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Lattice calculation of the nucleon’s spin-dependent structure functiong2 reexamined
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Our previous calculation of the spin-dependent structure functiong2 is reexamined. Interest in this structure
function is to a great extent motivated by the fact that it receives contributions from twist-2 as well as from
twist-3 operators already in leading order of 1/Q2, thus offering the unique possibility of directly assessing
higher-twist effects. In our former calculation the lattice operators were renormalized perturbatively and mix-
ing with lower-dimensional operators was ignored. However, the twist-3 operator which gives rise to the
matrix elementd2 mixes non-perturbatively with an operator of lower dimension. Taking this effect into
account leads to a considerably smaller value ofd2, which is consistent with the experimental data.
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I. INTRODUCTION

The nucleon’s second spin-dependent structure func
g2 is of considerable phenomenological interest. The m
important theoretical tool for its analysis is the opera
product expansion~OPE! @1#. In leading order of 1/Q2, g2
receives contributions from both twist-2 and twist-3 ope
tors. It thus offers the unique possibility of directly assess
higher–twist effects. The twist-3 operator probes the tra
verse momentum distribution of the quarks in the nucle
and has no simple parton model interpretation.

In leading order of 1/Q2 and for massless quarks, th
moments ofg2 are given by

2E
0

1

dx xng2~x,Q2!5
1

2

n

n11 (
f 5u,d

@e2,n
( f )
„m2/Q2,g~m2!…

3dn
( f )~m!2e1,n

( f )
„m2/Q2,g~m2!…

3an
( f )~m!# ~1!

for even n>2 in the flavor-nonsinglet sector. Heref runs
over the light quark flavors. The reduced matrix eleme
an

( f )(m) and dn
( f )(m), taken in a nucleon state with mome

tum p and spin vectors, are defined by@1#

^p,suO $sm1•••mn%
5( f ) up,s&5

1

n11
an

( f )

3@sspm1
•••pmn

1•••2traces#,

~2!

^p,suO [s$m1] •••mn%
5( f ) up,s&5

1

n11
dn

( f )

3@~sspm1
2sm1

ps!pm2
•••pmn

1•••2traces#, ~3!
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O sm1•••mn

5( f ) 5S i

2D n

c̄gsg5DJ m1
•••DJ mn

c

2traces. ~4!

Herem denotes the renormalization scale. The Wilson co
ficientse1,n

( f ) , e2,n
( f ) depend on the ratio of scalesm2/Q2 and on

the running coupling constantg(m2). The tree level values
of the Wilson coefficients for electroproduction are given
the quark chargesQ( f ):

ei ,n
( f )5Q( f )2@11O~g2!#. ~5!

The symbol$•••% (@•••#) indicates symmetrization~anti-
symmetrization! with

O$m1•••mn%5
1

n! (
pPSn

Omp(1)•••mp(n)
. ~6!

The operator~2! has twist 2, whereas the operator~3! has
twist 3. The twist-2 contribution in Eq.~1! is also known as
the Wandzura-Wilczek contribution@2#.

Note for comparison that in leading order of 1/Q2 the
moments ofg1 are given by the twist-2 matrix elementsan

( f ) :

2E
0

1

dx xng1~x,Q2!5
1

2 (
f 5u,d

e1,n
( f )
„m2/Q2,g~m2!… an

( f )~m!.

~7!

Both the Wilson coefficients and the operators are ren
malized at the scalem. It is assumed that the Wilson coeffi
cients can be computed perturbatively. The reduced ma
elements an

( f ) and dn
( f ) , on the other hand, are non

perturbative quantities and hence a problem for the latt
~Note that some authors use a different definition ofan and
dn ; e.g., the values given in Refs.@3,4# have to be multiplied
by 2 to agree with our conventions.! In the following we
shall drop the flavor indices, unless they are necessary.
©2001 The American Physical Society06-1
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A few years ago we computed the lowest non-trivial m
ment ofg2 on the lattice@5#. This calculation splits into two
separate tasks. The first task is to compute the nucleon
trix elements of the appropriate lattice operators. This w
described in detail in@5#. The second task is to renormaliz
the operators. Renormalization effects are a major sourc
systematic error. An essential feature of our previous ca
lation was that the renormalization was done in perturba
theory and hence mixing with lower-dimensional operat
could not be taken into account. In that approach the twis
contribution turned out to be the dominant contribution
both the proton and the neutron structure functions. This
sult has been recently confirmed by Dolgov et al.@6#.

