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Trace anomaly driven inflation
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This paper investigates Starobinsky’s model of inflation driven by the trace anomaly of conformally coupled
matter fields. This model does not suffer from the problem of contrived initial conditions that occurs in most
models of inflation driven by a scalar field. The universe can be nucleated semiclassically by a cosmological
instanton that is much larger than the Planck scale provided there are sufficiently many matter fields. There are
two cosmological instantons: the four sphere and a new ‘‘double bubble’’ solution. This paper considers a
universe nucleated by the four sphere. The AdS/CFT correspondence is used to calculate the correlation
function for scalar and tensor metric perturbations during the ensuing de Sitter phase. The analytic structure of
the scalar and tensor propagators is discussed in detail. Observational constraints on the model are discussed.
Quantum loops of matter fields are shown to strongly suppress short scale metric perturbations, which implies
that short distance modifications of gravity would probably not be observable in the cosmic microwave
background. This is probably true for any model of inflation provided there are sufficiently many matter fields.
This point is illustrated by a comparison of anomaly driven inflation in four dimensions and in a Randall-
Sundrum brane-world model.
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I. INTRODUCTION

Inflation @1# in the very early universe seems the on
natural explanation of many observed features of our u
verse, in particular the recent measurements of a Dop
peak in the cosmic microwave background fluctuations@2#.
However, while it provides an appealing explanation for s
eral cosmological problems, it provokes the natural ques
of why the conditions were such as to start inflation in t
first place.

The new inflationary scenario@3,4# was proposed prima
rily to overcome the problem of obtaining a natural exit fro
the inflationary era. In this model, the value of the scala
supposed to be initially confined to zero by thermal effec
As the universe expands and cools these effects disap
leaving the scalar field miraculously exposed on a moun
peak of the potential. If the low temperature potential is s
ficiently flat nearf50, then slow roll inflation will occur,
ending when the field reaches its true minimumfc . This
scenario seems implausible because a high tempera
would confine only the average or expectation value of
scalar to zero. Rather than be supercooled to a state wif
;0 locally, the field fluctuates and rapidly forms domai
with f near 6fc The dynamics of the phase transition
governed by the growth and coalescence of these dom
and not by a classical roll down of the spatially averag
field f @5#. Because this and other problems, new inflat
was largely abandoned in favor of chaotic inflation@6# in
which it is just assumed that the scalar field was initia
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displaced from the minimum of the potential. One attempt
explain these initial conditions for inflation in terms of qua
tum fluctuations of the scalar field seems to lead to ete
inflation at the Planck scale@7#, at which the theory breaks
down. Another attempt, using the Hartle-Hawking ‘‘n
boundary’’ proposal@8#, found that the most probable un
verses did not have enough inflation@9#. No satisfactory an-
swer to the question of why the scalar field was initia
displaced from the minimum of its potential has been fou

In this paper we will reconsider an earlier model, in whi
inflation is driven by the trace anomaly of a large number
matter fields. The standard model of particle physics conta
nearly a hundred fields. This is at least doubled if the st
dard model is embedded in a supersymmetric theory. Th
fore there were certainly a large number of matter fie
present in the early universe, so the largeN approximation
should hold in cosmology, even at the beginning of the u
verse. In the largeN approximation, one performs the pa
integral over the matter fields in a given background to o
tain an effective action that is a functional of the backgrou
metric:

exp~2W@g# !5E d@f#exp~2S@f;g# !. ~1.1!

One then argues that the effect of gravitational fluctuation
small in comparison to the large number of matter fluctu
tions. Thus one can neglect graviton loops, and look fo
stationary point of the combined gravitational action and
effective action for the matter fields. This is equivalent
solving the Einstein equations with the source being the
pectation value of the matter energy momentum tensor:
©2001 The American Physical Society04-1



n
ar
s
th

ely
m
a

y

in
tr
e
e

ta
m

l-

ed
so
rk
ld

al
io
e

k

ab
th
v

co
n
ng

in-
r-
el.
to
ic

f
in

the
er-

li-
for-
ive
ow
lar

is
us

ns
our

e
xi-
hink
in-
a
x-
ills

re
o
ba-
an-
in-

-

r-
he
hat
the
sor.
to
ler
icci
t of
m
ry-
e
es
es-
ere
ted
on.

ce
be

S. W. HAWKING, T. HERTOG, AND H. S. REALL PHYSICAL REVIEW D63 083504
Ri j 2
1

2
Rgi j 58pG^Ti j &, ~1.2!

where

^Ti j &52
2

A2g

dW

dgi j
. ~1.3!

Finally, one can calculate linearized metric fluctuatio
about this stationary point metric and check that they
small. This is confirmed observationally by measurement
the cosmic microwave background, which indicate that
primordial metric fluctuations were of the order of 1025 @10#.

Matter fields might be expected to become effectiv
conformally invariant if their masses are negligible co
pared to the spacetime curvature. Classical conformal inv
ance is broken at the quantum level@11# ~see @12,13# for
reviews!, leading to an anomalous trace for the energ
momentum tensor:

gi j ^Ti j &Þ0. ~1.4!

This trace is entirely geometrical in origin and therefore
dependent of the quantum state. In a maximally symme
spacetime, the symmetry of the vacuum implies that the
pectation value of the energy momentum tensor can be
pressed in terms of its trace:

^0uTi j u0&5
1

4
gi j g

kl^0uTklu0&. ~1.5!

Thus the trace anomaly acts just like a cosmological cons
for these spacetimes. Hence a positive trace anomaly per
a de Sitter solution to the Einstein equations@14#.

This is very interesting from the point of view of cosmo
ogy, as pointed out by Starobinsky@15#. Starobinsky showed
that the de Sitter solution is unstable, but could be long liv
and decays into a matter dominated Friedmann-Robert
Walker ~FRW! universe. The purpose of Starobinsky’s wo
was to demonstrate that quantum effects of matter fie
might resolve the big bang singularity.1 From a modern per-
spective, it is more interesting that the conformal anom
might have been the source of a finite but significant per
of inflation in the early universe. This inflation would b
followed by particle production and~p!reheating during the
subsequent matter dominated phase. Starobinsky’s wor
reviewed and extended by Vilenkin in@17#. For a more re-
cent discussion of the Starobinsky model, see@18#.

Starobinsky showed that the de Sitter phase is unst
both to the future and to the past, so it was not clear how
universe could have entered the de Sitter phase. Howe
this problem can be overcome by an appeal to quantum
mology, which predicts that the de Sitter phase of the u
verse is created by semi-classical tunneling from nothi

1Another paper@16# which discussed the effects of the tra
anomaly in cosmology failed to obtain non-singular solutions
cause it included a contribution from a classical fluid.
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This process is mediated by a four-sphere cosmological
stanton@17#. One of the results of this paper is that the fou
sphere is not the only cosmological instanton in this mod

In order to test the Starobinsky model, it is necessary
compare its predictions for the fluctuations in the cosm
microwave background~CMB! with observation. This was
partly addressed by Vilenkin@17#. Using an equation derived
by Starobinsky@19#, Vilenkin showed that the amplitude o
long wavelength gravitational waves could be brought with
observational limits at the expense of some fine-tuning of
coefficients parameterizing the trace anomaly. Density p
turbations were discussed by Starobinsky in@20#.

The analysis of Starobinsky and Vilenkin was comp
cated by the fact that tensor perturbations destroy the con
mal flatness of a FRW background, making the effect
action for matter fields hard to calculate. However, we n
have a way of calculating the effective action for a particu
theory, namelyN54 U(N) super Yang-Mills theory, using
the AdS conformal field theory~CFT! correspondence@21#.
In this paper we will calculate the effective action for th
theory in a perturbed de Sitter background. This enables
to calculate the correlation function for metric perturbatio
around the de Sitter background. We can then compare
results with observations. The fact that we are using theN
54 Yang-Mills theory is probably not significant, and w
expect our results to be valid for any theory that is appro
mately massless during the de Sitter phase. One might t
that our results could shed light on the effects of matter
teractions during inflation since AdS/CFT involves
strongly interacting field theory. However, as we shall e
plain, our results are actually independent of the Yang-M
coupling.

Our calculations will be performed in Euclidean signatu
~on the four-sphere!, and then analytically continued t
Lorentzian de Sitter space. The condition that all pertur
tions be regular on the four-sphere defines the initial qu
tum state for Lorentzian perturbations. The four-sphere
stanton is much larger than the Planck scale~since we are
dealing with a largeN theory!, so there is a clear cut sepa
ration into background metric and fluctuation.

We shall include in our action higher derivative counte
terms, which arise naturally in the renormalization of t
Yang-Mills theory. There are three independent terms t
are quadratic in the curvature tensors: the Euler density,
square of the Ricci scalar and the square of the Weyl ten
The former just contributes a multiple of the Euler number
the action. Metric perturbations do not change the Eu
number, so this term has no effect. The square of the R
scalar has the important effect of adjusting the coefficien
the ¹2R term in the trace anomaly. It is precisely this ter
that is responsible for the Starobinsky instability, so by va
ing the coefficient of theR2 counterterm we can adjust th
duration of inflation. The Weyl-squared counterterm do
not affect the trace anomaly but it can contribute to suppr
sion of tensor perturbations. The effects of this term w
neglected by Starobinsky and Vilenkin. They also neglec
the effects of the non-local part of the matter effective acti
We shall take full account of all these effects.
-
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Vilenkin showed that the initial de Sitter phase is fo
lowed by a phase of slow-roll inflation before inflation en
and the matter-dominated phase begins. Since the hor
size grows significantly during this slow-roll phase, it is im
portant to investigate whether modes we observe today
the horizon during the de Sitter phase or during the slow-
phase. If the present horizon size left during the de Si
phase, we find that the amplitude of metric fluctuations c
be brought within observational bounds ifN, the number of
colors, is of order 105. Such a large value forN is rather
worrying, which leads us to the second possibility, that
present horizon size left during the slow-roll phase. Our
sults then suggest that the coefficient of theR2 term must be
at most of order 108, and maybe much lower, butN is un-
constrained~except by the requirement that the largeN ap-
proximation be valid so that AdS/CFT can be used!. We also
find that the tensor perturbations can be suppressed inde
dently of the scalar perturbations by adjusting the coeffici
of the Weyl-squared counterterm in the action.

Inflation blows up small scale physics to macrosco
scales. This suggests that inflation may lead to observati
consequences of small-scale modifications of Einstein g
ity, such as extra dimensions. However, we find that
non-local part of the matter effective action has the effec
strongly suppressing tensor fluctuations on very small sca
a result first noted in flat space by Tomboulis@22#. This
suggests that any small-scale modifications to four dim
sional Einstein gravity would be unobservable in the CM
since matter fields would dominate the graviton propaga
at the scales at which such modifications might be expe
to become important. This result is probably not restricted
trace anomaly driven inflation since it is simply a cons
quence of the presence of a large number of matter fields
we have mentioned, there really are a large number of ma
fields in the universe and these will suppress small-sc
graviton fluctuations in any model of inflation.

We illustrate this point by considering a Randall-Sundru
~RS! @23# version of the Starobinsky model. In the R
model, our universe is regarded as a thin domain wal
anti–de Sitter~AdS! space. RS showed that linearized fo
dimensional gravity is recovered on the domain wall at d
tances much larger that the AdS radius of curvature,
gravity looks five dimensional at smaller scales. Therefore
the AdS length scale is taken to be small, then the RS mo
is a short distance modification of four dimensional Einst
gravity. We shall show that when the largeN field theory is
included, the effects of the matter fields dominate the
corrections to the graviton propagator and render them
observable. This work is an extension of our previous pa
@24# to include the effects of scalar perturbations and
higher derivative counterterms in the action.

This paper is organized as follows. We start in Sec. II
showing that the Starobinsky model has two instantons:
round four-sphere and a new ‘‘double bubble’’ instanton. W
consider only the four-sphere instanton in this paper. In S
III we use the AdS/CFT correspondence to calculate the
fective action of the largeN Yang-Mills theory on a per-
turbed four-sphere. Coupling this to the gravitational act
then allows us to compute the scalar and tensor grav
08350
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propagators on the four-sphere. In Sec. IV, we discuss
analytic structure of our propagators. The tensor propag
is shown to be free of ghosts. In Sec. V, we show how o
Euclidean propagators are analytically continued to Loren
ian signature. Section VI discusses two observational c
straints on the Starobinsky model, namely the duration
inflation and the amplitude of perturbations. In Sec. VII, w
use the RS version of the Starobinsky model as an exam
to illustrate how matter fields strongly suppress metric p
turbations on small scales. Finally, we summarize our c
clusions and suggest possible directions for future work.

