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Noncommutative geometry and the Higgs boson masses
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We study a nhoncommutative generalization of the standard electroweak model proposed by Balakrishna,
Gursey, and Wal{Phys. Lett. B254, 430(1991)] that is formulated in terms of the derivations Bév3) of
a three-dimensional representation of tha(2) Lie algebra of weak isospin. The linearized Higgs field
equations and the scalar boson mass eigenvalues are explicitly given. A light Higgs boson with a mass around
130 GeV together with four very heavy scalar bosons are predicted.
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I. INTRODUCTION II. MATHEMATICAL FRAMEWORK

In order to study the bosonic sector alone it is enough to

In spite of its observational successes, the standard moddeal with the tensor product spade=C*(V)®M, so that4
of electroweak interactions cannot yet be considered as @an be regarded as the set of matrix-valued functions on the
fundamental theory because the scalar boson sector, unlil@ace-time manifol&/ and is itself aC* algebra. The differ-
the gauge sector involving the fermions and the gaugé&ntial calculus of this space has been studield]nit is also
bosons, has to be written down in ad hocway and not by ~ Possible to identify the vector fields of with a restricted set
gauge principles. Furthermore, the unavoidable Higgs scal&¥f derivations ofM 'rather than the algebra of all de.rivations
has not been observed and there is no way to predict it8f Mn. We have this extra freedom because Déy] is not
mass. In this connection a remarkable attempt at unifying module oveM,,. Here the Lie subalgebra D&M3) gen-
gauge fields and Higgs scalars was suggested by Céthes erated by a three_-dlmensmnal representatl_wu_oﬂ) is used
making use of the tools of noncommutative differential ge-rather than the Lie algebra Déd() of all derivations oM ;.
ometry. The formalism involves three steps. First, a spectrallz'Xterlor derlyatlon, connection, .and curvature are dpﬁned as
triplet (D, H,.A) is introduced, consisting of thé&general- in (6], bUt. W'tzh so_me modification§]. The dimension of
ized) Dirac operatorD that acts on a Hilbert space of states Der,(Ms) is 2"~ 1=3. Hence we may take as the generators

. o ) of Mj the first three Gell-Mann matrices,, 7,73 and the
H, together with an associatie” algebra also acting on generators of th&J-spin andV-spin subalgebras along with
H. Next, A is related to the algebra of complex-valued func-

the identity 7, which we identify withY+ 3% whereY is the

tions on space-time in the commutative case, whereas 'Hypercharge-gl\/§. The generators of td-spin andV-spin
more complicated settings, in which the gauge groups argubalgebras are

non-Abelian, 4 has to be replaced by the tensor proddct
=C*(V)®M, with an appropriate matrix algebra. Finally, 1 ) 1

the construction of the Yang-Mills Lagrangian is done by Us.=35(mxity), Us=35[U; U_],

replacing the Dixmier trace instead of integration. Within the

above scheme, a generalization of the standard electroweak 1 1

model in noncommutative geometry can be given as a gauge Vi=5(matirs), Va=5[Vi,V_].

theory with a built-in spontaneous symmetry breakdown 2.1
mechanism. This way, it is not only the Higgs sector that

arises naturally, but also the correct hypercharge assignments The choice of derivations is dictated by which symmetries
acquire a natural meaning. The earliest model along thes¢e want unbroken at the end. In electroweak theory electro-
lines is due to Connes and Ld®]. Several other attempts MagneticU.(1) whose generator isy+ 73 is unbroken.
have followed since thef8—5]. Here we wish to reexamine Among the above generators bf; only the generators of
the Higgs boson masses in a model proposed by Balakrishn#e U-spin subalgebra commute withy+ 73, so we define
Girsey, and Wali(BGW) [6]. In this approach the Yang- Our derivations as

Mills a_nd nggg f_|elds occur on equal footing and the Higgs e (D) =mrf], feMs, 2.2
potential consisting of a sum of complete squares appears
already shifted onto an absolute minimum. Thus, bo?h th‘?/yherea runs through the indices#, —,3) and
gauge boson and Higgs boson masses can be predicted in
terms of two mass scales, each related to one of the

