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Compatibility of various approaches to heavy-quark fragmentation
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We find that the definition of the heavy-quark fragmentation function given by Jaffe and Randall differs by
a factor of the longitudinal-momentum fractionz from the standard Collins-Soper definition. Once this factor
is taken into account, the explicit calculation of Braatenet al. is found to be in agreement with the general
analysis of Jaffe and Randall. We also examine the model of Petersonet al. for heavy-quark fragmentation and
find that the quoted values of the width and of the value ofz at the maximum are in error. The corrected values
are in agreement with the analysis of Jaffe and Randall.
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I. INTRODUCTION

There does not yet exist a complete first-principles cal
lation of the nonperturbative transition of a parton~emerging
from a high energy scattering process! to a hadron. Never-
theless, a rigorous formal description of fragmentation fu
tions in terms of operator matrix elements has been avail
for some time@1#. Additionally, fragmentation functions ar
an integral part of present day phenomenology.

When the parton involved in the fragmentation is a re
tively heavy charm or bottom quark, there are simplificatio
in the treatment of fragmentation functions that allow one
make additional theoretical progress. It is the case of hea
quark fragmentation that we consider here.

A theoretical description of fragmentation that is based
the operator-matrix-element definition of the fragmentat
function in heavy-quark effective theory~HQET! @2# has
been presented by Jaffe and Randall@3#. They show that the
heavy-quark expansion of the fragmentation function m
take a specific form that depends only on certain comb
tions of variables. In this Brief Report, we point out that t
Jaffe-Randall definition of the fragmentation function diffe
from the standard Collins-Soper definition by a factor of t
longitudinal-momentum fractionz and that this difference is
crucial to the proper interpretation of the Jaffe-Randall for

The work of Braatenet al. @4# models the heavy-quar
fragmentation function with a fixed-order perturbative calc
lation in the context of HQET. The results of this calculati
appear, at first sight, to be incompatible with the Jaf
Randall form. However, after accounting for the differen
between the Jaffe-Randall definition of the fragmentat
function and the Collins-Soper definition, which is used
Braatenet al., we find agreement between the explicit calc
lation and the Jaffe-Randall form.

Perhaps the most widely used parametrization for fr
mentation functions is that of the model of Petersonet al.
@5#, which is based on old-fashioned perturbation theory. T
parametrization of Petersonet al. has been fit to charm an
bottom production data@6# and subsequently used as input
making predictions for hadron-, photo-, and elect
production of charm and bottom quarks@7#.

It has been suggested that the parametrization of Pete
et al. is incompatible the Jaffe-Randall form. In particular,
has been reported that the width of the fragmentation fu
0556-2821/2001/63~7!/077503~4!/$20.00 63 0775
-

-
le

-
s
o
y-

n
n

t
-

.

-

-

n

-

-

e

-

on

c-

tion is different in the two approaches@3#. We find that the
width and value ofz corresponding to the maximum ar
reported incorrectly in the original paper of Petersonet al.
@5#. The corrected values are compatible with the Jaf
Randall form.

In Sec. II, we give an overview of the general HQE
analysis of Jaffe and Randall. We discuss the compatib
of the explicit calculation of Braatenet al. with the Jaffe-
Randall form in Sec. III. Section IV contains a description
the model of Petersonet al.and a discussion of its relation t
the Jaffe-Randall form. Our findings are summarized in S
V.

II. HQET ANALYSIS OF JAFFE AND RANDALL

We now discuss the work of Jaffe and Randall@3#, which
provides a QCD-based interpretation of heavy-quark fr
mentation in terms of the heavy-quark mass expansion.
begin with the standard Collins-Soper@1# definition of the
fragmentation function for a heavy quark into a heavy ha
ron:

f̂ ~z,m2!5
zd23

4Nc
F (

H8~p!
E dl

2p
eil/zTr n”

3^0uh~ln!uH8~P!&^H8~P!uh̄~0!u0&G , ~1!

where the trace is over color and Dirac indices,Nc is the
number of colors,h(x) is the heavy-quark field at space-tim
positionx, P is the four-momentum of the heavy hadron,n
is defined byn250 andn•P51, andz5n•P/n•k, wherek
is the heavy-quark momentum. The stateuH8(P)& consists of
the heavy hadron plus any number of additional hadro
The matrix element is understood to be evaluated in
light-cone gaugen•A50. Equation~1! is valid in d dimen-
sions. However, in discussing the Jaffe-Randall analysis,
specialize to the case of four dimensions.

