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We present nonperturbative results for the constants needed for oragfagllimprovement of bilinear
operators composed of Wilson fermions. We workgat 6.0 and 6.2 in the quenched approximation. The
calculation is done by imposing axial and vector Ward identities on correlators similar to those used in standard
hadron mass calculations. A crucial feature of the calculation is the use of nondegenerate quarks. We also
obtain results for the constants needed for off-skl&) improvement of bilinears, and for the scale- and
scheme-independent renormalization constafis,Z,,, andZs/Zp . Several of the constants are determined
using a variety of different Ward identities, and we compare their relative efficacies. In this way, we find a
method for calculating, that gives smaller errors than that used previously. Wherever possible, we compare
our results with those of the ALPHA Collaboratigwho use the Schringer functional and with one-loop
tadpole-improved perturbation theory.
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I. INTRODUCTION of the method of Ref[10]. Results of a pilot simulation at
B=6 (quenched suggested that the method was practical.
Symanzik’s improvement program is a systematic methodhis simulation had the drawback, however, that it was done
for reducing discretization errors in lattice simulatiqis?].  using tadpole-improved, rather than nonperturbatively im-
One must improve both the action and the external operatoliroved, Wilson fermions. Thus a clean separation of sources
by the addition of appropriate higher dimensional localizedof error was not possible.
operators. Complete removal of discretization errors at a |In this paper we present results of a more extensive inves-
given order in the lattice spacirarequires a nonperturbative tigation of the method. We use the nonperturbatively im-
determination of the coefficientéthe “improvement con- proved action, taking the nonperturbative value for the
stants”) of the higher dimensional operators. A key ingredi- Sheikholeslami-Wohlerfor “clover”) coefficientcgy [11]
ent in the practical implementation of the improvement pro-from the work of the ALPHA collaboratiofi3]. Thus the
gram is the development of methods for sucherrors after improvement should be ©{a?). We study the
nonperturbative determinations. scaling behavior of improvement and normalization con-
The ALPHA Collaboration has exploited the connectionstants by carrying out the calculation at two values of the
betweenO(a) discretization errors and chiral symmetry to |attice spacing,8=6 and 6.2(quencheyl We also extend
develop nonperturbative methods for the calculation of som@revious work by determining the improvement coefficients
of theO(a) improvement constantshose for the action and for the operators that vanish by the equations of motion
some of the local fermion bi-linear operatpf{8—6]. Their  (“equation-of-motion operatorsj. These contribute only to
approach is based on the imposition of axial and vector War@ff-shell matrix elements, and thus are not of direct physical
identities. It also determines the renormalization-scalerelevance, but they do contribute to the Ward identities at
independent normalization consta@fy, Z,, andZ¥z3, as  nonzero quark masses.
originally observed in Ref{7]. This nonperturbative deter- As already noted, several of the improvement and renor-
mination of improvement and normalization constants is ofmalization constants that we determine, have been previ-
considerable practical importance, as uncertainties in thessusly obtained by the ALPHA Collaboration. An important
constants can be a significant source of error in lattice calcudifference in the implementation of the improvement condi-
lations of matrix elements. tions is that the ALPHA Collaboration uses Sctfirmger
In Ref. [8] we showed how to extend the method of thefunctional boundary conditions with sources on the bound-
ALPHA collaboration to determine all th®(a) improve-  ary, while we use periodic boundary conditions with stan-
ment constants for bilineaf®]. The extension involves the dard sources for quark propagators designed to improve
enforcement of Ward identities for massive, nondegenerateverlap of local operators with hadronic ground states. This
quarks, rather than in the chiral limit, and is a generalizatiormeans that the results for improvement constants will differ
atO(a) and the normalization constants will differ@(a?).
One of the aims of our study is to compare results from the

*Electronic address: tanmoy@Ilanl.gov two approaches, since this gives an indication of the impor-
Electronic address: rajan@lanl.gov tance of the neglected higher order terms. We can also get
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ing section we briefly recapitulate the theoretical background (58(12)qu2,33ﬁ(y)3(31)(0)>=<5O(Rl,§,)ﬁ(y)~](3l)(0)> (5)

to our method, and give a general description of our imple-

mentation. Section Ill contains a summary of our simulationfor enough choices od, O, andy to determine all the rel-
parameters. In Sec. IV, we present our final results and dig2vant improvement and scale-independent normalization
cuss their implications. We reserve a detailed discussion dgfonstants. This should then guarantee that the identity holds
the calculation of the individual improvement coefficients for UP to corrections 06 (a) for other choices o andy. Here
Secs. V—XII. We close with some conclusions in Sec. Xl|I. 90 is the bilinear that results from the axial variation®@fin
Three appendixes collect the tadpole-improved perturbativi1® cONtiNUUMA =V, , S=P, andT,,— €,,,,T,,), and
results that we use for comparison with our nonperturbativé€ variation of the action under an axial rotation is
estimates, the tree-level definitions of the improvement con-

stants, and a discussion of exceptional configurations. §S12=712 fvd4x[(2'm12)(P|,oﬁ)(12)—5M(A|,oﬁ)f2)]-

(6)
) - The pointy lies within the domainV of the chiral rotation,
On-shell improvement of bilinear operators @{a) re-  \yhile the sourcdl is located outsida/.

quires both the addition of extra operators, To implement Eq(5) away from the chiral limit, it is not
(A),=A,+acsd,P sufficient to use the on-shell improved bilinedg defined
V5w SEATUE in Egs.(2) and (3). One must also include dimension-4 op-

Il. WARD IDENTITIES: THEORETICAL BACKGROUND

(V)),=V,+acyd,T erators that vanish by the equations of motion, and this has
R vosr been anticipated in the use of the subscript off. As noted in
(T)),,=T,,+ac(d,V,—aN,) Ref. [14], there is one such operator with the appropriate
pyoey povoTveRT symmetries for each bilinear:
Pi=P. OWly=28 0l @
=S, 1 . " L i
S @ Ofiy =0 —aic,EW, ®

and the introduction of the following mass dependence: D) — (D) o ()
I i) Eo'= ¢ TWyl — Wy (€)
i) — + . ij

Or ' =Zo(1+boam;)0y @ In the equation-of-motion operatoEs,, I' is the Dirac ma-
3) trix defining O, adez,//jz(ID.ﬁL mj)z/;j+0(a2) is defined t.o

be the fullO(a) improved Dirac operator for quark flavr
Here (j) (with i#j) specifies the flavor and® (see Appendix B This ensures thaE, gives rise only to
=AV,P,S,T. The Z% are renormalization constants in the contact terms, and thus cannot change the overall normaliza-

chiral limit, m;;=(m;+m,)/2 is the average bare quark masstion Zo. Th,e factors mulyplylngEo are chosen such the_lt,_ at
[12], andf; is the quark mass defined in E@5) using the tree Ievel,qozl for all Dirac structures as shown explicitly
axial Ward identity(AWI). There are yet other improvement in AppendixB.
constants needed in order to extend the analyses to flavor- For practical applications, it is useful to express the Ward
neutral bilinears i(=j) and to full QCD. These extensions dentity in terms of on-shell improved operators. The
are discussed in Ref13], but are not relevant here. Note €quation-of-motion operators contribute only when the op-
that, except in Appendix B, we have set the Wilson param®eratorsP (contained insS) and O, in the left-hand sidelhs)
eterr equal to unity. of Eg. (5), coincide. Theys in I.D,voﬁ changesO, o to
When improving the theory t®(a), one still has free- 9O, and 0, up t@(a?) corrections, these contact terms
dom in defining thec,, and theb,,. For example, in general, are proportional to the right-hand sides) of Eq. (5). After
they can depend on the correlators used to define them afgarrangement, one finds

=Z(1+Dbpaf;) O .

on the quark mass. We shall consistently use the value in the d4x5S, O2d 513300
chiral limit as it is the simplest choice and is also the one {Jvd'x (1;)0' Ey4;§1)) (0
made in previous work by other collaborations. The correla- (60177(y4,¥)37(0))

tors used to define them are discussed in subsequent sections.
To avoid confusion, we stress that the coefficidnsdif-

fer from theby used by earlier authors. In particular, at the

level of O(a) improvement, one has

28 | ool
— = 2
Tz AT Mt O@%), (10

where
bo=(ZRZYZp)bo . 4 891 ()=2M1P ()~ 3, (A) 2 (). (1)
The analogous relation betweenm and M is given in Eq. This is the form of the AWI that we enfordge., for some
(27). choice ofJ we fit to a range iry, neglectingO(a?) contri-
Improvement can be achieved by imposing the geneributiong in order to determine the improvement constants.
axial Ward identity Note that the mass multiplying th&f coefficients isth and
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not m. Also, for brevity, mention of th@(az) terms in all TABLE I. Simulation parameters, statistics, and the time inter-
equations is henceforth omitted. val in x, defining the voluméV over which the chiral rotation is

To highlight the dependence on quark masses, the rhs ¢frformed in the AWI. The sourcgis placed at=0.
Eqg. (10) can be written as

Label B cgw a ! (GeV) Volume L (fm) Confs. x,

0

Zs0 (14 8B soffies abafiy abofh 3]+a0|':+0<'9m 60TI 6.0 1.4755 212 F&x48 15 83 4-18
z37), 0T SEATZ SRR 122 GONPf 6.0 1769 212 1548 15 125 4-18
(12 60NPb 112 27-44
62NP 6.2 1.614 291 <64 1.65 70 6-25
and, in the special cad®,=m, relevant to our numerical 70 39-58
study, as
Z% % : am, By choosing0=S,P,A,V,T we can determine all five,,.
2875 1+(bso=bo) 2 Details of this part of the calculation are presented in Sec.
XIl.
0
Zso [bso—bo ~ | CptcCo| _
0,0 2 A 5> [8M-
Zplo lll. SIMULATION PARAMETERS
13 The parameters used in the three sets of simulations are

) _ . given in Table I. The table also gives the labels used to refer
Here we have defineh =m;j|m —m, 1., M is the AWl {5 the different simulations in the following. For the lattice
mass with two degenerate quarks of bare nrass scalea, we have taken the value determined in Rdb]

