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Lattice calculation of the nucleon’s spin-dependent structure functiong, reexamined
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Our previous calculation of the spin-dependent structure fungtjas reexamined. Interest in this structure
function is to a great extent motivated by the fact that it receives contributions from twist-2 as well as from
twist-3 operators already in leading order 0%/ thus offering the unique possibility of directly assessing
higher-twist effects. In our former calculation the lattice operators were renormalized perturbatively and mix-
ing with lower-dimensional operators was ignored. However, the twist-3 operator which gives rise to the
matrix elementd, mixes non-perturbatively with an operator of lower dimension. Taking this effect into
account leads to a considerably smaller valuegfwhich is consistent with the experimental data.
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I. INTRODUCTION ot P\n_ . .
Oofu,)r . ~,un: (E) ‘pyaySDMl' o D,unlp
The nucleon’s second spin-dependent structure function
0, is of considerable phenomenological interest. The most —traces. 4)
important theoretical tool for its analysis is the operator
product expansiofOPE [1]. In leading order of 192, g, Here u denotes the renormalization scale. The Wilson coef-
receives contributions from both twist-2 and twist-3 opera-icientse!”) , el") depend on the ratio of scalgg/Q? and on
tors. It thus offers the unique possibility of directly assessinghe running coupling constami(£2). The tree level values
higher—twist effects. The twist-3 operator probes the transef the Wilson coefficients for electroproduction are given by
verse momentum distribution of the quarks in the nucleonthe quark charge®(":
and has no simple parton model interpretation.

In leading order of 1p? and for massless quarks, the eN=QM[1+0(g?]. (5
moments ofg, are given by '

The symbol{---} ([---]) indicates symmetrizatioifanti-

1 1 n symmetrizatioh with
2 [ oo QD=5 iy 3 TeAWQ% (kD)
0 n+1¢=qd 1
X ()~ e§(1?Q?,9(12) Otu- =7 24, vy ey ©

(f)
Xy ()] @ The operaton2) has twist 2, whereas the operaf@ has

) _ twist 3. The twist-2 contribution in Eq1) is also known as
for evenn=2 in the flavor-nonsinglet sector. Heferuns the Wandzura-Wilczek contributiof?].

over the light quark flavors. The reduced matrix elements note for comparison that in leading order ofQE the

f f . ;
aj)(u) and d?l)(“)’ taken in a nucleon state with momen- ,oments ofy, are given by the twist-2 matrix elemeraé” :
tum p and spin vectos, are defined by1]

1 1
1 2| so0axQ -5 B Qo) alfw.
5(f _ f oy '
(P.SIOF), Py = —al’ 0 2 1504
(7)
X[SgPu, Py, + - —traceg,

Both the Wilson coefficients and the operators are renor-
(29  malized at the scal@. It is assumed that the Wilson coeffi-
cients can be computed perturbatively. The reduced matrix

1 elementsal” and d”, on the other hand, are non-
<D,SIOF§2L1]...MH}|P,S>= mdg) perturbative quantities and hence a problem for the lattice.
(Note that some authors use a different definitioragfand
X[(Sopﬂl_sﬂlpv)puz' Py, d,; e.g., the valu_es givenin Re[$_3,4] have to be m_uIt|pI|ed
by 2 to agree with our conventionsin the following we
+ ... —traceg, 3 shall drop the flavor indices, unless they are necessary.
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A few years ago we computed the lowest non-trivial mo-Here F,; denotes the gluon field strength tensor, which
ment ofg, on the latticg 5]. This calculation splits into two could alternatively be expressed as a commutator of two co-
separate tasks. The first task is to compute the nucleon maariant derivatives. Because of the relation
trix elements of the appropriate lattice operators. This was
described in detail if5]. The second task is to renormalize
the operators. Renormalization effects are a major source of
systematic error. An essential feature of our previous calcu-

lation was that the renormalization was done in perturbationt is possible to eliminate one of the above operators. A one-
theory and hence mixing with lower-dimensional operatorgoop calculation of the quark-quark-gluon three-point func-
could not be taken into account. In that approach the twist-3ions with a single insertion of each of these operators re-
contribution turned out to be the dominant contribution toyeals the necessity of taking one more operator into account
both the proton and the neutron structure functions. This rein the process of renormalization, namely the gauge-variant
sult has been recently confirmed by Dolgov et[él. operator

In the meantime, it has become possible to study renor-
malization non-perturbatively on the lattice; see ¢48].

