KA ~A8,0,0,0,T8! ~7!

where the sign has been chosen arbitrarily. The extrinsic
vature of the brane is then defined as~introducing D̄, the
covariant derivative associated withḡAB) K̄mn5

2V̄m
AV̄n

BD̄An̄B , that is, using the symmetryK̄mn5K̄nm ,

K̄mn52
1

2
@ ḡABuS̄ ~V̄m

A]nn̄B1V̄n
A]mn̄B!

1V̄n
AV̄m

Bn̄C~]CḡAB!uS̄# ~8!

which gives

K̄hh5
1

KA2T8
~AA9212A82!52

a2

AK 21H2 S K 21
ä

a
D

K̄ i j 5
T8

KA2
d i j 5a2AK 21H2 d i j . ~9!

Physics, gravity and matter, are introduced in this up
now purely geometrical picture by means of Einstein’s eq
tions,GAB5kTAB , whereGAB is Einstein’s tensor,k a five
dimensional gravitational coupling constant andTAB the
stress energy tensor of matter. The AdS5 bulk is then inter-
preted as a solution of Einstein’s equations with matte
cosmological constant:kTABubulk56K 2ḡAB . Furthermore,
matter is introduced on the brane by means of the so-ca
Z2 symmetry which amounts to

~1! cut AdS5 along the brane~see e.g.@10# or @17# for
conformal diagrams and Appendix A for embedding descr
tions of this cut!,

~2! keep the side between the brane andX4→1` @10#,
~3! make a copy of this ‘‘half’’ AdS5 spacetime and join it

to the original along the brane~hence the description of th
bulk as a doubled-sided piece of AdS5),

~4! integrate Einstein’s equations across this singular s
face and obtain the Lanczos-Darmois-Israel equations o
called ‘‘junctions conditions’’@19# and thus get the stres
energy tensorT̄mn of the matter on the brane in terms of i
extrinsic curvature as

kS T̄ m
n 2

1

3
dm

n T̄D52K̄m
n ~10!

where the indices are raised by means of the inverse m
a22hmn and T̄[T̄m

m . Condition ~2! above together with the
choice of sign in Eq.~7! ensures that the energy density o
3-2



f

t
-

o

n

d
lly

ulk
w
is

n

d

-
ly

a
e

he
ri-
ng
;

th

on

insic

ess
.
eter

sic

of

ulk

are
rdi-
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the brane is definite positive@20#. The spatial components o
Eq. ~10! give, using Eq. ~8! and noting T̄ 0

052r, T̄ j
i

5pd j
i ,

kr56KA11A82⇔kr56AK 21H2. ~11!

As for the (0,m) components of Eq.~10! they are equivalen
to the conservation ofT̄ m

n , because matter in the bulk re
duces to a cosmological constant~see e.g.@20#!. They read

ṙ13H~r1p!50⇔kp52
K
T8

~AA923T82!. ~12!

One thus sees in particular that Einstein’s equations imp
that Minkowskian branes, such thatA(h)5const, must con-
tain matter under the form of a ‘‘tension’’ such thatkT̄ n

m

526Kdn
m @1#. More generally, an equation of stater

56K/k1rm , p526K/k1pm with pm5pm(rm) being
chosen, Eqs.~11!,~12! together with Eq.~3! give A(h) @or
a(t)] as well asr(h). Various cosmological scenarios ca
hence be built@2–5#.

III. BRANE-BENDING IN AN ANTI –DE SITTER BULK

In this section we shall consider an unperturbed anti–
Sitter bulk that we shall describe using the conforma
Minkowskian coordinates~1!. We therefore do not allow
here for perturbations of the coordinate system in the b
cf. Sec. V for gauge related issues. On the other hand
allow for perturbations in the position of the brane — this
the ‘‘brane-bending’’ effect analyzed by e.g.@21# in the case
of a Minkowskian background brane. In other words we co
sider in AdS5 with metric ~1! a braneS defined by

XA5X̄A~xm!1eA~xm! ~13!

whereX̄A(xm) are given by Eqs.~2!,~3! and where the five
‘‘small’’ functions eA(xm) can be conveniently decompose
along the four tangent vectors to the brane~4! and its normal
~7! according to

eA5jl V̄l
A1z n̄A ~14!

with jl(xm) and z(xm) five arbitrary functions of the coor
dinates xm5(h,xi) which parametrize the brane. Strict
speaking the tangent and normal vectorsV̄l

A and n̄A are de-
fined on the unperturbed brane only. The vectors which
pear in Eq.~14! are Lie transported to the perturbed bran
~See@12# for equivalent parallel transport.!