In the meantime, it has become possible to study ren
malization non-perturbatively on the lattice; see e.g.@7,8#.
This approach allows us to consider mixing with lowe
dimensional operators. If present, it will be the domina
mixing effect in the continuum limit. Since the twist-3 op
erators~3! can suffer from such mixing, we shall extend o
previous work by employing non-perturbative renormaliz
tion. In a recent paper@9# we have started a non-perturbativ
calculation of the renormalization constants associated w
the structure functionsF1 , F2 andg1 in the flavor-nonsinglet
sector. Here we consider the case of the structure functiog2
restricting ourselves ton52, the lowest moment ofg2 for
which the OPE makes a statement. A preliminary version
this work based on lower statistics at a single value of
bare coupling has already been presented in Ref.@10#.

II. RENORMALIZATION AND MIXING IN CONTINUUM
PERTURBATION THEORY

The renormalization of the operators which contribute
the moments ofg2 has been studied by several authors
continuum perturbation theory@11#. Since the more recen
paper by Kodaira et al.@12# ~see also@13#! is closest to the
methods applied on the lattice, let us briefly recapitulate
main findings of these authors.

They consider the casen52 in the flavor-nonsinglet sec
tor and start from the operators

RF
smn5

i2

3
@2c̄g5gsD $mDn%c2c̄g5gmD $sDn%c

2c̄g5gnD $mDs%c#2traces, ~8!

R1
smn5

1

12
g@esmabc̄Fabgnc

1esnabc̄Fabgmc#2traces, ~9!

Rm
smn5 imc̄g5gsD $mgn%c2traces, ~10!

Req
smn5

i

3
@c̄g5gsD $mgn%~ iD” 2m!c

1c̄~ iD” 2m!g5gsD $mgn%c#2traces. ~11!
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Here Fab denotes the gluon field strength tensor, whi
could alternatively be expressed as a commutator of two
variant derivatives. Because of the relation

RF
smn5

2

3
Rm

smn1R1
smn1Req

smn , ~12!

it is possible to eliminate one of the above operators. A o
loop calculation of the quark-quark-gluon three-point fun
tions with a single insertion of each of these operators
veals the necessity of taking one more operator into acco
in the process of renormalization, namely the gauge-var
operator

Req1
smn5

i

3
@c̄g5gs]$mgn%~ iD” 2m!c

1c̄~ iD” 2m!g5gs]$mgn%c#2traces. ~13!

Of course, in physical matrix elements neitherReq nor Req1
will contribute. They show up, however, in off-shell verte
functions and influence the renormalization factors.

Kodaira et al. chooseR1 andRm as the physical operators
In the chiral limitm→0 Rm is neglected, and they obtain, fo
the scale dependence of the twist-3 piece,

E
0

1

dx x2g2
twist-3~x,Q2!5S as~Q2!

as~m2!
D vE

0

1

dx x2g2
twist-3~x,m2!,

~14!

where, forNc colors andNf flavors,

v5
3Nc2 1

3 ~Nc
221!/~2Nc!

11
3 Nc2 2

3 Nf

~15!

in agreement with earlier calculations.
UsingRF andR1 as the physical operators, one finds th

in the large-Nc limit the operatorRF dominates the renormal
ization group evolution of the nucleon matrix elements. T
has been shown by Ali, Braun, and Hiller@14#, and was
rederived in the present framework by Sasaki@15#.

III. RENORMALIZATION AND MIXING
ON THE LATTICE

In a lattice calculation, the first step is the analytic co
tinuation to imaginary times, leading from physic
Minkowski space to Euclidean space. From now on, all
pressions are written for the Euclidean case~for the details of
our conventions see Appendix A of Ref.@16#!. Hence we
have to study operators of the form

Osm1•••mn

5 522nc̄gsg5DJ m1
•••DJ mn

c. ~16!