2
RE“= 5 R+ R{"+ REZ, 12

[
. . g i TV o qmvhiip —
This approach allows us to consider mixing with lower— Regt 3[‘/’7’57 gy (iD—m)
dimensional operators. If present, it will be the dominant o
mixing effect in the continuum limit. Since the twist-3 op- +(iD—m) ysy7 9ty ] —traces. (13

erators(3) can suffer from such mixing, we shall extend our

previous work by employing non-perturbative renormaliza-Of course, in physical matrix elements neitfiy, nor Reqy
tion. In a recent papd®] we have started a non-perturbative will contribute. They show up, however, in off-shell vertex
calculation of the renormalization constants associated witfynctions and influence the renormalization factors.

the structure functions,, F, andg; in the flavor-nonsinglet Kodaira et al. choosR; andR,, as the physical operators.
sector. Here we consider the case of the structure fungtion |n the chiral limitm— 0 R,, is neglected, and they obtain, for
restricting ourselves ta=2, the lowest moment of, for the scale dependence of the twist-3 piece,

which the OPE makes a statement. A preliminary version of

this work based on lower statistics at a single value of the 1 =~ . 5 ag(QH)\” 1 ) twist3 5
bare coupling has already been presented in Rél. fo dx x°gy" (x,Q%) = TMZ) fo dx X795 (X, 1),
S
(14
Il. RENORMALIZATION AND MIXING IN CONTINUUM
PERTURBATION THEORY where, forN, colors andN; flavors,

The renormalization of the operators which contribute to 3N~ L(N2— 1)/(2N,)
the moments ofy, has been studied by several authors in o= o 3c ¢ (15)
continuum perturbation theorjl1]. Since the more recent N~ §N¢
paper by Kodaira et a[.12] (see alsd13)) is closest to the
methods applied on the lattice, let us briefly recapitulate thgn agreement with earlier calculations.
main findings of these authors. _ Using Re andR; as the physical operators, one finds that

They consider the case=2 in the flavor-nonsinglet sec- n the largeN, limit the operatoiR: dominates the renormal-
tor and start from the operators ization group evolution of the nucleon matrix elements. This

has been shown by Ali, Braun, and Hill¢t4], and was
RIAY iz[za DDy Tyay DID g rederived in the present framework by Saddlé].
Fo= 3 YsY —YysY
o 11l. RENORMALIZATION AND MIXING
— ysy"DI*D 7] —traces, (8) ON THE LATTICE

In a lattice calculation, the first step is the analytic con-
tinuation to imaginary times, leading from physical
Minkowski space to Euclidean space. From now on, all ex-
_ pressions are written for the Euclidean céee the details of
+ €7 PYF ,py" ] —traces, (9)  our conventions see Appendix A of Rdfl6]). Hence we

have to study operators of the form

g% 1 opaB v
R* :1_29[6 HEPYE gy

RI4Y=imirysy’ D%y —traces, (10)

5 o - .
i Ogpyuy=2 "yoysDy Dy b (16)
ouv_ 11 o {mavHim
Req 3[¢757 Dy (iD—m)y We shall neglect quark masses; i.e., we consider only the
. chiral limit. In our earlier work5,17] we have computed the
+ (iD —m) ysy’Di# " y] —traces. (11 renormalization constants in perturbation theory to one-loop
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order. However, it is believed that perturbation theory cannot L 1//(0 D — oD Yh=:07
give reliable values for the mixing with lower-dimensional 1! 1= a3 ('23)
operators because non-perturbative effects are expected to be

important. - e < < < < <

H(y1D3D1— 710103~ y4D3D 4+ y4D4D3) yp=:0°.

