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Basis-independent analysis of the sneutrino sector iR-parity violating supersymmetry
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In R-parity-violating supersymmetric mode(svith a conserved baryon numbethere are no quantum
numbers that distinguish the lepton-doublet and down-type Higgs supermultiplets. As a resBHpahigy/-
violating parameters depend on the basis choice for these superfields, although physical observables are
independent of the choice of basis. This paper presents a basis-independent computation of the sneutrino—
antisneutrino squared-mass splitting in terms of basis-independent quantities. Techniques are developed for an
arbitrary number of sneutrino generations; specific results are provided for the one, two and three generation
cases.
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I. INTRODUCTION masses, sneutrino—antisneutrino mixing, and lepton-number
violating decays.

In low-energy supersymmetric extensions of the standard In RPV low-energy supersymmetry, there is no quantum
model, lepton and baryon number conservation are not autarumber that distinguishes the lepton supermultiplgtsand
matically respected by the most general set of renormalizablge down-type Higgs supermultiplétD (m is a generation
interactiond 1]. Nevertheless, experimental observations im-|abel that runs from 1 tmy=3). Each supermultiplet trans-
ply that lepton number violating effects, if they exist, mustforms as a¥Y=—1 weak doublet under the electroweak
be rather small. Moreover, baryon number violation, if gauge group. It is therefore convenient to denbge=Fp
present, must be consistent with the observed stability of thgnd unify the four supermultiplets by one symHo] («

proton. If one wants to enforce lepton and baryon number=0 1 n.). Then, the relevant terms in teenormaliz-
conservation, it is sufficient to impose one extra discreteamé ’siJ.p.ergo.tential are

symmetry. In the minimal supersymmetric extension of the
standard modeMSSM), a multiplicative symmetry calleR
parity is introduced?2], such that theR quantum number of
an MSSM field of spirS, baryon numbeB and lepton hum-

ber L is given by (—1)B®-Y*+2S By introducingB—L . _ . A
conservation modulo 2, one eliminates all dimension-fourWhere|_|U is the up-type Higgs supermultiplet, 1@, are

lepton number and baryon number-violating interactions. doublet quark supermultiplets, tii, are singlet down-type
The observation of neutrino mixing effects in solar andquark supermultiplets and thg,, are the singlet charged

atmospherid3] neutrinos suggest that lepton-number is notlepton supermultiplets. Note that, and\/,, are vectors

an exact global symmetry of the low-energy theory. One ca@nd\ ,gm is an antisymmetric matrix in the generalized lep-

develop a supersymmetric model of neutrino masses thden flavor space.

generalizes the seesaw mechanism while maintaiRipgr- Next, the soft-supersymmetry-breaking terms are also

ity as a good symmetrf4,5] (where lepton number is vio- generalized in similar way. The relevant terms are

lated by two units In this paper, we consider the alternative o o

possibility that neutrino masses and mixing arise in a theory Vsoﬁz(M%)C,ﬁL';L'ﬁ—(eijbaL'wHJUnL H.c.

of R-parity violation, in which lepton number is violatedby o

one unit[6]. In the most generaR-parity-violating (RPV) + €ij[ 28upmb oL sEmT @k o QEDm+H.C,

model, bothB andL are violated. However, it is difficult to (1.2

relax both lepton and baryon number conservation in the '

low-energy theory W'thOUt generating a proton decay rat?Nhere the fields appearing in Ed..2) are the scalar partners

many orders of magnitude above the present bounds. It is . . ,

possible to enforce baryon number conservation, while aI9f the superﬂelds_ that apPear n Ed‘_'l)‘ He.re,ba andaan_m

lowing for lepton number violating interactions by imposing are Vectorsa, sy is an antisymmetric matrix andv(y) . is

a discrete baryo@; symmetry on the low-energy theofy], a Hermitian matrix in the generalized lepton flavor space.

in place of the standard, R parity. Henceforth, we consider ~ When the scalar potential is minimiz¢see Sec. )| one

R-parity-violating low-energy supersymmetry with an unbro- finds a vacuum expectation value for the neutral scalar fields:

ken discrete baryorZ; symmetry. This model exhibits (Ea>=val\/§ and(HU)zvu/\/E. To make contact with the

lepton-number-violating phenomena such as neutrinasual notation of the MSSM, we define the length of the

W= €ij [ Mal:iaﬂju + %)\a/}ml:iar-jﬁém_" A, nml:i Q]an]*
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vectorv, by vy=(v,v,) 12 and tanB=v,/vy. The mass of of two vectors vanishes if the corresponding vectors are par-
the W boson constrains the valué=v2+v32= (246 GeVY. allel. This provides a nice geometrical charactenzatlop of the
So far, there is no distinction between the neutral Higgssmall RPV parameters of the model. For examples ii|*

bosons and neutral sleptons. Nevertheless, we know that Sin’é whereé is the angle betweei and &.. Thus, in Eq.

RPV interactions, if present, must be small. It is tempting to(1.3), [0 X z1|? is the small RPV parameter, while the prefac-

choose a particular convention corresponding to a specifitor can be computed in the-parity-conservingRPQ limit

choice of basis in the generalized lepton flavor space. Foof the model.

example, one can choosedefinethe down-type Higgs mul- In this paper, we focus on a basis-independent description

tiplet such that<HD>E<[o>:vd/\/§ and <[m>:o_ This  of the RPV parameters that govern the sneutrino spectrum.

means that we let the dynami@shich determines the direc- The model possesses lepton-number-violatkig=1 inter-

tion of the vacuum expectation value in the generalized lepactions that give rise to the mixing of sleptons and Higgs

ton flavor spacke choose the definition of the down-type bosons: These interactions also generaté =2 effective

Higgs field. In this basis, all the RPV parameters are welloperators that give rise to sneutrino—antisneutrino mixing

defined and must be small to satisfy phenomenological corf5,13,16—-22 In this case, the sneutrinov and antis-

straints. neutrino (), which are eigenstates of lepton number, are no

Nevertheless, the above convention is only one possiblgynger mass eigenstates. The mass eigenstates are superposi-

basis choice. Other conventions are eqL_JaIIy sensible. For eXipns of 7 and #, and sneutrino mixing effects can lead to a

amp'e’ one could Chfose a second basis wingre 0 and a phenomenology analogous to thatfK and B-B mixing

g‘gg b:fal?ngz(res:i);?a;%a:P Eiicct]or%azerinth? colr;resg?r}dmdgw]. The mass splitting between the two sneutrino mass
VP . : paring resuts obtaine Ieigenstates is related to the magnitude of lepton number vio-

different bases requires some care. Moreover, it is often de= S ; . .

sirable to study the evolution of couplings from some high qtlon, which is typically characterized b){ the siz€ of neu-

(unification scale to the low-energelectroweakscale. The trino ma§s§$5,_18]. As a result, the sneutrmo—antlsneutrlno.

renormalization group equations for the RPV parameters i§12SS splitting is expected generally to be very small. Yet, it

not basis preserving. That is, a particular basis choice at thgd" Pe detected in many cases, if one is able to observe the
high energy scale will lead to some complicated effective/€Pton number oscillatiof5].

