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Study of large-N Yang-Mills theory in 2¿1 dimensions
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The bound state problem in~211!-dimensional large-N Yang-Mills theory is accurately solved using the
light-front Hamiltonian of transverse lattice gauge theory. We conduct a thorough investigation of the space of
couplings on coarse lattices, finding a single renormalized trajectory on which Poincare´ symmetries are en-
hanced in bound state solutions. Augmented by existing data from finite-N Euclidean lattice simulations, we
obtain accurate estimates of the low-lying glueball spectrum atN5`.
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I. INTRODUCTION

Yang-Mills theories are theoretically interesting in 211
dimensions because their properties are very similar to
corresponding theory in 311 dimensions, yet they can b
handled much more accurately; see Ref.@1# for a review of
properties and extensive references. They appear to ex
linear confinement of heavy sources, a discrete spectrum
~glueball! bound states, and a finite-temperature transiti
Teper has recently performed a comprehensive analysis
ing the standard tools of EuclideanSU(N) lattice gauge
theory, of ~211!-dimensional Yang-Mills theories atN52,
3, 4, and 5. Hamiltonian lattice calculations have also
cently been performed for finiteN @2,3# and, though less
comprehensive, the results are mainly consistent. With d
at enough values ofN, one can contemplate an extrapolati
to N5`. This is a limit of special interest for ‘‘analytic’’
approaches to gauge theory, which often take advantag
large-N simplifications. In the absence of any other crite
for the errors involved, the only way to know how we
‘‘analytic’’ approaches are doing, for example those of Re
@4,5#, is to compare with lattice data and their extrapolati
to largeN.

A related question is: how close isN5` to smallN? This
question can only be faithfully answered once there are
curate results in both limits. The 1/N expansion@6# is typi-
cally an asymptotic one and,a priori, observables in the two
limits need not be close in value. The existing finite-N data
suggest strong suppression of corrections to the large-N limit
@1,7#, a conclusion that was speculated about much ea
@8#, on the basis of less reliable lattice data. If true, this f
deserves a deeper understanding.

The main objective of this paper is to address these iss
for ~211!-dimensional Yang-Mills theory with explicit cal
culations atN5`. In Refs.@10,11# ~see also@14#! we used
the large-N limit of ~211!-dimensional Yang-Mills as a tes
for developing the transverse lattice method of solving n
Abelian gauge theories@12#. Based on an improved unde
standing of the sources of error in that calculation, we p
form here a calculation at the next level of approximatio
We obtain a renormalized light-front Hamiltonian on th
transverse lattice for both the pure-glue and heavy-sou
0556-2821/2001/63~7!/076004~6!/$20.00 63 0760
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sector. From this, we obtain the glueball spectrum and
heavy-source potential. Existing finite-N data, combined
with our explicit large-N results, are used to determined th
first few coefficients of the 1/N2 expansion of glueball
masses in string tension units.

In the next section we briefly review the transverse latt
method, the details of which have been covered elsewh
@10,11,13#. Section III describes the numerical search for t
renormalized Hamiltonian via tests of Poincare´ invariance.
Our thorough investigation yields a single, well-defined ca
didate for the renormalized trajectory in coupling space. R
sults for the low-lying glueball eigenstates on this trajecto
and the first few coefficients of the 1/N2 expansion of their
masses are given. This improves upon current estimate
the large-N limit, allowing us to accurately verify that cor
rections to it are highly suppressed.

II. TRANSVERSE LATTICE IN 2 ¿1 DIMENSIONS

Adapted to 211 Yang-Mills theory, the Bardeen-Pearso
transverse lattice gauge theory consists of continuum ga
potentials$A0 ,A2% and space-time co-ordinates$x0,x2%, to-
gether with gauge-covariant transverse link variablesM (x1)
running between sites atx1 andx11a on a transverse lattice
of spacinga. We also use the light-front combinationsx6

5(x06x2)/A2, A65(A06A2)/A2, etc. Discrete light cone
quantization~DLCQ! @15# and Tamm-Dancoff cutoffs on the
number of partons are used as intermediate regulators. T
are extrapolated following the analysis of Ref.@11#. DLCQ
means that we impose anti-periodic boundary conditio
x2;x212pK/P1, where P1 is the total light-front mo-
mentum, andK is an integer cutoff.x1 remains continuous
and infinite, and is used as a canonical time variable to
rive a light-front HamiltonianP2. The most general action
from which P2 will be derived canonically, must allow al
gauge invariant operators that respect the Poincare´ symme-
tries unviolated by the~gauge invariant! cutoffs. Since we
will explicitly extrapolate the DLCQ and Tamm-Danco
cutoffs, only local dimension 2 operators with respect
$x1,x2% co-ordinates will be included at the outset. In th
discussion hereafter we assume this limit has be taken.

