
PHYSICAL REVIEW D, VOLUME 63, 074018
Superfluid phases of quark matter: Ginzburg-Landau theory and color neutrality
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We systematically apply Ginzburg-Landau theory to determine BCS pairing in a strongly coupled uniform
superfluid of three-flavor massless quarks in flavor equilibrium. We elucidate the phase diagram near the
critical temperature in the space of the parameters characterizing the thermodynamic-potential terms of fourth
order in the pairing gap. Within the color and flavor antisymmetric channel with zero total angular momentum,
the phase diagram contains an isoscalar, color-antitriplet phase and a color-flavor-locked phase, reached by a
second order phase transition from the normal state, as well as states reached by a first order phase transition.
We complement the general Ginzburg-Landau approach by deriving the high-density asymptotic form of the
Ginzburg-Landau free energy from the finite temperature weak-coupling gap equation. The dynamically
screened, long-range color magnetic interactions are explicitly taken into account in solving the gap equation.
We find that in the limit of weak coupling, the isoscalar, color-antitriplet phase has higher free energy near the
transition temperature than the color-flavor locked phase. In view of the fact that deconfined quark matter must
be color charge neutral, we incorporate the constraint of overall color neutrality into the general Ginzburg-
Landau theory and the gap equation. This constraint yields a disparity in the chemical potential between colors
and reduces the size of the pairing gap, in the presence of the anisotropy of the order parameters in color space.
In comparison with the case in which there are no chemical potential differences between colors and hence the
superfluid generally has nonzero net color charge, we find that while the constraint of color neutrality has only
negligible effects on the gap in the weak coupling regime, it appreciably destabilizes the isoscalar, color-
antitriplet phase in the strong coupling regime without affecting the color-flavor-locked phase.
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I. INTRODUCTION

The possibility that degenerate relativistic quark mat
becomes a color superconductor at low temperatures
been considered for the past two decades. As the sem
papers in@1,2# noted, the quark-quark interaction in the col
antitriplet channel is attractive and drives a Cooper pair
instability in the system, even in the limit of high densiti
where the Fermi energy of the quarks dominates over
one-gluon exchange interaction energy. Work in the int
vening period has concentrated on the mean field appro
strictly valid only in the weak coupling limit~see, e.g., Refs
@3# and @4# for reviews!. As the density is lowered, nonpe
turbative effects arising from self-couplings of the glu
field prevail, finally leading to a confinement transition in
hadronic matter. Strong coupling effects can modify t
equilibrium order parameter from the weak coupling pred
tion, as effects of spin fluctuation exchange do in superfl
3He @5#. The resultant change in the color-superconduct
phase can also affect the breaking of chiral symmetry@6–8#.
The properties of color superconductivity such as the pair
gap and the critical temperature,Tc , have yet to be derived
in the strong coupling regime in a rigorous way.

In this paper we examine color superconductors by me
of a general Ginzburg-Landau approach, which permits u
determine the coarse grained features of such systems at
peratures just belowTc , for arbitrary QCD coupling con-
stant,g. This approach, pioneered by Anderson and Brin
0556-2821/2001/63~7!/074018~19!/$20.00 63 0740
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man @9# and Mermin and Stare@10# in the context of
superfluid 3He, reveals the most energetically favorab
phase just belowTc , in terms of the parameters character
ing the thermodynamic potential to fourth order in the pa
ing gap. The first application of the general Ginzbur
Landau theory was made by Bailin and Love@2# to quark
pairing with one flavor and total angular momentumJ51.
Here we shall consider more general Cooper pairing betw
u, d, ands quarks withJ50. We complement this approac
by deriving the parameters controlling the fourth order ter
from the weak coupling gap equation. Previous work@11,12#
has systematically investigated such pairing at zero temp
ture; the present study provides a systematic elucidation
the equilibrium properties nearTc .

The zero-temperature pairing gap and henceTc are pre-
dicted to be;102100 MeV for baryon chemical potential
;1 GeV @13#. This prediction relies on extrapolation from
weak coupling to the low density, nonperturbative regim
by incorporating into the BCS gap equations effective int
actions modeled after instanton-mediated interactions,
such a way as to reproduce constituent quark masses. A
cation of the Wilson renormalization group to analysis of t
stability of a Fermi liquid against Cooper pairing@14# sug-
gests that four-fermion couplings, induced between two p
ticles with zero total momentum by one-gluon exchange
by instantons, grow logarithmically with momentum a
higher modes are successively integrated out closer to
Fermi surface; the scattering amplitudes eventually reac
©2001 The American Physical Society18-1
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singularity — a Landau pole — in a way dependent on t
number of flavors involved in the pairing. For two flavo
(u, d), both gluon- and instanton-induced interactions pla
role in opening an energy gap in the isoscalar, col
antitriplet channel with zero total angular momentumJ
50). Pairing in this channel partially breaks baryon numb
symmetry and global color rotational invariance, but resto
chiral symmetry. For three flavors (u, d, s), on the other
hand, a color-flavor locked state@15# arises in theJ50 chan-
nel mainly from the gluon-induced interactions when t
strange quark mass is sufficiently small. This state is inv
ant under simultaneous exchange of color and flavor, but
under single exchange of color or flavor; chiral symmetry
well as baryon number symmetry and global color rotatio
invariance is broken. In the high density regime where
interactions are dominated by one-gluon exchange, the c
magnetic~transverse! force, which is screened only dynam
cally by Landau damping of its mediators@16,17#, is suffi-
ciently long ranged to alter the dependence of the pairing
on the QCD coupling constantg from the BCS result. This
fact was first noted by Son@18# using a renormalization
group method and an approximate solution to the relev
gap equation.

