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We consider cosmological models where the universe, governed by Einstein’s equations, is a piece of a five
dimensional double-sided anti—de Sitter spacefitinat is, a ‘Z,-symmetric bulk”) with matter confined to its
four dimensional Robertson-Walker boundary or “brane.” We study the perturbations of such models. We use
conformally Minkowskian coordinates to disentangle the contributions of the bulk gravitons and of the motion
of the brane. We find the restrictions put on the bulk gravitons when matter on the brane is taken to be a scalar
field and we solve in this case the brane perturbation equations.
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[. INTRODUCTION example we shall consider the case when matter on the brane
is imposed to be a scalar field and find explicitly in that case
In a now classic papéf] Randall and Sundrum indicated the allowed bulk gravitational waves. We shall then solve the
how one could recover the linearized Einstein equations on kanczos-Darmois-Israel equations and give in a closed form
four dimensional Minkowskian “brane,” a brane being in the perturbed metric and scalar field in the brane.
that context a boundary of a five dimensional double-sided The paper is organized as follows. In Sec. Il we present
anti—de Sitter spacetime (Agp that is, of a ‘Z,-symmetric ~ the formalism and notations used and describe the back-
bulk.” This discovery was soon followed by the building of ground brane and bulk. Section IlI treats the geometry and
cosmological models, where the brane, instead of flat, ignatter perturbations in the brane induced by a bending of the
taken to be a Robertson-Walker spacetime, and it was showpfane in a strictly anti—de Sitter bulk. As for Sec. IV, it
that such “brane worlds” can tend at late times to the stanconsiders the changes in the brane induced by perturbations
dard big bang model and hence represent the observed uif the bulk. There is nothing essentially new in these Secs.
verse(see e.g[2] for early models angi3—5] for fully rela- Il and 1V, but the presentation is, we hope, more straight-
tivistic ones. forward and pedagogical than some. In Sec. V we dwell on
More recently various theoretical setups to study the pergauge issues, count the degrees of freedom of the perturba-
turbations of such cosmological models have been proposdiPns in the brane and comment upon the use of Gaussian
[6_13] The purpose of these ana|yses is, in particu|ar, t@ormal coordinates in which, as we shall argue, the brane
eventually calculate the cosmic microwave background>ending effect is described in a fairly awkward manner. We
anisotropies predicted by brane worlds. However, they alfecall in Sec. VI standard results of the linearized Einstein
have up to now stalled on the problem of solving, in a gen-equations in an anti—de Sitter spacetime in conformally
eral manner, the Lanczos-Darmois-Israel equati@hat is Minkowskian coordinates. In Sec. VIl the Lanczos-Darmois-
the Einstein equations integrated across the brane, oftdrael equations are written and solved when matter on the
called “junction conditions’) which relate the matter pertur- brane is taken to be a scalar field.
bations on the brane and the perturbations in the bulk.
In ord_er to be in a position to ;olve these equations, we Il THE BACKGROUND BULK AND BRANE
present in this paper the pertu.rbathn theo_ry of brane worlds IN CONFORMALLY MINKOWSKIAN COORDINATES
from a geometrical point of view, in the line ¢6,7] and
[10]. This approach, which uses conformally Minkowskian  The “bulk” is a piece of a five dimensional spacetime of
coordinates that are well adapted to the geometry of the bulkyhich the four dimensional edge, or “brane,” is supposed to
will first allow a clear and simple distinction between the represent our universe. At zeroth order in perturbation theory
perturbations in the brane due to perturbations in the bullthis background bulk will be chosen to be an anti—de Sitter
and the perturbations in the brane due to its motiés. we  spacetimgsee below a reason why we do not consider a de
shall comment upon, the latter, so-called “brane-bending”Sitter bulk and e.g[14,15 and references therein for more
effect, is more difficult to describe when Gaussian coordi-general backgroungs
nates are used, as in €[§,9,11 or [13].) Many different coordinate systems can be used to de-
We shall then write the Lanczos-Darmois-Israel equationscribe anti—de Sitter spacetime: see Elgor [5] for normal
and see that only a sub-class of bulk gravitational waves i&aussian coordinates in which the surfaceO represents
compatible with a given type of matter on the brane. As arthe brane, e.gl16] for Schwarzschild-like coordinates and
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[17] for their local equivalence. In this paper we shall usecannot be chosen to be a de Sitter spacetime, at least when

conformally Minkowskian coordinate$”, in which the met-  the branes are defined as above. A Minkowski bulk does not

ric of a five dimensional anti—de Sitter spacetime reads lead either to an acceptable cosmological scenario[3ke
and e.g[18].

