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This paper investigates Starobinsky’s model of inflation driven by the trace anomaly of conformally coupled
matter fields. This model does not suffer from the problem of contrived initial conditions that occurs in most
models of inflation driven by a scalar field. The universe can be nucleated semiclassically by a cosmological
instanton that is much larger than the Planck scale provided there are sufficiently many matter fields. There are
two cosmological instantons: the four sphere and a new “double bubble” solution. This paper considers a
universe nucleated by the four sphere. The AdS/CFT correspondence is used to calculate the correlation
function for scalar and tensor metric perturbations during the ensuing de Sitter phase. The analytic structure of
the scalar and tensor propagators is discussed in detail. Observational constraints on the model are discussed.
Quantum loops of matter fields are shown to strongly suppress short scale metric perturbations, which implies
that short distance modifications of gravity would probably not be observable in the cosmic microwave
background. This is probably true for any model of inflation provided there are sufficiently many matter fields.
This point is illustrated by a comparison of anomaly driven inflation in four dimensions and in a Randall-
Sundrum brane-world model.
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[. INTRODUCTION displaced from the minimum of the potential. One attempt to
explain these initial conditions for inflation in terms of quan-
Inflation [1] in the very early universe seems the only tum fluctuations of the scalar field seems to lead to eternal
natural explanation of many observed features of our uniinflation at the Planck scalg], at which the theory breaks
verse, in particular the recent measurements of a Dopplefown. Another attempt, using the Hartle-Hawking “no
peak in the cosmic microwave background fluctuatiffjs ~ boundary” proposa(8], found that the most probable uni-
However, while it provides an appealing explanation for sev-verses did not have enough inflatif@|. No satisfactory an-
eral cosmological problems, it provokes the natural questiogwer to the question of why the scalar field was initially
of why the conditions were such as to start inflation in thedisplaced from the minimum of its potential has been found.
first place. In this paper we will reconsider an earlier model, in which
The new inflationary scenari@,4] was proposed prima- inflation is driven by the trace anomaly of a large number of
rily to overcome the problem of obtaining a natural exit from matter fields. The standard model of particle physics contains
the inflationary era. In this model, the value of the scalar ig1early a hundred fields. This is at least doubled if the stan-
supposed to be initially confined to zero by thermal effectsdard model is embedded in a supersymmetric theory. There-
As the universe expands and cools these effects disappe#®ere there were certainly a large number of matter fields
leaving the scalar field miraculously exposed on a mountaifresent in the early universe, so the lafgepproximation
peak of the potential. If the low temperature potential is suf-should hold in cosmology, even at the beginning of the uni-
ficiently flat near¢=0, then slow roll inflation will occur, Verse. In the largé\ approximation, one performs the path
ending when the field reaches its true minimutp. This  integral over the matter fields in a given background to ob-
scenario seems implausible because a high temperatuf@in an effective action that is a functional of the background
would confine only the average or expectation value of thénetric:
scalar to zero. Rather than be supercooled to a statedwith
~0 locally, the field fluctuates and rapidly forms domains
with ¢ near = ¢, The dynamics of the phase transition is _ )
governed by thé: growth and coalescence of these domains exq—W[g])—f dl $lexp =S ¢:9]). (1.9
and not by a classical roll down of the spatially averaged
field ¢ [5]. Because this and other problems, new inflation
was largely abandoned in favor of chaotic inflatig8l in One then argues that the effect of gravitational fluctuations is
which it is just assumed that the scalar field was initiallysmall in comparison to the large number of matter fluctua-
tions. Thus one can neglect graviton loops, and look for a
stationary point of the combined gravitational action and the

*Email address: s.w.hawking@damtp.cam.ac.uk effective action for the matter fields. This is equivalent to
"Email address: t.hertog@damtp.cam.ac.uk solving the Einstein equations with the source being the ex-
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1 This process is mediated by a four-sphere cosmological in-
Rij— 5Rg; =87G(Ty), (1.2 stanton[17]. One of the results of this paper is that the four-
sphere is not the only cosmological instanton in this model.
where In order to test the Starobinsky model, it is necessary to
compare its predictions for the fluctuations in the cosmic
2 oW microwave backgroundCMB) with observation. This was
\/?g E 1.3 partly addressed by Vilenkifl7]. Using an equation derived
by Starobinsky[19], Vilenkin showed that the amplitude of
Finally, one can calculate linearized metric fluctuationslong wavelength gravitational waves could be brought within
about this stationary point metric and check that they ar@bservational limits at the expense of some fine-tuning of the
small. This is confirmed observationally by measurements ofoefficients parameterizing the trace anomaly. Density per-
the cosmic microwave background, which indicate that theurbations were discussed by Starobinsky2a].
primordial metric fluctuations were of the order of R 10]. The analysis of Starobinsky and Vilenkin was compli-
Matter fields might be expected to become effectivelycated by the fact that tensor perturbations destroy the confor-
conformally invariant if their masses are negligible com-mal flatness of a FRW background, making the effective
pared to the spacetime curvature. Classical conformal invarigction for matter fields hard to calculate. However, we now
ance is broken at the quantum levéll] (see[12,13 for  have a way of calculating the effective action for a particular
reviews, leading to an anomalous trace for the energytheory, namelyV=4 U(N) super Yang-Mills theory, using
momentum tensor: the AdS conformal field theoryCFT) correspondencf21].
g (T,))#0. (1.4 In this paper we will calculate the effective action for this
y theory in a perturbed de Sitter background. This enables us
This trace is entirely geometrical in origin and therefore in-to calculate the correlation function for metric perturbations
dependent of the quantum state. In a maximally symmetri@round the de Sitter background. We can then compare our
spacetime, the symmetry of the vacuum implies that the exresults with observations. The fact that we are using/the
pectation value of the energy momentum tensor can be ex=4 Yang-Mills theory is probably not significant, and we

(Th)=~

pressed in terms of its trace: expect our results to be valid for any theory that is approxi-
1 mately massless during the de Sitter phase. One might think

0IT: 10y = = .. a¥'(0|T..|0). 1 that our results could shed light on the effects of matter in-

(0[T50)= 70l Tl 0) 9 teractions during inflation since AdS/CFT involves a

strongly interacting field theory. However, as we shall ex-

Thus the trace anomaly acts just like a cosmological constamjain “our results are actually independent of the Yang-Mills
for these spacetimes. Hence a positive trace anomaly permig,pling.

a de Sitter solution to the Einstein equatigad]. Our calculations will be performed in Euclidean signature
This is very interesting from the point of view of cosmol- (on the four-sphete and then analytically continued to

ogy, as pointed out by Starobinsky5]. Starobinsky showed | grentzian de Sitter space. The condition that all perturba-
that the de Sitter solution is unstable, but could be long livedijons pe regular on the four-sphere defines the initial quan-
and decays into a matter dominated Friedmann-Robertsofym state for Lorentzian perturbations. The four-sphere in-
Walker (FRW) universe. The purpose of Starobinsky’s work stanton is much larger than the Planck so@iace we are
was to demonstrate that quantum effects of matter ﬁemﬁealing with a largeN theory), so there is a clear cut sepa-
might resolve the big bang singularftyzrom a modern per- yation into background metric and fluctuation.
spective, it is more interesting that the conformal anomaly \ye shall include in our action higher derivative counter-
might have been the source of a finite but significant perioderms, which arise naturally in the renormalization of the
of inflation in the early universe. This inflation would be yang-Mmills theory. There are three independent terms that
followed by particle production ant)reheating during the = 416 quadratic in the curvature tensors: the Euler density, the
subsequent matter dominated phase. Starobinsky’s work igyyare of the Ricci scalar and the square of the Weyl tensor.
reviewed and extended by Vilenkin [47]. For a more re-  The former just contributes a multiple of the Euler number to
cent discussion of the Starobinsky model, B&&. the action. Metric perturbations do not change the Euler
Starobinsky showed that the de Sitter phase is unstablg,mper, so this term has no effect. The square of the Ricci
both to the future and to the past, so it was not clear how thgca|ar has the important effect of adjusting the coefficient of
universe could have entered the de Sitter phase. Howevehe v2R term in the trace anomaly. It is precisely this term

this problem can be overcome by an appeal to quantum cognat js responsible for the Starobinsky instability, so by vary-

mology, which predicts that the de Sitter phase of the uniyyg the coefficient of theR? counterterm we can adjust the

verse is created by semi-classical tunneling from nothingqration of inflation. The Weyl-squared counterterm does

not affect the trace anomaly but it can contribute to suppres-

sion of tensor perturbations. The effects of this term were

Another paper[16] which discussed the effects of the trace neglected by Starobinsky and Vilenkin. They also neglected

anomaly in cosmology failed to obtain non-singular solutions be-the effects of the non-local part of the matter effective action.
cause it included a contribution from a classical fluid. We shall take full account of all these effects.
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Vilenkin showed that the initial de Sitter phase is fol- propagators on the four-sphere. In Sec. IV, we discuss the
lowed by a phase of slow-roll inflation before inflation endsanalytic structure of our propagators. The tensor propagator
and the matter-dominated phase begins. Since the horizda shown to be free of ghosts. In Sec. V, we show how our
size grows significantly during this slow-roll phase, it is im- Euclidean propagators are analytically continued to Lorentz-
portant to investigate whether modes we observe today lefén signature. Section VI discusses two observational con-
the horizon during the de Sitter phase or during the slow-roltraints on the Starobinsky model, namely the duration of
phase. If the present horizon size left during the de sittefflation and the .amplitude of pert_urbations. In Sec. VII, we
phase, we find that the amplitude of metric fluctuations car'S€ the RS version of the Starobinsky model as an example
be brought within observational boundsNf the number of to |IIu§trate how matter flelds'strongly suppress metric per-
colors, is of order 18 Such a large value foN is rather turbatlons on small scales._ Fma_lly, we summarize our con-
worrying, which leads us to the second possibility, that theclusions and suggest possible directions for future work.
present horizon size left during the slow-roll phase. Our re-

sults then suggest that the coefficient of Rfeterm must be Il. O(4) INSTANTONS

at most of order 1§) and maybg much lower, biN is un- A. Introduction

constrainedexcept by the requirement that the lafgeap- ] . ] )
proximation be valid so that AdS/CFT can be us&tle also Homogeneous isotropic FRW universes are obtained by

find that the tensor perturbations can be suppressed indepe#@lytic continuation of cosmological instantons invariant
dently of the scalar perturbations by adjusting the coefficientinder the action of a®(4) isometry group. In other words,
Inflation blows up small scale physics to macroscopic
scales. This suggests that inflation may lead to observational
consequences of small-scale modifications of Einstein gra
ity, such as extra dimensions. However, we find that th
n;)n-lolcal part of the rtnatter izlffe::tlvte_z action has the e”ffectlo ‘south pole.” Regularity requires that’ () =+1 at these
strongly suppressing tensor fluctuations on very smal sca eB’oles.(lnstantons with topolog$! X S* may also exisj.The

a result first noted in flat space bleombouﬂEZ]. Th|§ scale factob(o) is determined by Einstein’s equatfon
suggests that any small-scale modifications to four dimen-

sional Einstein gravity would be unobservable in the CMB G =87G(T;;), 2.2
since matter fields would dominate the graviton propagator . .

at the scales at which such modifications might be expectedhere the right hand side involves the expectation value of
to become important. This result is probably not restricted tahe energy momentum tensor of the matter fields, which we
trace anomaly driven inflation since it is simply a conse-are assuming to come from th&=4 U(N) super Yang-
quence of the presence of a large number of matter fields. Aglills theory. (Tjj) can be obtained for the most general
we have mentioned, there really are a large number of mattejuantum state of the Yang-Mills theory consistent vitf4)
fields in the universe and these will suppress small-scaleymmetry by using the trace anomaly and energy conserva-

ds’=do?+b(0)%dQ3. (2.2)