U.
SU(2),XU(1)y gauge symmetry groups. }\i:T; N3=Ug,
2
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HeremandM are two mass scales that have to be introduced’hus the exterior derivativdf of an element of A can be
into the theory to keep the dimensions correct. In definingwritten as the sum of its vertical and horizontal parts:
the derivations we use the fact that all derivationdvigf are

inner and hence they are in the fosy=ad(\,). They obey df=dyf+d,f. (2.14
the commutation refations From the basis elemen#8 we can construct a one-forth
(o0 e0]= 20 Ct e, 2g TS
e 0= —m\,0°, (2.19
where the structure constar@3,, are which satisfies the zero-curvature condition
Ci =-C¥,=1 C5=-Ci3=1 Cl3=-Cj =1, do+ 62=0. (2.16
(2.5

and all others are zero. IIl. GAUGE FIELDS

We can now define the exterior derivative exactly as in
[8], but with the set of derivations in DgM 3) C Der(M3):

df(ey)=e,(f). (2.6

This means in particular that

The gauge potential, which is an element(f(V) for a
trivial U(1) bundle, can be generalized to the noncommuta-
tive case as an anti-Hermitian element®#(.A). Let w be
such an element dR'(.4). We can write it then as

dA®(ep) =mp[ Ay N2, (2.7 w=At+0+d, (3.1
- . where
where the indices are lowered and raised by the group metric
— %% Ql
Gab=—Tr(Nak). 29 A= T10A.07 e 0n(A),
We define the set of one-forn§3,*(M3) to be the set of all D=gp,0"e O, (A), (3.2

elements of the forni dg or dg f with f andg in A subject
to the relationgd(fg)=df g+ f dg. Here the subindex 2 re-
fers to the fact that we are using the derivation algebr
Der(M3). The setd\? forms a system of generators of
Q,*(M3) as a left or right module but it is not a convenient
one since\?d\P#d\PA2. However, there is another system

andé as in Eq.(2.15. Hereg is the coupling constant of the
a{heory. ¢, here are interpreted as Higgs fields.

The gauge transformations of the trivia(1) bundle over
V are the unitary elements @&”(V). By analogy, we will
choose the group of local gauge transformations as the group
of unitary elementg/ of . A—that is, the group of invertible

of generators completely characterized by the equations

6.-(e;)=1, 6.(e3)=0,
03(ez)=0, 0O3(e3)=1. 2.9

They are related td\? by the equations
d\3=m,C26°P\¢, (2.10

and they satisfy the structure equations
dgr=C,2 mr‘r’]m° 6\ 6. (2.11)

a

The 6*s commute with all elements d¥l 5.

Let us choose a basig; dx® of Q*(V) overV and sup-
pose e, be the Pfaffian derivations dual t@“. Set i
=(a,a), 1<i<4+3=7, and introduced'=(6%6%) as
generators of21(.4) as a left or right.A module ande;
=(e,,ey) as a basis of Dg(.A) as a direct sum:

QYA =0le0?, (2.12

where

Q=04 V)eM,, Ql=c*(V)®QiM,). (2.13

elementsu e A satisfyinguu* =1. Here * is the * product
induced inA and.A is considered as the set of functions on
V with values inGL,,. An element ofi/ defines a map of
QY(A) into itself of the form

o'=9 twg+g tdg. (3.3
We define
6'=g t6g+g1d,g, (3.9
A'=g *Ag+gtdng, (3.5
and so¢ transforms under the adjoint action f
¢'=9 *4g. (3.6)

0 is invariant under the gauge transformations and hence
' is again of the form3.1). The curvature two-fornf) and
the field strength- are defined as usual:

QO=dw+w? F=d,A+A? (3.7
with components
1 i A i 1 2 aB
QZEQUH/\G, FZEFQ’BQ /\0 . (38)
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We find H=H,V,+HyU,,

Qa,B: Faﬁ’ 1
Qaa:g,Dad)a:g(ﬁad)a_ig[Aavd)a])v
By using the metric componen(2.8) we see that

2 mamb c
Qap=09T babp] =97~ Cande- (3.9 bT=—2¢_, ¢ =—2¢,., ¢3°=—2¢;. (4.9

As we shall see the termi,, is responsible for the Higgs For the gauge potential we will write
potential.