For a multiplicatively renormalizable operator, i.e. in the 24)

absence of mixing, we can write

We use the definitiowr ,,= (i/2)[ v, , v, ]-
Or(un)=Zp(an) O(a), 17) The operato? is the Euclidean analogue Bf, with the
field strength replaced by a commutator of two covariant
wherea is the lattice spacing. The renormalization constantderivatives, and?? corresponds tdr,,. In continuum per-
Z, is fixed by a suitable condition. As in the continuum, we turbation theoryR,, can be neglected in the chiral limit. On
impose thglmomentum-space-subtraction-likelOM-like)]  the lattice, the explicit breaking of chiral symmetry induced
renormalization condition by Wilson-type fermions, which we shall use, persists even
when the quarks are massless. For dimensional rleasons, we
T r = T expect thatO“ contributes with a coefficientca™* and
LT&(P) T aom(P)] ML o P)eor(P)] - (18) hence has to be kept. The operadf, on the other hand,
being of the same dimension &°!, mixes with a coeffi-

on the corresponding quark-quark vertex function in the Lancient of orderg?, which should be small. Therefore we dis-
dau gauge. HerEg,(p) denotes the Born or tree-level con- card ©° as well as possible lattice counterpartsRyf, and
tribution to the vertex function. The renormalized vertex Req1» Which are also of dimension 5 and hence are also mul-
function Tg(p) and its bare precursdi(p) are related by tiplied by a factor of ordeg?. The above-mentioned obser-

p2= 2

multiplicative renormalization: vation[14,15 thatRr dominates oveR; in the renormaliza-
tion group evolution adN.— may be taken as another
- indication that neglecting® is not unreasonable. However,
’(P)=Z,'Zol'(p) (19) glecting

this dominance holds only in physical matrix elements and
) ) ) does not apply to the mixing with the operatdRg, and
whereZ,=Z (au) is the quark wave function renormaliza- Requ-
tion constant defined as in R¢f. So we make the following ansatz f6r°! renormalized at
As before[5], we give the nucleon a momentum in the .
the scalew:
1-direction and choose the polarization in the 2-direction.
With these choices we use the operator . 1
OR (u)=Z®(ap) 0Pl (a)+>2%(an)0(a). (25
Olyq=:01 (20)
The renormalization consta@t®! and the mixing coefficient
for the twist-2 matrix elemerd,. It belongs to the represen- Z7 are determined from the conditions
tation 75" of the hypercubic group (4) [18,19 and this
. = . ’ [5] [5] = [5] [5] T
property protects it from mixing with operators of equal or IR (P or(P) '] = (P eom(P) '], (26)

lower dimension. Hence it is multiplicatively renormalizable, pP=n?
and the operator renormalized at the sgalés written as -
P “ TR (P gor(P)] = WITEL(PITEor(P)1=0,
2_
OR (w) =25 au) 0 a). (21) e 27
As the operator for the twist-3 matrix elemaht we take TABLE I. Simulation parameters. In the third column ME indi-

cates the calculation of nucleon matrix elements, whereas Z signi-
05 fies the computation of renormalization factors. The lattice spacing
0[2{1 3(202{14} 01{24} 4{12}) a has been determined from the force scaje[25] using rg
o o =0.5fm; cgy is the value of the clover coefficient. The matrix
element calculations for the smallest quark mass-0.1353) at

o o o o o o B=6.4 have been performed on a3264 lattice.
—371D4D2—374D1D5—374D2D1) ys¢

=05 22 B Lattice al[GeV] Csw
6.0 16X 32 ME 2.12 1.769
which belongs to the representatioff) of H(4). Theopera- 6.0 28x48 z 2.12 1.769
tor (22) has dimension 5 an@ parity + and is the Euclidean 6.2 24x 48 ME 2.90 1.614
counterpart of the Minkowski operat® . It turns out that 6.2 24 z 2.90 1.614
there exist two more operators of dimensions 4 and 5, reg.4 32x 48 ME 3.85 1.526
spectively, transforming identically undét(4) and having .4 32% 40 z 3.85 1.526

the sameC parity, with which Eq.(22) can mix:
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TABLE II. The unrenormalized reduced matrix elemeass d[25] anddj for u andd quarks in the proton g8=6.0. Also given are the
pion masses.

