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Basis-independent analysis of the sneutrino sector inR-parity violating supersymmetry
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In R-parity-violating supersymmetric models~with a conserved baryon number!, there are no quantum
numbers that distinguish the lepton-doublet and down-type Higgs supermultiplets. As a result, theR-parity-
violating parameters depend on the basis choice for these superfields, although physical observables are
independent of the choice of basis. This paper presents a basis-independent computation of the sneutrino–
antisneutrino squared-mass splitting in terms of basis-independent quantities. Techniques are developed for an
arbitrary number of sneutrino generations; specific results are provided for the one, two and three generation
cases.
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I. INTRODUCTION

In low-energy supersymmetric extensions of the stand
model, lepton and baryon number conservation are not a
matically respected by the most general set of renormaliz
interactions@1#. Nevertheless, experimental observations i
ply that lepton number violating effects, if they exist, mu
be rather small. Moreover, baryon number violation,
present, must be consistent with the observed stability of
proton. If one wants to enforce lepton and baryon num
conservation, it is sufficient to impose one extra discr
symmetry. In the minimal supersymmetric extension of
standard model~MSSM!, a multiplicative symmetry calledR
parity is introduced@2#, such that theR quantum number of
an MSSM field of spinS, baryon numberB and lepton num-
ber L is given by (21)[3(B2L)12S] . By introducing B2L
conservation modulo 2, one eliminates all dimension-fo
lepton number and baryon number-violating interactions.

The observation of neutrino mixing effects in solar a
atmospheric@3# neutrinos suggest that lepton-number is n
an exact global symmetry of the low-energy theory. One
develop a supersymmetric model of neutrino masses
generalizes the seesaw mechanism while maintainingR par-
ity as a good symmetry@4,5# ~where lepton number is vio
lated by two units!. In this paper, we consider the alternati
possibility that neutrino masses and mixing arise in a the
of R-parity violation, in which lepton number is violated b
one unit @6#. In the most generalR-parity-violating ~RPV!
model, bothB andL are violated. However, it is difficult to
relax both lepton and baryon number conservation in
low-energy theory without generating a proton decay r
many orders of magnitude above the present bounds.
possible to enforce baryon number conservation, while
lowing for lepton number violating interactions by imposin
a discrete baryonZ3 symmetry on the low-energy theory@7#,
in place of the standardZ2 R parity. Henceforth, we conside
R-parity-violating low-energy supersymmetry with an unbr
ken discrete baryonZ3 symmetry. This model exhibits
lepton-number-violating phenomena such as neutr
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masses, sneutrino–antisneutrino mixing, and lepton-num
violating decays.

In RPV low-energy supersymmetry, there is no quant
number that distinguishes the lepton supermultipletsL̂m and
the down-type Higgs supermultipletĤD (m is a generation
label that runs from 1 tong53). Each supermultiplet trans
forms as aY521 weak doublet under the electrowea
gauge group. It is therefore convenient to denoteL̂0[ĤD

and unify the four supermultiplets by one symbolL̂a (a
50,1, . . . ,ng). Then, the relevant terms in the~renormaliz-
able! superpotential are

W5e i j @2maL̂a
i ĤU

j 1 1
2 labmL̂a

i L̂b
j Êm1lanm8 L̂a

i Q̂n
j D̂m#,

~1.1!

where ĤU is the up-type Higgs supermultiplet, theQ̂n are
doublet quark supermultiplets, theD̂m are singlet down-type
quark supermultiplets and theÊm are the singlet charged
lepton supermultiplets. Note thatma and lanm8 are vectors
andlabm is an antisymmetric matrix in the generalized le
ton flavor space.

Next, the soft-supersymmetry-breaking terms are a
generalized in similar way. The relevant terms are

Vsoft5~ML̃
2
!abL̃a

i* L̃b
i 2~e i j baL̃a

i HU
j 1H.c.!

1e i j @
1
2 aabmL̃a

i L̃b
j Ẽm1aanm8 L̃a

i Q̃n
j D̃m1H.c.#,

~1.2!

where the fields appearing in Eq.~1.2! are the scalar partner
of the superfields that appear in Eq.~1.1!. Here,ba andaanm8

are vectors,aabm is an antisymmetric matrix and (ML̃
2)ab is

a Hermitian matrix in the generalized lepton flavor space
When the scalar potential is minimized~see Sec. II!, one

finds a vacuum expectation value for the neutral scalar fie

^L̃a&5va /A2 and^HU&5vu /A2. To make contact with the
usual notation of the MSSM, we define the length of t
©2001 The American Physical Society11-1
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vectorva by vd[(vava)1/2 and tanb[vu /vd . The mass of
theW boson constrains the valuev2[vu

21vd
25(246 GeV)2.

So far, there is no distinction between the neutral Hig
bosons and neutral sleptons. Nevertheless, we know
RPV interactions, if present, must be small. It is tempting
choose a particular convention corresponding to a spe
choice of basis in the generalized lepton flavor space.
example, one can choose todefinethe down-type Higgs mul-
tiplet such that^HD&[^L̃0&5vd /A2 and ^L̃m&50. This
means that we let the dynamics~which determines the direc
tion of the vacuum expectation value in the generalized l
ton flavor space! choose the definition of the down-typ
Higgs field. In this basis, all the RPV parameters are w
defined and must be small to satisfy phenomenological c
straints.

Nevertheless, the above convention is only one poss
basis choice. Other conventions are equally sensible. Fo
ample, one could choose a second basis wheremm50 and a
third basis wherebm50. In each case, the correspondi
RPV parameters are small. But comparing results obtaine
different bases requires some care. Moreover, it is often
sirable to study the evolution of couplings from some hi
~unification! scale to the low-energy~electroweak! scale. The
renormalization group equations for the RPV parameter
not basis preserving. That is, a particular basis choice at
high energy scale will lead to some complicated effect
basis choice at the low-energy scale.

The problems described above can be ameliorated
avoiding basis-specific definitions of parameters. The ch
lenge of such an approach is to determine a set of ba
independent RPV parameters, in the spirit of the Jarls
invariant which characterizes the strength ofCP violation in
the standard model@8#. Such an approach has been applied
RPV models in the past, where neutrino masses@9–13#, early
universe physics@14# and the Higgs sector@15# were studied.
It is instructive to examine the neutrino spectrum of the R
model. At tree level, one neutrino become massive due to
RPV mixing of the neutrinos and the neutralinos. The ot
ng21 neutrinos remain massless at tree level, although t
can acquire smaller radiative masses at one-loop. To
order in the small RPV parameter the basis independent
mula can be written in the following form@10,16#:

mn5
mZ

2mM g̃cos2b

mZ
2M g̃sin 2b2M1M2m

uv̂3m̂u2, ~1.3!

whereM g̃[ cos2uWM11sin2uWM2 depends on gaugino mas
parametersM1 andM2. In Eq. ~1.3!, v̂ and m̂ are unit vec-
tors in theva and ma directions, respectively. It is conve
nient to introduce the notation of the cross product of t
vectors. Although the cross product technically exists only
three dimensions, the dot product of two cross products
be expressed as a product of dot products

~a3b!•~c3d!5~a•c!~b•d!2~a•d!~b•c!, ~1.4!

which exists in any number of dimensions. This notation
useful, since any expression that involves the cross pro
07501
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of two vectors vanishes if the corresponding vectors are p
allel. This provides a nice geometrical characterization of
small RPV parameters of the model. For example,uv̂3m̂u2

5sin2j wherej is the angle betweenv̂ and m̂. Thus, in Eq.
~1.3!, uv̂3m̂u2 is the small RPV parameter, while the prefa
tor can be computed in theR-parity-conserving~RPC! limit
of the model.