We shall neglect quark masses; i.e., we consider only
chiral limit. In our earlier work@5,17# we have computed the
renormalization constants in perturbation theory to one-lo
6-2
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LATTICE CALCULATION OF THE NUCLEON’S SPIN- . . . PHYSICAL REVIEW D 63 074506
order. However, it is believed that perturbation theory can
give reliable values for the mixing with lower-dimension
operators because non-perturbative effects are expected
important.

For a multiplicatively renormalizable operator, i.e. in th
absence of mixing, we can write

O R~m!5ZO~am! O~a!, ~17!

wherea is the lattice spacing. The renormalization const
ZO is fixed by a suitable condition. As in the continuum, w
impose the@momentum-space-subtraction-like~MOM-like!#
renormalization condition

tr@GR~p!GBorn~p!†# 5
p25m2

tr@GBorn~p!GBorn~p!†# ~18!

on the corresponding quark-quark vertex function in the L
dau gauge. HereGBorn(p) denotes the Born or tree-level con
tribution to the vertex function. The renormalized vert
function GR(p) and its bare precursorG(p) are related by
multiplicative renormalization:

GR~p!5Zc
21ZOG~p!, ~19!

whereZc5Zc(am) is the quark wave function renormaliza
tion constant defined as in Ref.@9#.

As before@5#, we give the nucleon a momentum in th
1-direction and choose the polarization in the 2-directi
With these choices we use the operator

O $214%
5 5:O $5% ~20!

for the twist-2 matrix elementa2. It belongs to the represen
tation t3

(4) of the hypercubic groupH(4) @18,19# and this
property protects it from mixing with operators of equal
lower dimension. Hence it is multiplicatively renormalizab
and the operator renormalized at the scalem is written as

O R
$5%~m!5Z$5%~am!O $5%~a!. ~21!

As the operator for the twist-3 matrix elementd2 we take

O [2$1]4%
5 5 1

3 ~2O 2$14%
5 2O 1$24%

5 2O 4$12%
5 !

5 1
12 c̄~g2DJ 1DJ 41g2DJ 4DJ 12 1

2 g1DJ 2DJ 4

2 1
2 g1DJ 4DJ 22 1

2 g4DJ 1DJ 22 1
2 g4DJ 2DJ 1!g5c

5:O [5] , ~22!

which belongs to the representationt1
(8) of H(4). Theopera-

tor ~22! has dimension 5 andC parity 1 and is the Euclidean
counterpart of the Minkowski operatorRF . It turns out that
there exist two more operators of dimensions 4 and 5,
spectively, transforming identically underH(4) and having
the sameC parity, with which Eq.~22! can mix:
07450
t
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1
12 i c̄~s13DJ 12s43DJ 4!c5:O s,

~23!

1
12 c̄~g1DJ 3DJ 12g1DJ 1DJ 32g4DJ 3DJ 41g4DJ 4DJ 3!c5:O 0.

~24!

We use the definitionsmn5(i/2)@gm ,gn#.
The operatorO 0 is the Euclidean analogue ofR1 with the

field strength replaced by a commutator of two covaria
derivatives, andO s corresponds toRm . In continuum per-
turbation theoryRm can be neglected in the chiral limit. O
the lattice, the explicit breaking of chiral symmetry induc
by Wilson-type fermions, which we shall use, persists ev
when the quarks are massless. For dimensional reasons
expect thatO s contributes with a coefficient}a21 and
hence has to be kept. The operatorO 0, on the other hand
being of the same dimension asO [5] , mixes with a coeffi-
cient of orderg2, which should be small. Therefore we di
card O 0 as well as possible lattice counterparts ofReq and
Req1, which are also of dimension 5 and hence are also m
tiplied by a factor of orderg2. The above-mentioned obse
vation@14,15# thatRF dominates overR1 in the renormaliza-
tion group evolution asNc→` may be taken as anothe
indication that neglectingO 0 is not unreasonable. Howeve
this dominance holds only in physical matrix elements a
does not apply to the mixing with the operatorsReq and
Req1.

So we make the following ansatz forO [5] renormalized at
the scalem:

O R
[5]~m!5Z[5]~am!O [5]~a!1

1

a
Zs~am!O s~a!. ~25!