basis choice at the low-energy scale. In contrast to the neutrino sect@where only one neutrino
The problems described above can be ameliorated bjass eigenstate acquires a tree-level maasgeneralall
avoiding basis-specific definitions of parameters. The chalsSheutrinos—antisneutrino pairs are split in mass at tree fevel.
lenge of such an approach is to determine a set of basig=or simplicity, we consider the case oCP-conserving sca-
independent RPV parameters, in the spirit of the Jarlskodar sector. In the RPC limit, th€ P-even scalar sector con-
invariant which characterizes the strengtha#® violation in  sists of two Higgs scalardhf andH°, with m,o<my0) and
the standard mod¢8]. Such an approach has been applied tong generations ofCP-even sneutrinos i, ),, while the
RPV models in the past, where neutrino magSesl3, early  CP-odd scalar sector consists of the Higgs scadr the

universe physicgl4] and the Higgs sectdf.5] were studied. Goldstone bosofwhich is absorbed by th&), andn, gen-
Itis instructive to examine the neutrino spectrum of the RPVerations of CP-odd sneutrinos%_),,. Here, we have im-

model. At tree level, one neutrino become massive due to thgjicitly chosen a flavor basis in which the sneutrinos are

RPV mixing of the neutrinos and the neutralinos. The other,55¢ eigenstates. Moreover, the. ], are mass degenerate

Ng—1 neutrinos remain massless at tree level, although the)se o rately for eacm), so that the standard practice is to
can acquire smaller radiative masses at one-loop. To f'r%efine eigenstates of lepton numbef, =[(7.)
order in the small RPV parameter the basis independent forj—Li(~ ) ]/\/5 andi-=3*  When R-paritv is vrinolated+ tﬂe
mula can be written in the following forril0,16]: V=)m Ym=Vm- party '

sneutrinos in eaclC P-sector mix with the corresponding
m%,u M~yco§,8 N _nggs scalars, and the mass degeneracyol and_ (y,)m
[oX wl?, (1.3 is broken. In Ref[16] we computed the mass-splitting in a

special basis wherg,,=0 and the matrix M‘z“,,,r)ij [which is

whereM-= cogé,M; +sir*é,M, depends on gaugino mass the 3x3 block sub-matrix of 42,) o defined in Eq(2.2)]
parametersvl; andM,. In Eq. (1.3, v and & are unit vec- is diagonal. In this basis, we identified thg as the relevant
tors in thev, and u, directions, respectively. It is conve- small RPV parameters. To leading orderbiﬁ;,

nient to introduce the notation of the cross product of two

vectors. Although the cross product technically exists only in———

three dimensions, the dot product of two cross products can
be expressed as a product of dot products

mV: 2 .
mzM-,sin 28 —M1M,u

These interactions modify the phenomenology of the charged and
neutral scalargrelative to the RPC limjt as discussed in Ref15].
(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c), (1.9 “This result is a consequence of the fact that in the RPC limit,
neutrinos are massless and hence degenerate, whereas the RPC
which exists in any number of dimensions. This notation issneutrino masses are in general non-degenerate. See Sec. V and
useful, since any expression that involves the cross produ@ef.[16] for further discussions of this point.
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— Ap2 m%mz sirtB CP-conserving which implies that the scalar fields can be
m v . . . .
(Ami)m: > > > ”2‘ ——— (15 defined such thdt/l% is a real symmetric matrix anll, and
(mig—me, ) (my— %, ) (My—n¥, ) w, are real. The vacuum expectation vaflie,)=v /2 is

) ) 5 determined by minimizing the scalar potential. With the as-
where (Am,,)mE(mV+)m—(n°rV_)m. As in the neutrino case sumption ofC P conservation, one can separate out the scalar

described above, we may evaluate the prefactor that multotential for the CP-even andCP-odd sector,V=Veyen
plies b2, in the RPC limit. In deriving Eq(1.5), it was as- 1 Vodaa- Then,v, is determined by minimizing/eye,, and
sumed that all RPC Higgs boson and sneutrino masses are Hie resulting condition is given by
distinct. If degeneracies exist, the above formula must be
modified. (M2,) 00 5=0 D0, (2.1

The goal of this paper is to reanalyze the sneutrino mass
spectrum in a basis-independent formalism. We identify theyhere
small RPV parameters that govern the sneutrino—
antisneutrino mass splittings. Our technique will also allow 2 — 2 _Llin20 12y( 22
us to generalize the analysis to treat the case of scalar mass Vi Jas= (MDagt sabtp=5(97+0) vy~ 0d) 5“6 2
degeneracies. In Sec. Il, we derive a convenient form for the ‘
CP-even andCP-odd scalar squared-mass matrices. We . . .
compute the sneutrino—antisneutrino squared-mass diffell(;-l.Ote Fhat Eq.2.1) d(ta)ter_mmes both thi size of, and its
ence in the case of one sneutrino flavor in Sec. Ill. In Sec. Irection. In a perturbative treatment of RPV terms?, we can
IV, we generalize to an arbitrary number of generations, ands¢ the RPC value for the square_d magr_ntud_é
exhibit explicit formulas for the two and three generation— >aVaV«, @nd then use Eq2.1) to determine the direction
cases. The latter results assume that in the RPC limit, thefdf U« in the generalized lepton flavor space. o
are no degeneracies among different sneutrino flavors. The W€ next separate the scalar squared-mass matrices into
degenerate case is treated in Sec. V. A discussion of ofP-odd and CP-even blocks. In theHy-L, basis, the
results and conclusions are presented in Sec. VI. Details ¢¢ P-odd squared-mass matrix is given by
our computations are provided in six appendixes.

b,v, /vy bg )

2 _
Il. MINIMUM CONDITION AND BASIC EQUATIONS Modd_( b (M2,) 2.3
a wxaf

We begin our analysis by collecting the relevant formulas
given in Ref.[16]. We assume that the scalar sector iswhile the CP-even squared-mass matrix is given by

2 %(gz—l—g’z)vﬁ-i-bpvp/vu —%(g2+g'2)vuvﬁ—b’3 ) 2.4
even —3(g%+9")vw,.—b, %(gz-i—g’z)vavﬁ—i—(l\/l-z;,,,)ag .
|
where a\/lvz—w,)aﬁ is defined in Eq(2.2). Wherevz(vﬁ+u§)1’z. Note that the index runs from 1 to

To compute the squared-mass differences of the corrgdg; thusX,, is an g+ 1)X ng matrix. The orthogonality of
spondingC P-even andCP-odd sneutrinos, we must diago- U, implies that each column df, is a real unit vector and
nalize both of the above matrices. We wish to employ adifferent columns are orthogonal. In addition, the set
perturbative procedure by identifying the small RPV param4{v/v,Xs} forms an orthonormal set of vectors in an
eters, without resorting to a specific choice of basis. Oufng+ 1)-dimensional vector space. It follows that
strategy is to recast the two scalar squared-mass matrices in a
more convenignt form. v, X, =0, (2.6

First, consider theCP-odd squared mass matrpEq.

