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Order a improved renormalization constants
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We present nonperturbative results for the constants needed for on-shellO(a) improvement of bilinear
operators composed of Wilson fermions. We work atb56.0 and 6.2 in the quenched approximation. The
calculation is done by imposing axial and vector Ward identities on correlators similar to those used in standard
hadron mass calculations. A crucial feature of the calculation is the use of nondegenerate quarks. We also
obtain results for the constants needed for off-shellO(a) improvement of bilinears, and for the scale- and
scheme-independent renormalization constants,ZA , ZV , andZS /ZP . Several of the constants are determined
using a variety of different Ward identities, and we compare their relative efficacies. In this way, we find a
method for calculatingcV that gives smaller errors than that used previously. Wherever possible, we compare
our results with those of the ALPHA Collaboration~who use the Schro¨dinger functional! and with one-loop
tadpole-improved perturbation theory.
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I. INTRODUCTION

Symanzik’s improvement program is a systematic meth
for reducing discretization errors in lattice simulations@1,2#.
One must improve both the action and the external opera
by the addition of appropriate higher dimensional localiz
operators. Complete removal of discretization errors a
given order in the lattice spacinga requires a nonperturbativ
determination of the coefficients~the ‘‘improvement con-
stants’’! of the higher dimensional operators. A key ingred
ent in the practical implementation of the improvement p
gram is the development of methods for su
nonperturbative determinations.

The ALPHA Collaboration has exploited the connecti
betweenO(a) discretization errors and chiral symmetry
develop nonperturbative methods for the calculation of so
of theO(a) improvement constants~those for the action and
some of the local fermion bi-linear operators! @3–6#. Their
approach is based on the imposition of axial and vector W
identities. It also determines the renormalization-sca
independent normalization constantsZA

0, ZV , andZS
0/ZP

0 , as
originally observed in Ref.@7#. This nonperturbative deter
mination of improvement and normalization constants is
considerable practical importance, as uncertainties in th
constants can be a significant source of error in lattice ca
lations of matrix elements.

In Ref. @8# we showed how to extend the method of t
ALPHA collaboration to determine all theO(a) improve-
ment constants for bilinears@9#. The extension involves the
enforcement of Ward identities for massive, nondegene
quarks, rather than in the chiral limit, and is a generalizat
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of the method of Ref.@10#. Results of a pilot simulation a
b56 ~quenched! suggested that the method was practic
This simulation had the drawback, however, that it was do
using tadpole-improved, rather than nonperturbatively i
proved, Wilson fermions. Thus a clean separation of sour
of error was not possible.

In this paper we present results of a more extensive inv
tigation of the method. We use the nonperturbatively i
proved action, taking the nonperturbative value for t
Sheikholeslami-Wohlert~or ‘‘clover’’ ! coefficientcSW @11#
from the work of the ALPHA collaboration@3#. Thus the
errors after improvement should be ofO(a2). We study the
scaling behavior of improvement and normalization co
stants by carrying out the calculation at two values of
lattice spacing,b56 and 6.2~quenched!. We also extend
previous work by determining the improvement coefficien
for the operators that vanish by the equations of mot
~‘‘equation-of-motion operators’’!. These contribute only to
off-shell matrix elements, and thus are not of direct physi
relevance, but they do contribute to the Ward identities
nonzero quark masses.

As already noted, several of the improvement and ren
malization constants that we determine, have been pr
ously obtained by the ALPHA Collaboration. An importa
difference in the implementation of the improvement con
tions is that the ALPHA Collaboration uses Schro¨dinger
functional boundary conditions with sources on the bou
ary, while we use periodic boundary conditions with sta
dard sources for quark propagators designed to impr
overlap of local operators with hadronic ground states. T
means that the results for improvement constants will dif
at O(a) and the normalization constants will differ atO(a2).
One of the aims of our study is to compare results from
two approaches, since this gives an indication of the imp
tance of the neglected higher order terms. We can also
some idea of the relative effectiveness of the two approac

The organization of this paper is as follows. In the follow
©2001 The American Physical Society05-1
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ing section we briefly recapitulate the theoretical backgrou
to our method, and give a general description of our imp
mentation. Section III contains a summary of our simulat
parameters. In Sec. IV, we present our final results and
cuss their implications. We reserve a detailed discussio
the calculation of the individual improvement coefficients f
Secs. V–XII. We close with some conclusions in Sec. X
Three appendixes collect the tadpole-improved perturba
results that we use for comparison with our nonperturba
estimates, the tree-level definitions of the improvement c
stants, and a discussion of exceptional configurations.

II. WARD IDENTITIES: THEORETICAL BACKGROUND

On-shell improvement of bilinear operators atO(a) re-
quires both the addition of extra operators,

~AI !m[Am1acA]mP,

~VI !m[Vm1acV]nTmn ,

~TI !mn[Tmn1acT~]mVn2]nVm!,

PI[P,

SI[S, ~1!

and the introduction of the following mass dependence:

OR
~ i j ![ZO

0 ~11bOami j !OI
~ i j ! ~2!

[ZO
0 ~11b̃Oam̃i j !OI

~ i j ! . ~3!

Here ~ij ! ~with iÞ j ! specifies the flavor andO
5A,V,P,S,T. The ZO

0 are renormalization constants in th
chiral limit, mi j [(mi1mj )/2 is the average bare quark ma
@12#, andm̃i j is the quark mass defined in Eq.~15! using the
axial Ward identity~AWI !. There are yet other improvemen
constants needed in order to extend the analyses to fla
neutral bilinears (i 5 j ) and to full QCD. These extension
are discussed in Ref.@13#, but are not relevant here. Not
that, except in Appendix B, we have set the Wilson para
eter r equal to unity.

When improving the theory toO(a), one still has free-
dom in defining thecO and thebO . For example, in general
they can depend on the correlators used to define them
on the quark mass. We shall consistently use the value in
chiral limit as it is the simplest choice and is also the o
made in previous work by other collaborations. The corre
tors used to define them are discussed in subsequent sec

To avoid confusion, we stress that the coefficientsb̃O dif-
fer from thebO used by earlier authors. In particular, at t
level of O(a) improvement, one has

b̃O5~ZA
0ZS

0/ZP
0 !bO . ~4!

The analogous relation betweenm and m̃ is given in Eq.
~27!.

Improvement can be achieved by imposing the gen
axial Ward identity
07450
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^dS~12!OR,off
~23! ~y!J~31!~0!&5^dOR,off

~13! ~y!J~31!~0!& ~5!

for enough choices ofJ, O, andy to determine all the rel-
evant improvement and scale-independent normaliza
constants. This should then guarantee that the identity h
up to corrections ofO(a2) for other choices ofJ andy. Here
dO is the bilinear that results from the axial variation ofO in
the continuum~Am↔Vm , S↔P, andTmn→emnrsTrs!, and
the variation of the action under an axial rotation is

dS~12!5ZA
~12!E

V
d4x@~2m̃12!~PI ,off!

~12!2]m~AI ,off!m
~12!#.

~6!

The pointy lies within the domainV of the chiral rotation,
while the sourceJ is located outsideV.

To implement Eq.~5! away from the chiral limit, it is not
sufficient to use the on-shell improved bilinearsOR defined
in Eqs. ~2! and ~3!. One must also include dimension-4 o
erators that vanish by the equations of motion, and this
been anticipated in the use of the subscript off. As noted
Ref. @14#, there is one such operator with the appropria
symmetries for each bilinear:

OR,off
~ i j ! 5ZO

~ i j !OI ,off
~ i j ! , ~7!

OI ,off
~ i j ! 5OI

~ i j !2a 1
4 cO8 EO

~ i j ! , ~8!

EO
~ i j !5c̄~ i !GWW c~ j !2c̄~ i !WQ Gc~ j !. ~9!

In the equation-of-motion operatorsEO , G is the Dirac ma-
trix definingO, andWW c j5(D”W 1mj )c j1O(a2) is defined to
be the fullO(a) improved Dirac operator for quark flavorj
~see Appendix B!. This ensures thatEO gives rise only to
contact terms, and thus cannot change the overall norma
tion ZO . The factors multiplyingEO are chosen such that, a
tree level,cO8 51 for all Dirac structures as shown explicitl
in Appendix B.

For practical applications, it is useful to express the Wa
identity in terms of on-shell improved operators. Th
equation-of-motion operators contribute only when the o
eratorsP ~contained indS! andO, in the left-hand side~lhs!
of Eq. ~5!, coincide. Theg5 in PI ,off changesOI ,off to
dOI ,off , and so, up toO(a2) corrections, these contact term
are proportional to the right-hand side~rhs! of Eq. ~5!. After
rearrangement, one finds

^*V d4xdSIOI
~23!~y4 ,yW !J~31!~0!&

^dOI
~13!~y4 ,yW !J~31!~0!&

5
ZdO

~13!

ZA
~12!ZO

~23! 1a
cP8 1cO8

2
m̃121O~a2!, ~10!

where

dSI~x![2m̃12PI
~12!~x!2]m~AI !m

~12!~x!. ~11!

This is the form of the AWI that we enforce@i.e., for some
choice ofJ we fit to a range iny, neglectingO(a2) contri-
butions# in order to determine the improvement constan
Note that the mass multiplying thec8 coefficients ism̃ and
5-2
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not m. Also, for brevity, mention of theO(a2) terms in all
equations is henceforth omitted.

To highlight the dependence on quark masses, the rh
Eq. ~10! can be written as

ZdO
0

ZA
0ZO

0 @11ab̃dOm̃132abAm̃122abOm̃23#1a
cP8 1cO8

2
m̃12,

~12!

and, in the special casem̃15m̃2 relevant to our numerica
study, as

ZdO
0

ZA
0ZO

0 F11~ b̃dO2b̃O!
am̃3

2 G
1F ZdO

0

ZA
0ZO

0 S b̃dO2b̃O
2

2b̃AD 1
cP8 1cO8

2 Gam̃1 .

~13!

Here we have definedm̃i5m̃i j umj 5mi
, i.e., m̃i is the AWI

mass with two degenerate quarks of bare massmi .
In our lattice simulations we calculate the lhs of Eq.~10!

as a function ofm̃15m̃2 and m̃3 , and extract the various
constants using the following procedure. In the first step
the analyses we remove the contribution of the equation
motion operators by extrapolating the lhs tom̃150 for fixed
m̃3 . The ratioXO[ZdO

0 /(ZA
0ZO

0 ) is then given by the inter-

cept of a linear fit inm̃3/2, while the slope givesXO(b̃dO
2b̃O). By choosing operators with different Dirac structur
we are able to extract all the on-shell improvement consta
as well asZA , ZV , andZP /ZS . The only exception isbT ,
which as discussed in Ref.@8#, requires keepingm̃1Þm̃2 .

