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Using tadpole-improved actions we investigate the consistency between different methods of measuring the
aspect ratio renormalization of anisotropic-lattice gluons for bare aspect fat4,6,10 and inverse lattice
spacing in the rangas’1:660—840 MeV. The tadpole corrections to the action, which are established self-
consistently, are defined for two cases, mean link tadpoles in the Landau gauge and gauge invariant mean
plaquette tadpoles. Parameters in the latter case exhibited no dependence on the spatial ldttieehBezen
the former, parameters showed only a weak dependenteeasily extrapolated th =. The renormalized
anisotropyyr was measured using both the torelon dispersion relation and the sideways potential method.
There is general agreement between these approaches, but there are discrepancies which are evidence for the
presence of lattice artifact contributions. For the torelon these are estimate®iarga®/R?), whereR is the
flux-tube radius. We also present some new data that suggest that rotational invariance is established more
accurately for the mean-link action than the plaquette action.
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In principle, an improved action makes it possible to
achieve lattice volumes large enough to overcome finite-size 4 Psy 1 Rggt
effects at a computational effort low enough to obtain mea- ~B2 Xo 3u2u2 12422
surements with good statistical errors. However, typical
masses for heavy sta_\tes may be S|m|Iar. to or larger than _thﬁere s,s' run over spatial directionsPs is a 1x1
inverse lattice spacing on the associated coarse latticgjaquette, an®R, . < is a 2x 1 rectangle. The coefficients of
Propagators for such states then decay too fast in lattice Uniffese terms are chosen so that the action ha@(mﬁ) dis-
for accurate measurement. _ _ cretization errors in tree-level perturbation theogy.is the

The problem can be overcome by tuning couplings assoanisotropy parameter and is equal to the aspect ratio of the
ciated with the “time” direction so that the temporal lattice gpatial and temporal lattice spacings, and a, at the tree
spacinga, is much smaller than the spatial lattice spacinglevel. At higher orders in the perturbative expansion, this
as. Refined measurements are then possible while retainingspect ratio receives quantum corrections, so a renormalized
the computational advantages of the improved action anénisotropy determined from a physical procegs, differs
coarse spatial lattice. Such anisotropic actions have alreadyom y, at O(as). Tadpole improvemen(Tl) of the pertur-
been successfully applied to the glueball spectftirg], the bative expansion is achieved by tuning the input spatial and
spectrum of excitations of the interquark potentig8l4],  temporal link parametersg and u, for self-consistency at
heavy hybridg5,6], and the fine structure of the quarkonium each choice of3 and y,.
spectrun{7]. They are also expected to be a powerful tool in  Here we report on the accurate determination of the tad-
extracting excited-state signals, obtaining high-momentunpole parameters in the plaquette and landau mean-link for-
form factors, pushing thermodynamic calculations to higheimulations.(Nontadpole-improved actions have been studied

temperatures, and in the calculation of transport coefficientdn Refs.[10,11.) We compare methods for measuring the
In this paper, we consider one formulation of the aniso-"énormalized anisotropy and discuss the importance of lattice

tropic action for the pure Yang-Mills sectf8,9]: artifact;. In order that the .anisotr.opic formulation can be
used with confidence, physically distinct methods for deter-
mining the renormalized anisotropyz=as/a; should agree.
Discrepancies in the results fgir give a measure of lattice
artifacts and an indication of the importance of further im-
provements. Our results have been used in applications of
anisotropic lattices to heavy quark hybrid states.

*Present address: Dept. of Physics, UCSD, La Jolla, CA 92093- In Sec. Il we report on the determination of the tadpole
03109. parameters, in Sec. lll the renormalized anisotropy measure-
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TABLE |. Self-consistent plaquette tadpole parameters. Extrapolation of tadpole parameters
B xo ut (W) (Pey) atul 073 et
2.1 6 0.774166 0.3592 0.359138)
2.3 4 0.793925 0.3973 0.39726?2)
2.3 6 0.791062 0.3916 0.391673) 0.725 | |
2.3 10 0.789695 0.3889 0.388686) _
E
ments are presented, and in Sec. V we discuss the results ar o7 | \ |
present one conclusions.
IIl. TADPOLE PARAMETERS 3
In both the plaquette and Landau mean-link formulations,  o.715