. B ) — Let us recall now how the extrinsic curvature of a brane is
d32|5:gAde dX W|th gAB:

(KX%)? mae (D calculated. One introduces the norma(x*) to the brane as
where the upper case indicésB run from 0 to 4, ag gaslsnAVE=0, gaglsn”nP=1 thatis
=diag(—1,1,1,1,1) andC is a positive constant. Note that o
the coordinatexX” do not cover the whole AdSspacetime; nA=/CA(A’,0,0,0T") (7)

see Appendix A for details.
The background brane is a four dimensional surface irwhere the sign has been chosen arbitrarily. The extrinsic cur-

AdS; with maximally symmetric spatial sections. We shall vature of the brane is then defined (alstroducng the

restrict our attention to those Robertson-Walker braneggyariant derivative associated WltthB) K

which have euclidean spatial sections. The equation for such p

VAVBDAnB, that is, using the symmetry ,, =K

a branef is v
XA=XA(x#) with X°=T(7), X=x, K= [gABIE VAa,nB+VAa,nB)
X*=A(n) ) FVAVERC(9cap)|5] ®

where the four coordinates* (x°= 7,x'), lower case latin  which gives
indices running from 1 to 3, parametrize the brane, where

A(#n) is ana priori arbitrary function of» and whereT (%) — 2
is defined up to an arbitrary constant b Kon= (AA'—1-A"?)=— K2+~
P y y KA2T’ K2+ H? a
T'=V1+A’? 3) ,
K.= =a2./K? 2.5
a prime denoting a derivative with respectso This condi- Kij= ICA2 a2 STtV R gy ©)
tion definesn as conformal time. Four independent tangent
vectors to the brane are Physics, gravity and matter, are introduced in this up to
— now purely geometrical picture by means of Einstein’s equa-
— 0 — — tions,Gag= kT ag, WhereG,g is Einstein’s tensork a five
A_ "7 ; A_ (T ’ A_ A : 1 FAB AB» YT AB -
V= " thatis  V,=(T",0,0,0A"), Vi'=(0,5.0). dimensional gravitational coupling constant afigg the

(4) stress energy tensor of matter. The Adfilk is then inter-
preted as a solution of Einstein’s equations with matter a
The induced metric on the brane is also conformallycosmological constantkTag|,u=6/K?gag. Furthermore,
Minkowskian and reads matter is introduced on the brane by means of the so-called
Z, symmetry which amounts to
1 dxtdx’. (5 (1) cut AdS; along the brandsee e.g[10] or [17] for
KA)2 7y AXEAX”. (5) conformal diagrams and Appendix A for embedding descrip-
tions of this cuy,

It will be useful in the following to introduce the scale factor ~ (2) keep the side between the brane el + o0 [10],

dSz|4 gABlE VAVB dX‘udXV_(

a(7), the cosmic time, and the Hubble parameteirdefined (3) make a copy of this “half” Adg spacetime and join it
by to the original along the brangaence the description of the
bulk as a doubled-sided piece of AQS
a (4) integrate Einstein’s equations across this singular sur-
a= A’ dt=a dn, =a (6)  face and obtain the Lanczos-Darmois-Israel equations often
called “junctions conditions”[19] and thus get the stress
where an overdot denotes a derivative with respect to energy tensof,, of the matter on the brane in terms of its

At this stage one can note in passing that if the bulk haextrinsic curvature as
been chosen to be a de Sitter rather than an anti—de Sitter
spacetime, given by metridl) with conformal factor
(KX% 2 instead of (CX*) 2, then the induced metric on a
brane defined bx°=A(7), X'=x', X*=T(#%) would have
been Eq.(5) with the condition (3) replaced by T’ where the ingice_s are raised by means of the inverse metric
= JA’Z-1=A'?=1=H=K, a condition which is not sat- a 2»*” and 7=7". Condition(2) above together with the
isfied by standard cosmological scenarios. Hence the bulkhoice of sign in Eq(7) ensures that the energy density on

K

3

— 1 —
TM——aﬂT)ZZK# (10)
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the brane is definite positij@0]. The spatial components of A short calculation then shows that the induced metric on
Eqg. (10) give, using Eq.(8) and noting Tg=—p, 7|  the perturbed brane

