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Noncommutative geometry and the Higgs boson masses
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We study a noncommutative generalization of the standard electroweak model proposed by Balakrishna,
Gürsey, and Wali@Phys. Lett. B254, 430 ~1991!# that is formulated in terms of the derivations Der2(M3) of
a three-dimensional representation of thesu(2) Lie algebra of weak isospin. The linearized Higgs field
equations and the scalar boson mass eigenvalues are explicitly given. A light Higgs boson with a mass around
130 GeV together with four very heavy scalar bosons are predicted.
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I. INTRODUCTION

In spite of its observational successes, the standard m
of electroweak interactions cannot yet be considered a
fundamental theory because the scalar boson sector, u
the gauge sector involving the fermions and the ga
bosons, has to be written down in anad hocway and not by
gauge principles. Furthermore, the unavoidable Higgs sc
has not been observed and there is no way to predic
mass. In this connection a remarkable attempt at unify
gauge fields and Higgs scalars was suggested by Conne@1#,
making use of the tools of noncommutative differential g
ometry. The formalism involves three steps. First, a spec
triplet (D,H,A) is introduced, consisting of the~general-
ized! Dirac operatorD that acts on a Hilbert space of stat
H, together with an associativeC* algebraA also acting on
H. Next,A is related to the algebra of complex-valued fun
tions on space-time in the commutative case, wherea
more complicated settings, in which the gauge groups
non-Abelian,A has to be replaced by the tensor productA
5C`(V) ^ Mn with an appropriate matrix algebra. Finall
the construction of the Yang-Mills Lagrangian is done
replacing the Dixmier trace instead of integration. Within t
above scheme, a generalization of the standard electrow
model in noncommutative geometry can be given as a ga
theory with a built-in spontaneous symmetry breakdo
mechanism. This way, it is not only the Higgs sector th
arises naturally, but also the correct hypercharge assignm
acquire a natural meaning. The earliest model along th
lines is due to Connes and Lott@2#. Several other attempt
have followed since then@3–5#. Here we wish to reexamine
the Higgs boson masses in a model proposed by Balakris
Gürsey, and Wali~BGW! @6#. In this approach the Yang
Mills and Higgs fields occur on equal footing and the Hig
potential consisting of a sum of complete squares app
already shifted onto an absolute minimum. Thus, both
gauge boson and Higgs boson masses can be predict
terms of two mass scales, each related to one of
SU(2)I3U(1)Y gauge symmetry groups.
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II. MATHEMATICAL FRAMEWORK

In order to study the bosonic sector alone it is enough
deal with the tensor product spaceA5C`(V) ^ Mn so thatA
can be regarded as the set of matrix-valued functions on
space-time manifoldV and is itself aC* algebra. The differ-
ential calculus of this space has been studied in@7#. It is also
possible to identify the vector fields ofA with a restricted set
of derivations ofMn rather than the algebra of all derivation
of Mn . We have this extra freedom because Der(Mn) is not
a module overMn . Here the Lie subalgebra Der2(M3) gen-
erated by a three-dimensional representation ofsu(2) is used
rather than the Lie algebra Der(M3) of all derivations ofM3.
Exterior derivation, connection, and curvature are defined
in @6#, but with some modifications@7#. The dimension of
Der2(M3) is 222153. Hence we may take as the generato
of M3 the first three Gell-Mann matricest1 ,t2 ,t3 and the
generators of theU-spin andV-spin subalgebras along wit
the identityt0 which we identify withY1 2

3 whereY is the
hypercharget8 /A3. The generators of theU-spin andV-spin
subalgebras are

U65
1

2
~t66 i t7!, U35

1

2
@U1 ,U2#,

V65
1

2
~t46 i t5!, V35

1

2
@V1 ,V2#.

~2.1!

The choice of derivations is dictated by which symmetr
we want unbroken at the end. In electroweak theory elec
magneticUem(1) whose generator ist01t3 is unbroken.
Among the above generators ofM3 only the generators o
the U-spin subalgebra commute witht01t3, so we define
our derivations as

ea~ f !5ma@la , f #, f PM3 , ~2.2!

wherea runs through the indices (1,2,3) and

l65
U6

A2
, l35U3 ,

m65m, m35
m2

M
. ~2.3!
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Herem andM are two mass scales that have to be introdu
into the theory to keep the dimensions correct. In defin
the derivations we use the fact that all derivations ofMn are
inner and hence they are in the formea5ad(la). They obey
the commutation relations

@ea ,eb#5
mamb

mc
Cab

c ec , ~2.4!

where the structure constantsCab
c are

C12
3 52C21

3 51, C31
2 52C13

2 51, C23
1 52C32

1 51,

~2.5!

and all others are zero.
We can now define the exterior derivative exactly as

@8#, but with the set of derivations in Der2(M3)#Der(M3):

d f~ea!5ea~ f !. ~2.6!