This analysis ignoresO(a2) terms. Since these can giv
rise to a quadratic dependence on quark mass, it is impo
to check that linear fits are adequate. In cases where
statistical quality of the data is good we compare linear a
quadratic fits. Another check on the importance ofO(a2)
terms is to repeat the fits using the massm3 instead ofm̃3 . In
this case the ratio of slope to intercept givesbdO2bO , which
we can then compare to the results forb̃dO2b̃O using Eq.
~4!. This comparison is nontrivial since theO(a2) effects are
different in the two cases. We stress, however, that un
otherwise stated, the results presented below are from
with respect tom̃3 .

We note that, up to this point in the analysis, we do n
need to introduce the off-shell improved operators. When
sendm̃15m̃2→0, we are removing the contact term betwe
P andO @8#, and so on-shell improved operators suffice.

This is no longer true, however, in the second step of
analysis. Here we keepm̃15m̃2 nonzero, so the contact term
remains. We determine the linear combinationcP8 1cO8 from
the slopesO of a linear fit of the lhs of Eq.~10! with respect
to am̃1 at fixedam̃3 . In this way, for eacham̃3 , we obtain
the estimate

cP8 1cO8 52sO2XO~ b̃dO2b̃O22b̃A!. ~14!
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By choosingO5S,P,A,V,T we can determine all fivecO8 .
Details of this part of the calculation are presented in S
XII.

III. SIMULATION PARAMETERS

The parameters used in the three sets of simulations
given in Table I. The table also gives the labels used to re
to the different simulations in the following. For the lattic
scalea, we have taken the value determined in Ref.@15#
using r 0 , as it does not rely on the choice of the fermio
action for a givenb. In this study what we mostly need is th
change in scale,a(b56.2)/a(b56.0)'0.73, which is much
less sensitive to the physical quantity used to seta.

In Table II we give the values of the hopping parametek
we use, along with the corresponding results foram̃ and
aMp . We also quote three estimates ofkc , obtained using
quadratic fits, corresponding to~1! the zero ofm̃ with mass
dependentcA ~see Sec. V!, ~2! the zero ofm̃ with chirally
extrapolatedcA , and~3! the zero ofMp

2 . These are labeled
kc

(1) , kc
(2) , andkc

(3) , respectively. In this paper we usekc
(1)

henceforth and drop the superscript.
For each set of simulation parameters the quark propa

tors are calculated using Wuppertal smearing@16#. The hop-
ping parameter in the three-dimensional Klein-Gordon eq
tion used to generate the gauge-invariant smearing is se
0.181, which gives mean squared smearing radii of (ra)2

52.9 and 3.9 forb56.0 and 6.2 respectively.
For the 60NP data set, we have investigated the dep

dence of our results on the time extent of the region of ch
rotation. As shown in Table I, one region~forward of the
source! is 15 time slices long, while the other~backward of
the source! is 18 slices long. Since we find no significa
dependence on the length of the time interval, we average
two sets of results~assuming statistical independence!. In the
62NP calculation, we also use two rotation regions, this ti
placed symmetrically about the source, in order to impro
the signal.

In the 60NP data set we find two exceptional configu
tions. Some details of the behavior of the pion correlator
these configurations are discussed in Appendix C. The ef
is most severe at the lightest quark massk7 . We do not
discard these configurations, but we do neglect all data w
the lightest two quark masses, i.e., thek6 andk7 points are
not used in the final analyses of 60NPf and 60NPb data
the analysis of the 60TI data we excludek1 andk7 since the

TABLE I. Simulation parameters, statistics, and the time int
val in x4 defining the volumeV over which the chiral rotation is
performed in the AWI. The sourceJ is placed att50.

Label b cSW a21 ~GeV! Volume L ~fm! Confs. x4

60TI 6.0 1.4755 2.12 163348 1.5 83 4–18
60NPf 6.0 1.769 2.12 163348 1.5 125 4–18
60NPb 112 27–44
62NP 6.2 1.614 2.91 243364 1.65 70 6–25

70 39–58
5-3
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TABLE II. Values of the hopping parameter used in various simulations, and the corresponding pseudoscalar massaMp and quark mass
am̃ defined using the mass-dependentcA ~see Sec. V!. The three estimates ofkc , obtained using quardratic fits, correspond to~1! the zero
of m̃ with mass dependentcA , ~2! the zero ofm̃ with chirally extrapolatedcA , and~3! the zero ofMp

2 . We quote the extrapolated value o
aMp for cases~1! and ~2!.

Label k
60TI
am̃ aMp k

60NP
am̃ aMp k

62NP
am̃ aMp

k1 0.119 00 0.443~8! 1.530~1! 0.130 0 0.144~1! 0.711~2! 0.131 0 0.1345~6! 0.609~1!

k2 0.135 24 0.105~1! 0.571~2! 0.131 0 0.118~1! 0.630~2! 0.132 1 0.1054~4! 0.522~1!

k3 0.136 06 0.084~1! 0.504~2! 0.132 0 0.092~1! 0.544~2! 0.133 3 0.0727~3! 0.418~1!

k4 0.136 88 0.063~1! 0.431~2! 0.132 6 0.075~1! 0.488~2! 0.133 9 0.0560~2! 0.360~2!

k5 0.137 70 0.042~1! 0.348~3! 0.133 3 0.056~1! 0.416~2! 0.134 4 0.0419~2! 0.307~2!

k6 0.138 51 0.020~1! 0.244~4! 0.134 2 0.032~1! 0.308~3! 0.134 8 0.0306~2! 0.261~2!

k7 0.138 78 0.013~1! 0.195~8! 0.134 5 0.025~4! 0.262~12! 0.135 0 0.0248~1! 0.235~2!

kc
(1) 0.139 26~2! 0 0.082~15! 0.135 32~3! 0 0.083~20! 0.135 861~5! 0 0.066~10!

kc
(2) 0.139 25~2! 0 0.086~15! 0.135 30~1! 0 0.106~16! 0.135 862~4! 0 0.073~09!

kc
(3) 0.139 34~4! 0.135 41~3! 0.135 94~2!
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former is too heavy and the latter may have contamina
from exceptional configurations.

IV. RESULTS

We begin with some general comments concerning
analysis. First, all our quoted results are obtained using
relation functions at zero spatial momentum. We have
merical data for nonzero momentum correlators, which le
to consistent results but with larger errors. Second, we
only the diagonal part of the covariance matrix when fitti
the time dependence of correlators, or of ratios of correlat
Fits using the full covariance matrix~which incorporates the
correlations between timeslices! were not, in general, stable
Where we could perform such fits, we found results with
1s of those presented. Finally, fits to the quark mass dep
dence are also done ignoring correlations between the po
at different masses, since our statistics are insufficient to
clude them. Because of the latter two comments, we
make no quantitative statement about goodness of fit. N
ertheless, assuming that the fits are good, the errors in th
parameters, which are obtained using the jackknife pro
dure, should be reliable.

We begin with our results forkc , which is needed to
define the vector Ward identity~VWI ! quark massm. To
determinekc , we make a quadratic fit of the AWI massm̃
andMp

2 versus the tree-level quark mass parameter 1/2k. Fits
to m̃ include only degenerate quark combinations as it s
plifies Eq.~27!. Fits toMp

2 include both degenerate and no
degenerate combinations as they do not show any notice
dependence on the mass difference. For the nondegen
cases we define 2/k i j 51/k i11/k j . An example of the result-
ing fits is shown in Fig. 1. The estimate ofkc from m̃ should
be the same whether we use the mass-dependent value fcA
or the chirally extrapolated value in Eq.~15! ~see Sec. V!. As
evident from Fig. 1, the quality of both these fits is ve
similar and the two values are consistent.

Our results for 1/kc from quadratic fits toMp
2 are signifi-

cantly smaller than those from fits tom̃. To highlight this
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discrepancy we present, in Table II, the values ofaMp at the
kc determined from fits tom̃. Such a discrepancy has bee
observed previously~see, e.g., Ref.@17#!, and can be attrib-
uted to a combination of quenched chiral logarithms~the
effect of which is to causeMp

2 to curve downward at smal
quark masses@18,19#! and chiral symmetry breaking by th
action @which allows aMp(m̃50)}a3/2 and a2 effect, re-
spectively, for tadpole-improved and nonperturbatively i
proved actions#. These contributions can, in principle, be di
tinguished by the behavior of the interceptaMp(m̃50).
Quenched chiral logarithms are a continuum effect, imply
that the intercept should be the same for 60TI and 60
simulations, and that it should scale roughly proportional
a. By contrast, explicit chiral symmetry breaking implies
reduction in the intercept when going from 60TI to 60N

FIG. 1. Estimates ofkc by extrapolating 62NP data form̃ and
Mp

2 . We show quadratic fits tom̃ for the two cases discussed in te
~octagons label points with mass-dependentcA and pluses label
points with chirally extrapolatedcA!, and a quadratic fit toMp

2

~diamonds!.
5-4
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data sets, and ana2 scaling in NP simulations. In our analy
ses this latter effect is expected to be small sincem̃ is deter-
mined by a fit over a large range of time slices where
pion dominates. If these fits had extended tot5`, then m̃
andMp would necessarily vanish at the samek. Our results
are consistent with the dependence expected from quen
chiral logarithms. The large residualMp , therefore, points to
the need to include the effect of quenched chiral logarith
in the extrapolation.

From the fitm̃ versus 1/2k we also obtain the combina
tion (bP2bA1bm) using Eq.~27!. This is discussed in Sec
XI.

In Tables III, IV, V, and VI, we collect our results from
the various Ward identities, except for estimates ofcV ,
which are given in Table VII. Each identity allows us
extract one or more combinations of on-shell improvem
and normalization constants. The details of each of th
extractions are discussed in subsequent sections. From
results, we construct our best estimates for the individ
constants, and these are collected in Table VIII. We qu
both a statistical error~obtained by single elimination jack
knife, in which we repeat the entire analysis on each ja
knife sample!, and an estimate of the uncertainty in the co
stants due toO(a2) errors. The latter is obtained b
comparing results using values ofcA deduced using two-
point and three-point discretizations of derivatives, as d
cussed in the following section. Another estimate ofO(a2)
errors is obtained by comparing our results to the previ
estimates of the ALPHA Collaboration@4–6#, which we also

TABLE III. Results for the 60TI data set.

Reference Two point Three poin

cA Eq. ~15! 20.022~06! 20.023~09!

ZV
0 Eq. ~17! 10.747~01! 10.747~01!

b̃V
Eq. ~17! 11.436~27! 11.455~28!

ZV
0 Eq. ~17! 10.747~01! 10.747~01!

bV Eq. ~17! 11.534~24! 11.535~24!

ZP
0 /ZA

0ZS
0 Eqs.~18!

and ~19!
11.068~13! 11.056~14!

ZV
0 Eq. ~22! 10.755~06! 10.759~06!

b̃A2b̃V
Eq. ~22! 20.513~91! 20.477~95!

ZV
0 Eq. ~22! 10.756~06! 10.760~06!

bA2bV Eq. ~22! 20.488~85! 20.452~89!

