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We find that the definition of the heavy-quark fragmentation function given by Jaffe and Randall differs by
a factor of the longitudinal-momentum fractiarfrom the standard Collins-Soper definition. Once this factor
is taken into account, the explicit calculation of Braa&dral. is found to be in agreement with the general
analysis of Jaffe and Randall. We also examine the model of Petetsirfor heavy-quark fragmentation and
find that the quoted values of the width and of the value aifthe maximum are in error. The corrected values
are in agreement with the analysis of Jaffe and Randall.

DOI: 10.1103/PhysRevD.63.077503 PACS nunider12.39.Hg, 13.87.Fh, 14.40.Lb, 14.40.Nd

I. INTRODUCTION tion is different in the two approach¢8]. We find that the
width and value ofz corresponding to the maximum are
There does not yet exist a complete first-principles calcufeported incorrectly in the original paper of Petersaral.
lation of the nonperturbative transition of a part@merging  [5]. The corrected values are compatible with the Jaffe-
from a high energy scattering procg$s a hadron. Never- Randall form.
theless, a rigorous formal description of fragmentation func- In Sec. Il, we give an overview of the general HQET
tions in terms of operator matrix elements has been availabl@nalysis of Jaffe and Randall. We discuss the compatibility

for some time[1]. Additionally, fragmentation functions are Of the explicit calculation of Braatest al. with the Jaffe-
an integra' part of present day phenomeno'ogy_ Randall form in Sec. lll. Section IV contains a deSCl‘Iptlon of

When the parton involved in the fragmentation is a re'a.the model of Petersoet al. and a discussion of its relation to

tively heavy charm or bottom quark, there are simplificationsthe Jaffe-Randall form. Our findings are summarized in Sec.
in the treatment of fragmentation functions that allow one toV-
make additional theoretical progress. It is the case of heavy-
quark fragmentation that we consider here. Il. HQET ANALYSIS OF JAFFE AND RANDALL
A theoretical description of fragmentation that is based on

the operator-matrix-element definition of the fragmentation ; ; ;
e i provides a QCD-based interpretation of heavy-quark frag-
function in heavy-quark effective theoHQET) [2] has mentation in terms of the heavy-quark mass expansion. We

been presented by Jaffe and Rangall They show that the Fegin with the standard Collins-SopEt] definition of the
r

heavy-quarK expansion of the fragmentation f“f‘C“O” mus agmentation function for a heavy quark into a heavy had-
take a specific form that depends only on certain combin fon:

tions of variables. In this Brief Report, we point out that the ~
Jaffe-Randall definition of the fragmentation function differs ~ 2d-3
from the standard Collins-Soper definition by a factor of the f(z,u?)= N
longitudinal-momentum fractiom and that this difference is ¢
crucial to the proper interpretation of the Jaffe-Randall form. o
The work of Braateret al. [4] models the heavy-quark X{(0lh(An)[H'(P)){(H'(P)|h(0)|0)|, (1)
fragmentation function with a fixed-order perturbative calcu-
lation in the context of HQET. The results of this calculation ) ) o )
appear, at first sight, to be incompatible with the Jaffe-Where the trace is over color and Dirac indicég, is the
Randall form. However, after accounting for the differenceMumber of colorsh(x) is the heavy-quark field at space-time
between the Jaffe-Randall definition of the fragmentatiorP0Sitionx, P is the four-momentum of the heavy hadren,
function and the Collins-Soper definition, which is used by!S defined byn"=0 andn-P=1, andz=n-P/n-k, wherek
Braatenet al, we find agreement between the explicit calcu-iS the heavy-quark momentum. The stdt (P)) consists of

We now discuss the work of Jaffe and Randall which

> g—)\e”"zTr h
H'(p) m

lation and the Jaffe-Randall form. the heavy hadron plus any number of additional hadrons.
Perhaps the most W|de|y used parametriza’[ion for frag:rhe matrix element is understood to be evaluated in the
mentation functions is that of the model of Peterssral.  light-cone gaugen- A=0. Equation(1) is valid in d dimen-

[5], which is based on old-fashioned perturbation theory. Théions. However, in discussing the Jaffe-Randall analysis, we
parametrization of Peterset al. has been fit to charm and SPecialize to the case of four dimensions. A

bottom production datfs] and subsequently used as inputin ~ The definition(1) is normalized such that(z,x?) times
making predictions for hadron-, photo-, and electro-the parton-level cross section reproduces the full QCD cross
production of charm and bottom quarfs|. section, differential irg, in the collinear limit. By “collinear

It has been suggested that the parametrization of Petersdimit” we mean the limit in which \k? and the transverse
et al.is incompatible the Jaffe-Randall form. In particular, it componentrelative toP) of the 3-momentum ok are ne-
has been reported that the width of the fragmentation funcglected in comparison to the longitudinal component of the
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3-momentum ok. This normalization ensures thétz, 12 Here and throughout this paper, we use the ellipsis to denote
is a probability distribution irz (Ref.[1]).t terms of higher order in the hadron-mass expansion.

