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Study of large-N Yang-Mills theory in 2 +1 dimensions
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The bound state problem if2+1)-dimensional largéN Yang-Mills theory is accurately solved using the
light-front Hamiltonian of transverse lattice gauge theory. We conduct a thorough investigation of the space of
couplings on coarse lattices, finding a single renormalized trajectory on which PoByareetries are en-
hanced in bound state solutions. Augmented by existing data from finEetclidean lattice simulations, we
obtain accurate estimates of the low-lying glueball spectrui-=ate.
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I. INTRODUCTION sector. From this, we obtain the glueball spectrum and the
heavy-source potential. Existing finité-data, combined

Yang-Mills theories are theoretically interesting in-2  with our explicit largeN results, are used to determined the
dimensions because their properties are very similar to théirst few coefficients of the N? expansion of glueball
corresponding theory in 81 dimensions, yet they can be masses in string tension units.
handled much more accurately; see Réf.for a review of In the next section we briefly review the transverse lattice
properties and extensive references. They appear to exhibitethod, the details of which have been covered elsewhere
linear confinement of heavy sources, a discrete spectrum ¢10,11,13. Section Il describes the numerical search for the
(gluebal) bound states, and a finite-temperature transitionrenormalized Hamiltonian via tests of Poincaneariance.
Teper has recently performed a comprehensive analysis, uSur thorough investigation yields a single, well-defined can-
ing the standard tools of Euclidea®U(N) lattice gauge didate for the renormalized trajectory in coupling space. Re-
theory, of (2+1)-dimensional Yang-Mills theories &=2, sults for the low-lying glueball eigenstates on this trajectory
3, 4, and 5. Hamiltonian lattice calculations have also re-and the first few coefficients of theN? expansion of their
cently been performed for finit&l [2,3] and, though less masses are given. This improves upon current estimates of
comprehensive, the results are mainly consistent. With dattine largeN limit, allowing us to accurately verify that cor-
at enough values dfl, one can contemplate an extrapolationrections to it are highly suppressed.
to N=co. This is a limit of special interest for “analytic”
approaches to gauge theory, which often take advantage of || TRANSVERSE LATTICE IN 2 +1 DIMENSIONS
largeN simplifications. In the absence of any other criteria
for the errors involved, the only way to know how well ~ Adapted to 2+1 Yang-Mills theory, the Bardeen-Pearson
“analytic” approaches are doing, for example those of Refstransverse lattice gauge theory consists of continuum gauge
[4,5], is to compare with lattice data and their extrapolationpotentials{Ay,A,} and space-time co-ordinat¢x®,x?}, to-
to largeN. gether with gauge-covariant transverse link varias®)

A related question is: how closelé= to smallN? This  running between sites at andx'+a on a transverse lattice
question can only be faithfully answered once there are acf spacinga. We also use the light-front combinations
curate results in both limits. TheN/expansior[6] is typi- = (x°=x?)/2, A*=(A%+A?)/2, etc. Discrete light cone
cally an asymptotic one and,priori, observables in the two quantizationDLCQ) [15] and Tamm-Dancoff cutoffs on the
limits need not be close in value. The existing fiftedata  number of partons are used as intermediate regulators. These
suggest strong suppression of corrections to the IArdjgrit are extrapolated following the analysis of REf1]. DLCQ
[1,7], a conclusion that was speculated about much earliemeans that we impose anti-periodic boundary conditions
[8], on the basis of less reliable lattice data. If true, this facx " ~x~+27K/P", where P" is the total light-front mo-
deserves a deeper understanding. mentum, and is an integer cutoffx™ remains continuous