(2.3)]. Note that the vector<tuv,,vg) is an eigenvector of
M2, with zero eigenvalue; this is the Goldstone boson that XaiXaj= 6ij (2.7)
is absorbed by th&. We can remove the Goldstone boson by
introducing the following orthogonahg+2)X (ng+2) ma-
trix: 3In the MSSM, the Higgs sector is automaticalyP-conserving
at tree level, since all phases can be removed by suitable redefini-
tions of the fields. In the RPV model, new phases enter through
U.= —uylv valv 0 (2.5 (M%)QB, b,, andu,, which cannot all be simultaneously removed
vglv  vywgllvgr) Xg, in the general case.
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2 2
() _ ve(v-b)(vywg) vbgXgilvg
X i X gi= Sap— —ab. 2.9 M2~ v o ,
Vg ijaba/Ud Xja(M",},;'r)a,BxBi
(2.10

, ST, , herev-b=v,b,. The eigenstates df12,, correspond to
In our computations, no explicit realization of the, will be w aa 5 odd
required. A simple computation yields the CP-odd Higgs bosorA™ andng generations oC P-odd

sneutrinos.
It turns out that it is also convenient to rotate the-even
squared-mass matrix, but by a slightly different orthogonal
0g transformation. In the limit om,=0, theCP-even squared-
) ) 2.9 mass matrix also possesses a Goldstone boson, which we can
explicitly isolate. Comparing theCP-odd and CP-even
cases, we see that whgr=g’ =0 the two matrices are re-
lated byb,——b, andv,— —v,. Thus, if we introduce

0
UZMCZ)ddU0:<O (mzd)
@ odd a8

where Q; [0,] is a row[column] matrix of zeros anti Ue=Uy(v,— —v,) and defineéM2 ,=UIM2,.U., then
|
m3 co$23 —m3 cos 28sin 28 0
M2 | —Mzcos2Bsin2s mzsi2p+vi(v-b)/(vwg)  —vbpXglvg |, (2.1
O _ijaba/vd Xja(M"zf,,)*)aBXBi

where we usednz=2(g?+g'?)v? and tanB=v,/vq. The case and generalize it to the multi-generation case. To this

eigenstates of2,., correspond to theCP-even Higgs end, it is convenient to introduce a set of new RPV param-
bosongh® andH° andn, generations o€ P-even sneutrinos. eters. In_ the case of;<3, only one new vector is required
In the RPC limit, one can choose a basis in which  for our final results:
=b,=Xon=0. It follows that the sneutrino and Higgs mass 2
matrices decouple and one recovers the known RPC result. A c = (M5x) apbp (2.13
basis-independent characterization of the RPC limit in the “« b2 ' ‘
scalar(sneutrino—Higgessector is the condition that the vec-
torsbg andv 4 are aligned. Equivalently, by using the trans- For ng>3, further vectors are required. It is convenient to
formed mass matrices given above, it is clear that the quanntroduce a series of vectors
tities
cg‘“)z(MEw;)aﬁcg‘) , (2.149
Ub,Bxﬁl . .
B=—— (212  where c&l)zca. Clearly, the maximal number of linearly
vd independent vector&long withb andv) is n=ny—1, al-

) » o though not all of these will appear in our final results.
can be identified asy basis-independent parameters that T simplify the presentation we introduce the following

vanish in the RPC limit, and thus provide good candidategpgrthand for the elements of the transforn@@-even and
for the small quantities that can be used in a perturbativ%P_odd squared-mass matrices:

expansion. Ifb; andvz are aligned, then Eq2.6) implies

that theB;=0 and we are back to the RPC limit. _ A B
Although theB; provide a basis-independent set of small Mgaa= B C. ) (2.195
RPV parameters, the explicit dependenceXgnis inconve- ) "
nient. Clearly, it is preferable to re-express Biedirectly in D E 0
terms of the original model parameters. In the following sec-
tions, we will exhibit this procedure in the one-generation M2.=| E F+A —-Bi|. (216

“We defineX;, to be the transpose of the mati,;. When no Our strategy is to employ a first-order perturbative analysis
ambiguity arises, we will not explicitly exhibit the transpose symbol to diagonalize these matrices, taking the small parameters to
(superscripfT). be theB; [Eqg. (2.12]. At zeroth order(setting theB; to

SFor example, if one chooses the basis whege=0, then by Eq.  zero, the above matrices can be evaluated in the RPC limit.
(2.6), Xom=0. In this basis, thé,, are the small RPV parameters. In particular, A=m,, the eigenvalues of {£, ) are the
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CP-even Higgs squared-masge%o andmao, andC;; isthe  RPC values for the prefactor that multipliB4. For example,
RPC sneutrino squared-mass matrix. In order for nonas noted above(,‘,:mi is the RPC sneutrino squared-mass.
degenerate perturbation theory to be valid, we henceforth Although Bzvbaxa/vﬁ is expressed in a basis-
assume that none of the eigenvalues @f is (approxi-  independent manner, the explicit dependencX gis incon-
mately equal to any of the neutral Higgs boson venient. Clearly, it is preferable to re-expreBdlirectly in
squared-massésThis is not a serious restriction, since there terms of the original model parameters. To this end, note that
is no natural choice of supersymmetric parameters thathe orthogonality conditiofEq. (2.6)] implies thatX, and
would guarantee such(aea) degeneracy. In particular, the y , are orthogonal, and thus a dot product of any vector with
Higgs boson mass matrices arise in part from the mixing o is equivalent to a cross product with Using Eq.(A2) for

Hp andHy, which is governed by the parametgyand not B2 and the RPC values for the other parameters of(&d),

related to the generation of sneutrino masses. we end up with
The result of the calculation outlined above will be basis-
independent expressions for the sneutrino—antisneutrino —4bh%m3 mﬁ sir’g8

|0xDb|?,

squared-mass splittings. We first illustrate the method for Amy,
one sneutrino generation in Sec. lll, and then generalize it to
the multi-generational case in Sec. IV, assuming that the 3.9

eigenvalues o€C;; are non-degenerate. The case where some ~ . . N
of the eigenvalues o€;; are degenerate will be treated in whereb is a unit vector in thé, direction and the square of
Sec. V 4 the cross product is formally defined according to Elg4).

It is easy to checksee Appendix Bthat in the special basis
wherev;=0, the basis-independent result abieg. (3.5 ]
reduces to the basis-dependent result quoted inE§).