0.02 0.04 0.06 0.08

the tadpole parameters are determined self-consistently an e

are defined by
FIG. 1. Fit ofug(L) =ug()+Ag/L? for L=6,8,10.
us=(Pss)¥, u=1, plaquette,

J
v(X)= F(UD,-0, (2.2)
Us=(Ug)randaw  U=(Up)Landaw» Landau, (2.1) an(x) # |77 0
whereg(x)=e” T andT are the generators &U(3). The
vector {v(x)} has elements lying in the Lie algebra of
SU(3). Foreach vector a series of group elements is con-
1 structed in the associated one-parameter subgroup, each ele-

1 - : ; .
F({U}):xzﬂ 2 Re Tr{ UM(X)—EU,L(X)UM(XJFM) ment being a given power of the preceding one:
mp H
(2.2 gi=explev), gn=(gn-1)P, 1<ns=N. (2.27)

where the Landau gauge is defined by the field configuratio
which maximizeq12]

with respect to gauge transformations. We denote the gaugd'® local maximum in the direction is found by evaluating
coupling in the two schemes # andpp, respectively. F(USF) in descending order from=N to p=1. The value
of €, at any stage, is reduced until either the sequence exhib-
its @ maximum or remains constant within a preset tolerance.

For largey, the terms includindJ; dominate the expres-

In the plaquette scheme of EQ.1, u;=1 andus is  sion forF and near to the maximum relatively small changes
determined self-consistently. The expectation value of thén F correspond to quite large changesuin Consequently,
spatial plaquette is computed for a range of input parameten® be sure thati; as well asu, is accurately calculated, the
Us close to and spanning the self-consistent valije A maximum must be found to a sufficiently high accuracy. The
linear interpolation is sufficient to give an accurate value ofcriterion chosen wasF/F<2x 10 ® where §F was the ac-

u} . This value is then checked in a further Monte Carlocumulated change iR for three consecutive iterations of the
simulation. The values afi¥ for a set of couplingg3, and  conjugate-gradient algorithm for which the individual
tree-level anisotropieg, are given in Table |. For the lattice changes inF were nonzero. This criterion accounts for the
sizes used in the simulation, the plaquette expectation valuebservation that from time to time close to the maximum the
is found to be independent of the volume at the four-change inF was zero. We chose=2x10"°, p=4, andN
significant-figure level. An extrapolation to infinite volume is =6.

unnecessary.

A. Plaquette tadpoles

C. Landau gauge fixed tadpoles

B. Landau gauge fixing The self-consistent value afi=(ug,u;) can be deter-

The maximization ofF(U9) in Eq. (2.2, where U, mined by a generalized Newton-Rapheson method or by lin-
=9(X)UM(X)9T(X+M) with respect to a gauge transforma- €ar interpolation. The latter method was used for the mean-
tion {g(x)}, was carried out using the conjugate-gradientlink tadpoles and was implemented by choosing four input
method modified to deal with the group structure of the linktadpolesu;, i=1, ... ,4, andneasuring the four correspond-
elements. At each stage of the iteration the appropriaténg output tadpolesi/ , i=1,4. A linear map is assumed for
conjugate-gradient vectdp (x)} is computed as a covariant the incremental vectors;=(u;—uy),—r{=(uj —uy), i
derivative[13]: =2,3,4:

074501-2



MEASURING THE ASPECT RATIO RENORMALIZATION ... PHYSICAL REVIEW D63 074501

Extrapolation of tadpole parameters ) 0.341 —0.22
M B
B=1.8, xo=4 —0.033 0.957’

0.9825 T

3x10°*

*7_
oU™'=] 35105

(2.30

1x10°4
2x107°)°

):>5u*=

0.982

In practice it is found that the error inf is typically reduced
by a factor of 3 compared with the statistical error from the
) simulation verifying the self-consistency.