Whenz50 there is no deformation of the brane and t
perturbationeA amounts to a slight change in its paramet
zation, which can be absorbed into the infinitesimal cha
of coordinates:xl5 x̃l2jl ~as it is easy to show explicitly
cf. Appendix B!. We shall therefore setjl50 and describe
the deformation of the brane by the single functionz. Hence
the gauge is completely fixed, in the brane as well as in
bulk.
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A short calculation then shows that the induced metric
the perturbed brane

ds2u45ḡABuS@V̄m
A1]m~zn̄A!#@V̄n

B1]n~zn̄B!#dxmdxn

~15!

can be expressed in terms of the background brane extr
curvatureK̄mn ~8! as

ds2u45
1

~KA!2
~hmn1gmn

(p)!dxmdxn with

gmn
(p)522~KA!2zK̄mn ~16!

where the index~p! stands for perturbation of thepositionof
the brane.~This perturbation cannot be gauged away, unl
the background brane extrinsic curvature tensor vanishes! In
terms of the scale factor, cosmic time and Hubble param
it reads

ds2u452F12
2z

AK 21H2 S K 21
ä

a
D Gdt2

1a2~122zAK 21H2!d i j dxidxj . ~17!

Hence, for a scale factor behaving astp, the induced metric
remains bounded if the functionz behaves astq, q>1, at
early times.

The normal vector to the perturbed brane and its intrin
curvatureKi j

(p) are obtained from the definitions~7! and ~8!

with all bars dropped, apart from the one onḡAB . One ob-
tains, denoting the perturbation of the extrinsic curvature
the brane due to its bending asd (p)K j

i [K j
i (p)2K̄ j

i ,

d (p)K j
i 5~KA!2F ] j

i z1d j
i S A8z8

A
1

A82z

A2 D G
5

1

a2 ] j
i z1H~Hz2 ż ! d j

i . ~18!

@The indices ofK j
i (p) are raised by means of the metric~17!

and] j
i z[d ik] jkz.#

IV. PERTURBING THE GEOMETRY OF THE BULK

In this section we consider a perturbed anti–de Sitter b
with metric

ds2u55gABdXAdXB5
1

~KX4!2
~hAB1hAB!dXAdXB

~19!

where, among the fifteen functionhAB(XC), five have been
chosen to fix the gauge in the bulk and the remaining ten
imposed not to be reducible to zero by a change of coo

nates. As for the braneS̄ it is defined by thesameequations
as in the unperturbed case, that is by Eqs.~2!,~3!. Of course
3-3
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this brane, despite its notation, is geometrically differe
from the unperturbed Robertson-Walker brane of Sec. II

The induced metric onS̄ is

ds2u45gABuS̄ V̄m
AV̄n

Bdxmdxn5
1

~KA!2
~hmn1gmn

(b)!dxmdxn,

~20!

with

ghh
(b)5T82h00uS̄12T8A8h04uS̄1A82h44uS̄

gh i
(b)5T8h0i uS̄1A8h4i uS̄

g i j
(b)5hi j uS̄ ~21!

where the index~b! means that these perturbations are
duced by the perturbations of geometry of thebulk.

As for the normal vector to the brane and its extrin
curvatureKi j

(b) they are again defined by Eqs.~7!,~8! where,
here, all bars are kept, apart from the one ongAB . One
obtains for the perturbation of the extrinsic curvature of
brane due to the perturbations of geometry of the bu
d (b)Ki j [Ki j

(b)2K̄ i j ,

dKi j
(b)5

1

2KA
@A8~] jh0i1] ih0 j2]0hi j !uS̄

1T8~] jh4i1] ih4 j2]4hi j !uS̄ #

1
1

KA2 H d i j F T8S A822
1

2
T82Dh44uS̄1A83h04uS̄

1
1

2
A82T8h00U

S̄
G1T8hi j J . ~22!