In our lattice simulations we calculate the Ihs of E&§0)  usingr,, as it does not rely on the choice of the fermion
as a function offh;=m, and Mz, and extract the various action for a giveng. In this study what we mostly need is the
constants using the following procedure. In the first step othange in scalea(8=6.2)/a(3=6.0)~0.73, which is much
the analyses we remove the contribution of the equation-oftess sensitive to the physical quantity used toaset
motion operators by extrapolating the lhsfig=0 for fixed In Table Il we give the values of the hopping paramater
;. The ratioX,=2%,/(232%) is then given by the inter- we use, along with the corresponding results &n and

cept of a linear fit infy/2, while the slope giveX,(bsy @M. We also quote three estimates «f, obtained using
~DBy). By choosing operators with different Dirac structuresduadratic fits, corresponding td) the zero of with mass
we are able to extract all the on-shell improvement constant&l€Pendent, (see Sec. Y (2) the Zero offh with chirally
as well asZ,, Zy, andZp/Zs. The only exception i, extrapolatedcc,, and(3) the zero ofM<. These are labeled
which as discussed in R€B], requires keepingh, # ff, . kM, k2, and«¥, respectively. In this paper we us¢”

This analysis ignore®(a?) terms. Since these can give henceforth and drop the superscript.
rise to a quadratic dependence on quark mass, it is important For each set of simulation parameters the quark propaga-
to check that linear fits are adequate. In cases where tHers are calculated using Wuppertal smeafibg]. The hop-
statistical quality of the data is good we compare linear anding parameter in the three-dimensional Klein-Gordon equa-
quadratic fits. Another check on the importance@fa?) tion used to generate the gauge-invariant smearing is set to
terms is to repeat the fits using the massinstead off1;. In ~ 0.181, which gives mean squared smearing radii raf){
this case the ratio of slope to intercept gitgg— b, which ~ =2.9 and 3.9 foj3=6.0 and 6.2 respectively.
we can then compare to the results fay,— b, using Eq. For the 60NP data set, we have investigated the depen-

(4). This comparison is nontrivial since ti(a2) effects are dence of our results on the time extent of the region of chiral

different in the two cases. We stress, however, that unlesr§)tat'°n.' As s.hown n Table |, one regidforward of the
ource is 15 time slices long, while the othépackward of

otherwise stated, the results presented below are from fi ; . : . o
with respect tds P t'}1e sourcg is 18 slices long. Since we find no significant
We note that, up to this point in the analysis, we do notdepen(talen;:e Onl'f[;'; Iengt_h of ih‘te. t![_mel |_nt§rval, ;vehz:\jvetrr?ge the
need to introduce the off-shell improved operators. When w WO SETS of resulitassuming statistical independenae the
2NP calculation, we also use two rotation regions, this time

sendm, =m,— 0, we are removing the contact term between ' . :
P and O [8], and so on-shell improved operators suffice placed symmetrically about the source, in order to improve
' : }he signal.

This is no longer true, however, in the second step of ou In the 60NP data set we find two exceptional configura-

?:ri{a\yi?:. vvgzgzrlﬁiizl%:ﬁnnggzsg?ﬁsi?];?&iog,tafigtrﬁrm tions. Some details of the behavior of the pion correlator on
) . . N these configurations are discussed in Appendix C. The effect
the ElOpSQ of allnear fit c_>f the Ihs of Eq(l?.) with respect is most severe at the lightest quark mass We do not
:ﬁea;nslti?;[;?éeda%' In this way, for eactafy, we obtain discard these configurations, but we do neglect all data with
the lightest two quark masses, i.e., thg and x; points are
- - - not used in the final analyses of 60NPf and 60NPb data. In
CptCo=250—Xo(bso—bo—2ba). (149 the analysis of the 60TI data we excludeand «; since the
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TABLE Il. Values of the hopping parameter used in various simulations, and the corresponding pseudoscad jreasd quark mass
am defined using the mass-dependegt(see Sec. Y. The three estimates @f;, obtained using quardratic fits, correspond1pthe zero
of M with mass dependet, , (2) the zero offh with chirally extrapolatea, , and(3) the zero ofM i We quote the extrapolated value of
aM . for caseq1) and(2).

60TI 60NP 62NP
Label K am aM, K am aM, K am aM,
K1 0.11900  0.44®)  1.5301) 0.1300 0.1441)  0.7112) 0.1310 0.1348)  0.6091)
K2 0.13524  0.108)  0.5712) 0.1310 0.1181)  0.6302) 0.1321 0.1054)  0.5221)
K3 0.13606  0.084)  0.5042) 0.1320 0.0921)  0.5442) 0.1333 0.072@)  0.4181)
K4 0.13688  0.06@)  0.4312) 0.1326 0.07681)  0.4882) 0.1339 0.056(®)  0.3602)
Ks 0.13770  0.042)  0.3483) 0.1333 0.056l)  0.4162) 0.134 4 0.041@)  0.3072)
Ke 0.13851  0.02Q)  0.2444) 0.1342 0.0321)  0.3083) 0.1348 0.030@)  0.2612)
K7 0.13878  0.01@)  0.1958) 0.1345 0.0284)  0.26212) 0.1350 0.024@)  0.2352)
kM 0.139 262) 0 0.08215)  0.1353293) 0 0.08320)  0.1358615) 0 0.06610)
P 0.139 252) 0 0.08615  0.135301) 0 0.10616)  0.1358624) 0 0.07309)
«¥ 0.139 344) 0.135413) 0.135942)

former is too heavy and the latter may have contaminatiordiscrepancy we present, in Table Il, the valuesbf; at the
from exceptional configurations. k. determined from fits tén. Such a discrepancy has been
observed previouslysee, e.g., Ref17]), and can be attrib-
uted to a combination of quenched chiral logarithftise
effect of which is to caus1? to curve downward at small
We begin with some general comments concerning ouguark massefl8,19) and chiral symmetry breaking by the
analysis. First, all our quoted results are obtained using comction [which allows aM ,(M=0)xa%*? and a? effect, re-
relation functions at zero spatial momentum. We have nuspectively, for tadpole-improved and nonperturbatively im-
merical data for nonzero momentum correlators, which leagroved actions These contributions can, in principle, be dis-
to consistent results but with larger errors. Second, we usgnguished by the behavior of the intercepM . (M=0).
only the diagonal part of the covariance matrix when fittingQuenched chiral logarithms are a continuum effect, implying
the time dependence of correlators, or of ratios of correlatorghat the intercept should be the same for 60Tl and 60NP
Fits using the full covariance matrixvhich incorporates the simulations, and that it should scale roughly proportional to
correlations between timesligesere not, in general, stable. a. By contrast, explicit chiral symmetry breaking implies a
Where we could perform such fits, we found results withinreduction in the intercept when going from 60Tl to 60NP
1o of those presented. Finally, fits to the quark mass depen-
dence are also done ignoring correlations between the points ~ %4 T T T T T T T
at different masses, since our statistics are insufficient to in- p
clude them. Because of the latter two comments, we can
make no quantitative statement about goodness of fit. Nev-

IV. RESULTS

ertheless, assuming that the fits are good, the errors in the fit 0.3
parameters, which are obtained using the jackknife proce-
dure, should be reliable.

We begin with our results fok., which is needed to 0.2

define the vector Ward identitWI) quark massm. To
determinex., we make a quadratic fit of the AWI mags
andM fT versus the tree-level quark mass parametex. J#2s
to M include only degenerate quark combinations as it sim- 0.1
plifies Eq.(27). Fits toMfT include both degenerate and non-
degenerate combinations as they do not show any noticeable
dependence on the mass difference. For the nondegenerate
cases we define 2/, = 1/k;+ 1/x; . An example of the result- ol o b e
ing fits is shown in Fig. 1. The estimate gf from M should 3.65 3.7 3.75 3.8 3.85
be the same whether we use the mass-dependent valog for 1/26

or the chirally extrapolated value in EQLS) (see Sec. Y. As FIG. 1. Estimates ok, by extrapolating 62NP data féh and
evident from Fig. 1, the quality of both these fits is very M2, we show quadratic fits t for the two cases discussed in text
similar and the two values are consistent. (octagons label points with mass-dependegtand pluses label

Our results for 1. from quadratic fits tdVi%. are signifi-  points with chirally extrapolated,), and a quadratic fit tavi2
cantly smaller than those from fits fd. To highlight this  (diamonds.

(aM,)? am
T T T T | T T T T | T T T T | T T T T
1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
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TABLE lll. Results for the 60Tl data set. TABLE IV. Results for the 60NPf data set.
Reference  Two point Three point Reference  Two point Three point
Ca Eq.(15 —0.02206) —0.02309) Ca Eq.(15 —0.03704) —0.04507)
zd Eq.(17) +0.74701)  +0.74701) zd Eq.(17) +0.77001)  +0.76901)
By Eq.(17) +1.43627) +1.45529 By Eq.(17) +1.429200 +1.46624)
zd Eq.(17) +0.74701)  +0.74701) zd Eq.(17) +0.76901)  +0.76801)
by Eq.(17) +1.53424)  +1.53524) by Eq.(17) +1.52414) +1.52514)
z2/12822 Egs.(18) +1.06813)  +1.05614) z2/12822 Egs.(18) +1.06709)  +1.04113)
and(19) and(19)
z% Eq.(22) +0.75506)  +0.75906) z% Eq.(22) +0.77304)  +0.77504)
Ba—by Eq.(220 —0.51391) —0.47795 Ba—by Eq.(22) —0.23147) —0.17957)
VY Eq.(22) +0.75606)  +0.76006) zd Eq.(22) +0.77403)  +0.77604)
by— by Eq.(22 —0.48885) —0.45289) bay— by Eq.(22 —0.21643) —0.16553
z31(2%)? Eq.(25 +1.20715  +1.19616) z31(2%)? Eq.(25 +1.19709  +1.18510)
Ba—by Eq.(25 —0.668216) —0.566222 Ba—by Eq.(25 —0.19391) —0.18q107
z8 Egs.(200 +0.79107)  +0.78707) z% Egs.(200 +0.80803)  +0.80403)
and(25) and(25)
z2/12822 Eq.(26) +1.02910) +1.02613) z2/12822 Eq.(26) +1.04809) +1.03511)
z212822 Eq.(27) +1.06614)  +1.05415) z312822 Eq.(27) +1.04908) +1.02411)
Bp—Ds Eq.(26) —0.07088  —0.05589 Bp—Ds Eq.(26) —0.01355  +0.01957)
Ccr Eq.(30) +0.08715  +0.09918) cr Eq.(30) +0.06307)  +0.09211)

ba—bp+bg/2ca(m)] EQ.(27) +0.73966)  +0.70375) ba—bp+bg2ca(m)] EQ.(27) +0.60931)  +0.57053)
ba—Dbp+bg2ca(0)] EQ.(27)  +0.87964)  +0.02146) ba—bp+bg2ca(0)] EQ.(27) +0.88332  —-0.05222)

bp—Da Eg.(31) —0.12658  —0.12581) bp—bp Eq.(31) -0.07954  —0.03174)
bs—by—2(bp—bp) Eqg.(32) —0.588274 —0.266380 bs—by—2(bp—b,) Eq. (32 —0.331201) +0.1123398

data sets, and aar scaling in NP simulations. In our analy- include in Table VIl alona with the one-| turbati
ses this latter effect is expected to be small sificis deter- include | g wi ne-loop perturbative

mined by a fit over a large range of time slices where thg®sults discussed in Appendix A. We quote bbthb, and

pion dominates. If these fits had extended o, thenm  Pv.Da to simplify comparison with previous results.