= p5l s R J— N J—
ds?|4=gagls[Via+a,(LnM)I[VE+4,(¢nB) ldx*dx”

kp=6K\1+A 2 kp=6KZ+H?2. (12) (15)

can be expressed in terms of the background brane extrinsic

As for the (Ox) components of Eq10) they are equivalent =
— curvatureK ,, (8) as

to the conservation o‘f’;, because matter in the bulk re-

duces to a cosmological constdsee e.g[20]). They read

ds?|,= (7,,+¥P)dx#dx”  with

1
. K (KA)? "
p+3H(p+ p)=0<:>Kp=2_IT’(AA”—3T’2). (12
Y= —2(KA?LK,,, (16)
One thus sees in particular that Einstein’s equations impose . . .
: . _ " ~Where the indexp) stands for perturbation of th@ositionof
thf’it Minkowskian branes, such thfl( 7) . c?nst, mustgc;n the brane(This perturbation cannot be gauged away, unless
tain matter under the form of a “tension” such tha?",  the packground brane extrinsic curvature tensor vanishes.
=—6K4, [1]. More generally, an equation of staje  terms of the scale factor, cosmic time and Hubble parameter
=6K/k+pm, p=—6KIk+py With pn=pn(pm) being it reads
chosen, Eqs(11),(12) together with Eq(3) give A(#) [or

a(t)] as well asp(#7). Various cosmological scenarios can 2¢ a
hence be builf2-5]. ds?|,=—|1— W 2+ - di?
[Il. BRANE-BENDING IN AN ANTI —DE SITTER BULK +a%(1-2¢JK?+H?) 5ijdxidxj. a7

In this section we shall consider an unperturbed anti—d(?_|enCe for a scale factor behavingtds the induced metric
Sitter bulk that we shall describe using the conformalIyremain’S bounded if the function behaves as®, q=1, at
Minkowskian coordinateg1). We therefore do not allow early times ' ’

here for perturbations of the coordinate system in the bulk; The normal vector to the perturbed brane and its intrinsic

cf. Sec. V for gauge related issues. On the other hand we ) . -
allow for perturbations in the position of the brane — this iscurvatureKij are obtained from the def|n|t|_or(§’) and (8)

the “brane-bending” effect analyzed by e[@1] in the case  With all bars dropped, apart from the one ggg. One ob-
of a Minkowskian background brane. In other words we coniains, denoting the perturbation of the extrinsic curvature of

sider in Ad$ with metric (1) a brane>, defined by the brane due to its bending a® K=K K,
XA=XA(xH) + A(xH 13 . LA A
(X ) € (X ) ( ) §(p)K]:(K:A)2 5‘15"‘ 5; Ag i Azg

whereYA(x“) are given by Egs(2),(3) and where the five
“small” functions €*(x*) can be conveniently decomposed B i o
along the four tangent vectors to the bréddgand its normal - ;615+ H(H{={) 6. (18)
(7) according to '
- [The indices ofK|® are raised by means of the metfit?)
= Vi+ it (14 anddji=8%l.]

Wlth f)\(X”“) and g(XM) _five arbitrary _functions of the COIOI'- IV. PERTURBING THE GEOMETRY OF THE BULK

dinates x*=(#,x') which parametrize the brane. Strictly

speaking the tangent and normal vectgﬁsandﬁA are de- In this section we consider a perturbed anti—de Sitter bulk

fined on the unperturbed brane only. The vectors which apith metric

pear in Eq.(14) are Lie transported to the perturbed brane.

(See[12] for equivalent parallel transport. A2l = 0 and XAd XB=
When ¢=0 there is no deformation of the brane and the [5=0ne (KX%)2

perturbatione” amounts to a slight change in its parametri- (19

zation, which can be absorbed into the infinitesimal change

of coordinatesx*=x"— & (as it is easy to show explicitly; Where, among the fifteen functidig(X©), five have been

cf. Appendix B. We shall therefore sef* =0 and describe chosen to fix the gauge in the bulk and the remaining ten are

the deformation of the brane by the single functiorHence ~ iMposed not to be reducible to zero by a change of coordi-

the gauge is completely fixed, in the brane as well as in th@ates. As for the brank it is defined by thesameequations

bulk. as in the unperturbed case, that is by H@$.(3). Of course

(7as+hag)dXAdXB
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this brane, despite its notation, is geometrically different . 1 ——
from the unperturbed Robertson-Walker brane of Sec. II. yP= iczgl T HVK S+ H (hod s hagls)

The induced metric oﬁ_l is
+(K2+2H?)hg,5]

- 1
d5?]4=gagls VL Vidx“dx'= (7t yi)dxdX”, 1
i (A2 Trr T Te 0 Y0 = W[HZhOOE_ZH\/mhME

+(K2+HH)hyls]. 26
with ( Nadl5] (26)
0)_ 12 e e We postpone until Sec. VIl the interpretation of the per-
Vo= T hools+2T' Ao s+ A"*hyds turbations of extrinsic curvature in terms of matter perturba-
) tions on the brane.
Y =T hols+A hgls
V. GAUGE RELATED ISSUES

