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Effective electromagnetic geometry
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We show that the propagation of photons in a nonlinear dielectric medium can be described in terms of a
modification of the metric structure of space-time. We solve completely the case in which the dielectric
constante is an arbitrary function of the electric fiek{ E). The particular case of no dependence on the field
reduces to the Gordon metric.
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[. INTRODUCTION The general electromagnetic field is defined by two skew-
symmetric tensors of rank E,, is called the electric field-

The electromagnetic force a photon undergoes in a normagnetic induction tensor an@,, is called the electric
linear regime can be geometrized. This is a rather unexpectedduction-magnetic field tensor. The dud], is defined as
result and at the same time a beautiful consequence of the
analysis of the behavior of the discontinuities of nonhomo- E* T @
geneous nonlinear electromagnetic field. Original results on ap=p MNap” Tuv:
this property were presented by Gorddri—for the behav-
ior of photons in a rather simple linear dielectric medium inwhere 7,4, is the completely antisymmetric Levi-Civita
motion—and by Plebanskj2] in the case of Born-Infeld tensor.
electrodynamics. In the last decade a thorough analysis on
the photon propagation in nonlinear electrodynamics was un- Il. THE METHOD OF THE EFFECTIVE GEOMETRY
dertaken3—7]. The net result of all this effort can be sum-

marized(see Ref[3]) by the statement that “the disconti- We are particularly interested in the derivation of the
nuities of the electromagnetic field in a nonlinear regimeCharaCte”StIC surfaces which guide the propagation of the

; : field discontinuities and in the relationship between the prop-
ropagate along null geodesics of an effective geo . i . A
bropag 9 9 9 erties of the medium and of the associated metric structure.

which depends on the energy-momentum distribution of th%or this purpose we use the Hadamard method in order to
electromagnetic field.” In the case in which the dynamics of tis purp . . . I
obtain the propagation equations for the discontinuities of

the field is described by a Lagrangiariwhich depends only the electromagnetic field

g; the invarian=F*"F,,) the effective metritis given With this method we can transpose part of the behavior of
photons from the well-known combined Maxwell-Einstein
framework to the nonlinear case of electrodynamics. An ex-

gh'=Lpyh"— 4 Leg E4 FM- (1) ample of a physical situation where this can be realized will
be presented in this paper. It concerns the possibility of the
existence of closed paths for photons in spacetime.

in which Lg is the derivative of the Lagrangian with re- Let 3 be a surface of discontinuity for the electromag-

spect to the invarianF; and similarly for higher order de- netic field. Following Hadamar@i8,9] we assume that the

rivatives. The background Minkowskimetric tensor is de- field itself is continuous when crossirty, while its first de-
noted by its standard forry*”. Let us point out that this rivative presents a finite discontinuity. We accordingly set
should not be taken as an absolute modification of the geom-

etry of the spacetime, since only the photons paths allow for [Fuls=0 (©)

description in terms of a modification of the metrical prop-

erties of the space-time. However, we shall see that in certaiind

situations the dynamical aspects of the field also admit a sort [, F . Js=f, Kk 4)

of geometrization. We will make some further comments on AT

this issue in the conclusion. in which the symbol

[J]s= Iim Jls45—Js-»)
*Email address: novello@lafex.cbpf.br 50"

'From here on we denote the effective metric simplg#$ once  represents the discontinuity of the arbitrary functidn
there is no possibility of misunderstanding that this metric concern§hr0ugh the surfac® characterized by the equatici(x*)
only the propagation of the photons. = const. The tensar,, denotes the discontinuity of the field,

2In this paper we restrict our analysis to the case in which theand
background metric is flat. Note, however, that all our considerations
here can be applied in a curved Riemannian background spacetime. ky=0d,2% 5)
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is the propagation vector. In an analogous way we define ¢ et
ek M — —kavaEﬁeBE)‘-i- [k*k,— (kv )2
[P,uV]E:O (6) E Mkava
and ke,
- Tk)\zo. (20)
[0k Ppuuls=Ppusks () kv

It is convenient to project these tensors in the framework oMultiplying this equation byE, , using Eq.(16) to eliminate
a real observer endowed with normalized four-velocity, ke, we get, after some algebraic manipulations
thus defining the corresponding electric and magnetic vectors
in the three-dimensional rest-space of the obsester e
'+ ot v (ue—1+u € E)——E E* E”} K,k,=0.
Fu=E,v,—E,u,+7050,B, (8) €

(21)
and
It then follows that the photon path is kinematically de-
Pu=D,v,—D,v,+7,5v,H,. (99  scribed by
The equations of motion are 9“"k, k,=0, (22)
a,P*"=0 (10 _ _ o
where the effective metrig"” is given by
and

E
3, F*rr=0, (1D grr = vk v (pe— 1+ pe E)=—I#17, (23)