As in prior papers, we focus on the equilibrium propert
of an ultrarelativistic color superconductor that ishomoge-
neous, in the sense that the real gluon field vanishes eve
where and the order parameter is everywhere continuou
magnitude and orientation; we denote such a state assuper-
fluid quark matter. Such homogeneity is similar to that i
superfluid 3He and superfluid neutron matter, as noted
Bailin and Love@2#, because in both cases breaking of t
globalU(1) gauge symmetry is accompanied by global sy
metry breaking associated with the internal degrees of f
dom. In superfluid quark matter, the possible order para
eters are generallyanisotropicin color space~see, e.g., Ref.
@2#!, a situation analogous to superfluid3He in which, as
seen experimentally, the anisotropy lies in spin space@5#.

We first restrict ourselves to the case, normally assum
in earlier investigations, in which the chemical potentials
different color and flavor quarks are equal. We obtain
thermodynamic potential difference between the superfl
and normal phases nearTc from the Ginzburg-Landau ap
proach. The terms of second and fourth order in the pair
gap are constrained by invariances of the grand canon
Hamiltonian and by the structure of the order paramet
assumed here to be antisymmetric in color and flavor sp
We then identify the degenerate sets of order parameters
responding to local energy minima as isoscalar co
antitriplet and color-flavor locked states, and determine th
condensation energies. We draw the resultant equilibr
phase diagram nearTc in the space of parameters charact
izing the fourth order terms. We find that in the limit of wea
coupling, the isoscalar, color-antitriplet phase is less fav
able than the color-flavor locked phase nearTc .

In general, determination of the Ginzburg-Landau para
eters requires inclusion of strong coupling effects. In
weak coupling limit, we anchor the general Ginzbur
Landau approach by deriving the parameters from the
evant weak coupling gap equations at finite tempera
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@2,19,20#, including the infrared structure of the gluon prop
gator as in Ref.@20#. The latter behavior determines theg
dependence of the pairing gap in the weak coupling lim
Debye screening of the electric gluons and Landau damp
of the magnetic gluons, calculated with one-gluon excha
as modified by a normal medium, provide effective infrar
cutoffs of the respective scattering amplitudes.

Motivated by the fact that deconfined quark matter m
be in an overall color singlet state, we also consider
equilibrium properties of superfluid quark matter under t
condition that it be color-charge neutral. In normal qua
matter, in which global color rotational invariance is ensur
by QCD interactions, the constraint of color neutrality lea
to equality of the chemical potentials for quarks of differe
colors ~see, e.g., Ref.@21#!. Superfluid quark matter, on th
other hand, generally has a preferred direction in color sp
Such violation of color rotational invariance together wi
the requirement of overall color neutrality leads to diffe
ences in the chemical potential between colors, in a w
dependent on the degree of anisotropy of the order par
eters in color space. This disparity in chemical potentials
turn alters the pairing gap, a feature seen in the gen
Ginzburg-Landau analysis. Beyond the usual terms of s
ond and fourth order in the pairing gap, color neutrality ad
terms dependent on the chemical potential differences
tween colors. Such extra terms, which act in the isosca
color-antitriplet channel, do not remove the degeneracy
the order-parameter sets occurring for equal color chem
potentials and renormalize the coefficients of the fourth or
terms so as to reduce the pairing gap. In order to estimate
influence of color neutrality on the gap in the weak coupli
limit, we incorporate color chemical potential differences
the gap equation, and find that in the weak coupling lim
such differences do not significantly modify the gap. A
though it does not affect the color-flavor-locked phase,
constraint of color neutrality can appreciably raise the f
energy of the isoscalar, color-antitriplet phase in the stro
coupling regime.

We base our calculations in the weak coupling limit
the field-theoretical description of an ordinary superco
ductor as advanced by Nambu@22# and Eliashberg@23#, who
reformulated the original BCS problem in terms of electro
phonon interactions. Such a formalism is useful when
interactions are nonlocal in time, as are the color magn
interactions in the relativistic plasma. This tool was gener
ized to a relativistic regime by others in earlier investigatio
~e.g., Ref.@2#!.

We focus in this paper on a system in flavor equilibriu
with no chemical potential differences between flavors~as
long as the electrical charge of the quarks is neglected!. As a
consequence, the energy of the superfluid is invariant un
rotations of the equilibrium states in flavor space. The infl
ence of the possible flavor chemical potential differences
the phase diagram, examined by others in earlier invest
tions @4,24#, resolves this degeneracy. Such differences m
also give rise to an inhomogeneous phase in which the p
ing gap varies periodically in ordinary space. The conditio
determining the chemical potential differences betwe
8-2
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flavors depend, however, sensitively on the extent to wh
the system is out of flavor equilibrium.