The renormalization constantZ[5] and the mixing coefficient
Zs are determined from the conditions

tr@GR
[5]~p!GBorn

[5] ~p!†# 5
p25m2

tr@GBorn
[5] ~p!GBorn

[5] ~p!†#, ~26!

tr@GR
[5]~p!GBorn

s ~p!†# 5
p25m2

tr@GBorn
[5] ~p!GBorn

s ~p!†#50,

~27!

TABLE I. Simulation parameters. In the third column ME ind
cates the calculation of nucleon matrix elements, whereas Z si
fies the computation of renormalization factors. The lattice spac
a has been determined from the force scaler 0 @25# using r 0

50.5 fm; cSW is the value of the clover coefficient. The matr
element calculations for the smallest quark mass (k50.1353) at
b56.4 have been performed on a 323364 lattice.

b Lattice a21 @GeV# cSW

6.0 163332 ME 2.12 1.769
6.0 243348 Z 2.12 1.769
6.2 243348 ME 2.90 1.614
6.2 244 Z 2.90 1.614
6.4 323348 ME 3.85 1.526
6.4 323340 Z 3.85 1.526
6-3
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TABLE II. The unrenormalized reduced matrix elementsa2 , d2
[5] andd2

s for u andd quarks in the proton atb56.0. Also given are the
pion masses.

k
0.132 0.1324 0.1333 0.1338 0.1342 kc

amp 0.5412~9! 0.5042~7! 0.4122~9! 0.3549~12! 0.3012~10! 0.0

a2
(u) 0.114~8! 0.114~8! 0.107~11! 0.09~2! 0.08~2! 0.08~2!

a2
(d) 20.029~3! 20.032~4! 20.037~7! 20.032~12! 20.047~16! 20.046~11!

d2
[5] (u) 0.0063~12! 0.0028~13! 20.010~2! 20.023~5! 20.028~6! 20.037~4!

d2
[5] (d) 20.0041~6! 20.0027~7! 20.0008~14! 20.005~2! 20.001~4! 0.001~2!

d2
s (u)/a 20.216~12! 20.228~12! 20.246~18! 20.29~4! 20.27~3! 20.30~3!

d2
s (d)/a 0.050~4! 0.050~3! 0.052~6! 0.064~12! 0.044~17! 0.057~12!
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which are straightforward generalizations of Eq.~18!. Note
that the operator~24! vanishes in the Born approximatio
between quark states, which is another reason why we do
take it into account.

Rewriting Eq.~25! as

O R
[5]~m!5Z[5]~am!S O [5]~a!1

1

a

Zs~am!

Z[5]~am!
O s~a!D

~28!

we see thatO R
[5] (m) will have a multiplicative dependenc

on m @cf. Eq. ~17!# only if the ratioZs(am)/Z[5] (am) does
not depend onm. The scale dependence will then complete
reside inZ[5] .

IV. SIMULATION DETAILS

We have obtained numerical results for matrix eleme
andZ factors in quenched simulations atb56/g0

256.0, 6.2,
and 6.4 (g05 bare coupling constant on the lattice!. Whereas
our original calculation@5# at b56.0 used Wilson fermions
we have meanwhile switched to non-perturbatively improv
fermions~clover fermions! in order to reduceO(a) effects.
07450
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d

The value of the clover coefficientcSW is taken from Ref.
@20#. Since we have not improved the operators, there w
still be residualO(a) effects in the matrix elements and th
renormalization factors. A few details of our computatio
are collected in Table I.

The matrix elements are calculated from several hund
configurations for eachb. To compute the renormalizatio
factors we use a momentum source@9#. Therefore the statis-
tical error is}(VNconf)

21/2 for Nconf configurations on a lat-
tice of volumeV, and we already get small statistical unce
tainties even from a small number of configurations, four
our case.~There is of course a price to be paid; the calcu
tion for each momentum is independent, so the numbe
inversions of the fermion matrix is proportional to the num
ber of momentum values.! The main source of statistical un
certainty in our final results is from the matrix elements, n
the Z values.