The simulation for the mean-link tadpoles was done on
the Hitachi SR2201 computers at the Cambridge High Per-
formance Computing Facility and the Tokyo University
Computer Center. The lattices used wedrgxT with T
(] =xoL andL=6,8 in all cases except one. The high accuracy
demanded by the maximization process was very time con-
suming, requiring many configurations for statistical accu-
racy. Consequently, only one example witk- 10 was done
as a check on the finite-size scaling ansatflL)=u* ()

FIG. 2. Fit ofu,(L)=ug(e)+A,/L? for L=6,8,10. + A/L2. Typically, for 1¢x 40 about 400 conjugate-gradient
iterations were needed taking about 60 s per iteration. In the
rn=Mr/, =234, (2.3a cased =6,8,10 forB, =1.8, xyo=4, the fit to the finite-size

scaling ansatz was very good as can be seen in Figs. 1 and 2.

whereM is a 2x 2 matrix that is determined from the mea- For other cases the linear extrapolation was assumed to hold.

sured images of ,,r; and checked for consistency against The values measured far* (L) and the extrapolation ta

the measured image of. The self-consistent tadpole® is =2 are given in Table II.

then predicted to be

0.9815 k

0.981 L . .
0 0.02 0.04 0.06 0.08

1

Ill. ANISOTROPY

* __ _ -1/, _
Ut =ugt (1=M) 7= ry). (2.3 In this section we report on two methods for determining

xr- The first uses the dispersion relation for the tordlbf]
and the second uses the comparison of the potential mea-
Sured in the fine and coarse directions using Wilson loops.

The self-consistency af* is then checked computationally.

This method was found to be very reliable and only subjec

to minor adjustments to account for statistical errors.
Moreover, a meaningful statistical error can be assigned

to u* from the image undeM ~* of the statistical error box A. Torelon
deduced fou* from the measurements values of the tadpole The lattice considered i8°X L X T with typical valuesS
parameters. Let the image af under the mapgM be u*’ =8 in thex andy directions,L = 3,4,5 in thez direction, and

with statistical erroréu*. The valueu* is acceptable if in  T=50 in the fine ort direction. The lattice has periodic
terms of components* ' — su* ' <u* <u*’'+éu*’, and the  boundary conditions and the torelon is created by a Polyakov
error quoted onu* is Su* =M ~15u*’. A typical example is  line that loops around the lattice in the direction. The

for B.=1.8, xo=4 on a 6X 24 lattice where Polyakov line is associated with a particular point in the

TABLE II. Self-consistent Landau mean-link tadpole parameters for various latticelsimesuding the
1/L? extrapolation to =,

L

BL Xo 4 6 8 10 o
0.716%2) 0.72441) 0.726@1) 0.726&1) 0.72792)
1.8 4 0.9812®3) 0.982012) 0.982272) 0.982272) 0.982433)
0.711%2) 0.71911) 0.72021) - 0.72163)
1.8 6 0.991613) 0.991942) 0.992001) - 0.992083)
- 0.71271) 0.71431) - 0.71643)
1.7 4 - 0.98108) 0.981882) - 0.98295%5)
- 0.707%1) 0.70861) - 0.71003)
1.7 6 - 0.991441) 0.991531) - 0.991583)
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. . . 2
Torelon propagators for various momenta Torelon d|spers|on on 8 xL.x50
12 : l?=1'87 x°=4‘ —— P=18, %6
10 - 1
= 8r I
NQ: —
o o
g6l | w
4+ N
2 Il Il 1 Il 1 Il Il 1 1 1 0 1 1 i 1
1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5
time, t p’ in units of (2n/8)°
FIG. 3. Fit of the relativistic dispersion, E¢3.1d), to the tore- FIG. 4. Plots of E(p?) versus p> for L=3,4,5 on an

lon propagators fop®=n?(/4)* for n=0,1,2,4,5 corresponding, g2x | x50 lattice. The lines show the fit B(p?) = A+ Bp®.
respectively, to the curves from the top downwards. The fit has

x*INg=0.96 with Mra,)*=1.854), xg=3.612). fit is over the range t=<12 and hasy?/Ng=0.96 for 43

) ) ) _degrees of freedom{DOF). The fit is good and gives
(x,y) plane and is constructed from links which are covari-(\M.a)2=1.854), yr=3.612). In Fig. 4 the dispersion

antly smeared in a manner similar to APE smearing: curvesE(p?) versusn? are plotted forB, =1.8, yo=4, L
72=L-1 =3,4,5. From both Figs. 3 and 4 it is clear that rotational
T(x,y,0)=Tr H W,(X,Y,Z,), invariance is established in the coarsg directions. The
720 good simultaneous fit to the torelon propagators in all cases
shows that the continuum dispersion is well satisfied for mo-
Zp\m menta at any angle to the coordinate axes.
Wax,y,z,0)=| 1+ 5] Uixy,zt), (3.1a In Table Il we give the full set of results for the torelon

anisotropies we have measured. There is no noticeable de-
whereD is the appropriate covariant derivative. Typically, pendence within errors gfg on L and the dependence ¢h
=15, m=10. The state with momentunp=(py,py) is small for the two values oB used.