MWVe shall restrict ourselves to instantons with spherical topol-
gy, for which b(o) vanishes at a “north pole” and a

graviton fluctuations in any model of inflation. tion, as we shall describe below.
We illustrate this point by considering a Randall-Sundrum
(RS [23] version of the Starobinsky model. In the RS B. Trace anomaly

model, our universe is regarded as a thin domain wall in ,
anti—de Sitter(AdS) space. RS showed that linearized four The general expression gor the trace anomaly of our
dimensional gravity is recovered on the domain wall at dis-Strongly coupled larg&\ CFT" was calculated using AdS/
tances much larger that the AdS radius of curvature, bufFT iN[25]. Itturns out that it is exactly the same as the one
gravity looks five dimensional at smaller scales. Therefore, ifO0P result for the free theory, Wh'ch is given for a general
the AdS length scale is taken to be small, then the RS mod&tF T Py the following equatioh12,13:
is a short distance modification of four dimensional Einstein ij _ 2

. _ _ N CcF—aG+ _
gravity. We shall show that when the larfjfield theory is g'(Tjj)=CcF-aG+dV'R 23
included, the effects of the matter fields dominate the RSyhereF is the square of the Weyl tensor,
corrections to the graviton propagator and render them un-

observable. This work is an extension of our previous paper F=CijC¥, (2.9
[24] to include the effects of scalar perturbations and the
higher derivative counterterms in the action. G is proportional to the Euler density,
This paper is organized as follows. We start in Sec. Il by ki i L B2
showing that the Starobinsky model has two instantons: the G=Rjj R —4R;R*+R", (2.9

round four-sphere and a new “double bubble” instanton. We

consider only the four-sphere instanton in this paper. In Sec.

Il we use the AAS/CFT correspondence to calculate the ef-2we use a positive signature metric and a curvature convention
fective action of the largeN Yang-Mills theory on a per- for which a sphere or de Sitter space has positive Ricci scalar.
turbed four-sphere. Coupling this to the gravitational action 3we shall often refer to theV=4 Yang-Mills theory as a CFT
then allows us to compute the scalar and tensor gravitorven though it is not conformally invariant on the four-sphere.
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and the constants, ¢ andd are given in terms of the field (Toe)=—P, (Tap)=Pbagp- (2.12
content of the CFT by

The minus sign in the first expression arises because we are

a= ———— (Ng+1INg+62Ny) (2.6)  considering Euclidean signature. These must obey
36047)2
—p+3p=(T), (2.13
= 12q477)2(NS+6NF+12NV)' @7 and we also have the energy-momentum conservation equa-
tion
2 3
180(4) p'+ b(p+p) =0, (2.14

whereNg is the number of real scalar fielddg the number
of Dirac fermions and\,, the number of vector fields. The
coefficientsa and ¢ are independent of renormalization
scheme bud is not. We have quoted the result given by 4 -
zeta-function regularization or point splitting; the result (b%p)'=—b"b'(T). (2.19
given by dimensional regularization has12 instead of

—18 as the coefficient dfly, [12]. In fact, d can be adjusted Substituting in the expression f¢T) and integrating gives
to any desired value by adding the finite counterterm

Eliminating p gives an equation fop:

) 3N? [(1-Db'?)?
=N fd“x[gRZ. (2.9 P= et 4
19252 m
1
This counterterm explicitly breaks conformal invarianee. +a| b%p'b"” — Ebzb”2

is a dimensionless constant. The field content of the Yang-

Mills theory isNg=6N2, Np=2N? (there are 4> Majorana 3
fermions, which is equivalent toN® Dirac fermion$ and +bb'2b"—§b'4+ b’?|+C|. (2.16
Ny=NZ2. This gives
N2 The expression fop is easily determined from Eq2.13).
a=c=——, d=0. (2.10  The appearance of the constant of integratibshows that
64 the quantum state can contain an arbitrary amount of radia-

- . tion. SettingC = /2 reproduces the energy-momentum ten-
We h_avg used the coefflc.|em18 for Ny when calculating sor for the vacuum state. The cosmology resulting from the
d—th'|s |s'the value predlpted by AdS/C,FDZS]' If d=0, trace anomaly in the presence of an arbitrary amount of null
then |nflat|_on never end_s_m Starobinsky’s mo_del. We Sha“radiation was investigated ifil6]. The cosmological solu-
therefore include _the finitecounterterm, which does NOtions obtained were generically singular. However, Starobin-
changea or ¢ but gives sky [15] showed if this null radiation is not presefite., if
N2 C=al2), then non-singular solutions can be obtained.
d= @ _ (2.11 To conclude, we have found the energy-momentum tensor
1672 for a strongly coupled largH Yang-Mills theory in the most
general quantum state that is consistent v@{¥#) symme-
When we couple the Yang-Mills theory to gravity, the pres-try. The effects of strong coupling do not show up in our
ence ofS., implies that we are effectively dealing with a energy-momentum tensor, which is of the same form as used
higher derivative theory of gravity. It is, of course, arbitrary in [16,15. In the next subsection we shall use this result in
whether one regardS.; as part of the gravitational action or the Einstein equations to determine the shape of the instan-
as part of the matter action. We have adopted the latter peten.
spective and therefore included an explicit factoNdfin the
action [since there are®(N?) fields in the Yang-Mills

D. Shape of the instanton

theory].
Taking theao component of the Einstein equation gives
C. Energy conservation b2—1
Having obtained the trace of the energy-momentum ten- Gy,o=3 S = —87wGp. (2.17)
sor, we can use energy-momentum conservation to obtain the b
full energy-momentum tensor. Introduce the energy density
p and pressur@, defined in an orthonormal frame by Substituting in our result fop gives
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1_b/2_ NZG (1_b/2)2 b'b"” b//2
o2 7 | 4t b2 2p?
+b12b/r 3br4+ er . C (2 1&
b®  2b*  b*/ b?f '

Regularity at the poles of the instanton requibés- =1 as
b—0. Substituting this into Eq(2.18, one finds thatb”
=0 andC=a/2 are also required for regularity at the poles.
In other words, the no boundary proposal has singled out a
particular class of quantum states for us, namely those that .
do not contain any radiation. These are precisely the states ~
that can give rise to non-singular cosmological solutions. In  FIG. 1. Scale factof (o) for a regular “double bubble” instan-
our picture this is because such cosmological solutions caien with a=—1 andf”(0)= —2.05.
be obtained from a Euclidean instanton.

It is convenient to introduce a length sc&edefined by

‘ L :
1 2 3 4

f7(e)=f"(0)e+ - - - . (2.26

, N°G
R = (2.19
m We shall neglect the higher order terrfienotes by the el-
lipseg in our numerical integration. It is important to retain

W fine dimensionl iabl
e can now define dimensionless variables all of the terms displayed in order to obtaiff(e)=f"(0)

~_ ~\_ + - - - from the equation of motion. Note th&t'(0) is a free
o=o/R, Ho)=b(e)/R. 220 parameter. Our strategy is to choose the valué”@D) so
Equation(2.18 becomes that the instanton is compact and closes off smoothly at the
south pole.
1-f'2 (1-1'?)? The instanton is non-compact whét#i(0)>0. The solu-
2 = 4 tion is flat Euclidean space whdtf(0)=0. We shall there-

fore concentrate ol”(0)<<0. The four-sphere solution has
f”(0)=—1. It is convenient to discuss the cases 0 and
. a<0 separately.
If >0, then there are two types of behavigr. —1
(2.22) <f”(0)<0, the instanton is non-compact. F¥(0) close
to —1, the scale factor increases to a local maximum and

+2a f

——+2—3 — =

2f ' § f//2 .I:/2.I:II ! 4 .I:/2 1
f2 f2 f3 +2 f4 f4

The boundary conditions at the poles dre0, f'=*1, f”  then starts to decrease. However, before reaching, the
=0 (where a prime now denotes a derivate with respect t@cale factor turns around again and increases indefinitely.
o). One solution to Eq(2.2)) is f”(0)<—1. These instantons are compact but do not have a
_ _ regular south pole sinde’ diverges there. They are the ana-
f(o)=sino, (2.22  logues of the singular instantons discussef9in

. ] ] . If «<0, then there are two types of behavigr. —1
which simply gives us a rognd fou_r-sphere Instanton. NOte<f’”(0)<0. These instantons are compact with an irregular
that the expression multiplying vanishes for this solution. ¢4 ih pole(ii) f”(0)< —1. The scale factor of these instan-

Another simple solution is tons increases to a local maximum, decreases to a local mini-
~ o~ mum, then has another maximum before decreasing to zero
f(o)=0, (223 4t the south pole, which is irregular. The instanton therefore
has two “peaks.” There is a critical valug(«) such that for
vy<f"(0)<—1 the larger peak is near the north pole while
for f”(0)< vy, the larger peak is near the south pole. It fol-
lows that whenf”(0)= y the peaks have the same size and
the instanton is symmetrical about its equator with a regular
south pole. The scale factor is shown in Fig. 1.
1 To summarize, ife<0, then there are two regular com-
f(e):6+gf”'(o)53+ o (2.24 pact instantons, namely the round four-sphere and a new
“double bubble” instanton. We shall not have much to say
1 about the new instanton in this paper since the lack of an
rrN_ m 2 analytical solution makes dealing with perturbations of this
Fle)=1+351"(0)e (229 instaynton rather difficult. k P

i.e. flat Euclidean space.
In order to integrate Eq(2.21) numerically, we assume

that =0 is a regular “north pole” of the instanton. We

start the integration at= €. The boundary conditions for the
integration are

083504-5



S. W. HAWKING, T. HERTOG, AND H. S. REALL PHYSICAL REVIEW D63 083504

E. Analytic continuation This equation can only be solved wher1. The solutions
The four-sphere instanton can be analytically continued téi]re 5|mplly th_elreglljla_p= 1 sfpherlcal harmonics of’, i.e.,
Lorentzian signature by slicing at the equator 7/2 and the regulamp=1 solutions

writing [V2+p(p+3)]Y=0. (3.6

o=

NS

—it/R, (2.27  The spherical harmonics are labeled with integeys,|,m
with O<|m|<I<ks=p. Hence there are five independent
spherical harmonics witlp=1, given in terms of spherical

which yields the metric on a closed de Sitter universe: -
y harmonicsY,, on the three-sphere by

— 2 2 2
ds?’=—dt>+R?cosit (t/R)dQ3. (2.28 SiNpYym,  COSpYony 37

The Hubble parameter B™*, which is much smaller than here p is the polar angle on the four-sphere. These five
the Planck mass becaulkis large. A change of coordinate harmonics correspond to gauge transformations involving
takes one from a closed FRW metric to an open FRW metricihe five conformal Killing vector fields on the four-sphere
The double bubble instanton can be analytically continueql26). If we assume thaty is regular onS?, then we can
across its “equator” to give a closed FRW universe. Nu-expand it in terms of spherical harmonics. We shall fix the
merical studies suggest that this universe rapidly collapsesesiqual gauge ambiguity by demanding thatcontain no
However, this instanton can also be continued to an inflagontripution from thep=1 harmonics.
tionary open universéhe details of the continuation are the ¢ js possible to gauge away and y' through a coordi-
same as ir{9]) and therefore may give rise to realistic c0s- pate transformation on the four-sphere of the foxm:x

mology. —n'—d'n, wherey' is a transverse vector anglis a scalar.
For the moment we shall use a general gauge but later we
. METRIC PERTURBATIONS will assume thaip and y' vanish.