This expression can be rewritten in a more compact and g
metrical form as

d (b)K j
i 5p j

i 2
1

2
s j

i 2aS Hgh
(b)1

a

2
AK 21H2 g (b)D d j

i

~23!

whered (b)K j
i 5K j

i (b)2K̄ j
i @indices being raised by means

the metric~20!# and where we have introduced

s i j 5n̄A~]Ahi j !uS̄ and p i j 5
1

2
@ n̄A~] jhAi!uS̄

1n̄A~] ihA j!uS̄# ~24!

~with p j
i [d ikp jk , s j

i [d iks jk) as well as

gh
(b)5hABuS̄ n̄AV̄h

B and g (b)5hABuS̄ n̄An̄B. ~25!

Using Eqs.~4! and ~7! one finds explicitly
08351
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1

K 2a
@2HAK 21H2~h00uS̄1h44uS̄!

1~K 212H2!h04uS̄#

g (b)5
1

K 2a2 @H2h00uS̄22HAK 21H2h04uS̄

1~K 21H2!h44uS̄#. ~26!

We postpone until Sec. VII the interpretation of the pe
turbations of extrinsic curvature in terms of matter perturb
tions on the brane.

V. GAUGE RELATED ISSUES

In Sec. III we considered a strictly anti–de Sitter bulk
conformally Minkowskian coordinates and we perturbed
position of the brane along its normal. In so doing, as
have seen, we fixed the gauge completely, in the bulk as
as in the brane, and introduced a single functionz(xm) the
effect of which on the induced metric and extrinsic curvatu
of the brane cannot be gauged away and is given by E
~16!–~18!.

In the previous section we geometrically perturbed
bulk in a given coordinate system and fixed the position
the brane in that system. We have thus introduced ten fu
tions hAB(XC) which characterize in a given coordinate sy
tem a geometrical perturbation of the bulk, i.e. we impos
that they cannot be gauged away. Their effect on the bran
given by Eqs.~20!,~21! and ~22! or ~23!.

The brane bending perturbation adds a degree of free
to these ten perturbations of the bulk since it can be pre
in the geometrically unperturbed background AdS5 bulk. We
note in passing that this effect can be described alternati
as a brane perturbation induced by a general coordinate
performed in the background AdS5 bulk without changing
accordingly the equation for the brane. See Appendix B
details.

Hence, the eleven functions introduced describe co
pletely the geometrical perturbations of the bulk and the
sition of the brane in that bulk. Now these eleven indep
dent functions will be constrained in the next sections
satisfy Einstein’s equations. Imposing in a first step E
stein’s equations in the five dimensional bulk, where ma
is chosen to be a cosmological constant, will reduce th
eleven functions to six~according to the rule ‘‘the gauge hit
twice’’ !. These six functions will be interpreted as the fi
degrees of freedom of the AdS5 gravitational waves plus a
‘‘radion’’ describing the motion of the brane. Imposing in
second step theZ2 symmetry and Einstein’s equations acro
the singular brane will define the matter perturbations on
brane in terms of these six arbitrary functions, which is ju
the right number to describe, in a given brane coordin
system, the most general four dimensional perturbed u
verse.

This counting can be generalized to anyN-dimensional
brane in aD5(N11)-dimensional bulk. The number o
gauge independent metric perturbations~or, equivalently, the
3-4
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PERTURBATIONS OF BRANE WORLDS PHYSICAL REVIEW D63 083513
number of independent metric perturbations in a giv
gauge! in a D-dimensional bulk is1

2 D(D11)2D5 1
2 D(D

21). The number of freely propagating degrees of freed
~gravitational waves! in a D-dimensional bulk is 1

2 D(D
21)2D5 1

2 D(D23). The deformation of a
D215N-dimensional brane is described by the normal v
tor zn̄A, that is by one function. Now we have12 D(D23)
115 1

2 N(N21) which is the number of gauge independe
metric perturbations in aN-dimensional brane.

We would like to argue at this point that normal Gauss
coordinates~used by e.g.@7,9,12,13#! in which the perturbed
bulk metric is written as

ds2u55~gmn1hmn!dxmdxn1dy2 ~27!