=(ny,ny)(27/S&) is From the valuesM(Lag) we can determine the string
tension, o in units of agz. We assume thaM(Lay)

T(p,H) =2, T(X,y,t)e (Px+py), (3.1p  =o(LagLas whereo(Lay) is the string tension modified
Xy by finite-size correctionfl5,16: o(Lag)=o+D/(Lag)?. A

plot of o(Lay) a§ versus 12 is shown in Fig. 5 with a linear
fit which hasy?/Ng=0.05 with ca?=0.3943). In another
QU=T-t calculation we have determined the absolute value,ah
i T* / MeV by computing the splitting AMps=My (1P
Grlpt=5 tgo (T(pt)T*(p,t+t")) (3.10 _M\,(ls); for tth ﬂ?eson systgm ugin@(rr?usa) ng)r(1rel<'zl-
, , . tivistic QCD (NRQCD) [17]. In Table IV we givea{l,
is measqred for various chmces of momentprt?\nd a cor- §l7 aag, the coefficientD, and Jo/AMps. This latter
related simultaneous fit using SVD decomposition is made t?atio i

the relativistic dispersion formula:

The torelon propagator

s experimentally close to unity but in R¢f.7] using
isotropic3= 6.2 UKQCD configurations this ratio was found
G-(pt) = )e*E(p)af to be about 1.25 which, from Table IV, agrees with our find-
P P ' ing except possibly for thed= 1.7 xo) lattice which has the
—— most coarse lattice spacings. It is generally accepted that the
:aS p°+ M7 discrepancy is due topquergl]ching a%ld the s);gnificgnt outcome
E(p)a , .10 ; R :
is that our results from the anisotropic lattice agree well with
_ those of a spatially finer isotropic lattice a=0.06 fm, in-
where M+ is the torelon mass anti=t/a;. The momenta dicating that we have correctly reproduced the physics ex-
used were’=nZ+n;=0,1,2,4,5 withS=8. An example of pected for this comparison on lattices withag
the fit obtained is shown in Fig. 3 fg8_ =1.8, xo=6. The = =0.25-0.30 fm. A naive estimate for the coefficidhtis
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TABLE lll. Renormalized anisotropies and dimensionless tore- TABLE IV. The inverse lattice spacings for mean-link tadpole-
lon masses for various values 8f andy, from a simultaneous fit improved actions from theD(mv®) NRQCD measurement of

on 82X L x50 lattice. AMps=M~y(1P)—My(1S) to determinea, * and using the tore-
lon anisotropy to infem . The string tension is found from the
L dependence of the torelon mass using finite-size scaling ansatz
o(Lag)=0+D/(Lag)?.
BL Xo 3 4 5
-1 -1
Mrag)? Mrag)? Mrag)? & as
XR (Mray) XR (Mray) XR (Mray) BL xo My (MeV) (MeV) (rag \/;/AMPS D
1.8 4 3.611) 0.6831) 3.613) 1.854) 3.575 3.3913
W 3 13 9 1) s 1.8 4 5.32 2875 79721 0.4227) ~1.183) —1.316)
1.8 6 5.322) 0.5021) 5.283) 1.493) 5.285) 2.849
2 v 83 %3 #5) 19 1.8 6 4.75 450815 8399) 0.3943) 1.192) —1.423)
1.7 4 3562) 1.162) 3.564) 2.869) 3.669) 5.51(36
® 52 a9 %) %) 139 1.7 4 597 23588 661(11) 0.51312) 1.082) —1.3913)
1.7 6 5.28) 0.892) 5.285 2.366) 5.266) 4.2513)

1.7 6 5.56 411Q150 77928) 0.4698) 1.215) —1.388)

obtained by calculating the contribution (L) from the
zero-point fluctuations of the torelon regarded as a periodi
flux tube. The outcome iB = — 7/3~ —1.05 which is com-
patible with our fit of D~ —1.355). Thesame calculation
predicts that there is nb-independent constant contribution
to M(L) and this is verified by our fits.