¥ =hyls (21) _ _ _ . .
In Sec. Il we considered a strictly anti—de Sitter bulk in

where the indexb) means that these perturbations are in-conformally Minkowskian coordinates and we perturbed the
duced by the perturbations of geometry of thek position of the brane along its normal. In so doing, as we
As for the normal vector to the brane and its extrinsichave seen, we fixed the gauge completely, in the bulk as well

curvatureK” they are again defined by Eq9),(8) where, 85 in the brane, and introduced a single functi¢r®) the
here, all bars are kept, apart from the one @y. One effect of which on the induced metric and extrinsic curvature

obtains for the perturbation of the extrinsic curvature of the®f the brane cannot be gauged away and is given by Egs.

brane due to the perturbations of geometry of the bulk,(l6)_(18)' . _ .
. In the previous section we geometrically perturbed the

SOK. =k _K.. . . g ) .
1 i N bulk in a given coordinate system and fixed the position of
the brane in that system. We have thus introduced ten func-
5Ki(jb):2]CiA[A,(ajh0i+aihoj_aohij”g tions hg(X©) which charactgrize in a given (_:oordinz_:lte sys-
tem a geometrical perturbation of the bulk, i.e. we imposed
, _ that they cannot be gauged away. Their effect on the brane is
+T'(d5hai+ dihg = dahij) |5 ] given by Eqs(20),(21) and(22) or (23).
1 The brane bending perturbation adds a degree of freedom
T’(A’Z— —T’Z) hads+A"3hods to these ten perturbations of the bulk since it can be present
2 in the geometrically unperturbed background AdiBlk. We
note in passing that this effect can be described alternatively
+T'hy; ] . (220  as abrane perturbation induced by a general coordinate shift
performed in the background Ag®ulk without changing
accordingly the equation for the brane. See Appendix B for
This expression can be rewritten in a more compact and gealetails.
metrical form as Hence, the eleven functions introduced describe com-
pletely the geometrical perturbations of the bulk and the po-
a . sition of the brane in that bulk. Now these eleven indepen-
H”(nb)Jr §V’C2+H2 V(b)) 5 dent functions will be constrained in the next sections to
(23)  satisfy Einstein’s equations. Imposing in a first step Ein-
stein’s equations in the five dimensional bulk, where matter
is chosen to be a cosmological constant, will reduce these
eleven functions to sixaccording to the rule “the gauge hits
twice”). These six functions will be interpreted as the five
o 1 _ degrees of freedom of the AdSravitational waves plus a
gij:nA(aAhij)|§ and Wijzi[nA(&jhAng “radion” describing the motion of lthe prane. Imposmg ina
second step th&, symmetry and Einstein’s equations across
the singular brane will define the matter perturbations on the
brane in terms of these six arbitrary functions, which is just
the right number to describe, in a given brane coordinate
system, the most general four dimensional perturbed uni-

1
"iaz|

1 1277
+§A T hOO

5

. o1
SOK =7~ ol —a

where K| =K! ®)— K] [indices being raised by means of
the metric(20)] and where we have introduced

+nP(aiha)) 5] (24)

(with 7j= "%, o}j=6%0) as well as

_ _ verse.
Y =haglsn®VE  and ¥ =huglsn®nB. (25 This counting can be generalized to aNydimensional
brane in aD=(N+1)-dimensional bulk. The number of
Using Eqgs.(4) and(7) one finds explicitly gauge independent metric perturbatidos equivalently, the
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number of independent metric perturbations in a giverbeing chosen to be a cosmological constai@sg
gauge in a D-dimensional bulk is;D(D+1)-D=3D(D  =6K2g,z. The metric being given by Eq19) their linear-
—1). The number of freely propagating degrees of freedomzation gives the following equations for the perturbations
(gravitational waves in a D-dimensional bulk is3D(D hag €verywhere outside the braf23]
—-1)-D=3iD(D-3). The deformaton of a
D — 1=N-dimensional brane is described by the normal vec- 1
tor £n?, that is by one function. Now we havD (D —3) 2
+1=3N(N—1) which is the number of gauge independent
metric perturbations in &l-dimensional brane.