wherey50 is the position of the brane and where the e
plicit expression of the background anti–de Sitter metric
efficientsgmn can be found in@15#, seem less appropriate t
treat the problem at hand than the conformally Minkowsk
coordinates advocated here. Indeed one can certainly us
form ~27! of the metric to study linearized gravity on a
anti–de Sitter background. However

~1! the linearized Einstein equations are much simp
and their boundary conditions much easier to impleme
when written in conformally Minkowskian coordinates~as
recalled in the next section!,

~2! imposing that the brane is aty50 means choosing
among all coordinate systems such thathyy5hym50, the
particular sub-class which is adapted to the bending of
brane@7#. This implies that when solving the linearized Ei
stein equations in the bulk one can no longer simplify th
by choosing the best adapted coordinate system within
class~27! ~like, for example, an harmonic system!. In prac-
tice this means that one must solve the constraint equat
in full generality. This introduces an arbitrary functionz(xm)
which encodes the brane bending effect as well as the tr
formation to the coordinate system in which the solution
the constraint equations is simple and the brane locate
y5z(xm). ~A similar procedure must be applied in synchr
nous gauge descriptions of the surface defining reheatin
inflationary scenarios, see e.g.@22# for further discussion of
that point.!

When the background brane is Minkowski spacetime,
in the Randall-Sundrum scenario, conformally Minkowski
and Gaussian normal coordinates are almost identical, so
objection~1! falls in that case. As for objection~2! it falls as
well since it is then as simple to solve the linearized Einst
equations in an harmonic gauge where the brane is locate
y5z(xm) than in a Gaussian normal gauge~cf. e.g.@21# and
@23#!. When, on the other hand the background brane
Robertson-Walker spacetime, the simplicity of the lineariz
Einstein equations in conformally Minkowskian coordinat
discussed in Sec. VI will, as we hope to convince the rea
compensate for the slightly more complicated form of t
junction conditions given in Sec. VII.

VI. EINSTEIN’S EQUATIONS IN THE BULK

The metric perturbations of the bulk we considered
Sec. IV are now forced to obey Einstein’s equations, ma
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being chosen to be a cosmological constant:GAB
56K 2gAB . The metric being given by Eq.~19! their linear-
ization gives the following equations for the perturbatio
hAB everywhere outside the brane@23#

1

2
@]ALhB

L1]BLhA
L2]ABh2h5hAB2hAB~]LMhLM2h5h!#

2
6

~X4!2 hABh442
3

2X4 @]Ah4B1]Bh4A2]4hAB

1hAB~]4h22]Lh4
L!#50 ~28!

where all indices are raised withhAB, h[hL
L and h5

[]L]L.
These equations must be solved in a given gauge. If

impose the conditions

h4A50 ~29!

the fifteen functionshAB(XA) reduce to the ten function
hmn(XA) which satisfy

]rshrs2h4h1
3

X4 ]4h50

]4~]rhm
r 2]mh!50

]44h2
1

X4 ]4h50

h4hmn1]44hmn2
3

X4 ]4hmn5]mrhn
r1]nrhm

r 2]mnh

1
hmn

X4
]4h. ~30!

The first three constraint equations are easily solved and
then chooses~a choice that one cannot make when usi
Gaussian normal coordinates! the coordinate system satisfy
ing condition~29! such that the solution reduces to

h[hrshrs50, ]rhm
r 50. ~31!

Hence the choice of gauge together with the constraint eq
tions reduce the ten functionshmn(XA) to five, which repre-
sent the five degrees of freedom of AdS5 gravitational
waves.

As for the fourth evolution equation~30! it is solved by
separation of variables. Inserting the ansatz

ĥmn5~mX4!2Z2~mX4! emn~ki ,m! ei krXr
~32!

wherem andki are the four separation constants one obta

d

dX4

dZ2

dX4 1
1

X4

dZ2

dX4 1S m22
4

~X4!2DZ250 ~33!

and
3-5
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krkr52m2⇒k052Akik
i1m2 . ~34!