andM . would necessarily vanish at the sameOur results We collect separately, in Table IX, our results for the

are consistent with the dependence expected from quenchégprovement constants, , the coefficients of the equation-

chiral logarithms. The large residusll ., therefore, points to  Of-motion operators. These are discussed in Sec. XIl.

the need to include the effect of quenched chiral logarithms The assiduous reader will notice that our results for the

in the extrapolation. 60TI data differ slightly from those presented in RES).
From the fitfh versus 1/2 we also obtain the combina- This is for two reasons. First, we use a new method for

tion (bp—ba+b,,) using Eq.(27). This is discussed in Sec. determiningcy . This leads to a much more precise result,
XI. and affects several other analyses that are dependesyt.on

In Tables III, 1V, V, and VI, we collect our results from Second, we have made several minor improvements in our
the various Ward identities, except for estimates cgf, analysis, e.g., using quadratic instead of linear fits versus
which are given in Table VII. Each identity allows us to quark mass where appropriate. The set of configurations has
extract one or more combinations of on-shell improvemenf'ot changed.
and normalization constants. The details of each of these We now discuss the salient features of our final results
extractions are discussed in subsequent sections. From thefé@m Table VIIl. Perhaps the most important issue is the
results, we construct our best estimates for the individuafomparison with the results by the ALPHA Collaboration.
constants, and these are collected in Table VIII. We quotdecause we use different improvement conditions, the re-
both a statistical errofobtained by single elimination jack- Sults for thezy can differ by~a?A%p, while those for the
knife, in which we repeat the entire analysis on each jackCx and by can differ by ~aAqcp. Numerically these are
knife samplg, and an estimate of the uncertainty in the con-about 0.02 and 0.15, respectively, &t 6.0; and 0.01 and
stants due toO(a?) errors. The latter is obtained by 0.1, respectively, g8=6.2. There are some quantities, how-
comparing results using values of, deduced using two- e€ver, where these differences can be enhanced. For example,
point and three-point discretizations of derivatives, as disin correlators dominated by the pion, contributions propor-
cussed in the following section. Another estimateQifa?)  tional toaB,=aM?2/2f, while formally of O(aAqcp), can
errors is obtained by comparing our results to the previoude numerically much larger. These cases are discussed in
estimates of the ALPHA Collaboratidd—6], which we also  more detail in the following sections.
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TABLE V. Results for the 60NPb data set. TABLE VI. Results for the 62NP data set.
Reference Two point Three point Reference Two point Three point
Ca Eq.(15 —0.03605  —0.04308) Ca Eq.(15 —0.03203) —0.03804)
zd Eq.(17) +0.77001)  +0.76901) zd Eq.(17) +0.78400)  +0.78700)
by Eq.(17) +1.42417) +1.46423) By Eq. (17 +1.304100 +1.31310)
zd Eq.(17 +0.76901)  +0.76801) zd Eq.(17) +0.787400)  +0.78700)
by Eq.(17) +1.52211) +1.52311) by Eq.(17) +1.42208)  +1.42208)
7%/787° Egs.(18) +1.06810)  +1.04114) z%/287% Egs.(18) +1.09105)  +1.08405)
P/ ~A%S P! &~A%=S
and(19) and(19)
z) Eq.(22) +0.76604)  +0.76604) zd Eq.(22 +0.78802)  +0.79002)
Ba—by Eq.(22) —0.28843) —0.25653) Ba—by Eq.(22 —0.11127) —0.07128)
Ay Eq.(22) +0.76804)  +0.76804) Ay Eq.(22 +0.78802)  +0.79102)
V \%
ba—by Eq.(220 —0.267400 —0.23650) ba—by Eq.(22 —0.10926) —0.07127)
z31(2%)? Eq.(25 +1.20411)  +1.19413 z31(2%)? Eq.(25 +1.18504)  +1.18105)
Ba—by Eq.(25  +0.007106) +0.043126) Ba—by Eq.(25 —0.092462) —0.11559)
z8 Egs.(200 +0.80604)  +0.79704) z% Egs.(200 +0.81802)  +0.81302)
and(25) and(25)
z2/12822 Eq.(26) +1.06110) +1.05Q014) z2/12822 Eq.(26) +1.08504)  +1.07705)
7%/2%7 Eq. (2 +1.05108)  +1.02712 z2%/7%7 Eq. (2 +1.07705  +1.07%05
pZRZ3 (27) 05108) 112) RThavad (27) 07705) 07105)
Bp—Ds Eq.(26) —0.11444)  —0.09744) Bp—Ds Eq.(26) —0.08623) —0.07523
cr Eq.(30) +0.05710) +0.08413) cr Eq. (300 +0.05%07)  +0.07807)

ba—Dbp+by2ca(m)] EQ.(27) +0.59633)  +0.54758) ba—bpt+bg2ca(m)] EQ.(27) +0.62624)  +0.61929)
ba—Dbp+bg2ca(0)] EQ.(27)  +0.88133) —0.05123) ba—bp+bg2ca(0)] EQ.(27) +0.85019  +0.12317)

bp—Da Eg.(31) —0.05854)  +0.00281) bp—bp Eqg.(31) —0.08626) —0.06234)
bs—by—2(bp—bp) Eq.(320 —0.379247 +0.096439 bs—by—2(bp—b,) Eq.(32 +0.047106 +0.176137)

Given these estimates of the uncertainties, we find that, &nd further reduced te-0.1 at3=6.2. While the latter dif-
B=6.2, there is complete consistency between our resultkerence is small enough to be accounted for by the expected
and those from the ALPHA Collaboration. Indeed, the onlyaAocp uncertainty, the larger result @=6 may indicate
statistically significant difference is fa2, which is calcu- higher order uncertainties.

lated very precisely, but this difference is consistent with The other differences betwedsis are more stable, and
being an~ azAéCD effect. are consistent with perturbative predictions within théa)

Moving to =6, we see that there are statistically signifi- yncertainties. The same is true of our final results forttise
cant differences not only fa29, but also forc, andc,, . For themselves: the largest difference is fdn, and is
ZJ the differences are consistent with the estimates of dis-_ 2aA ocp.
cretization errors given above. The difference ég(c,) is In fact, allowing for (1-2)aA ocp discretization uncer-
about two (threg times the expected size ot0.15—this  tainties, the only nonperturbative result that is in disagree-
could be an enhanced(a) correction or an effect of higher  ment with perturbation theory i2%/z2. A very large two
order ina. Either way, what is clear is that, withi®(a) |5, effect ~—4a2 is required to bring the results into
improvement, nonperturbative estimates of thehave sub- agreement. This finding is consistent with those of the APE

stantial uncertaintjes aB=06. The.only definite conclusion Collaboration who argue tha@.— 1 is significantly underes-
that we can draw is that the,, which are zero at tree level, timated by one-loop perturbation thed80].

are sma}II. , Concerning the statistical errors, we see a substantial im-
We find that the various constants show a strong deperls.q ement in the signal betwees=6.0 and 6.2. It is also
dence on the value afsy. The relatively small change from ,e\yorthy that the errors in our estimates are comparable to

the nonperturbative value #=6 to the tadpole-improved ,,ce from the ALPHA Collaboration. While a precise com-
value leads to noticeable changes in most of the constantsyaison of efficacies is difficult because of different system-
One of the most surprising results of R¢8&] was the e errors, and different ensemble and lattice sizes, we con-

large magnitude ofby—by~0.5 at =6 with tadpole- clude that our method is competitive.
improvedcsy. This difference is predicted to be very small

(0.002 in one-loop perturbation theory, and even assuming
the two-loop term to be- a§ suggests a much smaller value
~0.02(0.015 at B=6(6.2). We find that the measured dif-  The determination o€, is central to the extraction of all
ference is reduced te-0.3 using the nonperturbatives, guantities that are obtained using the axial Ward ideii1i€y

V. CALCULATION OF cp
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TABLE VII. Results forc, . See text(Sec. VI for details. We limit our study of this issue to the comparison be-
tween two discretization schemes. Both are based on a mix-
62NP ture of two-point and three-point discretizations. This termi-
Two point Three point nology is explained in Ref[8], and is exemplified by
dyf(x+0.5 f(x+1)—f(x)]/a (two-poiny and d,f(x
G @) om ox0) f(x+0.5)-[f(x+1)=f(x))/a (two-point and ,f(x)

—[f(x+1)—f(x—1)]/2a (three-point. Results from both
Extrap. —0.11563) —0.08762 —0.03264) —0.09661) schemes are quoted in Tables Ill, IV, V, and VI.