The main objective of this paper is to address these issuemnd infinite, and is used as a canonical time variable to de-
for (2+1)-dimensional Yang-Mills theory with explicit cal- rive a light-front HamiltonianP~. The most general action,
culations atN=c. In Refs.[10,1]] (see alsd14]) we used from which P~ will be derived canonically, must allow all
the largeN limit of (2+1)-dimensional Yang-Mills as a test gauge invariant operators that respect the Poinsgneme-
for developing the transverse lattice method of solving noniries unviolated by thégauge invariant cutoffs. Since we
Abelian gauge theoriel2]. Based on an improved under- will explicitly extrapolate the DLCQ and Tamm-Dancoff
standing of the sources of error in that calculation, we pereutoffs, only local dimension 2 operators with respect to
form here a calculation at the next level of approximation.{x*,x”} co-ordinates will be included at the outset. In the
We obtain a renormalized light-front Hamiltonian on the discussion hereafter we assume this limit has be taken.
transverse lattice for both the pure-glue and heavy-source Near the transverse continuum lingit-0 corresponding
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to SU(N) Yang-Mills, one expectsM to take values in Ref.[13]. We only note here, that a poor choice of approxi-
SU(N). However, away from this limit one can allom to ~ Mation will simply mean that we cannot get close to the
be a generaNx N complex matrix, provided it still gauge renorm'allzed traject.ory, if it eX|§ts, and accuracy W!|| suffer
transforms covariantly. One must then search this largefccordingly. The principle physical approximation, itéd)
class of lattice theories for the renormalized trajectory thatS the “color-dielectric” expansion abouv =0, which is
leads one to the continuum lim&U(N) Yang-Mills theory. apphed_ to the light-cone gauge-fixed Hamiltonian rather than
Physical results are invariant along this trajectory and equd€ action. _ , o _
to the values in the full continuum limit. The trajectory may  We have studied the light-cone Hamiltonian derived from
be found by renormalization group transformations in thethe following SU(N) gauge-invariant action in the large-
neighborhood of a fixed poircontinuum limi). However, limit
this is difficult for the present formulation. There are
(roughly) two possibilities for the behavior d¥l at a given
point in the space of couplings constanis:is a massive
degree of freedomN] =0 is the classical minimujnor, the
“radial” part of M condenses. We expect the latter to be the B
case near th@=0 limit of Yang-Mills, where the action B %ZTF{F Fagl 2.1
should be minimized near values fin SU(N) rather than
M _=O. D_ealing wit_h the condensation of the _radi_al part, Olwherea e{0,2 and
using unitary matrices fok from the outsef9], is tricky in
light-front quantization. This is what makes an analysis near— L ) 1 o 1 1
a=0 difficult. On the other hand, it is straightforward to P«M (X)) =(daTIAX)M(XT) —IM(X)A(x"+a) (2.2
perform canonical light-front quantization aboid =0,
when this is a stable minimum. If the renormalized trajectoryis the tranvserse lattice covariant derivative. The “potential”
passes into such a region, we can then study it. term is

An alternative way to find the renormalized trajectory is
to use symmetry16]. Generally speaking, we can define a  V,1=u?Tr{M(x")MT(x*)}
guantum field theory by symmetry—in our case gauge and \
Poincarenvariance—and a particular continuum linfibere MM INVETV] N YRT!
may be more than oneThere is actually no reason why we * aNTr{M(X IMICAM M}
cannot take a partial continuum limit, a limit in some space-
time directions but not in o_thers, since Poincareariance + ETr{M(Xl)M(XlJFa)MT(XlJFa)MT(Xl)}
should relate them. Thus, in Rédfl1] we proposed to take aN
the continuum limit of Yang-Mills theory in théx®,x?} di-
rections, and tune couplings to impose full Poincianeari- + )\—B‘Z(TF{M(Xl)MT(Xl)})Z. (2.3
ance at finite transverse cutaf This procedure can be car- aN
ried out using light-front quantization aboMt= 0. Although
this regime apparently cannot contain the Poindavariant  In light-cone gaugeéA_=0 and after eliminatingh, by its
theory ata=0, numerical evidence for the existence of a(constraint equation of motion, the corresponding light-front
renormalized trajectory was given, and has been extended tdamiltonian is
3+1 Yang-Mills theory[13]. In this paper, we present con-

A:J’ dx%dx2>, D M (x)(D*M(x1) = V,u

clusive numerical evidence for the case of 2 Yang-Mills 2
- __ G oyl 1 oyl
theory. P => | dx — L RSy
For practical calculations, the remaining allowed opera- xt J-
tors in the action must be pared down to a finite number of a2 1
mt_zlep_endent parameters, and one must find some reasonable o Tr I ()T I (xY) + Vo (2.4)
criteria to test Poincar@variance. We now develop these 4N 92

necessary approximations, following closely our previous

work. -
JTxXH=iM(xY)a_MT(x)
A. Pure-glue sector I MT(xl—a) 3_M(xl—a)). (2.5
To reduce the space of couplings to a finite dimension, we
use various approximations: This is the most general Hamiltonian to ordéf that obeys

the other stated approximations. It can be light-front quan-
tized and studied in a suitable Fock space at general mo-
mentaP* andP?, as detailed in Ref.11]. The eigenvalues

of the exact Yang-Mills Hamiltonian yield the glueball
massesM through the relativistic dispersion relatio®™

The reasoning behind them is described in more detail in=(M?+ (PY)?)/2P*.