II. O„4… INSTANTONS

A. Introduction

Homogeneous isotropic FRW universes are obtained
analytic continuation of cosmological instantons invaria
under the action of anO(4) isometry group. In other words
we are interested in instantons with metrics of the form

ds25ds21b~s!2dV3
2 . ~2.1!

We shall restrict ourselves to instantons with spherical top
ogy, for which b(s) vanishes at a ‘‘north pole’’ and a
‘‘south pole.’’ Regularity requires thatb8(s)561 at these
poles.~Instantons with topologyS13S3 may also exist.! The
scale factorb(s) is determined by Einstein’s equation2

Gi j 58pG^Ti j &, ~2.2!

where the right hand side involves the expectation value
the energy momentum tensor of the matter fields, which
are assuming to come from theN54 U(N) super Yang-
Mills theory. ^Ti j & can be obtained for the most gener
quantum state of the Yang-Mills theory consistent withO(4)
symmetry by using the trace anomaly and energy conse
tion, as we shall describe below.

B. Trace anomaly

The general expression for the trace anomaly of
strongly coupled largeN CFT3 was calculated using AdS
CFT in @25#. It turns out that it is exactly the same as the o
loop result for the free theory, which is given for a gene
CFT by the following equation@12,13#:

gi j ^Ti j &5cF2aG1d¹2R ~2.3!

whereF is the square of the Weyl tensor,

F5Ci jkl C
i jkl , ~2.4!

G is proportional to the Euler density,

G5Ri jkl R
i jkl 24Ri j R

i j 1R2, ~2.5!

2We use a positive signature metric and a curvature conven
for which a sphere or de Sitter space has positive Ricci scalar.

3We shall often refer to theN54 Yang-Mills theory as a CFT
even though it is not conformally invariant on the four-sphere.
4-3
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and the constantsa, c and d are given in terms of the field
content of the CFT by

a5
1

360~4p!2
~NS111NF162NV!, ~2.6!

c5
1

120~4p!2
~NS16NF112NV!, ~2.7!

d5
1

180~4p!2
~NS16NF218NV!, ~2.8!

whereNS is the number of real scalar fields,NF the number
of Dirac fermions andNV the number of vector fields. Th
coefficients a and c are independent of renormalizatio
scheme butd is not. We have quoted the result given b
zeta-function regularization or point splitting; the res
given by dimensional regularization has112 instead of
218 as the coefficient ofNV @12#. In fact,d can be adjusted
to any desired value by adding the finite counterterm

Sct5
aN2

192p2E d4xAgR2. ~2.9!

This counterterm explicitly breaks conformal invariance.a
is a dimensionless constant. The field content of the Ya
Mills theory isNS56N2, NF52N2 ~there are 4N2 Majorana
fermions, which is equivalent to 2N2 Dirac fermions! and
NV5N2. This gives

a5c5
N2

64p2
, d50. ~2.10!

We have used the coefficient218 for NV when calculating
d—this is the value predicted by AdS/CFT@25#. If d50,
then inflation never ends in Starobinsky’s model. We sh
therefore include the finite counterterm, which does
changea or c but gives

d5
aN2

16p2
. ~2.11!

When we couple the Yang-Mills theory to gravity, the pre
ence ofSct implies that we are effectively dealing with
higher derivative theory of gravity. It is, of course, arbitra
whether one regardsSct as part of the gravitational action o
as part of the matter action. We have adopted the latter
spective and therefore included an explicit factor ofN2 in the
action @since there areO(N2) fields in the Yang-Mills
theory#.

C. Energy conservation

Having obtained the trace of the energy-momentum t
sor, we can use energy-momentum conservation to obtain
full energy-momentum tensor. Introduce the energy den
r and pressurep, defined in an orthonormal frame by
08350
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^Tss&52r, ^Tab&5pdab . ~2.12!

The minus sign in the first expression arises because we
considering Euclidean signature. These must obey

2r13p5^T&, ~2.13!

and we also have the energy-momentum conservation e
tion

r81
3

b8
b~p1r!50. ~2.14!

Eliminating p gives an equation forr:

~b4r!852b3b8^T&. ~2.15!

Substituting in the expression for^T& and integrating gives

r5
3N2

8p2b4 F ~12b82!2

4

1aS b2b8b-2
1

2
b2b92

1bb82b92
3

2
b841b82D1CG . ~2.16!

The expression forp is easily determined from Eq.~2.13!.
The appearance of the constant of integrationC shows that
the quantum state can contain an arbitrary amount of ra
tion. SettingC5a/2 reproduces the energy-momentum te
sor for the vacuum state. The cosmology resulting from
trace anomaly in the presence of an arbitrary amount of
radiation was investigated in@16#. The cosmological solu-
tions obtained were generically singular. However, Starob
sky @15# showed if this null radiation is not present~i.e., if
C5a/2), then non-singular solutions can be obtained.

To conclude, we have found the energy-momentum ten
for a strongly coupled largeN Yang-Mills theory in the most
general quantum state that is consistent withO(4) symme-
try. The effects of strong coupling do not show up in o
energy-momentum tensor, which is of the same form as u
in @16,15#. In the next subsection we shall use this result
the Einstein equations to determine the shape of the ins
ton.

D. Shape of the instanton

Taking thess component of the Einstein equation give

Gss[3
b8221

b2
528pGr. ~2.17!

Substituting in our result forr gives
4-4
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12b82

b2
5

N2G

p F ~12b82!2

4b4
1aS b8b-

b2
2

b92

2b2

1
b82b9

b3
2

3b84

2b4
1

b82

b4 D 1
C

b4G . ~2.18!

Regularity at the poles of the instanton requiresb8→61 as
b→0. Substituting this into Eq.~2.18!, one finds thatb9
50 andC5a/2 are also required for regularity at the pole
In other words, the no boundary proposal has singled o
particular class of quantum states for us, namely those
do not contain any radiation. These are precisely the st
that can give rise to non-singular cosmological solutions
our picture this is because such cosmological solutions
be obtained from a Euclidean instanton.

It is convenient to introduce a length scaleR defined by

R25
N2G

4p
. ~2.19!

We can now define dimensionless variables

s̃5s/R, f ~ s̃ !5b~s!/R. ~2.20!

Equation~2.18! becomes

12 f 82

f 2
5

~12 f 82!2

f 4

12aF2f8f-

f2
2

f92

f2
12

f82f9

f3
23S f8

f D4

12
f82

f4
1

1

f4G.
~2.21!

The boundary conditions at the poles aref 50, f 8561, f 9
50 ~where a prime now denotes a derivate with respec
s̃). One solution to Eq.~2.21! is

f ~ s̃ !5sins̃, ~2.22!

which simply gives us a round four-sphere instanton. N
that the expression multiplyinga vanishes for this solution
Another simple solution is

f ~ s̃ !5s̃, ~2.23!

i.e. flat Euclidean space.
In order to integrate Eq.~2.21! numerically, we assume

that s̃50 is a regular ‘‘north pole’’ of the instanton. W
start the integration ats̃5e. The boundary conditions for th
integration are

f ~e!5e1
1

6
f-~0!e31••• ~2.24!

f 8~e!511
1

2
f-~0!e21••• ~2.25!
08350
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f 9~e!5 f-~0!e1••• . ~2.26!

We shall neglect the higher order terms~denotes by the el-
lipses! in our numerical integration. It is important to reta
all of the terms displayed in order to obtainf-(e)5 f-(0)
1••• from the equation of motion. Note thatf-(0) is a free
parameter. Our strategy is to choose the value off-(0) so
that the instanton is compact and closes off smoothly at
south pole.

The instanton is non-compact whenf-(0).0. The solu-
tion is flat Euclidean space whenf-(0)50. We shall there-
fore concentrate onf-(0),0. The four-sphere solution ha
f-(0)521. It is convenient to discuss the casesa.0 and
a,0 separately.

If a.0, then there are two types of behavior.~i! 21
, f-(0),0, the instanton is non-compact. Forf-(0) close
to 21, the scale factor increases to a local maximum a
then starts to decrease. However, before reachingf 50, the
scale factor turns around again and increases indefinitely~ii !
f-(0),21. These instantons are compact but do not hav
regular south pole sinceb8 diverges there. They are the an
logues of the singular instantons discussed in@9#.

If a,0, then there are two types of behavior.~i! 21
, f-(0),0. These instantons are compact with an irregu
south pole.~ii ! f-(0),21. The scale factor of these instan
tons increases to a local maximum, decreases to a local m
mum, then has another maximum before decreasing to
at the south pole, which is irregular. The instanton theref
has two ‘‘peaks.’’ There is a critical valueg(a) such that for
g, f-(0),21 the larger peak is near the north pole wh
for f-(0),g, the larger peak is near the south pole. It fo
lows that whenf-(0)5g the peaks have the same size a
the instanton is symmetrical about its equator with a regu
south pole. The scale factor is shown in Fig. 1.

To summarize, ifa,0, then there are two regular com
pact instantons, namely the round four-sphere and a
‘‘double bubble’’ instanton. We shall not have much to s
about the new instanton in this paper since the lack of
analytical solution makes dealing with perturbations of t
instanton rather difficult.

FIG. 1. Scale factorf (s̃) for a regular ‘‘double bubble’’ instan-
ton with a521 and f-(0)522.05.
4-5
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E. Analytic continuation

The four-sphere instanton can be analytically continued
Lorentzian signature by slicing at the equators̃5p/2 and
writing

s̃5
p

2
2 i t /R, ~2.27!

which yields the metric on a closed de Sitter universe:

ds252dt21R2 cosh2 ~ t/R!dV3
2 . ~2.28!

The Hubble parameter isR21, which is much smaller than
the Planck mass becauseN is large. A change of coordinat
takes one from a closed FRW metric to an open FRW me

The double bubble instanton can be analytically continu
across its ‘‘equator’’ to give a closed FRW universe. N
merical studies suggest that this universe rapidly collap
However, this instanton can also be continued to an in
tionary open universe~the details of the continuation are th
same as in@9#! and therefore may give rise to realistic co
mology.

III. METRIC PERTURBATIONS

A. Scalars, vectors and tensors

In this section we shall calculate correlation functions
metric perturbations around our four-sphere instanton. Th
can then be analytically continued to yield correlation fun
tions in de Sitter space. The metric on the perturbed fo
sphere can be written

ds25~R2ĝ i j 1hi j !dxidxj , ~3.1!

whereĝ i j denotes the metric on aunit four-sphere. The per
turbation can be decomposed into scalar, vector and te
parts with respect to the four-sphere:

hi j ~x!5u i j ~x!12¹̂( ix j )~x!1¹̂i¹̂jf~x!1ĝ i j c~x!.
~3.2!

The connection on the unit four-sphere is denoted¹̂. u i j is a
transverse traceless symmetric tensor with respect to
four-sphere:

¹̂iu
i j 5u i

i50, ~3.3!

where indicesi , j are raised and lowered withĝ i j . Herex i is
a transverse vector:

¹̂ix
i50. ~3.4!

There is a small ambiguity in our decomposition—it is i
variant underf→f1Y, c→c1lY whereY satisfies

¹̂i¹̂jY1lĝ i j Y50. ~3.5!
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This equation can only be solved whenl51. The solutions
are simply the regularp51 spherical harmonics onS4, i.e.,
the regularp51 solutions of

@¹̂21p~p13!#Y50. ~3.6!

The spherical harmonics are labeled with integersp,k,l ,m
with 0<umu< l<k<p. Hence there are five independe
spherical harmonics withp51, given in terms of spherica
harmonicsYklm on the three-sphere by

sinrY1lm , cosrY000 ~3.7!

where r is the polar angle on the four-sphere. These fi
harmonics correspond to gauge transformations involv
the five conformal Killing vector fields on the four-sphe
@26#. If we assume thatc is regular onS4, then we can
expand it in terms of spherical harmonics. We shall fix t
residual gauge ambiguity by demanding thatc contain no
contribution from thep51 harmonics.