ZV
0/(ZA

0)2 Eq. ~25! 11.207~15! 11.196~16!

b̃A2b̃V
Eq. ~25! 20.668~216! 20.566~222!

ZA
0 Eqs.~20!

and ~25!
10.791~07! 10.787~07!

ZP
0 /ZA

0ZS
0 Eq. ~26! 11.029~10! 11.026~13!

ZP
0 /ZA

0ZS
0 Eq. ~27! 11.066~14! 11.054~15!

b̃P2b̃S
Eq. ~26! 20.070~88! 20.055~89!

cT Eq. ~30! 10.087~15! 10.099~18!

b̃A2b̃P1b̃S/2@cA(m)# Eq. ~27! 10.739~66! 10.703~75!

b̃A2b̃P1b̃S/2@cA(0)# Eq. ~27! 10.879~64! 10.021~46!

b̃P2b̃A
Eq. ~31! 20.126~58! 20.125~81!

b̃S2b̃V22(b̃P2b̃A) Eq. ~32! 20.588~274! 20.266~380!
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include in Table VIII along with the one-loop perturbativ
results discussed in Appendix A. We quote bothb̃V ,b̃A and
bV ,bA to simplify comparison with previous results.

We collect separately, in Table IX, our results for th
improvement constantscX8 , the coefficients of the equation
of-motion operators. These are discussed in Sec. XII.

The assiduous reader will notice that our results for
60TI data differ slightly from those presented in Ref.@8#.
This is for two reasons. First, we use a new method
determiningcV . This leads to a much more precise resu
and affects several other analyses that are dependent oncV .
Second, we have made several minor improvements in
analysis, e.g., using quadratic instead of linear fits ver
quark mass where appropriate. The set of configurations
not changed.

We now discuss the salient features of our final resu
from Table VIII. Perhaps the most important issue is t
comparison with the results by the ALPHA Collaboratio
Because we use different improvement conditions, the
sults for theZX

0 can differ by;a2LQCD
2 , while those for the

cX and bX can differ by ;aLQCD. Numerically these are
about 0.02 and 0.15, respectively, atb56.0; and 0.01 and
0.1, respectively, atb56.2. There are some quantities, how
ever, where these differences can be enhanced. For exam
in correlators dominated by the pion, contributions prop
tional to aBp[aMp

2 /2m̃, while formally of O(aLQCD), can
be numerically much larger. These cases are discusse
more detail in the following sections.

TABLE IV. Results for the 60NPf data set.

Reference Two point Three point

cA Eq. ~15! 20.037~04! 20.045~07!

ZV
0 Eq. ~17! 10.770~01! 10.769~01!

b̃V
Eq. ~17! 11.429~20! 11.466~24!

ZV
0 Eq. ~17! 10.769~01! 10.768~01!

bV Eq. ~17! 11.524~14! 11.525~14!

ZP
0 /ZA

0ZS
0 Eqs.~18!

and ~19!
11.067~09! 11.041~13!

ZV
0 Eq. ~22! 10.773~04! 10.775~04!

b̃A2b̃V
Eq. ~22! 20.231~47! 20.179~57!

ZV
0 Eq. ~22! 10.774~03! 10.776~04!

bA2bV Eq. ~22! 20.216~43! 20.165~53!

ZV
0/(ZA

0)2 Eq. ~25! 11.197~09! 11.185~10!

b̃A2b̃V
Eq. ~25! 20.193~91! 20.180~107!

ZA
0 Eqs.~20!

and ~25!
10.808~03! 10.800~03!

ZP
0 /ZA

0ZS
0 Eq. ~26! 11.048~09! 11.035~11!

ZP
0 /ZA

0ZS
0 Eq. ~27! 11.049~08! 11.026~11!

b̃P2b̃S
Eq. ~26! 20.013~55! 10.019~57!

cT Eq. ~30! 10.063~07! 10.092~11!

b̃A2b̃P1b̃S/2@cA(m)# Eq. ~27! 10.609~31! 10.570~53!

b̃A2b̃P1b̃S/2@cA(0)# Eq. ~27! 10.883~32! 20.052~22!

b̃P2b̃A
Eq. ~31! 20.079~54! 20.031~74!

b̃S2b̃V22(b̃P2b̃A) Eq. ~32! 20.331~201! 10.112~338!
5-5
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Given these estimates of the uncertainties, we find tha
b56.2, there is complete consistency between our res
and those from the ALPHA Collaboration. Indeed, the on
statistically significant difference is forZV

0, which is calcu-
lated very precisely, but this difference is consistent w
being an;a2LQCD

2 effect.
Moving to b56, we see that there are statistically signi

cant differences not only forZV
0, but also forcA andcV . For

ZV
0 the differences are consistent with the estimates of

cretization errors given above. The difference forcV(cA) is
about two ~three! times the expected size of;0.15—this
could be an enhancedO(a) correction or an effect of highe
order in a. Either way, what is clear is that, withinO(a)
improvement, nonperturbative estimates of thecX have sub-
stantial uncertainties atb56. The only definite conclusion
that we can draw is that thecX , which are zero at tree leve
are small.

We find that the various constants show a strong dep
dence on the value ofcSW. The relatively small change from
the nonperturbative value atb56 to the tadpole-improved
value leads to noticeable changes in most of the constan

One of the most surprising results of Ref.@8# was the
large magnitude ofb̃V2b̃A'0.5 at b56 with tadpole-
improvedcSW. This difference is predicted to be very sma
~0.002! in one-loop perturbation theory, and even assum
the two-loop term to be;as

2 suggests a much smaller valu
'0.02 ~0.015! at b56(6.2). We find that the measured di
ference is reduced to;0.3 using the nonperturbativecSW,

TABLE V. Results for the 60NPb data set.

Reference Two point Three poin

cA Eq. ~15! 20.036~05! 20.043~08!

ZV
0 Eq. ~17! 10.770~01! 10.769~01!

b̃V
Eq. ~17! 11.424~17! 11.464~23!

ZV
0 Eq. ~17! 10.769~01! 10.768~01!

bV Eq. ~17! 11.522~11! 11.523~11!

ZP
0 /ZA

0ZS
0 Eqs.~18!

and ~19!
11.068~10! 11.041~14!

ZV
0 Eq. ~22! 10.766~04! 10.766~04!

b̃A2b̃V
Eq. ~22! 20.288~43! 20.256~53!

ZV
0 Eq. ~22! 10.768~04! 10.768~04!

bA2bV Eq. ~22! 20.267~40! 20.236~50!

ZV
0/(ZA

0)2 Eq. ~25! 11.204~11! 11.194~13!

b̃A2b̃V
Eq. ~25! 10.007~106! 10.043~126!

ZA
0 Eqs.~20!

and ~25!
10.806~04! 10.797~04!

ZP
0 /ZA

0ZS
0 Eq. ~26! 11.061~10! 11.050~14!

ZP
0 /ZA

0ZS
0 Eq. ~27! 11.051~08! 11.027~12!

b̃P2b̃S
Eq. ~26! 20.114~44! 20.097~44!

cT Eq. ~30! 10.057~10! 10.084~13!

b̃A2b̃P1b̃S/2@cA(m)# Eq. ~27! 10.596~33! 10.547~58!

b̃A2b̃P1b̃S/2@cA(0)# Eq. ~27! 10.881~33! 20.051~23!

b̃P2b̃A
Eq. ~31! 20.058~54! 10.002~81!

b̃S2b̃V22(b̃P2b̃A) Eq. ~32! 20.379~247! 10.096~439!
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and further reduced to;0.1 atb56.2. While the latter dif-
ference is small enough to be accounted for by the expe
aLQCD uncertainty, the larger result atb56 may indicate
higher order uncertainties.

The other differences betweenb̃’s are more stable, and
are consistent with perturbative predictions within theO(a)
uncertainties. The same is true of our final results for theb̃’s
themselves; the largest difference is forb̃V and is
;2aLQCD.

In fact, allowing for (122)aLQCD discretization uncer-
tainties, the only nonperturbative result that is in disagr
ment with perturbation theory isZP

0 /ZS
0. A very large two

loop effect ;24as
2 is required to bring the results int

agreement. This finding is consistent with those of the A
Collaboration who argue thatZP21 is significantly underes-
timated by one-loop perturbation theory@20#.

Concerning the statistical errors, we see a substantial
provement in the signal betweenb56.0 and 6.2. It is also
noteworthy that the errors in our estimates are comparab
those from the ALPHA Collaboration. While a precise com
parison of efficacies is difficult because of different syste
atic errors, and different ensemble and lattice sizes, we c
clude that our method is competitive.

V. CALCULATION OF cA

The determination ofcA is central to the extraction of al
quantities that are obtained using the axial Ward identity~10!

TABLE VI. Results for the 62NP data set.

Reference Two point Three point

cA Eq. ~15! 20.032~03! 20.038~04!

ZV
0 Eq. ~17! 10.787~00! 10.787~00!

b̃V
Eq. ~17! 11.304~10! 11.312~10!

ZV
0 Eq. ~17! 10.787~00! 10.787~00!

bV Eq. ~17! 11.422~08! 11.422~08!

ZP
0 /ZA

0ZS
0 Eqs.~18!

and ~19!
11.091~05! 11.084~05!

ZV
0 Eq. ~22! 10.788~02! 10.790~02!

b̃A2b̃V
Eq. ~22! 20.111~27! 20.071~28!

ZV
0 Eq. ~22! 10.788~02! 10.791~02!

bA2bV Eq. ~22! 20.109~26! 20.071~27!

ZV
0/(ZA

0)2 Eq. ~25! 11.185~04! 11.181~05!

b̃A2b̃V
Eq. ~25! 20.092~62! 20.115~59!

ZA
0 Eqs.~20!

and ~25!
10.818~02! 10.813~02!

ZP
0 /ZA

0ZS
0 Eq. ~26! 11.085~04! 11.077~05!

ZP
0 /ZA

0ZS
0 Eq. ~27! 11.077~05! 11.071~05!

b̃P2b̃S
Eq. ~26! 20.086~23! 20.075~23!

cT Eq. ~30! 10.051~07! 10.078~07!

b̃A2b̃P1b̃S/2@cA(m)# Eq. ~27! 10.626~24! 10.619~29!

b̃A2b̃P1b̃S/2@cA(0)# Eq. ~27! 10.850~19! 10.123~17!

b̃P2b̃A
Eq. ~31! 20.086~26! 20.062~34!

b̃S2b̃V22(b̃P2b̃A) Eq. ~32! 10.047~106! 10.176~137!
5-6
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sincecA enters indS @see Eq.~6!#. Its evaluation uses the
AWI with no operator present in the domain of chiral rot
tion. In particular,cA is adjusted so that the ratio

(
xW

^]m@Am1acA]AP#~ i j !~xW ,t !J~ j i !~0!&

(
xW

^P~ i j !~xW ,t !J~ j i !~0!&

52m̃i j , ~15!

which defines the quark massm̃i j , is independent of the
sourceJ and the timet at which it is evaluated. Since thi
criterion is automatically satisfied when the correlators
saturated by a single state, the determination ofcA relies on
the behavior of excited state contributions at smallt.

