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Measuring the aspect ratio renormalization of anisotropic-lattice gluons
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Using tadpole-improved actions we investigate the consistency between different methods of measuring the
aspect ratio renormalization of anisotropic-lattice gluons for bare aspect ratiosx054,6,10 and inverse lattice
spacing in the rangeas

215660–840 MeV. The tadpole corrections to the action, which are established self-
consistently, are defined for two cases, mean link tadpoles in the Landau gauge and gauge invariant mean
plaquette tadpoles. Parameters in the latter case exhibited no dependence on the spatial lattice sizeL, while in
the former, parameters showed only a weak dependence onL easily extrapolated toL5`. The renormalized
anisotropyxR was measured using both the torelon dispersion relation and the sideways potential method.
There is general agreement between these approaches, but there are discrepancies which are evidence for the
presence of lattice artifact contributions. For the torelon these are estimated to beO(aSas

2/R2), whereR is the
flux-tube radius. We also present some new data that suggest that rotational invariance is established more
accurately for the mean-link action than the plaquette action.

DOI: 10.1103/PhysRevD.63.074501 PACS number~s!: 11.15.Ha, 12.38.Gc, 12.39.Jh, 12.39.Mk
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I. INTRODUCTION

In principle, an improved action makes it possible
achieve lattice volumes large enough to overcome finite-
effects at a computational effort low enough to obtain m
surements with good statistical errors. However, typi
masses for heavy states may be similar to or larger than
inverse lattice spacing on the associated coarse lat
Propagators for such states then decay too fast in lattice u
for accurate measurement.

The problem can be overcome by tuning couplings as
ciated with the ‘‘time’’ direction so that the temporal lattic
spacingat is much smaller than the spatial lattice spaci
as . Refined measurements are then possible while retai
the computational advantages of the improved action
coarse spatial lattice. Such anisotropic actions have alre
been successfully applied to the glueball spectrum@1,2#, the
spectrum of excitations of the interquark potential@3,4#,
heavy hybrids@5,6#, and the fine structure of the quarkoniu
spectrum@7#. They are also expected to be a powerful tool
extracting excited-state signals, obtaining high-moment
form factors, pushing thermodynamic calculations to hig
temperatures, and in the calculation of transport coefficie

In this paper, we consider one formulation of the anis
tropic action for the pure Yang-Mills sector@8,9#:

*Present address: Dept. of Physics, UCSD, La Jolla, CA 920
0319.
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Here s,s8 run over spatial directions,Ps,s8 is a 131
plaquette, andRs8s8,s is a 231 rectangle. The coefficients o
these terms are chosen so that the action has noO(as

2) dis-
cretization errors in tree-level perturbation theory.x0 is the
anisotropy parameter and is equal to the aspect ratio of
spatial and temporal lattice spacings,as and at at the tree
level. At higher orders in the perturbative expansion, t
aspect ratio receives quantum corrections, so a renorma
anisotropy determined from a physical process,xR , differs
from x0 at O(as). Tadpole improvement~TI! of the pertur-
bative expansion is achieved by tuning the input spatial
temporal link parametersus and ut for self-consistency at
each choice ofb andx0.

Here we report on the accurate determination of the t
pole parameters in the plaquette and landau mean-link
mulations.~Nontadpole-improved actions have been stud
in Refs. @10,11#.! We compare methods for measuring t
renormalized anisotropy and discuss the importance of lat
artifacts. In order that the anisotropic formulation can
used with confidence, physically distinct methods for det
mining the renormalized anisotropyxR5as /at should agree.
Discrepancies in the results forxR give a measure of lattice
artifacts and an indication of the importance of further im
provements. Our results have been used in application
anisotropic lattices to heavy quark hybrid states.

In Sec. II we report on the determination of the tadpo
parameters, in Sec. III the renormalized anisotropy meas
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ALFORD, DRUMMOND, HORGAN, SHANAHAN, AND PEARDON PHYSICAL REVIEW D63 074501
ments are presented, and in Sec. V we discuss the result
present one conclusions.