We would like to argue at this point that normal Gaussian
coordinategused by e.9[7,9,12,13) in which the perturbed

[daLhg+ dgLha— dash—Oshag— 7as(dmh-" —Osh)]

6

3
(X5 NagNaa— W[%MB*‘ dghap—dshag

bulk metric is written as + nap(d4h—29.h;)]=0 (28)
ds?5=(g,,+h,,)dx“dx"+dy? (277 where all indices are raised wit"®, h=h; and Os
=g.o".

wherey=0 is the position of the brane and where the ex- These equations must be solved in a given gauge. If we
plicit expression of the background anti—de Sitter metric cOimpose the conditions

efficientsg,,, can be found irf15], seem less appropriate to
treat the problem at hand than the conformally Minkowskian hsp=0 (29
coordinates advocated here. Indeed one can certainly use the
form (27) of the metric to study linearized gravity on an the fifteen functionsh,g(X?) reduce to the ten functions
anti—de Sitter background. However h ,”(XA) which satisfy

(1) the linearized Einstein equations are much simpler,
and their boundary conditions much easier to implement, PRI h+i& h=0
when written in conformally Minkowskian coordinatéas 4 AT xaT4
recalled in the next section

(2) imposing that the brane is =0 means choosing d4(d,h? —3,h)=0
among all coordinate systems such tigt=h,,=0, the
particular sub-class which is adapted to the bending of the
brane[7]. This implies that when solving the linearized Ein- dasdh— Wa‘lh:o
stein equations in the bulk one can no longer simplify them
by choosing the best adapted coordinate system within the 3
class(27) (like, for example, an harmonic systgnin prac- O4h,,,+ dadh,,,— F(uhwzaﬂph’fr d,pht—3d,,h
tice this means that one must solve the constraint equations
in full generality. This introduces an arbitrary functig(x*)
which encodes the brane bending effect as well as the trans- 4
formation to the coordinate system in which the solution of
the constraint equations is simple and the brane located at _ ) )
y={(x*). (A similar procedure must be applied in synchro- The first three constraint equations are easily solved and_ one
nous gauge descriptions of the surface defining reheating iffen choosesa choice that one cannot make when using
inflationary scenarios, see e[@2] for further discussion of ~Gaussian normal coordinajethe coordinate system satisfy-
that point) ing condition(29) such that the solution reduces to

When the background brane is Minkowski spacetime, as
in the Randall-Sundrum scenario, conformally Minkowskian

and Gaussian normal coordinates are almost identical, so thﬁt nce the choi f together with th nstraint i
objection(1) falls in that case. As for objectiof®) it falls as ence the choice o gauge togethe € constraint equa

. - A . -
well since it is then as simple to solve the linearized Einsteirf O reduce the ten function,,(X") to five, which repre-

equations in an harmonic gauge where the brane is located gent the five degrees of freedom of Adravitational

y={(x*) than in a Gaussian normal gau@é. e.g.[21] and
[23]). When, on the other hand the background brane is a
Robertson-Walker spacetime, the simplicity of the linearized®
Einstein equations in conformally Minkowskian coordinates
discussed in Sec. VI will, as we hope to convince the reader,

compensate f_qr the _shgh_tly more complicated form of thewherem andk' are the four separation constants one obtains
junction conditions given in Sec. VII.

Nuv
X4

dsh. (30)

h=7%""h,,=0, d,h%=0. (3D)

As for the fourth evolution equatio(B0) it is solved by
eparation of variables. Inserting the ansatz

hu,=(mXH2Zy(mXx*) e, (k' ,m) e *’ (32

d dz, 1 dz

4
VI. EINSTEIN'S EQUATIONS IN THE BULK s et 2 —
Q O a3 T XE axe +(m (x4)2)22 0 3

The metric perturbations of the bulk we considered in
Sec. IV are now forced to obey Einstein’s equations, matteand

083513-5



NATHALIE DERUELLE, TOMAS DOLEEEL, AND JOSEPH KATZ PHYSICAL REVIEW D63 083513

kPk,= —m?=ko=— VKkik'+m?. (34

K o1 1 . ! )
For m# 0 the general solution of Eq433), which represents

2

the “Kaluza-Klein excitations” introduced in this context by H® —
[1], is a combination of Bessel functions of orde[22] + 2K 2 6 vK+H hods
Zy(mXH) =apda(mX*) +byNy(mX*) (39

1 . :
+ o5 [H(doh))|s— VI 2+ H? (9405
. . 2Ka ] J
wherea,, andb,, area priori arbitrary constants.

A word of caution is in order here. Since the conformally —H(r?,-hio+ (?ihoj)|§] (39
flat coordinates are unsuited to describe the universal cover-
ing of AdS; (see Appendix A and references quoted therein
one may have to impose a boundary conditionZgnat X*

— e Trllere;_ does not seem to ble ar? agrer?mentfon ';hat As for the (Ox) components of the junction conditions,
point in the literature. For example the authors of Re S‘[hey are still equivalent to the conservation@f, because

. .. 4
[1.21,23 c_io not impose any condition a"— +<. As for matter in the bulk reduces to a cosmological consagt
[25] they imposeb,,=0 whereag10,26 or [27] choosea,,

= —ib,, (cf. also[28]). We shall leave this question open
here and rather make the following remark. The *“zero-

mode” perturbation is then=0 bounded and normalizable _ _ o _ .
solution of Eq.(33). It behaves a&,o(X*) "2 so that in that V. being the covariant derivative associated to the induced

where, on the right-hand side, spatial indices are raised with
i

vV, T%=0 (40)

~ ) ; 2 ; — A(P) (b)
caseh,,, does not depend ox* and can be considered as the Metc oN the bran@™(z,,, + y,,) With v,,,= v, + 7., .
limit when mX*—0 of the Bessel functiol,(mX%). One Equations(39),(40) are the central result of this paper.