For mÞ0 the general solution of Eq.~33!, which represents
the ‘‘Kaluza-Klein excitations’’ introduced in this context b
@1#, is a combination of Bessel functions of order 2@24#

Z2~mX4!5amJ2~mX4!1bmN2~mX4! ~35!

wheream andbm area priori arbitrary constants.
A word of caution is in order here. Since the conforma

flat coordinates are unsuited to describe the universal co
ing of AdS5 ~see Appendix A and references quoted there!,
one may have to impose a boundary condition onZ2 at X4

→1`. There does not seem to be an agreement on
point in the literature. For example the authors of Re
@1,21,23# do not impose any condition atX4→1`. As for
@25# they imposebm50 whereas@10,26# or @27# chooseam
52 ibm ~cf. also @28#!. We shall leave this question ope
here and rather make the following remark. The ‘‘zer
mode’’ perturbation is them50 bounded and normalizabl
solution of Eq.~33!. It behaves asZ2}(X4)22 so that in that
caseĥmn does not depend onX4 and can be considered as th
limit when mX4→0 of the Bessel functionN2(mX4). One
may therefore advocate the condition

am50 ~36!

so that the bounded zero mode and themÞ0 modes form a
uniform family of states.

Finally the constraint equations~31! impose

krerm50 and hrsers50. ~37!

To summarize, the general solution of the linearized Eins
equations in an AdS5 background is

ds2u55
1

~KX4!2
~hAB1hAB!dXAdXB

with

hA450 and hmn5E dm d3k ĥmn~XA,ki ,m! ~38!

where the mode, or gravitational wave,ĥmn is given by Eqs.
~32!, ~34! and ~35!, where emn is transverse and traceles
@Eq. ~37!# and where the additional condition~36! ensures
that the massive modes tend to the bounded zero mode w
m→0.

VII. THE LANCZOS-DARMOIS-ISRAEL EQUATIONS

We now turn to the matter perturbations on the bra
They are obtained by imposing the Lanczos-Darmois-Is
equations ~10! with all bars dropped and withK j

i 5K̄ j
i

1d (p)K j
i 1d (b)K j

i , d (p)K j
i and d (b)K j

i being given respec
tively by Eqs.~18! and~23!, it being understood now that th
perturbations in the bulk are given by Eq.~38!. Hence, just
using the fact that we chose the gaugesh4A50, we have that
08351
r-

at
.

-

in

en

.
el

k

2
dS T j

i 2
1

3
d j

i TD5
1

a2 ] j
i z1H d j

i ~Hz2 ż !

1
H2

2K 2 d j
i AK 21H2 h00uS̄

1
1

2Ka
@H~]0hj

i !uS̄2AK 21H2 ~]4hj
i !S̄

2H~] jh0
i 1] ih0 j !uS̄# ~39!

where, on the right-hand side, spatial indices are raised w
d i j .

As for the (0,m) components of the junction conditions
they are still equivalent to the conservation ofTmn because
matter in the bulk reduces to a cosmological constant@20#

¹mT n
m50 ~40!

¹m being the covariant derivative associated to the indu
metric on the branea2(hmn1gmn) with gmn5gmn

(p)1gmn
(b) .

Equations~39!,~40! are the central result of this pape
They look more complicated than analogous expressions
tained in Gaussian normal coordinates~cf. e.g. @7,9,11,13#!
but they include the brane bending effect explicitly and a
expressed in terms of the bulk gravitational waves written
conformally Minkowskian coordinates which are known a
simple, as recalled in the previous section.

There are several ways to interpret these equations. If
gravitational waves in the bulk are given by some underly
physics~they may be for example the zero point fluctuatio
of quantum gravitons! and if the perturbation of the positio
of the brane is also governed by some theory then E
~39!,~40! just define a tensor which has no reason,a priori,
to be the stress-energy tensor of any realistic matter~al-
though one can, of course, interpret it in terms of ‘‘ne
physics’’!. Conversely, if matter on the brane is imposed
be of a certain type, e.g. a scalar field or a perfect fluid w
or without topological defects etc., then Eqs.~39!,~40! be-
come ‘‘junction conditions’’ which restrict the gravitationa
waves in the bulk and the position of the brane to tho
which are compatible with the imposed brane stress-ene
tensor. Now it may be that some compromise has to be m
for the junction conditions to have a solution. In fact this
already the case when solving the background equations
we saw in Sec. II a Robertson-Walker brane can be the e
of a given anti–de Sitter bulk, but at some price: matter
the brane has to include a fine-tuned, fairly unphysical, t
sion in order for the scale factor of the brane to obey
reasonable quasi Friedmannian evolution equation.