II. TADPOLE PARAMETERS

In both the plaquette and Landau mean-link formulatio
the tadpole parameters are determined self-consistently
are defined by

us5~Ps,s8!
1/4, ut51, plaquette,

us5^Us&Landau, ut5^Ut&Landau, Landau, ~2.1!

where the Landau gauge is defined by the field configura
which maximizes@12#

F~$U%!5(
xm

1

umam
2 Re TrH Um~x!2

1

16um
Um~x!Um~x1m̂ !J

~2.2!

with respect to gauge transformations. We denote the ga
coupling in the two schemes asbL andbP , respectively.

A. Plaquette tadpoles

In the plaquette scheme of Eq.~2.1!, ut51 and us is
determined self-consistently. The expectation value of
spatial plaquette is computed for a range of input parame
us close to and spanning the self-consistent valueus* . A
linear interpolation is sufficient to give an accurate value
us* . This value is then checked in a further Monte Ca
simulation. The values ofus* for a set of couplingsbP and
tree-level anisotropiesx0 are given in Table I. For the lattice
sizes used in the simulation, the plaquette expectation v
is found to be independent of the volume at the fo
significant-figure level. An extrapolation to infinite volume
unnecessary.

B. Landau gauge fixing

The maximization ofF(Um
g ) in Eq. ~2.2!, where Um

g

5g(x)Um(x)g†(x1m) with respect to a gauge transform
tion $g(x)%, was carried out using the conjugate-gradie
method modified to deal with the group structure of the li
elements. At each stage of the iteration the appropr
conjugate-gradient vector$v(x)% is computed as a covarian
derivative@13#:

TABLE I. Self-consistent plaquette tadpole parameters.

bP x0 us* (us* )4 ^Ps,s8& at us*

2.1 6 0.774166 0.3592 0.359136~72!

2.3 4 0.793925 0.3973 0.397267~52!

2.3 6 0.791062 0.3916 0.391621~73!

2.3 10 0.789695 0.3889 0.388650~85!
07450
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v~x!5
]

]h~x!
F~Um

g !uh50 , ~2.28!

whereg(x)5eh(x).T andT are the generators ofSU(3). The
vector $v(x)% has elements lying in the Lie algebra o
SU(3). For each vector a series of group elements is c
structed in the associated one-parameter subgroup, each
ment being a given power of the preceding one:

g15exp~ev !, gn5~gn21!p, 1,n<N. ~2.288!

The local maximum in the directionv is found by evaluating
F(Um

gp) in descending order fromp5N to p51. The value
of e, at any stage, is reduced until either the sequence ex
its a maximum or remains constant within a preset toleran

For largex0 the terms includingUt dominate the expres
sion forF and near to the maximum relatively small chang
in F correspond to quite large changes inus . Consequently,
to be sure thatus as well asut is accurately calculated, th
maximum must be found to a sufficiently high accuracy. T
criterion chosen wasdF/F<231026 wheredF was the ac-
cumulated change inF for three consecutive iterations of th
conjugate-gradient algorithm for which the individu
changes inF were nonzero. This criterion accounts for th
observation that from time to time close to the maximum
change inF was zero. We chosee5231025, p54, andN
56.

C. Landau gauge fixed tadpoles

The self-consistent value ofu5(us ,ut) can be deter-
mined by a generalized Newton-Rapheson method or by
ear interpolation. The latter method was used for the me
link tadpoles and was implemented by choosing four in
tadpolesui , i 51, . . . ,4, andmeasuring the four correspond
ing output tadpolesui8 , i 51,4. A linear map is assumed fo
the incremental vectorsr i5(ui2u1),→r i85(ui82u18), i
52,3,4:

FIG. 1. Fit of us(L)5us(`)1As /L2 for L56,8,10.
1-2
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r i5Mr i8 , i 52,3,4, ~2.3a!

whereM is a 232 matrix that is determined from the me
sured images ofr2 ,r3 and checked for consistency again
the measured image ofr4. The self-consistent tadpoleu* is
then predicted to be

u* 5u11~12M!21~r182r1!. ~2.3b!

The self-consistency ofu* is then checked computationally
This method was found to be very reliable and only subj
to minor adjustments to account for statistical errors.