Near the transverse continuum limita→0 corresponding
©2001 The American Physical Society04-1
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to SU(N) Yang-Mills, one expectsM to take values in
SU(N). However, away from this limit one can allowM to
be a generalN3N complex matrix, provided it still gauge
transforms covariantly. One must then search this lar
class of lattice theories for the renormalized trajectory t
leads one to the continuum limitSU(N) Yang-Mills theory.
Physical results are invariant along this trajectory and eq
to the values in the full continuum limit. The trajectory ma
be found by renormalization group transformations in
neighborhood of a fixed point~continuum limit!. However,
this is difficult for the present formulation. There a
~roughly! two possibilities for the behavior ofM at a given
point in the space of couplings constants:M is a massive
degree of freedom (M50 is the classical minimum!; or, the
‘‘radial’’ part of M condenses. We expect the latter to be
case near thea50 limit of Yang-Mills, where the action
should be minimized near values ofM in SU(N) rather than
M50. Dealing with the condensation of the radial part,
using unitary matrices forM from the outset@9#, is tricky in
light-front quantization. This is what makes an analysis n
a50 difficult. On the other hand, it is straightforward
perform canonical light-front quantization aboutM50,
when this is a stable minimum. If the renormalized trajecto
passes into such a region, we can then study it.

An alternative way to find the renormalized trajectory
to use symmetry@16#. Generally speaking, we can define
quantum field theory by symmetry—in our case gauge
Poincare´ invariance—and a particular continuum limit~there
may be more than one!. There is actually no reason why w
cannot take a partial continuum limit, a limit in some spac
time directions but not in others, since Poincare´ invariance
should relate them. Thus, in Ref.@11# we proposed to take
the continuum limit of Yang-Mills theory in the$x0,x2% di-
rections, and tune couplings to impose full Poincare´ invari-
ance at finite transverse cutoffa. This procedure can be ca
ried out using light-front quantization aboutM50. Although
this regime apparently cannot contain the Poincare´-invariant
theory ata50, numerical evidence for the existence of
renormalized trajectory was given, and has been extende
311 Yang-Mills theory@13#. In this paper, we present con
clusive numerical evidence for the case of 211 Yang-Mills
theory.

For practical calculations, the remaining allowed ope
tors in the action must be pared down to a finite numbe
independent parameters, and one must find some reaso
criteria to test Poincare´ invariance. We now develop thes
necessary approximations, following closely our previo
work.

A. Pure-glue sector

To reduce the space of couplings to a finite dimension,
use various approximations:

~1! quadratic canonical momentum operatorP1,
~2! light-front momentum-independent couplings,
~3! transverse locality, and
~4! expansion in gauge-invariant powers ofM.

The reasoning behind them is described in more detai
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Ref. @13#. We only note here, that a poor choice of appro
mation will simply mean that we cannot get close to t
renormalized trajectory, if it exists, and accuracy will suff
accordingly. The principle physical approximation, item~4!
is the ‘‘color-dielectric’’ expansion aboutM50, which is
applied to the light-cone gauge-fixed Hamiltonian rather th
the action.

We have studied the light-cone Hamiltonian derived fro
the following SU(N) gauge-invariant action in the large-N
limit

A5E dx0dx2(
x1

D̄aM ~x1!„D̄aM ~x1!…†2Vx1

2
1

2G2Tr$FabFab% ~2.1!

whereaP$0,2% and

D̄aM ~x1!5„]a1 iAa~x1!…M ~x1!2 iM ~x1!Aa~x11a! ~2.2!

is the tranvserse lattice covariant derivative. The ‘‘potentia
term is

Vx15m2Tr$M ~x1!M†~x1!%

1
l1

aN
Tr$M ~x1!M†~x1!M ~x1!M†~x1!%

1
l2

aN
Tr$M ~x1!M ~x11a!M†~x11a!M†~x1!%

1
l3

aN2 „Tr$M ~x1!M†~x1!%…2. ~2.3!

In light-cone gaugeA250 and after eliminatingA1 by its
~constraint! equation of motion, the corresponding light-fro
Hamiltonian is

P25(
x1

E dx22
G2

4
TrH J1~x1!

1

]2
2

J1~x1!J
1

G2

4N
Tr J1~x1!

1

]2
2

Tr J1~x1!1Vx1 ~2.4!

J1~x1!5 i „M ~x1! ]J2M†~x1!