To implement Eq.~15! one has to choose how to dis
cretize the derivatives. Note that all choices lead to the sa
improvement and normalization constants at the order we
working, i.e., up toO(a) and O(a2) errors, respectively
This is because the difference between discretizations is
plicitly proportional toa2. Thus investigating the sensitivit
to the choice of discretization gives information on the s
of higher order discretization errors.

TABLE VII. Results forcV . See text~Sec. VII! for details.

62NP
Two point Three point

cA(m) cA(0) cA(m) cA(0)

Extrap. 20.115~63! 20.087~62! 20.032~64! 20.096~61!

1/m fit 20.086~15! 20.102~17! 20.172~20! 20.123~19!

Slope
ratio

20.094~19! 20.094~19! 20.107~19! 20.109~19!

60NPf
Two point Three point

cA(m) cA(0) cA(m) cA(0)

Extrap. 20.094~56! 20.060~57! 10.046~68! 20.048~63!

1/m fit 20.131~26! 20.205~38! 20.363~71! 20.209~53!

Slope
ratio

20.116~19! 20.116~19! 20.113~26! 20.120~26!

60NPb
Two point Three point

cA(m) cA(0) cA(m) cA(0)

Extrap. 20.119~78! 20.086~78! 10.013~87! 20.067~81!

1/m fit 20.071~38! 20.157~45! 20.359~86! 20.171~63!

Slope
ratio

20.097~30! 20.096~31! 20.092~37! 20.102~37!

60TI
Two point Three point

cA(m) cA(0) cA(m) cA(0)

Extrap. 20.483~124! 20.468~125! 20.337~135! 20.451~131!
1/m fit 20.143~63! 20.162~65! 20.367~80! 20.158~71!

Slope
ratio

20.253~48! 20.252~49! 20.222~53! 20.244~55!
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We limit our study of this issue to the comparison b
tween two discretization schemes. Both are based on a m
ture of two-point and three-point discretizations. This term
nology is explained in Ref.@8#, and is exemplified by
]xf (x10.5)→@ f (x11)2 f (x)#/a ~two-point! and ]xf (x)
→@ f (x11)2 f (x21)#/2a ~three-point!. Results from both
schemes are quoted in Tables III, IV, V, and VI.

In our first scheme, we implement Eq.~15! using two-
point discretization. In the subsequent calculations, based
the AWI of Eq. ~10! we use the same two-point discretiz
tion in dS @Eq. ~6!# as in Eq.~15!, and replace the continuum
integral by a simple sum. For the derivatives within the o
eratorsO and dO, however, we use three-point discretiz
tion. In our second scheme, we repeat the calculations u
the value ofcA obtained when enforcing Eq.~15! with a
three-point discretization for the derivatives. The remain
of the calculation is done with the same discretizations
dS, O, anddO as in the two-point scheme but for the ne
value ofcA .

There is a subtlety in the comparison between res
from the two schemes. It follows from the relation

^]m@~AI
~ two-point!!m~cA!22mP~ two-point!#~ t1a/2!J~0!&

1^]m@~AI
~ two-point!!m~cA!22mP~ two-point!#

3~ t2a/2!J~0!&

52^]m@~AI
~ three-point!!m~cA2am/2!22mP#~ t !J~0!&

1O~a3! ~16!

that theO(a2) differences between two-point and three-po
discretizations can be absorbed by shiftingcA→cA2am/2 in
the latter scheme. Thus, if one were to fit to the same ra
of timeslices with appropriate weights, as defined by E
~16!, the difference betweencA from two-point and three-
point determinations would be ofO(a2) in the chiral limit.
This difference would then not be useful as an indicator
O(a) discretization errors.

In practice, however, our fits do not weight the poin
appropriately for the relation~16! to be relevant. In particu-
lar, we find that using the two-point scheme, the best fits
for t>2 relative to the source att50, wheret52 ~which
corresponds to evaluating the derivative att52.5! is the ear-
liest timeslice at which there are no contact terms for eit
discretization scheme. On the other hand, for the three-p
scheme, we are not able to include the point att52 as the
O(a2) errors are too large and the fit has poor quality~this
was checked by turning on the full covariance matrix!. Be-
cause of this, the resulting values ofcA do differ at O(a),
and we take this difference as an estimate of the size of
higher-order discretization errors.

In our final compilation, Table VIII, the central values a
from the two-point discretization, while the difference b
tween the two discretizations is quoted as a systematic e
We note that the ALPHA Collaboration has used three-po
discretization of all derivatives. This does not, however, i
ply that their results should be more closely comparable
5-7
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TABLE VIII. Final results for improvement and renormalization constants. The first error is statis
and the second, where present, corresponds to the difference between using two-point and three-p
cretization of the derivative used in the extraction ofcA .

LANL

b56.0 b56.2

LANL ALPHA P. Th. LANL ALPHA P. Th

cSW 1.4755 1.769 1.769 1.521 1.614 1.614 1.481
ZV

0 10.747~1! 10.770~1! 0.7809~6! 10.810 10.7874~4! 10.7922~4!~9! 10.821
ZA

0 10.791~7!~4! 10.807~2!~8! 0.7906~94! 10.829 10.818~2!~5! 10.807~8!~2! 10.839
ZP

0 /ZS
0 10.811~9!~5! 10.842~5!~1! N.A. 10.956 10.884~3!~1! N.A. 10.959

cA 20.022~6!~1! 20.037~4!~8! 20.083~5! 20.013 20.032~3!~6! 20.038~4! 20.012
cV 20.25~5!~3! 20.107~17!~4! 20.32~7! 20.028 20.09~2!~1! 20.21~7! 20.026
cT 10.09~2!~1! 10.06~1!~3! N.A. 10.020 10.051~7!~17! N.A 10.019

b̃V
11.44~3!~2! 11.43~1!~4! N.A. 11.106 11.30~1!~1! N.A. 11.099

bV 11.53~2! 11.52~1! 11.54~2! 11.273 11.42~1! 11.41~2! 11.254

b̃A2b̃V
20.51~9!~4! 20.26~3!~4! N.A. 20.002 20.11~3!~4! N.A. 20.002

bA2bV 20.49~9!~4! 20.24~3!~4! N.A. 20.002 20.11~3!~4! N.A. 20.002

b̃P2b̃S
20.07~9!~2! 20.06~4!~3! N.A. 20.066 20.09~2!~1! N.A. 20.062

b̃P2b̃A
20.126~58!~1! 20.07~4!~5! N.A. 10.002 20.09~3!~3! N.A. 10.002

b̃A
10.92~10!~6! 11.17~4!~8! N.A. 11.104 11.19~3!~5! N.A. 11.097

bA 11.05~9!~4! 11.28~3!~4! N.A. 11.271 11.32~3!~4! N.A. 11.253

b̃P
10.80~11!~6! 11.10~5!~13! N.A. 11.105 11.11~4!~7! N.A. 11.099

b̃S
10.87~14!~4! 11.16~6!~11! N.A. 11.172 11.19~4!~6! N.A. 11.161
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ours based on thecA with three-point discretization, sinc
there are other differences in the calculations.

To use Eq.~15! we must also choose the sourceJ. Differ-
ent sources produce different admixtures of the ground
excited states, and thus have varying sensitivities for de
mining cA . Furthermore, different sources give values forcA
differing by O(a) @or O(1) if the action is not fullyO(a)
improved#. We have investigated source dependence us
results from a separate calculation performed on 1
quenched lattices of size 323364 atb56.0 using the Wilson
(cSW50) @21# and tadpole-improved clover (cSW51.4785)
@22# actions. ~The slightly different value ofcSW51.4755
used in the 60TI calculation was an oversight.! The results
from three different sources are shown in Fig. 2. The sour
are J5A4 and J5P, both with wall source smearing, an

TABLE IX. Results for off-shell mixing coefficients.

60TI 60NPf 60NPb 62NP

cV81cP8 12.75~23! 12.82~15! 12.68~19! 12.62~8!

cA81cP8 12.30~46! 12.43~24! 12.12~31! 12.43~14!

2cP8 21.96~152! 10.88~97! 20.65~57! 11.82~24!

cS81cP8 12.02~21! 12.44~13! 12.40~13! 12.40~7!

cT81cP8 12.26~33! 12.40~18! 12.27~20! 12.42~9!

cV8 13.72~73! 12.38~50! 13.00~37! 11.72~16!

cA8 13.28~94! 11.99~56! 12.45~46! 11.53~20!

cP8 20.98~76! 10.44~49! 20.33~29! 10.91~12!

cS8 13.00~73! 12.00~48! 12.72~33! 11.49~14!

cT8 13.24~75! 11.96~49! 12.60~38! 11.51~15!
07450
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J5P with Wuppertal smearing. We do not present theJ
5A4 data with Wuppertal smearing as that correlator
dominated by the ground state already att;4, and is thus
very insensitive tocA . Results from the Wilson action de
pend substantially on the source, even in the chiral lim
This is as expected since the action is not improved, lead

FIG. 2. Estimates ofcA versus the quark mass for three differe
sourcesJ as discussed in the text. For the Wilson action~W!, esti-
mates ofcA from the threeJ are very different. The improvement in
going to the tadpole-improved clover action~TI! is dramatic, and
the three sets of data collapse together. We show a linear fit to
combined tadpole-improved clover data.
5-8
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to largeO(1) variations incA . Also, as expected, there is
marked convergence when using the tadpole-improved
tion. Indeed, results from the three sources are consis
within errors ~and linear extrapolation to the chiral lim
gives a result,cA520.026(2), consistent with our 60TI re-
sult quoted in Table III!, and have similar sensitivity in de
termining cA . Because of this, we have chosen to use o
J5P with Wuppertal smearing in the simulations devoted
calculating improvement constants.

We illustrate our determination ofcA ~with two-point dis-
cretization! using the nonperturbatively improved action
Figs. 3 and 4. We tunecA so as to extend the plateau to th
earliest time slicet52 at which there are no contact contr
butions~the source is att50!. We have enough sensitivity t
clearly distinguishcA from zero. Atb56 we can also dis-
tinguishcA from that obtained by the ALPHA Collaboratio
for the chiral limit @cA520.083(5)#. This difference re-
mains after we extrapolate our results to the chiral limit@giv-
ing cA520.037(4)@23# for the two-point discretization and
cA50.045(7) for the three-point discretization#. At b56.2
our results for cA differ from the ALPHA value, cA5
20.038(4), atnonzero quark mass~as shown in the Figs. 4
and 5!, but after chiral extrapolation they are consistent w
the ALPHA result. This extrapolation~which is done using a
linear fit to the massesk22k5! is shown in Fig. 5.