In the present article we shall focus our analysis on the case

in which the polarization tensor is such tHat,=€E, and  wherel* is the unitary vector in the direction of the electric
B.,=uH,. Besides, we take the dielectric permittivity to be field. In the particular case in whick is a constant, this
a real function of the electric field, that &= €(E), and the  formula goes into the reduced Gordon geometry
magnetic permittivityu to be a constant. substituting the

defin_itions(8),(9) in _Eqs.(lO) and(ll),_taking in gccount the 9L qor= MU0 ( e—1). (24)
special case described above, the field equations becomes

EYEM The inverse metrig,,, , defined byg*"g,,= &, , is given
€d E*— €' = d.E, =0, (12 by
— 1 &
md, H#*=0, (13 _ _
Ouv= M=V, 0, 1 (17D +1+§IMI,,, (25)
. vYE#*
€E*—¢'EN IoE,+ 1M PPv,d5H,=0, (14

E where we have sei=¢'E/e.
_ We note that, once the wave vectoy is a gradient, the
uHN— nkﬁpvvp(;ﬁE(r:(), (15) photon path is a true geodesic in the effective geom&fy
We obtain then the remarkable result that the discontinuities
where e’ =de/dE. Following the definitions and procedure of the electromagnetic field in a nonlinear electrodynamics
presented above, expressing the discontinuities of the electrropagate along null geodesics of an effective geometry
and magnetic fields as* andh*, one gets from the discon- which depends on the properties of the background field.
tinuity of Egs.(12)—(15) The velocity of the photorv,,=k, v*/|k|, where |K|
=(n""—v*v")kK,, is given by

!

€
ee’k,— —E"E*ek,=0, (16)

E 1 [1+écofe
1% h: ’
mh#k,=0, a7 . Ve 1+¢

in which @ is the angle between the direction of the electric

6/

ek’v "~ g E'e ki BN 77 hoks=0, (18)  fielq and the propagation of the photon. Note that in the limit
case in whiché vanishes, the photon velocity coincides with
kv o — 77Aﬁprrvpegkﬁz()_ (19 the square root of the determinant of the effective metric.
Indeed, for a geometry given Wy, ,= 7,,+a,, wherea,,
Using Eq.(19) to substituten, in Eq. (18) we obtain is symmetric, we have
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1 1 1 1 .. 1 ~aa
detg,,=1+a+ §a2+ €a3+ Zla“— E(aa)+ §(aaa)

1 ... 1 .. +1 N PP
Z(aaaa) Ea(aa) §a(aaa) Za (aa)
1 ..
+§(aa)2, (26)
where
a=ay
aa=aja,
aaa=a, a,a,
aaaa=ay a%ajal. (27)
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The dynamics of the electromagnetic field in a linear me-
dium can be written in terms of the Gordon optical metric.

This is nothing but a consequence of the following fact.
The dynamical equations of the electromagnetic field in a
medium (e, ) are

Fluv.ap=0
and
PaB’B: O

This last equation, written in terms of the ten$qy, , yields
=0,

o]

where the semicolon stands for the covariant derivative in
the Gordon geometry.
These properties are restricted to the particular case of the

Using this property it follows that the determinant of the Gordon metric and are not valid anymore in a general non-

effective metric is given by

1

pe(1+§)2 29

detg,,=

linear medium in which the dielectric functiandepends on
the electric field. Thus, the fact that the Gordon metric has a
double role—that is, it permits us to rewrite the dynamical
equations of the electromagnetic field in a polarized medium
and guides the evolution of the discontinuities of the field—

In the case where does not depend on the electric field, the is just a miracle for linear media and cannot be generalized
photon velocity can be written in terms of the determinant offor the nonlinear structure. Note, however, that such a gen-

the effective metric

vpn= 9. (29)

We would like to remark that Eq$28) and (29) are not
tensorial equations. They are valid only when the Minkowski

frame is expressed in Cartesian coordinates.

An inspection on the restricted effective metric of the par-

eralization procedure is possible to be undertaken for certain
particular dynamics driven by nonlinear Lagrangians. A re-

markable example of this case is Born-Infeld electrodynam-
ics. We will analyze this in a forthcoming paper.

IIl. FINAL COMMENTS

In this paper we have generalized Gordon geometry that

ticular case examined by Gordon allows us to make the foldescribes the behavior of photons in a moving dielectric me-

lowing statement§10,11]:

dium. Our result is valid for the case of an arbitrary depen-

The constitutive relations can be displayed in terms of thelence of the dielectric permittivity on the electric fielde

restricted Gordon geometry.
Indeed, if we set

1.
PrY=_FH?
where

Fer=gre g PF .

Then,P .z vP=D,=¢€E, and correspondinghyB,=u H,.

=¢(E). This allows us to interpret such result as being noth-
ing but the proof that the electromagnetic force that acts on
the photon can be geometrized. In the linear case such ge-
ometrization can be further extended for the dynamics of the
electromagnetic field itself. In the case tlas a function of

the electric field this generalization is not possible.
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