This means in particular that

dla~eb!5mb@lb ,la#, ~2.7!

where the indices are lowered and raised by the group m

gab52Tr~lalb!. ~2.8!

We define the set of one-formsV2
1(M3) to be the set of all

elements of the formf dg or dg f with f andg in A subject
to the relationsd( f g)5d f g1 f dg. Here the subindex 2 re
fers to the fact that we are using the derivation alge
Der2(M3). The setdla forms a system of generators o
V2

1(M3) as a left or right module but it is not a convenie
one sincela dlbÞdlbla. However, there is another syste
of generators completely characterized by the equations

u6~e7!51, u6~e3!50,

u3~e7!50, u3~e3!51. ~2.9!

They are related todla by the equations

dla5mbCbc
aublc, ~2.10!

and they satisfy the structure equations

dua5Cbc
a mbmc

ma
ub`uc. ~2.11!

The ua’s commute with all elements ofM3.
Let us choose a basisub

a dxb of V1(V) over V and sup-
pose ea be the Pfaffian derivations dual toua. Set i
5(a,a), 1< i<41357, and introduceu i5(ua,ua) as
generators ofV1(A) as a left or rightA module andei
5(ea ,ea) as a basis of Der2(A) as a direct sum:

V1~A!5Vh
1

% Vv
1 , ~2.12!

where

Vh
15V1~V! ^ Mn , Vv

15C `~V! ^ V1~Mn!. ~2.13!
07500
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Thus the exterior derivatived f of an elementf of A can be
written as the sum of its vertical and horizontal parts:

d f5dhf 1dv f . ~2.14!

From the basis elementsua we can construct a one-formu
in Vv

1 , that is,

u52malaua , ~2.15!

which satisfies the zero-curvature condition

du1u250. ~2.16!

III. GAUGE FIELDS

The gauge potential, which is an element ofV1(V) for a
trivial U(1) bundle, can be generalized to the noncommu
tive case as an anti-Hermitian element ofV1(A). Let v be
such an element ofV1(A). We can write it then as

v5A1u1F, ~3.1!

where

A52 igAauaPVh
1~A!,

F5gfauaPVv
1~A!, ~3.2!

andu as in Eq.~2.15!. Hereg is the coupling constant of the
theory.fa here are interpreted as Higgs fields.

The gauge transformations of the trivialU(1) bundle over
V are the unitary elements ofC`(V). By analogy, we will
choose the group of local gauge transformations as the g
of unitary elementsU of A—that is, the group of invertible
elementsuPA satisfyinguu* 51. Here * is the * product
induced inA andA is considered as the set of functions o
V with values inGLn . An element ofU defines a map of
V1(A) into itself of the form

v85g21vg1g21 dg. ~3.3!

We define

u85g21ug1g21 dvg, ~3.4!

A85g21Ag1g21 dhg, ~3.5!

and sof transforms under the adjoint action ofU:

f85g21fg. ~3.6!

u is invariant under the gauge transformations and he
v8 is again of the form~3.1!. The curvature two-formV and
the field strengthF are defined as usual:

V5dv1v2, F5dhA1A2, ~3.7!

with components

V5
1

2
V i j u

i`u j , F5
1

2
Fabua`ub. ~3.8!
6-2
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We find

Vab5Fab ,

Vaa5gDafa5g~]afa2 ig@Aa ,fa# !,

Vab5g2@fa ,fb#2g
mamb

mc
Cab

cfc . ~3.9!

As we shall see the termVab is responsible for the Higgs
potential.

Given the curvature two-form, we can write down th
usual gauge-invariant Yang-Mills Lagrangian density fo
form:

L52
1

2g2
Tr~V i j V

i j !. ~3.10!

In terms of the components ofV, L becomes

L52
1

2g2
Tr~FabFab!2Tr~DafaD afa!1V~f!,

~3.11!

where the Higgs potentialV(f) is given by

V~f!52
1

2g2
Tr~VabV

ab!. ~3.12!