It is possible to gauge awayf and x i through a coordi-
nate transformation on the four-sphere of the formxi→xi

2h i2] ih, whereh i is a transverse vector andh is a scalar.
For the moment we shall use a general gauge but later
will assume thatf andx i vanish.

B. Matter effective action

We need to calculate the action for metric perturbatio
The hardest part to calculate is the effective action for
matter fields. This can be expanded around a round fo
sphere background:

W5W(0)2
1

2E d4xAg^Ti j ~x!&hi j ~x!

1
1

4E d4xAgE d4x8Aghi j ~x!^Ti j ~x!Tkl~x8!&hkl~x8!

1••• . ~3.8!

Hereg denotes the determinant of the metric on the sphe
If we know the one and two point function of the CFT e
ergy momentum tensor on a roundS4, then we can calculate
the effective action to second order in the metric pertur
tion. The one point function is given by the conform
anomaly on the round four-sphere. In flat space, the 2-p
function is determined entirely by conformal invariance. O
the sphere, symmetry determines the 2-point function o
up to a single unknown function@27#. However, the sphere is
conformally flat so one can calculate the 2-point function
the sphere using a conformal transformation from flat spa
The energy-momentum tensor transforms anomalously
there will be a contribution from the trace anomaly in t
transformation. Therefore, the 2-point function on the sph
is determined by two quantities, namely the 2-point functi
in flat space, and the trace anomaly. For the super Ya
Mills theory that we are considering, both of these quantit
are independent of the Yang-Mills coupling. It follows th
the 2-point function on the sphere~or any other conformally
4-6
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flat space! must be independent of coupling. Therefore t
effective action will be independent of coupling to seco
order in the metric perturbation so the effects of strong c
pling will not show up in our results.

For the moment, we shall consider the four-sphere to h
arbitrary radiusR rather than using the value given by E
~2.19!. Introduce a fictional ball of AdS that has the sphere
its boundary. Letl̄ ,Ḡ be the AdS radius and Newton con
stant of this region. If we takel̄ to zero, then the sphere i
effectively at infinity in AdS, so we can use AdS/CFT
calculate the generating functional of the CFT on the sph
In other words,l̄ is acting like a cutoff in the CFT and takin
it to zero corresponds to removing the cutoff. However,
relation

l̄ 3

Ḡ
5

2N2

p
~3.9!

implies that if l̄ is taken to zero, then we must also takeḠ to
zero sinceN is fixed ~and large!.

The CFT generating functional is given by evaluating t
action of the bulk metricg that matches onto the metrich of
the boundary@30,31#, and adding surface counterterms
cancel divergences asl̄ ,Ḡ→0 @31,32,25,33–36#,

W@h#5SEH@g#1SGH@g#1S1@h#1S2@h#1S3@h#1Sct@h#,
~3.10!

whereSEH denotes the five dimensional Einstein-Hilbert a
tion with a negative cosmological constant,

SEH52
1

16pḠ
E d5xAgS R1

12

l̄ 2 D , ~3.11!

the overall minus sign arises because we are consideri
Euclidean signature theory. The second term in the actio
the Gibbons-Hawking boundary term@29#:

SGH52
1

8pḠ
E d4xAhK, ~3.12!

whereK is the trace of the extrinsic curvature of the boun
ary andh the determinant of the induced metric. The fir
two surface counterterms are

S15
3

8pḠ l̄
E d4xAh, ~3.13!

S25
l̄

32pḠ
E d4xAhR, ~3.14!

whereR now refers to the Ricci scalar of the boundary m
ric. The third counterterm is4

4In the prefactor of this equation,R refers to the radius of the
sphere. In the integrand it refers to the Ricci scalar.
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l̄ 3

64pḠ
@ log~ l̄ /R!2b#E d4xAhS Ri j R

i j 2
1

3
R2D ,

~3.15!

where Ri j is the Ricci tensor of the boundary metric an
boundary indicesi , j are raised and lowered with the boun
ary metric. This term is required to cancel logarithmic dive
gences asl̄ ,Ḡ→0. The finite part of this term is arbitrary
which is why we have included the constantb. The inte-
grand of this term is a combination of the Euler density a
the square of the Weyl tensor. The former just contribute
constant term to the action but the latter may have impor
physical effects so we shall include it. For a pure grav
theory, adding a Weyl squared term to the action results
spin-2 ghosts in flat space but we shall see that this is not
case when the Yang-Mills theory is also included. The fin
countertermSct is the finiteR2 counterterm defined in Eq
~2.9!.

When the four-sphere boundary is unperturbed, the me
in the AdS region is

ds25 l̄ 2~dy21sinh2yĝ i j dxidxj !, ~3.16!

and the sphere is aty5y0, where y0 is given by R

5 l̄ sinhy0. Note thaty0→` as l̄ →0 sinceR is fixed. In order
to use AdS/CFT for the perturbed sphere, we need to kn
how the metric perturbation extends into the bulk. This
done by solving the Einstein equations linearized about
AdS background.

Our first task is therefore to solve the Einstein equatio
in the bulk to find the bulk metric perturbation that a
proacheshi j on the boundary. We shall impose the bounda
condition that the metric perturbation be regular through
the AdS region. The most general perturbation of the b
metric can be written

ds25 l̄ 2~dy21sinh2yĝ i j dxidxj !1Ady2

12Bidydxi1Hi j dxidxj . ~3.17!

The first step is to decompose the bulk metric fluctuation i
scalar, vector and tensor parts with respect to the fo
sphere:

Hi j ~y,x!5u i j ~y,x!12¹̂( ix j )~y,x!

1¹̂i¹̂jf~y,x!1ĝ i j c~y,x!. ~3.18!

The connection on the four-sphere is denoted¹̂. Hereu i j is a
transverse traceless symmetric tensor with respect to
four-sphere,

¹̂iu
i j 5u i

i50, ~3.19!

where indicesi , j are raised and lowered withĝ i j . x i is a
transverse vector:

¹̂ix
i50. ~3.20!
4-7
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We can also decomposeBi into a transverse vector and
scalar:

Bi5B̂i1] iB. ~3.21!

The quantities that we have introduced are gauge depen
If we perform an infinitesimal change of coordinate, then
five dimensional metric perturbation undergoes the ga
transformation

dgmn→dgmn1¹̄mjn1¹̄njm . ~3.22!

We are using Greek letters to denote five dimensional in

ces.¹̄ is the connection with respect to the background A
metric. The gauge parametersjm can be decomposed wit
respect to the four-sphere.jy is a scalar andj i can be de-
composed into a transverse vector and a scalar. Thus in t
we have four scalar degrees of freedom in our metric per
bation but there are two scalar gauge degrees of freedom
we can only expect two gauge invariant scalars. Similarly
have two vectors in our metric perturbation, but one vec
gauge degree of freedom, so there is only one gauge inv
ant vector quantity. The tensor part of the metric perturbat
is gauge invariant. It is easy to check that the followi
scalar quantities are gauge invariant:

C1[A2]yS c

coshy sinhyD , ~3.23!

C2[B2
1

2
]yf2

c

2 coshy sinhy
1cothy f. ~3.24!

Note that the residual gauge invariance discussed in
III A is also present here—we shall have more to say ab
this later on.

The gauge invariant vector quantity is

Xi[B̂i2]yx i12 cothyx i . ~3.25!

The gauge invariant tensor isu i j .

C. Solving the Einstein equations: Scalars and vectors

The Einstein equation in the bulk is

Rmn2
1

2
Rgmn5

6

l̄ 2
gmn . ~3.26!

We want to solve this such that our metric matches onto
perturbed metric on the four sphere boundary. The solu
for the unperturbed sphere is simply AdS. Denote this ba
ground metric byḡmn . Linearizing around this backgroun
yields the equation

¹̄m¹̄rdgrn1¹̄n¹̄rdgrm2¹̄2dgmn2¹̄m¹̄ndgr
r

5
2

l̄ 2
dgmn2

2

l̄ 2
ḡmndgr

r . ~3.27!
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This equation is gauge invariant and can therefore be
pressed in terms of the gauge invariant variables. Theyy
component gives

¹̂2C122]y¹̂
2C224 coshy sinhy]yC128 sinh2 yC150.

~3.28!

The vector part of theiy components gives

¹̂2Xi523Xi . ~3.29!

The scalar part of theiy components gives

] i~coshy sinhyC122C2!50. ~3.30!

The tensor part of thei j components gives

]y
2u i j 24 coth2 yu i j 1cosech2 y¹̂2u i j 50. ~3.31!

The vector part of thei j components gives

~]y12 cothy!¹̂( iXj )50. ~3.32!

The scalar part of thei j components gives

¹̂i¹̂j~2C112]yC214 cothyC2!1ĝ i j @coshy sinhy]yC1

1~8 cosh2 y22!C112 cothy¹̂2C2#50. ~3.33!

Solving Eq.~3.32! yields

¹̂( iXj )~y,x!5
sinh2 y0

sinh2 y
¹̂( iXj )~y0 ,x!, ~3.34!

which is singular aty50. We must therefore take the solu
tion

¹̂( iXj )~y,x!50. ~3.35!

Thus the gauge invariant vector perturbation vanishes:
are free to chooseXi50.

Rearranging the equations for the scalars, one obtains

¹̂2C1524C1 ~3.36!

and

@coshy sinhy]y1~4 cosh2 y22!#~¹̂i¹̂j1ĝ i j !C150.
~3.37!

This has the solution

~¹̂i¹̂j1ĝ i j !C1~y,x!5
sinh2 y0cosh2 y0

sinh2 y cosh2 y

3~¹̂i¹̂j1ĝ i j !C1~y0 ,x!.

~3.38!

Once again, this is singular aty50 unless we take
4-8
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~¹̂i¹̂j1ĝ i j !C1~y,x!50. ~3.39!

There is a regular solution to this equation; however, it
simply an artifact of the ambiguity in our metric decomp
sition discussed in Sec. III A~see Eq.~3.5!#, so C1 can be
consistently set to zero. Equation~3.30! then implies thatC2
is an arbitrary function ofy. This is again related to an am
biguity in the metric decomposition: we are free to add
arbitrary function ofy to f without changing the metric per
turbation. Hence we can chooseC250.

To summarize, we have solved the bulk Einstein equa
for the gauge invariant vector and scalars, obtaining the
sult

C15C25Xi50. ~3.40!

So far we have been working in a general gauge. We s
now specialize to Gaussian normal coordinates, in which
definely to be the geodesic distance from some origin in o
ball of perturbed AdS space, and then introduce coordin
xi on surfaces of constanty ~which have spherical topology!.
In these coordinates we have

A5B5B̂i50. ~3.41!

The presence of a metric perturbation implies that the bou
ary of the ball is not at constant geodesic distance from
origin. Instead it will be at a position

y5y01j~x!. ~3.42!

We can now use our solution~3.40! to write down the bulk
metric perturbation in Gaussian normal coordinates:

c~y,x!5 f ~x!sinhy coshy, ~3.43!

f~y,x!5 f ~x!sinhy coshy1g~x!sinh2 y, ~3.44!

x i~y,x!5x̂ i~x!sinh2 y, ~3.45!

where f ,g are arbitrary functions ofx and x̂ i is an arbitrary
transverse vector function ofx. We now appear to have thre
independent scalar functions ofx to deal with ~namely f, g
and j). These should be specified by demanding that
bulk metric perturbation match onto the boundary me
perturbation. However, the boundary metric perturbation
specified by only two scalars. We therefore need ano
boundary condition: regularity at the origin. Solutions pr
portional to sinhycoshy are unacceptable since they lead t

ḡmndgmn}cothy, ~3.46!

which is singular aty50. We must therefore setf (x)50. To
first order, the induced metric perturbation on the bound
is

hi j ~x!5Hi j ~y0 ,x!12l 2sinhy0 coshy0ĝ i j j. ~3.47!

Recall thatHi j is given by Eq.~3.18!. The left hand side is
decomposed into scalar, vector and tensor pieces in
08350
s

n

n
e-

ll
e
r
es

d-
e

e
c
s
er
-

y

q.