We summarize the main conclusions of this paper.
applying general Ginzburg-Landau theory to theJ50, color
and flavor antisymmetric pairing states of superfluid qu
matter, we elucidate the phase diagram nearTc in the space
of the parameters controlling the fourth order terms in
pairing gap. We find that the phase diagram contains an
scalar color-antitriplet phase and a color-flavor locked pha
both reached by a second order phase transition, as well
region of Ginzburg-Landau parameters for which the tran
tion to the superfluid phase is of first order. The detai
structure of the superfluid phase in this regime depends
the nature of the sixth order terms in the expansion. In
limit of weak coupling, the color-flavor locked phase is mo
favorable than the isoscalar color-antitriplet phase. We a
expand the general Ginzburg-Landau approach and
Nambu-Eliashberg formalism to incorporate differences
the chemical potential between colors, required to prese
color-charge neutrality of the system. We find that the co
neutrality constraint in the presence of anisotropy of the
der parameters in color space tends to suppress the gap

Color superconductivity in quark matter becomes an
trophysically interesting problem if neutron star interiors a
sufficiently dense that they contain quark matter cores@25#.
Generally, a quark superfluid in a neutron star would not
electrically neutral since each quark has fractional elec
charge; rather it would coexist with electrons~and muons! in
such a way as to ensure electric neutrality in the syst
Because of the dually charged nature of the quarks, ma
scopic manifestations of both color and electromagnetic
perconductivity such as Meissner effects, generation of L
don fields, and vortex formation are expected from magn
fields and rotations as observed in these celestial objects
will discuss these issues, which may be relevant to magn
structure, cooling, and rotational evolution of the neutr
stars@4,26#, elsewhere@27#.

In Sec. II, we construct the generalized Ginzburg-Land
theory including color chemical potential differences, a
apply it to color and flavor antisymmetric pairing withJ
50. The equilibrium phase diagrams for various values
the parameters controlling the expansion of the free ene
are given here. Section III is devoted to deriving the g
equations in the weak coupling limit, into which the col
chemical potential differences are incorporated, and to ca
lations of the energy gap for the two types of optimal pairi
states derived in Sec. II. In Sec. IV, we calculate the therm
dynamic potential difference between the superfluid and n
mal phases nearTc from the structure of the energy ga
obtained in Sec. III. Our conclusions are given in Sec. V. W
use units in which\5c5kB51.

II. GENERAL GINZBURG-LANDAU APPROACH

In this section, we apply the general Ginzburg-Land
approach to a quark superfluid that is in an overall co
singlet state. We then derive the thermodynamic potentia
terms of the color chemical potential differences. We fina
draw the equilibrium phase diagrams nearTc for the param-
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eters characterizing the strong-coupling effects and the co
neutrality constraint.

We consider uniform quark matter of temperatureT and
baryon chemical potentialm, with number of flavorsNf53
(u,d,s) and colorsNc53. We neglect quark masses an
electrical charges as well as chiral condensates, and do
take into account at this stage either the color or electrom
netic gauge field, except for virtual gluons mediating inte
actions between the quarks. We also assume that the sy
has zero net color charge and satisfies the condition, for
vor equilibrium,

mau5mad5mas[ma , ~1!

wheremai is the chemical potential for the quarks of colora
and flavori. Thus, the ensemble-averaged color charge d
sities vanish:

^S ilab
a c̄ai~x!g0cbi~x!&50, ~2!

where thecai are the quark fields andlab
a the color genera-

tors. As a consequence,

nR5nG5nB , ~3!

with na[^S i c̄ai(x)g0cai(x)&, and

nab[^S i c̄ai~x!g0cbi~x!&50 ~4!

for aÞb. Condition~1!, along with condition~3!, relatesma
to m as

m5(
a

ma ; ~5!

equivalently, we write

m̃aa[ma2
m

3
. ~6!

Then,

(
a

m̃aa50. ~7!

For aÞb, we introduce the chemical potentialsm̃ab associ-
ated with nab in such a way that the grand-canonic
Hamiltonian reads

K5H2(
ab

~dabm/31m̃ab!F(
i
E d3xc̄bi~x!g0cai~x!G .

Following Iwasaki and Iwado@28#, we can regard thesem̃ab
as Lagrange multipliers that ensure condition~4!. The Her-
miticity of K requiresm̃ab5m̃ba* .

Cooper pairing between quarks, which we assume to b
a channel with zero total angular momentum, is most gen
ally characterized by a 4NfNc34NfNc gap matrix in color,
flavor, and Dirac space@19#:
8-3
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D~k!5D (1)~k0 ,uku!g51D (2)~k0 ,uku!g• k̂g0g5

1D (3)~k0 ,uku!g0g51D (4)~k0 ,uku!

1D (5)~k0 ,uku!g• k̂g01D (6)~k0 ,uku!g• k̂

1D (7)~k0 ,uku!g• k̂g51D (8)~k0 ,uku!g0, ~8!

where k is the relative four-momentum between the tw
quarks forming the Cooper pair,k̂[k/uku, andDabi j

(n) are the
NfNc3NfNc matrices denoting the pairing of the quark
color a and flavori with that of colorb and flavorj. The gap
D is formally related to the pair amplitudêcC(x)c̄(y)& via
@22,23,29#

D~k!5 ig2T (
n odd

E d3q

~2p!3E d4~x2y!eiq(x2y)

3gm
~la!T

2
$^T@cC~x!c̄~y!#&Gnb

(11)~q,k!

1^T@cC~x!c̄C~y!#&Gnb
(21)~q,k!%Dmn

ab~k2q!, ~9!

wherecai
C [Cc̄ai

T is the charge-conjugate spinor (C5 ig2g0

in the Pauli-Dirac representation!, G (11) is the full quark-
quark-gluon vertex,G (21) is the full antiquark-quark-gluon
vertex, D is the full gluon propagator, and the Matsuba
frequencies are given byq05 inpT. @In Sec. III we analyze
this gap equation in the weak coupling limit; see Eq.~53!.#
The Pauli principle requires thatD (n) satisfy

Dabi j
(n) ~k0 ,uku!5Dba ji

(n) ~2k0 ,uku!, n51, . . . ,6, ~10!