0.132 0.1324 0.1333 0.1338 0.1342 Ke
am, 0.54129) 0.50427) 0.41229) 0.354912) 0.301210) 0.0
at¥ 0.1148) 0.1149) 0.10711) 0.092) 0.082) 0.082)
ai® —-0.0293) —0.0324) -0.0377) —0.03212) —0.04716) —0.04611)
dl>! @ 0.006312) 0.002813) -0.0102) —0.0235) —0.0286) —0.0374)
dP e —0.00416) —0.00277) —0.000814) —0.0052) —0.0014) 0.0012)
dg W/a —0.21612 —0.22812) —0.24618) —0.294) -0.273) —0.303)
dg @/a 0.0504) 0.05Q3) 0.0526) 0.06412) 0.04417) 0.05712)

which are straightforward generalizations of E§i8). Note  The value of the clover coefficientts,, is taken from Ref.
that the operatof24) vanishes in the Born approximation [20]. Since we have not improved the operators, there will
between quark states, which is another reason why we do ngfjj| pe residualO(a) effects in the matrix elements and the
take it into account. renormalization factors. A few details of our computations
Rewriting Eq.(25) as are collected in Table 1.
The matrix elements are calculated from several hundred
configurations for eacl8. To compute the renormalization
factors we use a momentum souf@¢. Therefore the statis-
(28) tical error ise (VNgon) ~ Y2 for Ngons configurations on a lat-

tice of volumeV, and we already get small statistical uncer-
we see thatD [Ff](,u) will have a multiplicative dependence tainties even from a small number of configurations, four in
on u [cf. Eq.(17)] only if the ratioZ°(au)/Z®(ax) does  our case(There is of course a price to be paid; the calcula-
not depend on. The scale dependence will then completelytion for each momentum is independent, so the number of
reside inz1, inversions of the fermion matrix is proportional to the num-
ber of momentum valuesThe main source of statistical un-
certainty in our final results is from the matrix elements, not
the Z values.

We have obtained numerical results for matrix elements The momenta in the vertex functions used for the evalu-
andZ factors in quenched simulations gt 6/g§=6.0, 6.2, ation of the renormalization factors have been chosen close
and 6.4 o= bare coupling constant on the latticevhereas to the diagonal in the Brillouin zone in order to keep cutoff
our original calculatiorf5] at 8= 6.0 used Wilson fermions, effects as small as possible. One should bear in mind that
we have meanwhile switched to non-perturbatively improvedhis diagonal extends up tp?=4=?/a?, but we use only
fermions (clover fermiong in order to reduced(a) effects. momenta withp?< 7?/a?.

12z°
O () =250 o) OB (a) 5 b

a ZBan

IV. SIMULATION DETAILS

TABLE lll. The unrenormalized reduced matrix elemeats d[25] anddj for u andd quarks in the proton g8=6.2. Also given are the
pion masses.

K

0.1333 0.1339 0.1344 0.1349 Ke
am, 0.41366) 0.357010) 0.30346) 0.24317) 0.0
af 0.14210) 0.13715) 0.15717) 0.1603) 0.173)
ai® —0.0334) —0.0305) —0.0349) —0.03115) —0.03013)
di>rw —0.001714) —-0.0172) —0.0315) —0.05111) —0.0657)
di>! (@ —0.00276) 0.000611) —0.000317) —0.0004) 0.0043)
dg W/a —-0.342) —0.373) —0.444) —0.507) —0.547)
dg @/a 0.0676) 0.0658) 0.07213) 0.073) 0.072)
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TABLE IV. The unrenormalized reduced matrix elemeass d[25] anddj for u andd quarks in the proton g8=6.4. Also given are the
pion masses.

0.1338 0.1342 0.1346 0.135 0.1353 Ke
am, 0.32138) 0.28389) 0.24028) 0.19337) 0.15078) 0.0

at¥ 0.1238) 0.09213) 0.11413) 0.10217) 0.144) 0.09619)
al® —0.0304) —0.0185) —0.0327) —0.03310) -0.012) —0.02310)
dl> @ —0.014914) —0.0243) —0.0384) —0.0556) —0.05515) —0.0686)
dBPHe 0.00147) 0.002113) 0.006217) 0.0123) 0.0158) 0.0133)
dg W/a —0.4012) —0.41(4) —0.474) —0.51(5) —0.5513) —0.5605)
dg @/a 0.0886) 0.07512) 0.10513) 0.122) 0.155) 0.122)