Given the curvature two-form, we can write down the A=—igA, dx*=—ig l(B NotW, A )dx*, (4.5
usual gauge-invariant Yang-Mills Lagrangian density four- K’ 2"k a ’
form:
whereB andW are going to be identified as the weak gauge
1 - bosons.
L=— S Tr(Q;;Q"). (3.10 Using the field components above we can write the con-
29 nection one-form directly from Eq3.1):
In terms of the components 6, £ becomes g g m
o=A+-—=HO_+—=H*0,+gAO;— —=U_6_
1 \/E \/E +1g 3 \/E +
L=——Tr(F,zF ") =TrH(D,$aD“¢*) +V(¢),
%0 3.1 m m’
(3.11 —Eu,o++m(>\o+>\3)03. (4.6)
where the Higgs potentidf( ¢) is given by
The next step is to construct the curvature two-form
1
V($)=——— Tr(Q,0%). (3.12 1
29 0=30,,dxdx"+Q,, dx0_+Q,_dx“0,

From the form ofQ),,, in EqQ.(3.9) we see thaV/ vanishes
for values an 1N =G (¢) +0, 5 dX 05+ Q. _0_0,+ 0 30_05+Qy_ 030, .
(4.7)

ma
#a=0, ¢a:E)‘a- 313 From Eq.(3.9 we can see that

For the second vacuum configuration above, the second term Q,u=Fu,
on the right-hand side of E43.11) becomes
2Tr([ AL, Mah o [AY, MoAE]). 3.1 _9 _
g ([ a a][ a ]) ( 4) Q,u+_ ED“H’ Qﬂi_Q;Jr ,
This expression is quadratic in the potential and hence it
gives a mass to the vector bosons. This means we have a Q,3=9D,A, (4.8

naturally built-in Higgs mechanism.

where
IV. HIGGS BOSON MASSES
. . . D,=d,~ig[A,,] 4.9
In what follows we assume a Minkowskian space-time
and work in Cartesian coordinates. Therefore we take and the remaining three terms are
=4, and #*=dx“*. Hence we have

gz m2

dp=dx%g,. (4.2) Q+,=7[H,H*]—gMA—m2)\O+7,
In this model there are three independent Higgs fields: )
g

¢+=E, ¢7=E, pz=A+ m(zTo— 1),

(4.2  These can also be found directly from E¢8.9) and the
definitions(4.2) and(4.4). We write down the Lagrangian as
where before and obtain
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1 m?
L=——Tr(F zF*?)+2 T(DHDHT) dxdAg—2MmHz;+2M2| 1+—— | Ag—m?A3=0
22 b 2M2
+2 (D, ADAT)+V(H,A), (4.11) 2
. I 4+ + 2 4+ — _m?2 —
where the Higgs potential is dxdAg+2MmH;+2M* 1 2M2 As=MAo=0
L viHa) =L m- ™ I SN ) m? m?
aq2 V)T g T2 a2t T gt 2 dxdA;+2M2| 1+——|A;—2Mm| 1+—— |H,=
89 8 g 412 g g 1 ZMZ) 1 omz) L
11 . M2
+ Z EH a-aH_EAa m2 m?
dxdA,+2M?| 1+ ——A,+2Mm| 1+——|H,=0,
1 2M 2M
+ gHT(AO—i— Ayo,)?H. (4.12 (4.14
S ~ where
Above H is written as a two-component column vector with
complex entriesd , andH, ando, are the Pauli spin matri- Hi=H,+H*, Hy=(H,—H*)i,
ces. The vacuum configuration can be determined either di-
rectly from the minimum of the above potential, which is a Ha=Ho+HE, Ha=(Ho—HZ)/i.
sum of squares, or from E@3.13), to be
m 9 The diagonalization of the mass matrix that is read from
H0=5, H.=0, Ag=As=-— Mg’ A;,=0, linearized Higgs field equations yields the mass eigenvalues
(4.13 m? m?
0,00,M?, | 3m*+—+2M?|, |3m*+—+2M?|,
where only the electromagnetism survives symmetry break- M M
ing.
In this model we have considered our structure group (5m?+M?+ 9m*+2m?’M?+ M%),
SU(2),XU(1)y as a subgroup dfl(3) and hence their cou-
pling constantsy and g’ merge to the same value. As a (5m?+M2—\Jam*+2m?M2+ M%),
consequence, the Weinberg angle is obtained from the stan-
dard relation The value of the Weinberg angle and the above masses im-
ply that thep parameter
2 1
ife,= g __:
SINOw g?+g'2 2 M3, m?