We note that the definitiofl) contains a factoz (in four In Ref.[3], it is argued that the matrix element in E4)
dimension} relative to the definition of the fragmentation is & dimensionless functiosF(\ ). This function may be
function used by Jaffe and Randf8]. This factorz will be  Written in terms of its Fourier transform:
important in comparing with the work of Braaten al. be-

low. _ - —ia\d
The analysis of Eq(1l) in HQET proceeds as follows. FNo) ZJ,wdae a(a), ©)

First, following the standard method for obtaining the heavy-

guark-mass expansion, one decomposes the fiet)l into  where

the sum of a large componehnt(x) and a small component

Ev(x): d=1-mg/my, (6)
h,(x)=e"Me* XpP, h(x) 2) andmy, is the hadron mass. Inserting E§) into Eq.(4), one

’ can evaluate the integral, with the result

h,(x)=e""™e* *P_h(x), 3 s, Z.[liz—mg/im,
- fzul)=58l—F5— ™

with mg the heavy-quark mas®.=(1+¢)/2, andv the

hadron’s four-velocity. The leading term in the mass expanA more complete analysis in RdB] also yields the next-to-
sion of f(x,u?) is contained in the large-large combination leading term in the hadron-mass expansion:

of fields:

. 1. .
f(z.u?)=2 Za(y) +b(y)+---|, ®
"f\(Z Z)ZL 2 d_)\ei)\/ZTrﬁe—imQ)\nq)
HITAN, A 27 -
H(p) wherey=(1/z—mqg/my)/ 5. The analysis in Ref[3] does
< (OIP.hOAMIH (PYWH' (P)IP.h(O)l0 not yield a precise prediction for the functional formao&nd
(OIP-hAmH'(PIXH'(P)|P(0)[0) b, but some general properties may be deduced. The function
+... (4) a describes, in the limit of infinite heavy-quark mass, the

effects of binding in the heavy hadron on the heavy-quark
momentum distribution. For a free heavy quaaky) would

The normalization on the right side of E() can be understood be a g function aty=1. In a heavy ha_ldr(_)n, _the binding
as follows. For simplicity, we consider a frame in whigh  SMears the heavy-quark momentum distribution. It can be

—(P*,P2/P*,0,) has no transverse componekts (k*,k™ .k, ). shown[3] that the distribution has a width

with P"=zk". In this frame,n=(0,1P*,0,) and A\=P*x",

where x is the space-time separation of the quark and antiquark Az~46 (9a
fields. In the collinear limitk™ andk, are neglected in comparison

with k™. In that limit, the full QCD cross section is reproduced by and a maximum at=z,,,,, Where

the parton-level cross section, times the Fourier transform in brack-

ets in Eq.(1), times a normalization factor. This normalization fac- 1—2Zpa 0. (9b)
tor includes 1/(P*) for the normalization of the hadron state "2

for the normalization of the quark state in the parton-level cross
section, 1/4 from the Fierz re-arrangement,, lgg

—(1/4)Y 47, - that factors the Dirac indices,N/ from the Fierz Braatenet al. [4] present a QCD-inspired model for the
rearrangemeiﬁaa,lbb,—>(1/Nc)Iabla,b, that fa_ctors the _color indi- fragmentation of a heavy quark into &wave light-heavy
ces, ﬁ“d_ ¥ for the quark sum-over-spinors projectoy-k  maegon, In this model, the fragmentation function is com-
~y .k ). in the .par.ton-level cross section. The full QCD cross Sec‘puted in perturbative QCIat the Born levelin an expan-
o el I e ongL o o e i ion n inverse powers of the heavy-Guark mass.

e T o o Braatenet al. define the fragmentation function as the col-
on conversion to a cross section that is differentiat.itn the full . L . . -