(1) quadratic canonical momentum operalof,

(2) light-front momentum-independent couplings,
(3) transverse locality, and

(4) expansion in gauge-invariant powersMf

076004-2



STUDY OF LARGEN YANG-MILLS THEORY IN 2+1 ... PHYSICAL REVIEW D 63 076004

B. Heavy sources TABLE I. The trajectory in coupling-constant space which

. - minimizes they? test of covariance.
We introduce heavy sources(x",x~,x!) on transverse X

sites. They are in the fundamental representation and of mass
p. We apply the same approximations that were made in the
pure-glue sector, but here we expand to ofdérall opera-  0.044 —0.052 -0.112 680.2 —0.661 —0.691 7.02
tors containing heavy-source fields, and work at leading non9©.089 -0.087 —0.109 396.8 —0.780 -0.811 7.85
trivial order in 1p. The heavy-source action &=A+A, 0.134 —0.108 —0.091 3.221 —0.896 —0.876 7.56

Iy P I3 ty tz X

where 0180 —0.147 —-0.107  4.401 —0.943 -0.927 655
0226 —0.204 —0.134 1785 —1.098 —1.167 8.02

A¢=de+dx‘2 (D,4) D b~ p2d' b 02765 —0.240 —-0.153 548 -0.989 -1.138 7.31

X1 03275 -0.308 -0.157 6.01 -1.181 —1.340 864

r

— —THFA () 5 WX} _ o

NG? in the purely transverse direction. Consequently, we measure
the string tension in this direction by compactifying space

T and calculating the winding mode spectrum.

- N—(;Tr{M T FB(X )M (X 5(x +a)} g g P

(2.6) C. Poincareinvariance

We test Poincaravariance of the theory by making mea-
and surements on eigenstatesPf and Py . It turns out that a
1y _ 1 1 1 1 rather simple set of tests suffices to obtain an accurate esti-
WD =MTEAMOA) +M M), @7 mate of thz renormalized trajectory. One of the approxima-
D,=d,+iA,(x}) is the usual covariant derivative for the tions made in arriving aP~ (2.4) is transverse locality.
plane!x°,x2}. After gauge fixingA_ =0, eliminatingA. in Therefore, it ma_lkes sense to expand eigenvalues at fixed mo-
powers ofM from its constraint equation, and discarding theMenta @, P?) in powers of transverse momentum thus

higher orders invl, the Hamiltonian resulting fromg which 2P P~ = GIN(M 2+ M2a2(PY2+ M2a*(PH*+- - .)

satisfies the approximations is 2.11)
) < G [Jotdi]  G® [Jiat| _ [ Juat
Ps :f dx 21 il (9—0 (7—0 N’ (9—0 Tr ﬁ—o Note thatG has dimensions of energy, a@#N is held finite
X o - - in the N—o limit.? My, M;,M,, ... are dimensionless
ot PT 4 27, (3T JF numbers which we calculate when diagonaliziRg. The
tVatp i pt b Wot Tro— - W simplest requirement of covariance is that
27, [JIT(xY) JT(x*+a 2 _

n WzTr[ a( M (xY) (a )MT(Xl)] 2.8 Mia’G*N—1=0. (2.12
with This ensures isotropy of the speed of light. The dimension-
less quantitya?G2N has already been determined above
J$t23++i¢3— o' (2.9 from the scale setting procedure via the string tension. Fur-

ther conditions come from higher order correctiongihin
Like P~, P can be studied in a suitable Fock space. The=d- (2.11). In this work we will use only the conditio®.12)
eigenvalues ob *P; , for co-moving heavy sources of ve- for the onvest-_mass_glueballs, together with c_ondltlons of
locity v*, are the usual excitation energies associated Witﬁotatlonal invariance in the heavy-source potential, to test the

the heavy-source potentigd4]. If two sources are separated SP3c€ 9f cquplings .dipi' If our reaspning Is correct and our
by na in the transverse directiog* and byL in the longitu- approximations valid, we should find a well-defined trajec-

dinal directionx?, then a rotationally invariant string tension tory on \.Nh'Ch .the cqndmons (212 are acquratgly
would imply that, for large separations satisfied—in practice we introduce)& test to quantify this.
' ' Moving along this trajectory should correspond to changing