Dabi j
(n) ~k0 ,uku!52Dba ji

(n) ~2k0 ,uku!, n57,8. ~11!

For massless quarks the condensates are eigenstat
chirality @30#. Wilson renormalization-group analyses@14#
show that pairing instability occurs between quarks of
same chirality, rather than between the left- and right-han
quarks. We thus ignore the termsD (3), D (6), D (7), andD (8)

in Eq. ~8!, which are associated with quarks of oppos
chirality @19#. TheD (4) andD (5) terms in Eq.~8! correspond
to condensation in the odd-parity channel@19#. Effects of
instantons, which prefer even-parity to odd-parity cond
sates@13#, lead us to drop these terms. Since onlyD (1) and
D (2) remain in Eq.~8!, it is convenient to introduce

f6~k0 ,uku![D (1)~k0 ,uku!7D (2)~k0 ,uku!, ~12!

and rewriteD(k) as

D~k!5g5@f1~k0 ,uku!L1~ k̂!1f2~k0 ,uku!L2~ k̂!#.
~13!

Here, the

L6~ k̂!5
16g0g• k̂

2
~14!
07401
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are energy projection operators for noninteracting mass
quarks, and f6 denotes the quark-quark~antiquark-
antiquark! pairing gap.

We divide the differenceDV@f6(k0 ,uku);m̃ab# of the
thermodynamic potential nearTc of the superfluid phase
VSF, from that of the normal phase,VN , into two parts:

DV5V01VCN, ~15!

where

V05DV@f6~k0 ,uku!;m̃ab50# ~16!

has the form of a usual Ginzburg-Landau free energy, an

VCN5DV@f6~k0 ,uku!;m̃ab#2V0 ~17!

is the correction toV0 induced by the color chemical poten
tial differences in the superfluid~the normal phase satisfie
m̃ab50 because of rotational invariance in color space!. In
expressingV0 in terms off6 , we follow the line of argu-
ment of Mermin and Stare@10#. Note that the grand-
canonical Hamiltonian, described by the chemical potent
m/3, common to all combinations of spins, flavors, a
colors, and zero masses, keepsV0 invariant under
global U(1) gauge transformations and rotations in co
and flavor space; under globalU(1), and special unitary
color and flavor rotations of the field operators,c
→eiwUcU fc, the f6 transform as (f6)abi j

→e22iw(f6)cdlm(Uc
†)ca(Uc

†)db(U f
†) l i (U f

†)m j . Taking into
account the condition~10! imposed by the Pauli principle
we obtain, up toO(D4),

V05a1Tr~f1
† f1!F1b1

1@Tr~f1
† f1!F#2

1b2
1Tr@~f1

† f1!2#F1a2 Tr~f2
† f2!F

1b1
2@ Tr~f2

† f2!F#21b2
2 Tr@~f2

† f2!2#F . ~18!

Because of the relationL6L750, the contributions of the
quark-quark condensates separate from those of
antiquark-antiquark condensates. The subscript ‘‘F ’’ denotes
the pairing gap evaluated for the quark or antiquark qua
particle momentauku equal to the quark Fermi momentum
kF .

In general, the energies of antiquark excitation
;@(uku1kF)21f2

† f2#1/2, are much larger than the energie
of quark excitations,;@(uku2kF)21f1

† f1#1/2. Thus in the
temperature region nearTc where m/3 is large compared
with the magnitude of the energy gap, the amplitudes
virtual excitations of antiquark quasiparticles withuku near
kF are smaller than those for excitations of quark quasip
ticles by a factor;O„uf1(T;Tc)u/m…; as a consequence
a1 and b i

1 dominate overa2 and b i
2 , and we seta2

5b i
250.

The next step is to express the correction termVCN in
terms off1 and m̃ab . We need to retain contributions u
to second order inm̃ab . Since na52]VSF/]ma and nab
8-4
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52]VSF/]m̃ba for aÞb, the conditions for color neutrality
Eqs.~3! and ~4!, can be written as

]DV

]m̃RR

5
]DV

]m̃GG

5
]DV

]m̃BB

~19!

and

]DV

]m̃ab

50 ~20!

for aÞb.
Up toO(m̃abf1

2 ) andO(m̃ab
2 ), the only terms inVCN that

are invariant under globalU~1! gauge transformations an
special unitary transformations in flavor space are prop
tional to TrM̃2, Tr(f1

† f1M̃)F , and Tr(f1f1
† M̃)F ,

where

M̃abi j5d i j m̃ab ; ~21!

in deducing this structure we have used the relati
Tr(f1f1

† M̃T)F5Tr(f1
† f1M̃)F and Tr(f1

† f1M̃T)F

5Tr(f1f1
† M̃)F , derived from (f1

T )F5(f1)F @see Eq.

~10!#. The term proportional to Tr(f1f1
† M̃)F , which does

not occur in the weak coupling limit@see Eq.~121!#, always
has a zero coefficient, even in the strong coupling regi
The reason is that this term, of second order in the gap, is
affected by the dependence of the pairing interaction on
pairing gap, which can only induce terms of at least fou
order in the gap. We thus write

VCN5s TrM̃21x Tr~f1
† f1M̃!F . ~22!

The first term on the right side of Eq.~22! comes from the
change in the normal-fluid free-energy for non-zeroM̃,
while the second is the correction to theO(f1

2 ) term inV0.
Because of color neutrality,s andx appear, as we shall se
only in the dimensionless combinationx2/s in the energy
gap and the condensation energy.