Moreover, a meaningful statistical error can be assig
to u* from the image underM 21 of the statistical error box
deduced foru* from the measurements values of the tadp
parameters. Let the image ofu* under the mapM be u* 8
with statistical errordu* . The valueu* is acceptable if in
terms of componentsu* 82du* 8,u* ,u* 81du* 8, and the
error quoted onu* is du* 5M 21du* 8. A typical example is
for bL51.8, x054 on a 63324 lattice where

FIG. 2. Fit of ut(L)5us(`)1At /L2 for L56,8,10.
07450
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M215S 0.341 20.227

20.033 0.957D ,

du* 85S 331024

331025D⇒du* 5S 131024

231025D . ~2.3c!

In practice it is found that the error inus* is typically reduced
by a factor of 3 compared with the statistical error from t
simulation verifying the self-consistency.

The simulation for the mean-link tadpoles was done
the Hitachi SR2201 computers at the Cambridge High P
formance Computing Facility and the Tokyo Universi
Computer Center. The lattices used wereL33T with T
5x0L andL56,8 in all cases except one. The high accura
demanded by the maximization process was very time c
suming, requiring many configurations for statistical acc
racy. Consequently, only one example withL510 was done
as a check on the finite-size scaling ansatzu* (L)5u* (`)
1A/L2. Typically, for 103340 about 400 conjugate-gradien
iterations were needed taking about 60 s per iteration. In
casesL56,8,10 forbL51.8, x054, the fit to the finite-size
scaling ansatz was very good as can be seen in Figs. 1 a
For other cases the linear extrapolation was assumed to h
The values measured foru* (L) and the extrapolation toL
5` are given in Table II.

III. ANISOTROPY

In this section we report on two methods for determini
xR . The first uses the dispersion relation for the torelon@14#
and the second uses the comparison of the potential m
sured in the fine and coarse directions using Wilson loop

A. Torelon

The lattice considered isS23L3T with typical valuesS
58 in thex andy directions,L53,4,5 in thez direction, and
T550 in the fine ort direction. The lattice has periodi
boundary conditions and the torelon is created by a Polya
line that loops around the lattice in thez direction. The
TABLE II. Self-consistent Landau mean-link tadpole parameters for various lattice sizesL, including the
1/L2 extrapolation toL5`.

L

bL x0 4 6 8 10 `

0.7165~2! 0.7244~1! 0.7260~1! 0.7266~1! 0.7279~2!

1.8 4 0.98124~3! 0.98201~2! 0.98222~2! 0.98227~2! 0.98243~3!

0.7115~2! 0.7191~1! 0.7202~1! – 0.7216~3!

1.8 6 0.99167~3! 0.99194~2! 0.99200~1! – 0.99208~3!

– 0.7127~1! 0.7143~1! – 0.7164~3!

1.7 4 – 0.98105~2! 0.98188~2! – 0.98295~5!

– 0.7075~1! 0.7086~1! – 0.7100~3!

1.7 6 – 0.99149~1! 0.99153~1! – 0.99158~3!
1-3
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ALFORD, DRUMMOND, HORGAN, SHANAHAN, AND PEARDON PHYSICAL REVIEW D63 074501
(x,y) plane and is constructed from links which are cova
antly smeared in a manner similar to APE smearing:

T~x,y,t !5Tr )
z50

z5L21

Wz~x,y,z,t !,

Wz~x,y,z,t !5S 11
l 2D2

4m D m

Uz~x,y,z,t !, ~3.1a!

where D is the appropriate covariant derivative. Typicall
l 51.5, m510. The state with momentump5(px ,py)
5(nx ,ny)(2p/Sas) is

T~p,t !5(
x,y

T~x,y,t !ei (pxx1pyy). ~3.1b!

The torelon propagator

GT~p,t !5
1

T (
t850

t85T21

^T~p,t8!T* ~p,t1t8!& ~3.1c!

is measured for various choices of momentump and a cor-
related simultaneous fit using SVD decomposition is mad
the relativistic dispersion formula:

GT~p,t !5c~p!e2E(p)at t̄ ,

E~p!at5
asAp21MT

2

xR
, ~3.1d!

where MT is the torelon mass andt̄ 5t/at . The momenta
used weren25nx

21ny
250,1,2,4,5 withS58. An example of

the fit obtained is shown in Fig. 3 forbL51.8, x056. The

FIG. 3. Fit of the relativistic dispersion, Eq.~3.1d!, to the tore-
lon propagators forp25n2(p/4)2 for n250,1,2,4,5 corresponding
respectively, to the curves from the top downwards. The fit
x2/Ndf50.96 with (MTas)

251.85(4), xR53.61(2).
07450
-

to

fit is over the range 2<t<12 and hasx2/Ndf50.96 for 43
degrees of freedom~DOF!. The fit is good and gives
(MTas)

251.85(4), xR53.61(2). In Fig. 4 the dispersion
curvesE(p2) versusn2 are plotted forbL51.8, x054, L
53,4,5. From both Figs. 3 and 4 it is clear that rotation
invariance is established in the coarsexy directions. The
good simultaneous fit to the torelon propagators in all ca
shows that the continuum dispersion is well satisfied for m
menta at any angle to the coordinate axes.