In the one generation case we can drop the Roman indices The basis-independent result obtain in E345) is still not
from X, B, andC, namely we defin&X,=X_,, B=B,, and N optimal form, since it depends an which is a derived
C=C,;. To zeroth order inB, the CP-even andCP-odd  duantity that requires one to determine the minimum of the
sneutrino squared-masses are equél.tBhe corrections can Scalar potentia[Eq. (2.1)]. However, we can employ the
be calculated perturbatively. vectorc,, [defined in Eq(2.13] to our advantage by noting

The eigenvalue equation for th@P-odd squared-mass thatin then;=1 case[see Eq(C6)],

matrix, detf2,,—\1)=0 reads

Y 2, 2 2., 2 2
(mHO_mV)(th_mv)(on_mV)

Ill. THE CASE OF ONE GENERATION

Ibx c|?=m|0xDb|?. (3.6

_ N)_R2_
(A=M)(C—M)-B7=0. @D Consequently, we can express the sneutrino squared-mass

For B small,\ =C+ O(B?), so we can taka — C=aB? and splitting in the one-generation case directly in terms of fun-
solve fora. Thus, to first order ifB2, the squared mass of the damental parameters of the RPV Lagrangian in a completely

CP-odd sneutrino is basis-independent form.
) B2 IV. THE CASE OF AN ARBITRARY NUMBER
Moa=C~ 2" (3.2 OF GENERATIONS

In this section, we obtain results for an arbitrary number
of generations. We then explicitly exhibit the corresponding
results fomy=2 and 3 generations. The eigenvalue equation
for the CP-odd scalar squared-mass matrix is

A similar analysis for theCP-even squared-mass matrix
yields the following result for the squared-mass of the
CP-even sneutrino:

B%2(D-C)

2 _c—
Mever= €~ (FXA—C)(D-C)—EZ"

even

(3.3 (A—N)de(C—a1)+YM(\)=0, (4.2)

o T wherel is the NX N unit matrix, N=n,, and
The squared-mass splitting,m, = mg,,;— Mgyq, iS given by 5
FCB? YN (N)=B;cofl (M3gq—N1)oi], 4.2
) _
Amv:(A—c)[(F+A_C)(D_C)_Ez]v (3.4 where the sum over the repeated indeg assumed implic-

ity. As usual, the cofactor is defined as [c&f]
where we have used the fact thi&b = E2. Note that the only = (—1)' " defA(i,j) whereA(i,]) is the matrixA whoseith
small parameter in Eq3.4) is B2. We can therefore use the row andjth column are removed. In the special case of a

one-dimensional matrix, we can define [obf;]=1.

Let A(Y (m=1,2,... N) be the roots of Eq(4.1) to ze-

SRelaxing this assumption would require one to use degenerat®th order in theB;, namely detC—\{P1)=0. For small
perturbation theory. The resulting analysis would be more involvedBi , We insert\ u =X+ (8\ ) oqqinto Eq.(4.1). Working to
and not very illuminating, so we spare the reader by omitting thethe lowest non-trivial order in th8;, we make use of Eq.
consideration of this possibility. (D2) to obtain
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YN\, appropriately weighted sum of sneutrino squared-mass dif-
(ONm) odd™ i , (4.3  ferences. The sum rule and its derivation is given in Appen-
(A=\pdet (C—Apl) dix E.

, , We next derive a method for computing™) (\). First,
where deftA is thg product of all the non-zero eigenvalues of o avaluatey®™ for \=0. From Eq.(4.2), it is straightfor-
A. In this analysis, we assume that there are no degenerate dt luate YN (0)= B 2 Usi £
eigenvaluegthe degenerate case will be considered in Sec/&/d9 10 évaluate (0)=Bicofl (Mogdail- Using Ea.

V); hence (2.19,
det (C—Aph) =TT (\i—np). (4.4) YN(0)= - B;Bjcof Cj;]. (4.9
i#m

Note that we do not distinguish betwerff’ and\r in EQ.  Note that forN=1, v((\) = — B2, independent of the value

(4.9. Since theB;B; are the small parameters, any distinc- 5f \ . One can extend Eq4.9 for arbitrary \. We have
tion between the two estimates fiay, would yield a result  found the following recursion relation:

that is higher order in the product of tig .
By a similar technique, we may solve the eigenvalue
equation for theC P-even scalar squared-mass matrix. Not- YN\ =— BiBjcof[Cij]—)\Y(N‘l)()\), (4.10
ing that\ ) is the same in both th€ P-odd andCP-even
squared-mass computations, we can writg,=\{"

+(S\ ) even The end result is with YZ)(\) = —B2. The proper use of this equation requires
some care. One must first expre¥§'~1) covariantly in
Y™\ (D= Np) terms of the N—1)-dimensional vectoB; and N—1)
(ONm)ever™ X (N—1) dimensional matrixC;;. Then, the termy™~1)

5 :
[(D=Am)(F+A=N\y)—E7]det (C—Apl) that appears in Eq4.10 is given by precisely the same

expressionobtained in the l—1)-dimensional cagde but
We may evaluate the denominator of the above expression iffith Bi andC;; now N-dimensional objects. For example,
the RPC limit(whereB?=0). In this limit,

(D—=Ap)(F+A—A ) —E2=(m2=\ ) (M3 —\ ), Y@ () =Y@(0)+\B?, (4.12)
A=Np=mi—\p,. 4.6
moA T .9 but in Eq.(4.11), B?=3=N ,B;B;, with N=2.
antisneutrino  pair is denoted byAmﬁmz(méve,)m
—(m249m- Plugging in the results of Eq$4.3) and (4.5), N-1
we obtain YN =D, (—1)kYyN=R(Q). (4.12
k=0
YN D—\p 1
y 2 2 T2 .
m det (C—Apl) L(My=Am)(MG—Npm)  (Ma—App) Again, we emphasize that théN % are first obtained by an

(4.7 (N—Kk)-dimensional computation. Once these terms are ex-
L . . pressed covariantly in terms &; and C;;, the resulting
e o o o, Btpressions [ ) may be used i E6412. wih &
y exp P B, . and C;; promoted to fullN-dimensional objects. Thus, for

In particular, w n mak f the well known tree-level : .
particu ar, we ca ) az € usze 0 t2e e2 0 Zteez €V€each extra generation, we need only calculate one new in-
MSSM Higgs results:mi o+ mj,o=mj,o+m3 and mgomo variant, YV(0).

=mjom2 co$28. Moreover, we may tak&,= mim- The end We illustrate the general formulas above for the cases of
result is N=1, 2 and 3 generations. The casd\bf 1 is trivial. Here
Y(H(0)=—B2. Using Eq.(A2), we quickly recover the re-
mf m3 sin22ﬁY(N)(mf ) sult of Eq.(3.5). For the case di=2, we use Eqs4.9) and
Ami = m m _ (4.12 to obtain
" md (i md y(mi—mf) TT (mf )
I
(4.9 Y@(N\)=BA-Tr(C)]+B;B;C; . (4.13

The small RPV parameters that govern the above expression
has been completely isolated intd™). One additional con- Using the results of Appendix A we can expré&® directly
sequence of this result is a simple sum rule that holds for ain terms of the model parameters:
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1
YA\ = ———5={|vXb|2 [N = Tr(M3,)]+b?(v Xb) - (vXC)}. (4.14
v5cosB
The final result for the sneutrino squared-mass splittings in the two generation case is

4m§mm§ tart B{|v X b|2[n+§m— Tr(MZ,)]+b%(vXb)-(vxc)}

Amé = : (4.19
L v?(m —mé )(mx—me )(mi—m? )(m§—mé )
n m m m m
|
wheren#m and we have pulxmzmim. We may evaluate Y®)(0)=3BTr(C?)—[Tr(C)]%]
2\ - .
Tr(Ms.,) in the RPC limit: +B;B;C;j; Tr(C)—B;B,C;Cy . (4.17
Tr(MZ, ) =|bltang+ m§1+ mi, (416  Following the procedure outlined above, Edg.10 and
(4.13 yield

where|b|=(b,b,)¥2 In Appendix B, we verify that Egs.