The definition~1! is normalized such thatf̂ (z,m2) times
the parton-level cross section reproduces the full QCD cr
section, differential inz, in the collinear limit. By ‘‘collinear
limit’’ we mean the limit in whichAk2 and the transverse
component~relative toP) of the 3-momentum ofk are ne-
glected in comparison to the longitudinal component of
©2001 The American Physical Society03-1
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3-momentum ofk. This normalization ensures thatf̂ (z,m2)
is a probability distribution inz ~Ref. @1#!.1

We note that the definition~1! contains a factorz ~in four
dimensions! relative to the definition of the fragmentatio
function used by Jaffe and Randall@3#. This factorz will be
important in comparing with the work of Braatenet al. be-
low.

The analysis of Eq.~1! in HQET proceeds as follows
First, following the standard method for obtaining the hea
quark-mass expansion, one decomposes the fieldh(x) into
the sum of a large componenthv(x) and a small componen
hv(x):

hv~x!5e2 imQv•xP1h~x! ~2!

hv~x!5e2 imQv•xP2h~x!, ~3!

with mQ the heavy-quark mass,P65(16v” )/2, andv the
hadron’s four-velocity. The leading term in the mass exp
sion of f (x,m2) is contained in the large-large combinatio
of fields:

f̂ ~z,m2!5
z

4Nc
(

H8~p!
E dl

2p
eil/zTr n”e2 imQln•v

3^0uP1h~ln!uH8~P!&^H8~P!uP1h~0!u0&

1•••. ~4!

1The normalization on the right side of Eq.~1! can be understood
as follows. For simplicity, we consider a frame in whichP
5(P1,P2/P1,0') has no transverse component.k5(k1,k2,k'),
with P15zk1. In this frame, n5(0,1/P1,0') and l5P1x2,
where x is the space-time separation of the quark and antiqu
fields. In the collinear limit,k2 andk' are neglected in compariso
with k1. In that limit, the full QCD cross section is reproduced
the parton-level cross section, times the Fourier transform in bra
ets in Eq.~1!, times a normalization factor. This normalization fa
tor includes 1/(2P1) for the normalization of the hadron state, 2k1

for the normalization of the quark state in the parton-level cr
section, 1/4 from the Fierz re-arrangementI aa8I bb8
→(1/4)gab

1 ga8b8
2 that factors the Dirac indices, 1/Nc from the Fierz

rearrangementI aa8I bb8→(1/Nc)I abI a8b8 that factors the color indi-
ces, and 1/k1 for the quark sum-over-spinors projector (g•k
'g2k1) in the parton-level cross section. The full QCD cross s
tion is differential in the longitudinal momentum of the final-sta
hadron. SincedP152k1dz, we obtain an additional factor ofk1

on conversion to a cross section that is differential inz. In the full
QCD cross section, there is also an integral over the transv
momentum of the hadron. This integration corresponds, in
frame in which the hadron has zero transverse momentum, t
integration with respect todd22(zk') ~Ref. @1#!. The conversion to
an integration with respect todd22k' yields a factorzd22. ~The
integration over allk' corresponds to taking the quark and an
quark fields at transverse separationx'50.! Altogether, we obtain a
factorzd23/(4Nc), which is just the coefficient of the Fourier tran
form in Eq. ~1!.
07750
-

-

Here and throughout this paper, we use the ellipsis to den
terms of higher order in the hadron-mass expansion.

In Ref. @3#, it is argued that the matrix element in Eq.~4!
is a dimensionless functionF(ld). This function may be
written in terms of its Fourier transform:

F~ld!52E
2`

`

dae2 ialda~a!, ~5!

where

d512mQ /mH , ~6!

andmH is the hadron mass. Inserting Eq.~5! into Eq.~4!, one
can evaluate the integral, with the result

f̂ ~z,m2!5
z

d
âS 1/z2mQ /mH

d D1•••. ~7!

A more complete analysis in Ref.@3# also yields the next-to-
leading term in the hadron-mass expansion:

f̂ ~z,m2!5zF1

d
â~y!1b̂~y!1•••G , ~8!

where y5(1/z2mQ /mH)/d. The analysis in Ref.@3# does
not yield a precise prediction for the functional form ofa and
b, but some general properties may be deduced. The func
a describes, in the limit of infinite heavy-quark mass, t
effects of binding in the heavy hadron on the heavy-qu
momentum distribution. For a free heavy quark,a(y) would
be a d function at y51. In a heavy hadron, the bindin
smears the heavy-quark momentum distribution. It can
shown@3# that the distribution has a width

Dz;d ~9a!

and a maximum atz5zmax, where

12zmax;d. ~9b!

III. PERTURBATIVE MODEL

Braatenet al. @4# present a QCD-inspired model for th
fragmentation of a heavy quark into anS-wave light-heavy
meson. In this model, the fragmentation function is co
puted in perturbative QCD~at the Born level! in an expan-
sion in inverse powers of the heavy-quark mass.