From the form ofVab in Eq. ~3.9! we see thatV(f) vanishes
for values

fa50, fa5
ma

g
la . ~3.13!

For the second vacuum configuration above, the second
on the right-hand side of Eq.~3.11! becomes

g2 Tr~@Aa ,mala#@Aa,mala# !. ~3.14!

This expression is quadratic in the potential and henc
gives a mass to the vector bosons. This means we ha
naturally built-in Higgs mechanism.

IV. HIGGS BOSON MASSES

In what follows we assume a Minkowskian space-tim
and work in Cartesian coordinates. Therefore we takeea
5]a andua5dxa. Hence we have

dh5dxa]a . ~4.1!

In this model there are three independent Higgs fields:

f15
H†

A2
, f25

H

A2
, f35D1

m2

2Mg
~2t021!,

~4.2!

where
07500
-
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H5H1V11H0U1 ,

D5
1

2
~D0l01Dala!. ~4.3!

By using the metric components~2.8! we see that

f1522f2 , f2522f1 , f3522f3 . ~4.4!

For the gauge potential we will write

A52 igAmdxm52 ig
1

2
~Bml01Wmala!dxm, ~4.5!

whereB andW are going to be identified as the weak gau
bosons.

Using the field components above we can write the c
nection one-form directly from Eq.~3.1!:

v5A1
g

A2
Hu21

g

A2
H* u11gDu32

m

A2
U1u2

2
m

A2
U2u11

m2

4M
~l01l3!u3 . ~4.6!

The next step is to construct the curvature two-form

V5
1

2
Vmn dxmdxn1Vm1 dxmu21Vm2 dxmu1

1Vm3 dxmu31V12u2u11V13u2u31V32u3u1 .

~4.7!

From Eq.~3.9! we can see that

Vmn5Fmn ,

Vm15
g

A2
DmH, Vm25Vm1* ,

Vm35gDmD, ~4.8!

where

Dm5]m2 ig@Am ,# ~4.9!

and the remaining three terms are

V125
g2

2
@H,H* #2gMD2m2l01

m2

2
,

V1352
g2

A2
DH, V325V13* . ~4.10!

These can also be found directly from Eqs.~3.9! and the
definitions~4.2! and~4.4!. We write down the Lagrangian a
before and obtain
6-3
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L52
1

2g2
Tr~FabFab!12 Tr~DaHD aH†!

12 Tr~DaDD aD†!1V~H,D!, ~4.11!

where the Higgs potential is

1

8g2
V~H,D!5

1

8 FH†H2
m2

g2 G 2

1
1

4 F1

2
H†H2

M

g
D02

m2

g2 G 2

1
1

4 F1

2
H†saH2

M

g
DaG2

1
1

8
H†~D01Dasa!2H. ~4.12!

Above H is written as a two-component column vector wi
complex entriesH1 andH0 andsa are the Pauli spin matri
ces. The vacuum configuration can be determined eithe
rectly from the minimum of the above potential, which is
sum of squares, or from Eq.~3.13!, to be

H05
m

g
, H150, D05D352

m2

2Mg
, D1,250,

~4.13!

where only the electromagnetism survives symmetry bre
ing.

In this model we have considered our structure gro
SU(2)I3U(1)Y as a subgroup ofU(3) and hence their cou
pling constantsg and g8 merge to the same value. As
consequence, the Weinberg angle is obtained from the s
dard relation

sin2uw5
g2

g21g82
5

1

2
.

The mass spectrum of the model can be found easily.
masses of theW andZ bosons are found from Eq.~3.14! to
be

MW5mA11
m2

2M2
, MZ5A2m.

To find the mass spectrum of the Higgs sector, on the o
hand, we first write down the linearized field equations@9#:

d!dH112m2S 11
m2

2M2D H122MmS 11
m2

2M2D D150

d!dH212m2S 11
m2

2M2D H212MmS 11
m2

2M2D D250

d!dH318m2H322Mm~D02D3!50

d!dH450
07500
i-

k-
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n-

e
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d!dD022MmH312M2S 11
m2

2M2D D02m2D350

d!dD312MmH312M2S 11
m2

2M2D D32m2D050

d!dD112M2S 11
m2

2M2D D122MmS 11
m2

2M2D H150

d!dD212M2S 11
m2

2M2D D212MmS 11
m2

2M2D H250,

~4.14!

where

H15H11H1* , H25~H12H1* !/ i ,

H35H01H0* , H45~H02H0* !/ i .