v P, »oR, R= Ja?n?+ 2 (2.10 the gpacing. Eyentually th?s would take us to the trans_verse
continuum limit, but we will be prevented from reachiag

for the lowest eigenvalue. Demanding this rotational invari-= 0 by the restriction.?>0, a necessary condition for quan-
ance, then comparing resultsrat 0 with L=0, allows one tization aboutM =0.
to determinea in a dimensionful unitwe useG?N) inde-
pendent ofo. This fixes the relative scale betwegh and
x2, which will be needed for testing covariance. In practice it aG2—g? asa—0, but since we do not approaeh-0 we can-
is relatively difficult to calculate the heavy source potentialnot use the continuum gauge coupligg
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. ) .
FIG. 1. Minimum x? for a givenm andl,. In the blank region FIG. 2. Minimum x“ for a givenm and|.

to the right, tachyons appear in the spectrum. ) . ) )
will use the point of smallest lattice spacinqi€0.044) to

extract physical quantities.

Ill. RESULTS
A. x* charts B. Rotational invariance
It is con_venient to form dimensionless versions of the The heavy-source potential is displayed in Fig. 4. It shows
other couplings better restoration of spatial symmetry than previously ob-
5 tained[11]. The potential in the continuum spatial direction
mz=_H | — Ai N 3.1) x? is a fit to the lowest eigenvalue as a functionLobf the
G°N’ " aGN’ ' G2N’ ' form

P, =0.154 G°N+0.183/G*N— 0178 3.2
The basic technique we follow is to search this space, with voFs TV ' L 3.2

the x? test, for an approximation to a renormalized trajectory
on which observables show enhancement of space-time syrfine must be careful when interpreting E§.2) since the
metries violated by the cutoff. The X2 test is made up of Coulomb potential in 21 dimensions is |Ogarithmic. The
variables to test isotropy of the speed of light in dispersion oform (3.2) should be appropriate except at the very smallest
low-lying glueballs, rotational invariance of the string ten- L, where Coulomb corrections are expected. Thetéfm is
sion, and rotational invariance of the potential at intermedi-2 universal correction expected on the grounds of models of
ate source separations. Since we can expect to do better witlix-string oscillationd 18]. Universality implies that its co-
some variables than others, the weights are adjusted until wafficient should be invariant along the renormalized trajec-
produce a Sharp trajectory in Coup“ng space Whg%as tory. In faCt, we find that it varies SlOle, a Symptom that our
minimized to roughly one per effective degree of freedom. In@Pproximation to the renormalized trajectory is not an exact
fact, altering the weights typically changes the sharpness dicaling trajectory for this quantity and/or the for(®.2) is

the trajectory and not its location. The optimum trajectory ishot sufficient to fit the potential.

tabulated in Table I. Full details on our computations are
available af17].

Figures 1 and 2 show? charts for a range of values of
vs|; andmvs |, near the renormalized trajectoryn each
case the renormalized trajectory appears at the bottom of |
well-defined and unique/-valley, running from large to
small m. The behavior of the lattice spacing as one moves
along the renormalized trajectory is shown in Fig. 3. As ex-*
pected, the lattice spacing gradually decreases mithbut H
never becomes zero fan’>0. The fluctuations are due
mainly to the difficulty in establishing the scal@r. Since
the x? is stable and small over a range of lattice spacings, we

0.1 0.2 0.3
m
2The behavior of 5, which is always very large, is clarified in Ref. FIG. 3. Variation of the transverse lattice spacing along the
[11]. Lorentz trajectory. The fit is 1.27%+1.23.
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1.0 4.51 -
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0.8 1 Jo W 0++
'U+P_ 4
VG2ZN 0.6 1
—
0.4 T
T T T T T T
0 0.05 0.1 0.15 0.2 0.25
0.2 ,
I/N

3 A . : FIG. 6. Fit to lowest glueball mass as a function hf Solid
RVGEN urcles: Teper's finiteN data. Open circle: the largg-result from
this paper.

FIG. 4. The heavy-source potential. Solid line is fit to potential
for sources withx? separation only; data points are values at one-

) i ! systematic finitea errors. The fractional finite- error esti-
link transverse separation amd separatiorlL JGIN=0,2.55.

mate is based upon deviations from the relativistic dispersion
condition (2.12). Figure 5 also shows the result of Teper,
M o+ +(N—) =4.065(55)/c, who fit his finiteN data to a
The spectrum of glueballs in 21 dimensions can be form A+ B/NZ in order to estimate the largédimit. Teper’s

i PC : i i : : . .
classified by|7|"™, where J is SO(2) spin,C IS char?e largeN extrapolation and our independent direct calculation
conjugation, and the parit is spatial reflectiorx*— —x-=. are in agreemeri.