In each case, the calculations are done at tkweenore multiplicatively renormalizable, operator(20). We convert
values of the hopping parametar determining the bare our MOM numbers to the Modified Minimal Subtraction
quark mass so that we can extrapolate our regbli¢h the  (MS) scheme using 1-loop continuum perturbation theory as
bare matrix elements and renormalization fadttosthe chi-  Jescribed if9]. In Fig. 1 we show the. dependence !5}
ral limit. The extrapolation is performed linearly m?, the  extrapolated to the chiral limit. Results for Wilson fermions
square of the pion mass. can be found in Refl9]. Note that at scaleg? exceeding a

The bare reduced matrix elements are calculated from,y times the lattice cutof™2 strong lattice artifacts may

three-point functions in the standard fashisee, e.g., Ref. e hresent so that the corresponding results should not be
[5]). In Eq. (25 of Ref.[5] the ratios of three- to two-point 5xen too seriously.

i {5} (5] X .
funcnpns fcl):r theﬁz operatog?o z”g(fhﬁdz operatoré? . Turning to the more subtle renormalization of tthe op-
are given. For the operato3” an the ratios and ratio o o46r(22) we must note that the conversion factor from our
factors are the same as for tHe operator. The matrix ele- MOM sch to thViS sch h tvet b lculated
ments are collated in Tables II, Ill, IV separately foandd scheme 1o > Stheme has not yet been caiculate
because of the complications caused by the mixing effects.

quarks in the proton. Herd[25] and dj correspond to the ) .
operatorg22) and(23), respectively. In addition we give the Therefore we stick to the MOM numbers. Let us first con-

: . . ) i . . H i o [5] H
pion massegin lattice unit3 which we use in the chiral S'Ser the[S]ratloZ (an)/Z™(aun). As discussed above,
extrapolations. They are mostly taken from Refl]. Note  Z°(@w)/Z™'(au) should be independent of the renormaliza-
that all our errors are purely statistical. They were deterfion scaleu if the renormalized operator is to depend an

mined by the jackknife procedure. multiplicatively. In Fig. 2 we show this ratio for our threg
values. It becomes approximately flat for scalekarger than
V. NUMERICAL RESULTS FOR RENORMALIZATION about 3.5 GeV. While a scale of 3.5 GeV might seem to be
COEFFICIENTS somewhat too close to the cutoff f8=6.0 and perhaps also

for B=6.2, it enters the region where lattice artifacts die out

Letus beg_in the more detailed_presentation of our numeriy, the case of3=6.4. Therefore we feel encouraged to apply
cal results with the renormalization fact@f® (au) of the

O =60
2.40 m Ao
) % O pe64 -0.05
220 % 0.10 090
. o & o
* . 5 Cpa % %% Ca
200 slo 015 o o
’ 0m8”¢
o] —_ i)
& 180 X %020 o
N oo o ~ o?
(-]
1.60 SALIY N 02 Eg
OOO "5_0 -0.30 5
1.40 %0 &2 o
OO%O. L0 0 035 +D
X,

1.20 "800 O =60

OC%%% LI 4 % (‘6‘0-(0-0.«).0 o -0.40 o n g= 6.2

O B=64
1.00 -0.45
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
w(GeV) w(GeV)

FIG. 1. The renormalization constaat® in the MS scheme. FIG. 2. The ratioz?(auw)/Z®(aw).
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1.8 0.25 -
O B=60
i B =62
’l % O p=64 020 |- ]
N : 015 F ]
o}
. h { ............ ST I
010 F  fooerieceeee e . 1
) i { b f=6.40

a L
& % % %QO.Q-O.@.Q . 1 " 1 L 1 N 1 . 1 . 1

11; | 0.15 ‘ { """""""""""""""""""" % """"""" %% .................... 3 ]

o 1 2 3 4 5 6 1 8 9 10 L o~ 7 0 mmmee
wGeV)

FIG. 3. The renormalization factd@®!(au).

the Z factors aroundu=3.5GeV in order to evaluate struc-
ture function moments in the next section.

In Fig. 3 we plotz[®!(au) in order to show the size of the
multiplicative renormalization in our approach.