In this paper, we focus on a basis-independent descrip
of the RPV parameters that govern the sneutrino spectr
The model possesses lepton-number-violatingDL51 inter-
actions that give rise to the mixing of sleptons and Hig
bosons.1 These interactions also generateDL52 effective
operators that give rise to sneutrino–antisneutrino mix
@5,13,16–22#. In this case, the sneutrino (ñ) and antis-
neutrino (nD ), which are eigenstates of lepton number, are
longer mass eigenstates. The mass eigenstates are supe
tions of ñ andnD , and sneutrino mixing effects can lead to
phenomenology analogous to that ofK-K̄ and B-B̄ mixing
@5#. The mass splitting between the two sneutrino m
eigenstates is related to the magnitude of lepton number
lation, which is typically characterized by the size of ne
trino masses@5,18#. As a result, the sneutrino–antisneutrin
mass splitting is expected generally to be very small. Ye
can be detected in many cases, if one is able to observe
lepton number oscillation@5#.

In contrast to the neutrino sector~where only one neutrino
mass eigenstate acquires a tree-level mass!, in generalall
sneutrinos–antisneutrino pairs are split in mass at tree lev2

For simplicity, we consider the case of aCP-conserving sca-
lar sector. In the RPC limit, theCP-even scalar sector con
sists of two Higgs scalars (h0 andH0, with mh0,mH0) and
ng generations ofCP-even sneutrinos (ñ1)m , while the
CP-odd scalar sector consists of the Higgs scalarA0, the
Goldstone boson~which is absorbed by theZ), andng gen-
erations ofCP-odd sneutrinos (ñ2)m . Here, we have im-
plicitly chosen a flavor basis in which the sneutrinos a
mass eigenstates. Moreover, the (ñ6)m are mass degenerat
~separately for eachm), so that the standard practice is
define eigenstates of lepton number:ñm[@( ñ1)m

1 i ( ñ2)m#/A2 andnDm[ñm* . WhenR-parity is violated, the
sneutrinos in eachCP-sector mix with the correspondin
Higgs scalars, and the mass degeneracy of (ñ1)m and (ñ2)m

is broken. In Ref.@16# we computed the mass-splitting in
special basis wherevm50 and the matrix (M ññ*

2 ) i j @which is

the 333 block sub-matrix of (M ññ*
2 )ab defined in Eq.~2.2!#

is diagonal. In this basis, we identified thebm as the relevant
small RPV parameters. To leading order inbm

2 ,

1These interactions modify the phenomenology of the charged
neutral scalars~relative to the RPC limit!, as discussed in Ref.@15#.

2This result is a consequence of the fact that in the RPC lim
neutrinos are massless and hence degenerate, whereas the
sneutrino masses are in general non-degenerate. See Sec. V
Ref. @16# for further discussions of this point.
1-2
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~Dmñ
2!m5

24bm
2 mZ

2mñm

2 sin2b

~mH
2 2mñm

2 !~mh
22mñm

2 !~mA
22mñm

2 !
, ~1.5!

where (Dmñ
2)m[(mñ1

2 )m2(mñ2

2 )m . As in the neutrino case

described above, we may evaluate the prefactor that m
plies bm

2 in the RPC limit. In deriving Eq.~1.5!, it was as-
sumed that all RPC Higgs boson and sneutrino masses a
distinct. If degeneracies exist, the above formula must
modified.

The goal of this paper is to reanalyze the sneutrino m
spectrum in a basis-independent formalism. We identify
small RPV parameters that govern the sneutrin
antisneutrino mass splittings. Our technique will also all
us to generalize the analysis to treat the case of scalar m
degeneracies. In Sec. II, we derive a convenient form for
CP-even andCP-odd scalar squared-mass matrices. W
compute the sneutrino–antisneutrino squared-mass di
ence in the case of one sneutrino flavor in Sec. III. In S
IV, we generalize to an arbitrary number of generations,
exhibit explicit formulas for the two and three generati
cases. The latter results assume that in the RPC limit, t
are no degeneracies among different sneutrino flavors.
degenerate case is treated in Sec. V. A discussion of
results and conclusions are presented in Sec. VI. Detail
our computations are provided in six appendixes.

II. MINIMUM CONDITION AND BASIC EQUATIONS

We begin our analysis by collecting the relevant formu
given in Ref. @16#. We assume that the scalar sector
rr
-
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u
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CP-conserving,3 which implies that the scalar fields can b
defined such thatML̃

2 is a real symmetric matrix andba and
ma are real. The vacuum expectation value^La&[va /A2 is
determined by minimizing the scalar potential. With the a
sumption ofCP conservation, one can separate out the sc
potential for theCP-even andCP-odd sector,V5Veven
1Vodd. Then, va is determined by minimizingVeven, and
the resulting condition is given by

~M ññ*
2

!abvb5vuba , ~2.1!

where

~M ññ*
2

!ab[~ML̃
2
!ab1mamb2 1

8 ~g21g82!~vu
22vd

2!dab .
~2.2!

Note that Eq.~2.1! determines both the size ofva and its
direction. In a perturbative treatment of RPV terms, we c
use the RPC value for the squared magnitudevd

2

[(avava , and then use Eq.~2.1! to determine the direction
of va in the generalized lepton flavor space.

We next separate the scalar squared-mass matrices
CP-odd and CP-even blocks. In theHU-L̃a basis, the
CP-odd squared-mass matrix is given by

Modd
2 5S brvr /vu bb

ba ~M ññ*
2

!ab
D , ~2.3!

while theCP-even squared-mass matrix is given by
Meven
2 5S 1

4 ~g21g82!vu
21brvr /vu 2 1

4 ~g21g82!vuvb2bb

2 1
4 ~g21g82!vuva2ba

1
4 ~g21g82!vavb1~M ññ*

2
!ab

D , ~2.4!
et
n

fini-
ugh
d

where (M ññ*
2 )ab is defined in Eq.~2.2!.

To compute the squared-mass differences of the co
spondingCP-even andCP-odd sneutrinos, we must diago
nalize both of the above matrices. We wish to employ
perturbative procedure by identifying the small RPV para
eters, without resorting to a specific choice of basis. O
strategy is to recast the two scalar squared-mass matrice
more convenient form.

First, consider theCP-odd squared mass matrix@Eq.
~2.3!#. Note that the vector (2vu ,vb) is an eigenvector of
Modd

2 with zero eigenvalue; this is the Goldstone boson t
is absorbed by theZ. We can remove the Goldstone boson
introducing the following orthogonal (ng12)3(ng12) ma-
trix:

Uo5S 2vu /v vd /v 0

vb /v vuvb /~vdv ! Xb i ,D ~2.5!
e-

a
-
r
n a

t

wherev[(vu
21vd

2)1/2. Note that the indexi runs from 1 to
ng ; thusXa i is an (ng11)3ng matrix. The orthogonality of
Uo implies that each column ofUo is a real unit vector and
different columns are orthogonal. In addition, the s
$vb /v,Xb i% forms an orthonormal set of vectors in a
(ng11)-dimensional vector space. It follows that

vaXa i50, ~2.6!

Xa iXa j5d i j , ~2.7!

3In the MSSM, the Higgs sector is automaticallyCP-conserving
at tree level, since all phases can be removed by suitable rede
tions of the fields. In the RPV model, new phases enter thro
(ML̃

2)ab , ba , andma , which cannot all be simultaneously remove
in the general case.
1-3
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Xa iXb i5dab2
vavb

vd
2 . ~2.8!