Combinatiqns oft 7 form parity doubletg if states are Lor- Fitting Teper's finiteN data together with our larg-
entz covariant. On the transverse lattice, there is enoug}bsult we find
symmetry to determin&, P and|7|mod 2. Additionally we
can examine the shape of wave functions to help distinguish
the spin of states.

The lightest glueball is a 0"; its mass along the renor- Jo
malized trajectory is shown in Fig. 5. The anisotropy of the
speed of light in the 0" dispersion is less than 3% for all
the low x? points. For the point of smallesi, M -+ See Fig. 6. This gives a better estimate of the |agkmit
=4.10(13)/o. Here, we have estimated a 2—3 % error fromthan using one or the other data set alone.
extrapolations in DLCQ and Tamm-Dancoff cutoffs based Although we have made improvements to the calculation
on known analytic behavidrl1], and another 2-3% from of o, the dominant error in Fig. 5 still comes from the fluc-
tuation of this quantity; in particular, the determinationcof
from the longitudinal directiox? is a big source of error in
determining the relative scales. This error becomes so severe
for most heavier glueball states, which exhibit poor covari-
ance, that an alternative method must be used for accurate
2 results. To remove most of the error when dealing with
X heavier glueballs, we set :+/\/o to the largeN value
estimated in Eq(3.3), then recalculated the renormalized
trajectory with this constrainid estwe calculate mass ratios.
To improve covariance in the lighter glueballs, at the ex-
pense of heavier states, we also restrictedytheo test only
101 the dispersion of the lowest states in each charge-conjugation
sector. The resulting mass ratios, at the point of lowésin
f the new renormalized trajectory, are shown in Table Il. We
0 : . : : : also show the fit to the form
0 0.2 0.4

C. Glueballs

Mg+ 15522 33379

N2 N4

—4.11813) +

(3.3

15

FIG. 5. The variation of the lightest glueball mass, calculated
along the renormalized trajectory, is shown as data points; the as->We note that there are other finitedattice results which do not
sociated variation of thg? is also indicated. The solid horizontal agree with Teper's. Recent Hamiltonian lattice calculati¢8b

line is at the value of Teper's extrapolationNa=c> of his finite-N
masseghis error estimate is shown as the dotted hand

yield M y++=3.88(11)\c for SU3) compared to Mg+
=4.329(41)/o in Ref.[1].
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TABLE Il. Mass ratios for lightest glueball excited states, show-

ing our N=« measurement and fit coefficients including finie-

data from Ref[1]. The 2 * and 0,f+ states were not covariant

enough for reliable error estimates, and only Teper's fiNitex-
trapolation is shown.

Fit coefficients

[71P¢ MIM g+ C B A
0~ 1.355) —14.581.47 2.983191) 1.3496)
2+* 1.6017) 3.2332.724 —1.144856) 1.74351)
0, "~ 1.826) —-5.8397.489  1.136941) 1.82425)
2-F 1.77?) - 0.659246) 1.69757)
OI* 1.28?) - 0.770399 1.52038)
M B
=A+—+— (3.9

including Teper's data. The convergence iN4/is illus-
trated in Fig. 7.

IV. CONCLUSIONS

PHYSICAL REVIEW D 63 076004

1.9—* /*%1_4 or
2++
M 1.6
MO++ /+//,__+
,4
-
1.3
T T T T T T
0 0.05 0.1 0.15 0.2 025

N

FIG. 7. Variation of excited glueball mass ratios with Solid
circles: Teper’s finiteN data. Open circles: the lardéresult from
this paper.

studies. We are able to confirm th@(1/N?) corrections to

the largeN limit are typically small. The plots of mass ver-
sus 1N? could have had any shape, but they turn out to be
almost straight and almost flat. The same result also seems to
be true in 3+1 dimensiong[13], though the data is less

We have found that our improved transverse lattice calPrecise there. Recalling how the quark model explains the

culations for 2+ 1 Yang-Mills theory in the larg@ limit are

(OZ1) suppression of N corrections in most chann€gl49],

consistent with existing finité¢ data from an independent it would be interesting to know if constituent gluon models

lattice method. Although both make use of lattice regulators
the methods use different quantization procedures, elemen-

could provide an intuitive explanation of our finding.
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