~3.2!.5 We can substitute the solution for the bulk metr
perturbation into the right hand side and read off

c~x!52l 2sinhy0 coshy0 j~x!, ~3.48!

f~x!5g~x!sinh2 y0 , ~3.49!

x i~y,x!5x̂ i~x!sinh2 y. ~3.50!

These equations determinej(x), g(x) andx̂ i(x) in terms of
the boundary metric perturbation. In Sec. III A, we show
thatf(x) andx i(x) could be gauged away, so we shall no
set

g~x!50, x̂ i~x!50. ~3.51!

This implies that

f~y,x!5c~y,x!50, x i~y,x!50. ~3.52!

In other words, all scalar and vector perturbations vanish
the bulk: the bulk perturbation is transverse and tracele
The only degrees of freedom that remain are therefore
bulk tensor perturbation and the scalar perturbationj(x) de-
scribing the displacement of the boundary.

D. Tensor perturbations

The tensor perturbations are less trivial: we have to so
Eq. ~3.31!. This was done in@24# by expanding in tensor
spherical harmonicsHi j

(p) . These obey

ĝ i j Hi j
(p)~x!5¹̂iHi j

(p)~x!50, ~3.53!

and they are regular tensor eigenfunctions of the Laplac

¹̂2Hi j
(p)5@22p~p13!#Hi j

(p) , ~3.54!

where p52,3, . . . . We have suppressed extra labe
k,l ,m, . . . on these harmonics. The harmonics are orthon
mal with respect to the obvious inner product. Further pro
erties are given in@28#.

The boundary condition aty5y0 is6 u i j (y0 ,x)5u i j (x),
whereu i j (x) is the tensor part of the metric perturbation o

5We apologize for our slightly confusing notation:c(x), f(x)
and x i(x) in Eq. ~3.2! have, so far, nothing to do with the bul
quantitiesc(y,x), f(y,x) andx i(y,x).

6The boundary is actually aty5y01j(x), which gives higher
order corrections. These would appear at third order in the actio
couplings between tensors and scalars.
4-9
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the boundary. Imposing this condition together with regul
ity at the origin gives a unique bulk solution@24#

u i j ~y,x!5(
p

f p~y!

f p~y0!
Hi j

(p)~x!E d4x8Aĝukl~x8!Hkl
(p)~x8!,

~3.55!

where f p is given in terms of a hypergeometric function:

f p~y!5
sinhp12y

coshpy
2F1„p/2,~p11!/2,p15/2,tanh2y….

~3.56!

E. Gravitational action

We have now solved the Einstein equations in the b
and found a solution that matches onto the metric pertu
tion of the boundary. The next step is to compute the ac
of this solution. The bulk contribution from the Einstein
Hilbert action with cosmological constant is

Sbulk5
l̄ 3

2pḠ
E d4xAĝE

0

y01j

dy sinh4 y

2
1

16pḠ
E d5xAḡF2S R̄mn2

1

2
R̄ḡmn2

6

l 2
ḡmnD dgmn

2dgmnDL
mnrsdgrsG . ~3.57!

The term that is first order indgmn will vanish because the
background obeys the Einstein equation. The second o
term involves the Lichnerowicz operator~generalized to in-
clude the effect of a cosmological constant! DL , which is a
second order differential operator with the symmetry pro
erty

DL
mnrs5DL

rsmn . ~3.58!

This term vanishes because the perturbation is on shell,

DL
mnrsdgrs50. ~3.59!

We are left simply with the background contribution

Sbulk5
l̄ 3

2pḠ
E d4xAĝE

0

y01j

dy sinh4 y

5
l̄ 3V4

2pḠ
E

0

y0
dy sinh4 y1

l̄ 3

8pḠ
E d4xAĝ~4 sinh4 y0 j

18sinh3y0coshy0 j2!, ~3.60!

where V4 denotes the volume of a unit four-sphere.
course, in order to rearrange the Einstein-Hilbert action i
the form ~3.57! we have to integrate by parts several time
giving rise to surface terms. These will depend on deri
tives of the bulk metric perturbation evaluated at the bou
ary. Since there are only tensor degrees of freedom excite
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the bulk, only tensors will occur in these surface terms
there will be no dependence onj. The surface terms are

Ssur f5
l̄ 3

16pḠ
E d4xAĝS 3

4 l̄ 4
u i j ]yu i j 2

cothy0

l̄ 4
u i j u i j D .

~3.61!

The second contribution to the gravitational action is t
Gibbons-Hawking term. In evaluating this, it is important
remember that the unit normal to the boundary changes w
we perturb the bulk metric. The boundary is a hypersurfa
defined by the conditionf (y,x)[y2j(x)5y0. The unit nor-
mal is therefore given to second order by

n5 l̄ S 12
] ij] ij

2 sinh2 y
D dy2 l̄ ] ijdxi . ~3.62!

Note that this holds for a range ofy and therefore defines
unit covector field that is normal to the family of hypersu
facesf 5const. In other words, it defines an extension of t
unit normal on the boundary into a neighborhood of t
boundary. Written as a vector, the normal takes the form

n5
1

l̄
S 12

] ij] ij

2 sinh2 y
D ]

]y
2S ] ij

l̄ sinh2 y
2

u i j ~y,x!] jj

l̄ 3 sinh4 y
D ]

]xi
,

~3.63!

whereu i j (y,x) is the bulk tensor perturbation. The trace
the extrinsic curvature is

K[¹mnm. ~3.64!

In evaluating this one must take account of both the per
bation in the unit normal and the perturbation in the conn
tion. The result is

K5
4

l̄
cothy2

1

l̄ sinh2 y
¹̂2j2

coshy

l̄ sinh3 y
] ij] ij

1
1

l̄ 3 sinh4 y
u i j ¹̂i¹̂jj2

1

2 l̄ 5 sinh4 y
u i j ]yu i j

1
coshy

l̄ 5 sinh5 y
u i j u i j . ~3.65!

This has to be evaluated aty5y01j. To evaluateAg on the
boundary, we need to know the induced boundary me
perturbation tosecondorder:

hi j ~x!5u i j ~y0 ,x!12 l̄ 2 sinhy0 coshy0ĝ i j j

1 l̄ 2~2 sinh2 y011!ĝ i j j
21 l̄ 2] ij] jj1j]yu i j .

~3.66!

These results can now be substituted into the Gibbo
Hawking term, yielding
4-10
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SGH52
l̄ 3

8pḠ
E d4xAĝF4 coshy0 sinh3 y0

1sinh2 y0~16 sinh2 y0112!j

1coshy0 sinhy0~32 sinh2 y0112!j2

23 coshy0 sinhy0 j¹̂2j2
1

2 l̄ 4
u i j ]yu i j G .

~3.67!

We have integrated some terms by parts. So far, we h
expressed the scalar part of the action in terms ofj. How-
ever, we really want to express everything in terms of
induced metric on the boundary, which has scalar partc(x).
This can be done by taking the trace of Eq.~3.66! and solv-
ing for j in terms ofc to second order, giving

j5
c

2 l̄ 2 sinhy0 coshy0

2
~2 sinh2 y011!c2

8 l̄ 4 sinh3 y0 cosh3 y0

2
] ic] ic

32l̄ 4 sinh3 y0 cosh3 y0

. ~3.68!

The total contribution from the Einstein-Hilbert an
Gibbons-Hawking terms is given by the sum of the follo
ing:

Sgrav
(0) 52

3 l̄ 3V4

2pḠ
E

0

y0
dysinh2 y cosh2 y, ~3.69!

Sgrav
(1) 52

3 l̄ 3

4pḠ
E d4xAĝ

1

l̄ 2
coshy0 sinhy0 c, ~3.70!

Sgrav
(2) 52

l̄ 3

8pḠ
E d4xAĝF3~2 sinh2 y011!c2

2 l̄ 4 sinhy0 coshy0

2
3c¹̂2c

8 l̄ 4 sinhy0 coshy0

2
1

8 l̄ 4
u i j ]yu i j

2
cothy0

2 l̄ 4
u i j u i j G . ~3.71!

We can now expand the action in powers ofl̄ /R ~using
sinhy05R/ l̄ ). This gives terms that diverge asl̄ 24 and l̄ 22 as
l̄ goes to zero. For the scalar perturbation, these diverge
are cancelled by the countertermsS1 andS2. For the tensor
perturbation~dealt with in @24#!, the third countertermS3 is
needed to cancel a logarithmic divergence.7

7This counterterm is formed from the Euler number and
square of the Weyl tensor, neither of which is affected by sca
perturbations.S3 therefore does not contribute to the action f
scalar perturbations.
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The final term that we have to include in the effecti
action is the finite countertermSct . Evaluating this to second
order gives

Sct5
3aN2V4

4p2
1

3aN2

64p2R4E d4xAĝ

3S c¹̂4c14c¹̂2c1
2

3
u i j ¹̂2u i j 2

4

3
u i j u i j D . ~3.72!

The final result for the Yang-Mills effective action is

W5W(0)1W(1)1W(2)1••• ~3.73!

where

W(0)52
3bN2V4

8p2
1

3aN2V4

4p2
1

3N2V4

32p2
~4log221!,

~3.74!

W(1)5
3N2

16p2R2E d4xAĝ c, ~3.75!

W(2)52
3N2

64p2R4E d4xAĝ@c~¹̂212!c

2ac~¹̂414¹̂2!c#

1
N2

256p2R4 (
p

S E d4x8Aĝ u i j ~x8!Hi j
(p)~x8! D 2

3@C~p!12bp~p11!~p12!~p13!

24ap~p13!#, ~3.76!

where

C~p!5p~p11!~p12!~p13!@c~p/215/2!1c~p/212!

2c~2!2c~1!#1p412p325p2210p26. ~3.77!

The scalar perturbations have an action that can be expre
simply in position space. However, the tensor perturbati
are given in momentum space where they have an ac
with complicated non-polynomial dependence onp. This
corresponds to a non-local action in position space. At la
p it behaves likep4 log p, as expected from the flat spac
result for ^Ti j (x)Ti 8 j 8(x8)& @30#.

F. Metric correlation functions

Our theory is just four dimensional Einstein gravi
coupled to the Yang-Mills theory, with action

S52
1

16pGE d4xAgR1W, ~3.78!

where we have not included a Gibbons-Hawking term
cause the instanton has no boundary. Note that we are
working in Euclidean signature.W denotes the Yang-Mills
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effective action, including the effect of the finite counte
terms.G is the four dimensional Newton constant. In ord
to compute the two point correlation functions of metric p
turbations we need to calculate the terms inS that are qua-
dratic in the metric perturbations described byu i j andc.

To second order, the Einstein-Hilbert action of the p
turbed four-sphere is

SEH52
3V4R2

4pG
2

3

4pGE d4xAĝc1
1

16pGR2E d4xAĝ

3S 3

2
c¹̂2c12u i j u i j 2

1

4
u i j ¹̂2u i j D . ~3.79!

Adding the Yang-Mills effective actions gives the total a
tion. This has a non-vanishing piece linear inc. Varying c
fixes R to take the value given by Eq.~2.19!, which implies
that the linear term vanishes. Equation~2.19! can be used to
write G in terms ofR, which brings the quadratic part of th
scalar action to the form8

Sscalar5
3N2

128p2R4E d4xAĝ c~2a¹̂221!~¹̂214!c,

~3.80!

and the quadratic part of the tensor action becomes

Stensor5
N2

256p2R4 (
p

S E d4x8Aĝ u i j ~x8!Hi j
(p)~x8! D 2

3F~p,a,b!, ~3.81!

where

F~p,a,b!5p213p161C~p!

12bp~p11!~p12!~p13!24ap~p13!.

~3.82!

From these expressions we can read off the correlation fu
tions of metric perturbations:

^c~x!c~x8!&5
32p2R4

3N2~2a!~41m2!

3F 1

2¹̂21m2
2

1

2¹̂224
G , ~3.83!

where

8If a50, then this is almost exactly the same as the scalar ac
one would obtain for perturbations about a de Sitter solution s
ported by a cosmological constant. The only difference is that
overall sign is reversed. This implies that, with the exception of
homogeneous mode, the conformal factor problem of Euclid
quantum gravity is solved by coupling to the Yang-Mills theo
whena50.
08350
r
-

-

c-

m25
1

2a
. ~3.84!