In our computations, no explicit realization of theXia will be
required. A simple computation yields

Uo
TModd

2 Uo5S 0 0b

0a ~M̃odd
2 !ab

D , ~2.9!

where 0b @0a# is a row @column# matrix of zeros and4
.
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M̃odd
2 5S v2~v•b!/~vuvd

2! vbbXb i /vd

vXj aba /vd Xj a~M ññ*
2

!abXb i
D ,

~2.10!

where v•b[vaba . The eigenstates ofM̃odd
2 correspond to

the CP-odd Higgs bosonA0 andng generations ofCP-odd
sneutrinos.

It turns out that it is also convenient to rotate theCP-even
squared-mass matrix, but by a slightly different orthogo
transformation. In the limit ofmZ50, theCP-even squared-
mass matrix also possesses a Goldstone boson, which w
explicitly isolate. Comparing theCP-odd and CP-even
cases, we see that wheng5g850 the two matrices are re
lated by ba→2ba and vu→2vu . Thus, if we introduce
Ue[Uo(vu→2vu) and defineM̃even

2 [Ue
TMeven

2 Ue , then
M̃even
2 5S mZ

2 cos22b 2mZ
2 cos 2b sin 2b 0

2mZ
2 cos 2b sin 2b mZ

2 sin22b1v2~v•b!/~vuvd
2! 2vbbXb i /vd

0 2vXj aba /vd Xj a~M ññ*
2

!abXb i

D , ~2.11!
this
m-

d

to

y

g

sis
rs to

it.
where we usedmZ
25 1

4 (g21g82)v2 and tanb[vu /vd . The

eigenstates ofM̃even
2 correspond to theCP-even Higgs

bosonsh0 andH0 andng generations ofCP-even sneutrinos
In the RPC limit, one can choose a basis in whichvm

5bm5X0m50. It follows that the sneutrino and Higgs ma
matrices decouple and one recovers the known RPC resu
basis-independent characterization of the RPC limit in
scalar~sneutrino–Higgs! sector is the condition that the vec
torsbb andvb are aligned.5 Equivalently, by using the trans
formed mass matrices given above, it is clear that the qu
tities

Bi[
vbbXb i

vd
~2.12!

can be identified asng basis-independent parameters th
vanish in the RPC limit, and thus provide good candida
for the small quantities that can be used in a perturba
expansion. Ifbb and vb are aligned, then Eq.~2.6! implies
that theBi50 and we are back to the RPC limit.

Although theBi provide a basis-independent set of sm
RPV parameters, the explicit dependence onXa i is inconve-
nient. Clearly, it is preferable to re-express theBi directly in
terms of the original model parameters. In the following s
tions, we will exhibit this procedure in the one-generati

4We defineXia to be the transpose of the matrixXa i . When no
ambiguity arises, we will not explicitly exhibit the transpose symb
~superscriptT!.

5For example, if one chooses the basis wherevm50, then by Eq.
~2.6!, X0m50. In this basis, thebm are the small RPV parameters
A
e

n-

t
s
e

l

-

case and generalize it to the multi-generation case. To
end, it is convenient to introduce a set of new RPV para
eters. In the case ofng<3, only one new vector is require
for our final results:

ca[
~M ññ*

2
!abbb

b2
. ~2.13!

For ng.3, further vectors are required. It is convenient
introduce a series of vectors

ca
(n11)[~M ññ*

2
!abcb

(n) , ~2.14!

where ca
(1)[ca . Clearly, the maximal number of linearl

independent vectors~along with b and v! is n5ng21, al-
though not all of these will appear in our final results.

To simplify the presentation we introduce the followin
shorthand for the elements of the transformedCP-even and
CP-odd squared-mass matrices:

M̃odd
2 5S A Bi

Bj Ci j
D , ~2.15!

M̃even
2 5S D E 0

E F1A 2Bi

0 2Bj Ci j

D . ~2.16!

Our strategy is to employ a first-order perturbative analy
to diagonalize these matrices, taking the small paramete
be the Bi @Eq. ~2.12!#. At zeroth order~setting theBi to
zero!, the above matrices can be evaluated in the RPC lim
In particular, A5mA , the eigenvalues of (E F1A

D E ) are the

l

1-4
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CP-even Higgs squared-massesmh0
2 andmH0

2 , andCi j is the
RPC sneutrino squared-mass matrix. In order for n
degenerate perturbation theory to be valid, we hencef
assume that none of the eigenvalues ofCi j is ~approxi-
mately! equal to any of the neutral Higgs boso
squared-masses.6 This is not a serious restriction, since the
is no natural choice of supersymmetric parameters
would guarantee such a~near! degeneracy. In particular, th
Higgs boson mass matrices arise in part from the mixing
HD andHU , which is governed by the parameterb0 and not
related to the generation of sneutrino masses.

The result of the calculation outlined above will be bas
independent expressions for the sneutrino–antisneut
squared-mass splittings. We first illustrate the method
one sneutrino generation in Sec. III, and then generalize
the multi-generational case in Sec. IV, assuming that
eigenvalues ofCi j are non-degenerate. The case where so
of the eigenvalues ofCi j are degenerate will be treated
Sec. V.

III. THE CASE OF ONE GENERATION

In the one generation case we can drop the Roman ind
from X, B, andC, namely we defineXa[Xa1 , B[B1, and
C[C11. To zeroth order inB, the CP-even andCP-odd
sneutrino squared-masses are equal toC. The corrections can
be calculated perturbatively.

The eigenvalue equation for theCP-odd squared-mas
matrix, det(M̃odd

2 2lI )50 reads

~A2l!~C2l!2B250. ~3.1!

For B small,l5C1O(B2), so we can takel2C5aB2 and
solve fora. Thus, to first order inB2, the squared mass of th
CP-odd sneutrino is

modd
2 5C2

B2

A2C
. ~3.2!

A similar analysis for theCP-even squared-mass matr
yields the following result for the squared-mass of t
CP-even sneutrino:

meven
2 5C2

B2~D2C!

~F1A2C!~D2C!2E2 . ~3.3!

The squared-mass splitting,Dmñ
2
5meven

2 2modd
2 , is given by

Dmñ
2
5

2FCB2

~A2C!@~F1A2C!~D2C!2E2#
, ~3.4!

where we have used the fact thatFD5E2. Note that the only
small parameter in Eq.~3.4! is B2. We can therefore use th

6Relaxing this assumption would require one to use degene
perturbation theory. The resulting analysis would be more invol
and not very illuminating, so we spare the reader by omitting
consideration of this possibility.
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RPC values for the prefactor that multipliesB2. For example,
as noted above,C5mñ

2 is the RPC sneutrino squared-mas
Although B5vbaXa /vd

2 is expressed in a basis
independent manner, the explicit dependence onXa is incon-
venient. Clearly, it is preferable to re-expressB directly in
terms of the original model parameters. To this end, note
the orthogonality condition@Eq. ~2.6!# implies thatXa and
va are orthogonal, and thus a dot product of any vector w
X is equivalent to a cross product withv. Using Eq.~A2! for
B2 and the RPC values for the other parameters of Eq.~3.4!,
we end up with

Dmñ
2
5

24b2mZ
2 mñ

2 sin2b

~mH0
2

2mñ
2!~mh0

2
2mñ

2!~mA0
2

2mñ
2!

uv̂3b̂u2,

~3.5!

whereb̂ is a unit vector in theba direction and the square o
the cross product is formally defined according to Eq.~1.4!.
It is easy to check@see Appendix B# that in the special basis
wherev150, the basis-independent result above@Eq. ~3.5!#
reduces to the basis-dependent result quoted in Eq.~1.5!.