A. Scalars, vectors and tensors ) )
) ) ) ) B. Matter effective action
In this section we shall calculate correlation functions for

metric perturbations around our four-sphere instanton. These W€ need to calculate the action for metric perturbations.
can then be analytically continued to yield correlation func-1he har_dest part to calculate is the effective action for the
tions in de Sitter space. The metric on the perturbed fourMatter fields. This can be expanded around a round four-
sphere can be written sphere background:

ds?=(R?y;; +h;)dx'dx, 3D  w=wO- %f d*x (T3 ())hil (%)

where&ij denotes the metric onunit four-sphere. The per- 1( . . -~ "
turbation can be decomposed into scalar, vector and tensor  + Zf d X\/;f d*x’ \yh (x)(T3; () T (x")yh4 (x")
parts with respect to the four-sphere:
+.n (3.8
i (3) =6 0)+ 2V 00+ ViV 600 + 73 4%). (3.20  Herey denotes the determinant of the metric on the sphere.
If we know the one and two point function of the CFT en-

The connection on the unit four-sphere is dendied; isa o9 momentum tensor on a roui then we can calculate
P ' the effective action to second order in the metric perturba-

';(r)ir;_sg/:rzzerze.traceless symmetric tensor with respect to tr}?on. The one point function is given by the conformal

anomaly on the round four-sphere. In flat space, the 2-point
" function is determined entirely by conformal invariance. On
Vi6'=6,=0, (3.3 the sphere, symmetry determines the 2-point function only
up to a single unknown functidr27]. However, the sphere is
where indices, are raised and lowered wit}qj . Herey; is  conformally flat so one can calculate the 2-point function on
a transverse vector: the sphere using a conformal transformation from flat space.
The energy-momentum tensor transforms anomalously, so
T.iz0 (3.4 there will bg a contribution from the trace anomaly in the
iX= e ' transformation. Therefore, the 2-point function on the sphere
is determined by two quantities, namely the 2-point function
in flat space, and the trace anomaly. For the super Yang-
Mills theory that we are considering, both of these quantities
o R are independent of the Yang-Mills coupling. It follows that
ViV;Y+\y;Y=0. (3.5  the 2-point function on the spheter any other conformally

There is a small ambiguity in our decomposition—it is in-
variant underp— ¢+Y, y— i+ NY whereY satisfies
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flat spacg must be independent of coupling. Therefore the 3 . 1
effective action will be independent of coupling to second S;=-— _[Iog(I/R)—,B]f d4x\/ﬁ( Ri;RY— —RZ),
order in the metric perturbation so the effects of strong cou- 4G 3

pling will not show up in our results. (3.1

For the moment, we shall consider the four-sphere to haveh R. is the Ricai t f the bound i d
arbitrary radiusR rather than using the value given by Eg. w eri 1 .'Sd. € hiccl enso(; 0 d Ie oug a.?r/] me EC ar:j
(2.19. Introduce a fictional ball of AdS that has the sphere aé)oun ary indices, ) are raised and lowered with the bound-
) —— i ary metric. This term is required to cancel logarithmic diver-
its boundary. Letl,G be the AdS radius and Newton con-

) . — . gences a$,G—0. The finite part of this term is arbitrary,
stant of this region. If we také to zero, then the sphere is

. A/ which is why we have included the constgBt The inte-
effectively at infinity in AdS, so we can use AdS/CFT 10 grang of this term is a combination of the Euler density and

calculate the ggnerating functional of the CFT on the sphere[he square of the Weyl tensor. The former just contributes a
In other words] is acting like a cutoff in the CFT and taking constant term to the action but the latter may have important
it to zero corresponds to removing the cutoff. However, thephysical effects so we shall include it. For a pure gravity

relation theory, adding a Weyl squared term to the action results in
— ) spin-2 ghosts in flat space but we shall see that this is not the
17 2N° 3.9 case when the Yang-Mills theory is also included. The final
G 7 ' countertermSy, is the finite R? counterterm defined in Eq.

(2.9.
implies that ifl is taken to zero, then we must also takgo ~ When the four-sphere boundary is unperturbed, the metric
zero sinceN is fixed (and large. in the AdS region is
The CFT generating functional is given by evaluating the _ . o
action of the bulk metrig that matches onto the metticof ds*=1%(dy?+sinity y;;dx'dx)), (3.1

the boundary{30,31], and adding surface counterterms to

cancel divergences dsG— 0 [31,32,25,33-3p and the sphere is ay=yo, wherey, is given by R

=1|sinhy,. Note thaty,— asl —0 sinceRis fixed. In order
W[ h]=Sgn[g]+ Sl gl + Si[h]+ S,[h]+ Ss[h]+ S h], to use AJS/CFT for the perturbed sphere, we need to know
(3.10 how the metric perturbation extends into the bulk. This is
) ] ] ) o done by solving the Einstein equations linearized about the
whereSgy; denotes the five dimensional Einstein-Hilbert ac- poqg background.

tion with a negative cosmological constant, Our first task is therefore to solve the Einstein equations
in the bulk to find the bulk metric perturbation that ap-

' (3.11) proachedy;; on the boundary. We shall impose the boundary
condition that the metric perturbation be regular throughout
the AdS region. The most general perturbation of the bulk

the overall minus sign arises because we are considering raetric can be written

Euclidean signature theory. The second term in the action is

the Gibbons-Hawking boundary terf9]: ds?=12(dy?+ sintPy y;;dxdx)) + Ady?

1 12
=— | d5%g| R+==
R —e Vg 2

1 +2B;dydx+H;;dx'dx. (3.17)
SGH:__—j d*xvhK, (3.12

87G The first step is to decompose the bulk metric fluctuation into
scalar, vector and tensor parts with respect to the four-

whereK is the trace of the extrinsic curvature of the bound'sphere:

ary andh the determinant of the induced metric. The first

two surface counterterms are -
Hij (y,x) = 0;;(y,X) + 2V xj(Y,X)

3 A A ~
Si=——| i (313 09600+ d(yx. (318
87Gl
_ The connection on the four-sphere is dendiediered;; is a
| transverse traceless symmetric tensor with respect to the
— 4
82_32776 d*xVhR (3.14 four-sphere,
whereR now refers to the Ricci scalar of the boundary met- @i 6= 02 =0, (3.19

ric. The third counterterm fs

where indiced,j are raised and lowered Witl}zij . xiis a
transverse vector:

“4In the prefactor of this equatiorR refers to the radius of the )
sphere. In the integrand it refers to the Ricci scalar. Vix'=0. (3.20
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We can also decompod® into a transverse vector and a This equation is gauge invariant and can therefore be ex-
scalar: pressed in terms of the gauge invariant variables. yhe
. component gives
Bi:Bi—’_&iB' (32]) . "
V2W, —24,V?W ,— 4 coshy sinhyd, ¥, —8 sintf y¥;=0.

The quantities that we have introduced are gauge dependent. (3.28
If we perform an infinitesimal change of coordinate, then the
five dimensional metric perturbation undergoes the gaugdhe vector part of théy components gives
transformation .

V2X;=—3X;. (3.29

89,,—89,,+V E,+V,E, . 3.2 _ _
9y 08 V& u (322 The scalar part of they components gives
We are using Greek letters to denote five dimensional indi-

ces.V is the connection with respect to the background AdS

metric. The gauge parametefs can be decomposed with The tensor part of thg components gives

respect to the four-spheré, is a scalar and; can be de-

composed into a transverse vector and a_scalar. ThL_Js in total, (95 6, —4 coti? Yo, +cosecRyV2 6;=0. (3.31
we have four scalar degrees of freedom in our metric pertur-

bation but there are two scalar gauge degrees of freedom, so The vector part of théj components gives

we can only expect two gauge invariant scalars. Similarly we

have two vectors in our metric perturbation, but one v_ector__ (9,+2 cothy) VX;,=0. (3.32
gauge degree of freedom, so there is only one gauge invari

ant vector quantity. The tensor part of the metric perturbationrhe scalar part of thg components gives

is gauge invariant. It is easy to check that the following

d;(coshy sinhyW¥,—2W¥,)=0. (3.30

scalar quantities are gauge invariant: %i%j(—‘P1+28y‘P2+4 cothyW,) + afij[coshy sinhyd, ¥
Y +(8 cosRy— VAW ,]=
“A_g " y—2)V¥;+2 cothyV-¥,]=0. (3.33
Vi=A ay( coshysinhy)' 3.23 ' ?
Solving Eq.(3.32 yields
1 ¥
V,=B— zdy¢p— =—————— +cothy ¢. (3.29 inke
2797 2 h - sink? yg ~
coshy sinhy ViXj(y,x) = Mv(ixj)(%,x), (3.34

Note that the residual gauge invariance discussed in Sec.
Il A'is also present here—we shall have more to say aboufvhich is singular ay=0. We must therefore take the solu-
this later on. tion
The gauge invariant vector quantity is
n V(|XJ)(y,X):O (333
Xi = Bi - 8y)(i +2 COthyXi . (325)
Thus the gauge invariant vector perturbation vanishes: we
The gauge invariant tensor &; . are free to choosX;=0.
Rearranging the equations for the scalars, one obtains
C. Solving the Einstein equations: Scalars and vectors

o2 —
The Einstein equation in the bulk is Vo, =—4w, (336
1 6 and
RMV_ERg,MV::ZQ/.LV' (326) . A A ~
| [coshy sinhyd, + (4 cosﬁy—Z)](ViVjerij)\Ifl:O.
3.3
We want to solve this such that our metric matches onto the (339
perturbed metric on the four sphere boundary. The solutioThis has the solution
for the unperturbgﬂ sphere is simply AdS. Denote this back-
ground metric byg,,, . Linearizing around this background 9 45w - sink? yocosit v,
yields the equation (ViVi+yip)Waly,x)= Sy oy
V,V°89,,+V,V°8g,,~ V259,,~V,V,50" X (ViV;+ %)W 1(Yo,X).
2 2 (3.38

=—589,,~ =0,,69" . (3.27)
2 9k 2909 Once again, this is singular st=0 unless we take
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S5 2 _ (3.2.5 We can substitute the solution for the bulk metric
Vit v =0. : - . .
(ViVit 7)) ¥aly. ) =0 (3.39 perturbation into the right hand side and read off

There is a regular solution to this equation; however, it is

simply an artifact of the ambiguity in our metric decompo- #(x) = 212sinhy, coshy, £(X), (3.489

sition discussed in Sec. lll Asee Eq.(3.5], soV; can be

consistently set to zero. Equati¢®.30 then implies thatV,

is an arbitrary function of. This is again related to an am- B(x)=g(x)sinkfy, (3.49

biguity in the metric decomposition: we are free to add an

arbitrary function ofy to ¢ without changing the metric per- - .

turbation. Hence we can choode,=0. Xi(Y,X)= xi(x)sintfy. (3.50
To summarize, we have solved the bulk Einstein equation

for the gauge invariant vector and scalars, obtaining the r

sult ®These equations determigéx), g(x) and x;(x) in terms of

the boundary metric perturbation. In Sec. lll A, we showed
W, =W,=X,=0. (3.40 tsheatltd)(x) and y;(x) could be gauged away, so we shall now

So far we have been working in a general gauge. We shall
now specialize to Gaussian normal coordinates, in which we

definely to be the geodesic distance from some origin in our 909=0, Xi(x)=0. (359
ball of perturbed AdS space, and then introduce coordinates
x" on surfaces of constagt(which have spherical topology = This implies that
In these coordinates we have
A=B=I§i=0. (34]) ¢(y,x):lﬂ(y1x):0, )(i(y,X):o. (352

The presence of a metric perturbation implies that the boundn other words, all scalar and vector perturbations vanish in
ary of the ball is not at constant geodesic distance from théne bulk: the bulk perturbation is transverse and traceless.