In the remainder of this section, we consider condens
that are antisymmetric in color and flavor. In these cond
sates, Cooper pairing is characterized by the products
tween the color-antitriplet states@(uRG&2uGR&)/A2,
(uGB&2uBG&)/A2, (uBR&2uRB&)/A2] and the flavor-
antitriplet states @(uud&2udu&)/A2, (uds&2usd&)/A2,
(usu&2uus&)/A2].

For total angular momentumJ50, the Pauli principle
constraint~10! requires that antisymmetry of pairing in colo
space be accompanied by antisymmetry of pairing in fla
space. Such pairing states can occur in the weak coup
limit, because one-gluon exchange in the color antitrip
channel is attractive@2#. The gap is characterized by th
ansatz

~f1!abi j5e i j l eabcAlc , ~23!
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where A[(dR ,dG ,dB) is a general complex matrix.Aia ,
5(da) i , denotes the gap for pairing between quarks of c
ors b and c with aÞbÞc and of flavorsj and l with iÞ j
Þ l .

Substituting Eq.~23! into Eqs.~18! and ~22!, we derive
the Ginzburg-Landau form ofV0 andVCN in terms ofA or
da :

V05ā Tr~A†A!F1b1@Tr~A†A!F#21b2Tr@~A†A!2#F

5āl1~b11b2Y!l2, ~24!

with

ā[4a1, b1[16b1
112b2

1 , b2[2b2
1 , ~25!

l[(
a

udauF
2 , Y[

1

l2 (
ab

uda* •dbuF
2 , ~26!

and

VCN53s(
ab

um̃abu222x(
ab

~da* •db!Fm̃ab . ~27!

One can readily show that under a globalU(1), color, and
flavor rotation of the field operators,c→eiwUcU fc, A trans-
forms asAia→e22iw(Uc)ab(U f) i j Ajb . The second order and
fourth order terms inA, included inV0, Eq. ~24!, are the
only invariants under these transformations. InVCN, Eq.
~27!, the term of linear order inm̃ab is not affected by global
U(1) gauge transformations,da→e22iwda , and flavor rota-
tions,da→U fda .

Note thatY, which is dimensionless, ranges from 1/3 to
For Y51/3, the configurations forda are determined by

dR* •dG5dG* •dB5dB* •dR50, udRu25udGu25udBu2;
~28!

for Y51, the vectorsdR , dG , anddB are all parallel:

dRidGidB . ~29!

In the weak coupling limit, which we calculate in Sec. IV
the coefficientsā, b1 , b2 , s, andx reduce to

ā54N~m/3!lnS T

Tc
D , ~30!

b15
7z~3!

8~pTc!
2

N~m/3!, ~31!

b25
7z~3!

8~pTc!
2

N~m/3!, ~32!

s52N~m/3!, ~33!

x5
3

m
lnS 3Tc

m DN~m/3!, ~34!
8-5
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where

N~m/3!5
1

2p2 S m

3 D 2

~35!

is the ideal gas density of states at the Fermi surface, and
zeta functionz(3)51.2020 . . . .

Two effects beyond weak coupling must in general
taken into account. The first is the modification of the pairi
interaction due to the pairing gap, which modifies the co
ficientsb1 andb2 of the fourth order terms inA. The second
is radiative corrections by the normal medium@21# — i.e.,
quark self-energy, gluon polarization, and quark-quark-glu
and three-gluon vertex corrections — which modify the c
efficients Eqs.~30!–~34!, mainly through their dependenc
on N(m/3) andTc .

We proceed to minimize the Ginzburg-Landau free e
ergy, Eqs.~24! and ~27!, with respect to the (da)F . To elu-
cidate effects of the color neutrality, it is instructive to sta
with the optimal expressions for the energy gap and the c
densation energy in the case in which them̃ab and henceM̃
andVCN vanish. FromV0, written up to second order inl,
we find that thermodynamic stability requiresb̄[b11b2Y
.0 for 1/3<Y<1. It is straightforward to show that in thi
stable region, only two phases occur:Y51/3 for b2.0 and
Y51 for b2,0.1 We discuss the physics of the regio
whereb̄,0 below.

The order parameters in theY51 phase satisfy condition
~29!. All such order parameters lead to states degenera
energy. Note that in this order-parameter set, any stat
identical to an isoscalar, color-antitriplet state characteri
by (da) i}d is (s, the strange flavor! or, equivalently,

~f1!abi j5eabce i js~dc!s , ~36!

to within a constant phase factor and a special unitary tra
formation in flavor space. In the corresponding condens
theu andd quarks are paired in an isosinglet state. We sh
refer to theY51 phase as the isoscalar phase, even thoug
contains order parameters having the other orientation
complex flavor space than thes direction. The magnitude o
the gap in the isoscalar phase is

l52
ā

2~b11b2!
, ~37!

with condensation energy

1Formally, this conclusion is the same as that obtained by Pisa
and Rischke@30# and Scha¨fer @11#, who analyzed an effective po
tential of the form~24! at zero temperature. As Scha¨fer @11# points
out, however, ‘‘At T50 the free energy of the system is not a
analytic function of the gap so that, strictly speaking, the free
ergy cannot be expanded as a power series in the order param
Only in the vicinity of the finite temperature phase transition do
the expansion in powers of the order parameter have a firm fo
dation.’’
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DV52
ā2

4~b11b2!
. ~38!