1/mfit —0.08615 —0.10217) —0.173200 —0.12319 In our first scheme, we implement E(L5) using two-
Slope —0.09419) —0.09419) -—0.10719) —0.10919) point discretization. In the subsequent calculations, based on
ratio the AWI of Eq.(10) we use the same two-point discretiza-
60NPf tion in SS[Egq. (6)] as in Eq.(15), and replace the continuum
Two point Three point integral by a simple sum. For the derivatives within the op-
eratorsO and 60, however, we use three-point discretiza-
ca(m) ca(0) ca(m) ca(0) tion. In our second scheme, we repeat the calculations using

Extrap. —0.09456) —0.06057) +0.04668) —0.04863) tEe value 0(‘;‘?A obtained ]Y"herr]‘ eé‘fo,rcm,g quﬁ) with a g
1/m fit —0.13126) ~0.20538) ~0.36371) —0.20953) t ree-pOInt iscretization for the derivatives. The remainder

of the calculation is done with the same discretizations for
Slope -~ ~0.11819) 0.11419 0.11326) 0.12026) 6S, O, and 5O as in the two-point scheme but for the new

ratio
60NPb value ofc,.
Two point Three point There is a subtlety in the comparison between results
P P from the two schemes. It follows from the relation
ca(m) ca(0) ca(m) ca(0)
Extrap. —0.11978 —0.08678) +0.01387) —0.06781) (3, [(A{MOPON) () —2mPMOPON] (£ 4+ 8/2)3(0))

1/mfit —0.07138 —0.15745 —0.35986) —0.17163)

Slope —0.09730) —0.09631) —0.09237) -—0.10237) +(,LAMTOM) ,(Ca) —2mPitoPont]

ratio o X (t—al2)J(0))
Two point Three point =2(d,[ (AP (cp—am/2)—2mP](t)J(0))
ca(m) ca(0) ca(m) ca(0) +0(a?) (16)

Extrap. —0.483124) —0.468125 —0.337135 —0.451131)

1/mfit —0.14363) —0.16265 —0.36780) —0.15871) that theO(a?) differences between two-point and three-point
Slope —0.25348) —0.25249) —0.22353) —0.24455) discretizations can be absorbed by shiftipg—c,—am/2 in

ratio the latter scheme. Thus, if one were to fit to the same range
of timeslices with appropriate weights, as defined by Eq.

) ] ] (16), the difference between, from two-point and three-
sincec, enters indS [see Eq.(6)]. Its evaluation uses the point determinations would be @(a?) in the chiral limit.

AWI with no operator present in the domain of chiral rota- This difference would then not be useful as an indicator of

tion. In particular,c, is adjusted so that the ratio O(a) discretization errors.
In practice, however, our fits do not weight the points
2 (3,[A,+ acadaP1(%,1)309(0)) appropriately for the relatiofil6) to be relevant. In particu-
X

—of. . (15 lar, we find th.at using the two-point scheme, the best_ fits are
(Do e 1) 0 for t=2 relative to the source dat=0, wheret=2 (which
Ez: (PM(x,1)319(0)) corresponds to evaluating the derivative at2.5) is the ear-
liest timeslice at which there are no contact terms for either
which defines the quark masg;;, is independent of the discretization scheme. On the other hand, for the three-point
sourceJ and the timet at which it is evaluated. Since this scheme, we are not able to include the point-a as the
criterion is automatically satisfied when the correlators areD(a®) errors are too large and the fit has poor qualthis
saturated by a single state, the determinationofelies on  was checked by turning on the full covariance matrBe-
the behavior of excited state contributions at small cause of this, the resulting values ©f do differ atO(a),
To implement Eqg.(15) one has to choose how to dis- and we take this difference as an estimate of the size of the
cretize the derivatives. Note that all choices lead to the samkigher-order discretization errors.
improvement and normalization constants at the order we are In our final compilation, Table VIII, the central values are
working, i.e., up toO(a) and O(a?) errors, respectively. from the two-point discretization, while the difference be-
This is because the difference between discretizations is exween the two discretizations is quoted as a systematic error.
plicitly proportional toa?. Thus investigating the sensitivity We note that the ALPHA Collaboration has used three-point
to the choice of discretization gives information on the sizediscretization of all derivatives. This does not, however, im-
of higher order discretization errors. ply that their results should be more closely comparable to
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TABLE VIII. Final results for improvement and renormalization constants. The first error is statistical,
and the second, where present, corresponds to the difference between using two-point and three-point dis-
cretization of the derivative used in the extractioncgf.

B=6.0 B=6.2
LANL LANL ALPHA  P.Th. LANL ALPHA P. Th
csw 1.4755 1.769 1.769 1521 1.614 1.614 1.481
Z%  +0.7471) +0.77Q2) 0.78046) +0.810 +0.78744)  +0.79224)(9) +0.821
Z8  +0.79%7)(4) +0.8072)(8) 0.790694) +0.829 +0.8182)(5) +0.8078)(2) +0.839
z2/2% +0.81%9)(5) +0.8425)(1) N.A. +0.956 +0.8843)(1) N.A. +0.959
ca —0.0226)(1) —0.0374)(8) —0.0835 —0.013 —0.0323)(6) —0.0384) -0.012
cy —0255(3)  —0.10717N(4) -0.327) —0.028 —0.092)(1) —0.247) -0.026
cr  +0.092)(1)  +0.061)(3) N.A. +0.020 +0.0547)(17) N.A +0.019
b, +t1443)(2  +1.431)@4) NA +1.106 +1.301)(1) N.A. +1.099
by +1.532 +1.521) +1542) +1.273 +1.421) +1.412) +1.254
bi—b, —0.5194)  -0263)(4) NA. -0.002 —0.143)(4) N.A. —0.002
ba—by —0.499)(4)  —0.243)(4) N.A. -0.002 —0.143)(4) N.A. —0.002
Bp—bs —0.0719)(2)  —0.064)(3) N.A. -0.066 —0.092)(1)  N.A. —0.062
bp—b, —0.12658(1) —0.0714)(5  N.A. +0.002 —0.093)(3)  N.A. +0.002
b, +0.9210)(6) +1.174)8) N.A. +1.104 +1.193)(5) N.A. +1.097
by +1.059(4)  +1.283)(4) N.A. +1.271 +1.323)(4) NA. +1.253
b,  +0.8011)(6) +1.105)(13) N.A. +1.105 +1.114)(7) N.A. +1.099
bs 087144 +1166)(11) N.A. +1.172 +1.194)(6) N.A. +1.161

ours based on the, with three-point discretization, since J=P with Wuppertal smearing. We do not present the

there are other differences in the calculations.
To use Eq(15) we must also choose the sourteDiffer-

=A, data with Wuppertal smearing as that correlator is
dominated by the ground state alreadytat4, and is thus

ent sources produce different admixtures of the ground andery insensitive tac,. Results from the Wilson action de-
excited states, and thus have varying sensitivities for detepend substantially on the source, even in the chiral limit.

mining c, . Furthermore, different sources give valuesdgr
differing by O(a) [or O(1) if the action is not fullyO(a)

improved. We have investigated source dependence using T v T & & & F ] T T T
results from a separate calculation performed on 170

quenched lattices of size 32 64 at3= 6.0 using the Wilson
(csw=0) [21] and tadpole-improved cloverc§,,=1.4785)
[22] actions.(The slightly different value oftgy=1.4755
used in the 60TI calculation was an oversigfthe results

from three different sources are shown in Fig. 2. The sources
areJ=A, and J=P, both with wall source smearing, and

TABLE IX. Results for off-shell mixing coefficients.

60Tl 60NPf 60NPb 62NP

cytcp +2.75293) +2.8215  +2.6819) +2.628)
catChp +2.3046) +2.4324) +2.1231) +2.4314)
2¢p —-1.96152 +0.8997) —0.6557) +1.8224)
cstchp  +2.0221)  +2.4413  +2.4013  +2.407)
cr+cp +2.2633) +2.4018)  +2.2720) +2.429)
cy +3.7273) +2.38500 +3.0037) +1.7216)
Ca +3.2894) +1.9956) +2.4546) +1.5320)
Cp —0.9876) +0.4449 —0.3329) +0.91(12
cs +3.0073 +2.0048) +2.7233) +1.4914)
cr +3.24(75) +1.9649  +2.6038  +1.51(15

This is as expected since the action is not improved, leading

0.05

—0.05

FIG. 2. Estimates of 5 versus the quark mass for three different
sources] as discussed in the text. For the Wilson activ), esti-
mates oft, from the three] are very different. The improvement in
going to the tadpole-improved clover acti¢fl) is dramatic, and
the three sets of data collapse together. We show a linear fit to this
combined tadpole-improved clover data.
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FIG. 3. Estimates of @ for different values ofc, illustrated FIG. 4. Estimates of &; for different values ofc, illustrated
usingi=j= k5 in the 60NPf data set and two-point discretization. usingi=j =5 and the 62NP data set. For this quark mass:
For this value of quark mass, settiog=—0.022 extends the pla-  _ 0209 extends the plateau to the earliest allowed time slice

teau to the earliest time slide=2 at which there are no contact _» T4 show sensitivity to the tuning we contrast this best fit with
contributions. The fit forca=—0.083, the value obtained by the 4,0qa usingea=0 andc,= — 0.040.

ALPHA Collaboration in the chiral limit, and,=0 are included to

llustrate sensitivity. remains. This difference is presumably due to higher order

discretization errors. It is striking, however, that the differ-
to largeO(1) variations inc, . Also, as expected, there is a ence is reduced substantially by changgéom 6.0 to 6.2.
marked convergence when using the tadpole-improved adincea? only halves betwee8=6 and 6.2, this suggests
tion. Indeed, results from the three sources are consisteithat even higher order discretization errors are playing a
within errors (and linear extrapolation to the chiral limit dominant role. By contrast, the reduction in the difference
gives a resultc,= —0.0262), consistent with our 60Tl re- between our results for the two- and three-point discretiza-
sult quoted in Table 1l and have similar sensitivity in de- tions is consistent with being aaf effect.
terminingc, . Because of this, we have chosen to use only Itis interesting to compare our nonperturbative results for
J=P with Wuppertal smearing in the simulations devoted toCa With perturbative estimates. We see from Table VIII that
calculating improvement constants. the one-loop result£0.2X «) gives a substantial underesti-

We illustrate our determination a@f, (with two-point dis- mate. To explain the difference, one needs a large two-loop
cretization) using the nonperturbatively improved action in
Figs. 3 and 4. We tune, so as to extend the plateau to the L L B e B B B B B B B B
earliest time slica =2 at which there are no contact contri-
butions(the source is at=0). We have enough sensitivity to
clearly distinguishc, from zero. At3=6 we can also dis-
tinguishc, from that obtained by the ALPHA Collaboration
for the chiral limit [c,=—0.083(5)]. This difference re-
mains after we extrapolate our results to the chiral ljmgiv-
ing ca=—0.037(4)[23] for the two-point discretization and & —0.02
ca=0.045(7) for the three-point discretizatiorAt 5=6.2
our results forc, differ from the ALPHA value,c,=
—0.0384), atnonzero quark masas shown in the Figs. 4
and 3, but after chiral extrapolation they are consistent with —-0.03
the ALPHA result. This extrapolatiofwhich is done using a .
linear fit to the masses,— «s) is shown in Fig. 5.