origin. Instead it will be at a position The only degrees of freedom that remain are therefore the
B bulk tensor perturbation and the scalar perturbagipr de-
y=Yot+&(x). (3.42 scribing the displacement of the boundary.
We can now use our solutiof3.40 to write down the bulk
metric perturbation in Gaussian normal coordinates: D. Tensor perturbations
#(y,x)="f(x)sinhy coshy, (3.43 The tensor perturbations are less trivial: we have to solve

Eqg. (3.3)). This was done if24] by expanding in tensor
B(y,x)=f(x)sinhy coshy + g(x)sinfy, (3.44  spherical harmonickl{P’. These obey

Xi(y: )= Xi(x)sinity, (3.45 YIHP (0 =VHP(x)=0, (3.53

wheref,g are arbitrary functions ok and y; is an arbitrary  and they are regular tensor eigenfunctions of the Laplacian:
transverse vector function af We now appear to have three

independent scalar functions gfto deal with (namelyf, g ~
and £). These should be specified by demanding that the V2HP =[2-p(p+3)IH{, (3.54
bulk metric perturbation match onto the boundary metric
perturbation. However, the boundary metric perturbation is
specified by only two scalars. We therefore need anothe‘f”here p=23,... . We hgve suppresseq extra_labels
boundary condition: regularity at the origin. Solutions pro—k*I M, - .. 0N these harmomcs. The harmonics are orthonor-
portional to sinlycosty are unacceptable since they lead to m?' with respect to the obvious inner product. Further prop-
erties are given ih28]. 3
v The boundary condition ag=y, is® 6;;(Yq,X) = 6;i(X),
9""0g,.,cothy, (3.49 where 6;;(x) is the tensor part of the me'éric perturbjation on
which is singular ay=0. We must therefore sé{x)=0. To
first order, the induced metric perturbation on the boundary

IS SWe apologize for our slightly confusing notatiom(x), ¢(x)
. and x;(x) in Eq. (3.2 have, so far, nothing to do with the bulk
hij (X) =Hij(yo,X)+2I 2sinhy, coshygyijé. (3.47) quantitiesi(y,x), ¢(y,x) andx;(y,X).
5The boundary is actually ag=y,+ £(x), which gives higher
Recall thatH;; is given by Eq.(3.18. The left hand side is order corrections. These would appear at third order in the action as
decomposed into scalar, vector and tensor pieces in E@ouplings between tensors and scalars.
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the boundary. Imposing this condition together with regular-the bulk, only tensors will occur in these surface terms—

ity at the origin gives a unique bulk solutig@4] there will be no dependence @n The surface terms are
X) = 2 H(p)(x)f d*x’ \/Tyek'(x’)H(k‘f)(x’), cothy, .
f (y ) Ssurf_ 4 \/_ T49”0”-
(3.55 167G [
(3.61
wheref, is given in terms of a hypergeometric function:
The second contribution to the gravitational action is the
HP*2y Gibbons-Hawking term. In evaluating this, it is important to
fo(y)= sz 1(p/2(p+1)/2,p+5/2,tanRy). remember that the unit normal to the boundary changes when

we perturb the bulk metric. The boundary is a hypersurface
defined by the conditiof(y,x)=y— &(X) =y,. The unit nor-
mal is therefore given to second order by

(3.56

E. Gravitational action
We have now solved the Einstein equations in the bulk T(l 8,EDE
n= -

and found a solution that matches onto the metric perturba-
tion of the boundary. The next step is to compute the action
of this solution. The bulk contribution from the Einstein-
Hilbert action with cosmological constant is

2Sirw?)/)dy—lﬁigdx. (3.62

Note that this holds for a range gfand therefore defines a
unit covector field that is normal to the family of hypersur-
IE Vot é facesf =const. In other words, it defines an extension of the
Sbulk:_—f d“x\/;f dysintty unit normal on the boundary into a neighborhood of the
27G 0 boundary. Written as a vector, the normal takes the form
5
167TGf d X\/E{

- 5g,u,VAIl_ujpgégpa '

1 6 - i o
ERgW— I—zgw) 5g’U'V n:i(l— allgag )i_(_&g _ 49_'(y-yx)t9,§)i
I 2sintty) 9 \lIsinfy [I®sintfy
(3.63

where 6;;(y,x) is the bulk tensor perturbation. The trace of
the extrinsic curvature is

(3.57

The term that is first order idg,,, will vanish because the

background obeys the Einstein equation. The second order K=V, n# (3.69
term involves the Lichnerowicz operat@generalized to in-

clude the effect of a cosmological constaff , which is a  In evaluating this one must take account of both the pertur-
second order differential operator with the symmetry prop-bation in the unit normal and the perturbation in the connec-

erty tion. The result is
ALTPT=APTE (3.58 4 1 . coshy ‘
: : o : K==cothy - =————V¥—————4;£d'¢
This term vanishes because the perturbation is on shell, i.e., I 1 sintty | sinfy
AP 59,,=0. (3.59 L
Fsinh“y ViViE- 21%sint'y e
We are left simply with the background contribution
— coshy .
& = (Yot +=—"7-610;. 3.6
Sbulkzﬁf d4X\/;/fOO dysintfy SsinkPy " (3.69
o

This has to be evaluated gt y,+ £. To evaluate)'y on the

T3 13
l Q_"' Yo I _f d4X\/;(4 sintfy, & boundary, we need to know the induced boundary metric
271G 87wG perturbation tosecondorder:

+ 83inh°’yocosryo £, (3.60

hij (X)= 6;;(yo.X) + 212 sinhy, coshyo ¥ €
where ), denotes the volume of a unit four-sphere. Of - . - -
course, in order to rearrange the Einstein-Hilbert action into +IA(2sinifyo+ 1) ;4120606 + €0, -

the form (3.57 we have to integrate by parts several times, (3.66
giving rise to surface terms. These will depend on deriva-

tives of the bulk metric perturbation evaluated at the boundThese results can now be substituted into the Gibbons-
ary. Since there are only tensor degrees of freedom excited iHawking term, yielding
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x\y

+sint? yo(16 sinff yo+ 12) &

Sen=-— 4 coshy, sinfPy,

+ coshyg sinhy(32 sinif yo+ 12) &2
3 inhy, £926— — g
—3 coshyg sinhyg é g—ﬁe dy0i |-

(3.67

We have integrated some terms by parts. So far, we have

expressed the scalar part of the action in termg.aflow-

PHYSICAL REVIEW D 63 083504

The final term that we have to include in the effective
action is the finite counterter®,;. Evaluating this to second
order gives

3aN2Q) 3aN? =
ct™ > 2 P 4f d4X\/;
41 647°R
o4 o2 2 ijv2 4 ij
X| ¢V i+ ayV (//+§0 \% Hij—§0 0;j (3.72

The final result for the Yang-Mills effective action is

ever, we really want to express everything in terms of thewhere

induced metric on the boundary, which has scalar péx).
This can be done by taking the trace of E8.66 and solv-
ing for £ in terms of ¢ to second order, giving

B W (2 sinffyy+1)y?
212 sinhy, coshy, 81*sint?y, cosiy,
iy

- . 3.6
3214 sink y, cost y, (363

The total contribution from the Einstein-Hilbert and
Gibbons-Hawking terms is given by the sum of the follow-

ing:

3|3 50,
0 =—" dysmhzycosﬁy, (3.69
G
(1) 3% [ 4o NG i
) Vi osesinhye . (370
IE - 3(2 sinfyo+ 1)
gzr;v:_—_f dx vy ==
87G 21%sinhy, coshyg
3yV2 1
S A —— 64,6,
81“sinhy, coshy, 814

cothy0 g ooy |
214

(3.79

We can now expand the action in powersBR (using
sinhy,=R/1). This gives terms that diverge &5 andl ~* as

| goes to zero. For the scalar perturbation, these divergences

are cancelled by the counterteri@s and S,. For the tensor
perturbation(dealt with in[24]), the third countertern®; is
needed to cancel a logarithmic divergefce.

W=WO + W W@ 4. .. 3.73
38N2Q, 3aN?Q, 3N%Q,
(0)— _
W) = 82 e 5 (4log2—1),
(3.74
w<1>:16772R2 f dx\y y, (3.79
WO - = J a2+ 2)9

—a¢(64+462)¢]
ENG ij (p)
256772R4 (de\/—e(x H; (x)

X[W(p)+2B8p(p+1)(p+2)(p+3)

—4ap(p+3)], (3.79

where

W(p)=p(p+1)(p+2)(p+3)[y(p/2+5/2)+ y(p/2+2)
—(2)— (1) ]+ p*+2p3—5p?—~10p—6. (3.77)

The scalar perturbations have an action that can be expressed
simply in position space. However, the tensor perturbations
are given in momentum space where they have an action
with complicated non-polynomial dependence pnThis
corresponds to a non-local action in position space. At large
p it behaves likep?logp, as expected from the flat space
result f0r<Tij(X)Tirjr(X,)> [30]

F. Metric correlation functions

Our theory is just four dimensional Einstein gravity
coupled to the Yang-Mills theory, with action

S= 167TGfd“x\/—RJrW (3.78

"This counterterm is formed from the Euler number and the
square of the Weyl tensor, neither of which is affected by scalatvhere we have not included a Gibbons-Hawking term be-
perturbations.S; therefore does not contribute to the action for cause the instanton has no boundary. Note that we are still
scalar perturbations. working in Euclidean signaturaV denotes the Yang-Mills
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effective action, including the effect of the finite counter- 1
terms.G is the four dimensional Newton constant. In order m =5 (3.84
to compute the two point correlation functions of metric per-
turbations we need to calculate the termsSithat are qua-
dratic in the metric perturbations described #)y and .

To second order, the Einstein-Hilbert action of the per-

The tensor correlator is

, 1287m°R* o
turbed four-sphere is (0i(X) 05 (x")) = N p§=:2 V\Ii(ﬁ),j,(X,X’)
30,R* 3 [, F= 1 a 7 _
__ a2 - XF(p,a,B)" %, 3.8
Ser 1c a.c|d X\/;¢+16WGRZJ d X\/; (p,a,B) (3.89
3 . i 1 . where the bitensoWi(jﬁ’),j,(x,x’) is defined as
x(§¢vz¢+ze”ar—29”V2aJ. (3.79

W, (x,x") = HPOOHP,(x),  (3.86
Adding the Yang-Mills effective actions gives the total ac- iy k,l,;,... i (R

tion. This has a non-vanishing piece lineariin Varying _ .