In our previous paper@8# we used tadpole-improved fer
mions atb56, and found a result inconsistent with that
the ALPHA Collaboration, as can be seen from Table V
We did not, however, have enough information to determ
the source of this difference. Our new result shows that w
increasingcSW to its nonperturbative value movescA to-
wards the ALPHA result, a significant difference of;0.046

FIG. 3. Estimates of 2m̃i j for different values ofcA illustrated
using i 5 j 5k3 in the 60NPf data set and two-point discretizatio
For this value of quark mass, settingcA520.022 extends the pla
teau to the earliest time slicet52 at which there are no contac
contributions. The fit forcA520.083, the value obtained by th
ALPHA Collaboration in the chiral limit, andcA50 are included to
illustrate sensitivity.
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remains. This difference is presumably due to higher or
discretization errors. It is striking, however, that the diffe
ence is reduced substantially by changingb from 6.0 to 6.2.
Sincea2 only halves betweenb56 and 6.2, this suggest
that even higher order discretization errors are playing
dominant role. By contrast, the reduction in the differen
between our results for the two- and three-point discreti
tions is consistent with being ana2 effect.

It is interesting to compare our nonperturbative results
cA with perturbative estimates. We see from Table VIII th
the one-loop result (;0.23a) gives a substantial underest
mate. To explain the difference, one needs a large two-l

FIG. 4. Estimates of 2m̃i j for different values ofcA illustrated
using i 5 j 5k3 and the 62NP data set. For this quark mass,cA5
20.0209 extends the plateau to the earliest allowed time slict
52. To show sensitivity to the tuning we contrast this best fit w
those usingcA50 andcA520.040.

FIG. 5. The chiral extrapolation ofcA for 62NP data. Diamonds
label all mass combinations and stars highlight the ten combinat
of k22k5 used in the fit.
5-9
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term;a2 which, using the values quoted in Appendix A,
0.018 and 0.016 forb56 and 6.2, respectively.

We close with a comment on the practical implementat
of the AWI. To the accuracy we are working, we can use
dS, either the appropriate mass-dependentcA or its value in
the chiral limit. We prefer the former, and use it througho
because it maintains the relation]m(AI)m

( i j )22m̃i j P
( i j )50 at

finite quark masses on the states used to tunecA . Our data
suggest that this relation receives only small corrections
other states relevant to the AWI. This ensures~for the cA
obtained using two-point derivatives! that the ratio in Eq.
~10! is nearly independent of the time slice of the insertion
the improved operator and the volumeV of chiral rotation.
We stress, however, that when the axial current appears a
operator in the AWI, we use the chirally extrapolatedcA to
give our central values~see Sec. II!, and use the mass
dependentcA to give an indication of the size of higher ord
discretization errors.

VI. ZV
0 and bV

The matrix elements of the vector charge*d3x V4
(23)(x),

with m25m3 , are fixed by the charge of the states, and all
a determination ofZV as a function of the quark mass. O
best signal is for the matrix element between pseudosc
mesons:

1

ZV
0~11b̃Vam̃2!

5

(
xW ,yW

^P~12!~xW ,t!~Vl !4
~23!~yW ,t !J~31!~0!&

K (
xW

P~12!~xW ,t!J~21!~O!L ,

~17!

with t.t.0 andJ5P or A4 . The two sources have com
parable signal, and the final results are obtained by avera
the two estimates when constructing the jackknife ensem
Note that theO(a) improvement term inVI does not con-
tribute.ZV

0 and b̃V are then extracted by fitting the data as
function of m̃2 .

As an illustration we describe the procedure for the 62
data set. The quality of the data is very good, as shown
Fig. 6. A linear fit is clearly inadequate, so we use a q
dratic fit

ZV50.7874~4!@111.304~10!m̃2a11.062~52!~m̃2a!2#.
~18!

The intercept is our result forZV
0, while the coefficient of the

linear term, i.e., the slope in the chiral limit, is our result f
b̃V . Note that if we had simply used a linear fit over o
mass range, the result forb̃V would have been 1.469~9!, in
complete disagreement with our quoted result.

We can also fitZV as a function ofm51/2k21/2kc . This
provides a consistency check forZV

0, and a direct determina
tion of bV . The fit gives

ZV50.7871~3!@111.422~8!ma10.05~4!~ma!2# .
~19!
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In this case the quadratic term is small. The intercept is c
sistent, at the 2-s level, with that from Eq.~18!. We can use
these two fits to also extract the combination@ZP

0 /ZA
0ZS

0#
from the ratio of the coefficients of the linear term as e
plained in Sec. IX. The results are given in Tables III–V
and are consistent with those obtained from the axial W
identity, Eq.~26!, even though theO(a2) errors could have
been different in the two methods.

Our results forZV
0 andbV are compared with those from

the ALPHA Collaboration in Table VIII. There are sma
differences forZV

0, 0.011~1! and 0.005~1!, respectively, at
b56.0 and 6.2. These are of the expected magnitude
O(a2) differences, and are consistent withO(a2) scaling.
The results forbV are, on the other hand, already consiste

The difference between one-loop tadpole-improved p
turbation theory and our nonperturbativeZV

0 is 0.040~1! at
b56.0 and 0.034~1! at b56.2, where only statistical error
have been considered. Recall that the discretization errors
expected to be of size (aLQCD)2'0.02 and 0.01, respec
tively, while the missing two-loop perturbative terms shou
be ;as

2'0.02 and 0.016, respectively. Thus the deviati
from perturbation theory is of the expected size, and
scaling behavior is closer toO(as

2) than toO(a2). The nu-
merical values are consistent with'2as

2.
The nonperturbative results forbV exceed the one-loop

estimates by 0.24~2! and 0.16~2!, respectively, at the two
couplings. These differences are much larger than the m
ing two-loop contributions, but are consistent with a discre
zation error of size'1.5aLQCD.

Results forZV are needed to calculate the vector dec
constants and semileptonic form factors ofD andB mesons.
Note that, atb56.2, the charm and bottom quark masses a
in lattice units, roughly 0.5 and 2.0, respectively, to be co
pared to our largest mass of 0.13. It is thus important
ascertain, to what mass the fits, given in Eqs.~18! and ~19!,
can be used reliably. To address this issue we show in Fi
how the two fits extend to higher quark masses forb56.2. A

FIG. 6. Linear and quadratic fit toZV versusm̃2 for the 62NP
data set.
5-10
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plot of the quantitym/m̃ @Eq. ~27!#, which we use to conver
m̃a to ma is also included. We also show the recent nonp
turbative results forZV obtained by the UKQCD Collabora
tion @24#. Comparing our fits with the UKQCD data we fin
that both fits provide reliable estimates~to within 2%! up to
the charm quark mass, with the fit to Eq.~18! being slightly
better. In fact, over the range 0<ma&0.5, truncating Eq.
~19! at the linear order, fits the UKQCD data to within 1%
already noted by them. Beyondma'0.5 the two fits start to
deviate, and their validity near the bottom quark mass ne
to be examined.

VII. cV AND b̃AÀb̃V

We now turn to the analyses of the various three-po
axial Ward identities, and first consider the determination
the improvement coefficientcV . A precise determination o
cV is important both for phenomenological applications a
because the uncertainty incV contributes significantly to er
rors inZA

0, ZP
0 /ZS

0, cT , andcA8 . We have investigated sever
methods, and obtain the best results by enforcing

(
yW

^dSI
~12!~VI !4

~23!~yW ,y4!P~31!~0!&

(
yW

^~AI !4
~13!~yW ,y4!P~31!~0!&

5

(
yW

^dSI
~12!@Vi1acV]mTim#~23!~yW ,y4!Ai

~31!~0!&

(
yW

^~AI ! i
~13!~yW ,y4!Ai

~31!~0!&

,

~20!

FIG. 7. Predictions forZV at b56.2 obtained by extending ou
fits, Eqs.~18! and~19!, to larger quark masses. The result form/m̃
is also shown, as are data points from the UKQCD Collaborati
07450
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where the dependence oncV enters only on the rhs. We
emphasize two important features of this method. First
does not require knowledge of the normalization consta
ZA andZV , since these appear in the same combination
both sides of Eq.~20!. Second, the relation holds for an
value of the quark masses, since the contact terms are
same on both sides@see Eq.~10!#. The determination ofcV
does, however, require knowledge ofcA , which enters both
in dS and in (AI)4

(13) on the lhs.
The two correlators on the lhs are dominated by the p

channel and the signal is excellent in the individual corre
tors as well as in the ratio. The latter is illustrated in Fig.
On the other hand, the correlators on the rhs are domin
by the a1 intermediate state, for which the signal is not
good. We illustrate this by showing, in Figs. 9 and 10, t
terms independent of and proportional tocV . It turns out that
the difference between the lhs and thecV independent term
on the rhs is about 2% of the individual terms, and is co
parable to the error, which is dominated by that from t
term on the rhs. Nevertheless, as explained below, we
extractcV with reasonable precision. To do this it is conv
nient to rewrite Eq.~20! in terms of the following two quan-
tities:

N5

(
yW

^dSI
~12!~VI !4

~23!~yW ,y4!J~31!~0!&

(
yW

^~AI !4
~13!~yW ,y4!J~31!~0!&

2

(
yW

^dSI
~12!Vi

~23!~yW ,y4!Ai
~31!~0!&

(
yW

^~AI ! i
~13!~yW ,y4!Ai

~31!~0!&

,

.

FIG. 8. Illustration of the quality of the signal for the lhs of Eq
~20! for the four data sets. In all four cases all quark propagat
correspond tok3 .
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D5

(
yW

^dSI
~12!a]mTim

~23!~yW ,y4!Ai
~31!~0!&

(
yW

^~AI ! i
~13!~yW ,y4!Ai

~31!~0!&

, ~21!

such thatcV5N/D.
The data exhibit three interesting features.
Both N and D are, to a good approximation, linear

m̃12m̃3 , as illustrated in Fig. 11~N shows a weak depen

FIG. 9. Illustration of the quality of the signal for the first ter
on the rhs of Eq.~20! for the four data sets. In all four cases all th
quark propagators correspond tok3 .

FIG. 10. Illustration of the quality of the signal for the rat
multiplying cV in the rhs of Eq.~20! for the four data sets, usingk3

propagators in all cases.
07450
dence onm̃31m̃1 as well!.
Close tom̃15m̃3 both N and D vanish. However, since

the discretization errors inN andD are different, they vanish
at slightly different points. As a result the ratioN/D is very
poorly determined whenm̃15m̃3 , and cV5N/D shows a
spurious 1/(m̃12m̃3) singularity, as illustrated in Fig. 12.

Estimates ofcV for the combination$m̃i ,m̃j% are highly
anticorrelated with those for$m̃j ,m̃i%. Estimates ofcV for
m̃1,m̃3 are consistently more negative as shown in Fig.

Because of the spurious singularity mentioned above,
explore the following three approaches to determinecV .