In our previous papel8] we used tadpole-improved fer-
mions atB=6, and found a result inconsistent with that of
the ALPHA Collaboration, as can be seen from Table VIII.
We did not, however, have enough information to determine
the source of this difference. Our new result shows that while FIG. 5. The chiral extrapolation af, for 62NP data. Diamonds
increasingcsyy to its nonperturbative value moves, to-  label all mass combinations and stars highlight the ten combinations
wards the ALPHA result, a significant difference ©0.046  of x,— x5 used in the fit.

-0.01

T 1 r | r 1| rrrr

_0.04 1 1 1 1 I 1 1 1 1 I 1 1 1
0 0.05 0.1 0.15
am,,
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term ~ a? which, using the values quoted in Appendix A, is 0.95 —r—r—— T T
0.018 and 0.016 foB=6 and 6.2, respectively.

We close with a comment on the practical implementation
of the AWI. To the accuracy we are working, we can use, in
8S, either the appropriate mass-dependegnbr its value in
the chiral limit. We prefer the former, and use it throughout,
because it maintains the relatiop(A,){!) — 2m; Pt =0 at
finite quark masses on the states used to tyneOur data
suggest that this relation receives only small corrections on
other states relevant to the AWI. This ensutém the cp
obtained using two-point derivativeshat the ratio in Eq.
(10) is nearly independent of the time slice of the insertion of 0.8
the improved operator and the voluriweof chiral rotation.

We stress, however, that when the axial current appears as an
operator in the AWI, we use the chirally extrapolagdto L
give our central valuegsee Sec. )| and use the mass- osl—t— 1 L
dependent, to give an indication of the size of higher order 0 0.05 0.1 0.15
discretization errors. armhe

0.9

& 0.85

o FIG. 6. Linear and quadratic fit td,, versusm, for the 62NP
VI. Zy and by data set.

: 3 (23)
. The Tatrlx elements of the vector charfid”x Vi™(x), In this case the quadratic term is small. The intercept is con-
with my=Mms, are fixed by the charge of the states, and allowsistent at the 2r level, with that from Eq(18). We can use
a determination o, as a function of the quark mass. Our h t fits to al ’ tract th binatiin?/ 7072
best signal is for the matrix element between pseudoscalar -c WO fits 10 also extract the combina e/ ZpZs)
9 P ?rom the ratio of the coefficients of the linear term as ex-

Mesons. plained in Sec. IX. The results are given in Tables IlI-VI,
and are consistent with those obtained from the axial Ward
> (PI2(x,7)(V) 2 (y,1) I (0)) identity, Eq.(26), even though th®©(a?) errors could have
1 Xy been different in the two methods.

0 T ooy ' Our results forz) andb,, are compared with those from
Z{1+byamy) <z P(lz)(i,T)J(Zl)(O)> the ALPHA Collabvorationvin Table pVIII. There are small
X an differences forz%, 0.01%1) and 0.0051), respectively, at
B=6.0 and 6.2. These are of the expected magnitude for
with 7>t>0 andJ=P or A,. The two sources have com- O(a?) differences, and are consistent wi@(a?) scaling.
parable signal, and the final results are obtained by averaginghe results foby are, on the other hand, already consistent.
the two estimates when constructing the jackknife ensemble. The difference between one-loop tadpole-improved per-
Note that theO(a) improvement term inv, does not con- turbation theory and our nonperturbatizg is 0.04q1) at

tribute. Z% andby, are then extracted by fitting the data as a# =60 and 0.03dl) at 5=6.2, where only statistical errors
function of i, . have been considered. Recall that the discretization errors are
As an illustration we describe the procedure for the 62NF° . > .
while the missing two-loop perturbative terms should

data set. The quality of the data is very good, as shown iffVely: ’ _ 1ot
Fig. 6. A linear fit is clearly inadequate, so we use a quaP® ~@s~0.02 and 0.016, respectively. Thus the deviation

xpected to be of sizeaAQCD)2~0.02 and 0.01, respec-

dratic fit from perturbation theory is of the expected size, and the
scaling behavior is closer t@(aﬁ) than toO(a?). The nu-
Z,=0.78744)[ 1+ 1.304 10)M,a+ 1.06252)(,a)?]. merical values are consistent wi%hZaﬁ.
(18 The nonperturbative results fdr, exceed the one-loop

) ) 0 ) . estimates by 0.22) and 0.162), respectively, at the two
The intercept is our result fafy, while the coefficient of the ¢4 plings. These differences are much larger than the miss-
linear term, i.e., the slope in the chiral limit, is our result for jnq two-loop contributions, but are consistent with a discreti-
by. Note that if we had simply used a linear fit over our zation error of size=1.5aA ocp.
mass range, the result fdx, would have been 1.469), in Results forZ, are needed to calculate the vector decay
complete disagreement with our quoted result. constants and semileptonic form factorsbpiind B mesons.

We can also fiZ, as a function om=1/2«—1/2«.. This  Note that, aj3=6.2, the charm and bottom quark masses are,
provides a consistency check f{, and a direct determina- in lattice units, roughly 0.5 and 2.0, respectively, to be com-

tion of by . The fit gives pared to our largest mass of 0.13. It is thus important to
ascertain, to what mass the fits, given in Ed$8) and (19),
Z,=0.78713)[1+1.4228)ma+ 0.054)(ma)?]. can be used reliably. To address this issue we show in Fig. 7

(19 how the two fits extend to higher quark massesder6.2. A
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FIG. 8. lllustration of the quality of the signal for the Ihs of Eq.
(20) for the four data sets. In all four cases all quark propagators
correspond tocs.

FIG. 7. Predictions foZ, at 3=6.2 obtained by extending our
fits, Egs.(18) and(19), to larger quark masses. The result fiofth
is also shown, as are data points from the UKQCD Collaboration.

where the dependence an, enters only on the rhs. We
emphasize two important features of this method. First, it
‘does not require knowledge of the normalization constants
Z, andZ,, since these appear in the same combination on
both sides of Eq(20). Second, the relation holds for any
value of the quark masses, since the contact terms are the
same on both sidgsee Eq.(10)]. The determination oty
does, however, require knowledge @f, which enters both

plot of the quantitym/m [Eq. (27)], which we use to convert
fha to mais also included. We also show the recent nonper
turbative results foZ,, obtained by the UKQCD Collabora-
tion [24]. Comparing our fits with the UKQCD data we find
that both fits provide reliable estimatés within 2%) up to
the charm quark mass, with the fit to E48) being slightly
better. In fact, over the rangesma<0.5, truncating Eq.
(19) at the linear order, fits the UKQCD data to within 1% as. . 13
already noted by them. Beyomda~0.5 the two fits start to in S and in (A')E‘ ) on the lhs.

deviate, and their validity near the bottom quark mass needshThe two correla_tors on the lhs are dom!na'Fe_d by the pion
to be examined. Cchannel and the signal is excellent in the individual correla-

tors as well as in the ratio. The latter is illustrated in Fig. 8.
On the other hand, the correlators on the rhs are dominated
by the a; intermediate state, for which the signal is not as

. . good. We illustrate this by showing, in Figs. 9 and 10, the
We now turn to the analyses of the various three-poinfe g independent of and proportionaktp. It turns out that

axial Ward identities, and first consider the determination Ofthe difference between the Ihs and thgindependent term
the improvement coefficierd, . A precise determination of on the rhs is about 2% of the individual terms, and is com-

cy is important both for phenomenological applications a”dparable to the error, which is dominated by that from the

beca_us% th% unocertainty @y contributes significantly t0 €r- torm on the rhs. Nevertheless, as explained below, we can

rors inZy, Zp/Zg, ¢r, andc, . We have investigated several gyiractc,, with reasonable precision. To do this it is conve-

methods, and obtain the best results by enforcing nient to rewrite Eq(20) in terms of the following two quan-
tities:

VII. ¢y, AND by—by

> (852 (V) P (Y,y4) PEY(0))
y

> (852 (V)P (¥,y4)3C(0))
y
N=

> (A2 (Y,ya) PEY(0))
’ > (A2 (9,y2)3(0))
S (852 [V+acyd, T, 1 B(7,y) A (0)) ’
=2 : > (88VIP(y,y,) ARV (0))
; (A)(Y,y)AY(0)) ’

20 > ((A)(Y,y)ARY(0))
y
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0 10 20 30 FIG. 11. 62NP data foN andD used to extract,, and defined

in the text, plotted as a function @, —M;.

ayy o
dence orfimg+mM; as wel).

FIG. 9. lllustration of the quality of the signal for the first term  Close tof,; =y both N and D vanish. However, since
on the rhs of Eq(20) for the four data sets. In all four cases all the the discretization errors iN andD are different, they vanish
quark propagators correspond #g. at slightly different points. As a result the raf\/D is very

poorly determined wheiin, =3, and c,=N/D shows a
spurious 1/th, —M3) singularity, as illustrated in Fig. 12.