The order parameters in theY51/3 phase satisfy condi
tion ~28! and lead to degenerate states. This phase is
color-flavor locked phase@15#; the condensate in this phas
is characterized by its symmetry under simultaneous
change of color and flavor. States belonging to this ph
transform into one another under globalU(1) gauge trans-
formations and special unitary transformations in flav
space. The simplest among these states is describe
(da) i}dai and (dR)u5(dG)d5(dB)s[kA ; the corresponding
gap matrix is given explicitly by

~f1!abi j5kA~daidb j2da jdbi!. ~39!

For the color-flavor locked phase, we obtain the magnitu
of the gap,

l52
ā

2~b11b2/3!
, ~40!

and the condensation energy

DV52
ā2

4~b11b2/3!
. ~41!

In the original definition@15# of the color-flavor locked
state, in addition to the gap,kA , in the color and flavor
antisymmetric channel, a gap matrixkS(daidb j1da jdbi)
arises in the color and flavor symmetric channel. In the we
coupling limit, the gapkA can be generated by the attractiv
one-gluon exchange interaction in the color-antitriplet ch
nel. Nonzero values ofkS , on the other hand, are not drive
by the one-gluon exchange interaction since it is repulsive
the color symmetric channel; they are theO(g) correction to
kA that ensures the existence of thekAÞ0 solution to the
relevant weak coupling gap equation~see Ref.@11#!. This
implies that the gapkS can be ignored in the temperatu
region near the onset of the pairing.

We now construct, in theb1-b2 plane, the phase diagram
exhibiting the more stable pairing state of the isoscalar
color-flavor locked phases. We first address the questio
whether or notTc , the temperature at which the pairing in
stability of the normal phase occurs, is the same for th
phases. The onset of this instability is controlled solely
the pairing interactions in the normal phase between qu
quasiparticles with zero total momentum. The correspond
amplitudes depend on the color, flavor, and quantum nu
bers such as the total angular momentum, chirality, and
ity of the quarks involved in the pairing@2#, and for the two
phases considered here, the quark-quark pairs have anti
metric structures in color and flavor, the same chirality, ev
parity, andJ50 at the onset of the pairing instability. W
thus conclude that no difference inTc arises between thes
phases. The amplitudes in the normal system driving the
stability do not distinguish between the final possible pai
states.
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Figure 1 shows the map of the isoscalar and color-fla
locked phases in theb1-b2 plane, for the case in whichM̃,
or equivalently,G, is set equal to zero. The regions su
tended by these phases are restricted by the region in w
b̄.0, for 1/3<Y<1, is violated. By comparing the conden
sation energies, Eqs.~38! and~41!, we find that in the weak
coupling limit, described here by Eqs.~30!–~32!, the color-
flavor locked state is favored over the isoscalar channe
result consistent with the conclusion drawn from the we
coupling analyses@11,12# at zero temperature.

The region in whichb̄,0 corresponds to afirst order
phase transition from the normal to the superfluid state
temperature greater thanTc

0 at which ā(Tc
0) vanishes, and

the normal state becomes unstable against Cooper pai
The situation is similar to condensed matter systems
which the Ginzburg-Landau free energy contains a term
bic in the magnitude of the order parameter, and also sim
to the situation in which the chiral phase transition in QC
with two-flavor massless quarks changes from second o
to first order at a tricritical point in them versusT plane@31#.
To see this structure, we add to the Ginzburg-Landau exp
sion up to fourth order inA, Eq. ~24!, the sum of the sixth
order invariants,

V65~ ḡ11ḡ2Y1ḡ3j!l3, ~42!

wherel andY are given by Eq.~26!, and

FIG. 1. Phase diagram in the Ginzburg-Landau regime, show
regions where the isoscalar~IS! and color-flavor locked~CFL!
phases are favored, when the constraint of color neutrality does
affect the free energy,G50. Theb1 , b2 are the fourth order coef
ficients in the Ginzburg-Landau free energy, Eq.~24!, andG @Eqs.
~46! and~27!# describes effects of the constraint of color neutrali
The cross indicates the weak coupling limit. In the region of fi

order transitions, the overall fourth order coefficient,b̄, is not posi-
tive definite.
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l3 (
abc

~da* •db!F~db* •dc!F~dc* •da!F. ~43!

Let us assume that the overall coefficient ofl3, ḡ11ḡ2Y

1ḡ3j[ḡ, is positive. Then, the local minimum ofV0
1V6 is reached at a nonzero value ofl, which can be cal-
culated asl05ub̄u/3ḡ1@(b̄/3ḡ)22ā/3ḡ #1/2. The critical
temperatureTc can be determined from the conditio
V0(l0)1V6(l0)50 or, equivalently,ā(Tc)5b̄2/4ḡ, where
we can ignore the temperature dependence ofb̄ andḡ. Note
that Tc is greater thanTc

0 . We thus find thatl05ub̄u/2ḡ at
T5Tc ; i.e., the pairing gap is discontinuous at the transiti
point. We remark that this argument is only applicable to
case in whichTc2Tc

0!Tc
0 . In the case thatb̄,0 and ḡ

,0, one must go to higher order to determine the criti
temperature and the discontinuity of the order paramete
the transition.

We turn to the Ginzburg-Landau energy, Eqs.~24! and
~27!, for a color-singlet system. As we shall see, the co
straint of color neutrality acts to modify the pairing gap wit
out removing the degeneracy of the order parameters oc
ring when the differences in color chemical potentia
vanish. Generally, the deviations of the chemical poten
differencesm̃ab from zero can be determined from the col
neutrality conditions~19! and ~20! as

m̃ab5
x

9s F3~da•db* !F2dab(
c

udcuF
2 G . ~44!