0.20 - _

0.15 - b

VI. NUMERICAL RESULTS FOR STRUCTURE N N
FUNCTION MOMENTS T { ---------------------- ;{ """" %

Let us now discuss our nucleon matrix elements. In Figs.0:05 - 7
4 and 5 we show the chiral extrapolations of the bare values I

of al) and di® (| respectively. Unfortunately, as in all ®® 4 ¢ s 10  »
other current QCD simulations, our quark masses are rathe (tom,)

large so that the extrapolation has to bridge quite some gap.

A striking feature of the data is that the baa§” values at FIG. 4. Chiral extrapolation of the bare matrix eleme#f’ in
3=6.2 are rather different from the values at the other twof"€ Proton.

B’s. We can interpret this only as an unpleasantly large sta- o ) ) )
tistical fluctuation. The bare matrix elements in the chiral@ftér multiplication with the non-perturbative renormaliza-

limit will be combined with the renormalization factors of tion factor converted to thilS scheme. From Eq7) we can
the preceding section to yield estimates of the renormalizethen calculate ;dxx°g;(x,Q<). To avoid large logarithms in
matrix elements. the Wilson coefficient we pu®?= 2. In Fig. 6 we show the
We start with the twist-2 matrix elemeat,. In the MS results for the proton and compare with the experimental
scheme with anticommutings the corresponding Wilson Value[3]. While our lattice results g8=6.0 agree surpris-

coefficient is given by(see, e.g., Ref22)) ingly well with the experimental number, the above-
mentioned fluctuation makes them considerably larger at
%(Q?) 70 /(2B0) B=6.2. Fortunately, they drop again @& 6.4. For the neu-

tron there is a similar effect, but as a result of the larger
errors, it is less significant.
Let us now turn to our results for the twist-3 matrix ele-
1 5 > s o ments. In this case it is unclear how to convert our MOM
16772[9 (Q9)=g"(19] results to theMS scheme due to the mixing effects. There-
fore we do not make use of thelS Wilson coefficient,
which has recently been calculatgzB] (with the 't Hooft—
Veltman yg). It would change the final results fat, by
~10%. Instead we use only the lowest-order approximation
(29)  for the coefficient functions, i.e. the tree-level coefficients

. (5), which are the same in all schemes, and defimg a
with BOZ 11, B]_: 102, ’)/02100/9, V1= 14178(These are S||ght abuse of notatic)n

the numbers foN;=0 flavors, appropriate for the quenched
approximation). The renormalized reduced matrix element is (B) — (0240 1 (D 2(C)
obtained from the bare valuextrapolated to the chiral limit dy”=Q™ dy” + Q™ d3”, (30)

el M(n?Q%g(n?)=Q"? e

X| 1+

X(A_VO_Bl) g’(Q*) 5
2B0 283 1672 3
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0.02 T T T T T T 0.08 T T T T T T T T T
0.00 i . 007 ]
- g 0.06 | 4
-0.02 __ § 7] 0.05 - .
0.04 - ¢ s 004 | ——
006 - }’% f=6.40 ] 0.03 — = 6.40 ]
| } ] 0.0 L } E ]
0.00 - n i 007 L ]
| 1 0.06 |- 7]
-0.02 B ] 00s | } ]
0.04 | %§ - 0.04 - ﬁ ]
I p=6.20 ] 0.03 |- } } B=6.20 ]
006 .. . el |
. |l HEiiTtaitiise1e9g -
0.08 |- . - x 1
. ] 0.01 |- i
0.00 i g i 007 - ]
r ] 2 0.06 E
0.02 i % 3 4 ooslh ]
ool ¥ - 004 - -
-0.06 | f=6.00 _ 0.03 5 £=6.00 |
- 1 0.02 | .
wer ] oo | {E}}{%MM -
-0.10 L * L + L + : + . + L s L P TR T N S R S R SR S |
0 2 4 5 8 10 12 000 1 2 3 4 5 6 8 9 10