Linearly extrapolate each of the three ratios of correlat
to m̃15m̃250, working at fixed nonzerom̃3 so as to avoid
the singularity, and then solve forcV . The weighted average
over the differentm̃3 points is quoted in the first row in

FIG. 11. 62NP data forN andD used to extractcV and defined
in the text, plotted as a function ofm̃12m̃3 .

FIG. 12. A fit of the formcV5cV
(0)1cV

(1)/(m̃12m̃3) to the 62NP
data.
5-12
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Table VII. This method yields estimates with the largest u
certainty, as illustrated in Fig. 13.

Fit N/D to the formcV
(0)1cV

(1)/(m̃12m̃3) ~as illustrated in
Fig. 12! and usecV5cV

(0) . We find that the result is insen
sitive to the range of quark masses used; the results quot
Table VII are based on fits tok22k5 for 60TI and 60NP and
k12k6 for 62NP.

Fit N and D separately to the forma1g(m̃12m̃3), and
takecV to be the ratio of the slopes,gN /gD . This is legiti-
mate sincecV is given, in principle, byN/D for all quark
masses. This method avoids the use of the intercepts,aN and
aD , which, being small, have larger discretization errors

For each of these methods we evaluatecV for four vari-
ants ofcA : for both the usual choices of two-point vers
three-point discretization of]4A4 when determiningcA using
Eq. ~15!, we use mass dependent and chirally extrapola
values ofcA in the operator (AI)4

(13) appearing in the denomi
nator on the lhs of Eq.~20! @25#. Results are quoted in Tabl
VII. We find that only for the ‘‘slope-ratio’’ method do al
four choices forcA lead to consistent results. We also no
that the estimates using all three methods are consistent
use the two-pointcA but not for the three-pointcA . Thus we
take for our best estimate the value obtained with the ‘‘slo
ratio’’ method and the two-point~chirally extrapolated! cA .

Our final results are collected in Table VIII. Our ma
conclusion is thatcV , which is zero at tree level, remain
small in magnitude. We note that although our nonpertur
tive estimate is smaller than those of the ALPHA Collabo
tion, the difference is consistent with being due toaLQCD
corrections.

We have tried several other methods for determiningcV .
One can demand that the rhs of Eq.~20! be independent o
y4 . This turns out to be roughly true for the individual ratio
and thus holds independent ofcV . We have also tried differ-
ent sources, e.g.,O5Ai , J5Vi at zero momentum for the
lhs andO5A4 , J5V4 at nonzero momentum for the rh

FIG. 13. A constant fit as a function ofm̃3/2 to extractcV from
the 62NP data. Points included in the fit are superimposed wi
fancy cross.
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making the intermediate state a vector meson. We have
implemented the method of the ALPHA Collaboration@6#, in
which the lhs withO5Ai , J5Vi at zero momentum is
equated to unity in the chiral limit, making use of previous

determined results forZA
02

/ZV
0 and ZV

0. In all the cases we
have considered, however, the final estimates have large
rors than those quoted above. It is noteworthy, and perh
surprising, that our best method involves an intermedi
axial-vector state, rather than a vector meson.

The errors in our final result forcV are substantially
smaller than those of Ref.@6#. It is likely that part of the
explanation for this improvement is our use of a differe
AWI and fitting method.

To extractb̃A2b̃V we use the lhs of Eq.~20!, so as to
avoid dependence oncV , and follow the procedure outlined
in Sec. II. After extrapolating tom̃15m̃250, the ratio should
be described by

ZA
0~11b̃Aam̃3/2!

ZA
0ZV

0~11b̃Vam̃3/2!
. ~22!

The slope with respect tom̃3/2 (m3/2) gives our best esti-
mate forb̃A2b̃V (bA2bV) and the intercept gives a secon
estimate ofZV

0. As shown in Tables III–VI, the results forZV
0

are consistent with those from the VWI, but with somewh
larger errors. As an example of the fits, for the 62NP data
we find

11~ b̃A2b̃V!am̃3/2

ZV
0 51.269~3!@120.111~27!am̃3/2#,

11~bA2bV!am3/2

ZV
0 51.268~3!@120.109~26!am3/2#.

~23!

The quality of the fits is shown in Fig. 14. Even though t
intercept and the slope are almost identical, they are con
tent with the expected relation (b̃A2b̃V)5(ZA

0ZS
0/ZP

0 )(bA

2bV)'0.92(bA2bV) within the errors.
Since the correlators on the lhs of Eq.~20! involve pion

intermediate states, higher-order discretization errors can
enhanced as noted in Sec. IV. For example, a change in
value ofcA used in the denominator,DcA;aLQCD, leads to
a change inZV

0 of size

DZV
0

ZV
0 5DcA

aMp
2

2m̃
. ~24!

The ratio Bp5Mp
2 /m̃ is much larger thanLQCD. Indeed,

Bp'4 GeV at our values ofb, so thataBp/2'1 at b56.
Thus, although the rhs of Eq.~24! is formally of O(a2), it
can be comparable in magnitude to anO(a) effect. Of
course, the numerator also depends oncA , although in a way
that cannot be estimated simply. Thus, it is possible that
enhancedcA dependence cancels inZV

0, and our results indi-
cate that this is what happens: two- and three-point discr
zations lead to consistent results. This is an example of

a

5-13
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general observation~see Sec. V! that the value ofcA deter-
mined from Eq.~15! improves the axial current in other co
relation functions.

In contrast, the improvement of the axial current does
guarantee that there are no enhancedO(a) errors in the
slope,b̃V2b̃A @8#. In particular, using a mass dependentcA

in (AI)4
(13) produces an enhanced higher order effect prop

tional toBp . We see this clearly in our results. For examp
for the 62NP data set,b̃V2b̃A is 20.11~3! @20.07~3!# for the
chirally extrapolatedcA and two-point@three-point# discreti-
zation, while using the mass-dependentcA these results
change to20.30~4! @10.34~5!#. It is reassuring that the dis
cretization dependence is much weaker for chirally extra
latedcA , since this is the choice we have made at the or
of improvement that we are working~see Sec. II!. These are
the results we quote.

VIII. ZA
0

The AWI that yields the best signal forZA
0 is

(
yW

^dSI
~12!~AI ! i

~23!~yW ,y4!Vi
~31!~0!&

(
yW

^~VI ! i
~13!~yW ,y4!Vi

~31!~0!&

5
ZV

0~11b̃Vam̃3/2!

ZA
0ZA

0~11b̃Aam̃3/2!
,

~25!

which holds after extrapolation tom̃15m̃250. The interme-
diate state in these correlators is the vector meson. The q
ity of the signal for the ratio on the lhs is illustrated in Fi
15. An example of the fit versusm̃3/2 is shown in Fig. 16.
The resulting values forZV

0/(ZA
0)2 and b̃A2b̃V are given in

Tables III–VI. The latter have much larger errors than tho
in the determinations described in the previous section.

FIG. 14. Linear fits to the lhs of Eq.~20! versus~i! the AWI
quark massm̃ ~crosses! and~ii ! the VWI quark massm ~diamonds!.

The data set is 62NP. The fit to crosses givesb̃A2b̃V , while that to
diamonds givesbA2bV .
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Rather than obtainingZA
0 by combining the results for

ZV
0/(ZA

0)2 with those obtained previously forZV
0, it turns out

to be better to use the product of the left-hand sides of E
~20! and ~25!, which yields 1/(ZA

0)2 directly. Note that the
linear O(a) m̃3 dependence cancels in this product. T
data, illustrated in Fig. 17, show a dependence onm̃3 at the
2s level. Our final results are obtained by fitting a consta
to the data. A linear fit reduces the value by 122s.

As shown in Tables III–VIII, the statistical errors inZA
0

are roughly an order of magnitude larger than those inZV
0,

and are comparable to the size of the expectedO(a2) terms.
Thus, either the statistical or theO(a2) corrections can ex-
plain the difference between our results and those of
ALPHA Collaboration, which are at the 122s level. The

FIG. 15. Illustration of the signal for the ratio defined in E
~25! for the four data sets usingk3 propagators in all cases.

FIG. 16. Linear fit to the ratio defined in Eq.~25! after extrapo-
lation to m̃15m̃250 for the 62NP data set.
5-14
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deviations from one-loop perturbation theory are of the s
expected if the two-loop terms are;as

2.

IX. ZP
0 ÕZS

0 AND b̃SÀb̃P

Our best estimates ofZP
0 /(ZS

0ZA
0) andb̃S2b̃P are obtained

from

(
yW

^dSI
~12!S ~23!~yW ,y4!J~31!~0!&

(
yW

^P~13!~yW ,y4!J~31!~0!&

5
ZP

0 ~11b̃Pam̃3/2!

ZA
0ZS

0~11b̃Sam̃3/2!
,

~26!

with J5P or A4 . Both numerator and denominator ha
pions as intermediate states, and have very good sig
Examples of their ratio are shown in Fig. 18. As discussed
Sec. V, this ratio should be independent ofy4 up to higher
order discretization errors. These errors are expected t
larger for the 60TI data set than for those with the no
perturbatively improved action, since the former are
O(a), and the latter ofO(a2). Our results are qualitatively
consistent with these expectations, as illustrated in Fig.
Note that the scale is much finer for the lower graphs.
linear fit to Eq.~26! gives our estimates forZP

0 /(ZS
0ZA

0) and

b̃P2b̃S quoted in the tables.
Another way to extractZP

0 /(ZS
0ZA

0) is to use the relation
between the two definitions of quark mass@11#,

m̃

m
5

ZP
0Zm

0

ZA
0 F12~ b̃A2b̃P!am̃av1b̃ma

~m̃2!av

m̃av
G , ~27!

whereXav5(X11X2)/2. This relation is useful becauseZm
0

51/ZS
0 and bS522bm @26,27#. From the nonleading term

FIG. 17. ZA
0, obtained from the product of ratios of correlato

defined in the lhs of Eq.~20! and Eq.~25!, shown as a function of
m̃3/2. The constant fit is to thek22k5 points, as indicated by the
fancy crosses. The data set is 62NP.
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one can, using nondegenerate quarks, separately deter
b̃A2b̃P and b̃m . In this section we discuss and use on
degenerate quarks, from which one can determineb̃A2b̃P

2b̃m . The use of nondegenerate quarks, which allow
separate determination ofb̃A2b̃P and b̃m , is discussed in
Sec. XI.

We have analyzed Eq.~27! by extractingm̃ from Eq.~15!
using both the mass dependent and chirally extrapolated
ues ofcA . An example of the data and linear fits is shown
Fig. 19. The intercepts are consistent, and we quote
Tables III–VI the results using the mass-dependentcA . We
also show in the same figure the fit to Eq.~26!, which should
have the same intercept up toO(a2) terms. While the data
show no significant discrepancy the results from Eq.~27! can
have enhanced discretization errors. Indeed, it follows fr
Eq. ~15! that a changeDcA results in

Dm̃

m̃
5DcAa

Mp
2

2m̃
5DcAaBp . ~28!