To gain some insight on the restrictive aspect of Eqs.~39!
and ~40! and in order to show how they can be solved e
plicitly, we shall for the sake of the example impose th
matter in the brane reduces to a single scalar fieldf(xm)
with potentialV(f) plus a tensions:

T n
m5]mf]nf2dn

mS 1

2
]rf]rf1V~f! D2sdn

m . ~41!
3-6
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Settingf(xm)5F(h)1x(xm) one first obtains for the back
ground brane equations~11!,~12!

F̈13HḞ1
dV

dF
50

k

6
S Ḟ2

2
1V1s D 5AK 21H2 ~42!

in which, in order to recover standard cosmological s
narios, the tension must be fine tuned toks56K. A poten-
tial V(F) and initial conditions being chosen Eqs.~42! give
F(t) anda(t) ~cf. e.g.@29# where these equations are stu
ied in detail!.

At linear order inx and the brane metric perturbation
gmn the left hand side of Eq.~39! reads

k

2
dS T j

i 2
1

3
d j

i TD5
k

6
d j

i F Ḟẋ1x
dV

dF
1

Ḟ2

2
ghhG . ~43!

Introducing the spatial tensor

F j
i [

1

a2 ] j
i z1

1

2Ka
@H~]0hj

i !uS̄2AK 21H2 ~]4hj
i !S̄

2H~] jh0
i 1] ih0 j !uS̄#, ~44!

Eq. ~39! splits into a traceless and trace part

F j
i 5

1

3
d j

i F

F5
k

2
F Ḟẋ1x

dV

dF
1

Ḟ2

2
ghhG23H~Hz2 ż !

2
3H2

2K 2AK 21H2 h00uS̄ ~45!

so that the junction conditions transform into Eqs.~44!,~45!
plus the conservation equations~40!, which is the Klein-
Gordon equation forf:

ẍ2
1

a2 Dx13Hẋ1
d2V

dF2 x1~F̈13HḞ!ghh2
1

a
Ḟ] igh

i

1
Ḟ

2
~ ġhh1ġ i

i !50. ~46!

We now enter in Eqs.~44!,~46! the explicit solution of the
bulk Einstein equations. First, gathering Eqs.~16! and ~21!,
the brane metric perturbations are

ghh5
1

K 2 ~K 21H2!h00uS̄1
2z

AK 21H2 S K 21
ä

a
D

gh
i 5

1

KAK 21H2h0
i uS̄
08351
-

g j
i 5hj

i uS̄22z AK 21H2 d j
i . ~47!

Second, the perturbationshmn are given by Eq.~38!. More
explicitly, we have for each modeĥmn

ĥmnuS̄5S m

KaD 2

Z2S m

KaDemnei„2Ak21m2 T(t)1kix
i
…

~]0ĥmn!uS̄52 iAk21m2 ĥmnuS̄

~] i ĥmn!uS̄5 iki ĥmnuS̄

~]4ĥmn!uS̄5mS m

KaD 2

Z1S m

KaDemnei„2Ak21m2 T(t)1kix
i
…

~48!

where T(t) is given by Eq. ~3!, that is T(t)
5*dtAK 21H2/Ka, and where some standard properties
the Bessel functions have been used@24#. Finally, we can
without loss of generality consider only the modes such t
k15k250, k3[k. The transverse and traceless properties
emn then imply that the five possible polarizations are ch
acterized bye11, e12, e13, e23 and e33, the other compo-
nents beinge0i52kei3 /Ak21m2, e005k2e33/(k

21m2),
ande2252e112m2e33/(k21m2).

We are now in a position to try and solve explicitly th
junction conditions for each mode. The traceless equa
~45! first reduces formÞ0 the fivea priori possible polar-
izations to only one, characterized bye33[e(k,m). The oth-
ers are

e125e135e235e015e0250

e115e2252
1

2

m2

k21m2 e

e005
k2

k21m2 e

e0352
k

Ak21m2
e. ~49!