They look more complicated than analogous expressions ob-
tained in Gaussian normal coordinaie$. e.g.[7,9,11,13)
an=0 (36)  but they include the brane bending effect explicitly and are
expressed in terms of the bulk gravitational waves written in
so that the bounded zero mode and & 0 modes form a  conformally Minkowskian coordinates which are known and

may therefore advocate the condition

uniform family of states. simple, as recalled in the previous section.
Finally the constraint equation81) impose There are several ways to interpret these equations. If the
gravitational waves in the bulk are given by some underlying
kPe,,=0 and 7"7e,,=0. (87 physics(they may be for example the zero point fluctuations

of quantum gravitonsand if the perturbation of the position
To summarize, the general solution of the linearized Einsteinyf the brane is also governed by some theory then Egs.
equations in an AdSbackground is (39),(40) just define a tensor which has no reasarpriori,
to be the stress-energy tensor of any realistic maiier
though one can, of course, interpret it in terms of “new
physics”). Conversely, if matter on the brane is imposed to
be of a certain type, e.g. a scalar field or a perfect fluid with
with or without topological defects etc., then Eq89),(40) be-
come “junction conditions” which restrict the gravitational
waves in the bulk and the position of the brane to those
which are compatible with the imposed brane stress-energy
tensor. Now it may be that some compromise has to be made

(32), (34) and (35), wheree,,, is transverse and traceless already the case when solving the background equations. As
[Eq. (37)] and where the additional conditici36) ensures We saw in Sec. Il a Robertson-Walker brane can be the edge

that the massive modes tend to the bounded zero mode wh&h & given anti—de Sitter bulk, but at some price: matter on
m—0. the brane has to include a fine-tuned, fairly unphysical, ten-

sion in order for the scale factor of the brane to obey a
reasonable quasi Friedmannian evolution equation.

To gain some insight on the restrictive aspect of E§9)

We now turn to the matter perturbations on the braneand(40) and in order to show how they can be solved ex-
They are obtained by imposing the Lanczos-Darmois-Israeplicitly, we shall for the sake of the example impose that
equations (10) with all bars dropped and Witl‘K}=E} matter in the brane reduces to a.smgle scalar fig{a*)
+8PKi+ 8K, 5PK] and K] being given respec- with potentialV(4) plus a tension:
tively by Eqgs.(18) and(23), it being understood now that the
perturbations in the bulk are given by E&8). Hence, just
using the fact that we chose the gaubgs= 0, we have that

B (7ag+hag)dXAdX®

(X

ha,=0 and hw=fdm&kﬁw(x‘\,ki,m) (38)

VII. THE LANCZOS-DARMOIS-ISRAEL EQUATIONS

Th= gt pa,dp— 5" %ap¢aﬂ¢+V(¢>) —ad". (41)
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Settingp(x*) = ®(7n) + x(x*) one first obtains for the back-

ground brane equatiorid1),(12)

d+3HD dV—o
+ tao

CI)Z
7+V+O’

- KT H?

6

in which, in order to recover standard cosmological sce-
narios, the tension must be fine tunedde=6/C. A poten-
tial V(®) and initial conditions being chosen Ed42) give
®(t) anda(t) (cf. e.g.[29] where these equations are stud-  (d4h,,)|s=m

ied in detai).

At linear order iny and the brane metric perturbations

Yuv the left hand side of Eq39) reads

C'I)Z

Kk [ . 1.
z%ﬂ‘§ﬂﬁ:

Introducing the spatial tensor

1 1 . )
Fi= 291t 5z H ()]s~ VEZHHZ (9,h)5

—H(9;hp+d'hoy)|s],
Eq. (39) splits into a traceless and trace part

1.

K b dv @2 .
F=5Px*txgg+ 5 Yan| 3HHI=O)

H2
_Zlcz\/mhodf

so that the junction conditions transform into E¢#4),(45)
plus the conservation equatiori$0), which is the Klein-

Gordon equation forp:
2v

1 .
- ?AX'F 3H)(+ W

e,.

55} CID)(-I—)(E—F?')/W .