The basis-independent result obtain in Eq.~3.5! is still not
in optimal form, since it depends onv, which is a derived
quantity that requires one to determine the minimum of
scalar potential@Eq. ~2.1!#. However, we can employ the
vectorca @defined in Eq.~2.13!# to our advantage by noting
that in theng51 case@see Eq.~C6!#,

ub3cu25mñ
4 uv̂3b̂u2. ~3.6!

Consequently, we can express the sneutrino squared-m
splitting in the one-generation case directly in terms of fu
damental parameters of the RPV Lagrangian in a comple
basis-independent form.

IV. THE CASE OF AN ARBITRARY NUMBER
OF GENERATIONS

In this section, we obtain results for an arbitrary numb
of generations. We then explicitly exhibit the correspondi
results forng52 and 3 generations. The eigenvalue equat
for the CP-odd scalar squared-mass matrix is

~A2l!det~C2lI !1Y(N)~l!50, ~4.1!

whereI is theN3N unit matrix,N[ng , and

Y(N)~l![Bicof@~M̃odd
2 2lI !0i #, ~4.2!

where the sum over the repeated indexi is assumed implic-
itly. As usual, the cofactor is defined as cof@Ai j #

5(21)i 1 j detÃ( i , j ) whereÃ( i , j ) is the matrixA whosei th
row and j th column are removed. In the special case o
one-dimensional matrix, we can define cof@A11#51.

Let lm
(0) (m51,2, . . . ,N) be the roots of Eq.~4.1! to ze-

roth order in theBi , namely det(C2lm
(0)I )50. For small

Bi , we insertlm5lm
(0)1(dlm)odd into Eq.~4.1!. Working to

the lowest non-trivial order in theBi , we make use of Eq
~D2! to obtain

te
d
e

1-5
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~dlm!odd5
Y(N)~lm!

~A2lm!det8~C2lmI !
, ~4.3!

where det8A is the product of all the non-zero eigenvalues
A. In this analysis, we assume that there are no degene
eigenvalues~the degenerate case will be considered in S
V!; hence

det8~C2lmI !5 )
iÞm

~l i2lm!. ~4.4!

Note that we do not distinguish betweenlm
(0) andlm in Eq.

~4.3!. Since theBiBj are the small parameters, any distin
tion between the two estimates forlm would yield a result
that is higher order in the product of theBi .

By a similar technique, we may solve the eigenva
equation for theCP-even scalar squared-mass matrix. N
ing that lm

(0) is the same in both theCP-odd andCP-even
squared-mass computations, we can writelm5lm

(0)

1(dlm)even. The end result is

~dlm!even5
Y(N)~lm!~D2lm!

@~D2lm!~F1A2lm!2E2#det8~C2lmI !
.

~4.5!

We may evaluate the denominator of the above expressio
the RPC limit~whereB250!. In this limit,

~D2lm!~F1A2lm!2E25~mh
22lm!~mH

2 2lm!,

A2lm5mA
22lm . ~4.6!

The squared-mass difference of themth sneutrino–
antisneutrino pair is denoted byDmñm

2
5(meven

2 )m

2(modd
2 )m . Plugging in the results of Eqs.~4.3! and ~4.5!,

we obtain

Dmñm

2
5

Y(N)~lm!

det8~C2lmI !
F D2lm

~mh
22lm!~mH

2 2lm!
2

1

~mA
22lm!G .

~4.7!

We may further simplify this result by employing RPC va
ues for any expression that multiplies a term of orderBiBj .
In particular, we can make use of the well known tree-le
MSSM Higgs results:mh0

2
1mH0

2
5mA0

2
1mZ

2 and mH0
2 mh0

2

5mA0
2 mZ

2 cos22b. Moreover, we may takelm5mñm

2 . The end

result is

Dmñm

2
5

mñm

2 mZ
2 sin22bY(N)~mñm

2 !

~mA
22mñm

2 !~mh
22mñm

2 !~mH
2 2mñm

2 !)
iÞm

~mñi

2
2mñm

2 !

.

~4.8!

The small RPV parameters that govern the above expres
has been completely isolated intoY(N). One additional con-
sequence of this result is a simple sum rule that holds fo
07501
f
ate
c.

e
-

in

l

on

n

appropriately weighted sum of sneutrino squared-mass
ferences. The sum rule and its derivation is given in App
dix E.

We next derive a method for computingY(N)(l). First,
we evaluateY(N) for l50. From Eq.~4.2!, it is straightfor-
ward to evaluateY(N)(0)5Bicof@(M̃odd

2 )0i #. Using Eq.
~2.15!,

Y(N)~0!52BiBjcof@Ci j #. ~4.9!

Note that forN51, Y(1)(l)52B2, independent of the value
of l. One can extend Eq.~4.9! for arbitrary l. We have
found the following recursion relation:

Y(N)~l!52BiBjcof@Ci j #2lY(N21)~l!, ~4.10!

with Y(1)(l)52B2. The proper use of this equation requir
some care. One must first expressY(N21) covariantly in
terms of the (N21)-dimensional vectorBi and (N21)
3(N21) dimensional matrixCi j . Then, the termY(N21)

that appears in Eq.~4.10! is given by precisely the sam
expression@obtained in the (N21)-dimensional case#, but
with Bi andCi j now N-dimensional objects. For example,

Y(2)~l!5Y(2)~0!1lB2, ~4.11!

but in Eq.~4.11!, B25( i 51
N BiBi , with N52.

The solution to the recursion relation@Eq. ~4.10!# is

Y(N)~l!5 (
k50

N21

~21!klkY(N2k)~0!. ~4.12!

Again, we emphasize that theY(N2k) are first obtained by an
(N2k)-dimensional computation. Once these terms are
pressed covariantly in terms ofBi and Ci j , the resulting
expressions forY(N2k) may be used in Eq.~4.12!, with Bi
and Ci j promoted to fullN-dimensional objects. Thus, fo
each extra generation, we need only calculate one new
variant,Y(N)(0).

We illustrate the general formulas above for the cases
N51, 2 and 3 generations. The case ofN51 is trivial. Here
Y(1)(0)52B2. Using Eq.~A2!, we quickly recover the re-
sult of Eq.~3.5!. For the case ofN52, we use Eqs.~4.9! and
~4.12! to obtain

Y(2)~l!5B2@l2Tr~C!#1BiBjCi j . ~4.13!

Using the results of Appendix A we can expressY(2) directly
in terms of the model parameters:
1-6
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Y(2)~l!5
1

vd
2 cos2b

$uv3bu2 @l2Tr~M ññ*
2

!#1b2~v3b!•~v3c!%. ~4.14!

The final result for the sneutrino squared-mass splittings in the two generation case is

Dmñm

2
5

4mñm

2 mZ
2 tan2b$uv3bu2@mñm

2
2Tr~M ññ*

2
!#1b2~v3b!•~v3c!%

v2~mñn

2
2mñm

2 !~mA
22mñm

2 !~mh
22mñm

2 !~mH
2 2mñm

2 !
, ~4.15!
.

-

i the
wheren5” m and we have putlm5mñm

2 . We may evaluate

Tr(M ññ*
2 ) in the RPC limit:

Tr~M ññ*
2

!5ubutanb1mñ1

2
1mñ2

2 , ~4.16!

where ubu[(baba)1/2. In Appendix B, we verify that Eqs
~1.5! and ~4.15! agree in the special basis.

As in the previous section, we note that Eq.~4.15! de-
pends on the derived quantityv. At the expense of a some
what more complex result, we can re-express Eq.~4.15! in
terms of the vectorsb, c, and a new vectorc(2) introduced in
Eq. ~2.14!, as shown in Appendix C.