Whenm50 on the other hand not only doese33 survive but
e13 and e23 as well. The latter two polarizations will corre
spond to gravitational waves freely propagating in the bra
~the so-called tensorial modes!.

The traceless equation~45! also forces the perturbation o
the position of the brane to be a linear superposition of
following modes:

z5
e

2Kk2
aF i

H

Ak21m2 S k22
3

2
m2D G2

2mAK 21H2

k21m2 S k21
3

2
m2D G1G ~50!

where

G1,2[S m

KaD 2

Z1,2S m

KaDei„2Ak21m2 T(t)1kx3
…. ~51!
3-7
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The functionz being now known, the induced metricgmn on
the brane, formÞ0, is also completely known in close
form via Eqs.~47!–~51! in terms of two~or three! arbitrary
functionse(k,m), bm(k,m) @and, should the occasion aris
am(k,m)]. For the zero modem50, e13, e23 ande33[e are
arbitrary functions ofk and the above expression forz be-
comes, sinceam50,bm51 andz2N2(z)→24/p asz→0,

z52
2ie

pkK Ha e2 ik(T2x3). ~52!

What remains to be determined is the scalar field pertu
tion x which must be extracted from the trace equation~45!
and the Klein-Gordon equation~46!. One can proceed a
follows. Inserting the expressions forz and the induced met
ric obtained above one can write Eqs.~45! and ~46! as

Ḟẋ1x
dV

dF
5F1~ t !, ẍ13Hẋ1xS k2

a2 1
d2V

dF2D5F2~ t !

~53!

whereF1 andF2 are known function oft. Hence

x5
1

6H
dV

dF
2Ḟ

k2

a2

~ Ḟ116HF12ḞF2!. ~54!

In the case of the zero modem50 one obtains

x5
2ie

pkK aḞAK 21H2 e2 ik(T2x3) ~55!

and it can be checked that the expression found is inde
solution of Eq.~53!. For massive modesmÞ0 the algebra is
more involved. Since our purpose in this paper was jus
write the Lanczos-Darmois-Israel equations in such a wa
to be able to try and solve them we shall present elsewh
the mÞ0 case as well as a comparison with the results
ordinary chaotic inflation.
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APPENDIX A

It can be useful, in particular when considering glob
properties of the brane or boundary conditions on the b
perturbations, to embed AdS5 in a higher, six dimensional
flat space. It is known@30# that the surface defined by
08351
a-
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~y0!21d i j y
iy j2~y4!22z252

1

K 2 ~A1!

in the six dimensional flat space with metric

ds2u65~dy0!21d i j dyidyj2~dy4!22dz2 ~A2!

is AdS5. This space contains closed timelike curves: t
circles (y4)21z25const. One goes round this difficulty b
introducing an integer ‘‘winding number’’ which increase
by 1 each time one goes round the circle. One thus obt
the AdS5 universal covering space@26#.

The intersections of the planesy05 constant ~or yi

5const) with the surface~A1! are four dimensional simply
connected hyperboloids of smallest radiusAK 221(y0)2.
The sectionsy45const~or z5const) are either four dimen
sional simply connected hyperboloids, or cones, or else d
bly connected hyperboloids, depending on whether (y4K)2

,1, (y4K)251 or (y4K)2.1.
If one parametrizes the surface~A1! by the coordinates

XA such that@25,26#

y05
1

2X4 @K 221~X0!22d i j X
iXj2~X4!2#

yi5
Xi

KX4

y45
X0

KX4

z5
1

2X4 @K 222~X0!21d i j X
iXj1~X4!2# ~A3!

its induced metric is conformally Minkowskian:

ds2u55
1

~KX4!2
hAB dXAdXB. ~A4!

Note that the planeX45`⇔y01z50 is a coordinate singu
larity.

A de Sitter brane@such thatA(h)5h, see Eqs.~2!–~5!# is
the intersection of the surface~A1! with the planey45
2A2/K which is the familiar four dimensional simply con
nected hyperboloid of smallest radius 1/K embedded in a
five dimensional Minkowski flat space@31#. The Minkowski
braneA(h)51/K is the intersection of the surface~A1! with
the planey01z51/K. The Randall-Sundrum@1# spacetime
is obtained by keeping only the region between the brane
the coordinate singularityX451` @10#.