In Table III we give the full set of results for the torelo
anisotropies we have measured. There is no noticeable
pendence within errors ofxR on L and the dependence onb
is small for the two values ofb used.

From the valuesMT(Las) we can determine the strin
tension, s in units of as

22 . We assume thatMT(Las)
5s(Las)Las where s(Las) is the string tension modified
by finite-size corrections@15,16#: s(Las)5s1D/(Las)

2. A
plot of s(Las)as

2 versus 1/L2 is shown in Fig. 5 with a linear
fit which hasx2/Ndf50.05 with sas

250.394(3). In another
calculation we have determined the absolute value ofat in
MeV by computing the splitting DM PS5MY(1P)
2MY(1S) for the Y meson system usingO(mv6) nonrela-
tivistic QCD ~NRQCD! @17#. In Table IV we giveat

21 ,
as

21 , sas
2 , the coefficientD, and As/DM PS. This latter

ratio is experimentally close to unity but in Ref.@17# using
isotropicb56.2 UKQCD configurations this ratio was foun
to be about 1.25 which, from Table IV, agrees with our fin
ing except possibly for the (b51.7,x0) lattice which has the
most coarse lattice spacings. It is generally accepted tha
discrepancy is due to quenching and the significant outco
is that our results from the anisotropic lattice agree well w
those of a spatially finer isotropic lattice ofa50.06 fm, in-
dicating that we have correctly reproduced the physics
pected for this comparison on lattices withas
50.25–0.30 fm. A naive estimate for the coefficientD is

s

FIG. 4. Plots of E(p2) versus p2 for L53,4,5 on an
823L350 lattice. The lines show the fit toE(p2)5A1Bp2.
1-4
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obtained by calculating the contribution toM (L) from the
zero-point fluctuations of the torelon regarded as a perio
flux tube. The outcome isD52p/3;21.05 which is com-
patible with our fit ofD;21.35(5). Thesame calculation
predicts that there is noL-independent constant contributio
to M (L) and this is verified by our fits.

The torelon dispersion relation was also studied on
plaquette-tuned parameters. For these simulations, lattice
extent (8310)343Nt were used to enable us to investiga
a wider range of momenta combinations. At momenta cl
to the cutoff, we expect the discretization errors to
O(as

4p4,asas
2p2); thus, in order not to contaminate our d

termination ofxR with large discretization errors, we firs
determined the range of momenta over which a good co
lated fit to the continuum dispersion relation could be ma
The data for different momentum ranges from simulations
bP52.1, x056 were tested and these results are shown
Table V. Both the measured anisotropy renormalizations
the torelon rest energies determined are all consistent w

TABLE III. Renormalized anisotropies and dimensionless to
lon masses for various values ofbL andx0 from a simultaneous fit
on 823L350 lattice.

L

bL x0 3 4 5

xR (MTas)
2 xR (MTas)

2 xR (MTas)
2

1.8 4 3.61~1! 0.683~1! 3.61~3! 1.85~4! 3.57~5! 3.39~13!

1.8 6 5.32~2! 0.502~1! 5.28~3! 1.49~3! 5.28~5! 2.84~9!

1.7 4 3.56~2! 1.16~2! 3.56~4! 2.86~9! 3.66~9! 5.51~36!

1.7 6 5.28~2! 0.89~2! 5.28~5! 2.36~6! 5.26~6! 4.25~13!

FIG. 5. s(L) versus 1/L2 for bL51.8, x056, with a linear fit
giving sas

250.394(3).
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statistical precision up to the highest momentum measu
For the subsequent computations of the anisotropy, prese
in Table VI, the largest momentum used was the~1,1! data
~shown in boldface in Table V!.