fixes R to take the value given by Eq2.19, which implies ~ with the sum running over all the suppressed labels

that the linear term vanishes. Equati@?19 can be used to k,I,m, ... of the tensor harmonics on the four-sphere.
write G in terms ofR, which brings the quadratic part of the
scalar action to the forfn IV. ANALYTIC STRUCTURE OF PROPAGATORS
3N?2 o R . . A. Flat space limit
Sscalar= 128n2R4j d X\/; W22V -1)(V+4)y, Before analyzing our correlation functions we shall con-
(3.80 sider the analagous functions in flat space. This will allow us
to constrain the allowed values of the parameterand B,
and the quadratic part of the tensor action becomes which will be important when we return to the de Sitter case.
Recall that in Eqs(3.75), (3.76 and(3.79, the radiusR
N? 4 /\/r o (B o 2 is arbitrary. To avoid confusion, we shall now denote this
Stensor 25672R% % J d™"Vy 61 (X HP(X) arbitrary radius byR to distinguish it from the on-shell value
R, given by Eq.(2.19. We can recover flat space results by
XF(p,a,B), (3.8)  taking R—o. Before taking this limit, we first replace the
dimensionless momentum with the dimensionful momen-
where ~
tum k= p/R.
F(p,a,B)=p?+3p+6+¥(p) There is no conformal anomaly in flat space and the scalar
i corresponds to a conformal transformation. Therefore, the
+2Bp(p+1)(p+2)(p+3)—4ap(p+3). only matter contribution to the scalar propagator comes from

the term in the Yang-Mills action that breaks the conformal

(382 invariance, namely the finite counterte8y . The other con-
From these expressions we can read off the correlation fundfibution to the scalar correlator comes from the Einstein-
tions of metric perturbations: Hilbert action. One obtains
3272R4 : 1 1
I\ —_— 4.1
X) X ) = <¢(X)$(X )>oc 2 2 2 (
<¢( lﬂ( > 3N2(—a)(4+m2) g+ M J
1 with a positive constant of proportionalityd? is given by
X| —= —— , (3.83
—V24m? —V2-4 L
M?=— —, 4.2
where R (4.2)

whereR is given by Eq.(2.19, although we emphasize that

81f o =0, then this is almost exactly the same as the scalar actio¥/€ &€ now working in flat space. The second term in the
one would obtain for perturbations about a de Sitter solution supPropagator describes a massless scalar ghost. This can be
ported by a cosmological constant. The only difference is that thélealt with by gauge fixing the action. The first term is more
overall sign is reversed. This implies that, with the exception of theworrying. If «>0, then it describes a tachyon. We regard
homogeneous mode, the conformal factor problem of Euclideathis as undesirable: we do not want flat space to be an un-
quantum gravity is solved by coupling to the Yang-Mills theory Stable solution of our theory. We shall therefore always take
whena=0. a<0, which gives a massive scalar in flat space.
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For the tensor propagator, the linkt—c makes the co- scribesz zilpar_ticle with physical mass square&/Rz
efficient of the third counterterr; diverge. To cancel this =(2aR®)"". Since we are assuming<<0, we havem

divergence, introduce a length scalelefined by <0, so this patrticle is a tachyon. This is good because we do
not want the spherical solution to be stable since that would
B=log(p/R). 4.3 lead to a Lorentzian de Sitter solution in which inflation

never ends. Makingr more negative makes the tachyon
TheR dependence in the coefficient of the third countertermmass squared less negative, and therefore makes the instabil-
then drops out, leaving a finite coefficient depending on thdty weaker. This suggests that df is sufficiently negative,
renormalization scalp. TheR— o limit of the propagator is then inflation will last for a long time. We shall make this

similarly well defined. The result is proportional to more precise later. . . .
The second term in the propagator describes a ghost. This

1 is the normal scalar mode of gravity that is canceled by the
(4.9 scalar parts of the Faddeev-Popov gh$28. These ghosts

supply a determinant that cancels thé* ¢ 4) factor in the
scalar action. The propagator can then be read off from the
action

K2{1+R%k 1+ log(k?p/4) 1}’

Our propagator is of exactly the same form as given by Tom
boulis[22] in his analysis of the effects of lardé matter on
the flat space graviton propagator. The propagator is defined 204
for k>0. It can be analytically continued into the complex (P(X)h(x"))=
k? plane by taking a branch cut for the logarithm along the
negative real axis. There are generally two poles present,
with positions dependent gn If p<2R/e, then these poles This propagator can be written in momentum space as
are on the positive real axis. One has positive residue and the .
other negative residue, so they correspond to a tachyon and a o 32r"RY & WP (u(x,x"))

host. Asp— 2R/e, the two poles move together and merge (P (X)) = 2 > (48
9 P ’ P 9 9 3|a|N2 p=0 p(p+3)+m
to form a double pole. Fop>2R/e, this double pole splits
into a pair of complex conjugate poles which move off into here the biscalaw/® is a function of the geodesic distance
the complexk? plane. The modulus and phase of k? at « betweenx andx’, given by
these poles are related by

I (—V2+m?) L. 4.7

_sind WO (u(xxN= 3 HPOHP (), (49

r R2g (4.5
where H(®P denote spherical harmonics on the four-sphere
0 is given by solving and the sum runs over the suppressed eigenvidligs.
Notice that there are many negative modew ifs nega-
tive and close to zero. However, if< —1/8, then only the
homogenousg=0) negative mode remains. To compute the
primordial density fluctuations in the microwave background
which is straightforward to analyze graphically. The solutionfadiation we are interested in the two-point function with the
obeysd— + 7 andr—0 asp—x. homogenous mode projected d@7]. Notice also that the
The presence of tachyons for smallvas not mentioned Faddeev-Popov ghosts fix the residual gauge ambiguity as-
by Tomboulis since he implicitly assumed>R. Since we somated. with thggp=1 modes. These modes no longer have
want flat space to be a stable solution of our theory, we shaff€ro action and therefore cannot be regarded as gauge.
take p>2R/e when we consider the propagator in de Sitter
space. This corresponds to takiBg-log 2—1. C. Tensor propagator on the sphere

~ Itis interesting to note that changingchanges the coef- The tensor propagat¢Eqg. (3.85] has an interesting ana-
ficient of the third countertern$; by a finite amount. This |ytic structure. The momentum space propagator is propor-
corresponds to introducing a finite counterterm involving theyjonal to F(p,a,8) %, whereF is given by Eq.(3.82.

Euler number and the square of the Weyl tensor. The former £qr g physical interpretation, we need to study the behav-
is left unchanged by metric perturbations. However, the latigr of E in the complex\, plane, wherex,=p(p+3)—2 is

ter is known to give rise o spin-2 ghosts in a pure gravity he eigenvalue of- V2. We must therefore first write the
theory. Such ghosts do not appear in our model: coupling & 9 N .

the CET removes them. propagator as a function of,. Since

beotd=—| 141097 +10g> M’ 46
cotd=—| 1+log L +og5-| (49

3 17
B. Scalar propagator on the sphere p=—5*\/5 t\p, (4.10

Equation(3.83 is the propagator of scalar metric pertur-
bations on a spherical instanton supported by the conformale must choose a branch for the square root. The Euclidean
anomaly of the CFT. The first term in the propagator de-propagator is defined as a sum oyer2,3, ..., forwhich
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6.0

0.2

40 FIG. 2. Inverse propagatoF(p,0,0) for
—3/2<p<1/2 and —0.1<p<0.1. The graph
o grows monotonically fop>0. There are zeros at

e p~ —1.48(massive particle p~—0.054(ghos}
andp=0 (massless graviton
0.0 . v . . 0.0

-15 -1.0 -0.5 0.0 0.5 ~0.1 0.0 0.1

\p is positive. We must therefore take the positive sign for~—1.48 and the other gi~ —0.054. The former has ,~

the square root. The analytic continuation into the complex—17/4 (but is not quite on the cuand has positive residue;
\p plane is given by taking a branch cut along the negativethe latter has\,~ —2.16 and negative residue. The behavior
axis for \,<<—17/4. Herep has a positive imaginary part of F(p,0,0) is plotted in Fig. 2. It is easy to show that signs
just above the cut and a negative imaginary part just belovof the residues of ~1 with respect tox, are given by the
the cut. Note that Rg()= — 3/2. The branch cut corresponds slope ofF as it passes through 0. The positions of the poles
to a continuum of multi-particle states. The imaginary part ofare shown in Fig. 3. Changing the value @f(still with «
the propagator is discontinuous across the cut. In general, the0Q) changes the position and nature of these poless As
absence of negative norm states implies that the imaginamhade more positive, the pole witi~ —1.48 gets absorbed
part of the propagator just below the cut minus the imaginarynto the branch cut and the ghost moves towargs—1 (i.e.
part just above the cut should be positive, which is indeed. ;= —4). As 8 is made more negative, the pole wiph=

the case for our tensor propagator. —1.48 moves towards= — 1 while the other pole moves to

It is also possible for the tensor propagator to have dispositivep (i.e. \,>—2), with its residue changing sign as it
crete poles in thev, plane. Poles on the real axis are of crossep=0. This pole corresponds to a tachyon. Recall that
particular importance. If such a pole occurs at positiye  tachyons were also present in flat space for sufficiently nega-
then it corresponds to a tachyon. In fact, since the graviton iive 8. In order for tachyons to be absent in flat space, we
de Sitter space has an equation of motion wif=—2, it had to choosg3>log2—1. We have roughly the same re-
seems appropriate to regard particles wiff»> —2 as tachy-  striction on in order to avoid spin-2 tachyons in de Sitter
ons. If a pole on the real axis has negative residue, then Bpace. We shall therefore exclude the c@selog2—1 as
corresponds to a ghost. unphysical.

Our propagator always has a pole @f=—2 (p=0), Now consider the effect of turning om<0. This has no
corresponding to the massless graviton in de Sitter spaceffect on the pole ak,=—2, so the massless graviton re-
Support for this interpretation comes from observing thatmains. If 3=0, then the two other poles move togetheias
transverse traceless tensor harmonics have 5 degrees of frefecreases and eventually coalesce into a double pole. This
dom. However, the mode with=0 mixes with transverse splits into a pair of complex conjugate poles that move off
vector harmonics, which have 3 degrees of freedom. Thugtg the complex\ , plane. For3>0 then there is generally
the p=0 mode has 3 gauge degrees of freedom, leaving 3nly one pole preseriin addition to the graviton pojevhen
physical degrees of freedom, as appropriate for a masslegs=0. As « is decreased, an additional pdieith positive
spin-2 particle. residu¢ emerges from the branch point and moves towards

We shall start by considering the case=8=0, for  the ghost pole, eventually coalescing with it. This then splits
which there are two other poles in our propagator, onp at into a pair of complex conjugate poles.A& 0, then the two
poles again move together, coalesce and then become a pair
of complex conjugate poles. In all cases, the effect of making
a more negative is similar to the effect of increas@ the
flat space propagator; i.e., pathologies such as ghosts and
tachyons move off into the complex plane. Whers large,
the poles becomes complex fax< — B/8, so no fine-tuning

) ) of the ratioa/B is involved.
FIG. 3. Analytic structure of the tensor propagator in the com-

plex\, plane whene=0. The dotted lines denote,= —2. Poles
on the real axis to the right of this line correspond to tachyons. D. Complex poles

There is a branch cut af,= —17/4 and the thick line represents the We h h host pol b d off th |
branch cut. There is always a massless graviton pobe,at—2. € have seen how ghost poles can be moved o erea

The diagram on the left is fo8>>0, when there is a single ghost 2XIS; becoming a pair of complex conjugate poles. The inter-
pole. As3 decreases, this pole moves to the right and another pol@'€tation of such a pair of poles has been reviewed by Cole-
emerges from the branch cut. This new pole corresponds to a ma2an [38]. The presence of complex conjugate poles with
sive particle and appears in the second diagram, which iggfor (COmplex masses given byn=a=ib with b>0 implies

=0. The final diagram is foB<0, when the ghost pole crosses causality violation at lengths or times of the order of/a/
through\ ,= —2 and becomes a tachyon. For Tomboulis’ flat space propagator, we have R 2, so

[ S —
R R —
RSP SR
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one expects causality to be violated at a length scale of the , 5ip’(p'2+ 1/4)
order of R, which is roughlyN times the Planck length. Un- W(P)(z)= ——————
lessN is enormous, this is far less than any scale probed by 3m
particle physics experiments, so such causality violations are

unobservablé,as noted by Tomboulis.