1M†~x12a! ]J2M ~x12a!…. ~2.5!

This is the most general Hamiltonian to orderM4 that obeys
the other stated approximations. It can be light-front qu
tized and studied in a suitable Fock space at general
mentaP1 andP1, as detailed in Ref.@11#. The eigenvalues
of the exact Yang-Mills Hamiltonian yield the glueba
massesM through the relativistic dispersion relationP2

5„M21(P1)2
…/2P1.
4-2
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B. Heavy sources

We introduce heavy sourcesf(x1,x2,x1) on transverse
sites. They are in the fundamental representation and of m
r. We apply the same approximations that were made in
pure-glue sector, but here we expand to orderM2 all opera-
tors containing heavy-source fields, and work at leading n
trivial order in 1/r. The heavy-source action isAs5A1Af
where

Af5E dx1dx2(
x1

~Daf!†Daf2r2f†f

2
t1

NG2
Tr$Fab~x1!Fab~x1!W~x1!%

2
t2

NG2
Tr$M†~x1!Fab~x1!M ~x1!Fab~x11a!%

~2.6!

and

W~x1!5„M†~x1!M ~x1!1M ~x1!M†~x1!…. ~2.7!

Da5]a1 iAa(x1) is the usual covariant derivative for th
plane$x0,x2%. After gauge fixingA250, eliminatingA1 in
powers ofM from its constraint equation, and discarding t
higher orders inM, the Hamiltonian resulting fromAs which
satisfies the approximations is

Ps
25E dx2(

x1

G2

4
TrH Jtot

1

]2

Jtot
1

]2
J 2

G2

4N
TrH Jtot

1

]2
J TrH Jtot

1

]2
J

1Vx11r2f†f1
rt

aN
f†Wf1

2t1

N
TrH J1

]2

J1

]2
WJ

1
2t2

N
TrH J1~x1!

]2
M ~x1!

J1~x11a!

]2
M†~x1!J ~2.8!

with

Jtot
1 5J11 if ]J2f†. ~2.9!

Like P2, Ps
2 can be studied in a suitable Fock space. T

eigenvalues ofv1Ps
2 , for co-moving heavy sources of ve

locity v1, are the usual excitation energies associated w
the heavy-source potential@14#. If two sources are separate
by na in the transverse directionx1 and byL in the longitu-
dinal directionx2, then a rotationally invariant string tensio
would imply that, for large separations,

v1Ps
2→sR, R5Aa2n21L2 ~2.10!

for the lowest eigenvalue. Demanding this rotational inva
ance, then comparing results atn50 with L50, allows one
to determinea in a dimensionful unit~we useG2N) inde-
pendent ofs. This fixes the relative scale betweenx1 and
x2, which will be needed for testing covariance. In practice
is relatively difficult to calculate the heavy source potent
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in the purely transverse direction. Consequently, we mea
the string tension in this direction by compactifying spa
and calculating the winding mode spectrum.

C. Poincaré invariance

We test Poincare´ invariance of the theory by making mea
surements on eigenstates ofP2 and Ps

2 . It turns out that a
rather simple set of tests suffices to obtain an accurate
mate of the renormalized trajectory. One of the approxim
tions made in arriving atP2 ~2.4! is transverse locality.
Therefore, it makes sense to expand eigenvalues at fixed
menta (P1,P1) in powers of transverse momentum thus

2P1P25G2N„M 0
21M 1

2 a2~P1!21M 2
2 a4~P1!41•••….

~2.11!

Note thatG has dimensions of energy, andG2N is held finite
in the N→` limit.1 M0 ,M1 ,M2 , . . . are dimensionless
numbers which we calculate when diagonalizingP2. The
simplest requirement of covariance is that

M 1
2a2G2N2150. ~2.12!

This ensures isotropy of the speed of light. The dimensi
less quantitya2G2N has already been determined abo
from the scale setting procedure via the string tension. F
ther conditions come from higher order corrections inP1 in
Eq. ~2.11!. In this work we will use only the condition~2.12!
for the lowest-mass glueballs, together with conditions
rotational invariance in the heavy-source potential, to test
space of couplings ofP2. If our reasoning is correct and ou
approximations valid, we should find a well-defined traje
tory on which the conditions ~2.12! are accurately
satisfied—in practice we introduce ax2 test to quantify this.
Moving along this trajectory should correspond to chang
the spacinga. Eventually this would take us to the transver
continuum limit, but we will be prevented from reachinga
50 by the restrictionm2.0, a necessary condition for quan
tization aboutM50.

1aG2→g2 asa→0, but since we do not approacha50 we can-
not use the continuum gauge couplingg.