B. Sideways potential

In the sideways potential method@18,19#, a coarse direc-
tion z on the anisotropic lattice is chosen to be the tim
direction. There are then two types of spacelike directi
coarse and fine. The measurement of the potential betw
static quarks with a separation lying in the plane of coa
links is compared with the measurement of the poten
when the separation lies along the line of fine links. T
demand that the two measurements yield the same func
of physicaldistance determines the renormalized anisotro
Points in the coarse-coarse plane are denoted byxW5(x,y)
and points in the fine direction byt wherex,y,z,t are inte-
gers.

We measure appropriate spatial Wilson loopsWss(xW ,z)
and also loops using the fine directionWts(t,z). We define

Vs~xW ,z!5 logS Wss~xW ,z!

Wss~xW ,z11!
D ,

Vt~ t,z!5 logS Wts~ t,z!

Wts~ t,z11! D . ~3.2a!

- TABLE IV. The inverse lattice spacings for mean-link tadpol
improved actions from theO(mv6) NRQCD measurement o
DM PS5MY(1P)2MY(1S) to determineat

21 and using the tore-
lon anisotropy to inferas

21 . The string tension is found from theL
dependence of the torelon mass using finite-size scaling an
s(Las)5s1D/(Las)

2.

bL x0 Mb

at
21

(MeV)
as

21

(MeV) sas
2 As/DM PS D

1.8 4 5.32 2876~75! 797~21! 0.422~7! ;1.18~3! 21.31~6!

1.8 6 4.75 4503~45! 839~9! 0.394~3! 1.19~2! 21.42~3!

1.7 4 5.97 2353~38! 661~11! 0.513~12! 1.08~2! 21.39~13!

1.7 6 5.56 4112~150! 779~28! 0.469~8! 1.21~5! 21.38~8!

TABLE V. Dependence of the renormalized anisotropies a
torelon masses on the highest momentum used in the fit to
~3.1d! at bP52.1, x056.

Maximum xR /x0 atMT x2/Ndf

(px ,py)

~1,1! 0.949„25… 0.2884~17! 1.19
~0,2! 0.972~23! 0.2886~16! 0.99
~1,2! 0.968~17! 0.2885~15! 0.85
~2,1! 0.976~14! 0.2885~15! 0.89
~2,2! 0.970~11! 0.2883~14! 0.96
1-5
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As z→`, Vs(xW ,z)→Vs(uxW u) and Vt(t,z)→Vt(t) where
Vs(uxW u) andVt(t) are the two versions of the interquark p
tential. For a physical distancer we haveuxW uas5tat5r . We
therefore estimate the renormalized anisotropyxR by tuning
it so thatVs(uxW u)5Vt(t/xR), where the right side is evaluate
by means of linear interpolation between the values m
sured at integralt. It is implicit in the method that there is
effective rotational invariance in thexW plane. We find that if
we exclude potentials at the smallest distances,uxW u51,A2,
then the values ofxR associated with different directions i
the xW plane generally agree within errors. The agreemen
particularly good if the links are smeared in an appropri
manner. The results for the renormalized anisotropyxR for
both mean-link and plaquette schemes are shown in T
VII.

An alternative approach to making the comparison is to
the measured potentials with the forms

asVs~xW !5asV01sas
2x1

e

x
,

asVt~ t !5asV01sasatt1
ase

att
. ~3.2b!

The renormalized anisotropyxR is then determined from the
ratio of the coefficients of the linear terms in the two cas
xR can in principle be determined from the ratio of the c
efficients of the Coulombic terms; however, such an estim
depends on short distance effects and is inherently more
sitive to discretization errors.

This approach was tested on an 83348 lattice at bP
52.3,x056. Prior to measurement, the lattice is blocked

TABLE VI. Renormalized anisotropies for various values ofbP

andx0 using plaquette-tuned mean-link parameters.

bP x0 xR /x0 x2/Ndf

2.3 4 0.941~13! 1.04
2.3 6 0.954~23! 0.74
2.3 10 0.940~13! 1.41

2.1 6 0.949~25! 1.19

TABLE VII. Results for the renormalized anisotropy,xR , using
the sideways potential method for both mean-link and plaqu
tadpole-improved schemes

Mean link Plaquette

b x0 xR b x0 xR

1.8 4 3.67~2! 2.1 6 5.80~5!