> (6520, T2,y AP (0)) Estimates ofcy for the combination{; ,f;} are highly
D= ' 1) anticorrelated with those foffn; ,m;}. Estimates ofc,, for
> (A BT,y ACY(0)) m,<m; are consistently more negat_ive as s_hown in Fig. 12.
7 Vit Y Ya) A Because of the spurious singularity mentioned above, we
explore the following three approaches to determipe
such thatc,,=N/D. Linearly extrapolate each of the three ratios of correlators
The data exhibit three interesting features. to M, =m,=0, working at fixed nonzer@éh; so as to avoid

Both N and D are, to a good approximation, linear in the singularity, and then solve far,. The weighted average
fm,— s, as illustrated in Fig. 1IN shows a weak depen- over the differenti; points is quoted in the first row in

0.8 E T T T T T T T T T T E
0.6 & _ 5
0.4 T % =
0'2 z_ SOTI - ¥ * )II\ I == _z 1 I T T T T I T T T T I
0FE x X 3 N .
—0.2 E 1 1 1 | 1 I 1 I | L3 B 7
0 10 20 L 4
0.4 =5 T T T T T T T T | T E 0.5~ 7]
0.2 EXBONP! a@ =1L 3 I i
o E©BONPb ** T 3 i §
-y A1 3 td | —
—02¢kt 1 1 1 1 | 1 —+ 1 1 | 1 = Q 0 i |
0 10 20 L 4
E T 1 7T T T T 3 B 7]
0.2 . B 7
- . 05 T
0.1 gonp E . ]
0 E 1 1 1 1 1 1 1 | ] r 7
0 10 20 30 _1 i I 1 1 1 1 I 1 1 1 1 I i
ayy, -0.1 0 0.1
am;—amg
FIG. 10. lllustration of the quality of the signal for the ratio
multiplying cy, in the rhs of Eq(20) for the four data sets, usings FIG. 12. Afit of the formcy=c{? + c{P/(, — ) to the 62NP

propagators in all cases. data.
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O o AL s S B s s s B making the intermediate state a vector meson. We have also
L - ] implemented the method of the ALPHA Collaborat{@j, in
C ] which the lhs withO=A;, J=V; at zero momentum is
0.1 _ — equated to unity in the chiral limit, making use of previously
- . determined results fo£%/z% and Z%. In all the cases we
[ _ ] have considered, however, the final estimates have larger er-
or . 7] rors than those quoted above. It is noteworthy, and perhaps
& u — . surprising, that our best method involves an intermediate
i i axial-vector state, rather than a vector meson.
—0.1 S RN | 7 The errors in our final result focy are substantially
- I . smaller than those of Ref6]. It is likely that part of the
L AL ] explanation for this improvement is our use of a different
—0.2 - -+ ] AWI and fitting method.
- - 1 To extractb,—by we use the lhs of Eq(20), so as to
L 1 ] avoid dependence ary, and follow the procedure outlined
U in Sec. II. After extrapolating téh, = M,=0, the ratio should
0 0.02 0.04 0.06 0.08 be described by
amg/2
FIG. 13. A constant fit as a function @iy/2 to extractc, from Z2(1+bafy/2)
the 62NP data. Points included in the fit are superimposed with a 0-0 — : (22)
fancy cross. ZpZy(1+byafy/2)

Table VII. This method yields estimates with the largest un—The SIOpf W'Eh respect /2 (m3(2) gives qur best esfi-
mate forb,—by (bao—by) and the intercept gives a second

certainty, as illustrated in Fig. 13. : o .
Fit N/D to the forme{® + c(V/(, —My) (as illustrated in ~ €Stimate o). As shown in Tables I11-VI, the results fak,

Fig. 12 and usecV:cS,O). We find that the result is insen- '€ consistent with those from the VWI, but with somewhat

sitive to the range of quark masses used; the results quoted Imrg]?rgrrors. As an example of the fits, for the 62NP data set
Table VIl are based on fits to,— x5 for 60Tl and 60NP and wetin
K1~ kg for 62NP.

Fit N and D separately to the forna+ y(f,—m3), and 1+ (ba~by)afmy/2

=1.2693)[1-0.11127)am,/2],

takecy to be the ratio of the slopegy/yp . This is legiti- zy

mate sincecy is given, in principle, byN/D for all quark 1+ (ba—by) P

masses. This method avoids the use of the intercetand A”Dy)amg/zs 1.2683)1—0.109 26) a2

ap, Which, being small, have larger discretization errors. Vay 2683)( 10926)amy/2].
For each of these methods we evaluagefor four vari- (23

ants ofcy: for both the usual choices of two-point versus ) L .
three-point discretization af,A, when determining 5 using The quality of the fits is shown in F_|g. 14' Even though thg
Eq. (15), we use mass dependent and chirally extrapolateﬂqterce_pt and the slope are al_m0~st |d~ent|cal,0th§y g\re consis-
values ofc, in the operator &) "> appearing in the denomi- tent with the expected relationb{—by)=(ZxZ5/Zp)(ba
nator on the Ihs of Eq20) [25]. Results are quoted in Table —bv)~0.92(04—by) within the errors. _ .
VII. We find that only for the “slope-ratio” method do all  Since the correlators on the Ihs of EQO) involve pion
four choices forc, lead to consistent results. We also noteintermediate states, higher-order discretization errors can be
that the estimates using all three methods are consistent if wghhanced as noted in Sec. IV. For example, a change in the
use the two-point, but not for the three-point,. Thus we ~ Value ofca usaed in the denominatoA.cy~aAqcp, leads to
take for our best estimate the value obtained with the “slope2 change irzy, of size
ratio mgthod and the two-pmr(u:hqally extrapolateficy . _ AZ0 aM?
Our final results are collected in Table VIII. Our main TV AT
conclusion is thaty, which is zero at tree level, remains Vay A 2m -
small in magnitude. We note that although our nonperturba-
tive estimate is smaller than those of the ALPHA Collabora-The ratio B,,=M?2/f is much larger tham\ gcp. Indeed,
tion, the difference is consistent with being dueadocp  B,~4 GeV at our values o, so thataB,/2~1 at 3=6.
corrections. Thus, although the rhs of E§24) is formally of O(a?), it
We have tried several other methods for determiipg  can be comparable in magnitude to &fa) effect. Of
One can demand that the rhs of E0) be independent of course, the numerator also dependsgnalthough in a way
y.. This turns out to be roughly true for the individual ratios, that cannot be estimated simply. Thus, it is possible that the
and thus holds independent@f. We have also tried differ- enhancea, dependence cancels Z@ and our results indi-
ent sources, e.g®=A;, J=V,; at zero momentum for the cate that this is what happens: two- and three-point discreti-
lhs andO=A,, J=V, at nonzero momentum for the rhs, zations lead to consistent results. This is an example of our

(24)
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FIG. 14. Linear fits to the lhs of Eq20) versus(i) the AWI ay
quark mas$h (crossesand(ii) the VWI quark massn (diamonds. =
The data set is 62NP. The fit to crosses givgs by, while that to FIG. 15. lllustration of the signal for the ratio defined in Eq.
diamonds gives,—by . (25) for the four data sets using; propagators in all cases.
general observatiofsee Sec. Ythat the value ot, deter- Rather than obtainingg by combining the results for

mined from Eq.(15) improves the axial current in other cor- 23/(22)2 with those obtained previously f&, it turns out

relation functions. , to be better to use the product of the left-hand sides of Egs.
In contrast, the improvement of the axial current_ does nOEZO) and (25), which yields 1/22)2 directly. Note that the
guararlteeNthat there are no enhane) errors in the linear O(a) M3 dependence cancels in this product. The
slope,by—bj [8]. In particular, using a mass dependeqt  gata, illustrated in Fig. 17, show a dependencetanat the
in (A)){** produces an enhanced higher order effect propora, level. Our final results are obtained by fitting a constant
tional toB,.. We see this clearly in our results. For example,to the data. A linear fit reduces the value by 2o.
for the 62NP data sely,— b, is —0.11(3) [—0.073)] for the As shown in Tables IlI-VIII, the statistical errors &}
chirally extrapolatect, and two-poinfthree-point discreti-  are roughly an order of magnitude larger than thos&Jn
zation, while using the mass-dependemt these results and are comparable to the size of the expe@¢d?) terms.
change to—0.304) [+0.345)]. It is reassuring that the dis- Thus, either the statistical or tf@(a?) corrections can ex-
cretization dependence is much weaker for chirally extrapoplain the difference between our results and those of the

latedc,, since this is the choice we have made at the ordeALPHA Collaboration, which are at the-12¢ level. The
of improvement that we are workingee Sec. )l These are
the results we quote. LA e e By B B B B B B

vill. z%
The AWI that yields the best signal fat is

58(12) A (23 _,’ V'(31) 0 - i _

2}7 < | ( |)| (y y4) i ( )> ZS(1+bVaFn3/2) N ]
- Y , 3 ]

S ((VPGyavio)y  ZaZaLBaam2) ) _

9 ]
(25) ]

which holds after extrapolation @, =M,=0. The interme- L .
diate state in these correlators is the vector meson. The qual- T
ity of the signal for the ratio on the Ihs is illustrated in Fig. 0 0.02 0.04 0.06 0.08

15. An example of the fit versu®,/2 is shown in Fig. 16. ’ ar”fla/z ' '

The resulting values fo£9/(Z%)? andb,—by are given in

Tables 1l1-VI. The latter have much larger errors than those FIG. 16. Linear fit to the ratio defined in E(®5) after extrapo-
in the determinations described in the previous section.  lation tofy=f,=0 for the 62NP data set.
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FIG. 17. 23, obtained from the product of ratios of correlators
defined in the Ihs of Eq20) and Eq.(25), shown as a function of

My/2. The constant fit is to the,— «s points, as indicated by the FIG. 18. Comparison of the signal in the ratio of correlators on

fancy crosses. The data set is 62NP. the |hs of Eq.(26) used to extracZ%/Z2. The data are for,

. . _ propagators in all cases.
deviations from one-loop perturbation theory are of the size

expected if the two-loop terms areag.

ay,

one can, using nondegenerate quarks, separately determine
ba—bp andb,,. In this section we discuss and use only
degenerate quarks, from which one can deternipe bp

Our best estimates @3/(222%) andbs—bp are obtained —b,,. The use of nondegenerate quarks, which allows a

from separate determination &@,—bp andb,,, is discussed in
Sec. XI.
We have analyzed E@R7) by extractingm from Eq.(15)
Z9(1+bpamy/2) using both the mass dependent and chirally extrapolated val-
= — , ues ofc, . An example of the data and linear fits is shown in
E (P13(¥,y,)33Y(0)) zgzg(1+ bsams/2) Fig. 19. The intercepts are consistent, and we quote, in
v ’ Tables IlI-VI the results using the mass-dependgnt We
(26)  also show in the same figure the fit to E86), which should
have the same intercept up @a?) terms. While the data
with J=P or A,. Both numerator and denominator have show no significant discrepancy the results from @&g) can
pions as intermediate states, and have very good signalsave enhanced discretization errors. Indeed, it follows from
Examples of their ratio are shown in Fig. 18. As discussed irEq. (15) that a change\c, results in

Sec. V, this ratio should be independentygfup to higher
order discretization errors. These errors are expected to be

larger for the 60Tl data set than for those with the non- Afh M2

perturbatively improved action, since the former are of =AcAa2—ﬁ:=AcAan. (28
O(a), and the latter of(a?). Our results are qualitatively

consistent with these expectations, as illustrated in Fig. 18.