(1.5) and (4.15 agree in the special basis. YN =YB(0)-rYPD(N), (4.1
As in the previous section, we note that Ed4.15 de- o ]

pends on the derived quantity At the expense of a some- WhereY?(\) is given by Eq.(4.14, with v, b andc pro-

what more complex result, we can re-express @dl5 in moted to three-dimensional vectors «'51\9“4”)k promoted to a

terms of the vectorb, c, and a new vectar(® introduced in 3% 3 matrix. An explicit evaluation ofy®)(0) is given in

Eq. (2.14), as shown in Appendix C. Eqg. (A11). Inserting the corresponding results into E4.8),
For N=3 generations, the new invariant that arises iswe end up with the sneutrino squared-mass splittings in the
again obtained from Ed4.9): three generation case:
|
—4mé m3tar’ B
Am? n

v

= bl m —m? Tr(MZ,)
2,2 2 2 2 2 2 2 2 2 >l W W T
mov (mvn—mym)(mlk—mvm)(mA—mym)(mh—mym)(mH—me) m m

=3[ Tr(Mg,) —[Tr(MZ,) 121+ b2(0 X b) - (v X ) [ME —b-c—Tr(MZ,)]+b?i[bxc|?}, (4.19

wheren#k#m. The traces in the RPC limit are given by Amﬁ =0 for all m in the case of an arbitrary number of
m

3 generations. Conversely, if and b are not parallel, then
Tr(M2,)=|b|tang+ >, m?, there must exist at least one sneutrino—anti-sneutrino pair
w k=1 % that is split in mass, as a consequence of the sum rule derived
in Eq. (ED).
3
TrH(ML, ) =b?tarf B+ >, m‘;. (4.20
k=1 V. THE DEGENERATE CASE
Again, we can check that in the special bdsise Appendix So far we have assumed that t_he sneutrin_os are non-
B], Egs.(1.5 and(4.19 agree. The extension of these resultsdegenerate. We expect this assumption to hold in any realis-
to four and more generations is straightforward. tic model, since the sneutrino—antisneutrino mass splittings

From the results above, we learn that if the vectomnd  are of order the neutrino masses. Thus in order for the result

b are parallel, themAm? =0 for all m. This is obvious for ~ Of the previous section not to hold, the flavor degeneracy has
m to be very good, namely the mass splitting between different

sneutrino flavors should be much smaller than the neutrino
o . ' mass. In any realistic model, we do not expect such a high
it |s.suff|C|ent tg note that the vectobsandc are a;lso paral- degree of degeneracy. Even in models where supersymmetry
lel; it then again followgsee Eq.(4.19] thatAm, =0.1In  preaking is flavor blind, a mass-splitting between sneutrino
fact, if v and b are parallel, then all the vectos™ [Eq.  flavors will be generated via renormalization gro(lRG)
(2.14] are simultaneously parallel t@. As a result, evolution (from the scale of primordial supersymmetry

the one and two generation cases, since we may then put
Xb=0 in Egs.(3.5 and(4.15. In the three-generation case

075011-7



YUVAL GROSSMAN AND HOWARD E. HABER PHYSICAL REVIEW D63 075011

breaking to the electroweak scatbat is proportional to the ent, as they depend on independent RPV parameters. One
corresponding charged lepton masses. Even a very smalhn also analyze the case of degenerate masses for different
amount of running is sufficient to generate a mass splittingsneutrino flavors; although this case can only arise as a result
that is many orders of magnitude larger than the neutrin@f a high degree of fine-tuning of low-energy parameters.
mass. The pattern of sneutrino—antisneutrino squared-mass differ-
Nevertheless, as a mathematical exercise and for comences would provide some insight into the fundamental ori-
pleteness, we generalize the resqlts of t_he previqus sectio_@q;n of lepton flavor at a very high energy scale.
to the case of degenerate sneutrinos. First we give a _baS|s— The sneutrino—antisneutrino squared-mass splittings can
dependent argument that explains how one can obtain thgs explored either directly by observing sneutrino oscillation
sheutrino squared-mass splittings in the degenerate case frqay or indirectly via its effects on other lepton number vio-
the results already obtained in the non-degenerate case Wi(l?F;?ing processes, such as neutrinoless double beta fi&¢hy
out any additional calculation. A basis-independent proof is;ng neutrino massd€2,13. Moreover, the effects of tree-
relegated to Appendix F. _ . _level sneutrino—antisneutrino squared-mass splittings on
Consider a case with; sneutrinos, of whiclg sneutri-  neytrino masses are expected to be significant. The neutrino
nos are degenerate in masshere 2<ng=<ny) in the RPC  gpectrum is determined by the relative size of the different
limit. Consider theny degenerate sneutrinos and their corre-Rpyv couplings that control three sources of neutrino masses:
sponding antisneutrinos. Of theseng—1 sneutrino—  (j) the tree-level massjji) the sneutrino induced one-loop
antisneutrino pairs remain degenerate when RPV effects afgasses, andii) the trilinear RPV induced one-loop masses
included, while one pair is split in masdn total, ny—ny  [16]. Since only one neutrino acquires a tree-level mass, the
+1 sneutrino—antisneutrino pairs are split in mass. The corother two mechanisms are responsible for the masses of the
responding squared-mass differences are then given by Egther two neutrinos. In the literature, only the trilinear RPV-
(4.8 for the (n;—ngy+ 1)-generation case, but with all vec- induced one-loop masses have been considered in most stud-
tors and tensors appearing in the formula promotedhto jes. In Refs.[22] and[13], it is argued that the sneutrino-
dimensions. The proof of this assertion is as follows. For the@nduced one-loop contributions to the neutrino masses are
case ofng degenerate sneutrinos, the mat@{that appears generically dominant, since the trilinear RPV-induced one-
in Egs. (2.19 and (2.16] hasny degenerate eigenvalues. loop masses are additionally suppressed by a factor propor-
Thus, we are free to make arbitrary rotations within the tional to the Yukawa coupling squared.
dimensional subspace corresponding to the degenerate statesThe results of our basis-independent formalism are useful
By a suitable rotation, we can choose of basis in which onlyfor comparing the two radiative neutrino mass generation
one of theB; within the degenerate subspace is non-zero. Irmechanisms. In particular, in models in which a theory of
this basis theC P-odd and theC P-even squared-mass matri- flavor determines the structure of the soft-supersymmetry-
ces[Egs. (2.15 and (2.16] separate intor{z—1) and Q¢ breaking parameters at some high energy scale, RG evolu-
—ng+1)-dimensional blocks. Clearly, the sneutrino eigen-tion provides the connection between the observed low-
values in the corresponding{— 1)-dimensional blocks are energy spectrum and the high-energy values of the
not affected by the presence of RPV terms, while the ( fundamental parameters of the theof0,23. Basis-
—ngy+1)-dimensional block can be treated by the methodslependent quantities are not renormalization-group invariant;
of Sec. IV. hence the RG evolution of basis-independent quantities can
Further generalizations, where more than one set o$ignificantly simplify the analysis. For example, the direction
sneutrinos are each separately degenerate, can also be stoflthe vacuum expectation value of the generalized slepton—
ied. The procedure for computing the resulting sneutrindHiggs scalar field is dynamically generated at each energy
squared-mass differences is now clear, so we shall not elabseale. Since the model parameters generically depend on the
rate further. scale, the direction of the vacuum expectation value in the
generalized lepton flavor space is scale dependent. Clearly,
VI. DISCUSSION in the basis-independent approach, such complications are
) . ) avoided. This will be the subject of a subsequent paper.
This paper provides formulas for the sneutrino— A few possible directions for future research are worth
antisneutrino squared-mass differences at tree level in temiﬁ)ting. First, recall that in this paper, we assumed @Bt
of basis-independerR-parity-violating (RPV) quantities. In \yas conserved in the scalar sector.OP is violated, the
contrast to the neutrino sector, where only one tree-level NeYpquired analysis is more complicated. Instead of diagonal-
trino mass is generated by RPV effects, we expect dllat izing separatelyC P-even andCP-odd squared-mass matri-
sneutrino—antisneutrino squared-mass differences are gengss” one must diagonalize a single squared-mass matrix in
ated at tree-level with roughly the same order of magnitudeyhich the formerlyCP-even andCP-odd states can mix.
The sneutrino—antisneutrino mass difference is expgcted t?hen, one must identify the two sneutrino mass eigenstates
be of the same order of magnitude as tnee-leve) neutrino  (j the jimit of small RPV couplings It should be possible
mass. However, these quantities could be significantly differ;y axtend the techniques developed in this paper to address
this more general case. Second, in exploring the phenom-
enology of sneutrino interactiorigroduction cross sections
"This corrects a misstatement made at the end of Sec. Ill in Refand decay, one can generally assume that RPV couplings
[16]. are irrelevant except in the decay of the lightest sneutrino
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state. In that case, new RPV couplings enter, in particular thélote that the resulting expression has simplified consider-
corresponding. and\’ parameters given in Eq1.1). Inthe  ably after introducing the vectar[defined in Eq(2.13].