The torelon dispersion relation was also studied on the B. Sideways potential
plaquette-tuned parameters. For these simulations, lattices of
extent (8<10)x 4X N, were used to enable us to investigatetion z on the anisotropic lattice is chosen to be the time

a wider range of momenta combinations. At momenta CIOS%Iirection. There are then two types of spacelike direction,

to th4 cutosz 5 e exp_ect the discretization errors to becoarse and fine. The measurement of the potential between
O(agp”, asasp”); thus, in order not to contaminate our de-

A X _ o - static quarks with a separation lying in the plane of coarse
termination of yr with large discretization errors, we first jinks is compared with the measurement of the potential
determined the range of momenta over which a good COI€ghen the separation lies along the line of fine links. The
lated fit to the continuum dispersion relation could be madeyamand that the two measurements yield the same function
The data for different momentum ranges from simulations ah¢ pysicaldistance determines the renormalized anisotropy.

Bp=2.1, xo=6 were tested and these results are shown "E’oints in the coarse-coarse plane are denote&:byx )
Table V. Both the measured anisotropy renormalizations an S ) arse p Y
nd points in the fine direction bywherex,y,z,t are inte-

the torelon rest energies determined are all consistent withigers

tatistical precision up to the highest momentum measured.
or the subsequent computations of the anisotropy, presented
in Table VI, the largest momentum used was (hel) data
(shown in boldface in Table V

In the sideways potential meth¢d8,19, a coarse direc-

We measure appropriate spatial Wilson I00N§S(>?,z)

2
o versus 1/L and also loops using the fine directivv(t,z). We define
p=1.8, x,=6 -
0.45 : ° . Wed(X,2)
Vy(x,2)=log| ———/,
Wgd(X,z+1)
04 - _
Vi(t,z)=lo M (3.29
2= Wtz D)) :
0.35 r 1
< TABLE V. Dependence of the renormalized anisotropies and
© torelon masses on the highest momentum used in the fit to Eq.
03 1 1 (3.1d atBp=2.1, xo=6.
Maximum Xr! X0 aM+ X2/ Nyt
025 7 (Px.Py)
&) 0.94925) 0.288417) 1.19
0.2 ! ‘1 0,2 0.97223) 0.288616) 0.99
0 0o o (1.2 0.96817) 0.288515) 0.85
2,0 0.97614) 0.288515) 0.89
FIG. 5. o(L) versus 12 for 8, =1.8, xo=6, with a linear fit 2,2 0.97011) 0.288314) 0.96

giving oa=0.3943).
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TABLE VI. Renormalized anisotropies for various valuesgaf 4 .

and y, using plaquette-tuned mean-link parameters. ]
A Time-separated sources

O Space-separated sources

Bp Xo Xr!X0 x*Ngs

2.3 4 0.94113) 1.04
2.3 6 0.95423) 0.74
2.3 10 0.94013 1.41

_—
S
=
>
o

2.1 6 0.94925) 1.19

As z—®, Vy(X,2)—V(|X|]) and V(t,z)—V,(t) where ]
VS(|>Z|) andV(t) are the two versions of the interquark po-
tential. For a physical distancewe have|x|a;=ta,=r. We
therefore estimate the renormalized anisotrgpyby tuning

it so thatVe(|X|) = V,(t/ xx), where the right side is evaluated ~ Co 2 4 6 8
by means of linear interpolation between the values mea- r/a,

sured at integrat. It is implicit in the method that there is
effective rotational invariance in theplane. We find that if
we exclude potentials at the smallest distan¢es= 1,2,
then the values ofg associated with different directions in an & volume by thinning the time slices of spatial links and
the x plane generally agree within errors. The agreement igeplacing the temporal links with the product of six fine links

particularly good if the links are smeared in an appropriatefOnnecting the appropriate time-slices. Tthand z axes are
manner. The results for the renormalized anisotrgpyfor then interchanged, since as before we want to use a coarse

both mean-link and plaquette schemes are shown in Tabfirection for Euclidean decay. Then a standard APE-

FIG. 6. The potential aBp=2.3, yo=6 between static sources
separated along both spatial and temporal axes.