If one now parametrizes the surface~A1! by the coordi-
nates (t,r ,x,u,f) such that

y05r sinx sinu sinf; y15r sinx sinu cosf

y25r sinx cosu; y35r cosx

y45A11r 2sint; z5A11r 2cost ~A5!
3-8
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the induced metric is Schwarzschild-like

ds2u552~11r 2!dt21
dr2

11r 2

1r 2~dx21sin2xdu21sin2x sin2udf2!. ~A6!

By letting the coordinatet vary from2` to 1` one covers
the AdS5 universal covering space without having to intr
duce the winding number.

The Schwarschild-like coordinates (t,r ,x,u,f) are there-
fore best suited to study the asymptotic properties of qu
tum fields or classical gravitational waves in AdS5 @32# and
care must be exercised when one uses the technically sim
conformally Minkowskian coordinates XA. The
Schwarzschild-like coordinates are also well suited to
study of Robertson-Walker branes withclosedspatial sec-
tions @they are simply defined byr 5a(h), t5t(h) with
t(h) chosen so thath is conformal time@16# #.

On the other hand, the conformally Minkowskian coord
natesXA are better suited to the study, to which we confi
ourselves here, of Robertson-Walker branes withflat spatial
sections as well as that of the Randall-Sundr
Minkowskian brane.

APPENDIX B

We show here explicitly the effect of a coordinate chan
in the bulk on the induced metric of the brane and on
extrinsic curvature.

Let us consider the infinitesimal change of coordinates
the bulk X̃A→XA5X̃A2eA, eA(XC) being five arbitrary
functions of the coordinatesXC, without changing accord-
ingly the equation for the brane that we still define as in S
IV by XA5X̄A(xm). Then the induced perturbation of th
bulk metric is just the Lie derivative

hAB522hAB

e4

X4 1hAC]BeC1hBC]AeC. ~B1!

The corresponding change of the induced metric of the br
is obtained from Eq.~21! and reads

ghh
(b)5

2e4uS̄
A

22T8]he0uS̄ 12A8]he4uS̄

gh i
(b)52T8] ie

0uS̄ 1A8] ie
4uS̄ 1d i j ]he j uS̄
ys
g,

08351
n-

ler

e

e
s

n

c.

e

g i j
(b)522d i j

e4uS̄
A

1d jk] ie
kuS̄ 1d ik] je

kuS̄ . ~B2!

As for the change of its extrinsic curvature it is given by E
~22! and reads

d (b)Ki j 52A8] i j e
0uS̄ 1T8] i j e

4uS̄

1
T8

A
~d jk] ie

kuS̄ 1d ik] je
kuS̄ !

1
d i j

A S A8T8]he4U S̄ 2A82]he0U S̄ 2
2T8

A
e4U

S̄
D .

~B3!

We can now decompose, as we did in Sec. III,eAuS̄ along the
tangent and normal vectors to the brane as

eAuS̄5jlV̄l
A1zn̄A. ~B4!

It is then easy to see that ifz(xm)50, so that eAuS̄
5(T8jh,j i ,A8jh), then gmn

(b) and d (b)Ki j as given by Eqs.
~B2! and~B3! are just the Lie derivatives of the brane metr
and its extrinsic curvature with respect to the vector fieldjm,
and therefore describe the change in the components of t
tensors under the coordinate shiftx̃m→xm5 x̃m2jm on the
brane. This result is geometrically obvious. Indeedz50
means that the coordinate change in the bulk is such tha
grid is moved parallely to the surfaceXA5X̄A(xm) which
defines the brane. Hence the brane is geometrically un
turbed by this operation.

On the other hand if jl50, so that eAuS̄
5KA(A8z,0,0,0,T8z), the expressions~B2! and ~B3! for
gmn

(b) andd (b)Ki j reduce to

gmn
(b)522~KA!2zK̄mn

d (b)Ki j 5] i j z1d i j S A8z8

A
2

2z

A2 2
A82z

A2 D . ~B5!

As expected they are identical to the perturbations due
change of the position of the brane studied in Sec. III a
given by Eqs.~16! and ~18!. ~For related views on the rela
tionship between gauge and brane bending effects, see
@21,27,23,28#.!
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