spirit of this paper, one should also develop a basis- The case oN=3 is more involved:

independent formalism to describe the RPV sneutrino decay.

We hope to return to some of these issues in a future work. Y®)(0)=1B[Tr(C?) —[Tr(C)]?]
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APPENDIX A: EVALUATION OF  Y™)(0) 4 -
FOR N=1, 2 AND 3 =Tr(MH—[Tr(M9)]

Using Eq. (4.9 for Y(N(0), we provide below the ex- 2y b2~ (b-v) Tr(M?2
plicit computation for the cases &f=1,2 and 3. The com- zlvy (b-v) Tr(M)].
putation makes use of the definitionsBf andC;; :

(A5)
b gX i
B;= Gl , Next, we evaluate
cosB
C=Xo M2, X0, (A1) [BiB;C;; Tr(C)—B;B;C/]cos8
=X, M XgiX,, -M XokbeX kb, X
whereM?=M2Z, , and the properties of thé,; given in Egs. ap”h o ko]
(2.6—-(2.9). = XoiM2 X 51X, M2 X b X b, X
The case oN=1 is very simple: )
=M2 b,b, Tr(M?)—M2 M2 b b,
Y<1>(0)=—Es2 )
— —2[b*(b-v)Tr(M?) = (b-0)MZ,b,b,]
Uu 412 2
_ 1 2_(b~v)2 +U§[Uub b(b-v)Tr(M)]
cogB vg
v
2 +U—Z[(b-v)3Tr(M2)—vub2(b-U)Z]. (AB)
= % bl? d
@WXM , (A2)

The above result can be simplified further. First, the last two

where the product of cross products, defined in@d), can  orms can be combined by noting that

be used in any number of dimensions.
For the case oN=2, we compute

4_12(h. 2 i )3 2y h2(h. )2
Y(Z)(O)=BiBjCij—BzTr(C) vyb*=b*(b-v)Tr(M )+v§[(b v)°Tr(M?)—v b(b-v)“]

1 2 | b|2 ) ,
:coszﬁ[X“iMaﬁxﬁJbMX#'b Xy = (v b= (b-v)Tr(M?)]. (A7)
X Maﬁxﬁlbﬂxmbvxw] This term will end up canceling a similar term in E@\5).
1 2 2 ) At this point, it is convenient to re-express some of the
T2 cogg{b vg(c-b)—v b*(b-v) terms of Eq.(A6) in terms of the vectoc. First, we observe
‘ that
—[b%3—(b-v)?] Tr(M?)}
1 v3M2,b,b, TH(M?)— v b(b-v) Tr(M?)
= 2 2 2
_U o {b (vXb)-(cxXv)—=[vXb|*Tr(M?)}. —b?[(b- )3~ (b-v)(c-v)]Tr(M?)
(A3) =b%(vxc)-(vXb)Tr(M?). (A8)
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In deriving the above result, we noted trh'slﬁwbyvvzvub2
=b?(v-c) [using Egs(2.1) and(2.13 and the fact thal4>,
is a symmetric matrik which implies that

vy=v-C. (A9)
Second,
viM2, M2 b,b,~v,(b-v)MZ b,b,
=b*c?3—vb?b-v)(b-c)
=bv3lbxc|?+(b-c)(vXb)-(vXc)].
(A10)

Collecting all of the above results, the final expression i

quite compact:
1
B)o)=——+—J1 2 4y _ 2\72
Y+/(0) vgcoszﬁ{2|v><b| [Tr(M%)=[Tr(M*)]]

+b?vilbXc|?+b?(vXc)-(vXb)

X[Tr(M?)—(b-c)]}. (A11)

APPENDIX B: SNEUTRINO SQUARED-MASS SPLITTING
FORMULAS IN THE SPECIAL BASIS

We define the special basis in which=0 (i.e., the neu-
tral scalar vacuum expectation values determines the defini-

tion of the down-type Higgs fie)dand the matrix M%,)ij
[which is the 3< 3 block sub-matrix of M”Z{,,;'r)aﬁ defined in
Eq. (2.2)] is diagonal. As in Appendix A we defin&?
—M2,.

In the special basis, one can use E@)), (2.13, and
(A9) to obtain the following relations:

co=tanB, MZ=hocy, M3 =b;tang,
bi(M3s+ M%)
=T (B1)
Using these results, it follows that
|v><b|2=v§2i bZ, (B2)

b2(v X b)-(vXC)=v3 M3, b?+ > Mﬁb?}.
1 I
(B3)
We will also need a similar expression fidrx c|2. First, we
note that the last relation of EGB1) implies

1
c?=ci+ 2 Z bZ(M3e+M3)2,

1
b-c=MZ+ in b2(M3,+M3). (B4)

PHYSICAL REVIEW D63 075011

These results can be used to obtain

1
[bxc|*=b%e?~(b-¢)*= Z. (b;M2)2+O(b?).
(BS)
We now turn to the specific cases. For the case of one gen-

eration, the basis-independent result is given in B). In
the special basis, E¢qB2) yields

b?|o x b|?=b3. (B6)

Inserting this result into Eq3.5), we immediately obtain Eq.