For N53 generations, the new invariant that arises
again obtained from Eq.~4.9!:
lts

u
e,

07501
s

Y(3)~0!5 1
2 B2

†Tr~C2!2@Tr~C!#2
‡

1BiBjCi j Tr~C!2BiBjCikCk j . ~4.17!

Following the procedure outlined above, Eqs.~4.10! and
~4.13! yield

Y(3)~l!5Y(3)~0!2lY(2)~l!, ~4.18!

whereY(2)(l) is given by Eq.~4.14!, with v, b and c pro-
moted to three-dimensional vectors andM ññ*

2 promoted to a
333 matrix. An explicit evaluation ofY(3)(0) is given in
Eq. ~A11!. Inserting the corresponding results into Eq.~4.8!,
we end up with the sneutrino squared-mass splittings in
three generation case:
Dmñm

2
5

24mñm

2 mZ
2 tan2b

v2~mñn

2
2mñm

2 !~mñk

2
2mñm

2 !~mA
22mñm

2 !~mh
22mñm

2 !~mH
2 2mñm

2 !
$uv3bu2†mñm

4
2mñm

2 Tr~M ññ*
2

!

2 1
2 @Tr~M ññ*

4
!2@Tr~M ññ*

2
!#2

‡1b2~v3b!•~v3c!@mñm

2
2b•c2Tr~M ññ*

2
!#1b2vd

2ub3cu2%, ~4.19!
f
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ry
wheren5” k5” m. The traces in the RPC limit are given by

Tr~M ññ*
2

!5ubutanb1 (
k51

3

mñk

2 ,

Tr~M ññ*
4

!5b2 tan2b1 (
k51

3

mñk

4 . ~4.20!

Again, we can check that in the special basis@see Appendix
B#, Eqs.~1.5! and~4.19! agree. The extension of these resu
to four and more generations is straightforward.

From the results above, we learn that if the vectorsv and
b are parallel, thenDmñm

2
50 for all m. This is obvious for

the one and two generation cases, since we may then pv
3b50 in Eqs.~3.5! and~4.15!. In the three-generation cas
it is sufficient to note that the vectorsb andc are also paral-
lel; it then again follows@see Eq.~4.19!# that Dmñm

2
50. In

fact, if v and b are parallel, then all the vectorsc(n) @Eq.
~2.14!# are simultaneously parallel tov. As a result,
t

Dmñm

2
50 for all m in the case of an arbitrary number o

generations. Conversely, ifv and b are not parallel, then
there must exist at least one sneutrino–anti-sneutrino
that is split in mass, as a consequence of the sum rule der
in Eq. ~E1!.

V. THE DEGENERATE CASE

So far we have assumed that the sneutrinos are n
degenerate. We expect this assumption to hold in any re
tic model, since the sneutrino–antisneutrino mass splitti
are of order the neutrino masses. Thus in order for the re
of the previous section not to hold, the flavor degeneracy
to be very good, namely the mass splitting between differ
sneutrino flavors should be much smaller than the neut
mass. In any realistic model, we do not expect such a h
degree of degeneracy. Even in models where supersymm
breaking is flavor blind, a mass-splitting between sneutr
flavors will be generated via renormalization group~RG!
evolution ~from the scale of primordial supersymmet
1-7
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breaking to the electroweak scale! that is proportional to the
corresponding charged lepton masses. Even a very s
amount of running is sufficient to generate a mass splitt
that is many orders of magnitude larger than the neutr
mass.

Nevertheless, as a mathematical exercise and for c
pleteness, we generalize the results of the previous sec
to the case of degenerate sneutrinos. First we give a b
dependent argument that explains how one can obtain
sneutrino squared-mass splittings in the degenerate case
the results already obtained in the non-degenerate case
out any additional calculation. A basis-independent proo
relegated to Appendix F.

Consider a case withnf sneutrinos, of whichnd sneutri-
nos are degenerate in mass~where 2<nd<nf) in the RPC
limit. Consider thend degenerate sneutrinos and their cor
sponding antisneutrinos. Of these,nd21 sneutrino–
antisneutrino pairs remain degenerate when RPV effects
included, while one pair is split in mass.7 In total, nf2nd
11 sneutrino–antisneutrino pairs are split in mass. The c
responding squared-mass differences are then given by
~4.8! for the (nf2nd11)-generation case, but with all vec
tors and tensors appearing in the formula promoted tonf
dimensions. The proof of this assertion is as follows. For
case ofnd degenerate sneutrinos, the matrixC @that appears
in Eqs. ~2.15! and ~2.16!# has nd degenerate eigenvalue
Thus, we are free to make arbitrary rotations within thend
dimensional subspace corresponding to the degenerate s
By a suitable rotation, we can choose of basis in which o
one of theBi within the degenerate subspace is non-zero
this basis theCP-odd and theCP-even squared-mass matr
ces @Eqs. ~2.15! and ~2.16!# separate into (nd21) and (nf
2nd11)-dimensional blocks. Clearly, the sneutrino eige
values in the corresponding (nd21)-dimensional blocks are
not affected by the presence of RPV terms, while thenf
2nd11)-dimensional block can be treated by the metho
of Sec. IV.

Further generalizations, where more than one set
sneutrinos are each separately degenerate, can also be
ied. The procedure for computing the resulting sneutr
squared-mass differences is now clear, so we shall not el
rate further.

VI. DISCUSSION

This paper provides formulas for the sneutrino
antisneutrino squared-mass differences at tree level in te
of basis-independentR-parity-violating ~RPV! quantities. In
contrast to the neutrino sector, where only one tree-level n
trino mass is generated by RPV effects, we expect thatall
sneutrino–antisneutrino squared-mass differences are g
ated at tree-level with roughly the same order of magnitu
The sneutrino–antisneutrino mass difference is expecte
be of the same order of magnitude as the~tree-level! neutrino
mass. However, these quantities could be significantly dif

7This corrects a misstatement made at the end of Sec. III in
@16#.
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ent, as they depend on independent RPV parameters.
can also analyze the case of degenerate masses for diff
sneutrino flavors; although this case can only arise as a re
of a high degree of fine-tuning of low-energy paramete
The pattern of sneutrino–antisneutrino squared-mass di
ences would provide some insight into the fundamental
gin of lepton flavor at a very high energy scale.

The sneutrino–antisneutrino squared-mass splittings
be explored either directly by observing sneutrino oscillat
@5#, or indirectly via its effects on other lepton number vi
lating processes, such as neutrinoless double beta decay@17#
and neutrino masses@22,13#. Moreover, the effects of tree
level sneutrino–antisneutrino squared-mass splittings
neutrino masses are expected to be significant. The neu
spectrum is determined by the relative size of the differ
RPV couplings that control three sources of neutrino mas
~i! the tree-level mass,~ii ! the sneutrino induced one-loo
masses, and~iii ! the trilinear RPV induced one-loop mass
@16#. Since only one neutrino acquires a tree-level mass,
other two mechanisms are responsible for the masses o
other two neutrinos. In the literature, only the trilinear RP
induced one-loop masses have been considered in most
ies. In Refs.@22# and @13#, it is argued that the sneutrino
induced one-loop contributions to the neutrino masses
generically dominant, since the trilinear RPV-induced on
loop masses are additionally suppressed by a factor pro
tional to the Yukawa coupling squared.