The tensor correlator is

^u i j ~x!u i 8 j 8~x8!&5
128p2R4

N2 (
p52

`

Wi ji 8 j 8
(p)

~x,x8!

3F~p,a,b!21, ~3.85!

where the bitensorWi ji 8 j 8
(p) (x,x8) is defined as

Wi ji 8 j 8
(p)

~x,x8!5 (
k,l ,m, . . .

Hi j
(p)~x!Hi 8 j 8

(p)
~x8!, ~3.86!

with the sum running over all the suppressed lab
k,l ,m, . . . of the tensor harmonics on the four-sphere.

IV. ANALYTIC STRUCTURE OF PROPAGATORS

A. Flat space limit

Before analyzing our correlation functions we shall co
sider the analagous functions in flat space. This will allow
to constrain the allowed values of the parametersa and b,
which will be important when we return to the de Sitter ca

Recall that in Eqs.~3.75!, ~3.76! and ~3.79!, the radiusR
is arbitrary. To avoid confusion, we shall now denote th
arbitrary radius byR̃ to distinguish it from the on-shell value
R, given by Eq.~2.19!. We can recover flat space results b
taking R̃→`. Before taking this limit, we first replace th
dimensionless momentump with the dimensionful momen-
tum k5p/R̃.

There is no conformal anomaly in flat space and the sc
c corresponds to a conformal transformation. Therefore,
only matter contribution to the scalar propagator comes fr
the term in the Yang-Mills action that breaks the conform
invariance, namely the finite countertermSct . The other con-
tribution to the scalar correlator comes from the Einste
Hilbert action. One obtains

^c~x!c~x8!&}
1

2]21M2
2

1

2]2
, ~4.1!

with a positive constant of proportionality.M2 is given by

M252
1

aR2
, ~4.2!

whereR is given by Eq.~2.19!, although we emphasize tha
we are now working in flat space. The second term in
propagator describes a massless scalar ghost. This ca
dealt with by gauge fixing the action. The first term is mo
worrying. If a.0, then it describes a tachyon. We rega
this as undesirable: we do not want flat space to be an
stable solution of our theory. We shall therefore always ta
a,0, which gives a massive scalar in flat space.
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For the tensor propagator, the limitR̃→` makes the co-
efficient of the third countertermS3 diverge. To cancel this
divergence, introduce a length scaler defined by

b5 log~r/R̃!. ~4.3!

The R̃ dependence in the coefficient of the third counterte
then drops out, leaving a finite coefficient depending on
renormalization scaler. TheR̃→` limit of the propagator is
similarly well defined. The result is proportional to

1

k2$11R2k2@11 log~k2r2/4!#%
, ~4.4!

Our propagator is of exactly the same form as given by To
boulis @22# in his analysis of the effects of largeN matter on
the flat space graviton propagator. The propagator is defi
for k2.0. It can be analytically continued into the comple
k2 plane by taking a branch cut for the logarithm along t
negative real axis. There are generally two poles pres
with positions dependent onr. If r,2R/e, then these poles
are on the positive real axis. One has positive residue and
other negative residue, so they correspond to a tachyon a
ghost. Asr→2R/e, the two poles move together and mer
to form a double pole. Forr.2R/e, this double pole splits
into a pair of complex conjugate poles which move off in
the complexk2 plane. The modulusr and phaseu of k2 at
these poles are related by

r 5
sinu

R2u
. ~4.5!

u is given by solving

u cotu52S 11 log
r2

4R2
1 log

sinu

u D , ~4.6!

which is straightforward to analyze graphically. The soluti
obeysu→6p and r→0 asr→`.

The presence of tachyons for smallr was not mentioned
by Tomboulis since he implicitly assumedr@R. Since we
want flat space to be a stable solution of our theory, we s
taker.2R/e when we consider the propagator in de Sit
space. This corresponds to takingb. log 221.

It is interesting to note that changingr changes the coef
ficient of the third countertermS3 by a finite amount. This
corresponds to introducing a finite counterterm involving
Euler number and the square of the Weyl tensor. The for
is left unchanged by metric perturbations. However, the
ter is known to give rise to spin-2 ghosts in a pure grav
theory. Such ghosts do not appear in our model: couplin
the CFT removes them.

B. Scalar propagator on the sphere

Equation~3.83! is the propagator of scalar metric pertu
bations on a spherical instanton supported by the confor
anomaly of the CFT. The first term in the propagator d
08350
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scribes a particle with physical mass squaredm2/R2

5(2aR2)21. Since we are assuminga,0, we havem2

,0, so this particle is a tachyon. This is good because we
not want the spherical solution to be stable since that wo
lead to a Lorentzian de Sitter solution in which inflatio
never ends. Makinga more negative makes the tachyo
mass squared less negative, and therefore makes the ins
ity weaker. This suggests that ifa is sufficiently negative,
then inflation will last for a long time. We shall make th
more precise later.

The second term in the propagator describes a ghost.
is the normal scalar mode of gravity that is canceled by
scalar parts of the Faddeev-Popov ghosts@26#. These ghosts

supply a determinant that cancels the (¹̂214) factor in the
scalar action. The propagator can then be read off from
action

^c~x!c~x8!&5
32p2R4

3uauN2
~2¹̂21m2!21. ~4.7!

This propagator can be written in momentum space as

^c~x!c~x8!&5
32p2R4

3uauN2 (
p50

`
W(p)

„m~x,x8!…

p~p13!1m2
, ~4.8!

where the biscalarW(p) is a function of the geodesic distanc
m betweenx andx8, given by

W(p)
„m~x,x8!…5 (

k,l ,m
H (p)~x!H (p)~x8!, ~4.9!

where H (p) denote spherical harmonics on the four-sph
and the sum runs over the suppressed eigenvaluesk,l ,m.

Notice that there are many negative modes ifa is nega-
tive and close to zero. However, ifa,21/8, then only the
homogenous (p50) negative mode remains. To compute t
primordial density fluctuations in the microwave backgrou
radiation we are interested in the two-point function with t
homogenous mode projected out@37#. Notice also that the
Faddeev-Popov ghosts fix the residual gauge ambiguity
sociated with thep51 modes. These modes no longer ha
zero action and therefore cannot be regarded as gauge.

C. Tensor propagator on the sphere

The tensor propagator@Eq. ~3.85!# has an interesting ana
lytic structure. The momentum space propagator is prop
tional to F(p,a,b)21, whereF is given by Eq.~3.82!.

For a physical interpretation, we need to study the beh
ior of F in the complexlp plane, wherelp5p(p13)22 is

the eigenvalue of2¹̂2. We must therefore first write the
propagator as a function oflp . Since

p52
3

2
6A17

4
1lp, ~4.10!

we must choose a branch for the square root. The Euclid
propagator is defined as a sum overp52,3, . . . , forwhich
4-13
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FIG. 2. Inverse propagatorF(p,0,0) for
23/2<p<1/2 and 20.1,p,0.1. The graph
grows monotonically forp.0. There are zeros a
p'21.48~massive particle!, p'20.054~ghost!
andp50 ~massless graviton!.
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lp is positive. We must therefore take the positive sign
the square root. The analytic continuation into the comp
lp plane is given by taking a branch cut along the nega
axis for lp,217/4. Herep has a positive imaginary par
just above the cut and a negative imaginary part just be
the cut. Note that Re(p)>23/2. The branch cut correspond
to a continuum of multi-particle states. The imaginary part
the propagator is discontinuous across the cut. In general
absence of negative norm states implies that the imagin
part of the propagator just below the cut minus the imagin
part just above the cut should be positive, which is inde
the case for our tensor propagator.

It is also possible for the tensor propagator to have d
crete poles in thelp plane. Poles on the real axis are
particular importance. If such a pole occurs at positivelp ,
then it corresponds to a tachyon. In fact, since the gravito
de Sitter space has an equation of motion withlp522, it
seems appropriate to regard particles withlp.22 as tachy-
ons. If a pole on the real axis has negative residue, the
corresponds to a ghost.

Our propagator always has a pole atlp522 (p50),
corresponding to the massless graviton in de Sitter sp
Support for this interpretation comes from observing t
transverse traceless tensor harmonics have 5 degrees of
dom. However, the mode withp50 mixes with transverse
vector harmonics, which have 3 degrees of freedom. T
the p50 mode has 3 gauge degrees of freedom, leavin
physical degrees of freedom, as appropriate for a mass
spin-2 particle.

We shall start by considering the casea5b50, for
which there are two other poles in our propagator, one ap

FIG. 3. Analytic structure of the tensor propagator in the co
plex lp plane whena50. The dotted lines denotelp522. Poles
on the real axis to the right of this line correspond to tachyo
There is a branch cut atlp5217/4 and the thick line represents th
branch cut. There is always a massless graviton pole atlp522.
The diagram on the left is forb.0, when there is a single ghos
pole. Asb decreases, this pole moves to the right and another
emerges from the branch cut. This new pole corresponds to a
sive particle and appears in the second diagram, which is fob
50. The final diagram is forb,0, when the ghost pole crosse
throughlp522 and becomes a tachyon.
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'21.48 and the other atp'20.054. The former haslp'
217/4 ~but is not quite on the cut! and has positive residue
the latter haslp'22.16 and negative residue. The behav
of F(p,0,0) is plotted in Fig. 2. It is easy to show that sig
of the residues ofF21 with respect tolp are given by the
slope ofF as it passes through 0. The positions of the po
are shown in Fig. 3. Changing the value ofb ~still with a
50) changes the position and nature of these poles. Asb is
made more positive, the pole withp'21.48 gets absorbed
into the branch cut and the ghost moves towardsp521 ~i.e.
lp524). As b is made more negative, the pole withp'
21.48 moves towardsp521 while the other pole moves to
positivep ~i.e. lp.22), with its residue changing sign as
crossesp50. This pole corresponds to a tachyon. Recall t
tachyons were also present in flat space for sufficiently ne
tive b. In order for tachyons to be absent in flat space,
had to chooseb. log221. We have roughly the same re
striction onb in order to avoid spin-2 tachyons in de Sitt
space. We shall therefore exclude the caseb, log 221 as
unphysical.

Now consider the effect of turning ona,0. This has no
effect on the pole atlp522, so the massless graviton re
mains. Ifb50, then the two other poles move together asa
decreases and eventually coalesce into a double pole.
splits into a pair of complex conjugate poles that move
into the complexlp plane. Forb.0 then there is generally
only one pole present~in addition to the graviton pole! when
a50. As a is decreased, an additional pole~with positive
residue! emerges from the branch point and moves towa
the ghost pole, eventually coalescing with it. This then sp
into a pair of complex conjugate poles. Ifb,0, then the two
poles again move together, coalesce and then become a
of complex conjugate poles. In all cases, the effect of mak
a more negative is similar to the effect of increasingr in the
flat space propagator; i.e., pathologies such as ghosts
tachyons move off into the complex plane. Whenb is large,
the poles becomes complex fora,2b/8, so no fine-tuning
of the ratioa/b is involved.

D. Complex poles

We have seen how ghost poles can be moved off the
axis, becoming a pair of complex conjugate poles. The in
pretation of such a pair of poles has been reviewed by C
man @38#. The presence of complex conjugate poles w
~complex! masses given bym5a6 ib with b.0 implies
causality violation at lengths or times of the order of 1/Ab.
For Tomboulis’ flat space propagator, we haveb;R21, so

-
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4-14



th
-
b
a

a

ic
io

th

o
i
n

th
a
fo

to
sk
e

ar
d

n
m
tiv
he

he

lf
he

in
ut
d as

re

s at

t we
her

of
r

two
og-
ally
for
tor,
ere-
on-
iate
c-
ity
so
e

th
to

TRACE ANOMALY DRIVEN INFLATION PHYSICAL REVIEW D 63 083504
one expects causality to be violated at a length scale of
order ofR, which is roughlyN times the Planck length. Un
lessN is enormous, this is far less than any scale probed
particle physics experiments, so such causality violations
unobservable,9 as noted by Tomboulis.