(1.9.

In the two generation case, the basis-independent result is

Sgiven in Eq.(4.15. In the special basis, Eq82) and (B3)

yield
b?(vXb) - (vXc)=vi[M3,(bi+b3)

+MZpi+MED3],  (BY)

[M{—Tr(M?)]JoXb|?= —vi(M§+M?)(bi+Db3),
(B8)

for the two cases df=1, j=2, andi=2, j=1, respectively.
Adding the above two equations, one finds

[MZ—Tr(M?)]|oxb|?+b?(vxb)- (vXc)
=(Mf—M?%)b%vj. (B9)

Working to leading order in the RPV parametbfs we may
set the diagonal elements &2 to their RPC valuesM3
= mﬁl . Plugging the result into Eq4.15), one again recovers

Eq. (1.5.

In the three generation case, the basis-independent result
is given in Eq.(4.19. Again, it is sufficient to work to lead-
ing order in thebiz. Then, one finds that in the special basis,

[MZ]2—M32, Tr(M?)— 3[Tr(M*) —[Tr(M?)]?]
=M3d M5+ M55]+ M5 M %+ O(b?),
M2, —b-c—Tr(M?)=—M2%,— M3+ O(b?). (B10)

Using these results and those of E(B2), (B3), and(B5),
we end up with

{IM312=MZ, Tr(M?) = 5[ Tr(M*) —[Tr(M?)]%}|v X b|?
+b2i|bx c|?+b?(vXb)-(vXc)
X[M2,—b-c—Tr(M?)]
=vgbi(Mi;— M%) (M3, —M3y). (B11)

Two additional equations can be generated by permuting the
indices 1, 2, and 3. Finally, settiriglﬁsz and plugging

the result into Eq(4.19, one confirms Eq(1.5) for the third
time.
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APPENDIX C: HOW TO ELIMINATE v . AZ-ATI(A)+SymA
IN FAVOR OF OTHER VECTORS = delA) , (C7
Our final expressions for the sneutrino squared mass dif-
ferences depend on basis- mdependent products of vegtors, wheré
b, c, ..., andtraces of powers df/l- . However, the vector
v is not a fundamental parameter of the model, but a derived Syrnz(A)Eg,j NN=3{[Tr(A)J2=Tr(AY)},  (CY)

parameter which arises as a solution to E41). With some
manipulation, it is possible to eliminate in favor of the
other vectordwhich correspond more directly to the funda-
mental supersymmetric model parameters, nanbejnd a

where); are the eigenvalues @& We can again solve far
following the method used in the one-generation case:

series of V(Zectors obtained by multiplyifgsome number of ) v [b2d—bZc Tr(A) +bSym,(A)]
times byM-.,). In this appendix, we illustrate the procedure v=v,A b= delA) ,
in the case of the one and two generation models. (C9)

In the one generation modemgw, is a 2xX 2 matrix. Con- _ )
sider an arbitrary X 2 matrix A and its characteristic equa- Where e have definedi=c'~’=Ac. After some algebra, we
tion det(dA—\1)=0. Since any matrix satisfies its own char- obtaint

acteristic equation, we obtdin 4.2
2_ u 2 2 2
which after multiplication byA™?! yields —2(bxc)(bXxXd)Tr(A)], (C10
Tr(A)—A and
Tl C2
det A) (€2 b2v2
2__
Using Eq.(C2) we can expresh X b|? in terms of|bxc|2.  (vXP)-(vxc)= [de (A)]Z[(de) (dXxc)[b”—Symy(A)]
Let A= MEWH and use Eq92.1) and(2.13 to obtain )
+b%(cxd)-(cxXb)Tr(A)
b Tr(A)—b?
p=p,A-tp= WP THAZDTC] 3 +[bX 2 Tr(A)Symy(A)]. (11

detA)
o . ) It is easy to evaluate the three invariants in the RPC Iimit:
Substituting Eq(C3) for v in |v Xb|?=b%i—(v-b)%

Tr(A)=|b|tanB+m?+m3,

b4v5
b= W{[Tr(A —2(b-c)Tr(A) +b?c?}, detA) = m,;m,|bltan,
by2 Symy(A)=mZm3+ |b|tanB(ms+m;,)?,
(v-b)2= m{[Tr(A)]L2(b-c)Tr(A)+(b-c)2}. v S 1

€4 herem?= m

Subtracting these two equations, we end up with Inserting the above results into E@t.15 yields the de-
4.2 sired result. Further algebraic manipulations of the resulting

(C5) expression do not lead to a particularly simple result.

|U><b| m|b><0|

. 9 APPENDIX D: EVALUATION OF det [A—(A,—e€)l]
Since|b X c|? is the small RPV parameter, we may evaluate

det(A) in the RPC limit. Using Eq(2.2) in the RPC limit, Consider a generdd X N matrix A, with eigenvalues\ .
[det(A)]?=m’b?tar’8. The end result is Then,
|bx c|?=m|5 x b2 (Ce) .
WU 2B de(A—M)zl_k[ (A= \), (DY)

In the two generation modemgw, is a 3x3 matrix. The
procedure again employs the characteristic equation. For am——

arbitrary 3x3 matrix, %To prove Eq.(C8), simply note that TrA%) =3 \2.

100bserve that the result fdo x b|? depends on the number of
generations, i.e., the dimension of the matikcompare Eqs(C5)
8We henceforth suppress the obvious factors of the identity matrisand (C10)].
l. Hsincev - c=wv,,, it follows that in the RPC limit|c|=tan}.
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where the product is taken over &ll eigenvaluegsome of  where all then,, are assumed to be distinict.
which might be degenerateFirst, suppose that there are no  Equation(EJ3) is established as follows. Consider a func-
degenerate eigenvalues.Nf, is one of the eigenvalues and tion f(x)=(x—X\1)(X—\5)---(Xx—\y), where the\,, are

e<1, then distinct. Consider the resolution of“"1/f(x) into partial
fractions(wherek is an integer such thatOk<=N-2):
defA—(A\p—e)l]=€el] (\i—Ap)+O(€?) et N
#m =2 : (E4)
f(X) m=1X—Ap

=edet (A—\ ) +O(€%), (D2)
Combining denominators, it follows that
where detM is the product of all the non-zero eigenvalues
of M [see Eq.(4.4)]. - N
The case of degenerate eigenvalues is easily handled. We x¥1= > ARl (x—n). (E9
can still use Eq(4.4) if it is understood that all terms in m=ioiEm

which \; is equal to the_ degen_erate eigenva_llue_are omittegtp e right-hand side of EqES5) is a polynomial of degree
from the product. Ifq is an eigenvalue which isg-fold N _1 or ess. Since this must be an identity foralive can
degenerate, then E(D2) is generalized to solve for each coefficiem,,, separately by setting=N\

defA—(Ag—e€)l]=€"adet (A—Ngl)+O(eN™ ). Ak
(D3) Ap=——m. (E6)
IT =)
In Sec. IV and Appendix F, we have employed these results i#m

with e=— 6\, ande= — o\ 4, respectively. , . . . .
€ m ¢ d P y Inserting this result into EqE4) and setting<=0 yields Eq.