1.8 6 5.48~3! 2.3 4 3.95~3!

1.7 4 3.67~3! 2.3 6 5.93~5!

1.7 6 5.40~5! 2.3 10 10.00~20!
07450
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an 84 volume by thinning the time slices of spatial links an
replacing the temporal links with the product of six fine lin
connecting the appropriate time-slices. Thet andz axes are
then interchanged, since as before we want to use a co
direction for Euclidean decay. Then a standard AP
smearing algorithm is applied to links on the new time slic
These degrees of freedom are then used to measure th
tential in the (x,y) andz axes in the standard fashion. Figu
6 shows the results of this simulation. The best fits of t
data to Eq.~3.2b! for a range of static-source separatio
were computed and the string tension results are show
Table VIII. In fit C, the Coulomb term was poorly resolve
and was thus fixed to zero. The use of these different ran
allowed us to investigate the systematic uncertainty and
cretization errors in determiningxR from this method. The
three results are consistent within 2%. The anisotropy m
surement from the full range of separations~fit A, shown in
boldface in Table VIII! is in good agreement with the torelo
dispersion result of Table VI.

Both the above approaches yielded results reason
consistent with each other and with the toleron results at
3% level. Discrepancies can easily be explained by the p
ence of discretization errors. Because the flux tube gene
ing Vs(uxW u) has a coarse-fine cross section and that gene
ing Vt(t) a coarse-coarse cross section we anticipate, a
the case of the toleron@Eq. ~4.5!#, that some discretization
error in xR that is O„as(as /R)2

… will remain. Sinceas
;0.3 fm, R;0.71–1 fm, andas;0.3, we expect discreti-
zation errors to be around 5%.

Because we are concerned to make the long distance
havior consistent in both the fine and coarse directions,
advantageous to use Wilson loops of the largest poss
spatial extent. However, in practice, the statistical errors
large Wilson loops grow exponentially with separation.
order to achieve acceptable errors we were restricted to u
loops of size 2 or 3 in coarse lattice units. This is to
compared with the torelon, where the practical size is 3 o
lattice units.

te

FIG. 6. The potential atbP52.3, x056 between static source
separated along both spatial and temporal axes.
1-6
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TABLE VIII. Results for the renormalized anisotropy,xR from fits to the static potential. In fit C, the
Coulomb term was set to 0.

Fit Separations sas
2 x2/Ndf 6sasat x2/Ndf xR /x0

A 1-7 0.3293~33! 1.13 0.3492~26! 1.21 0.943„12…
B 1-4 0.3315~60! 0.85 0.3526~64! 1.14 0.940~24!

C 3-7 0.3506~32! 0.70 0.3664~34! 1.11 0.957~12!
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IV. DISCRETIZATION ERRORS

One way of viewing discretization errors is to regard the
as arising from the absence of the correction term in
lattice action that yields continuum results. The correspo
ing term in the action density can be presumed to be a lo
operator. The locality of the operator implies that while the
may be a correction to the mass per unit length of the to
lon, there is no correction that directly alters the asympto
proportionality of the torelon mass and its length. The app
priate length scale against which to measure lattice artif
therefore is the radiusR of the toleron cross section o
equivalently,LQCD

21 or As wheres is the string tension. We
expect therefore that theO(as

2) errors inxR are proportional
to (as /R)2.

A persuasive plausibility argument for this behavior is
follows. The torelon state of momentump and massMT is an
eigenstate of the transfer matrixT with an eigenfunctional
labeled byp and MT and eigenvalue exp@2E(p2)at /xR#.
Suppose an operator is added to the action which correct
the O(asas

2) errors. This operator will be local on the sca
of the lattice and the effect onE(p2) can be estimated usin
first-order perturbation theory:

d
asE~p2!

xR
5asf ~ p̄2,M̄T!, ~4.1!

where p̄25p2as
2 , M̄T5MTas , and f (p̄2,M̄T) is the dimen-

sionless matrix element of the added operator which is p
portional toas

2 by construction. The question is what sca
balances the dimension ofas

2 . We find

2
dxR

xR
2 5asf8~0,M̄T!, ~4.2!

dM̄T
2

xR
5as@f~0,M̄T!2M̄T

2f8~0,M̄T!#, ~4.3!

where f(p̄2,M̄ )5asE(p2) f (p̄2,M̄T) and f85]f/](p̄2). It
must be that the change in the action by a local oper
corresponds to a change in the string tension,s. Hence, since
MT5sL, it follows thatdM̄T

2}M̄T
2 as this is the only param

eter depending onL, and from Eq.~4.3! this implies that

f~0,M̄T!;M̄T
2 , f8~0,M̄T!;M̄T-independent constant.