For our de Sitter propagator, the complex poles agair‘?ndz: cos(u/2). This biscalar is analytic in the upper half
havebocR~L. If |a| is large, therboc J—aR"1L, so causality p’ plane. The coefficient of the biscalar is also analytic in the

o . . upper half plane apart from a simple polepdt=A,, where
violation occurs on a time scalR/y— a. If |a| is not large, PP P P ple polept=A,

then causality violation occurs on a time sc&te This is
much smaller than scales probed in experiments, but may A=in/>—m?. (5.3

have observational consequences in the CMB skiiethe 4

Hubble time and, therefore, the time scale for microphysics

during inflation. However, we shall see in the next sectionThis pole corresponds to the tachyon. Notice that the sum in
that observations suggest that is of order 18, so causality EQ. (5.1) starts atp’=5i/2 because we have projected out
violation occurs on a time scale much shorter than théhe negative homogenous mode, which should be regarded as

Hubble time and is therefore completely unobservable.  Part of the backgroun{B7].
Knowing the analytic structure of the correlator, we are

able to write the sun5.1) as an integral along a contody
encircling the pointp’ =5i/2,7i/2, . . . ni/2, wheren tends
In this section we will show how the scalar and tensorto infinity. This yields
propagators on the four-sphere instanton uniquely determine
the primordial CMB perturbation spectrum in Lorentzian 16i 7TZRAJ ,(tankp’w)W(p')(,u)
e '

LFL(3/2+ip’,3/2—ip’,2,1—2)
(5.2)

V. LORENTZIAN TWO-POINT CORRELATORS

closed de Sitter space. The two-point correlators in the (¥(Q)y(Q'))=——

3|a|N2 p'2+9/4—m?

Lorentzian region are obtained directly from the Euclidean
propagators by analytic continuation. We refer the reader for

the details of this calculation to our previous papa4], h C be di d | h laxi
where we described the analytic continuation of the gravitorh € (txf)mouthl c;anh € |st<?rte toruna (:ngt\tNe r@? aX|s|. i
correlator in a Randall-Sundrum version of the Starobinsky Par rom the tachyon pole, we encountertwo extra poles a

. . =3i/2 andp’ =i/2 in the tankp’ 7 factor. Thep'=3i/2
model. The techniques to perform these calculations wer .
. pole corresponds to the negative homogenous mode that we
developed i 39,40.

have projected out in the Euclidean correlator. On the other
hand,W(’2()=0, so the pole ap’ =i/2 does not contrib-
ute to the propagator. The contribution from the closing of
the contour in the upper haff’ plane vanishes. Hence our
We have the Euclidean correlat@}.8) as an infinite sum final result for the Euclidean correlator reads
over realp, wherep labels the level of the four-sphere scalar
harmonics. Although this is a convenient labeling to study i 2R
their analytic structure, the eigenspace of the Laplacian on de ((Q)¢(Q'))= 5
Sitter space suggests that the Lorentzian propagator is most 3lalN
naturally expressed in terms of an integral over real positive .
p’'=i(p+3/2), corresponding to scalar harmonics of the —ll(tanh/\ )W (Z)+
Lorentzian Laplacian with eigenvaIUqJ/z(p’ZJr 9/4). We Ay ‘
must therefore first analytically continue our result for the
propagators into the complgx plane before continuing to
Lorentzian signature. In terms of the lalgl, the Euclidean
scalar correlatof4.8) becomes

(5.9

A. Scalar propagator

de (tantp’ m)WP')(2)
o p'2+9/4—m?

m2m2|
(5.5

Finally one can rewrite Eq5.5 as an integral from O te,
over the eigenspace of the Lorentzian Laplacian, and the two

3072R4 T WP (z(Q,Q")) discrete contributions from the ta_chy_on pole and the homog-
(P QYP(Q"))=— 5 > > enous mode. The tachyon contribution grows exponentially
3la[N? i p'?+9/4—m for timelike intervals. However, the relevant propagator for

(5.1) computing the CMB anisotropies is the Feynman propagator,

which should be bounded both to the past and future. There-

_ fore, the propagator that we have obtained by analytic con-

with tinuation from the four-sphere does not obey the appropriate
boundary conditions. In order to obtain the two-point func-

tion that describes the correlations in the primordial density

%In fact, these effects might be smaller than the effects of thdluctuation spectrum, we change the contour of integration so
gravitational field of subatomic particles, which would also lead toas to exclude the contribution from the tachyon pole. We

modifications of causality through tilting of light cones. then obtain the Lorentzian Feynman scalar propagator
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(P(X)h(x")) contribution from the closing of the contour in the upper half
- p’ plane vanishes. UsinG(—p’,a,8)=G(p’,a,B), one
_ 32m°R can again rewrite the remaining integral over the real axis as
3| a|N? an integral from 0 tow. The continuation ofz(x,x’) for
timelike intervals is the same as for the scalar two-point
fwd (tanhp’ )W) (z(x,x")) 10 function. We then obtain, for the Lorentzian tensor propaga-
X ! .
o °F p'2+9/4—m? m?? tor,
(5.6

(0i§(x) 6;1j:(X"))

The Lorentzian biscalan(*") differs fromW®") only by a
zian bi i y by 18R

factor of —i and (tantp’ m)W-P)(2) equals the sum of the
degenerate scalar ?armonics on closed de Sitter space with N?
eigenvalue ,,=(p’'“+9/4) of the Laplacian. For spacelike , 1

separations,p we have=cos(u/2), where u(x,x') is the XRG(p" . f) 1= mRjij(2) = 2m
geodesic distance betwerrandx’. The correlator for time- (Ap

like intervals is obtained by setting= 7/2—it, wherep is XR[(tanh\ m)Wi70 () Raplt. - (5.9
the polar angle on the four-sphere. For a purely timelike

separation, this gives= cosH[(t—t)/2].

+o ,
Ho dp’ (tantp’ m)W; % )(2)

In the integral, (tanh’w)\/\/i]i(’,)jy,)(z(x,x’)) can be identified

with the sum of the degenerate rank-2 tensor harmonics on
The principles of the continuation of the tensor propagatorclosed de Sitter space with eigenvalug = (p'2+17/4) of

(3.85 are the same, but the calculation is more complicatedthe Laplacian. The integrand vanishespas-0, so the cor-

We refer the interested reader to our previous pap4ffor  relator is well behaved in the infrared.

technical details. The differences betwef] and the The first term in Eq(5.8) represents the continuous tensor

present paper are that we now have included the effect of thiguctuation spectrum. The second term describes the massless

finite R? counterterm, we have kep in the coefficient of  graviton with Riji’jr(2) defined as the residue pt=3i/2 of

the third counterterm arbitrary and we now treat the discrete

poles in the propagator more carefully.

In [24] it was shown that the bitenswi(jﬁ’/,)j,(u) can be () (
unambiguously extended as an analytic function into the up- e
per halfp’ plane. In addition, from Sec. IV C we know that
its coefficientF (—ip’ —3/2,a,8) "1 is analytic, apart from a ) ) i ] o
simple pole atp’=3i/2, corresponding to the massless The third term in Eq(5.8)_ is the combln_ed contnbuﬂ_on from
graviton in de Sitter space, and a pair of poles with complexX€ complex poles, withR, , denoting the residue of
masses\; andA,=— A, (we are assuming that<—g/8  G(P'.a.8) " at p’=A,. For large|a| this mode grows
so that there are complex poles instead of a ghddtese exponentially, implying that the analytlcally_ _Contlnued
poles always occur in the upper half plane. propagator does not obey the boundary conditions for the

Writing the sum in Eq(3.85 as a contour integral yields Feynman propagator. This can be remedied by changing the
contour of integration to exclude the contribution from the

4i m2R4 ) complex poles', givi_ng the qorrect propagator for two-point
(6;(Q)6,,(2"))y=— TJ dp’tanhp’ 7W (2) tensor correlations in the microwave background:
(1

B. Tensor propagator

tanhp’ 7

. (5.9
) )

i’y

XG(p' e B) 6.7 (05000117 (x"))
where 2R4
_ 12877 R ree ’ ’ L(P’)
G(p' . B)=F(—ip’—3/2.,5) G fo Apttannerm Wi, (@)

=p'*—4ip'3~p’?2—5ip’ —3/16+ (p'*+9/4)
X{4a+(p'%+ U [ y(—ip'/2+5/4)

+(—ip' 12+ 718 — p(1) - p(2) + 281} _ _ _
If |a| is large, then the tensor propagator is proportional to
As we deform the contour towards the real axis we encoun¢|«|N?)~1. At large p’ the tensor propagator behaves like
ter, apart from the poles mentioned above, two extra poles ifip’“logp’) %, just as the Euclidean correlat(®.85. This is
the tanip’ 7 factor. However, as explained in detail [i24], in contrast to the usug’ ~2 behavior of the graviton propa-
they do not contribute to the tensor fluctuation spectrum. Theator for de Sitter space with a cosmological constant.

XR[G(p',a,B) - 7R /(2)|. (5.10
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VI. OBSERVATIONAL CONSTRAINTS 1
A. Duration of inflation S0~ V2N’ Ny=—12a(logN—1). (6.9
The Starobinsky instability in four dimensions has been
analyzed carefully by Vilenkinf17]. He showed that the

scale factor grows exponentially until Quantum cosmology therefore predicis~1. So far, the
only restriction onN is thatN must be large enough for our

o AdS/CFT calculation to be valid. This implies that Mds
t=t,~—(y—1), (6.1 not close to 1, so taking<—5 makesN; sufficiently large
M to solve the horizon and flatness problems.

Our correlation functions for metric perturbations were
calculated assuming a four-sphéog de Sittey background.
The present day horizon size left the horizon about 50
efolds before the end of inflation. Hence the long-
wavelength temperature fluctuations in the microwave sky
carry the imprint of the first expansion phase provided
<50, which is true ifa> — 20. Because our correlation func-

1 tions for metric perturbations were calculated assuming a
y==log(2/8,), (6.3 four-sphergor de Sittey background, the predicted spectrum

2 can then be directly compared with observation. However,
our results will be modified for modes that left the horizon
during the slow-roll phase, when the background is not ex-
actly de Sitter. Therefore, i< — 20, then it would be nec-

HO_ H i
0= (6.4  essary to do a calculation based on a scalar/vector/tensor
Ho decomposition on théhreesphere in order to enable us to
. evolve the spectrum through the instability and predict in
is the perturbation of the Hubble parameltésa/a at time  detail the CMB fluctuation spectrum.
t=0. If ,<<0, then the solution eventually becomes singular
[15], at least if one neglects spatial curvat@which should
be a good approximation if there is a lot of inflatioiWe B. Amplitude of perturbations

shall therefore restrict ourselves &§>0. In order to compare our results with observations, we
Fort<t, , there is exponential growth with Hubble pa- should first render the propagators dimensionless by dividing
rameterH,. The number o&-foldings of inflation during this by R*. The correlators are then functionsmélivided byNZ.

where, for our model, the parametétg andM are given by

Ho=R™!, M=(J/-2aR)™. (6.2

The parametey is related to the initial perturbation from the
exact de Sitter solution

where

phase is therefore Long wavelength perturbations are insensitive to what hap-
5 pens after inflation, so these can be directly compared with
_6H0 observation. For the tensors, long wavelength perturbations

Ni= M2 (y=1). (6.9 correspond to modes on the four-spH8neith p=2. The
amplitude of the fluctuations can be obtained from the cor-

For our values oH, andM, this gives relator
2 1/2
N;=—12a(y—1). (6.6 o IR~ | 28T 6.10
: N2F(2,a,8)

Fort>t, , there is a phase of slow-roll inflation in which
the Hubble parameter changes frétg to M. The number of
e-foldings of inflation during this phase [47] In order to agree with observations this should not exceed
10™°, which requires
N,= —12« log cosh k= —2.26a. (6.7

The slow-roll phase lasts unti~6yH,/M?. Once this N?(250+ 2408 — 40a)> 10", (6.12)
phase ends, the universe enters a matter dominated era in

which the scale factor behaves[d$,17]
Since we are assuminygis large, the obvious way to satisfy

o3 2 -, this inequality is to takeN=((10°). However, this implies
a(t) <t 1+ g sinMt+O(t) |. (6.8 that the number of fields present isN%= O(10), which