Note that the scale is much finer for the lower graphs.
linear fit to Eq.(26) gives our estimates faf2/(Z2Z3) and

bp—bg quoted in the tables.
Another way to extracZ®/(22z%) is to use the relation

IX. 2%/Z% AND bs—bp

> (852533 (y,y,)3%Y(0))
y

m

Arhis is also the fractional change in the resultZg¢(z22z9)
obtained from Eq(27). Since as noted abovB,,~4 GeV,
this nominallyO(a?) uncertainty can be enhanced. As a re-
sult, we consider the evaluation using Ef7) less reliable

between the two definitions of quark mgdd], than that based on E(6), and we use the latter as our best
o 7050 (72) estimate.
m ~ o~ ~ (M i i
m_ POm 1- (bp—bp)aty+bra——2(, (7 The s!ope~ of ~the ﬂnear fits to I.Ec{.27) for degenerate
m  Z, May quarks givedh,—bp+bg/2. The statistical errors on the re-

sults are small, but there is a systematic dependence on
where X,,= (X;+X;)/2. This relation is useful becau&,  whether we use the mass-dependent or chirally extrapolated
=1/zg and bg= —2b,, [26,27]. From the nonleading terms c,—an O(a) effect enhanced bR . This problem is clear
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FIG. 19. Comparison of the quality of the linear fits used to
extractz3z%z3. The three fits correspond to) Eq. (26), (i) Eq.
(27) with M defined using the mass-dependext and(iii) Eq. (27)
with M defined using the chirally extrapolatex). The data are
from the 62NP set. Note that the intercepts from all three fits should 13 (31)
agree up to errors db(a?) but the slope ofi) is bp—bg whereas E ([=aVid7 (Y. ya) Tig (0))
those of(ii) and iii) arebp—b,—bg/2. 1+ac —

FIG. 20. The signal in the ratio of correlators defined on the
left-hand side of Eq(30) using x5 in all quark propagators.

Z (T (Y.ya) TiZ"(0))
from Fig. 19, and to highlight the magnitude we quote both-
values in Tables IlI-VI: the first corresponds to the mass-

dependent, and the second to the chirally extrapolatad 2 (3SPPTR (YY) TS (0))
Unlike the case ob,—by,, here the mass-independemt, =75 d . (30
which is our choice, leads to results that depend very 2 (TE(Y,y)TSE(0))

strongly on the choice of discretization. Because of these
very largeO(a?) effects, we do not use these estimates any

further. o where we have moved the dependence inT(),, onto the
Our derived results foZp/Zg, presented in Table VI, |hs, and used the fact tha't'l()Il has no contribution from the
are significantly smaller than the predictions of one-loop perc, term atg=0. Givenz%, Eq. (30) determinex after the
turbation theory As noted in Sec. Vv, the difference can Onlyml_>0 extrapo|at|on The data for the ratios on the left- and
be explained by an unlikely two-loop contributionda?. right-hand sides of Eq30) are illustrated in Figs. 20 and 21,
respectively, and expose the reason for the failure to extract
¢t by tuning with respect tg,: the two ratios are essentially
X. Cr flat within the domain of the chiral rotatiofwhich roughly
corresponds to the region of the fits in the Figure
To determinec we consider the AWI for the bilinear _ 1 should be independent dh;, up to corrections of
T, ie., O(a“). Our results are consistent with this expectation at the
! 1-20 level, as illustrated in Fig. 22 for the 62NP data set.
Our quoted results are the weighted average overxthe
— kg points.
E (88T (YY) TG (0)) To extractb; using the method proposed [8] requires
20 _1 (29 studying this AWI with all three quarks in E¢30) having
A 19 31) ' different masses. We have not done this extended calcula-
2 (T (7.¥a) Tia"(0)) tion, and consequently have no results ligr.

. . . XI. ADDITIONAL RELATIONS
As was the case fary, tuningcy in order to make the ratio

independent ofy, does not work. Instead we rewrite the  There are two additional relations that can be used to
identity in the following form: obtain information on improvement constants. These were
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FIG. 23. A constant fit to the 62NP data fop—b, obtained
using Eq.(31).

FIG. 21. The signal in the ratio of correlators defined on the

right-hand side of Eq(30) using x5 in all quark propagators.

derived in Ref[11], and discussed further in Rd#8]. The

first is

BP_BA:

B 4y ,— 2[ Mg+ My

An illustration of our results for the rhs is shown in Fig. 23,
and the results from fits to a constant are collected in Tables
[lI-VI and used to obtain the final results given in Table

VIII.
The second relation is

= =2
a[ My —Myy]

BS_BV ~ ~ A12_ Rz[ﬁ‘n_ mZﬂ
+(bp—bp)= — — , (32
2 PR aR M, -
2 P X, VEA(RDIFN0))
AlZZ . ’
(3D 2 €PX(S12(%,1)3(5(0))
X
(33
Z3 3,
R,==5=5- (34
* 23z
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L ] _ ]
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FIG. 22. Estimates af; as a function ofn,/2 for the 62NP data

set. The constant fit is to the,— k5 points.

0.08

As discussed in Ref8], of the two kinds of sources that one
can use in Eq(33), J®V=3;P3)(Z z,)PCEY(0) andJ@V
=S with 0<t<z,, the first has a better signal and
smaller discretization errors. Unfortunately, the final results,
quoted in the Tables, have very large errors due to large
cancellations between the terms in the numerator on the rhs.
We, therefore, do not use this second combination in our

final extraction of the individuab’s given in Table VIIL.

XIl. EQUATION-OF-MOTION OPERATORS

The method for calculating the combinati@p+c, of
coefficients of equation-of-motion operators has been de-
scribed in Sec. Il. The calculation, using EG4), involves
three pieces. The slopas are obtained from a linear fit to
the lhs of Eq.(10) versusm, at fixedm;. Examples of these
fits are shown in Fig. 24, for the 62NP data set. The on-shell
quantitiesX»(b,o—be) andX,b, can be obtained by com-
bining results discussed in previous sections. The results for
these three contributions, for the 62NP data set, are collected
in Table X. We find thatX,b, gives almost the entire con-
tribution. The final estimates for individual equation-of-
motion constants are given in Table IX.
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13— T T T cptcr: We choosel=T,, and O=T;; (60=T,,). All
correlation functions have a good signal as the intermediate
state is a vector meson.

The signal forsy, sg, and sy is good for allfh;, and
leads to a reliable estimate with comparable errorscfor
+cy, cpt+cg, andcp+cr. In all cases we find tha, are
independent offi; within statistical errors. Our final results
are given by the weighted mean ovi@g corresponding to
Ky~ Kg.

! To compare to the predictions of perturbation theory, it is
best to use the results fof +cp, X=V,A,S,T, in the upper

. part of Table IX, since these have the smallest statistical
errors. These four quantities are indeed consistent with the
expected result[2L+ O(«g) +O(a)]. The fifth quantity 2}

is only determined reliably g8=6.2, and also agrees with
this expectation. These agreements are a consistency check
on the extension of the improvement program to off-shell
quantities.

1.2 -

1.2 =

XIll. CONCLUSION
1. 1 1 1 1 | | 1 1 1 | | | 1 | | | |

IIIII
w0
>

We have demonstrated the feasibility of the WI method,
with nondegenerate quark masses, for determining the im-
am; provement and scheme-independent normalization constants
of the quark bilinear operators. The main advantage of using

ondegenerate quarks is that one can extract allbthe
hese quantities effect the overall normalization of operators
away from the chiral limit, and their determination is rel-

We briefly discuss some details of the calculation, and thé&Vant to phenomenological applications involving heavy me-
0

quality of the signal, in each of the five cases. sons. _ o
ch+cl: We chooseJ=P and O=V, (0=A,), in Our implementation of the Ward identities differs sub-

stantially from that used by the ALPHA Collaboration, so
that the results from the two methods can differ. These dif-
ferences should, however, be of si@éa) and O(a?), re-
gpectively, for improvement and normalization constants.
The differences between the two sets of results are, in fact,
consistent with these expectations. We stress, however, that
for the small quantities, andcy, this “consistency” allows

,C B _ _ , a substantial uncertainty #=6. For exampleAc,=0.05
2Cp: We choose)=S andO=P (60=S5). In this case, q,|q lead to~10% uncertainty inf, and 3% infp. At

the intermediate state is a scalar and the signal is 28"~ 3_g 5 on the other hand, there is a much smaller variabil-

The largest part of the error io, comes fromsp. The re- ity.

sulting uncertainty irc, dominates the error in the final es- ~ Bothc, andcy are obtained as a small difference between

timate ofcy,, cg, andcy. two large terms. We are, nevertheless, able to extract these
cp+cs: The choiceJ=P and O=S (§O=P) gives a quantities with reasonable precision. In particular, in the case

good signal in the correlation functions as the intermediatef c,,, we find that our best results come from enforcing a

state is pseudoscalar. different Ward identity than considered previously, with a

consequent reduction in errors. This improvement is impor-

TABLE X. The three contributions to the coefficient of the tant for phenomenological applicatiofsee, e.g., Ref29]),

o
o
o
(%)}
=
[y
o
=
[9)]

FIG. 24. Linear fits to the Ihs of E¢10), the slopes of whicls,
determine the coefficients of the equation of motion operators. Th
data set is 62NP anigh; corresponds tos.

which case the intermediate state is a pseudoscalar.

cptcp: We choosed=V; andO=A; (50=V,) whereby
the intermediate state is a vector meson. Unfortunately, th
uncertainty incy feeds in throughdO=V; and affects the
extraction ofs,. Thus, even thouglk, contributes little to
the central value oftp+c,, as illustrated in Table X, it
dominates the error.

equation of motion operatorg,+ cp for the 62NP data set. and also leads to smaller errors in our resultsZ@r Z%/Z2,
. cr, andcy,.
CotCp So Xo(bso—bo)/2 Xoba On the whole, tadpole-improved one-loop perturbation
cl+ch —0.2704) ~0.072) 1.524) theory underestimates the deviations of renormalization and
ch+ch ~0.1306) 0.072) 1.4103) improvement constants from their tree level values. In all but
ch+ch ~0.7316) 0.062) 1.707) one case, however, these discrepancies can be understood as

cL+ch ~0.1403) ~0.051) 1.293) a comobln%tlon of a twq-loop correctl_on of_3|z_e{]2)>< ag
ch+ch ~0.2305) 0.023) 1.464) (for Zy, Z5, andcy), higher order discretization errors of

size (1-2)XaAqcp (for cy, cr, andby), and statistical
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errors(for b, bp, andbg). The only exception iZ%/Z2, (OR)rinuur= 8k c\1— 3k 14K \1—3k;ldk,
for which a very large higher order perturbative contribution 0 i)
of size 4x a2 is needed to reconcile our nonperturbative re- X Z0,ped Olattice
sults with one-loop perturbation theory. _ —

We have presented results for the coefficients of equation = A1+ Bic( 12— 1/ 2cc)
of motion operators that are needed to improve the theory X \1+8rko(1/2x;— 2x) 20, perﬁo)g{t)ice,
off-shell. The most striking feature of their calculation is the '
improvement in the reliability of the calculation betwegn (A2)
=6.0 and 6.2.