The results of our basis-independent formalism are us
for comparing the two radiative neutrino mass generat
mechanisms. In particular, in models in which a theory
flavor determines the structure of the soft-supersymme
breaking parameters at some high energy scale, RG ev
tion provides the connection between the observed lo
energy spectrum and the high-energy values of
fundamental parameters of the theory@10,23#. Basis-
dependent quantities are not renormalization-group invari
hence the RG evolution of basis-independent quantities
significantly simplify the analysis. For example, the directi
of the vacuum expectation value of the generalized slept
Higgs scalar field is dynamically generated at each ene
scale. Since the model parameters generically depend on
scale, the direction of the vacuum expectation value in
generalized lepton flavor space is scale dependent. Cle
in the basis-independent approach, such complications
avoided. This will be the subject of a subsequent paper.

A few possible directions for future research are wo
noting. First, recall that in this paper, we assumed thatCP
was conserved in the scalar sector. IfCP is violated, the
required analysis is more complicated. Instead of diagon
izing separatelyCP-even andCP-odd squared-mass matr
ces, one must diagonalize a single squared-mass matr
which the formerlyCP-even andCP-odd states can mix
Then, one must identify the two sneutrino mass eigenst
~in the limit of small RPV couplings!. It should be possible
to extend the techniques developed in this paper to add
this more general case. Second, in exploring the phen
enology of sneutrino interactions~production cross section
and decay!, one can generally assume that RPV couplin
are irrelevant except in the decay of the lightest sneutr
f.
1-8
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state. In that case, new RPV couplings enter, in particular
correspondingl andl8 parameters given in Eq.~1.1!. In the
spirit of this paper, one should also develop a bas
independent formalism to describe the RPV sneutrino de
We hope to return to some of these issues in a future w
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APPENDIX A: EVALUATION OF Y„N…

„0…
FOR NÄ1, 2 AND 3

Using Eq. ~4.9! for Y(N)(0), we provide below the ex-
plicit computation for the cases ofN51,2 and 3. The com-
putation makes use of the definitions ofBi andCi j :

Bi[
bbXb i

cosb
,

Ci j [Xa jMab
2 Xb i , ~A1!

whereM2[M ññ*
2 , and the properties of theXa i given in Eqs.

~2.6!–~2.8!.
The case ofN51 is very simple:

Y(1)~0!52B2

5
21

cos2b
baXa ibbXb i

5
21

cos2b Fb22
~b•v !2

vd
2 G

5
2b2

cos2b
uv̂3b̂u2, ~A2!

where the product of cross products, defined in Eq.~1.4!, can
be used in any number of dimensions.

For the case ofN52, we compute

Y(2)~0!5BiBjCi j 2B2 Tr~C!

5
1

cos2b
@Xa iMab

2 Xb jbmXm ibnXn j

2Xa iMab
2 Xb ibmXm jbnXn j #

5
1

vd
2 cos2b

$b2vd
2~c•b!2vub2~b•v !

2@b2vd
22~b•v !2# Tr~M2!%

5
1

vd
2 cos2b

$b2~v3b!•~c3v !2uv3bu2 Tr~M2!%.

~A3!
07501
e

-
y.
k.

ct
y
-

Note that the resulting expression has simplified consid
ably after introducing the vectorc @defined in Eq.~2.13!#.

The case ofN53 is more involved:

Y(3)~0!5 1
2 B2

†Tr~C2!2@Tr~C!#2
‡

1BiBjCi j Tr~C!2BiBjCikCk j . ~A4!

We calculate separately the two terms above. First,B2 is
obtained from Eq.~A2! and

Tr~C2!2@Tr~C!#25@Xa iMab
2 Xb jXm jMmn

2 Xn i

2Xa iMab
2 Xb iXm jMmn

2 Xn j #

5Tr~M4!2@Tr~M2!#2

2
2vu

vd
2 @vub22~b•v ! Tr~M2!#.

~A5!

Next, we evaluate

@BiBjCi j Tr~C!2BiBjCi j
2 #cos2b

5Xa iMab
2 Xb iXm jMmn

2 XnkbsXskbrXr j

2Xa iMab
2 Xb jXm jMmn

2 XnkbsXskbrXr i

5Mmn
2 bmbn Tr~M2!2Mam

2 Mmn
2 bnba

2
vu

vd
2 @b2~b•v !Tr~M2!2~b•v !Mmn

2 bnba#

1
vu

vd
2 @vub42b2~b•v !Tr~M2!#

1
vu

vd
4 @~b•v !3 Tr~M2!2vub2~b•v !2#. ~A6!

The above result can be simplified further. First, the last t
terms can be combined by noting that

vub42b2~b•v !Tr~M2!1
1

vd
2 @~b•v !3 Tr~M2!2vub2~b•v !2#

5
uv3bu2

vd
2 @vub22~b•v !Tr~M2!#. ~A7!

This term will end up canceling a similar term in Eq.~A5!.
At this point, it is convenient to re-express some of t

terms of Eq.~A6! in terms of the vectorc. First, we observe
that

vd
2Mmn

2 bmbn Tr~M2!2vub2~b•v !Tr~M2!

5b2@~b•c!vd
22~b•v !~c•v !#Tr~M2!

5b2~v3c!•~v3b!Tr~M2!. ~A8!
1-9
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In deriving the above result, we noted thatMmn
2 bnvn5vub2

5b2(v•c) @using Eqs.~2.1! and~2.13! and the fact thatM ññ*
2

is a symmetric matrix#, which implies that

vu5v•c. ~A9!

Second,

vd
2Mam

2 Mmn
2 bnba2vu~b•v !Mmn

2 bnbn

5b4c2vd
22vub2~b•v !~b•c!

5b2@vd
2ub3cu21~b•c!~v3b!•~v3c!#.

~A10!

Collecting all of the above results, the final expression
quite compact:

Y(3)~0!5
1

vd
2 cos2b

$ 1
2 uv3bu2†Tr~M4!2@Tr~M2!#2

‡

1b2vd
2ub3cu21b2~v3c!•~v3b!

3@Tr~M2!2~b•c!#%. ~A11!

APPENDIX B: SNEUTRINO SQUARED-MASS SPLITTING
FORMULAS IN THE SPECIAL BASIS

We define the special basis in whichvm50 ~i.e., the neu-
tral scalar vacuum expectation values determines the de
tion of the down-type Higgs field! and the matrix (M ññ*

2 ) i j

@which is the 333 block sub-matrix of (M ññ*
2 )ab defined in

Eq. ~2.2!# is diagonal. As in Appendix A we defineM2

[M ññ*
2 .

In the special basis, one can use Eqs.~2.1!, ~2.13!, and
~A9! to obtain the following relations:

c05tanb, M00
2 5b0c0 , M0i

2 5bi tanb,

ci5
bi~M00

2 1Mii
2 !

b2
. ~B1!

Using these results, it follows that

uv3bu25vd
2(

i
bi

2 , ~B2!

b2~v3b!•~v3c!5vd
2FM00

2 (
i

bi
21(

i
M ii

2bi
2G .
~B3!

We will also need a similar expression forub3cu2. First, we
note that the last relation of Eq.~B1! implies

c25c0
21

1

b4 (
i

bi
2~M00

2 1Mii
2 !2,

b•c5M00
2 1

1

b2(
i

bi
2~M00

2 1Mii
2 !. ~B4!
07501
s

i-

These results can be used to obtain

ub3cu25b2c22~b•c!25
1

b2 (
i

~biM ii
2 !21O~bi

4!.

~B5!

We now turn to the specific cases. For the case of one g
eration, the basis-independent result is given in Eq.~3.5!. In
the special basis, Eq.~B2! yields

b2uv̂3b̂u25b1
2 . ~B6!

Inserting this result into Eq.~3.5!, we immediately obtain Eq
~1.5!.

In the two generation case, the basis-independent resu
given in Eq.~4.15!. In the special basis, Eqs.~B2! and ~B3!
yield

b2~v3b!•~v3c!5vd
2@M00

2 ~b1
21b2

2!