The oscillations in the scale factor can drive particle produc-

tion and reheating. . _ _ e should really be studying the Lorentzian correlators here.
Vilenkin used the Wheeler-DeWitt equation to obtain anHowever, the overall amplitude of the Lorentzian and Euclidean
estimate fors,. Using his results, we obtain propagators is the same.
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seems to contradict present day observatidriastead, we take N=10 and|a| of order 10, then this scalar has mass
could takeN?g to be of order 4 10" or N?|e| to be of M=~10°m,, which is far too massive to be observed
order 2< 101, The former corresponds to taking the coeffi- nowadays.
cient of the Weyl squared term in the action to be of order
10’ and the latter corresponds to taking the coefficient of the VII. SHORT DISTANCE PHYSICS
R? counterterm to be of order 0

Note that if we takeB to be large, then we would also
have to takea to be large in order to avoid ghosts in the The observational constraints that we have derived do not

tensor propagator. Therefore the most natural choice is protslepend on the detailed structure of our propagators and could
ably to take justa to be large. Note that suppression of be obtained directly from the work of Starobinsky and Vilen-

tensor perturbations through a Weyl squared counterterdiin- In this section we shall consider a new phenomenon
(i.e. taking 8 large was not mentioned ifil5,17 since this revealed by our propagators, namely the suppression of short

counterterm does not affect the coefficieajs,d in the trace d_lstar_lce ”?e"'c perturbatmn_s ’by matter fields. This suppres-
anomaly. sion is evident in Tomboulis’ flat space propagatdrd),

Turning to the scalar perturbations, we see that these c%hmh falls off as (*loglc)™ for Iargt% momenturrk. It is
' i . (3. hich
also be suppressed by takihg| «| to be large. Changing SO present in our tensor propagato-q. (3.89, whic

falls off as (p*logp) ! at largep. This behavior has not been
does not affect the scalars. Our scalar correlator suggests that-,ssed in previous studies of the Starobinsky model be-

taking N?|a| to be of order 2¢ 10" should bring the scalar cayse these have neglected the non-local part of the matter
perturbations within observational bounds. effective action.

We conclude that iN?|«| is of order 2< 10", then we Inflation acts as a “cosmic magnifying glass” by blowing
can bring. metric perturbations within Fhe.observationalup microscopic physics to macroscopic scales. It is often
bounds.N just has to be large enough to justify the lafde  assumed that this might lead to some characteristic signature
approximation for the matter fields. For example, we couldin the CMB of new physics at short distances, e.g., extra
takeN=10 anda=—2X 10°. However, such a large value dimensions. Our results appear to contradict this inflationary
for « implies that all modes that we observe today must havgjogma, because they show that at small scales, matter fields
left the horizon during the slow-roll phase of inflation. Our will Comp|ete|y drown out the effects of any new gravita_
results for the two-point correlators will be modified in this tional physics. In this section we shall illustrate this phenom-
case, since we assumed a four-sphere background in our c@non by comparing our results with the results for a model

culation. However, it is Usua”y the case that the amplitude Ot/\”th an extra dimension, name|y the R&] version of the
perturbations is inversely proportional to the horizon radiusstarobinsky model.

at which they left the horizon. The horizon radius increases
during slow-roll, so it seems likely that || is very large,
the amplitude of perturbations will be smaller than the am- } ) ) ) .
plitude obtained above. This argument is confirmed by the The RS model consists of a five dimensional spacetime
estimates of Vilenki17]. We conclude that takingl? «| vx(lth negative cosmological co.nsta_mt,'and a thin positive ten-
~2x 10" will bring the perturbations within observational Sion domain wall whose tension is fine-tuned to cancel the
bounds, and a far smaller value may in fact be sufficient. €ffect of the bulk cosmological constant. The ground state
A coefficient of order 18in the action is large, but this is Solution of this model is a Poincasymmetric domain wall
essentially the same fine-tuning problem that also appears §fParating two regions of AdS. In the RS version of the
all scalar field models of inflation. In these scenarios, matchStarobinsky model, we simply add &(N) Yang-Mills
ing the amplitude of perturbations to the Cosmic Backgroundheory to the world volume of the domain wall. This model
Explorer(COBE) typically requires a fine-tuned parameter in Was extensively discussed in our previous paj2a]. For
the action ofO(10~19. related work, se@41—-44. The (Euclidean action is
Note that takinda| to be very large implies that causality S=S,ut S, (7.0)
violations during inflation occur on a time scale much shorter ulk ™ =brane '
than the Hubble time, so they would not have had a signifiyynere
cant effect on microphysics. One might worry that taking

A. Introduction

B. Randall-Sundrum model

to be large would imply significant deviations from Einstein 1 12
gravity today, arising from the higher derivati®® term in Soulk= — J d*x\g| R+—
the action. In flat space, the only effect of this term is to 16mGs |
introduce a scalar field with mass given by E4.2). If we
——— | d*h[K]", 7.2
82G, ) 4 VhIK]* (7.2
YHowever, it is possible that these fields may have masses large
compared to the scale probed in colliders, nex 1 TeV, but small
compared with the scale at which inflation takes place, 120nce again, we shall concentrate on the Euclidean propagators
<1O’5mp| . Such fields would be effectively massless during infla- in the section. The Lorentzian propagators exhibit similar short dis-

tion but unobservable today. tance behavior.
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C. Brane-world perturbations

3
_ 4
Sorane™ 417G5If d'xyh-+wrh], 7.3 The RS model is a short distance modification of gravity.

For length scales much greater than the AdS lehgtour
whereg,,, denotes the five dimensional bulk metric amg  dimensional gravity is recovered. However, at shorter dis-
the metric induced on the domain wallis the radius of the tances gravity becomes five dimensional. One might expect
AdS solution,W is the generating functional of the Yang- this to lead to a characteristic signal in the CMB. This turns
Mills theory on the domain wall anfK] ™ is the discontinu-  out not to be true when the Yang-Mills theory is included on
ity in the trace of the extrinsic curvature at the domainthe domain wall. The reason is simple: at short distances, the
wall.13 matter contribution to the graviton propagator completely

There are two simple solutions of the equations of motionrdominates the contribution from the four or five dimensional
for this model. Since the trace anomaly vanishes in flaEinstein-Hilbert action. One might think that this effect is
space, a Poincarsymmetric solution still exists. However, peculiar to our model of anomaly driven inflation, and would
on a domain wall with de Sitter geometry, the trace anomalyhot occur in other models of inflation. However, any model
acts like an extra contribution to the tension which permits ahas to take account of the standard model, which contains a
self-consistent de Sitter solution to the equations of motionlarge number of fields. These matter fields will suppress
The Euclidean version of this is a spherical domain wallsmall scale metric perturbations in the same way as our
separating two balls of AdS. The radiRof the domain wall ~ Yang-Mills theory.
is given by[24] We shall illustrate this effect explicitly by calculating the

scalar and tensor graviton propagators for anomaly driven
R [R? N2G; R* inflation in the RS model. Our method will be the same as
—\/—+1= +— (7.4 above; i.e., we shall calculate the propagators in Euclidean
13 V2 8ml® 14 signature and analytically continue to Lorentzian signature.

The initial quantum state of perturbations is defined by the
The metric in each bulk region is pure AdS: boundary condition of regularity on the Euclidean solution.

In the RS case, this condition of regularity extends into the

ds?=1%(dy?+sint? ydQ3), (7.5  bulk.
This work is an extension of our previous pagéd],
for 0=<y<y,. The domain wall ay=y,, wherey, is given  which contained the first rigorous derivation of cosmological
by R=1 sinhy,. perturbations in RS cosmology. However, in that paper we

The RS model can be interpreted using the ADS/CFT corenly discussed tensor perturbations and did not include the
respondence as four dimensional gravity coupled to a Yangfinite R?> counterterm. Here, we shall include this counter-
Mills theory with an ultraviolet cutoff46,24. The Yang- term and also consider scalar perturbations. Our method in-
Mills theory is two copies of theV=4 U(Ngg super Yang- volves integrating out metric perturbations in the fifth dimen-

Mills theory with Ngg given by sion. For alternative approaches to brane-world cosmological
perturbations, segt7-52.
1°  2NZs The metric perturbation on the domain wall can be de-
[ (7.6)  composed as in Sec. lll A, giving a scalgfx) and a tensor

0;(x). Correlation functions of these quantities can be cal-
We shall refer to this dual Yang-Mills theory as the RS CFTcuUlated by integrating out the bulk metric perturbation, as
in order to distinguish it from the theory on the domain wall, ©*Plained in[24]. This is done by splitting the bulk metric
The Newton constant in four dimensions is given by the Rsoerturbatmnég into a classical parbg, and a quantum part
valueG,=Gs/I. The four dimensional dual of the RS model 9 - The class[cal part is the s_olut|on of the linearized Ein-
with a U(N) CFT on the domain wall is four dimensional stein equation in the bulk that is regule_lr throughout th_e bulk
gravity coupled to both the RS CFand the U(N) CFT. and matches onto the metrlc perturbatlon.at the domain wall.
These two CFTs are rather different in that the former has af) '€ quantum part van/|shes at the domain wall. Performing
ultraviolet cutoff(so its effective action doesot behave as € Path integral ovesg’ gives some determinad, that we
p*logp at largep) whereas the latter does not. The effective Shall not worry about. The classu:.al part simply contributes
action of the RS CFT is proportional t8%s, while the ef- the bulk action evaluated on shell
fective action of the other CFT is proportional 7. This
implies that the effects of the RS CFT should be negligible f d[ 8g]e ™ Soud 99l = 7 @™ Sound 3%l (7.7
whenN>Ngg. This is confirmed by expanding E¢Z.4) in
powers ofN/Ngrs. At leading order, one recovers the four We conclude that the effective action governing metric per-

dimensional resulf2.19. Note thatN>Ngg implies R>1; turbations on the domain wall is
i.e., the domain wall is large compared with the AdS length
scale. Sett= 2Spuid 8901 + Sprane- (7.8

The factor of 2 is necessary if we rege®gl, as the action
of just one of the bulk regionsS,, ¢ is straightforward to
135ee[45] for an explanation of why this term is required. compute using our result fal, Eq. (3.73. The bulk metric
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perturbationdg, can be obtained from the results of Sec. Il

by replacingl andG by | and Gs. It follows that the bulk
metric perturbation is transverse traceless, and the sg¢alar
arises from a perturbation in the position of the domain wall
in Gaussian normal coordinates,,; can be obtained from
Egs.(3.69, (3.70 and(3.71 since the bulk action in the RS

model is exactly the same as the bulk action for the

AdS/CFT correspondence.
From Sg¢s one can read off the metric propagators. The

Euclidean scalar correlator can be written in position space

as
OO = — 2T ! !
X)p(x')y= = —— ,
3NZ(—a)(4+m?) | —V24m? —V2-4
(7.9
where
, 1 [1+2e %o 1
M 2a| 11 0 ) (710
The tensor correlator is
8mR*
<0ij(X)6irj/(X’)>:Tp22 Wi(jFi))’j’(Xixr)
XF(p.,yo.B,a) ", (7.11)

where
. fé(Yo)
F(p.Yyo,a,8)=€"sinhyo| - ( +4cothyo—6 | +W¥(p)
p(Yo)
+2Bp(p+1)(pt2)(p+3)—4ap(p+3).
(7.12

Recall thaty, is defined byR=1sinhy,. We have used Eq.
(7.4 to write I3/Gg in terms ofR. Heref, is defined in Eq.
(3.56. Equation(7.12 was derived irf24] but the term in-
volving & was not included. In comparing our propagators in

the RS model with those of the four dimensional model, we

first render them dimensionless by dividing BY.