For our de Sitter propagator, the complex poles ag
haveb}R21. If uau is large, thenb}A2aR21, so causality
violation occurs on a time scaleR/A2a. If uau is not large,
then causality violation occurs on a time scaleR. This is
much smaller than scales probed in experiments, but m
have observational consequences in the CMB sinceR is the
Hubble time and, therefore, the time scale for microphys
during inflation. However, we shall see in the next sect
that observations suggest thatuau is of order 109, so causality
violation occurs on a time scale much shorter than
Hubble time and is therefore completely unobservable.

V. LORENTZIAN TWO-POINT CORRELATORS

In this section we will show how the scalar and tens
propagators on the four-sphere instanton uniquely determ
the primordial CMB perturbation spectrum in Lorentzia
closed de Sitter space. The two-point correlators in
Lorentzian region are obtained directly from the Euclide
propagators by analytic continuation. We refer the reader
the details of this calculation to our previous paper@24#,
where we described the analytic continuation of the gravi
correlator in a Randall-Sundrum version of the Starobin
model. The techniques to perform these calculations w
developed in@39,40#.

A. Scalar propagator

We have the Euclidean correlator~4.8! as an infinite sum
over realp, wherep labels the level of the four-sphere scal
harmonics. Although this is a convenient labeling to stu
their analytic structure, the eigenspace of the Laplacian o
Sitter space suggests that the Lorentzian propagator is
naturally expressed in terms of an integral over real posi
p85 i (p13/2), corresponding to scalar harmonics of t
Lorentzian Laplacian with eigenvaluelp85(p8219/4). We
must therefore first analytically continue our result for t
propagators into the complexp plane before continuing to
Lorentzian signature. In terms of the labelp8, the Euclidean
scalar correlator~4.8! becomes

^c~V!c~V8!&52
32p2R4

3uauN2 (
p855i /2

1 i`
W(p8)

„z~V,V8!…

p8219/42m2
,

~5.1!

with

9In fact, these effects might be smaller than the effects of
gravitational field of subatomic particles, which would also lead
modifications of causality through tilting of light cones.
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W(p8)~z!5
5ip8~p8211/4!

3p2 2F1~3/21 ip8,3/22 ip8,2,12z!

~5.2!

andz5cos2(m/2). This biscalar is analytic in the upper ha
p8 plane. The coefficient of the biscalar is also analytic in t
upper half plane apart from a simple pole atp85L t , where

L t5 iA9

4
2m2. ~5.3!

This pole corresponds to the tachyon. Notice that the sum
Eq. ~5.1! starts atp855i /2 because we have projected o
the negative homogenous mode, which should be regarde
part of the background@37#.

Knowing the analytic structure of the correlator, we a
able to write the sum~5.1! as an integral along a contourC1
encircling the pointsp855i /2,7i /2, . . . ,ni/2, wheren tends
to infinity. This yields

^c~V!c~V8!&5
16ip2R4

3uauN2 EC1

dp8
~ tanhp8p!W(p8)~m!

p8219/42m2
.

~5.4!

The contourC1 can be distorted to run along the realp8 axis.
Apart from the tachyon pole, we encounter two extra pole
p853i /2 and p85 i /2 in the tanhp8p factor. Thep853i /2
pole corresponds to the negative homogenous mode tha
have projected out in the Euclidean correlator. On the ot
hand,W( i /2)(m)50, so the pole atp85 i /2 does not contrib-
ute to the propagator. The contribution from the closing
the contour in the upper halfp8 plane vanishes. Hence ou
final result for the Euclidean correlator reads

^c~V!c~V8!&5
16ip2R4

3uauN2 F E
2`

1`

dp8
~ tanhp8p!W(p8)~z!

p8219/42m2

2
p i

L t
~ tanhL tp!W(L t)~z!1

10i

m2p2G .

~5.5!

Finally one can rewrite Eq.~5.5! as an integral from 0 tò ,
over the eigenspace of the Lorentzian Laplacian, and the
discrete contributions from the tachyon pole and the hom
enous mode. The tachyon contribution grows exponenti
for timelike intervals. However, the relevant propagator
computing the CMB anisotropies is the Feynman propaga
which should be bounded both to the past and future. Th
fore, the propagator that we have obtained by analytic c
tinuation from the four-sphere does not obey the appropr
boundary conditions. In order to obtain the two-point fun
tion that describes the correlations in the primordial dens
fluctuation spectrum, we change the contour of integration
as to exclude the contribution from the tachyon pole. W
then obtain the Lorentzian Feynman scalar propagator

e
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^c~x!c~x8!&

52
32p2R4

3uauN2

3F E
0

1`

dp8
~ tanhp8p!WL(p8)

„z~x,x8!…

p8219/42m2
1

10

m2p2G .

~5.6!

The Lorentzian biscalarWL(p8) differs from W(p8) only by a
factor of 2 i and (tanhp8p)WL(p8)(z) equals the sum of the
degenerate scalar harmonics on closed de Sitter space
eigenvaluelp85(p8219/4) of the Laplacian. For spacelik
separations, we havez5cos2(m/2), where m(x,x8) is the
geodesic distance betweenx andx8. The correlator for time-
like intervals is obtained by settingr5p/22 i t , wherer is
the polar angle on the four-sphere. For a purely timel
separation, this givesz5cosh2@(t2t8)/2#.

B. Tensor propagator

The principles of the continuation of the tensor propaga
~3.85! are the same, but the calculation is more complica
We refer the interested reader to our previous paper@24# for
technical details. The differences between@24# and the
present paper are that we now have included the effect o
finite R2 counterterm, we have keptb in the coefficient of
the third counterterm arbitrary and we now treat the discr
poles in the propagator more carefully.

In @24# it was shown that the bitensorWi ji 8 j 8
(p8) (m) can be

unambiguously extended as an analytic function into the
per halfp8 plane. In addition, from Sec. IV C we know tha
its coefficientF(2 ip823/2,a,b)21 is analytic, apart from a
simple pole at p853i /2, corresponding to the massle
graviton in de Sitter space, and a pair of poles with comp
massesL1 andL252L̄1 ~we are assuming thata,2b/8
so that there are complex poles instead of a ghost!. These
poles always occur in the upper halfp8 plane.

Writing the sum in Eq.~3.85! as a contour integral yield

^u i j ~V!u i 8 j 8~V8!&52
64ip2R4

N2 E
C1

dp8tanhp8pWi ji 8 j 8
(p8)

~z!

3G~p8,a,b!21 ~5.7!

where

G~p8,a,b!5F~2 ip823/2,a,b!

5p8424ip832p82/225ip823/161~p8219/4!

3$4a1~p8211/4!@c~2 ip8/215/4!

1c~2 ip8/217/4!2c~1!2c~2!12b#%.

As we deform the contour towards the real axis we enco
ter, apart from the poles mentioned above, two extra pole
the tanhp8p factor. However, as explained in detail in@24#,
they do not contribute to the tensor fluctuation spectrum. T
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contribution from the closing of the contour in the upper h
p8 plane vanishes. UsingG(2 p̄8,a,b)5Ḡ(p8,a,b), one
can again rewrite the remaining integral over the real axis
an integral from 0 tò . The continuation ofz(x,x8) for
timelike intervals is the same as for the scalar two-po
function. We then obtain, for the Lorentzian tensor propa
tor,

^u i j ~x!u i 8 j 8~x8!&

5
128p2R4

N2 H E
0

1`

dp8~ tanhp8p!Wi ji 8 j 8
L(p8)

~z!

3R@G~p8,a,b!21#2pRi j i 8 j 8~z!22p

3R@~ tanhL1p!W
i ji 8 j 8

(L1)
~z! R(L1)#J . ~5.8!

In the integral, (tanhp8p)Wiji 8j8
L(p8)

„z(x,x8)… can be identified
with the sum of the degenerate rank-2 tensor harmonics
closed de Sitter space with eigenvaluelp85(p82117/4) of
the Laplacian. The integrand vanishes asp8→0, so the cor-
relator is well behaved in the infrared.

The first term in Eq.~5.8! represents the continuous tens
fluctuation spectrum. The second term describes the mas
graviton withRi j i 8 j 8(z) defined as the residue atp853i /2 of

Wi ji 8 j 8
(p8)

~z!
tanhp8p

G~p8,a,b!
. ~5.9!

The third term in Eq.~5.8! is the combined contribution from
the complex poles, withR(L1) denoting the residue o

G(p8,a,b)21 at p85L1. For large uau this mode grows
exponentially, implying that the analytically continue
propagator does not obey the boundary conditions for
Feynman propagator. This can be remedied by changing
contour of integration to exclude the contribution from t
complex poles, giving the correct propagator for two-po
tensor correlations in the microwave background:

^u i j ~x!u i 8 j 8~x8!&

5
128p2R4

N2 F E
0

1`

dp8~ tanhp8p!Wi ji 8 j 8
L(p8)

~z!

3R@G~p8,a,b!21#2pRi j i 8 j 8~z!G . ~5.10!

If uau is large, then the tensor propagator is proportiona
(uauN2)21. At large p8 the tensor propagator behaves lik
(p84 log p8)21, just as the Euclidean correlator~3.85!. This is
in contrast to the usualp822 behavior of the graviton propa
gator for de Sitter space with a cosmological constant.
4-16
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VI. OBSERVATIONAL CONSTRAINTS

A. Duration of inflation

The Starobinsky instability in four dimensions has be
analyzed carefully by Vilenkin@17#. He showed that the
scale factor grows exponentially until

t5t* ;
6H0

M2
~g21!, ~6.1!

where, for our model, the parametersH0 andM are given by

H05R21, M5~A22aR!21. ~6.2!

The parameterg is related to the initial perturbation from th
exact de Sitter solution

g5
1

2
log~2/d0!, ~6.3!

where

d05
H02H

H0
~6.4!

is the perturbation of the Hubble parameterH5ȧ/a at time
t50. If d0,0, then the solution eventually becomes singu
@15#, at least if one neglects spatial curvature~which should
be a good approximation if there is a lot of inflation!. We
shall therefore restrict ourselves tod0.0.

For t,t* , there is exponential growth with Hubble pa
rameterH0. The number ofe-foldings of inflation during this
phase is therefore

N15
6H0

2

M2
~g21!. ~6.5!

For our values ofH0 andM, this gives

N15212a~g21!. ~6.6!

For t.t* , there is a phase of slow-roll inflation in whic
the Hubble parameter changes fromH0 to M. The number of
e-foldings of inflation during this phase is@17#

N25212a log cosh 1'22.26a. ~6.7!

The slow-roll phase lasts untilt;6gH0 /M2. Once this
phase ends, the universe enters a matter dominated e
which the scale factor behaves as@15,17#

a~ t !}t2/3S 11
2

3Mt
sinMt1O~ t22! D . ~6.8!

The oscillations in the scale factor can drive particle prod
tion and reheating.

Vilenkin used the Wheeler-DeWitt equation to obtain
estimate ford0. Using his results, we obtain
08350
n

r
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d0;
1

A2N
, N15212a~ logN21!. ~6.9!

Quantum cosmology therefore predictsg@1. So far, the
only restriction onN is thatN must be large enough for ou
AdS/CFT calculation to be valid. This implies that logN is
not close to 1, so takinga,25 makesN1 sufficiently large
to solve the horizon and flatness problems.

Our correlation functions for metric perturbations we
calculated assuming a four-sphere~or de Sitter! background.
The present day horizon size left the horizon about
e-folds before the end of inflation. Hence the lon
wavelength temperature fluctuations in the microwave
carry the imprint of the first expansion phase providedN2
,50, which is true ifa.220. Because our correlation func
tions for metric perturbations were calculated assumin
four-sphere~or de Sitter! background, the predicted spectru
can then be directly compared with observation. Howev
our results will be modified for modes that left the horizo
during the slow-roll phase, when the background is not
actly de Sitter. Therefore, ifa<220, then it would be nec-
essary to do a calculation based on a scalar/vector/te
decomposition on thethree-sphere in order to enable us t
evolve the spectrum through the instability and predict
detail the CMB fluctuation spectrum.