VIL. smearing algorithm is applied to links on the new time slices.
An alternative approach to making the comparison is to fit! N€S€ degrees of freedom are then used to measure the po-
the measured potentials with the forms tential in the &,y) andz axes in the standard fashion. Figure

6 shows the results of this simulation. The best fits of this
R e data to Eq.(3.2b for a range of static-source separations
agVy(X)=agVo+oaix+ 3 were computed and the string tension results are shown in
Table VIII. In fit C, the Coulomb term was poorly resolved
and was thus fixed to zero. The use of these different ranges
(3.2b allowed us to investigate the systematic uncertainty and dis-
cretization errors in determiningg from this method. The
The renormalized anisotropyx is then determined from the three results are consistent within 2%. _Th_e anisotropy mea-
R surement from the full range of separatidifis A, shown in

ratio of _the qoefﬂments of the .Imear terms in the two Cases’boldface in Table VII) is in good agreement with the torelon
Xr Can in principle be determined from the ratio of the Co'dispersion result of Table VI

efficients of the Coulombic terms; however, such an estimatée Both the above approaches yielded results reasonably

d_e_pends on shqrt (ﬁstance effects and is inherently more S€05nsistent with each other and with the toleron results at the
sitive to discretization errors.

. . 3% level. Discrepancies can easily be explained by the pres-
This approa_ch was tested on af>e48 _Iattl_ce at Bp ence of discretization errors. Because the flux tube generat-
=2.3xo=6. Prior to measurement, the lattice is blocked to

ing VS(|§|) has a coarse-fine cross section and that generat-

TABLE VII. Results for the renormalized anisotropys, using  INg V(t) & coarse-coarse cross section we anticipate, as in
the sideways potential method for both mean-link and plaquettdh€ case of the tolerofEq. (4.5)], that some discretization

a.e
a Vi(t)=aVot oaat+ e
t

tadpole-improved schemes error in yg that is O(ag(as/R)?) will remain. Sinceag

~0.3 fm, R~0.71-1 fm, andxs~0.3, we expect discreti-

Mean link Plaquette zation errors to be around 5%.
Because we are concerned to make the long distance be-

B Xo AR B Xo AR havior consistent in both the fine and coarse directions, it is
1.8 4 3.672) 21 6 5.805) advantageous to use Wilson loops of the largest possible

spatial extent. However, in practice, the statistical errors in
1.8 6 5.483) 2.3 4 3.9%3) large Wilson loops grow exponentially with separation. In

order to achieve acceptable errors we were restricted to using
L7 4 36139 23 6 5.9 loops of size 2 or 3 in coarse lattice units. This is to be
1.7 6 5.405) 2.3 10 10.0(R0) compared with the torelon, where the practical size is 3 or 4

lattice units.
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TABLE VIIl. Results for the renormalized anisotropyr from fits to the static potential. In fit C, the
Coulomb term was set to 0.

Fit Separations oal X% Ng 6oaga, X% Ng Xr!Xo0

A 1-7 0.329333) 1.13 0.349226) 1.21 0.94312)

B 1-4 0.331%60) 0.85 0.352664) 1.14 0.94024)

C 3-7 0.350632) 0.70 0.366434) 111 0.95712)

IV. DISCRETIZATION ERRORS inferred for¢ and ¢’ but these results must hold true for all

possible local perturbations, not just the particular one that
liminatesO(a<a2) errors. We consider this kind of cancel-

lation to be unlikely. Substituting this behavior fgr' into

. (4.2) we find that

One way of viewing discretization errors is to regard them
as arising from the absence of the correction term in th
lattice action that yields continuum results. The correspond
ing term in the action density can be presumed to be a Ioca{wz‘q
operator. The locality of the operator implies that while there )
may be a correction to the mass per unit length of the tore- %N as
lon, there is no correction that directly alters the asymptotic XZR R%’
proportionality of the torelon mass and its length. The appro-
priate length scale against which to measure lattice artifactghereR is a typical length scale associated with the torelon
therefore is the radiuR of the toleron cross section or, which cannot beM;!, for example, the flux tube radius.
equivalently,AééD or J/o whereo is the string tension. We Alternatively, R~ can be taken to bg/o, Agcp-
expect therefore that th@(a2) errors inyy are proportional