Braatenet al.define the fragmentation function as the co
linear limit of the ratio of the cross section for producing
hadron to the cross section for producing a quark. As
explained in Sec. II, this definition is equivalent to th
Collins-Soper definition~1! and leads to a fragmentatio
function that is a probability distribution inz.

For the projection of theQq state onto the meson
Braatenet al. take the standard nonrelativistic-bound-sta
expression. For example, in the case of a1S0 meson, they
assume the Feynman rule for theQqH vertex to be
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d i j

A3

R~0!AmH

A4p
g5~11v” !/2, ~10!

whereR(0) is the radial wave function at the origin. Fro
the terms of leading order in the heavy-quark mass exp
sion, they obtain, in the case of a1S0 meson,

f̂ 'NF1

d

~12y!2

y6
~3y214y18!

2
~12y!3

y6
~3y214y18!G , ~11!

whereN52as
2uR(0)u2/(81pmq

3).
At first glance, this result may seem to contradict t

Jaffe-Randall analysis, which shows that the terms of lead
order in the heavy-quark mass expansion give a contribu
that is contained entirely in the functiona(y) in Eq. ~8!.
However, the factorz in the definition of the fragmentation
function ~1! is crucial here. From the definitions ofy andd,
we havez51/@12d(12y)#, and, so, we can re-write Eq
~11! as

f̂ /z'
N

d

~12y!2

y6
~3y214y18!, ~12!

which is of the form ofa(y) in Eq. ~8!.

IV. PETERSON FRAGMENTATION

Finally, we examine the model of Petersonet al. @5# for
the fragmentation of a fast-moving heavy quarkQ with mass
mQ into a heavy hadronH ~consisting ofQq̄) with massmH
and a light quarkq with massmq . The basic assumption in
this model is that the amplitude for the fragmentation is p
portional to 1/(DE), whereDE5EH1Eq2EQ is the energy
denominator for the process in old-fashioned perturba
theory. It follows that the probability for the transitionQ
→H1q is proportional to 1/(DE)2. Taking the heavy
quark’s momentum to define the longitudinal axis, one c
expressDE in terms of the magnitude of the heavy quark
momentumPQ , the fractionz of the heavy quark’s momen
tum that is carried by the heavy hadron, and the transv
momentump' of the heavy hadron or the light quark:

DE5AmH
2 1p'

2 1z2PQ
2 1Amq

21p'
2 1~12z!2PQ

2

2AmQ
2 1PQ

2

'
mH

2 1p'
2

2zPQ
1

mq
21p'

2

2~12z!PQ
2

mQ
2

2PQ
1•••

'2
mQ

2

2PQ
@121/z2e/~12z!#. ~13!

In the last line, we have setmH'mQ , neglectedp'
2 relative

to mQ
2 , and used the definition
07750
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e[~mq
21p'

2 !/mQ
2 . ~14!

Multiplying 1/(DE)2 by a factor 1/z for the longitudinal
phase space, one arrives at the following ansatz for the f
mentation function@5#:

DQ
H~z!5

N

z@121/z2e/~12z!#2
, ~15!

where the normalizationN is fixed by the condition

(
H

E dzDQ
H~z!51, ~16!

and the sum extends over all hadrons that containQ.
Contrary to the claims in Ref.@5#, we find thatDQ

H(z) has
a maximum atz5zmax, with zmax'12Ae, and a width of
orderAe. Specifically, we find that the distance between t
inflection points ofDQ

H(z) is @(822A3)/3#1/2Ae and the full
width at half maximum is 2Ae. In these values ofzmax and
the width, we have neglected terms of higher order ine.

We can compare the Petersonet al. form with the Jaffe-
Randall results by making use of Eqs.~6! and~14! to obtain

Ae'd. ~17!

It has been believed that the shape of the fragmentation fu
tion of Petersonet al. is incompatible with results obtaine
from heavy quark effective theory. However, it follows im
mediately from Eq.~17! that our results for the width and
zmax of the Peterson form are compatible with the Jaf
Randall constraints~9!.

V. SUMMARY

We have examined the Jaffe-Randall analysis of
heavy-quark fragmentation function in HQET and found th
the Jaffe-Randall definition of the heavy-quark fragmen
tion function differs from the standard Collins-Soper defin
tion ~1! by a factorz. This factor is crucial to the interpreta
tion of the fragmentation function as a probabili
distribution in z. We have found that, once this factor h
been taken into account, the explicit, perturbative model c
culation of Braatenet al. is in agreement with the Jaffe
Randall analysis.

We have also examined the model of Petersonet al. for
the heavy-quark fragmentation function. Our results for
width and the value ofz corresponding to the maximum o
the fragmentation function of Petersonet al. differ from the
values stated in the paper of Petersonet al. @5#. Our values
are consistent with constraints from the general analysis
Jaffe and Randall.
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