The diagonalization of the mass matrix that is read fro
linearized Higgs field equations yields the mass eigenva

0,0,0,2M2, S 3m21
m4

M2
12M2D , S 3m21

m4

M2
12M2D ,

~5m21M21A9m412m2M21M4!,

~5m21M22A9m412m2M21M4!.

The value of the Weinberg angle and the above masses
ply that ther parameter

r5
MW

2

MZ
2 cos2uW

511
m2

2M2
.

Experimentallyr is very close to 1 so we must haveM
@m. Thus at the mass scaleM we obtain three zero-mas
eigenvalues that refer to Goldstone modes which would
absorbed by weak intermediate bosons to become mas
onelight Higgs boson with massA2m, and all the remaining
scalar masses converge toA2M as we takeM@m.

It is now possible to predict the values of these masse
the electroweak scaleEZ;m by considering the renormal
ization flow of the coupling constantsg, g8 and the Higgs
self-coupling constantl down from the scaleM to the scale
m and also using the fact thatl5g2/4 from the Higgs po-
tential ~4.12! @6#. The relevant renormalization group equ
tions are given by@10#

16p2
dg

dt
52

19

6
g3, ~4.15!

16p2
dg8

dt
5

41

6
g83, ~4.16!
6-4
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16p2
dl

dt
524l223l~3g21g82!

1
3

8
@2g41~g21g82!2#. ~4.17!

We solve Eqs.~4.15! and ~4.16! and setg5g8 andl5 1
4 g2

at the scaleM. This implies

1

g2~m!
2

1

g82~m!
5

60

48p2
ln

m

M
~4.18!

at an arbitrary mass scalem. We fix g and g8 at the scale
m5EZ591 GeV by their measured valuesg(EZ)50.4234
andg8(EZ)50.1278. This choice drives the Weinberg ang
to its experimental value 0.23 at the scalem5EZ . We also
find that we should haveM;531020 GeV to start with.
Inserting what we found back into Eqs.~4.15! and~4.16! we
obtain

g2~M !5g82~M !54l~M !50.49. ~4.19!

The remaining equation~4.17! can be solved numerically b
feeding in the solutions of Eqs.~4.15! and ~4.16!, yielding
the resultl(EZ)50.14. From the standard model,

mH
2 ~m!

mZ
2~m!

5
8l~m!

g2~m!1g82~m!
, ~4.20!

which is already satisfied at scaleM. This relation gives the
mass of the Higgs particle at the electroweak scale
mH(Ez)5130 GeV. However, the actual determination
the physical mass should take into consideration radia
corrections. But it is well known that@11#

mH~m!5mH
pole@11d~m!#, ~4.21!

where d(m) referring to the radiative corrections are ve
small at the scalem5EZ . Therefore we may conclud
mH

pole;mH(EZ);130 GeV.
B

l
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V. CONCLUDING COMMENTS

The noncommutative extension of the electroweak mo
proposed by Balakrishna, Gu¨rsey, and Wali@6# where the
space-time is extended by the Pauli matrices themselve
both intiutive and comparatively simple to study. It predic
a light Higgs boson with a mass around 130 GeV toget
with four very heavy Higgs bosons.

The model may be generalized in several directions.
fact a supersymmetric generalization@12# as well as a grand
unification scheme@13# had already been discussed. W
think it would not be unreasonable to contemplate
effective field theory approach to the noncommutat
electroweak models. In a first attempt, we consider, to
lowest possible order, the following cubic term in the Hig
potential:

a

3!g3
Tr~VabV

bcVcdg
ad!, ~5.1!

which contributes as

ag3

4 H F(
i 50

3

D i~H†s iH !G2

1H†HFH†S (
i 50

3

D is i D 2

HG J
1

ag2

4
MFH†S (

i 50

3

D is i D 3

HG
2

ag

2
m2H†S (

i 50

3

D is i D 2

H. ~5.2!

It can be checked that the vacuum configuration~4.13!
makes the above expression vanish. This does not nece
ily mean that with the inclusion of effective terms the com
plete Higgs potential cannot acquire a distinct set of vacu
expectation values. The possibility remains open at pres
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