1M11
2 b1

21M22
2 b2

2#, ~B7!

@Mii
2 2Tr~M2!#uv3bu252vd

2~M00
2 1M j j

2 !~b1
21b2

2!,
~B8!

for the two cases ofi 51, j 52, andi 52, j 51, respectively.
Adding the above two equations, one finds

@Mii
2 2Tr~M2!#uv3bu21b2~v3b!•~v3c!

5~Mii
2 2M j j

2 !bi
2vd

2 . ~B9!

Working to leading order in the RPV parametersbi
2 , we may

set the diagonal elements ofM2 to their RPC values,Mii
2

5mñi

2 . Plugging the result into Eq.~4.15!, one again recovers

Eq. ~1.5!.
In the three generation case, the basis-independent r

is given in Eq.~4.19!. Again, it is sufficient to work to lead-
ing order in thebi

2 . Then, one finds that in the special bas

@M11
2 #22M11

2 Tr~M2!2 1
2 †Tr~M4!2@Tr~M2!#2

‡

5M00
2 @M22

2 1M33
2 #1M22

2 M33
2 1O~bi

2!,

M11
2 2b•c2Tr~M2!52M22

2 2M33
2 1O~bi

2!. ~B10!

Using these results and those of Eqs.~B2!, ~B3!, and ~B5!,
we end up with

$@M11
2 #22M11

2 Tr~M2!2 1
2 @Tr~M4!2@Tr~M2!#2%uv3bu2

1b2vd
2ub3cu21b2~v3b!•~v3c!

3@M11
2 2b•c2Tr~M2!#

5vd
2b1

2~M11
2 2M22

2 !~M11
2 2M33

2 !. ~B11!

Two additional equations can be generated by permuting
indices 1, 2, and 3. Finally, settingMii

2 5mñi

2 and plugging

the result into Eq.~4.19!, one confirms Eq.~1.5! for the third
time.
1-10
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APPENDIX C: HOW TO ELIMINATE v
IN FAVOR OF OTHER VECTORS

Our final expressions for the sneutrino squared mass
ferences depend on basis-independent products of vectorv,
b, c, . . . , andtraces of powers ofM ññ*

2 . However, the vector
v is not a fundamental parameter of the model, but a deri
parameter which arises as a solution to Eq.~2.1!. With some
manipulation, it is possible to eliminatev in favor of the
other vectors~which correspond more directly to the fund
mental supersymmetric model parameters, namelyb and a
series of vectors obtained by multiplyingb some number of
times byM ññ*

2 ). In this appendix, we illustrate the procedu
in the case of the one and two generation models.

In the one generation model,M ññ*
2 is a 232 matrix. Con-

sider an arbitrary 232 matrix A and its characteristic equa
tion det(A2lI )50. Since any matrix satisfies its own cha
acteristic equation, we obtain8

A22A Tr~A!1det~A!50, ~C1!

which after multiplication byA21 yields

A215
Tr~A!2A

det~A!
. ~C2!

Using Eq.~C2! we can expressuv3bu2 in terms ofub3cu2.
Let A[M ññ*

2 , and use Eqs.~2.1! and ~2.13! to obtain

v5vuA21b5
vu@b Tr~A!2b2c#

det~A!
. ~C3!

Substituting Eq.~C3! for v in uv3bu2[b2vd
22(v•b)2:

b2vd
25

b4vu
2

@det~A!#2 $@Tr~A!#222~b•c!Tr~A!1b2c2%,

~v•b!25
b4vu

2

@det~A!#2 $@Tr~A!#222~b•c!Tr~A!1~b•c!2%.

~C4!

Subtracting these two equations, we end up with

uv3bu25
b4vu

2

@det~A!#2 ub3cu2. ~C5!

Sinceub3cu2 is the small RPV parameter, we may evalua
det(A) in the RPC limit. Using Eq.~2.1! in the RPC limit,
@det(A)#25mñ

4b2 tan2b. The end result is

ub3cu25mñ
4uv̂3b̂u2. ~C6!

In the two generation model,M ññ*
2 is a 333 matrix. The

procedure again employs the characteristic equation. Fo
arbitrary 333 matrix,

8We henceforth suppress the obvious factors of the identity ma
I.
07501
if-
,

d

an

A215
A22A Tr~A!1Sym2A

det~A!
, ~C7!

where9

Sym2~A![(
i , j

l il j5
1
2 $@Tr~A!#22Tr~A2!%, ~C8!

wherel j are the eigenvalues ofA. We can again solve forv
following the method used in the one-generation case:

v5vuA21b5
vu@b2d2b2c Tr~A!1bSym2~A!#

det~A!
,

~C9!

where we have definedd[c(2)5Ac. After some algebra, we
obtain10

uv3bu25
b4vu

2

@det~A!#2 †ub3du21ub3cu2@Tr~A!#2

22~b3c!~b3d!Tr~A!‡, ~C10!

and

~v3b!•~v3c!5
b2vu

2

@det~A!#2 †~d3b!•~d3c!@b22Sym2~A!#

1b2~c3d!•~c3b!Tr~A!

1ub3cu2 Tr~A!Sym2~A!‡. ~C11!

It is easy to evaluate the three invariants in the RPC limi11

Tr~A!5ubutanb1m1
21m2

2 ,

det~A!5m1m2ubutanb,

Sym2~A!5m1
2m2

21ubutanb~m1
21m2!2,

~C12!

wheremi
2[mñi

2 .

Inserting the above results into Eq.~4.15! yields the de-
sired result. Further algebraic manipulations of the result
expression do not lead to a particularly simple result.

APPENDIX D: EVALUATION OF det †AÀ„lmÀe…I ‡

Consider a generalN3N matrix A, with eigenvalueslk .
Then,

det~A2lI !5)
k

N

~lk2l!, ~D1!

ix

9To prove Eq.~C8!, simply note that Tr(A2)5(klk
2 .

10Observe that the result foruv3bu2 depends on the number o
generations, i.e., the dimension of the matrixA @compare Eqs.~C5!
and ~C10!#.

11Sincev•c5vu , it follows that in the RPC limit,ucu5tanb.
1-11
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YUVAL GROSSMAN AND HOWARD E. HABER PHYSICAL REVIEW D63 075011
where the product is taken over allN eigenvalues~some of
which might be degenerate!. First, suppose that there are n
degenerate eigenvalues. Iflm is one of the eigenvalues an
e!1, then

det@A2~lm2e!I #5e )
iÞm

~l i2lm!1O~e2!

5e det8~A2lmI !1O~e2!, ~D2!

where det8M is the product of all the non-zero eigenvalu
of M @see Eq.~4.4!#.

The case of degenerate eigenvalues is easily handled
can still use Eq.~4.4! if it is understood that all terms in
which l i is equal to the degenerate eigenvalue are omi
from the product. Ifld is an eigenvalue which isnd-fold
degenerate, then Eq.~D2! is generalized to

det@A2~ld2e!I #5end det8~A2ldI !1O~end11!.
~D3!

In Sec. IV and Appendix F, we have employed these res
with e52dlm ande52dld , respectively.

APPENDIX E: SNEUTRINO SQUARED-MASS SPLITTING
SUM RULES

In the case ofN sneutrino generations, one can calcula
the corresponding sneutrino squared-mass splittings. In
case of non-degenerate tree-level sneutrino masses,
squared-mass splittings were obtained in Eq.~4.8!. In the
case of degenerate masses, one employs the modified re
according to the discussion given in Sec. V and Appendix
We then find the following interesting sum rule:

(
m51

N v2~mA
22mñm

2 !~mh
22mñm

2 !~mH
2 2mñm

2 !