(4.5

to (as/R)%.
A persuasive plausibility argument for this behavior is as V. CONCLUSIONS
follows. The torelon state of momentysrand mas#/ 1 is an In this paper we have investigated various methods for

eigenstate of the transfer matrix with an eigenfunctional measuring the renormalized aspect ratio for pure QCD on an
labeled byp and M+ and eigenvalue eXp-E(p?)a;/xr].  anisotropic lattice. In the main we used a tadpole-improved
Suppose an operator is added to the action which corrects feiction with the Landau gauge mean-field definition for the
the O(asag) errors. This operator will be local on the scale tadpole parameters, but we also included results for the ac-
of the lattice and the effect oB(p?) can be estimated using tion with tadpoles defined by the mean plaquette. The object
first-order perturbation theory: of the investigation was to assess the consistency of different
methods in order to judge the effectiveness of the improve-
asE(p?) ment scheme. In principle, measurements of the anisotropy
from different physical probes should agree close to the
Euclidean-symmetric continuum limit. The bare anisotropy
wherep?=p?a?, M;=M+ag, and f(p?,M+) is the dimen-  xo is renormalized by the effect of operators which are irrel-
sionless matrix element of the added operator which is proevant in the neighborhood of the fixed point controlling the
portional toa? by construction. The question is what scale continuum limit. From a renormalization groRG) view
balances the dimension af . We find point the location of this fixed point is ambiguous up to
redefinitions of the RG transformation used to locate it. This
Sxr _ ambiguity is due to redundant operatp2—22 which have
——=as¢'(0My), (4.2 no effect on physical observables of the continuum theory.
XR Consequently, continuum actions with differgnt can differ
2 only by redundant operators since they must correspond to
T_ ad H(OM7)— M$¢’(O,M I, 4.3 Lhe same cont|nuum.phy3|.cs. Thus, yvhﬂ,g can be changgd
y tuning xo, an action with no lattice artifacts must give
L o . rotationally invariant physical results and, consequently, any
where ¢(p?,M)=aE(p?)f(p’°,M+) and ¢'=dpld(p?). It  physical method for measurings, such as the ratio of two
must be that the change in the action by a local operatophysical observables, must give the same answer. Inasmuch
corresponds to a change in the string tensiarklence, since  as this is not the case the differences will give an estimate for
Mi=olL, it follows thatﬁm.zl_oc M% as this is the only param- the effect of lattice artifacts and the necessity for improve-
eter depending oh, and from Eq.(4.3) this implies that ment.
The spatial lattice spacings was measured in a separate
#(OM7)~M2,  ¢'(0M7)~Mq-independent constant. NRQCD simulation by fitting the B-1S mass-splitting
(4.4  AMpgfor bottomonium. This estimate can be compared with
the string tension, deduced fromDdL? extrapolation to»
It is conceivable that an accidental cancellation between thef the torelon mass. The coefficiel@ was found to be
two terms in Eq.(4.3) would allow different behavior to be ~—1.38 which is in tolerable agreement with7/3 pre-

s = af (P2, M), (4.2)
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dicted from analysis of flux-tube fluctuatioh%6]. The ratio 0.1 . . T .

. . . . Mean-link T| —e—
Jol/AMpg is ~1.2, in agreement with earlier NRQCD Plag Tl s
analyseg§23,17. The departure from the experimentally ob- N
served value of-1 is attributed to quenching. The values for 005 x i
both the mean-link and plaquette tadpoles were found self- ®
consistently. This was very resource intensive in the mean- iy o . % é H
field case since it required a very accurate gauge fixing to the + *
Landau gauge and the self-consistent iteration is in the 2D x
space of (g,u;) which requires additional effort. Also, for 005 k
given xq the tadpoles showed dn dependence and hence
required an extrapolation to=oc. This in turn requires ac- ﬁ
curate data for a good fit. In contrast, the plaguette tadpole 0.1 L L L L
was easily found and there was no discernlbl#ependence. 0 ! 2 3 4 5