The momenta in the vertex functions used for the eva
ation of the renormalization factors have been chosen c
to the diagonal in the Brillouin zone in order to keep cuto
effects as small as possible. One should bear in mind
this diagonal extends up top254p2/a2, but we use only
momenta withp2,p2/a2.
TABLE III. The unrenormalized reduced matrix elementsa2 , d2
[5] andd2

s for u andd quarks in the proton atb56.2. Also given are the
pion masses.

k
0.1333 0.1339 0.1344 0.1349 kc

amp 0.4136~6! 0.3570~10! 0.3034~6! 0.2431~7! 0.0

a2
(u) 0.142~10! 0.137~15! 0.157~17! 0.16~3! 0.17~3!

a2
(d) 20.033~4! 20.030~5! 20.034~9! 20.031~15! 20.030~13!

d2
[5] (u) 20.0017~14! 20.017~2! 20.031~5! 20.051~11! 20.065~7!

d2
[5] (d) 20.0027~6! 0.0006~11! 20.0003~17! 20.000~4! 0.004~3!

d2
s (u)/a 20.34~2! 20.37~3! 20.44~4! 20.50~7! 20.54~7!

d2
s (d)/a 0.067~6! 0.065~8! 0.072~13! 0.07~3! 0.07~2!
6-4
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TABLE IV. The unrenormalized reduced matrix elementsa2 , d2
[5] andd2

s for u andd quarks in the proton atb56.4. Also given are the
pion masses.

k
0.1338 0.1342 0.1346 0.135 0.1353 kc

amp 0.3213~8! 0.2836~9! 0.2402~8! 0.1933~7! 0.1507~8! 0.0

a2
(u) 0.123~8! 0.092~13! 0.114~13! 0.102~17! 0.14~4! 0.096~19!

a2
(d) 20.030~4! 20.018~5! 20.032~7! 20.033~10! 20.01~2! 20.023~10!

d2
[5] (u) 20.0149~14! 20.024~3! 20.038~4! 20.055~6! 20.055~15! 20.068~6!

d2
[5] (d) 0.0014~7! 0.0021~13! 0.0062~17! 0.012~3! 0.015~8! 0.013~3!

d2
s (u)/a 20.40~2! 20.41~4! 20.47~4! 20.51~5! 20.55~13! 20.56~5!

d2
s (d)/a 0.088~6! 0.075~12! 0.105~13! 0.12~2! 0.15~5! 0.12~2!
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In each case, the calculations are done at three~or more!
values of the hopping parameterk determining the bare
quark mass so that we can extrapolate our results~both the
bare matrix elements and renormalization factors! to the chi-
ral limit. The extrapolation is performed linearly inmp

2 , the
square of the pion mass.

The bare reduced matrix elements are calculated f
three-point functions in the standard fashion~see, e.g., Ref.
@5#!. In Eq. ~25! of Ref. @5# the ratios of three- to two-poin
functions for thea2 operatorO $5% and thed2 operatorO [5]

are given. For the operatorsO 0 andO s the ratios and ratio
factors are the same as for thed2 operator. The matrix ele
ments are collated in Tables II, III, IV separately foru andd
quarks in the proton. Hered2

[5] and d2
s correspond to the

operators~22! and~23!, respectively. In addition we give th
pion masses~in lattice units! which we use in the chira
extrapolations. They are mostly taken from Ref.@21#. Note
that all our errors are purely statistical. They were det
mined by the jackknife procedure.

V. NUMERICAL RESULTS FOR RENORMALIZATION
COEFFICIENTS

Let us begin the more detailed presentation of our num
cal results with the renormalization factorZ$5%(am) of the

FIG. 1. The renormalization constantZ$5% in the MS scheme.
07450
m
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i-

multiplicatively renormalizablea2 operator~20!. We convert
our MOM numbers to the Modified Minimal Subtractio
(MS) scheme using 1-loop continuum perturbation theory
described in@9#. In Fig. 1 we show them dependence ofZ$5%

extrapolated to the chiral limit. Results for Wilson fermion
can be found in Ref.@9#. Note that at scalesm2 exceeding a
few times the lattice cutoffa22 strong lattice artifacts may
be present so that the corresponding results should no
taken too seriously.