4mZ
2 tan2b

Dmñm

2

mñm

2

52uv3bu2. ~E1!

We shall prove this result for the non-degenerate case. U
Eqs.~4.8! and~A2!, we see that Eq.~E1! is equivalent to the
following result:

(
m51

N
Y(N)~lm!

)
iÞm

~l i2lm!

5Y(1)~0!. ~E2!

To prove Eq.~E2!, we insert the expansion forY(N)(lm)
@Eq. ~4.12!# into Eq. ~E2!, and make use of the following
identity:

SN,k[ (
m51

N
lm

k

)
iÞm

~lm2l i !

5H 0, k50,1, . . . ,N22,

1, k5N21,

~E3!
07501
e

d
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where all thelm are assumed to be distinct.12

Equation~E3! is established as follows. Consider a fun
tion f (x)5(x2l1)(x2l2)•••(x2lN), where thelm are
distinct. Consider the resolution ofxk11/ f (x) into partial
fractions~wherek is an integer such that 0<k<N22):

xk11

f ~x!
5 (

m51

N
Am

x2lm
. ~E4!

Combining denominators, it follows that

xk115 (
m51

N

Am)
iÞm

~x2l i !. ~E5!

The right-hand side of Eq.~E5! is a polynomial of degree
N21 or less. Since this must be an identity for allx, we can
solve for each coefficientAm separately by settingx5lm :

Am5
lm

k11

)
iÞm

~lm2l i !

. ~E6!

Inserting this result into Eq.~E4! and settingx50 yields Eq.
~E3! for the case of 0<k<N22. The case ofk50 where
one of thelm vanishes must be treated separately, althou
it is easy to show that the end result is unchanged. Th
SN,k50 for 0<k<N22.

To derive Eq.~E3! in the case ofk5N21, we setk5N
22 in Eq. ~E5!. On the right-hand side of Eq.~E5!, we note
that the term proportional toxN21 arises simply by setting
the l i50. It follows that(m51

N Am51 ~for k5N22) which
is precisely equivalent toSN,N2151 and the proof is com-
plete.

Finally, we note a useful recursion relation satisfied by
SN,k . Multiply the mth term of Eq. ~E3! by (lm
2lN11)/(lm2lN11). One immediately deduces that rel
tion

SN,k5SN11,k112lN11SN11,k . ~E7!

The boundary conditions for the recursion relation are:SN,0
50 for N>2 ~which is a consequence of the proof give
above!, and13 S1,051. It follows thatSN,k50 for 1<k<N
22. Choosingk5N21 in Eq. ~E7! then yields SN11,N
5SN,N21; it follows that SN11,N51 for all N>1. Finally, it
is easy to increasek further. For example, Eq.~E7! implies
that SN11,N115SN,N1lN11. It follows that SN,N5( i 51

N l i ,
and so on.

12Note that in Eq.~E3!, the sign of the factorslm2l i is reversed
compared to Eq.~E2!. Thus, an extra factor of (21)N21 is gener-
ated which cancels with the corresponding sign in front ofY(1) in
Eq. ~4.12!.

13The conditionS1,051 formally defines the sum@Eq. ~E3!# in the
case ofN51. Alternatively, one can check by explicit evaluatio
that S2,151. Thus, we see that the assigned definition ofS1,0 is
consistent. Note that one can similarly defineS1,k5l1

k .
1-12
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The degenerate case can be treated as a limiting cas
the non-degenerate results obtained above. In the final an
sis, we find that Eq.~E1! applies in general, and serves as
useful check of our results.

APPENDIX F: BASIS-INDEPENDENT TREATMENT
OF THE DEGENERATE CASE

The degenerate case fornf flavors was treated in Sec. V
If nd sneutrino–antisneutrino pairs are degenerate in mas
the RPC limit, then when RPV effects are incorporated, o
finds thatnd21 pairs remain degenerate, whilenf2nd11
sneutrino–antisneutrino pairs are split in mass. The squa
mass splittings of the latter can be obtained from the co
sponding formulas of the non-degeneratenf2nd11 flavor
case.

In this appendix, we briefly sketch the required steps o
proof that generalizes the basis-independent results of
IV. Consider first the squared-mass matrix of theCP-odd
scalars@Eq. ~2.15!#. The characteristic equation, Eq.~4.1!, is
still valid in the case of degenerate sneutrinos. First we c
sider the quantityY(N)(l) @Eq. ~4.2!#. Suppose that the ma
trix C which appears inM̃odd

2 has an eigenvalueld that is
nd-fold degenerate~with the remaining eigenvalues ofC dis-
tinct!. We assert that the following formula holds:

Y(N)~l!5~ld2l!nd21Ydeg
(N2nd11)

~l!, ~F1!

whereYdeg
(N2nd11)(l) is obtained as follows. First, one evalu

atesY(N2nd11)(l) as in Sec. IV, and expresses the res
covariantly in terms of the vectorBi and the matrixCi j .
Next, these quantities are reinterpreted asN-dimensional ob-
jects. Finally, all traces that appear in the result are repla
by

Tr8Cn[Tr Cn2~nd21!ld
n . ~F2!

Consider first the effect of the RPV terms on the no
degenerate sneutrinos. Then the analysis of Sec. IV ca
used, and we obtain Eq.~4.8! for the squared-mass splittin
of sneutrino-/antisneutrino pairs. If we now insert Eq.~F1!
e-

no

.

07501
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for Y(N)(mñm

2 ), we see that we obtain a new formula whic

has the same form as Eq.~4.8!, with the following modifica-
tions: ~i! Y(N)(mñm

2 ) is replaced byYdeg
(N2nd11)(mñm

2 ); and ~ii !

the product that appears in the denominator of Eq.~4.8! is
modified to) iÞm8 (mñi

2
2mñm

2 ), where the prime indicates tha

degenerate squared-masses appear only once in the pro
To obtain a covariant expression forYdeg

(N2nd11)(mñm

2 ), we

first obtain the expression ofY(N2nd11)(mñm

2 ) in terms of the

various vectors (v, b, c, . . . ) andtraces of powers ofM2

using the results of Sec. IV and Appendix A. The resulti
expression can then be used forYdeg

(N2nd11)(mñm

2 ) by replac-

ing TrM2n with Tr8M2n @the latter is defined by replacingC
with M2 in Eq. ~F2!# and interpreting all the vectors an
matrices asN-dimensional objects.

Finally, consider the effect of the RPV terms on thend
degenerate sneutrinos. Now, we must return to Eq.~4.1! and
insertl5ld

(0)1(dld)odd. Working to the lowest non-trivial
order in theBi , we make use of Eqs.~F1! and~D3! to obtain

@~dld!odd#
nd5

Ydeg
(N2nd11)

~ld!@~dld!odd#
nd21

~A2ld!det8~C2ldI !
. ~F3!

The solution to this equation hasnd21 degenerate solution
(dld)odd50, and one non-degenerate solution for (dld)odd
which has the same form as Eq.~4.3! for the
(N2nd11)-dimensional problem. As described above,
can make use of the relevant covariant expressions obta
in Sec. IV and Appendix A by replacing Tr with Tr8 and
interpreting all the vectors and matrices asN-dimensional
objects. The end result is thatnd21 sneutrino–antisneutrino
pairs remain degenerate, while one of the original degene
pairs is split according to the (N2nd11)-dimensional ver-
sion of Eq.~4.8! @with all vectors and tensors promoted
N-dimensional objects#. One can also check that the sum ru
obtained in Appendix E for sneutrino squared-mass diff
ences~appropriately weighted! applies even when there ar
degenerate sneutrino masses.
.
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