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Effective electromagnetic geometry
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We show that the propagation of photons in a nonlinear dielectric medium can be described in terms of a
modification of the metric structure of space-time. We solve completely the case in which the dielectric
constante is an arbitrary function of the electric fielde(E). The particular case of no dependence on the field
reduces to the Gordon metric.
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I. INTRODUCTION

The electromagnetic force a photon undergoes in a n
linear regime can be geometrized. This is a rather unexpe
result and at the same time a beautiful consequence o
analysis of the behavior of the discontinuities of nonhom
geneous nonlinear electromagnetic field. Original results
this property were presented by Gordon@1#—for the behav-
ior of photons in a rather simple linear dielectric medium
motion—and by Plebansky@2# in the case of Born-Infeld
electrodynamics. In the last decade a thorough analysis
the photon propagation in nonlinear electrodynamics was
dertaken@3–7#. The net result of all this effort can be sum
marized~see Ref.@3#! by the statement that ‘‘the discont
nuities of the electromagnetic field in a nonlinear regim
propagate along null geodesics of an effective geometryg(eff)

mn

which depends on the energy-momentum distribution of
electromagnetic field.’’ In the case in which the dynamics
the field is described by a LagrangianL ~which depends only
on the invariantF[Fmn Fmn) the effective metric1 is given
by

gmn5LFhmn24 LFF Fm
lFln. ~1!

in which LF is the derivative of the LagrangianL with re-
spect to the invariantF; and similarly for higher order de
rivatives. The background Minkowski2 metric tensor is de-
noted by its standard formhmn. Let us point out that this
should not be taken as an absolute modification of the ge
etry of the spacetime, since only the photons paths allow
description in terms of a modification of the metrical pro
erties of the space-time. However, we shall see that in cer
situations the dynamical aspects of the field also admit a
of geometrization. We will make some further comments
this issue in the conclusion.

*Email address: novello@lafex.cbpf.br
1From here on we denote the effective metric simply asgmn, once

there is no possibility of misunderstanding that this metric conce
only the propagation of the photons.

2In this paper we restrict our analysis to the case in which
background metric is flat. Note, however, that all our considerati
here can be applied in a curved Riemannian background space
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The general electromagnetic field is defined by two ske
symmetric tensors of rank 2.Fmn is called the electric field-
magnetic induction tensor andPmn is called the electric
induction-magnetic field tensor. The dualFmn* is defined as

Fab* 8
1

2
hab

mnFmn , ~2!

where habmn is the completely antisymmetric Levi-Civita
tensor.

II. THE METHOD OF THE EFFECTIVE GEOMETRY

We are particularly interested in the derivation of t
characteristic surfaces which guide the propagation of
field discontinuities and in the relationship between the pr
erties of the medium and of the associated metric struct
For this purpose we use the Hadamard method in orde
obtain the propagation equations for the discontinuities
the electromagnetic field.

With this method we can transpose part of the behavio
photons from the well-known combined Maxwell-Einste
framework to the nonlinear case of electrodynamics. An
ample of a physical situation where this can be realized w
be presented in this paper. It concerns the possibility of
existence of closed paths for photons in spacetime.

Let S be a surface of discontinuity for the electroma
netic field. Following Hadamard@8,9# we assume that the
field itself is continuous when crossingS, while its first de-
rivative presents a finite discontinuity. We accordingly se

@Fmn#S50 ~3!

and

@]l Fmn#S5 f mnkl , ~4!

in which the symbol

@J#S[ lim
d→01

~JuS1d2JuS2d!

represents the discontinuity of the arbitrary functionJ
through the surfaceS characterized by the equationS(xm)
5const. The tensorf mn denotes the discontinuity of the field
and

kl5]l S ~5!
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is the propagation vector. In an analogous way we defin

@Pmn#S50 ~6!

and

@]l Pmn#S5pmnkl . ~7!

It is convenient to project these tensors in the framework
a real observer endowed with normalized four-velocityvm,
thus defining the corresponding electric and magnetic vec
in the three-dimensional rest-space of the observervm:

Fmn5Em vn2En vm1hmn
rs vr Bs ~8!

and

Pmn5Dm vn2Dn vm1hmn
rs vr Hs . ~9!

The equations of motion are

]n Pmn50 ~10!

and

]n F* mn50. ~11!

In the present article we shall focus our analysis on the c
in which the polarization tensor is such thatDa5e Ea and
Ba5m Ha . Besides, we take the dielectric permittivity to b
a real function of the electric field, that ise5e(E), and the
magnetic permittivitym to be a constant. substituting th
definitions~8!,~9! in Eqs.~10! and~11!, taking in account the
special case described above, the field equations becom

e]aEa2e8
EaEm

E
]aEm 50, ~12!

m]mHm50, ~13!

eEl̇2e8El
vaEm

E
]aEm1hlbrs vr]bHs50, ~14!

mH l̇2hlbrs vr]bEs50, ~15!

wheree85de/dE. Following the definitions and procedur
presented above, expressing the discontinuities of the ele
and magnetic fields asem andhm, one gets from the discon
tinuity of Eqs.~12!–~15!

eemkm2
e8

E
EnEmemkn50, ~16!

mhmkm50, ~17!

eknvnel2
e8

E
Enen kmvnEl1hlbrsvrhskb50, ~18!

mknvnhl2hlbrsvreskb50. ~19!