Turning to the more subtle renormalization of thed2 op-
erator~22! we must note that the conversion factor from o
MOM scheme to theMS scheme has not yet been calculat
because of the complications caused by the mixing effe
Therefore we stick to the MOM numbers. Let us first co
sider the ratio Zs(am)/Z[5] (am). As discussed above
Zs(am)/Z[5] (am) should be independent of the renormaliz
tion scalem if the renormalized operator is to depend onm
multiplicatively. In Fig. 2 we show this ratio for our threeb
values. It becomes approximately flat for scalesm larger than
about 3.5 GeV. While a scale of 3.5 GeV might seem to
somewhat too close to the cutoff forb56.0 and perhaps also
for b56.2, it enters the region where lattice artifacts die o
in the case ofb56.4. Therefore we feel encouraged to app

FIG. 2. The ratioZs(am)/Z[5] (am).
6-5
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the Z factors aroundm53.5 GeV in order to evaluate struc
ture function moments in the next section.

In Fig. 3 we plotZ[5] (am) in order to show the size of th
multiplicative renormalization in our approach.

VI. NUMERICAL RESULTS FOR STRUCTURE
FUNCTION MOMENTS

Let us now discuss our nucleon matrix elements. In F
4 and 5 we show the chiral extrapolations of the bare val
of a2

(u) and d2
[5] (u) , respectively. Unfortunately, as in a

other current QCD simulations, our quark masses are ra
large so that the extrapolation has to bridge quite some
A striking feature of the data is that the barea2

(u) values at
b56.2 are rather different from the values at the other t
b ’s. We can interpret this only as an unpleasantly large
tistical fluctuation. The bare matrix elements in the chi
limit will be combined with the renormalization factors o
the preceding section to yield estimates of the renormali
matrix elements.

We start with the twist-2 matrix elementa2. In the MS
scheme with anticommutingg5 the corresponding Wilson
coefficient is given by~see, e.g., Ref.@22#!

e1,2
( f )
„m2/Q2,g~m2!…5Q( f )2S g2~Q2!

g2~m2!
D g0 /(2b0)

3F11
1

16p2
@g2~Q2!2g2~m2!#

3S g1

2b0
2

g0b1

2b0
2 D 1

g2~Q2!

16p2

5

3G
~29!

with b0511, b15102, g05100/9, g15141.78.~These are
the numbers forNf50 flavors, appropriate for the quenche
approximation.! The renormalized reduced matrix element
obtained from the bare value~extrapolated to the chiral limit!

FIG. 3. The renormalization factorZ[5] (am).
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after multiplication with the non-perturbative renormaliz
tion factor converted to theMS scheme. From Eq.~7! we can
then calculate*0

1dxx2g1(x,Q2). To avoid large logarithms in
the Wilson coefficient we putQ25m2. In Fig. 6 we show the
results for the proton and compare with the experimen
value @3#. While our lattice results atb56.0 agree surpris-
ingly well with the experimental number, the abov
mentioned fluctuation makes them considerably larger
b56.2. Fortunately, they drop again atb56.4. For the neu-
tron there is a similar effect, but as a result of the larg
errors, it is less significant.

Let us now turn to our results for the twist-3 matrix el
ments. In this case it is unclear how to convert our MO
results to theMS scheme due to the mixing effects. Ther
fore we do not make use of theMS Wilson coefficient,
which has recently been calculated@23# ~with the ’t Hooft–
Veltman g5). It would change the final results ford2 by
'10%. Instead we use only the lowest-order approximat
for the coefficient functions, i.e. the tree-level coefficien
~5!, which are the same in all schemes, and define~by a
slight abuse of notation!

d2
(p)5Q(u)2d2

(u)1Q(d)2d2
(d) , ~30!

FIG. 4. Chiral extrapolation of the bare matrix elementa2
(u) in

the proton.
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d2
(n)5Q(d)2d2

(u)1Q(u)2d2
(d) ~31!

for the proton and the neutron, respectively. The renorm
ized values ofd2

( f ) for f 5u,d in the proton are calculate
from

d2
( f )5Z[5]d2

[5] ( f )1
1

a
Zsd2

s ( f ) . ~32!