Substitution of this expression into Eqs.~24! and ~27! leads
to the Ginzburg-Landau form

DV5āl1@~b12G!1~b213G!Y#l2, ~45!

with

G[2
1

s S x

3D 2

. ~46!

The coefficientG is positive definite as long as the colo
singlet system is thermodynamically stable against co
fluctuations, i.e., (]2DV/]m̃ab]m̃ba)(dc)F

56s,0. This con-
dition holds in the weak coupling limit, Eq.~33!; vacuum
polarization effects in the low-density regime, which lead
color antiscreening or positive color susceptibilit
2]2V/]m̃ab]m̃ba.0, are in the direction to preserve th
condition. We thus assumeG.0 for arbitrary coupling con-
stantg.

Note that Eq.~45! is identical with Eq.~24! except thatb1
andb2 are replaced byb12G andb213G; i.e., inclusion of
the color neutrality results in a renormalization ofb1 andb2.
This is due to the fact that the constraint of color neutra
itself is invariant under color rotations and thus chemi
potential differences between colors yield the fourth ord
terms invariant with respect to rotations in color space.
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KEI IIDA AND GORDON BAYM PHYSICAL REVIEW D 63 074018
We then obtain from Eq.~45! the two sets of optima
order parameters,Y51/3 ~the color-flavor locked phase! for
b213G.0 andY51 ~the isoscalar phase! for b213G,0.
The resultant magnitude of the gap in the isoscalar phase
be written as

l52
ā

2~b11b212G!
, ~47!

with condensation energy

DV52
ā2

4~b11b212G!
. ~48!

We observe from the energy gap and condensation ene
Eqs.~47! and ~48!, that l and uDVu are suppressed at fixe
b1 andb2 by the parameterG characterizing the color neu
trality. This suppression, together withM̃Þ0 as can be
found from substitution of condition~29! into Eq. ~44!,
comes from the fact that the condensate is intrinsically
isotropic in color space, as we shall see in Sec. III A. W
remark in passing that in the weak coupling limit, where on
contributions of leading order in 3Tc /m remain,G is domi-
nated byb1 and b2 and hence does not significantly affe
the gap. In the color-flavor locked phase, on the other ha
the gap size and the condensation energy are still g
by Eqs. ~40! and ~41!. For this phase, we can findM̃50
from substitution of condition~28! into Eq. ~44!. This van-
ishing reflects the fact that the condensate in the color-fla
locking is isotropic in color space, as suggested
condition ~28!.

We conclude this section by examining the influence
the requirement of color neutrality on the phase diagram
the b1-b2 plane. As we see in Fig. 2, the phase diagram
G.0, this requirement shifts the isoscalar phase byG in the
b1 direction and23G in the b2 direction. With increasing

FIG. 2. Same as Fig. 1 with the constraint of color neutral
described byG.0.
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G, this phase, in which the order parameters are anisotr
in color space, moves farther away from the weak coupl
point, (b1 ,b2) given by Eqs.~31! and~32!. With increasing
G, the color-flavor locked phase begins to cover the reg
occupied by the isoscalar phase.

To answer the question of which phase is more stable
low densities will require understanding in detail how stro
coupling effects, which develop as the baryon chemical
tential m is lowered, modifyb1 , b2, andG with increasing
g. These effects are too uncertain for us to be able to pre
in general the more stable state nearTc .

III. GAP EQUATION

We turn now to deriving the high-density asymptotic for
of the thermodynamic potential differenceDV nearTc , as
we used in the previous section. The gap equation in
weak coupling limit provides information on the overall tem
perature dependence of the gap and the quasiparticle s
tures, in contrast to the Ginzburg-Landau approach de
oped in the previous section, which concentrates on limi
temperature region nearTc and coarse-grained features
the superfluid. For the moment, we consider an arbitr
color neutral condensate of the form~13!. For the two opti-
mal pairing states considered in Sec. II, we obtain the beh
ior of the energy gap from the finite-temperature gap eq
tion, with the constraint of color neutrality. In Sec. IV, w
derive the coefficients given by Eqs.~30!–~34! from the
structure of the energy gap.

In obtaining the gap equation in the weak coupling lim
it is convenient to first introduce the notation for the qua
field, (cai ,cai

C ). We then write a self-consistent Schwinge
Dyson equation to determine the proper self-energyS(k) up
to O(g2) @2#:

S~k!52g2TE d3q

~2p!3 (
n odd

Dmn
ab~k2q!

3S gmla/2 0

0 2gm~la!T/2DG~q!

3S gnlb/2 0

0 2gn~lb!T/2D , ~49!

where the summation is over Matsubara frequencies,q0
5 inpT, with n odd for fermions,

G~k![S G(11)~k! G(12)~k!

G(21)~k! G(22)~k!
D

5S gk1g0M D̃~k!

D~k! gk2g0M TD 21

~50!

is the quark propagator with normal state Hartree-Fock c
tributions ignored, D̃5g0D†g0 and Mabi j5d i j (dabm/3
1m̃ab), andDmn

ab is the gluon propagator, specified below

,

8-8



on

ve
-

-

ag-
ble
e

ver
u-

is

-
-

e

SUPERFLUID PHASES OF QUARK MATTER: . . . PHYSICAL REVIEW D 63 074018
The self-energy and quark propagator are related by

G21~k!5G0
21~k!2S~k!, ~51!

where

G0~k!5S gk1g0M 0

0 gk2g0M TD 21

~52!

is the noninteracting quark propagator.
The off-diagonal component of Eq.~49! yields the gap

equation in the weak coupling limit:

D~k!52g2TE d3q

~2p!3 (
n odd

Dmn
ab~k2q!