(ro my) Q (GeV)
FIG. 5. Chiral extrapolation of the bare matrix elemelt FIG. 6. The momentf3dxx?g;(x,Q?) for the proton. The
in the proton. sguare indicates the experimental valGg

from Ref.[3] with d, from Ref.[4]. Again we see the effect
d(zn):Q(d)zd(zu)+Q(u)2d(2d) @31 of the “flu[ct]uation”zat,826.2. 449
Comparing the proton results shown in Fig. 7 with the
for the proton and the neutron, respectively. The renormalnumbers presented in Fig. 6 one sees ﬂfgdl(ngz(x,Qz) is
ized values ofdy” for f=u,d in the proton are calculated dominated by the twist-2 operator. There is little room left
from for the twist-3 operator, and one obtains rather small values
for d, as shown in Fig. 8 for the proton. In the neutrdsn,is
1 even smaller in magnitude and hardly different from zero
d(zf):Z[s]d[25] (f)+_zodg(f)_ (32) within the statistical errors.
a In Tables V and VI we present results at the scales 5
GeV? and 10 GeV, respectively. Note that here
Remember that, besides the twist-3 matrix elemdpf  [3dxx?g;(x,Q?) includes the one-loop Wilson coefficient as
J3dxx®g,(x,Q%) also contains a twist-2 piece, the well as the conversion factor to tHdS scheme, both of
Wandzura-Wilczek contribution; see E(.). To be consis- which were neglected in the calculation ﬁﬁdxngz(x,Qz)
tent we restrict ourselves to the tree-level Wilson CoefﬁCientsor the reason exp|ained above. The difference between the
and the MOM matrix elements also in this contribution Whentwo sides of Eq(33) when evaluated with the numbers taken
computing/ 5axx*g,(x,Q?) from [cf. Egs.(1) and (7)] from the tables gives therefore an impression of the uncer-
tainties originating from our incomplete knowledge of the
1 1 2 (1 perturbative corrections.
J dx x2g,(x,Q?) = —dz——J dx X291 (x,Q%). (33 In Figs. 9, 10, 11 we fix the scale at 5 Ge¥nd plot our
0 6 3Jo results for the proton as well as for the neutron versus the
lattice spacing. Although an extrapolation to the continuum
The momentf goxx°g,(x,Q?) is plotted in Fig. 7 for the  limit appears to be problematic, it is reassuring to see that we
proton, where we have again identifi@f= x2. The experi- are getting close to the experimental numbers shown at
mental value is obtained by combininfdxx?g,(x,Q%)  a=0.
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FIG. 8. The reduced matrix elemet in the proton. The square
FIG. 7. The moment[gdxx?g,(x,Q?) for the proton. The indicates the experimental val{i4].
square indicates the experimental value obtained by combining re-

sults from[3] and[4]. with non-perturbatively improved fermions, we could in
principle reduce their size by using improved operators. Un-
fortunately, the non-perturbative improvement of operators
Of course, we should not forget that our computation suf-of the kind needed here is not straightforward and has yet to
fers from various uncertainties. Apart from the fact that ourbe worked out. In particular, improvement of the renormal-
treatment of the operator mixing is still incomplete, theseization factors requires off-shell improvement. Although
concern, e.g., the influence of the quenched approximationthere are some ideas on how to solve this non-trivial problem
the extrapolation to the chiral limit, and the size of the lattice(see, e.g., Ref[24]), an implementation for the operators
artifacts. Sea-quark effects are expected to be concentratedainsidered here is beyond our present possibilities.
smallx; hence they should be suppressed by the facton

the moment which we have considered. Therefore we may TABLE V. Results foru?=Q2?=5 Ge\2.

hope that the quenched approximation is reasonable in the

case at hand. If indeed the valence quarks dominate, then it B

should also be justified to neglect flavor singlet contributions 6.0 6.2 6.4
(such as disconnected insertions and pure gluon operators

and it makes sense to consider proton and neutron matric” 0.04613) 0.112) 0.06614)
elements separatelas we have doneand not only flavor  d¥ 0.0084) 0.0179) 0.0177)
non-singlet combinations likel —d{" . The quark mass Jo@xg(x) 0.0123) 0.0295) 0.0174)
dependence of our results is rather mild for the range of 5dxx?g%(x) —0.0073) —0.0194) —0.01a3)
(relatively large masses that we studied. Therefore the ex-