Using Eq.~19! to substitutehs in Eq. ~18! we obtain
08351
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e8

E
kavaEbebEl1

el

mkava

@kmkm2~knvn!2#

2
kaea

mkbvb

kl50. ~20!

Multiplying this equation byEl , using Eq.~16! to eliminate
kaea we get, after some algebraic manipulations

Fhmn1vm vn~m e211m e8 E!2
e8

e E
Em EnGkm kn50.

~21!

It then follows that the photon path is kinematically d
scribed by

gmn km kn50, ~22!

where the effective metricgmn is given by

gmn5hmn1vm vn~m e211m e8 E!2
e8 E

e
l m l n, ~23!

wherel m is the unitary vector in the direction of the electr
field. In the particular case in whiche is a constant, this
formula goes into the reduced Gordon geometry

gGordon
mn 5hmn1vm vn~m e21!. ~24!

The inverse metricgmn , defined bygmn gna5da
m , is given

by

gmn5hmn2vm vnS 12
1

m e~11j! D1
j

11j
l m l n , ~25!

where we have setj[e8E/e.
We note that, once the wave vectorka is a gradient, the

photon path is a true geodesic in the effective geometry@3#.
We obtain then the remarkable result that the discontinui
of the electromagnetic field in a nonlinear electrodynam
propagate along null geodesics of an effective geome
which depends on the properties of the background field

The velocity of the photonvph5km vm/uku, where uku
[(hmn2vm vn)kmkn , is given by

vph5
1

Ame
A11j cos2 u

11j
,

in which u is the angle between the direction of the elect
field and the propagation of the photon. Note that in the lim
case in whichj vanishes, the photon velocity coincides wi
the square root of the determinant of the effective met
Indeed, for a geometry given bygmn5hmn1amn whereamn

is symmetric, we have
1-2
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detgmn511a1
1

2
a21

1

6
a31

1

24
a42

1

2
~ ââ!1

1

3
~ âââ!

2
1

4
~ ââââ!2

1

2
a~ ââ!1

1

3
a~ âââ!2

1

4
a2~ ââ!

1
1

8
~ ââ!2, ~26!

where

a[am
m

ââ[an
m am

n

âââ[am
n aa

m an
a

ââââ[am
n aa

m ab
a an

b. ~27!

Using this property it follows that the determinant of th
effective metric is given by

detgmn5
1

me ~11j!2
. ~28!

In the case wheree does not depend on the electric field, t
photon velocity can be written in terms of the determinant
the effective metric

vph5Ag. ~29!

We would like to remark that Eqs.~28! and ~29! are not
tensorial equations. They are valid only when the Minkow
frame is expressed in Cartesian coordinates.

An inspection on the restricted effective metric of the p
ticular case examined by Gordon allows us to make the
lowing statements@10,11#:

The constitutive relations can be displayed in terms of
restricted Gordon geometry.

Indeed, if we set

Pmn5
1

m
F̃mn,

where

F̃mn[gma gnb Fab .

Then,Pab vb5Da5e Ea and correspondingly,Ba5m Ha .
,
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The dynamics of the electromagnetic field in a linear m
dium can be written in terms of the Gordon optical metric

This is nothing but a consequence of the following fa
The dynamical equations of the electromagnetic field in
medium (e,m) are

F $mn,a%50

and

Pab
,b50.

This last equation, written in terms of the tensorFmn , yields

SAe

m
F̃abD

;b

50,

where the semicolon stands for the covariant derivative
the Gordon geometry.

These properties are restricted to the particular case o
Gordon metric and are not valid anymore in a general n
linear medium in which the dielectric functione depends on
the electric field. Thus, the fact that the Gordon metric ha
double role—that is, it permits us to rewrite the dynamic
equations of the electromagnetic field in a polarized medi
and guides the evolution of the discontinuities of the field
is just a miracle for linear media and cannot be generali
for the nonlinear structure. Note, however, that such a g
eralization procedure is possible to be undertaken for cer
particular dynamics driven by nonlinear Lagrangians. A
markable example of this case is Born-Infeld electrodyna
ics. We will analyze this in a forthcoming paper.

III. FINAL COMMENTS

In this paper we have generalized Gordon geometry
describes the behavior of photons in a moving dielectric m
dium. Our result is valid for the case of an arbitrary depe
dence of the dielectric permittivitye on the electric fielde
5e(E). This allows us to interpret such result as being no
ing but the proof that the electromagnetic force that acts
the photon can be geometrized. In the linear case such
ometrization can be further extended for the dynamics of
electromagnetic field itself. In the case thate is a function of
the electric field this generalization is not possible.
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