= =1+ .
. P MZ cog 6y 2M?
The mass spectrum of the model can be found easily. The

masses of th&V andZ bosons are found from Eg@3.14) to

b Experimentallyp is very close to 1 so we must haw
e

>m. Thus at the mass scald we obtain three zero-mass
eigenvalues that refer to Goldstone modes which would be
absorbed by weak intermediate bosons to become massive,
onelight Higgs boson with mas§2m, and all the remaining
scalar masses converge {8M as we takeVvl>m.

To find the mass spectrum of the Higgs sector, on the other It is now possible to predict the values of these masses at

hand, we first write down the linearized field equati¢@is ~ the electroweak scalE,;~m by considering the renormal-
ization flow of the coupling constanty g’ and the Higgs

2

m
My=m~\/1+ Ve M,=+/2m.

2

m m2 self-coupling constant down from the scalé/ to the scale
dxdH;+2m?| 1+ ——|H;—2Mm| 1+ ——|A;= m and also using the fact that=g?/4 from the Higgs po-
2M 2M tential (4.12 [6]. The relevant renormalization group equa-
tions are given by10]
m? m?
2M?2 2M?2 299_ s
16w 59’ (4.15
d*dHz+8m?H;—2Mm(Ay—A3)=0
167299 _ L2 4.1
dedH, =0 E (419
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V. CONCLUDING COMMENTS

d\
16m%——=24\?—3\(3g°+g’? . :
T dt (39°+9"™) The noncommutative extension of the electroweak model
proposed by Balakrishna, @&ey, and Wali[6] where the
+ §[Zg4+(gz+g’2)z]. (4.17) spacg-ti_m_e is extended by _the Pauli matrices themselv_es is
8 both intiutive and comparatively simple to study. It predicts
a light Higgs boson with a mass around 130 GeV together

We solve Egs(4.15 and(4.16 and setg=g’ andA=39?  with four very heavy Higgs bosons.

at the scaléM. This implies The model may be generalized in several directions. In
fact a supersymmetric generalizatigi?] as well as a grand

1 1 60 o unification schemg13] had already been discussed. We

2 )— 2 )=48 5 |nm (4.18 think it would not be unreasonable to contemplate an

9w glu & effective field theory approach to the noncommutative

electroweak models. In a first attempt, we consider, to the
lowest possible order, the following cubic term in the Higgs
potential:

at an arbitrary mass scaje. We fix g andg’ at the scale
u=E;=91 GeV by their measured valugg¢E,)=0.4234
andg’(Ez)=0.1278. This choice drives the Weinberg angle
to its experimental value 0.23 at the scaleE,. We also o

find that we should havéM ~5x10?%° GeV to start with. 3Tr(Qabﬂbcﬂcdgad), (5.2
Inserting what we found back into Eq€.15 and(4.16) we 3'g
obtain which contributes as
g2(M)=g'3(M)=4\(M)=0.49. (4.19 agd ([ 2 3 2
Tg > Ai(HToH)| +HTHIHT X Aoy | H
The remaining equatiof.17 can be solved numerically by =0 =0
feeding in the solutions of Eq$4.15 and (4.16), yielding ag? 3 3
the result\ (E;) =0.14. From the standard model, + TM HT( Z Ai(ri) H}
i=0
2
mMi () 8\ (1) 3 2
= , (4.20 99 ot .
m%(/.l,) 92(#)4_9/2(#) 2 m-H ;) A|0'| H. (52)

which is already satisfied at scalé This relation gives the It can be checked that the vacuum configurati@gnl3
mass of the Higgs particle at the electroweak scale ag)akes the above expression vanish. This does not necessar-
my(E,)=130 GeV. However, the actual determination of iy mean that with the inclusion of effective terms the com-

the physical mass should take into consideration radiativ@lete Higgs potential cannot acquire a distinct set of vacuum
corrections. But it is well known thdtL1] expectation values. The possibility remains open at present.
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