This is also the fractional change in the result forZP
0 /(ZS

0ZA
0)

obtained from Eq.~27!. Since as noted above,Bp;4 GeV,
this nominallyO(a2) uncertainty can be enhanced. As a r
sult, we consider the evaluation using Eq.~27! less reliable
than that based on Eq.~26!, and we use the latter as our be
estimate.

The slope of the linear fits to Eq.~27! for degenerate
quarks givesb̃A2b̃P1b̃S/2. The statistical errors on the re
sults are small, but there is a systematic dependence
whether we use the mass-dependent or chirally extrapol
cA—an O(a) effect enhanced byBp . This problem is clear

FIG. 18. Comparison of the signal in the ratio of correlators
the lhs of Eq.~26! used to extractZP

0 /ZS
0. The data are fork3

propagators in all cases.
5-15
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from Fig. 19, and to highlight the magnitude we quote bo
values in Tables III–VI: the first corresponds to the ma
dependentcA and the second to the chirally extrapolatedcA .

Unlike the case ofb̃A2b̃V , here the mass-independentcA ,
which is our choice, leads to results that depend v
strongly on the choice of discretization. Because of th
very largeO(a2) effects, we do not use these estimates a
further.

Our derived results forZP
0 /ZS

0, presented in Table VIII,
are significantly smaller than the predictions of one-loop p
turbation theory. As noted in Sec. IV, the difference can o
be explained by an unlikely two-loop contribution;4as

2.

X. cT

To determinecT we consider the AWI for the bilinea
Ti j , i.e.,

ZA
0

(
yW

^dSI
~12!~TI ! i j

~23!~yW ,y4!Tk4
~31!~0!&

(
yW

^~TI !k4
~13!~yW ,y4!Tk4

~31!~0!&

51 . ~29!

As was the case forcV , tuningcT in order to make the ratio
independent ofy4 does not work. Instead we rewrite th
identity in the following form:

FIG. 19. Comparison of the quality of the linear fits used
extractZA

0ZS
0/ZP

0 . The three fits correspond to~i! Eq. ~26!, ~ii ! Eq.
~27! with m̃ defined using the mass-dependentcA , and~iii ! Eq. ~27!
with m̃ defined using the chirally extrapolatedcA . The data are
from the 62NP set. Note that the intercepts from all three fits sho
agree up to errors ofO(a2) but the slope of~i! is bP2bS whereas
those of~ii ! and ~iii ! arebP2bA2bS/2.
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11acT

(
yW

^@2]4Vk#
~13!~yW ,y4!Tk4

~31!~0!&

(
yW

^Tk4
~13!~yW ,y4!Tk4

~31!~0!&

5ZA
0

(
yW

^dSI
~12!Ti j

~23!~yW ,y4!Tk4
~31!~0!&

(
yW

^Tk4
~13!~yW ,y4!Tk4

~31!~0!&

, ~30!

where we have moved thecT dependence in (TI)k4 onto the
lhs, and used the fact that (TI) i j has no contribution from the
cT term atpW 50. GivenZA

0, Eq. ~30! determinescT after the
m1→0 extrapolation. The data for the ratios on the left- a
right-hand sides of Eq.~30! are illustrated in Figs. 20 and 21
respectively, and expose the reason for the failure to ext
cT by tuning with respect toy4 : the two ratios are essentiall
flat within the domain of the chiral rotation~which roughly
corresponds to the region of the fits in the Figure!.

cT should be independent ofm̃3 , up to corrections of
O(a2). Our results are consistent with this expectation at
122s level, as illustrated in Fig. 22 for the 62NP data s
Our quoted results are the weighted average over thek2
2k5 points.

To extractbT using the method proposed in@8# requires
studying this AWI with all three quarks in Eq.~30! having
different masses. We have not done this extended calc
tion, and consequently have no results forbT .

XI. ADDITIONAL RELATIONS

There are two additional relations that can be used
obtain information on improvement constants. These w

ld

FIG. 20. The signal in the ratio of correlators defined on t
left-hand side of Eq.~30! usingk3 in all quark propagators.
5-16
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derived in Ref.@11#, and discussed further in Ref.@8#. The
first is

b̃P2b̃A52
4m̃1222@m̃111m̃22#

a@m̃112m̃22#
2 . ~31!

An illustration of our results for the rhs is shown in Fig. 2
and the results from fits to a constant are collected in Ta
III–VI and used to obtain the final results given in Tab
VIII.

The second relation is

FIG. 21. The signal in the ratio of correlators defined on
right-hand side of Eq.~30! usingk3 in all quark propagators.

FIG. 22. Estimates ofcT as a function ofm̃3/2 for the 62NP data
set. The constant fit is to thek22k5 points.
07450
s

b̃S2b̃V

2
1~ b̃P2b̃A!5

D122RZ@m̃112m̃22#

aRZ@m̃11
2 2m̃22

2 #
, ~32!

D12[

(
xW

eipW •xW^]mVIm
~12!~xW ,t !J~21!~0!&

(
xW

eipW •xW^S~12!~xW ,t !J~21!~0!&

,

~33!

RZ[
ZS

0

ZP
0

ZA
0

ZV
0 . ~34!

As discussed in Ref.@8#, of the two kinds of sources that on
can use in Eq.~33!, J(21)5(zWP

(23)(zW,z4)P(31)(0) andJ(21)

5S(21) with 0,t,z4 , the first has a better signal an
smaller discretization errors. Unfortunately, the final resu
quoted in the Tables, have very large errors due to la
cancellations between the terms in the numerator on the
We, therefore, do not use this second combination in
final extraction of the individualb̃’s given in Table VIII.

XII. EQUATION-OF-MOTION OPERATORS

The method for calculating the combinationcP8 1cO8 of
coefficients of equation-of-motion operators has been
scribed in Sec. II. The calculation, using Eq.~14!, involves
three pieces. The slopessO are obtained from a linear fit to
the lhs of Eq.~10! versusm̃1 at fixedm̃3 . Examples of these
fits are shown in Fig. 24, for the 62NP data set. The on-s
quantitiesXO(b̃bO2b̃O) andXOb̃A can be obtained by com
bining results discussed in previous sections. The results
these three contributions, for the 62NP data set, are colle
in Table X. We find thatXOb̃A gives almost the entire con
tribution. The final estimates for individual equation-o
motion constants are given in Table IX.

FIG. 23. A constant fit to the 62NP data forb̃P2b̃A obtained
using Eq.~31!.
5-17
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We briefly discuss some details of the calculation, and
quality of the signal, in each of the five cases.

cP8 1cV8 : We chooseJ5P and O5V4 (dO5A4), in
which case the intermediate state is a pseudoscalar.

cP8 1cA8 : We chooseJ5Vi andO5Ai (dO5Vi) whereby
the intermediate state is a vector meson. Unfortunately,
uncertainty incV feeds in throughdO5Vi and affects the
extraction ofsA . Thus, even thoughsA contributes little to
the central value ofcP8 1cA8 , as illustrated in Table X, it
dominates the error.

2cP8 : We chooseJ5S andO5P (dO5S). In this case,
the intermediate state is a scalar and the signal is poor@28#.
The largest part of the error incP8 comes fromsP . The re-
sulting uncertainty incP8 dominates the error in the final es
timate ofcV8 , cS8 , andcT8 .

cP8 1cS8 : The choiceJ5P and O5S (dO5P) gives a
good signal in the correlation functions as the intermed
state is pseudoscalar.

FIG. 24. Linear fits to the lhs of Eq.~10!, the slopes of whichsO
determine the coefficients of the equation of motion operators.
data set is 62NP andm̃3 corresponds tok3 .

TABLE X. The three contributions to the coefficient of th
equation of motion operatorscO8 1cP8 for the 62NP data set.

cO8 1cP8 sO XO(bdO2bO)/2 XObA

cV81cP8 20.27~04! 20.07~2! 1.52~4!

cA81cP8 20.13~06! 0.07~2! 1.41~3!

cP8 1cP8 20.73~16! 0.06~2! 1.70~7!

cS81cP8 20.14~03! 20.05~1! 1.29~3!

cT81cP8 20.23~05! 0.02~3! 1.46~4!
07450
e

e

e

cP8 1cT8 : We chooseJ5Tk4 andO5Ti j (dO5Tk4). All
correlation functions have a good signal as the intermed
state is a vector meson.

The signal forsV , sS , and sT is good for all m̃3 , and
leads to a reliable estimate with comparable errors forcP8
1cV8 , cP8 1cS8 , andcP8 1cT8 . In all cases we find thatsO are
independent ofm̃3 within statistical errors. Our final result
are given by the weighted mean overm̃3 corresponding to
k22k5 .

To compare to the predictions of perturbation theory, it
best to use the results forcX81cP8 , X5V,A,S,T, in the upper
part of Table IX, since these have the smallest statist
errors. These four quantities are indeed consistent with
expected result 2@11O(as)1O(a)#. The fifth quantity 2cP8
is only determined reliably atb56.2, and also agrees wit
this expectation. These agreements are a consistency c
on the extension of the improvement program to off-sh
quantities.

XIII. CONCLUSION

We have demonstrated the feasibility of the WI metho
with nondegenerate quark masses, for determining the
provement and scheme-independent normalization cons
of the quark bilinear operators. The main advantage of us
nondegenerate quarks is that one can extract all theb̃X .
These quantities effect the overall normalization of operat
away from the chiral limit, and their determination is re
evant to phenomenological applications involving heavy m
sons.

Our implementation of the Ward identities differs su
stantially from that used by the ALPHA Collaboration, s
that the results from the two methods can differ. These
ferences should, however, be of sizeO(a) and O(a2), re-
spectively, for improvement and normalization constan
The differences between the two sets of results are, in f
consistent with these expectations. We stress, however,
for the small quantitiescA andcV this ‘‘consistency’’ allows
a substantial uncertainty atb56. For example,DcA50.05
would lead to'10% uncertainty inf p and 3% in f D . At
b56.2, on the other hand, there is a much smaller varia
ity.

Both cV andcT are obtained as a small difference betwe
two large terms. We are, nevertheless, able to extract th
quantities with reasonable precision. In particular, in the c
of cV , we find that our best results come from enforcing
different Ward identity than considered previously, with
consequent reduction in errors. This improvement is imp
tant for phenomenological applications~see, e.g., Ref.@29#!,
and also leads to smaller errors in our results forZA

0, ZP
0 /ZS

0,
cT , andcA8 .

On the whole, tadpole-improved one-loop perturbati
theory underestimates the deviations of renormalization
improvement constants from their tree level values. In all
one case, however, these discrepancies can be understo
a combination of a two-loop correction of size (122)3as

2

~for ZV
0, ZA

0, and cA!, higher order discretization errors o

size (122)3aLQCD ~for cV , cT , and b̃V!, and statistical

e
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errors ~for b̃A , b̃P , and b̃S!. The only exception isZP
0 /ZS

0,
for which a very large higher order perturbative contributi
of size 43as

2 is needed to reconcile our nonperturbative
sults with one-loop perturbation theory.