. . 1. )
x+t(®+3HD)y,, — ECD&i Yy
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yi=hils-2{ VKZ+H2 5. (47)
Second, the perturbatiorts,, are given by Eq(38). More

explicitly, we have for each modé,w

m 2

Ka) ©
(aoﬁ,uv)|§: —i Vk2+m2 ’h,uv|§
(&iﬁ,uvﬂgziki huv|§

2
Z,

m
2\ Ka

hw|§: e, e'( VkZ+m2 T(t) +kix)

m
Ka

m

ei(— VkZ+m2 T(t) +kix')
ICa

(48)

where T(t) is given by Eg. (3), that is T(t)
= [dtJK?+H?/ Ka, and where some standard properties of
the Bessel functions have been uged]|. Finally, we can
without loss of generality consider only the modes such that
kl— k,=0, kz=k. The transverse and traceless properties of
, then imply that the five possible polarizations are char-
acterized byei1, €12, €13, €,3 and es3, the other compo-
nents beingey = —kes/VkZ+m?, ego=k?ess/ (k2+m?),
andey,= —e;;— m?eg;s/ (k2+ m?).

We are now in a position to try and solve explicitly the
junction conditions for each mode. The traceless equation
(45) first reduces fom=+0 the fivea priori possible polar-
izations to only one, characterized by;=e(k,m). The oth-
ers are

€1,= €13~ €3= €91 = €0,=0

2

1 m
€11=€n= = 517 2®
k2
€00~ KCrm? €

k
€pa= — ———8€.
% krm?

Whenm=0 on the other hand not only doeg; survive but
ei3 and e,z as well. The latter two polarizations will corre-
spond to gravitational waves freely propagating in the brane
(the so-called tensorial modes

The traceless equatiqA5) also forces the perturbation of

(49

N 5(. - =0, (46) Egﬁo&?ﬁgiﬂogfe?e brane to be a linear superposition of the
We now enter in Eqg44),(46) the explicit solution of the e H 2 3, G
bulk Einstein equations. First, gathering E¢E5) and (21), {= 2/Ck2 \/m om 2
the brane metric perturbations are
4 \/—2—7K2+H2 k2+3 2| G 50
Vo= - (K2+H?)h |*+—2§ K2+ "NEm 2™ %0
nn K:j 001X IC2+ H2 a
where
1 : m |2 m)\ .
= =7+ Hhgls Gr=| 5| Z1d g ¢TI0 (1)
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The function{ being now known, the induced metrig,, on o 1

the brane, form#0, is also completely known in closed (y9)%+ 5in'yJ—(y4)2—22:—Ez (A1)
form via Eqs.(47)—(52) in terms of two(or three arbitrary

functionse(k,m), by,(k,m) [and, should the occasion arise, in the six dimensional flat space with metric

an(k,m)]. For the zero moden=0, e,3, e,3andegz=e are o

arbitrary functions ofk and the above expression forbe- ds’e=(dy%)?+ §;dy'dy — (dy"H*~dZ*  (A2)

comes, sinc@,=0,,=1 andz’N,(z) — —4/m asz—0, _ _ . o
m m 2(2)= Al - is AdS;. This space contains closed timelike curves: the

2ie , circles (y*)2+ z>=const. One goes round this difficulty by
(=———Hae T-X) (52) introducing an integer “winding number” which increases
77 by 1 each time one goes round the circle. One thus obtains

. ) , , the AdS universal covering spade6)].
What remains to be determined is the scalar field perturba- he ‘intersections of the planeg®= constant (or V'

tion x which must be extracted from the trace equalié®)  _ const) with the surfacéAl) are four dimensional simply
and the Klein-Gordon equatio®6). One can proceed as connected hyperboloids of smallest radiy& 2+ (y%)2.
fpllows._lnserting the expressio_ns férand the induced met- The sectiong/*=const(or z=const) are either four dimen-
ric obtained above one can write E¢45) and (46) as sional simply connected hyperboloids, or cones, or else dou-

bly connected hyperboloids, depending on whethgik))?
) —F,(1) <1, (y*K)%=1 or (y*K)?>>1.

If one parametrizes the surfa¢dl) by the coordinates
(53) XA such tha{25,26

k? d2v

FYAERT Y.