TABLE I. The trajectory in coupling-constant space whic
minimizes thex2 test of covariance.

m l1 l 2 l 3 t1 t2 x2

0.044 20.052 20.112 680.2 20.661 20.691 7.02
0.089 20.087 20.109 396.8 20.780 20.811 7.85
0.134 20.108 20.091 3.221 20.896 20.876 7.56
0.180 20.147 20.107 4.401 20.943 20.927 6.55
0.226 20.204 20.134 178.5 21.098 21.167 8.02
0.2765 20.240 20.153 5.48 20.989 21.138 7.31
0.3275 20.308 20.157 6.01 21.181 21.340 8.64
4-3
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III. RESULTS

A. x2 charts

It is convenient to form dimensionless versions of t
other couplings

m25
m2

G2N
, l i5

l i

aG2N
, t i5

t i

AG2N
. ~3.1!

The basic technique we follow is to search this space, w
thex2 test, for an approximation to a renormalized trajecto
on which observables show enhancement of space-time s
metries violated by the cutoffa. The x2 test is made up of
variables to test isotropy of the speed of light in dispersion
low-lying glueballs, rotational invariance of the string te
sion, and rotational invariance of the potential at interme
ate source separations. Since we can expect to do better
some variables than others, the weights are adjusted unt
produce a sharp trajectory in coupling space wherex2 is
minimized to roughly one per effective degree of freedom
fact, altering the weights typically changes the sharpnes
the trajectory and not its location. The optimum trajectory
tabulated in Table I. Full details on our computations a
available at@17#.

Figures 1 and 2 showx2 charts for a range of values ofm
vs l 1 andm vs l 2 near the renormalized trajectory.2 In each
case the renormalized trajectory appears at the bottom
well-defined and uniquex2-valley, running from large to
small m. The behavior of the lattice spacing as one mov
along the renormalized trajectory is shown in Fig. 3. As e
pected, the lattice spacing gradually decreases withm2 but
never becomes zero form2.0. The fluctuations are du
mainly to the difficulty in establishing the scaleAs. Since
thex2 is stable and small over a range of lattice spacings,

2The behavior ofl 3, which is always very large, is clarified in Re
@11#.

FIG. 1. Minimumx2 for a givenm and l 1. In the blank region
to the right, tachyons appear in the spectrum.
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will use the point of smallest lattice spacing (m50.044) to
extract physical quantities.

B. Rotational invariance

The heavy-source potential is displayed in Fig. 4. It sho
better restoration of spatial symmetry than previously o
tained@11#. The potential in the continuum spatial directio
x2 is a fit to the lowest eigenvalue as a function ofL of the
form

v1Ps
250.154LG2N10.183AG2N2

0.178

L
. ~3.2!

One must be careful when interpreting Eq.~3.2! since the
Coulomb potential in 211 dimensions is logarithmic. The
form ~3.2! should be appropriate except at the very small
L, where Coulomb corrections are expected. The 1/L term is
a universal correction expected on the grounds of model
flux-string oscillations@18#. Universality implies that its co-
efficient should be invariant along the renormalized traj
tory. In fact, we find that it varies slowly, a symptom that o
approximation to the renormalized trajectory is not an ex
scaling trajectory for this quantity and/or the form~3.2! is
not sufficient to fit the potential.

FIG. 3. Variation of the transverse lattice spacing along
Lorentz trajectory. The fit is 1.275m11.23.

FIG. 2. Minimumx2 for a givenm and l 2.
4-4
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C. Glueballs

The spectrum of glueballs in 211 dimensions can be
classified byuJ uPC, where J is SO(2) spin, C is charge
conjugation, and the parityP is spatial reflectionx1→2x1.
Combinations of6J form parity doublets if states are Lor
entz covariant. On the transverse lattice, there is eno
symmetry to determineC, P anduJ umod 2. Additionally we
can examine the shape of wave functions to help distingu
the spin of states.

The lightest glueball is a 011; its mass along the renor
malized trajectory is shown in Fig. 5. The anisotropy of t
speed of light in the 011 dispersion is less than 3% for a
the low x2 points. For the point of smallesta, M 011

54.10(13)As. Here, we have estimated a 2–3 % error fro
extrapolations in DLCQ and Tamm-Dancoff cutoffs bas
on known analytic behavior@11#, and another 2–3 % from

FIG. 4. The heavy-source potential. Solid line is fit to potent
for sources withx2 separation only; data points are values at o
link transverse separation andx2 separationLAG2N50,2.5,5.