We have presented results for the coefficients of equa
of motion operators that are needed to improve the the
off-shell. The most striking feature of their calculation is t
improvement in the reliability of the calculation betweenb
56.0 and 6.2.

An important issue is at what quark massO(a) improve-
ment breaks down, due to our neglect of higher order ter
To address this issue we examine the case of the ch
quark atb56.2 for which ma'0.5 andm̃'0.4. Sinceb̃X

'1.1, theO(a) corrections toZX
0 are approximately 45%

Assuming geometric growth, this would imply'20% cor-
rection from the neglectedO(a2) terms. This is indeed wha
we find for ZV , for which nonperturbative results for char
quarks are available, and the data are good enough to a
the quadratic fit given in Eq.~18!. On the other hand, we find
that if we use the alternativeO(a) improved expressionZV

5ZV
0(11bVma), it works to within 1% at the charm quar

mass.
Finally, we stress that the use of nondegenerate quark

determine theb̃X andcA could be applied equally well in the
context of the Schro¨dinger functional. It would be very in-
teresting to compare results so obtained to those we h
found here.
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APPENDIX A

In this appendix we review the relation between co
tinuum and lattice fields and the one-loop perturbative
sults. Throughout this paper we use

~OR!continuum
~ i j ! 5A4k ik j~OR! lattice

~ i j ! . ~A1!

This normalization makes comparison between tadp
improved one-loop and nonperturbative results, quoted
Table VIII, straightforward. In the tadpole-improved theo
@30#, the normalization commonly used isA4k ik ju0

2. To
maintain the field normalization asA4k ik j we have ab-
sorbedu0 into ZO,pert

0 . Consequently, the TI perturbative re

sult we use isZO,pert
0 5u0(11tOaS

TI), where tO is the TI
one-loop coefficient.

A second way in which tadpole improvement is defined
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~OR!continuum
~ i j ! 58kcA123k i /4kcA123k j /4kc

3ZO,pert
0 ~O! lattice

~ i j !

5A4k ik jA118kc~1/2k i21/2kc!

3A118kc~1/2k j21/2kc!ZO,pert
0 ~O! lattice

~ i j ! ,

~A2!

where we have again absorbed a factor ofu0 in ZO,pert
0 to

maintain the same definition as above. Equation~A2! shows
that using tadpole-improved field renormalization is equiv
lent, atO(a), to usingbO58kc in Eq. ~3!. In tree-level TI
perturbation theory 8kc51/u0 , and is the appropriate valu
for bO as shown in Eq.~A6!.

The one-loop perturbative calculations have been done
the ALPHA and JLQCD Collaborations@31–33#. Here we
express the results for the tadpole improvement sche
stated above. Tadpole improvement requires choosin
quantity u0 that is unity at tree-level, whose perturbativ
series is dominated by a tadpole contribution, and which
be evaluated nonperturbatively. Any other quantityX, whose
perturbative expansion is

X5X~0!1X~1!as , ~A3!

and which is dominated byn contributions of the tadpole
diagram, can then be rewritten as

XTI5u0
n~X~0!1XTI

~1!as,TI!,

where

XTI
~1!5X~1!2nX~0!u0

~1! . ~A4!

Hereu0
(1) is the coefficient ofas in the perturbative expan

sion ofu0 , andas,TI is an improved coupling that we choos
to be g2/4pu0

4, whereb56/g2. Since all results we quote
are tadpole-improved, we henceforth omit the subscript
for brevity.

In this paper, we choose, foru0 , the fourth root of the
expectation value of the plaquette for whichu0

(1)52p/3.
Our Monte Carlo data yieldu050.8778 at b56.0 and
0.8851 atb56.2. Using thisu0 , we find thatas50.1340
and 0.1255 at the twob’s.

At one loop, the coefficient of the clover term is

cSW5u0
23~11cSW

~1!as!, ~A5!

wherecSW
(1)50.214 is obtained by converting the results

Wohlert @34# and the ALPHA Collaboration@35# to tadpole-
improved form. ThencSW51.521 and 1.481 atb56.0 and
6.2, respectively.

The tadpole-improved renormalization constants at o
loop are given by the formulas:
5-19
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ZG
05u0F11asH gG

4p
ln~ma!21zG

~1!J G ,
cG5ascG

~1! ,

bG5u0
21@11asbT

~1!#,

b̃G5@11asb̃G
~1!#, ~A6!

wherem is the scale at which the continuumMS theory is
defined. The final results for all these tadpole-improved
efficients are given in Table XI. There are two points wo
noting: ~i! the tadpole factors cancel in the productbGm,
whereas neitherb̃G nor m̃ has any;~ii ! the one-loop correc-
tion cSW

(1) does not contribute to the renormalization or im
provement constants atO(as).

APPENDIX B

In this appendix we review tree-level improvement
Wilson fermions and define our conventions for improv
ment coefficients. TheO(a) improvement of Wilson fermi-
ons can be obtained by the transformation@36#,

c→c I5F12
ar

4
~D”W 2m!Gc,

c̄→c̄ I5c̄F11
ar

4
~D”Q 1m!G , ~B1!

where the continuum equation of motion is given by (D”W
1m)c50. Using the fact that the Wilson-clover operat
aW is related toD” by

aWW c5a~D”W 1m!c1O~a2!,

c̄aWQ 5c̄~D”Q 2m!a1O~a2!, ~B2!

we can rewrite the improved fermion fieldsc I and c̄ I as

c I5H 12
ar

4
@cswrD”W 2~22cswr!m#2

ar~12cswr!

4
WW J c

1O~a2!,

TABLE XI. The tadpole-improved one-loop coefficients in E
~A6!. The tadpole-improvement factoru0 has been chosen to be th
fourth root of the plaquette expectation value.

G g G zG
(1) cG

(1) bG
(1)

b̃G
(1)

S 1 21.002 1.3722 1.2818
P 1 21.328 0.8763 0.7859
V 0 20.579 20.2054 0.8796 0.7892
A 0 20.416 20.0952 0.8646 0.7742
T 24/3 20.134 20.1505 0.7020 0.6116
07450
-

-

c̄ I5c̄H 11
ar

4
@cswrD”Q 1~22cswr!m#1

ar~12cswr!

4
WQ J

1O~a2!, ~B3!

wherecswr represents an arbitrary ‘‘rotation’’ parameter. O
erators composed of these improved fermion fields are a
matically O(a) improved at tree level.

In particular, we can construct the tree-level improv
fermion bilinearsS, P, V, A, andT, as

SI5~11armbS!SL2arc̃SSone-link2
arcS8

4
ES ,

PI5~11armbP!PL1arc̃P]mAL,m2
arcP8

4
EP ,

VI ,m5~11armbV!VL,m1arcV]nTL,mn

2arc̃VVone-link,m2
arcV8

4
EV,m ,

AI ,m5~11armbA!AL,m1arcA]mPL2arc̃AAone-link,m

2
arcA8

4
EA,m ,

T1,mn5~11armbT!TL,mn1arcT~]mVL,n2]nVL,m!

2arc̃TTone-link,mn2
arcT8

4
ET,mn , ~B4!

FIG. 25. Propagators on two exceptional configurations ab
56.0. For each configuration we show the squared modulus
quark propagator withk5k7 and with the source~i! overlapping
with the zero mode~solid line!, and ~ii ! approximately 15 time
slices away from the zero mode~dashed line!. Note the large am-
plitude if the source overlaps with the center of the zero mode,
the large deviation from exponential fall off if it does not. In ea
case the time coordinates are translated so that the Wupp
source is att51.
5-20
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where we have dropped allO(a2) terms, and for allO, bO
5(22cswr)/2, cO5cswr/4 ~except cT52cswr/4!, cO8 51
2cswr, and c̃O5cswr/4. The local operatorsOL are defined
as c̄GOc with GO being 1,g55g1g2g3g4 , gm , gmg5 , and
ismn52@gm ,gn#/2 for O5S, P, Vm , Am , and Tmn , re-
spectively @37#; the equation-of-motion operatorsEO as
c̄(GOWW 2WQ GO)c, and the one-link operatorsOone-link as

Sone-link5c̄D”Jc,

Vone-link,m5c̄DJ mc,

Aone-link,m52 i c̄DJ nsnmg5c,

Tone-link,mn5emnldc̄DJ lgdg5c, ~B5!

where DJ5DW 2DQ . It is easy to see that the operatorsOL ,
Oone-link, and OEM form an over-complete basis for a
dimension-4 fermion bilinear operators, and therefore
new operators are needed for nonperturbative improvem
of the quenched theory. In this paper, we have chose
eliminate the one-link operators~and the]mAm term in PI!
nonperturbatively by an appropriate choice ofcswr. At tree
level, this impliescswr50, whereby

bO51,
ys

lff,

s

.

a

a
su
i,
y

n

hy

vi
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cO51,

cO8 51. ~B6!

It is important to note that beyond tree level, the mat
elements of the one-link operators have divergences pro
tional to a21, and hence contribute to the renormalizati
constants atO(a0). As a result, not only do theO(a) cor-
rection termsbO , cO , andcO8 depend on the choice ofc̃O ,
but so doZO

0 , except forO5P.

APPENDIX C

In this appendix we give a brief description of the tw
exceptional configurations we found in the 60NP data set
both of these we find that the zero mode is localized o
5–10 time slices. If the Wuppertal source overlaps with
zero mode then the norm of the pion propagator for qu
massk7 can be up to a factor of 100 larger than the avera
over the remaining configurations. If, on the other hand,
source time slice does not overlap with the zero mode, t
we observe a ‘‘normal’’ temporal fall off in the pion cor
relator until it hits the zero mode, when it shows a lar
bump. These two anomalous behaviors are illustrated
Fig. 25.
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@26# M. Lüscher~private communication!.
@27# T. Bhattacharya, R. Gupta, W. Lee, and S. Sharpe~in prepa-

ration!.
@28# A better choice might be to useJ5( z̄P(z)P(0) with z4@y4

@0, in which case the intermediate state is pseudoscalar,
this requires an extra inversion.
5-21



li, r

.

-

BHATTACHARYA, GUPTA, LEE, AND SHARPE PHYSICAL REVIEW D63 074505
@29# D. Becirevic, P. Boucaud, J. Leroy, V. Lubicz, G. Martinel
F. Mescia, and F. Rapuano, Phys. Rev. D60, 074501~1999!.

@30# G. P. Lepage and P. Mackenzie, Phys. Rev. D48, 2250~1993!.
@31# S. Sint and P. Weisz, Nucl. Phys.B502, 251 ~1997!.
@32# S. Sint and P. Weisz, Nucl. Phys. B~Proc. Suppl.! 63, 153

~1998!.
@33# Y. Taniguchi and A. Ukawa, Phys. Rev. D58, 114503

~1998!.
07450
@34# R. Wohlert, ‘‘Improved continuum limit lattice action fo
quark’’ DESY Report. No. 87/069.
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