B. Amplitude of perturbations

In order to compare our results with observations,
should first render the propagators dimensionless by divid
by R4. The correlators are then functions ofp divided byN2.
Long wavelength perturbations are insensitive to what h
pens after inflation, so these can be directly compared w
observation. For the tensors, long wavelength perturbat
correspond to modes on the four-sphere10 with p52. The
amplitude of the fluctuations can be obtained from the c
relator

u i j /R2;S 128p2

N2F~2,a,b!
D 1/2

. ~6.10!

In order to agree with observations this should not exc
1025, which requires

N2~2501240b240a!.1013. ~6.11!

Since we are assumingN is large, the obvious way to satisf
this inequality is to takeN5O(105). However, this implies
that the number of fields present is 11N25O(1011), which

10We should really be studying the Lorentzian correlators he
However, the overall amplitude of the Lorentzian and Euclide
propagators is the same.
4-17
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seems to contradict present day observations.11 Instead, we
could takeN2b to be of order 431010 or N2uau to be of
order 231011. The former corresponds to taking the coef
cient of the Weyl squared term in the action to be of ord
107 and the latter corresponds to taking the coefficient of
R2 counterterm to be of order 108.

Note that if we takeb to be large, then we would als
have to takea to be large in order to avoid ghosts in th
tensor propagator. Therefore the most natural choice is p
ably to take justa to be large. Note that suppression
tensor perturbations through a Weyl squared countert
~i.e. takingb large! was not mentioned in@15,17# since this
counterterm does not affect the coefficientsa,c,d in the trace
anomaly.

Turning to the scalar perturbations, we see that these
also be suppressed by takingN2uau to be large. Changingb
does not affect the scalars. Our scalar correlator suggests
taking N2uau to be of order 231011 should bring the scala
perturbations within observational bounds.

We conclude that ifN2uau is of order 231011, then we
can bring metric perturbations within the observation
bounds.N just has to be large enough to justify the largeN
approximation for the matter fields. For example, we co
takeN510 anda5223109. However, such a large valu
for a implies that all modes that we observe today must h
left the horizon during the slow-roll phase of inflation. O
results for the two-point correlators will be modified in th
case, since we assumed a four-sphere background in ou
culation. However, it is usually the case that the amplitude
perturbations is inversely proportional to the horizon rad
at which they left the horizon. The horizon radius increa
during slow-roll, so it seems likely that ifuau is very large,
the amplitude of perturbations will be smaller than the a
plitude obtained above. This argument is confirmed by
estimates of Vilenkin@17#. We conclude that takingN2uau
'231011 will bring the perturbations within observationa
bounds, and a far smaller value may in fact be sufficient

A coefficient of order 108 in the action is large, but this is
essentially the same fine-tuning problem that also appea
all scalar field models of inflation. In these scenarios, mat
ing the amplitude of perturbations to the Cosmic Backgrou
Explorer~COBE! typically requires a fine-tuned parameter
the action ofO(10212).

Note that takinguau to be very large implies that causalit
violations during inflation occur on a time scale much shor
than the Hubble time, so they would not have had a sign
cant effect on microphysics. One might worry that takinguau
to be large would imply significant deviations from Einste
gravity today, arising from the higher derivativeR2 term in
the action. In flat space, the only effect of this term is
introduce a scalar field with mass given by Eq.~4.2!. If we

11However, it is possible that these fields may have masses l
compared to the scale probed in colliders, i.e.,m@1 TeV, but small
compared with the scale at which inflation takes place,m
!1025mpl . Such fields would be effectively massless during infl
tion but unobservable today.
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take N510 anduau of order 109, then this scalar has mas
M'1026mpl , which is far too massive to be observe
nowadays.

VII. SHORT DISTANCE PHYSICS

A. Introduction

The observational constraints that we have derived do
depend on the detailed structure of our propagators and c
be obtained directly from the work of Starobinsky and Vile
kin. In this section we shall consider a new phenomen
revealed by our propagators, namely the suppression of s
distance metric perturbations by matter fields. This supp
sion is evident in Tomboulis’ flat space propagator~4.4!,
which falls off as (k4 logk2)21 for large momentumk. It is
also present in our tensor propagator,12 Eq. ~3.85!, which
falls off as (p4logp)21 at largep. This behavior has not bee
discussed in previous studies of the Starobinsky model
cause these have neglected the non-local part of the m
effective action.

Inflation acts as a ‘‘cosmic magnifying glass’’ by blowin
up microscopic physics to macroscopic scales. It is of
assumed that this might lead to some characteristic signa
in the CMB of new physics at short distances, e.g., ex
dimensions. Our results appear to contradict this inflation
dogma, because they show that at small scales, matter fi
will completely drown out the effects of any new gravit
tional physics. In this section we shall illustrate this pheno
enon by comparing our results with the results for a mo
with an extra dimension, namely the RS@23# version of the
Starobinsky model.

B. Randall-Sundrum model

The RS model consists of a five dimensional spacet
with negative cosmological constant, and a thin positive t
sion domain wall whose tension is fine-tuned to cancel
effect of the bulk cosmological constant. The ground st
solution of this model is a Poincare´ symmetric domain wall
separating two regions of AdS. In the RS version of t
Starobinsky model, we simply add aU(N) Yang-Mills
theory to the world volume of the domain wall. This mod
was extensively discussed in our previous paper@24#. For
related work, see@41–44#. The ~Euclidean! action is

S5Sbulk1Sbrane, ~7.1!

where

Sbulk52
1

16pG5
E d5xAgS R1

12

l 2 D
2

1

8pG5
E d4xAh@K#2

1 , ~7.2!

ge

-

12Once again, we shall concentrate on the Euclidean propaga
in the section. The Lorentzian propagators exhibit similar short d
tance behavior.
4-18



-

in

io
fla
r,
a
s
on
a

o
n

FT
ll
R
el
l

a

ve

bl

ur

t

ty.

is-
ect
ns
on
the

ely
al
is
ld
el
s a
ss
our

e
ven
as
ean
re.

the
n.

the

al
we
the
r-
in-

n-
ical

e-

al-
as

t
in-
ulk
all.
ing

tes

er-

TRACE ANOMALY DRIVEN INFLATION PHYSICAL REVIEW D 63 083504
Sbrane5
3

4pG5l E d4xAh1W@h#, ~7.3!

wheregmn denotes the five dimensional bulk metric andhi j
the metric induced on the domain wall,l is the radius of the
AdS solution,W is the generating functional of the Yang
Mills theory on the domain wall and@K#2

1 is the discontinu-
ity in the trace of the extrinsic curvature at the doma
wall.13

There are two simple solutions of the equations of mot
for this model. Since the trace anomaly vanishes in
space, a Poincare´ symmetric solution still exists. Howeve
on a domain wall with de Sitter geometry, the trace anom
acts like an extra contribution to the tension which permit
self-consistent de Sitter solution to the equations of moti
The Euclidean version of this is a spherical domain w
separating two balls of AdS. The radiusR of the domain wall
is given by@24#

R3

l 3
AR2

l 2
115

N2G5

8p l 3
1

R4

l 4
. ~7.4!

The metric in each bulk region is pure AdS:

ds25 l 2~dy21sinh2 ydV4
2!, ~7.5!

for 0<y,y0. The domain wall aty5y0, wherey0 is given
by R5 l sinhy0.

The RS model can be interpreted using the AdS/CFT c
respondence as four dimensional gravity coupled to a Ya
Mills theory with an ultraviolet cutoff@46,24#. The Yang-
Mills theory is two copies of theN54 U(NRS) super Yang-
Mills theory with NRS given by

l 3

G5
5

2NRS
2

p
. ~7.6!

We shall refer to this dual Yang-Mills theory as the RS C
in order to distinguish it from the theory on the domain wa
The Newton constant in four dimensions is given by the
valueG45G5 / l . The four dimensional dual of the RS mod
with a U(N) CFT on the domain wall is four dimensiona
gravity coupled to both the RS CFTand the U(N) CFT.
These two CFTs are rather different in that the former has
ultraviolet cutoff ~so its effective action doesnot behave as
p4 log p at largep) whereas the latter does not. The effecti
action of the RS CFT is proportional toNRS

2 , while the ef-
fective action of the other CFT is proportional toN2. This
implies that the effects of the RS CFT should be negligi
whenN@NRS. This is confirmed by expanding Eq.~7.4! in
powers ofN/NRS. At leading order, one recovers the fo
dimensional result~2.19!. Note thatN@NRS implies R@ l ;
i.e., the domain wall is large compared with the AdS leng
scale.

13See@45# for an explanation of why this term is required.
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C. Brane-world perturbations

The RS model is a short distance modification of gravi
For length scales much greater than the AdS lengthl, four
dimensional gravity is recovered. However, at shorter d
tances gravity becomes five dimensional. One might exp
this to lead to a characteristic signal in the CMB. This tur
out not to be true when the Yang-Mills theory is included
the domain wall. The reason is simple: at short distances,
matter contribution to the graviton propagator complet
dominates the contribution from the four or five dimension
Einstein-Hilbert action. One might think that this effect
peculiar to our model of anomaly driven inflation, and wou
not occur in other models of inflation. However, any mod
has to take account of the standard model, which contain
large number of fields. These matter fields will suppre
small scale metric perturbations in the same way as
Yang-Mills theory.

We shall illustrate this effect explicitly by calculating th
scalar and tensor graviton propagators for anomaly dri
inflation in the RS model. Our method will be the same
above; i.e., we shall calculate the propagators in Euclid
signature and analytically continue to Lorentzian signatu
The initial quantum state of perturbations is defined by
boundary condition of regularity on the Euclidean solutio
In the RS case, this condition of regularity extends into
bulk.

This work is an extension of our previous paper@24#,
which contained the first rigorous derivation of cosmologic
perturbations in RS cosmology. However, in that paper
only discussed tensor perturbations and did not include
finite R2 counterterm. Here, we shall include this counte
term and also consider scalar perturbations. Our method
volves integrating out metric perturbations in the fifth dime
sion. For alternative approaches to brane-world cosmolog
perturbations, see@47–52#.

The metric perturbation on the domain wall can be d
composed as in Sec. III A, giving a scalarc(x) and a tensor
u i j (x). Correlation functions of these quantities can be c
culated by integrating out the bulk metric perturbation,
explained in@24#. This is done by splitting the bulk metric
perturbationdg into a classical partdg0 and a quantum par
dg8. The classical part is the solution of the linearized E
stein equation in the bulk that is regular throughout the b
and matches onto the metric perturbation at the domain w
The quantum part vanishes at the domain wall. Perform
the path integral overdg8 gives some determinantZ0 that we
shall not worry about. The classical part simply contribu
the bulk action evaluated on shell:

E d@dg#e2Sbulk[dg]5Z0e2Sbulk[dg0] . ~7.7!

We conclude that the effective action governing metric p
turbations on the domain wall is

Se f f52Sbulk@dg0#1Sbrane. ~7.8!

The factor of 2 is necessary if we regardSbulk as the action
of just one of the bulk regions.Sbrane is straightforward to
compute using our result forW, Eq. ~3.73!. The bulk metric
4-19
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perturbationdg0 can be obtained from the results of Sec.
by replacing l̄ and Ḡ by l and G5. It follows that the bulk
metric perturbation is transverse traceless, and the scalc
arises from a perturbation in the position of the domain w
in Gaussian normal coordinates.Sbulk can be obtained from
Eqs.~3.69!, ~3.70! and~3.71! since the bulk action in the RS
model is exactly the same as the bulk action for
AdS/CFT correspondence.

From Se f f one can read off the metric propagators. T
Euclidean scalar correlator can be written in position sp
as

^c~x!c~x8!&5
32p2R4

3N2~2a!~41m2!
F 1

2¹̂21m2
2

1

2¹̂224
G ,

~7.9!

where

m25
1

2a S 112e22y0

11e22y0
D . ~7.10!

The tensor correlator is

^u i j ~x!u i 8 j 8~x8!&5
128p2R4

N2 (
p52

`

Wi ji 8 j 8
(p)

~x,x8!

3F~p,y0 ,b,a!21, ~7.11!

where

F~p,y0 ,a,b!5ey0 sinhy0S f p8~y0!

f p~y0!
14cothy026D 1C~p!

12bp~p11!~p12!~p13!24ap~p13!.

~7.12!