trapolation to the chiral limit looks quite safe, although, of af” —0.0178) 0.00911) 0.0008)
course, unexpectedly large effects at truly small masses cagy" —0.0032) —0.0014) —0.0013)
not be excluded. Lattice artifacts are obvious in our renor- ldxx?g{™(x) —0.0042) 0.0023) 0.0002)
malization factorgsee, e.g., Fig.)2We have to expect them  Laxx?g{M(x) 0.002616) ~0.0022) —0.000217)

also in the nucleon matrix elements. Since we are working
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TABLE VI. Results foru?=Q?%=10 Ge\~. 0.01
£ t
6.0 6.2 6.4 o000l ! }
afP 0.04012) 0.09818) 0.05712) o
dfP 0.0024) 0.0047) 0.0086) z ? %
J3dxxgtP(x) 0.01G3) 0.0255) 0.0153) N:“ -0.01 %
Jsdx@gP(x)  —0.0072) —0.0174) —0.0093) =
=
af —-0.0157) 0.0079) 0.00Q7) 00!t %
dg —0.0032) —0.0023) —0.0013)
Sidxx?g{M(x)  —0.003718) 0.0022) 0.000119)
Jadxx2gsM (x) 0.002114)  —0.001618)  —0.000214) 003 . . . .
0.00 0.02 0.04 0.06 0.08 0.10
a (fm)
VIl. CONCLUSIONS FIG. 10. The momenf jdxx?g,(x,Q?) at Q?=5 Ge\? for the

proton(open symbolsand the neutroiisolid symbol$ plotted ver-

In this paper we have tried to obtain a more reliable latticesys the lattice spacing. The squares a=0 indicate the experi-
estimate of the twist-3 nucleon matrix elemegtimproving  mental values obtained by combining results frg@hand[4].
on our first calculatiof5] in several respects. We have made
a serious attempt to take into acccount the most important
part of the operator mixing which occurs in this case, namelyelement is rather small, in agreement with the experimental
the mixing with lower-dimensional operators. This could findings.
only be done non-perturbatively and led to a significant \We consider the computations /@t 6.4, i.e. at our small-
change in the results fat, moving them close to the experi- est lattice spacing, to be most reliable. ®¢=5 Ge\? they
mental numbers. Thus the mixing with lower-dimensionalyield the structure function momentsf. Table V)
operators seems to account for a large part of the difference

between our previous computation and the experimental fl 0.017 = 0.004 (proton,

data. 0.000 = 0.002 (neutron,

The calculations have been performed in the quenched
approximation at three different values@fcorresponding to
three different values of the lattice spacing. While our resultdor 91 and
are still not good enough to allow for a meaningful extrapo-
lation to the continuum limit, the mutual consistency of the 1d 5 —0.010 = 0.003 (proton,
values obtained fod, at the variousB’s indicates that dis- fo X X°g2(X) = ~0.0002 + 0.0017 (neutron,
cretization effects are smaller than our statistical errors and (35)
corroborates our conclusion that the twist-3 nucleon matrix

dx X291(X)={
0

.|_

0.04
0.04
0.03
0.03
0.02
-
g 3
z 002 } = 001 %
— o N
on =1
(]
» @
X 001 % 0.00 {
] 3
e t
} 0.01
0.00 ; }
} 002
001 0.00 0.02 0.04 0.06 0.08 0.10
' 0.00 0.02 0.04 0.06 0.08 0.10 a (fm)
a (fm)

FIG. 11. The reduced matrix elemety at u?=5 Ge\? for the
FIG. 9. The momenfjdxx?g,(x,Q?) at Q=5 Ge\? for the  proton(open symbolsand the neutroiisolid symbol$ plotted ver-
proton(open symbolsand the neutrorisolid symbol$ plotted ver-  sus the lattice spacing The squares @ =0 indicate the experi-
sus the lattice spacing. The squares a=0 indicate the experi- mental value$4]. They are plotted with a slight horizontal offset to
mental valueg3]. avoid overlapping error bars.
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for g,. These numbers are to be compared with the experi- J-ldx ngz(X)=‘
0

mental result$3,4]

0.0124 *= 0.0010 (proton),

1
2 =
fo X (x) [—0.0024 + 0.0016 (neutron,
(36)

and

PHYSICAL REVIEW D 63 074506

—0.0059 = 0.0015 (proton,
0.0029 = 0.0035 (neutron,
(37

respectively.
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