(EJ) for the case of &k=N—-2. The case ok=0 where
APPENDIX E: SNEUTRINO SQUARED-MASS SPLITTING one of the\ ,, vanishes must be treated separately, although
SUM RULES it is easy to show that the end result is unchanged. Thus,

In the case ol sneutrino generations, one can calculateSn k=0 fo OsksN—_Z_
the corresponding sneutrino squared-mass splittings. In the 10 derive Eq.(E3) in the case ok=N—1, we setk=N
case of non-degenerate tree-level sneutrino masses, the? in Ed.(E5). On the rlght-hNanld side of EGES), we note
squared-mass splittings were obtained in E49). In the that the term proportional tg"  ~ arises simply by setting
case of degenerate masses, one employs the modified resdftg \i=0. It follows that={_;A,=1 (for k=N—2) which
according to the discussion given in Sec. V and Appendix Fis precisely equivalent t& y-;=1 and the proof is com-

We then find the following interesting sum rule: plete.
Finally, we note a useful recursion relation satisfied by the

Snk- Multiply the mth term of Eq. (E3) by (A
M)/ (AN\m—An+1)- One immediately deduces that rela-
=1 4m2 tartB m2 tion

Ym

=—|vXDb|2 (E1) SN k= SN+ 1k+17 AN+1SN+ 1k - (E7)

202 _ m2 22 2 2 2
N po(ma— mvm)(mh—mvm)(mH—me) Amym

We shall prove this result for the non-degenerate case. Usin:E{he boundary conditions for the recursion relation &g

. : =0 for N=2 (which is a consequence of the proof given
E)(ﬂzv(ﬁnig ?;sdu(l'ta'\Z)’ we see that EqED) is equivalent to the above, and? Sio=1. It follows thatSy =0 for 1<sk=N

—2. Choosingk=N—-1 in Eq. (E7) then yields Sy;1n
=Sy -1, it follows that Sy, n=1 for all N=1. Finally, it

N N
E YOO =v(0). (E2) is easy to increask further. For example, EqE7) implies
m=1 H A=\ ) thatSN+1'N+1:SN’N+)\N+1. It follows thatSN’NZEiN:]_)\i,
#m( boom and so on.

To prove Eq.(E2), we insert the expansion for®™(x,,)
[Eq. (4.12] into Eq. (E2), and make use of the following  Note that in Eq(EQ), the sign of the factors,,— \; is reversed
identity: compared to Eq(E2). Thus, an extra factor of{1)N "1 is gener-
ated which cancels with the corresponding sign in frony6# in
N K _ _ Eq. (4.12.
Syi= 2 )\—m: 0, k=01,...N-2, 13The conditionS, ;=1 formally defines the suifEq. (E3)] in the
Tom= 1, k=N-1, case ofN=1. Alternatively, one can check by explicit evaluation
i#m that S, ;=1. Thus, we see that the assigned definitionSpf is
(EJ consistent. Note that one can similarly defg =A% .
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The degenerate case can be treated as a limiting case fofr Y(N)(mi ), we see that we obtain a new formula which
the non-degenerate results obtained above. In the final anal

Was the sarr;]e form as .8), with the following modifica-
sis, we find that Eq(E1) applies in general, and serves as a B8, wi wing 5
useful check of our results.

tions: (i) Y(N)(mim) is replaced bwé':;”d+l)(m§m); and (i)
the product that appears in the denominator of @) is

modified toll; .. m(mf— mﬁ ), where the prime indicates that
1 m
degenerate squared-masses appear only once in the product.

. : : N-ng+1),, 2
The degenerate case fof flavors was treated in Sec. v, 10 obtain a covariant expression fmfjeg (s, ), we
If ng sneutrino—antisneutrino pairs are degenerate in mass first obtain the expression M(N*”d“)(mf ) in terms of the
the RPC limit, then when RPV effects are incorporated, ON& arious vectorsd, b, ¢, ...) andtracesmof powers o2
finds thatny—1 pairs remain degenerate, whilg—ng+1 ging the results of Sec. IV and Appendix A. The resulting

sheutrino—antisneutrino pairs are split in mass. The square%— . —ngt+1),,.2
. : xpression can then be used 10 m ) by replac-
mass splittings of the latter can be obtained from the corre- P é‘:9 ( Vm) y rep

sponding formulas of the non-degenerate-ny+1 flavor g TrM?" with Tr'M?" [the latter is defined by replacir@
case. with M2 in Eq. (F2)] and interpreting all the vectors and
In this appendix, we briefly sketch the required steps of gnatrices as\-dimensional objects.
proof that generalizes the basis-independent results of Sec. Finally, consider the effect of the RPV terms on e
IV. Consider first the squared-mass matrix of @B®-odd  degenerate sneutrinos. Now, we must return to(Ed) and
scalarEq. (2.15]. The characteristic equation, E@.1), is  INSErtA =X+ (8\g)ogq- Working to the lowest non-trivial
still valid in the case of degenerate sneutrinos. First we conorder in theB;, we make use of Eqgf1) and(D3) to obtain
sider the quantityy"W(\) [Eq. (4.2)]. Suppose that the ma-
trix C which appears iV, has an eigenvalug, that is . Y " (N g)oud™
ny-fold degeneratéwith the remaining eigenvalues 6fdis- [(ONa)oad"@= (A—\g)det (C—Agl)
tinct). We assert that the following formula holds: d d

APPENDIX F: BASIS-INDEPENDENT TREATMENT
OF THE DEGENERATE CASE

(F3

(N—nd+l)()\) (F1) The solution to this equation hag— 1 degenerate solution,
deg (6N g)ogs=0, and one non-degenerate solution fo\ §) ,qq
whereYéEfnd”)()\) is obtained as follows. First, one evaly- Which has the same form as Eq4.3 for the

atesY(N"Mat1()\) as in Sec. IV, and expresses the result{N~Na+1)-dimensional problem. As described above, we
covariantly in terms of the vectdB; and the matrixC; . can make use of the relevant covariant expressions obtained

Next, these quantities are reinterpretedNadimensional ob- in Sec. IV and Appendix A by replacing Tr with Trand

: : : interpreting all the vectors and matrices ldsdimensional
ects. Finally, all traces that appear in the result are re laced™ X ; . .
be y PP P objects. The end result is thag— 1 sneutrino—antisneutrino

pairs remain degenerate, while one of the original degenerate
pairs is split according to theN(—n4+ 1)-dimensional ver-
sion of Eq.(4.8) [with all vectors and tensors promoted to
Consider first the effect of the RPV terms on the non-N-dimensional objecisOne can also check that the sum rule
degenerate sneutrinos. Then the analysis of Sec. IV can lbtained in Appendix E for sneutrino squared-mass differ-
used, and we obtain E4.9) for the squared-mass splitting ences(appropriately weightedapplies even when there are

YN =(Ag—N)N Y

Tr'C"=TrC"—(ng—1)A]. (F2)

of sneutrino-/antisneutrino pairs. If we now insert Eg1)

degenerate sneutrino masses.
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