» dv . .
¢X+X@=F1(t), xX+3Hx+x

whereF; andF, are known function of. Hence 1 B o
1 2 y0: W[’C 2+(X0)2—5in'X'—(X4)2]

X=—qv kZ(F1+6HF1—<i)F2). (54) X
Mo P22 o
In the case of the zero moae=0 one obtains 4_ X°
Y =5a
X
2ie . )
X= ﬂ_—k,Ca(I)\/K:z-i- Hzeilk(Tixs) (55)

z= %[/c*z—(xo)%r SiXIXI+ (X2l (A3)

and it can be checked that the expression found is indeed a
solution of Eq.(53). For massive modes+ 0 the algebra is its induced metric is conformally Minkowskian:
more involved. Since our purpose in this paper was just to
write the Lanczos-Darmois-Israel equations in such a way as d<2|s=
to be able to try and solve them we shall present elsewhere 5 (KKX*)?2
the m#0 case as well as a comparison with the results of
ordinary chaotic inflation. Note that the plan&*=%<y%+2z=0 is a coordinate singu-
larity.
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nates ¢,r,x,0,¢) such that

7AB d XAd XB. (A4)

APPENDIX A 0 . . . 1 . .
y'=rsinysinfsing; y-=r siny sSinfcosg¢

It can be useful, in particular when considering global
properties of the brane or boundary conditions on the bulk y2=rsinycosf; y3=r cosy
perturbations, to embed Ag3n a higher, six dimensional,
flat space. It is knowh30] that the surface defined by y*=\1+r?sint; z=\1+r%cosr (A5)
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the induced metric is Schwarzschild-like

dr?
d82|5: —(1+ rz)d72+ W

+r2(dy?+ sirxd 6%+ sirfy sirf0d ¢?). (A6)

By letting the coordinate vary from —o to +% one covers
the AdS; universal covering space without having to intro-
duce the winding number.

The Schwarschild-like coordinates,(,x, 0, ¢) are there-

fore best suited to study the asymptotic properties of quan-

tum fields or classical gravitational waves in AJS2] and

care must be exercised when one uses the technically simpler

conformally ~ Minkowskian  coordinates X*.  The

PHYSICAL REVIEW B3 083513

j (B2)

Y k€5 + 5ik§j€k|§-

As for the change of its extrinsic curvature it is given by Eq.
(22) and reads

5(b)Kij: —A/(?ij60|§+T’(9ij€4|§
’

T K|— K—
+ K(5jk¢9if |5 + 6idj€]s)

AN
_E

T 4
A'T'd,€e A

Gij —_A1245 0|—
+A EAﬁ,IEE _

3

|

(B3)

Schwarzschild-like coordinates are also well suited to the

study of Robertson-Walker branes withosedspatial sec-
tions [they are simply defined by=a(75), 7=t(%) with
t(#n) chosen so thay is conformal time[16] ].

On the other hand, the conformally Minkowskian coordi-

We can now decompose, as we did in Sec.df|5 along the
tangent and normal vectors to the brane as

Ag=Vi+ it (B4)

natesX” are better suited to the study, to which we confine

ourselves here, of Robertson-Walker branes \lghspatial
sections as well as that of
Minkowskian brane.

APPENDIX B

the Randall-Sundrum

It is then easy to see that if(x*)=0, so thate®s
=(T'¢7,& A’¢7), theny) and 8P)K;; as given by Egs.
(B2) and(B3) are just the Lie derivatives of the brane metric
and its extrinsic curvature with respect to the vector figtd

and therefore describe the change in the components of these

tensors under the coordinate shift—x*=Xx*—&* on the

We show here explicitly the effect of a coordinate Changeorane. This result is geometrically obvious. Indegd 0

in the bulk on the induced metric of the brane and on it
extrinsic curvature.

Let us consider the infinitesimal change of coordinates i
the bulk XA—XA=XA—€*, €A(X®) being five arbitrary
functions of the coordinateX®, without changing accord-

ingly the equation for the brane that we still define as in Sec._ KCA(A

IV by XA=XA(x*). Then the induced perturbation of the
bulk metric is just the Lie derivative
64

hag=— ZWABF + Nacdp€”+ NpcdneC. (B1)

The corresponding change of the induced metric of the brane

is obtained from Eq(21) and reads

(b)_26_4|§_
Ny

A 2T'9,€%5 +2A' 9,5

(0) —

Vi _T,&i60|§+A,ﬁi€4|§+5”57]6”5

Smeans that the coordinate change in the bﬂlk is such that the
[orid is moved parallely to the surface”=X"(x*) which

defines the brane. Hence the brane is geometrically unper-
turbed by this operation.

On the other hand if &=0, so that |3
£,0,0,0T'¢), the expressiongB2) and (B3) for
) and 5°)K;; reduce to

Yr=—2(KA*CK,,
Aré«/ 2§ A12§
5(b)Kij:f9ij§+5ij T—KZ— A2 (BS)

As expected they are identical to the perturbations due to a
change of the position of the brane studied in Sec. Ill and
given by Eqgs(16) and(18). (For related views on the rela-
tionship between gauge and brane bending effects, see e.g.
[21,27,23,28)
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