Remember that, besides the twist-3 matrix elementd2 ,
*0

1dxx2g2(x,Q2) also contains a twist-2 piece, th
Wandzura-Wilczek contribution; see Eq.~1!. To be consis-
tent we restrict ourselves to the tree-level Wilson coefficie
and the MOM matrix elements also in this contribution wh
computing*0

1dxx2g2(x,Q2) from @cf. Eqs.~1! and ~7!#

E
0

1

dx x2g2~x,Q2!5
1

6
d22

2

3E0

1

dx x2g1~x,Q2!. ~33!

The moment*0
1dxx2g2(x,Q2) is plotted in Fig. 7 for the

proton, where we have again identifiedQ25m2. The experi-
mental value is obtained by combining*0

1dxx2g1(x,Q2)

FIG. 5. Chiral extrapolation of the bare matrix elementd2
[5] (u)

in the proton.
07450
l-

s

from Ref. @3# with d2 from Ref. @4#. Again we see the effec
of the ‘‘fluctuation’’ at b56.2.

Comparing the proton results shown in Fig. 7 with t
numbers presented in Fig. 6 one sees that*0

1dxx2g2(x,Q2) is
dominated by the twist-2 operator. There is little room le
for the twist-3 operator, and one obtains rather small val
for d2 as shown in Fig. 8 for the proton. In the neutron,d2 is
even smaller in magnitude and hardly different from ze
within the statistical errors.

In Tables V and VI we present results at the scales
GeV2 and 10 GeV2, respectively. Note that her
*0

1dxx2g1(x,Q2) includes the one-loop Wilson coefficient a
well as the conversion factor to theMS scheme, both of
which were neglected in the calculation of*0

1dxx2g2(x,Q2)
for the reason explained above. The difference between
two sides of Eq.~33! when evaluated with the numbers take
from the tables gives therefore an impression of the unc
tainties originating from our incomplete knowledge of th
perturbative corrections.

In Figs. 9, 10, 11 we fix the scale at 5 GeV2 and plot our
results for the proton as well as for the neutron versus
lattice spacinga. Although an extrapolation to the continuum
limit appears to be problematic, it is reassuring to see that
are getting close to the experimental numbers shown
a50.

FIG. 6. The moment*0
1dxx2g1(x,Q2) for the proton. The

square indicates the experimental value@3#.
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Of course, we should not forget that our computation s
fers from various uncertainties. Apart from the fact that o
treatment of the operator mixing is still incomplete, the
concern, e.g., the influence of the quenched approximat
the extrapolation to the chiral limit, and the size of the latt
artifacts. Sea-quark effects are expected to be concentrat
small x; hence they should be suppressed by the factorx2 in
the moment which we have considered. Therefore we m
hope that the quenched approximation is reasonable in
case at hand. If indeed the valence quarks dominate, th
should also be justified to neglect flavor singlet contributio
~such as disconnected insertions and pure gluon operat!,
and it makes sense to consider proton and neutron m
elements separately~as we have done! and not only flavor
non-singlet combinations liked2

(p)2d2
(n) . The quark mass

dependence of our results is rather mild for the range
~relatively large! masses that we studied. Therefore the
trapolation to the chiral limit looks quite safe, although,
course, unexpectedly large effects at truly small masses
not be excluded. Lattice artifacts are obvious in our ren
malization factors~see, e.g., Fig. 2!. We have to expect them
also in the nucleon matrix elements. Since we are work

FIG. 7. The moment*0
1dxx2g2(x,Q2) for the proton. The

square indicates the experimental value obtained by combining
sults from@3# and @4#.
07450
f-
r
e
n,

at

y
he

it
s
s
rix

f
-

n-
r-

g

with non-perturbatively improved fermions, we could
principle reduce their size by using improved operators. U
fortunately, the non-perturbative improvement of operat
of the kind needed here is not straightforward and has ye
be worked out. In particular, improvement of the renorm
ization factors requires off-shell improvement. Althoug
there are some ideas on how to solve this non-trivial prob
~see, e.g., Ref.@24#!, an implementation for the operator
considered here is beyond our present possibilities.

TABLE V. Results form25Q255 GeV2.

b
6.0 6.2 6.4

a2
(p) 0.046~13! 0.11~2! 0.066~14!

d2
(p) 0.008~4! 0.017~9! 0.017~7!