Recall thaty0 is defined byR5 lsinhy0. We have used Eq
~7.4! to write l 3/G5 in terms ofR. Here f p is defined in Eq.
~3.56!. Equation~7.12! was derived in@24# but the term in-
volving a was not included. In comparing our propagators
the RS model with those of the four dimensional model,
first render them dimensionless by dividing byR4.

The scalar correlator for the RS model is very similar
that of the four dimensional model, as given by Eq.~3.83!.
The only difference is they0 dependence of the tachyo
massm2. As y0→`, the four dimensional value is recov
ered. This is to be expected since, in this limit,R/ l→`,
which impliesN/NRS→` using Eq.~7.4!. We have already
discussed how the RS corrections are expected to be n
gible whenN@NRS. Note that asy0 increases from 0 tò ,
m2 just changes monotonically by a factor of 2/3.

The analytic structure of the RS tensor propagator is v
similar to the four dimensional case. There is always a p
at p50: this is the massless graviton of the RS mode14

Other poles behave as discussed in Sec. IV C.

14This pole was mistakenly identified as gauge in@24#.
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The tensor propagator appears to exhibit more interes
dependence ony0. The first term in Eq.~7.12! arises from
the gravitational part of the action, so this is where diffe
ences between a RS model and the four dimensional m
show up. Asy0→`, the first term tends top213p16, in
agreement with the four dimensional result@Eq. ~3.82!#. For
very smally0, the first term isp16. If y0 is held fixed but
large, then the first term grows quadratically withp as p is
increased but eventually becomes linear for sufficiently la
p, corresponding to gravity becoming five dimensional
short distances. Thus the difference between a RS model
four dimensional gravity might be expected to show up
1/p behavior in the tensor propagator at largep, rather than
the usual 1/p2 behavior. However, this neglects the effects
the matter fields, which are given by the other terms in E
~7.12!. At largep, C(p) grows likep4 log p and completely
dominates the first term. Therefore, at largep the tensor
propagator behaves like (p4logp)21 irrespective of whether
one is considering a RS model or four dimensional grav
The differences between the RS model and four dimensio
gravity are drowned out by the damping effect of mat
fields at short distances, rendering them unobservable.

RS corrections are expected to be important at distan
of order l. If we take R5 l , then all the tensor harmonic
have wavelengths smaller thanl, not just the largep ones.
Therefore, one might expect RS corrections to be import
at smallp for such a small domain wall. Surprisingly, th
turns out not to be the case, as shown in Fig. 4. This surp
ing behavior can be understood in the four dimensional d
picture. TakingR5 l corresponds toN2'6.4NRS

2 , so the
matter on the domain wall still dominates the effect of t
RS corrections. The RS corrections would be expected to
about as important as the matter on the wall whenNRS'N,
which corresponds toR'0.46l . In other words, the RS cor
rections only become large when theentire domain wallis
smaller than the AdS radius.

One might worry that introducing a cutoff into the matt
theory would spoil the damping at largep. However, if we
did have a momentum cutoffL, then we would needLR
@1 in order for field theory to be valid during inflation, as
always assumed. It therefore seems appropriate to takL

FIG. 4. F(p,y0,0,0) plotted againstp. The lower curve on the
left ~upper curve on the right! is for R@ l , when four dimensional
gravity is recovered. The other curve is forR5 l , when the RS
corrections might be expected to be large. However, they cle
have very little effect.
4-20
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;mpl , which corresponds topmax;N@1. Figure 4 shows
that the matter fields dominate the propagator even for q
small p, so introducing a cutoff would have little effect.

VIII. CONCLUSIONS

There is now good observational evidence suggesting
the early universe underwent a period of inflationary exp
sion. Most theoretical models of inflation involve a sca
field rolling down its potential. The simplicity of such mod
els is attractive but they have several serious problems.
these models require contrived initial conditions—no exp
nation is given of why the scalar field was initially displace
from the minimum of its potential.15 Second, in order to
obtain sufficient inflation and small CMB fluctuations, th
CMB potential has to be highly fine-tuned. Finally, mode
of scalar field driven inflation usually disregard the effect
the large number of other fields in the universe. It is usua
argued that the effect of such fields rapidly becomes ne
gible during inflation. However, as we have seen, this is
necessarily true because the trace anomaly of matter fi
provides an additional contribution to the cosmological co
stant constant during inflation.

In this paper, we have argued in favor of Starobinsk
model of trace anomaly driven inflation@15# as an alternative
to scalar field driven inflation. In Starobinsky’s model, t
trace anomaly supports a de Sitter phase of expansion w
is unstable, but can be long lived. This model is better m
tivated from the point of view of initial conditions sinc
quantum cosmology predicts that the de Sitter universe
nucleate semi-classically via a four-sphere instanton@17#.
We have seen that this model admits a second instanton.
can probably be interpreted in a similar way to t
Coleman–de Luccia@53# instanton, i.e., as describing th
semi-classical decay of the de Sitter phase via nucleation
pair of bubbles, each containing an open inflationary u
verse. Owing to the lack of an analytic solution for this i
stanton, we have concentrated on the four sphere instant
this paper.

During the de Sitter phase, particle masses would h
been small compared with the spacetime curvature, so m
fields would have been classically conformally invaria
Moreover, we observe a large number of fields today a
supersymmetry predicts that there should be many more
the largeN approximation is justified in studies of trac
anomaly driven inflation. This leads to a very attractive w
of calculating the effective action of matter fields during t
de Sitter phase, viz. The AdS/CFT correspondence. Us
AdS/CFT, we have presented the first calculation of sca
and tensor metric propagators for trace anomaly driven in
tion, taking full account of the back reaction of matter field

In order for the de Sitter phase to be unstable, it is nec
sary for the coefficientd5aN2/(16p2) of the ¹2R term in
the trace anomaly to be negative~in our conventions!. We
therefore included aR2 counterterm in the action to contro

15Quantum cosmology can answer this question, but only for v
contrived false-vacuum potentials@53,54#.
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this coefficient. We also took account of the other curvat
squared counterterms. We demonstrated that the ampli
of long wavelength metric perturbations could be broug
within observational bounds at the expense of fine-tuning
N2uau. This fine-tuning is no worse than required in sca
field driven inflation, and agrees with the results of Vilenk
@17#. In fact, the amount of tuning required may be much le
than for scalar field driven inflation. A more detailed trea
ment of the slow-roll phase would be required to verify th

One might worry that introducing aR2 counterterm into
the action would lead to observational consequences for,
solar system physics. However, the effect of this term in
space is just to introduce a scalar field whose mass is of o
mpl /(NA2a). Even thoughuau is very large, this mass is
still much too large to lead to observable effects today. F
example, takingN510 anda of order 109 gives a mass of
order 1026mpl .

Our tensor propagator exhibits interesting analytic str
ture. We have shown that ghosts can be removed with
fine-tuning, although this introduces a pair of complex co
jugate poles. Such poles were studied long ago and foun
correspond to violations of causality. We have seem that
causality violation occurs on a time scaleR/A2a, whereR
is the Hubble time. This time scale is much smaller thanR
when uau is large enough to bring the amplitude of metr
perturbations within the observational bound.16

At large p, the tensor propagator exhibits the behav
first discovered for flat space by Tomboulis@22#, namely
suppression of metric perturbations by matter fields. T
suppression does not involve fine-tuning, as required for s
pression of long-wavelength perturbations. The matter fie
make the tensor propagator decay like (p4logp)21 at large
wave numberp. This behavior would be expected whenev
the largeN expansion is valid. Since we observe a lar
number of matter fields, we have argued that this suppres
should occur even if inflation were not driven by a tra
anomaly. This implies that matter fields damp out the effe
of any short distance modifications of gravity~such as extra
dimensions!, rendering them unobservable. We illustrat
this effect by comparing the propagators for trace anom
driven inflation in four dimensions and in a Randa
Sundrum model. At largep, the tensor propagators are indi
tinguishable and at smallp they only differ when the entire
domain wall is smaller than the radius of curvature of t
fifth dimension.

There are many directions in which our work could
extended. For example, our use of AdS/CFT has restricte
to a strongly coupled theory. However, we have argued
our 2-point functions are independent of the Yang-Mills co
pling. Dependence on the coupling would be expected
show up in higher order correlation functions of metric pe
turbations. This implies that these higher order correlat

y

16Even if the time scale for causality violation were the Hubb
time, it is not clear that this would contradict cosmological obs
vations and such violations would certainly not be observable in
laboratory.
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functions would not be determined by the 2-point functio
so the spectrum of CMB fluctuations would exhibit no
Gaussianity.

In the Einstein static universe, the strongly coupled Ya
Mills theory exhibits a confinement/de-confinement tran
tion at a certain temperature, corresponding to two differ
bulk solutions in the AdS/CFT correspondence@31#. One
might therefore wonder whether there is a bulk solution d
ferent from pure AdS which could have a spherical bound
with anO~4! symmetric metric. If so, then one might have
phase transition in a cosmological background. This does
appear possible. To see this, assume that theO~4! isometry
group of the boundary implies a correspondingO~4! isom-
etry group in the bulk~we are thinking of a cutoff CFT,
corresponding to a finite boundary!. Birkhoff’s theorem then
implies that the bulk is~Euclidean! Schwarzschild-AdS.
However, in order for the instanton to have spherical top
ogy, the orbits of theO~4! group have to degenerate at tw
points on the instanton~the poles! and this is not possible i
the bulk is Schwarzschild-AdS except when the mass par
eter vanishes. In other words, there is a unique solution~pure
AdS! in the bulk and therefore no phase transition. This b
solution corresponds to a deconfined phase of the Ya
Mills theory ~this is evident from the overallN2 factor in the
Yang-Mills effective action!.

When one has a choice between several cosmologica
stantons, one usually argues that the instanton with the l
Euclidean action is preferred, on the basis that this instan
would give the dominant contribution to a gravitational pa
integral. Instantons which are saddle points, rather than l
minima of the action, would not be viewed as satisfacto
These instantons would possess negative modes, corresp
ing to directions in field space along which the action d
creases. Such instantons have been extensively discuss
@55#, where it was argued that they may be interpreted
describing quantum tunneling in an existing universe, rat
than creation of a universe from nothing. Since we ha
found two instantons, it would be interesting to exami
whether they have negative modes. This could give sup
to the idea that the double bubble instanton describes
instability of the de Sitter vacuum.

Any discussion of negative modes presupposes the e
tence of a gravitational path integral. This is not well defin
even for Einstein gravity since it is well known that th
08350
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Euclidean gravitational action is unbounded below. In o
case, the presence of theR2 counterterm with a negative
coefficient appears to make matters even worse. Howeve
is known that Einstein gravity coupled to aR2 term can be
rewritten as Einstein gravity coupled to a scalar field@56#, so
the situation is probably no worse than usual.

We have emphasized that there are two instantons in
Starobinsky model. However, there is also a third, nam
flat space viewed as the infinite radius limit of the fou
sphere. This has infinitely negative Euclidean action.
might therefore be necessary to invoke the anthropic p
ciple to explain why an inflationary universe is nucleat
rather than an empty flat universe. The situation is analag
to false vacuum decay@53,54#, for which the instanton de-
scribing nucleation of a universe in the true vacuum state
lower action than the instanton describing nucleation o
universe in the false vacuum state. Clearly there is plenty
scope for future work on understanding the quantum cosm
ogy of the Starobinsky model.

Our approach was based on decomposing the metric
turbation into scalar, vector and tensor representations
O(5), or O(4,1). This made the AdS/CFT calculation rel
tively straightforward, but means that our results are o
directly applicable to the initial de Sitter phase, although
have argued that the amplitude of metric perturbatio
should not increase during the slow roll phase. In order
produce a detailed fluctuation spectrum that could be co
pared with observation, it would be necessary to do a ca
lation based on a decomposition into scalar, vector and
sor represenations ofO(4) ~assuming a closed universe!. If
the AdS/CFT calculation could be extended to perturbati
around a Euclidean background with a generalO(4) invari-
ant metric, then, by analytic continuation, one could calc
late how the metric propagators evolve during the slow-r
phase. The perturbations spectrum at the end of infla
could then be used to predict the detailed spectrum of t
perature fluctuations in the CMB. AnO(4) approach would
also be necessary to investigate the double bubble instan
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