~4.4!

It is conceivable that an accidental cancellation between
two terms in Eq.~4.3! would allow different behavior to be
07450
e
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e

inferred forf andf8 but these results must hold true for a
possible local perturbations, not just the particular one t
eliminatesO(asas

2) errors. We consider this kind of cance
lation to be unlikely. Substituting this behavior forf8 into
Eq. ~4.2! we find that

dxR

xR
2 ;C

as
2

R2 , ~4.5!

whereR is a typical length scale associated with the tore
which cannot beMT

21 , for example, the flux tube radius
Alternatively,R21 can be taken to beAs, LQCD .

V. CONCLUSIONS

In this paper we have investigated various methods
measuring the renormalized aspect ratio for pure QCD on
anisotropic lattice. In the main we used a tadpole-improv
action with the Landau gauge mean-field definition for t
tadpole parameters, but we also included results for the
tion with tadpoles defined by the mean plaquette. The ob
of the investigation was to assess the consistency of diffe
methods in order to judge the effectiveness of the impro
ment scheme. In principle, measurements of the anisotr
from different physical probes should agree close to
Euclidean-symmetric continuum limit. The bare anisotro
x0 is renormalized by the effect of operators which are irr
evant in the neighborhood of the fixed point controlling t
continuum limit. From a renormalization group~RG! view
point the location of this fixed point is ambiguous up
redefinitions of the RG transformation used to locate it. T
ambiguity is due to redundant operators@20–22# which have
no effect on physical observables of the continuum theo
Consequently, continuum actions with differentxR can differ
only by redundant operators since they must correspon
the same continuum physics. Thus, whilexR can be changed
by tuning x0, an action with no lattice artifacts must giv
rotationally invariant physical results and, consequently, a
physical method for measuringxR , such as the ratio of two
physical observables, must give the same answer. Inasm
as this is not the case the differences will give an estimate
the effect of lattice artifacts and the necessity for improv
ment.

The spatial lattice spacingas was measured in a separa
NRQCD simulation by fitting the 1P-1S mass-splitting
DM PS for bottomonium. This estimate can be compared w
the string tension, deduced from aD/L2 extrapolation tò
of the torelon mass. The coefficientD was found to be
;21.38 which is in tolerable agreement with2p/3 pre-
1-7
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dicted from analysis of flux-tube fluctuations@16#. The ratio
As/DM PS is ;1.2, in agreement with earlier NRQCD
analyses@23,17#. The departure from the experimentally o
served value of;1 is attributed to quenching. The values f
both the mean-link and plaquette tadpoles were found s
consistently. This was very resource intensive in the me
field case since it required a very accurate gauge fixing to
Landau gauge and the self-consistent iteration is in the
space of (us ,ut) which requires additional effort. Also, fo
given x0 the tadpoles showed anL dependence and henc
required an extrapolation toL5`. This in turn requires ac-
curate data for a good fit. In contrast, the plaquette tadp
was easily found and there was no discernibleL dependence

The torelon method deducesxR from a fully correlated fit
to the dispersion relation. Statistical errors are produced
the fit. The sideways potential approach requires so
method for matching the coarse and fine potentials and
error analysis is more complex because of both system
and statistical errors and because the signal rapidly decre
as the loop size increases. Two methods were used to ex
xR . The first compared the loop predictions for the coa
and fine potentials~3.2a! and deducedxR from the rescaling
of t needed for them to agree. This method was applied
actions with mean-field improvement. Typical loops were
edge length 2–3 in units of the coarse spacingas . There is a
clear difference in results compared with the torelon com
tation of about 3–4 %. In the second approach the fine di
tion is first blocked by a scaling ofx0 to give a lattice that is
approximately isotropic and then the potential is fitted to
standard form~3.2b! and xR deduced by requiring that th
linear slopes agree. The latter method has the advantage
it depends only on the long-range structure of the poten
and excludes the short range Coulomb part. However, it d
require large computing resources to extract a reliable sig
at large separations, in this case up to 7 lattice units. T
technique was applied mainly to actions with plaquette
provement. Although less extensively investigated, the
sults are consistent with the torelon computation.