Iénear limit of the ratio of the cross section for producing a

QCD cross section, there is also an integral over the transver} d to th tion f duci KA
momentum of the hadron. This integration corresponds, in th adron 1o the cross section for producing a quark. As we
II, this definition is equivalent to the

frame in which the hadron has zero transverse momentum, to aﬂXpl_a'ned n Sec: . )
integration with respect td?~%(zk,) (Ref.[1]). The conversion to  C0llins-Soper definition(1) and leads to a fragmentation
an integration with respect td 2k, yields a factorz¢~2. (The ~ function that is a probability distribution in

integration over alk, corresponds to taking the quark and anti-  For the projection of theQq state onto the meson,
quark fields at transverse separatign=0.) Altogether, we obtaina  Braatenet al. take the standard nonrelativistic-bound-state
factorz8~3/(4N,), which is just the coefficient of the Fourier trans- €xpression. For example, in the case of%& meson, they
form in Eq. (2). assume the Feynman rule for teH vertex to be

Ill. PERTURBATIVE MODEL
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8 R(0)ym e=(mZ+p2)/m3. (14)
25 RON 1 gy, (10) e
V3 Var Multiplying 1/(AE)? by a factor 1# for the longitudinal

) ) . o phase space, one arrives at the following ansatz for the frag-
whereR(0) is the radial wave function at the origin. From mentation functior{5]:

the terms of leading order in the heavy-quark mass expan-
sion, they obtain, in the case of'&, meson,

Dg(2)= : 15
1(1-y)? o(? Z[1-1/z—el(1-2)]? (19
L ,
N5 y® (3y™+4y+8) where the normalizatioNl is fixed by the condition
1— 3
- Gy) (3y?+4y+8)|, (12) ; fdzDS(z)=1, (16)
y

and the sum extends over all hadrons that confain

— 2 2 3
whereN=2ag|R(0)|*/(8Lmy). Contrary to the claims in Ref5], we find thatDg(z) has

At first glance, this result may seem to contradict the

Jaffe-Randall analysis, which shows that the terms of |eadin§ g‘a>3_musr‘" a‘_zf_: ZITaX’ ""'tfh 3”}?;?; ff ta”d ab""l\‘fvth Ofth
order in the heavy-quark mass expansion give a contributio rderye. speciically, we Tind that the distance between the

that is contained entirely in the functiom(y) in Eq. (8).  Mflection points ODS(Z)_iS[(S_Z\E)B]M\/E and the full
However, the facto in the definition of the fragmentation Width at half maximum is dle. In these values afay and

function (1) is crucial here. From the definitions gfands, ~ the width, we have neglected terms of higher ordee.in
we havez:ll[l_ 5(1—)/)], and; S0, we can re-write Eq We can compare the Petersenal. form with the Jaffe-

(11) as Randall results by making use of E{6) and(14) to obtain
flz~— (3y?+4y+8), (12) , ,
6y It has been believed that the shape of the fragmentation func-
tion of Petersoret al. is incompatible with results obtained
which is of the form ofa(y) in Eq. (8). from heavy quark effective theory. However, it follows im-
mediately from Eq.(17) that our results for the width and
IV. PETERSON FRAGMENTATION Zmax Of the Peterson form are compatible with the Jaffe-

Randall constraint$9).
Finally, we examine the model of Petersenal. [5] for

the fragmentation of a fast-moving heavl qu&rkvith mass V. SUMMARY

Mg into a heavy hadro# (consisting ofQq) with massmy,
and a light quarlg with massm,. The basic assumption in
this model is that the amplitude for the fragmentation is pro
portional to 1/AE), whereAE=Ey+E4—Eq is the energy
denominator for the process in old-fashioned perturbatio
theory. It follows that the probability for the transitioQ
—H+q is proportional to 1/AE)?. Taking the heavy
quark’s momentum to define the longitudinal axis, one ca
expressAE in terms of the magnitude of the he'avy quark’s culation of Braateret al. is in agreement with the Jaffe-
momentumPg, the fractionz of the heavy quark’s momen- .
tum that is carried by the heavy hadron, and the transversFéamlaII analysis. .

' We have also examined the model of Petersoal. for

momentump, of the heavy hadron or the light quark: the heavy-quark fragmentation function. Our results for the
width and the value of corresponding to the maximum of
the fragmentation function of Petersenal. differ from the

We have examined the Jaffe-Randall analysis of the
_heavy-quark fragmentation function in HQET and found that
the Jaffe-Randall definition of the heavy-quark fragmenta-
ﬁion function differs from the standard Collins-Soper defini-
tion (1) by a factorz. This factor is crucial to the interpreta-
tion of the fragmentation function as a probability
distribution inz. We have found that, once this factor has
'heen taken into account, the explicit, perturbative model cal-

AE=\m{+p? +22P5+\m+p? +(1-2)%P5

_ \/HQTPZ values stated in the paper of Petersdral. [5]. Our values
Qe are consistent with constraints from the general analysis of
N ma+pf m§+ Pf - mZQ L Jaffe and Randall.
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