*0
1dxx2g1

(p)(x) 0.012~3! 0.029~5! 0.017~4!

*0
1dxx2g2

(p)(x) 20.007~3! 20.019~4! 20.010~3!

a2
(n) 20.017~8! 0.009~11! 0.000~8!

d2
(n) 20.003~2! 20.001~4! 20.001~3!

*0
1dxx2g1

(n)(x) 20.004~2! 0.002~3! 0.000~2!

*0
1dxx2g2

(n)(x) 0.0026~16! 20.002~2! 20.0002~17!

e-

FIG. 8. The reduced matrix elementd2 in the proton. The square
indicates the experimental value@4#.
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VII. CONCLUSIONS

In this paper we have tried to obtain a more reliable latt
estimate of the twist-3 nucleon matrix elementd2 improving
on our first calculation@5# in several respects. We have ma
a serious attempt to take into acccount the most impor
part of the operator mixing which occurs in this case, nam
the mixing with lower-dimensional operators. This cou
only be done non-perturbatively and led to a significa
change in the results ford2 moving them close to the exper
mental numbers. Thus the mixing with lower-dimension
operators seems to account for a large part of the differe
between our previous computation and the experime
data.

The calculations have been performed in the quenc
approximation at three different values ofb corresponding to
three different values of the lattice spacing. While our resu
are still not good enough to allow for a meaningful extrap
lation to the continuum limit, the mutual consistency of t
values obtained ford2 at the variousb ’s indicates that dis-
cretization effects are smaller than our statistical errors
corroborates our conclusion that the twist-3 nucleon ma

TABLE VI. Results form25Q2510 GeV2.

b
6.0 6.2 6.4

a2
(p) 0.040~12! 0.098~18! 0.057~12!

d2
(p) 0.002~4! 0.006~7! 0.008~6!

*0
1dxx2g1

(p)(x) 0.010~3! 0.025~5! 0.015~3!

*0
1dxx2g2

(p)(x) 20.007~2! 20.017~4! 20.009~3!

a2
(n) 20.015~7! 0.007~9! 0.000~7!

d2
(n) 20.003~2! 20.002~3! 20.001~3!

*0
1dxx2g1

(n)(x) 20.0037~18! 0.002~2! 0.0001~19!

*0
1dxx2g2

(n)(x) 0.0021~14! 20.0016~18! 20.0002~14!

FIG. 9. The moment*0
1dxx2g1(x,Q2) at Q255 GeV2 for the

proton~open symbols! and the neutron~solid symbols! plotted ver-
sus the lattice spacinga. The squares ata50 indicate the experi-
mental values@3#.
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element is rather small, in agreement with the experime
findings.

We consider the computations atb56.4, i.e. at our small-
est lattice spacing, to be most reliable. AtQ255 GeV2 they
yield the structure function moments~cf. Table V!

E
0

1

dx x2g1~x!5H 0.017 6 0.004 ~proton!,

0.000 6 0.002 ~neutron!,
~34!

for g1 and

E
0

1

dx x2g2~x!5H 20.010 6 0.003 ~proton!,

20.0002 6 0.0017 ~neutron!,
~35!

FIG. 10. The moment*0
1dxx2g2(x,Q2) at Q255 GeV2 for the

proton~open symbols! and the neutron~solid symbols! plotted ver-
sus the lattice spacinga. The squares ata50 indicate the experi-
mental values obtained by combining results from@3# and @4#.

FIG. 11. The reduced matrix elementd2 at m255 GeV2 for the
proton~open symbols! and the neutron~solid symbols! plotted ver-
sus the lattice spacinga. The squares ata50 indicate the experi-
mental values@4#. They are plotted with a slight horizontal offset t
avoid overlapping error bars.
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for g2. These numbers are to be compared with the exp
mental results@3,4#

E
0

1

dx x2g1~x!5H 0.0124 6 0.0010 ~proton!,

20.0024 6 0.0016 ~neutron!,
~36!

and
,

in-
-

A.

r,

P.

,

,

07450
ri- E
0

1

dx x2g2~x!5H 20.0059 6 0.0015 ~proton!,

0.0029 6 0.0035 ~neutron!,
~37!

respectively.
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