From Table III we see thatxR deduced from the torelon
measurement is independent ofL. This is to be expected
since measurements ofxR should not be sensitive to th
finite volume when deduced from physical observables.
therefore expect the same to be true whenxR is derived from
the sideways potential. It is known, in any case@6#, that
finite-volume effects are negligible for measurements of
tentials for even relatively small lattices. We are con
quently confident that the finite-volume effects are negligi
in our work except where we have explicitly exhibited the
namely, in the extrapolation of the mean-link tadpole valu
to L5` and in the discussion of the string tension.

The observed discrepancies can be easily attributed to
sidual lattice artifact effects. For the torelon we expe
dxR /xR;Casas

2/R2 which can be sizable althoughC is un-
known. However, it should also be remarked that neither
torelon nor the second sideways potential method include
Coulomb part of the static potential. Because of its sho
range nature, this part will be the most sensitive to the ef
of lattice artifacts. In this case agreement of the predicti
for xR is good. This may merely indicate thatxR is being
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deduced from the properties of the flux tube in both ca
and so they should agree in that artifact effects are the sa
However, it is encouraging that different methods based
the long-range properties of the action are consistent and
worth noting that the torelon flux tube was 3–5 lattice un
in length whereas it was necessary to extend the pote
method to 7 lattice units. Simulation times are correspo
ingly reduced for the torelon. Unfortunately, it was not po
sible to apply the second method to data gathered using
mean-field action because of limitations in resources.

We do not find any evidence that the mean-link-tun
action is superior to the plaquette-tuned action in suppres
lattice artifacts, and it should be noted that the computat
required to determine the mean-link tadpoles for the form
case is very time consuming. However, there is other e
dence that the mean-link action is superior. It is known
give smaller scaling errors in the NRQCD charmonium h
perfine splitting@24,25#, better hadron mass scaling@8#, and
a clover coefficient for SW fermions~with the Wilson gauge
action! that agrees more closely@12# with the nonperturba-
tively determined value@26,27#. Using our configurations we
present evidence that it also gives better rotational invaria
for the static quark potential. In Fig. 7 we show the deviati

TABLE IX. Comparisons of the normalized deviation from ro
tational invariance between the Wilson action and the plaquette
mean-link tadpole-improved~TI! actions. The ratios shown are zer
in the case where rotational invariance holds, and on these mea
the mean-link TI action is superior.

Action

V~111!2Vfit~A3!

V~2!2V~1!

V~221!2V~3!

V~3!2V~1!

Wilson 0.267~2! 0.099~3!

plaquette TI 0.091~10! 0.027~2!

mean-link TI 0.050~5! 0.003~7!

FIG. 7. Deviation of the static potential from the fit,a
'0.29 fm. Both sets of data are fitted toV(r )5b1c/r 1sr , using
the pointsr 51,2,A8, which therefore show no deviation. For th
remaining points, it is clear that mean-link TI~circles! shows
smaller rotational symmetry violations than plaquette TI. See a
Table IX.
1-8
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of the potential from a fit to the standard formV(r )5b
1c/r 1sr . Comparing the mean-link TI data with th
plaquette TI data, it is clear that mean-link TI gives smal
deviations from the rotationally invariant fit. In Table IX w
present some of the features of Fig. 7 in a quantitative fo
As expected, mean-link TI gives better rotational invarian
at r 5A3, and it causes the twor 53 potentials@~2,2,1! vs
~3,0,0!# to agree better.

As mentioned in the Introduction, there are many app
cations for anisotropic lattices. It would be valuable to me
sure anisotropies for a wider variety of lattice spacings a
bare anisotropies, using the methods we have investigate
would also be very useful to calculate perturbative formu
for the anisotropy and lattice spacing as a function of
bare parameters of the action,b andx0 @10,11,28#. Finally, it
ys

07450
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will be necessary to repeat this tuning process for impro
light quark actions. Some of the requisite perturbative cal
lations have already been performed@29#.
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