FIG. 5. The variation of the lightest glueball mass, calcula
along the renormalized trajectory, is shown as data points; the
sociated variation of thex2 is also indicated. The solid horizonta
line is at the value of Teper’s extrapolation toN5` of his finite-N
masses~his error estimate is shown as the dotted band!.
07600
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systematic finite-a errors. The fractional finite-a error esti-
mate is based upon deviations from the relativistic dispers
condition ~2.12!. Figure 5 also shows the result of Tepe
M 011(N→`)54.065(55)As, who fit his finite-N data to a
form A1B/N2 in order to estimate the large-N limit. Teper’s
large-N extrapolation and our independent direct calculat
are in agreement.3

Fitting Teper’s finite-N data together with our large-N
result we find

M 011

As
54.118~13!1

1.55~22!

N2
1

3.38~73!

N4
. ~3.3!

See Fig. 6. This gives a better estimate of the large-N limit
than using one or the other data set alone.

Although we have made improvements to the calculat
of s, the dominant error in Fig. 5 still comes from the flu
tuation of this quantity; in particular, the determination ofs
from the longitudinal directionx2 is a big source of error in
determining the relative scales. This error becomes so se
for most heavier glueball states, which exhibit poor cova
ance, that an alternative method must be used for accu
results. To remove most of the error when dealing w
heavier glueballs, we setM 011 /As to the large-N value
estimated in Eq.~3.3!, then recalculated the renormalize
trajectory with this constraint,id estwe calculate mass ratios
To improve covariance in the lighter glueballs, at the e
pense of heavier states, we also restricted thex2 to test only
the dispersion of the lowest states in each charge-conjuga
sector. The resulting mass ratios, at the point of lowestx2 on
the new renormalized trajectory, are shown in Table II. W
also show the fit to the form

3We note that there are other finite-N lattice results which do not
agree with Teper’s. Recent Hamiltonian lattice calculations@3#
yield M 01153.88(11)As for SU~3! compared to M 011

54.329(41)As in Ref. @1#.

l
-

d
s-

FIG. 6. Fit to lowest glueball mass as a function ofN. Solid
circles: Teper’s finite-N data. Open circle: the large-N result from
this paper.
4-5



a

t
rs
e

no

te

lyt

-
be
s to

s
the

ls

5.
om-
nter

w

t

SIMON DALLEY AND BRETT VAN DE SANDE PHYSICAL REVIEW D 63 076004
M
M 011

5A1
B

N2
1

C

N4
~3.4!

including Teper’s data. The convergence in 1/N2 is illus-
trated in Fig. 7.

IV. CONCLUSIONS

We have found that our improved transverse lattice c
culations for 211 Yang-Mills theory in the large-N limit are
consistent with existing finite-N data from an independen
lattice method. Although both make use of lattice regulato
the methods use different quantization procedures, elem
tary degrees of freedom, regulators, gauge fixing, and re
malization techniques. By combining the finite-N and large-
N results, we have obtained accurate estimates of the ligh
glueball masses and mass ratios for anyN in 211 dimen-
sions. These should provide a useful benchmark for ana

TABLE II. Mass ratios for lightest glueball excited states, sho
ing our N5` measurement and fit coefficients including finite-N
data from Ref.@1#. The 221 and 0

*
11 states were not covarian

enough for reliable error estimates, and only Teper’s finite-N ex-
trapolation is shown.

Fit coefficients
uJ uPC M/M 011 C B A

022 1.35~5! 214.58~1.47! 2.983~191! 1.349~6!

211 1.60~17! 3.233~2.724! 21.144~856! 1.743~51!

0
*
22 1.82~6! 25.839~7.488! 1.136~941! 1.824~25!

221 1.77~?! - 0.659~246! 1.697~57!

0
*
11 1.28~?! - 0.770~399! 1.520~38!
y

tt
.

gy

07600
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studies. We are able to confirm thatO(1/N2) corrections to
the large-N limit are typically small. The plots of mass ver
sus 1/N2 could have had any shape, but they turn out to
almost straight and almost flat. The same result also seem
be true in 311 dimensions@13#, though the data is les
precise there. Recalling how the quark model explains
~OZI! suppression of 1/N corrections in most channels@19#,
it would be interesting to know if constituent gluon mode
could provide an intuitive explanation of our finding.

ACKNOWLEDGMENTS

S.D. is supported by PPARC grant No. GR/LO396
B.v.d.S. was supported by the Research Corporation. C
putations were performed at the Ohio Supercomputer Ce
and at the Pittsburgh Supercomputer Center.

-

FIG. 7. Variation of excited glueball mass ratios withN. Solid
circles: Teper’s finite-N data. Open circles: the large-N result from
this paper.
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