The torelon method deducgg from a fully correlated fit 7a

to the dispersion relation. Statistical errors are produced by FiG. 7. Deviation of the static potential from the fig
the fit. The sideways potential approach requires some-0.29 fm. Both sets of data are fitted\¥gr) =b+c/r + o1, using
method for matching the coarse and fine potentials and thgye pointsr=1,2,J/8, which therefore show no deviation. For the
error analysis is more complex because of both systemati@maining points, it is clear that mean-link Ttircles shows
and statistical errors and because the signal rapidly decreas@saller rotational symmetry violations than plaquette TI. See also
as the loop size increases. Two methods were used to extretdble IX.
Xr- The first compared the loop predictions for the coarse

and fine potential$3.2a and deduced from the rescaling deduced from the properties of the flux tube in both cases
of t needed for them to agree. This method was applied t@nd so they should agree in that artifact effects are the same.
actions with mean-field improvement. Typical loops were ofHowever, it is encouraging that different methods based on
edge length 2-3 in units of the coarse spacggThere is a  the long-range properties of the action are consistent and it is
clear difference in results compared with the torelon compuworth noting that the torelon flux tube was 3-5 lattice units
tation of about 3—4 %. In the second approach the fine direcn |ength whereas it was necessary to extend the potential
tion is first blocked by a scaling of, to give a lattice thatis  method to 7 lattice units. Simulation times are correspond-
approximately isotropic and then the potential is fitted to aingly reduced for the torelon. Unfortunately, it was not pos-
standard form(3.2b and xr deduced by requiring that the sible to apply the second method to data gathered using the
linear slopes agree. The latter method has the advantage théikan-field action because of limitations in resources.
it depends only on the long-range structure of the potential \We do not find any evidence that the mean-link-tuned
and excludes the short range Coulomb part. However, it doesction is superior to the plaquette-tuned action in suppressing
require large computing resources to extract a reliable signaéttice artifacts, and it should be noted that the computation
at large separations, in this case up to 7 lattice units. Thigequired to determine the mean-link tadpoles for the former
technique was applied mainly to actions with plaquette im-case is very time consuming. However, there is other evi-
provement. Although less extensively investigated, the redence that the mean-link action is superior. It is known to
sults are consistent with the torelon computation. give smaller scaling errors in the NRQCD charmonium hy-
From Table Il we see thafg deduced from the torelon perfine splitting[24,25, better hadron mass scalifig], and
measurement is independent lof This is to be expected a clover coefficient for SW fermionvith the Wilson gauge
since measurements gfz should not be sensitive to the action that agrees more closefft2] with the nonperturba-
finite volume when deduced from physical observables. Weively determined valug26,27. Using our configurations we
therefore expect the same to be true wheris derived from  present evidence that it also gives better rotational invariance
the sideways potential. It is known, in any cd€d, that  for the static quark potential. In Fig. 7 we show the deviation
finite-volume effects are negligible for measurements of po-
tentials for even relatively small lattices. We are conse- 1apLE IX. Comparisons of the normalized deviation from ro-
quently confident that the finite-volume effects are negligibleational invariance between the Wilson action and the plaquette and
in our work except where we have explicitly exhibited them, mean-link tadpole-improve(T1) actions. The ratios shown are zero
namely, in the extrapolation of the mean-link tadpole valuesn the case where rotational invariance holds, and on these measures

to L=< and in the discussion of the string tension. the mean-link TI action is superior.
The observed discrepancies can be easily attributed to re:
sidual lattice artifact effects. For the torelon we expect V(111) — V4 (V3) V(221) - V(3)

5XR/XR~CaSa§/R2 which can be sizable althougbis un-
known. However, it should also be remarked that neither the
torelon nor the second sideways potential method include th@/ilson 0.2672) 0.0993)
Coulomb part of the static potential. Because of its short-
range nature, this part will be the most sensitive to the effec?
of lattice artifacts. In this case agreement of the predictiongnean-link TI 0.05(5) 0.0037)
for xgr is good. This may merely indicate thgk is being

Action V(2)-V(1) V(3)—V(1)

laquette TI 0.09(1.0) 0.0272)
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of the potential from a fit to the standard for(r)=b  will be necessary to repeat this tuning process for improved
+c/r+or. Comparing the mean-link Tl data with the light quark actions. Some of the requisite perturbative calcu-
plaquette Tl data, it is clear that mean-link TI gives smallerlations have already been performe&9].

deviations from the rotationally invariant fit. In Table IX we
present some of the features of Fig. 7 in a quantitative form.
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