The scalar correlator for the RS model is very similar to
that of the four dimensional model, as given by Eg.83.
The only difference is the/, dependence of the tachyon
massm?. As y,—o, the four dimensional value is recov-
ered. This is to be expected since, in this lim/l —oo,
which impliesN/Ngs— using Eq.(7.4). We have already
discussed how the RS corrections are expected to be neg
gible whenN>Ngs. Note that ag/, increases from O ter,

m? just changes monotonically by a factor of 2/3.

The analytic structure of the RS tensor propagator is ver
similar to the four dimensional case. There is always a pol
at p=0: this is the massless graviton of the RS mddel.
Other poles behave as discussed in Sec. IV C.

YThis pole was mistakenly identified as gaugd 2d].
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L s
—-0.5 0.0 0.5 1.0

FIG. 4. F(p,Y,,0,0) plotted againgp. The lower curve on the
left (upper curve on the rights for R>1, when four dimensional
gravity is recovered. The other curve is fB=I, when the RS
corrections might be expected to be large. However, they clearly
have very little effect.

The tensor propagator appears to exhibit more interesting

dependence ogg. The first term in Eq(7.12 arises from
the gravitational part of the action, so this is where differ-
ences between a RS model and the four dimensional model
show up. Asy,—, the first term tends t@2+3p+86, in
agreement with the four dimensional rediq. (3.82]. For
very smally,, the first term isp+6. If yq is held fixed but
large, then the first term grows quadratically whasp is
increased but eventually becomes linear for sufficiently large
p, corresponding to gravity becoming five dimensional at
short distances. Thus the difference between a RS model and
four dimensional gravity might be expected to show up in
1/p behavior in the tensor propagator at lameather than
the usual 192 behavior. However, this neglects the effects of
the matter fields, which are given by the other terms in Eq.
(7.12. At largep, ¥(p) grows likep*logp and completely
dominates the first term. Therefore, at largethe tensor
propagator behaves likepflogp) * irrespective of whether
one is considering a RS model or four dimensional gravity.
The differences between the RS model and four dimensional
gravity are drowned out by the damping effect of matter
fields at short distances, rendering them unobservable.
RS corrections are expected to be important at distances
of orderl. If we take R=I, then all the tensor harmonics
have wavelengths smaller th&nnot just the largep ones.
Therefore, one might expect RS corrections to be important
at smallp for such a small domain wall. Surprisingly, this
turns out not to be the case, as shown in Fig. 4. This surpris-
ing behavior can be understood in the four dimensional dual
picture. TakingR=I corresponds td\12~6.4N§S, so the

atter on the domain wall still dominates the effect of the

IS corrections. The RS corrections would be expected to be
about as important as the matter on the wall whigrz~N,
which corresponds t®~0.44. In other words, the RS cor-

¥ections only become large when tkatire domain wallis
Smaller than the AdS radius.

One might worry that introducing a cutoff into the matter
theory would spoil the damping at large However, if we
did have a momentum cutoff, then we would need\R
>1 in order for field theory to be valid during inflation, as is
always assumed. It therefore seems appropriate to Aake
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~my, which corresponds t@.,,,~N>1. Figure 4 shows this coefficient. We also took account of the other curvature
that the matter fields dominate the propagator even for quitequared counterterms. We demonstrated that the amplitude

small p, so introducing a cutoff would have little effect. of long wavelength metric perturbations could be brought
within observational bounds at the expense of fine-tuning of
VIIl. CONCLUSIONS N2|«|. This fine-tuning is no worse than required in scalar

. ) ] ) field driven inflation, and agrees with the results of Vilenkin
There is now good observational evidence suggesting thg 7] |n fact, the amount of tuning required may be much less
the early universe underwent a period of inflationary expang,an for scalar field driven inflation. A more detailed treat-
sion. Most theoretical models of inflation involve a scalar .1t of the slow-roll phase would be required to verify this

field rolling down its potential. The simplicity of such mod- One might worry that introducing B2 counterterm into

els is attractive bUt. they haye sg\(gral SEerious problems. AItlhe action would lead to observational consequences for, say,
these models require contrived initial conditions—no expla-

nation is given of why the scalar field was initially displaced- solar system physws. However, th_e effect of this term in flat
from the minimum of its potentidf Second, in order to space is just to introduce a scalar field whose mass is of order

obtain sufficient inflation and small CMB fluctuations, the mpI/(N\/__“)- Even thougha| is very large, this mass is
CMB potential has to be highly fine-tuned. Finally, models Still much too_ large to lead to observable .effects today. For
of scalar field driven inflation usually disregard the effect ofexample, taking=10 and« of order 10 gives a mass of
the large number of other fields in the universe. It is usuallyorder 10 °m, .
argued that the effect of such fields rapidly becomes negli- Our tensor propagator exhibits interesting analytic struc-
gible during inflation. However, as we have seen, this is noture. We have shown that ghosts can be removed without
necessarily true because the trace anomaly of matter fieldme-tuning, although this introduces a pair of complex con-
provides an additional contribution to the cosmological conjugate poles. Such poles were studied long ago and found to
stant constant during inflation. correspond to violations of causality. We have seem that this
In this paper, we have argued in favor of Starobinsky’scausality violation occurs on a time scdt\/— a, whereR
model of trace anomaly driven inflati¢t5] as an alternative is the Hubble time. This time scale is much smaller tifan
to scalar field driven inflation. In Starobinsky’s model, the when |«/| is large enough to bring the amplitude of metric
trace anomaly supports a de Sitter phase of expansion whigherturbations within the observational boulfid.
is unstable, but can be long lived. This model is better mo- At large p, the tensor propagator exhibits the behavior
tivated from the point of view of initial conditions since first discovered for flat space by Tomboul[i&2], namely
quantum cosmology predicts that the de Sitter universe casuppression of metric perturbations by matter fields. This
nucleate semi-classically via a four-sphere instartbr. suppression does not involve fine-tuning, as required for sup-
We have seen that this model admits a second instanton. Thigession of long-wavelength perturbations. The matter fields
can probably be interpreted in a similar way to themake the tensor propagator decay likeflogp) * at large
Coleman-de Luccid53] instanton, i.e., as describing the wave numbep. This behavior would be expected whenever
semi-classical decay of the de Sitter phase via nucleation ofthe largeN expansion is valid. Since we observe a large
pair of bubbles, each containing an open inflationary uninumber of matter fields, we have argued that this suppression
verse. Owing to the lack of an analytic solution for this in- should occur even if inflation were not driven by a trace
stanton, we have concentrated on the four sphere instanton émomaly. This implies that matter fields damp out the effects
this paper. of any short distance modifications of gravisuch as extra
During the de Sitter phase, particle masses would haveimensiony rendering them unobservable. We illustrated
been small compared with the spacetime curvature, so mattetiis effect by comparing the propagators for trace anomaly
fields would have been classically conformally invariant.driven inflation in four dimensions and in a Randall-
Moreover, we observe a large number of fields today andsundrum model. At largp, the tensor propagators are indis-
supersymmetry predicts that there should be many more, singuishable and at smafi they only differ when the entire
the largeN approximation is justified in studies of trace domain wall is smaller than the radius of curvature of the
anomaly driven inflation. This leads to a very attractive wayfifth dimension.
of calculating the effective action of matter fields during the  There are many directions in which our work could be
de Sitter phase, viz. The AdS/CFT correspondence. Usingxtended. For example, our use of AdS/CFT has restricted us
AdS/CFT, we have presented the first calculation of scalato a strongly coupled theory. However, we have argued that
and tensor metric propagators for trace anomaly driven inflasur 2-point functions are independent of the Yang-Mills cou-
tion, taking full account of the back reaction of matter fields.pling. Dependence on the coupling would be expected to
In order for the de Sitter phase to be unstable, it is necesshow up in higher order correlation functions of metric per-
sary for the coefficientd= aN?/(167?) of the VR term in  turbations. This implies that these higher order correlation
the trace anomaly to be negatii@ our conventions We
therefore included &2 counterterm in the action to control

18Even if the time scale for causality violation were the Hubble
time, it is not clear that this would contradict cosmological obser-
15Quantum cosmology can answer this question, but only for veryations and such violations would certainly not be observable in the
contrived false-vacuum potentigdls3,54. laboratory.
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functions would not be determined by the 2-point functions,Euclidean gravitational action is unbounded below. In our
so the spectrum of CMB fluctuations would exhibit non- case, the presence of tH? counterterm with a negative
Gaussianity. coefficient appears to make matters even worse. However, it

In the Einstein static universe, the strongly coupled Yangis known that Einstein gravity coupled toRf term can be
Mills theory exhibits a confinement/de-confinement transi-rewritten as Einstein gravity coupled to a scalar fi&], so
tion at a certain temperature, corresponding to two differenthe situation is probably no worse than usual.
bulk solutions in the AdS/CFT corresponderi&l]. One We have emphasized that there are two instantons in the
might therefore wonder whether there is a bulk solution dif-Starobinsky model. However, there is also a third, namely
ferent from pure AdS which could have a spherical boundarylat space viewed as the infinite radius limit of the four-
with an O(4) symmetric metric. If so, then one might have a sphere. This has infinitely negative Euclidean action. It
phase transition in a cosmological background. This does nahight therefore be necessary to invoke the anthropic prin-
appear possible. To see this, assume thatQf# isometry  ciple to explain why an inflationary universe is nucleated
group of the boundary implies a correspondi@@) isom-  rather than an empty flat universe. The situation is analagous
etry group in the bulk(we are thinking of a cutoff CFT, to false vacuum decalp3,54], for which the instanton de-
corresponding to a finite boundarBirkhoff's theorem then  scribing nucleation of a universe in the true vacuum state has
implies that the bulk is(Euclidean Schwarzschild-AdS. lower action than the instanton describing nucleation of a
However, in order for the instanton to have spherical topol-universe in the false vacuum state. Clearly there is plenty of
ogy, the orbits of theD(4) group have to degenerate at two scope for future work on understanding the quantum cosmol-
points on the instantofthe poleg and this is not possible if ogy of the Starobinsky model.
the bulk is Schwarzschild-AdS except when the mass param- Our approach was based on decomposing the metric per-
eter vanishes. In other words, there is a unique solypane  turbation into scalar, vector and tensor representations of
AdS) in the bulk and therefore no phase transition. This bulkO(5), or O(4,1). This made the AdS/CFT calculation rela-
solution corresponds to a deconfined phase of the Yangively straightforward, but means that our results are only
Mills theory (this is evident from the overal? factor in the  directly applicable to the initial de Sitter phase, although we
Yang-Mills effective action have argued that the amplitude of metric perturbations

When one has a choice between several cosmological irshould not increase during the slow roll phase. In order to
stantons, one usually argues that the instanton with the leaptoduce a detailed fluctuation spectrum that could be com-
Euclidean action is preferred, on the basis that this instantopared with observation, it would be necessary to do a calcu-
would give the dominant contribution to a gravitational pathlation based on a decomposition into scalar, vector and ten-
integral. Instantons which are saddle points, rather than locaor represenations @(4) (assuming a closed univejséf
minima of the action, would not be viewed as satisfactorythe AdS/CFT calculation could be extended to perturbations
These instantons would possess negative modes, corresporaieund a Euclidean background with a gené@gét) invari-
ing to directions in field space along which the action de-ant metric, then, by analytic continuation, one could calcu-
creases. Such instantons have been extensively discusseddre how the metric propagators evolve during the slow-roll
[55], where it was argued that they may be interpreted aphase. The perturbations spectrum at the end of inflation
describing quantum tunneling in an existing universe, rathecould then be used to predict the detailed spectrum of tem-
than creation of a universe from nothing. Since we haveperature fluctuations in the CMB. A@(4) approach would
found two instantons, it would be interesting to examinealso be necessary to investigate the double bubble instanton.
whether they have negative modes. This could give support
to the_ _idea that the _double bubble instanton describes an ACKNOWLEDGMENTS
instability of the de Sitter vacuum.
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