An important issue is at what quark ma3¢a) improve-  where we have again absorbed a factorugfin Z%,pen to
ment breaks down, due to our neglect of higher order termamaintain the same definition as above. Equatia) shows
To address this issue we examine the case of the charthat using tadpole-improved field renormalization is equiva-
quark atB=6.2 for whichma~0.5 andim~0.4. Sinceby,  lent, atO(a), to usingb,=8«. in Eq. (3). In tree-level Tl
~1.1, theO(a) corrections toZy are approximately 45%. perturbation theory 8.=1/u,, and is the appropriate value
Assuming geometric growth, this would impky20% cor- ~ for by as shown in Eq(A6).
rection from the neglecte®(a?) terms. This is indeed what ~ The one-loop perturbative calculations have been done by
we find for Z, for which nonperturbative results for charm the ALPHA and JLQCD Collaborations31-33. Here we
quarks are available, and the data are good enough to allojXPress the results for the tadpole improvement scheme
the quadratic fit given in Eq18). On the other hand, we find Stated above. Tadpole improvement requires choosing a

that if we use the alternativ®(a) improved expressio#,  duantity U that is unity at tree-level, whose perturbative
=7%(1+byma), it works to within 1% at the charm quark Series is dominated by a tadpole contribution, and which can
mass. be evaluated nonperturbatively. Any other quandfywhose

Finally, we stress that the use of nondegenerate quarks Rgrturbative expansion is
determine thé andc, could be applied equally well in the

context of the Schidinger functional. It would be very in- X=X"+XWay, (A3)
teresting to compare results so obtained to those we have
found here. and which is dominated by contributions of the tadpole

diagram, can then be rewritten as
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Hereu{" is the coefficient ofas in the perturbative expan-
sion ofug, andag 1 is an improved coupling that we choose
APPENDIX A to be g?/4muj, where 8=6/g2. Since all results we quote

In this appendix we review the relation between con-&r€ tadpole-improved, we henceforth omit the subscript Tl

tinuum and lattice fields and the one-loop perturbative refor brevity.

where

sults. Throughout this paper we use In this paper, we choose, fary, the fourth root of the
expectation value of the plaquette for Whidﬁl)z — /3.

Our Monte Carlo data yielduy=0.8778 at3=6.0 and

(OR)%%ﬁnuum:"/4Kin((9R)|<$Jtt)ice- (A1) 0.8851 atB=6.2. Using thisuy, we find thatag=0.1340

and 0.1255 at the twg@'s.
At one loop, the coefficient of the clover term is

This normalization makes comparison between tadpole-

improved one-loop and nonperturbative results, quoted in Csw= u53(1+c(slv>vas), (A5)

Table VI, straightforward. In the tadpole-improved theory

[30], the normalization commonly used ig4«;x;uo. To wherec{)=0.214 is obtained by converting the results by

maintain the f'?,'d normalization ag4ix; we have ab- \yohiert[34] and the ALPHA Collaboratiofi3s] to tadpole-

sorbeduy into Z, .. Consequently, the TI perturbative re- improved form. Thercey=1.521 and 1.481 38=6.0 and

sult we use iSZ, o= Uo(1+tpald), wherety is the TI 6.2, respectively.

one-loop coefficient. The tadpole-improved renormalization constants at one
A second way in which tadpole improvement is defined isloop are given by the formulas:
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TABLE XI. The tadpole-improved one-loop coefficients in Eq. 100000 T T T T T T T T T T T T TS
(A6). The tadpole-improvement factap has been chosen to be the F ]
fourth root of the plaquette expectation value. r 7
10000 & E
r yT passl cM b{® B : 7
S 1 -1.002 1.3722 1.2818 taug E
P 1 —1.328 0.8763 0.7859 - ]
V 0 -0.579 —0.2054 0.8796 0.7892 ‘:-; 100 3
A 0 —0.416 —0.0952 0.8646 0.7742 3
T —4/3 -0.134 —0.1505 0.7020 0.6116 1oL yd
T 1e \ E
0_ Y 2 1 E b el 3
Zp=ug| 1+ arg) 7 —In(ua) + 2§ >] , : S :
01 IR B R R .\1‘-—4. J—-"f.’ vl Ly
1
CF:asC(r), 0 10 20 . 30 40
bp=u51[1+ asb%l)], FIG. 25. Propagators on two exceptional configurations at
=6.0. For each configuration we show the squared modulus of a
B]“_[1+ . 5(1)] (A6) quark propagator withc= k; and with the sourcéi) overlapping
= o7,

with the zero modgsolid line), and (ii) approximately 15 time

h is th | hich th NUUNS th . slices away from the zero moddashed ling Note the large am-
w greu IS t e. scale at which the continuuMS _t eory 1s plitude if the source overlaps with the center of the zero mode, and
defined. The final results for all these tadpole-improved COthe large deviation from exponential fall off if it does not. In each

efficients are given in Table XI. There are two points worthage the time coordinates are translated so that the Wuppertal
noting: (i) the tadpole factors cancel in the produsgtm, source is at=1.

whereas neitheb nor i has anyjii) the one-loop correc-

tion ¢, does not contribute to the renormalization or im-

— ar - ar(l——cgyy -
provement constants &i(as). =) 1+ gle® + (2= Copm]+ ————

4

2
APPENDIX B +0(a%), (B3)

In this appendix we review tree-level improvement of Wherecs,, represents an arbitrary “rotation” parameter. Op-
Wilson fermions and define our conventions for improve-erators composed of these improved fermion fields are auto-

ment coefficients. Th©(a) improvement of Wilson fermi- matically O(a) improved at tree level.

ons can be obtained by the transformatjga], In particular, we can construct the tree-level improved
fermion bilinearsS, B V, A, andT, as

ar
l//—>l//|:[1_ 4 (D—m) |y, c e
S=(1+armbs)S, —artsSyne-ink— 4 Es.
Y=y 1+ ar(|5+'“) B1) m ,
i ar | arc
| 4 P,=(1+armbp)P +arced, A ,— 4 - Ep.

where the continuum equation of motion is given HY (

+m)¢=0. Using the fact that the Wilson-clover operator

a)Vis related tol by arc,
- arEVVone—link,;L -

V| ,=(1+armb,)V_ ,+arcyd, T ,,

. . T4 TV
aWy=a(D+m)y+0(a?),

A =(1+armbyA ,+arcad,PL—arCaAsneiink

yaW=y(D—m)a+0(a?), (B2) ,
arcp
we can rewrite the improved fermion fielgs and ¢, as 4 The
ar R ar(l—cgy) - Ty,,=(1+armbpT_ ,, +arce(d, V. ,—3d, VL )
h=11- Z[Cswrm_(z_cswr)m]_TswrW 1 " g , g g
_ arcr
+O(a2) _arCTTone—Iink,;w_ TET,;UH (84)
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where we have dropped ab(a?) terms, and for all0, b,
=(2—cem)/2, co=Csul4 (except cr=—cCg\f4), Cp=1
—Cgwr,» @andCTp=cg,, /4. The local operator®, are defined

asyl’ o with ', being 1,ys=y1Y2¥3Yas Yur Yu¥s, and
10,,==[Yu,v,]/2 for O=S, P, V,,A,, andT,,, re-
spectively [37]; the equation-of-motion operator§, as

YT oW—WTI ), and the one-link operatoyne.ink aS
Sonedink= WD,
Vone-nnk,ﬂzgﬁﬂ W,
Aone-linku = ~ ilﬁﬂw Vs,
Tone-linkur= GWA(JS)\ YsYsi, (B5)

whereD=D—-D. It is easy to see that the operatd ,

PHYSICAL REVIEW D63 074505
CO: 1,
cH=1. (B6)

It is important to note that beyond tree level, the matrix
elements of the one-link operators have divergences propor-
tional to a~ %, and hence contribute to the renormalization
constants aD(a%. As a result, not only do th®(a) cor-
rection termsb, Cp, andc;, depend on the choice @,
but so doz2, except forO=P.

APPENDIX C

In this appendix we give a brief description of the two
exceptional configurations we found in the 60NP data set. In
both of these we find that the zero mode is localized over
5-10 time slices. If the Wuppertal source overlaps with the

Oonedink: and Ogy form an over-complete basis for all S
dimension-4 fermion bilinear operators, and therefore ng€ro mode then the norm of the pion propagator for quark
new operators are needed for nonperturbative improvemeass«7 can be up to a factor of 100 larger than the average
of the quenched theory. In this paper, we have chosen tgVer the remaining configurations. If, on the other hand, the

eliminate the one-link operatofand thed A, term in P,)
nonperturbatively by an appropriate choiceagf,. At tree
level, this impliescg,,= 0, whereby

bozl,

source time slice does not overlap with the zero mode, then
we observe a “normal” temporal fall off in the pion cor-
relator until it hits the zero mode, when it shows a large
bump. These two anomalous behaviors are illustrated in
Fig. 25.
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