3gm
~la!T

2
G(21)~q!gn

lb

2
, ~53!

where

G(21)~q!5~gq2g0M T!21D~q!@D̃~q!~gq2g0M T!21

3D~q!2~gq1g0M!#21 ~54!

is the 21-component ofG(q). The summation overn on the
right side of Eq.~53! leads to the self-consistent gap equati

D„v6~k!,k…52
1

4
g2 (

h56
hE d3q

~2p!3

3Dmn
ab
„«6~k!2h«h~q!,k2q…gm

~la!T

2

3F D̂„vh~q!,q…«h
21~q!tanhS vh~q!

2T D G
3gn

lb

2
, ~55!

where the~on-shell! gap matrixD̂(k) is given by

D̂~k!5L2~ k̂!g0D~k!L1~ k̂!g0, ~56!

with the Hermitian frequency matrix

v6~k!56«6~k!2 i Im M ~57!

and

„«h~k!…abi j5S d i j (
c

@dac~ uku2m/3!2Rem̃ac#

3@dcb~ uku2m/3!2Rem̃cb#

1
1

2 (
clmn

D̃acil
mn

„vh~k!,k…D̂cbl j
nm

„vh~k!,k…D 1/2

~58!
07401
the energy matrix for quark quasiparticles. Here, we ha
usedMM T5(ReM)21O(M̃2) and made the approxima
tion in G(21)(q), Eq. ~54!, that (gq2g0M T)21D(q)(gq

2g0M T)'D̃†(q). This approximation is sufficient to de
scribe the gap matrix up to first order inM̃, since uuqu
2m/3uum̃abu is much smaller than the square of the gap m
nitude in the momentum region where the gap is apprecia
~as we shall see in Sec. III A!. We have also disregarded th
contributions of antiquark quasiparticles to the integral o
q in Eq. ~55!; in the weak coupling regime, these contrib
tions are suppressed by one power ofD/m compared with
the quark quasiparticle contributions since the integral
dominated by the region immediately close touqu5m/3. Us-
ing the definition~12!, we obtain

D̂~k!52g5f1~k!L2~ k̂! ~59!

and the quasiparticle energies

«h~k!5@~ uku2ReM!21f1
†
„vh~k!,k…f1„vh~k!,k…#1/2.

~60!

Equation~55! can now be rewritten in terms off1 as

f1„v6~k!,k…52
g2

8 (
h56

hE d3q

~2p!3

3Dmn
ab
„«6~k!2h«h~q!,k2q…

3Tr@gmL2~ q̂!gnL1~ k̂!#
1

4
~la!T

3f1„vh~q!,q…«h
21~q!tanhS vh~q!

2T Dlb.

~61!

The gap equation~61! contains the color chemical poten
tial differencesm̃ab , which are determined by the color neu
trality conditions, Eqs.~3! and ~4!, written in terms ofnab
with na[naa ; thesenab , characterizing the color charg
densities, are given by

nab5T(
i
E d3q

~2p!3 (
n odd

Tr@g0Gabii
(11)~q!#, ~62!

where

G(11)~q!5@~gq1g0M!2D̃~q!~gq2g0M T!21D~q!#21

~63!

is the 11-component of the propagatorG(q). In terms of
f6 ,

G(11)~q!5~gq2g0M T!$@~q01 i Im M!22~ uqu1ReM!2

2f2
† ~q!f2~q!#21L1~ q̂!1@~q01 i Im M!2

2~ uqu2ReM!22f1
† ~q!f1~q!#21L2~ q̂!%,

~64!
8-9
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where we have again used the approximation (gq

2g0M T)21D(q)(gq2g0M T)'D̃†(q). As in the deriva-
tion of the gap equation~55!, this approximation is sufficien
to determinenab up to first order inM̃. Substituting Eq.~64!
into Eq. ~62!, we find

nab5T(
i
E d3q

~2p!3 (
n odd

2$~q02M T2uqu!

3@~q01 i Im M!22~ uqu1ReM!22f2
† ~q!f2~q!#21

1~q02M T1uqu!@~q01 i Im M!2

2~ uqu2ReM!22f1
† ~q!f1~q!#21%abii . ~65!

The Matsubara frequency summation in this equation yie
the usual BCS expression

nab5(
i
E d3q

~2p!3
$12u1

2 ~q!@122 f „v1~q!…#

1v2
2 ~q!@122 f „2v2~q!…#1O~f2

† f2 /m2!%abii ,

~66!

where

f ~«!5
1

e«/T11
~67!

is the distribution function for quark quasiparticles, and t
BCS coherence factors are given by

uh
2~q!5

1

2
@«h~q!2ReM1uqu#«h

21~q!,

vh
2~q!5

1

2
@«h~q!1ReM2uqu#«h

21~q!, ~68!

with uh
2(q)1vh

2(q)51. In obtainingM̃ up to leading order
in f1 , Eq. ~66! can be simplified as

nab52(
i
E d3q

~2p!3
ˆf ~ uqu2M!2 f ~ uqu2m/3!

1$u1
2 ~q! f „«1~q!…1v1

2 ~q!@12 f „«1~q!…#%M̃50‰abii ,

~69!

where we have used the fact that«1(q)u Im M50
5«2(q)u Im M50[«(q) and thus f1„«(q),q…
5f1„2«(q),q….

In specifying the gluon propagatorDab(p[k2q), it is
essential to take into account the long-range nature of
color magnetic interactions@16,18,20,32#. Once the effects
of a normal medium are included in the random-phase
proximation ~RPA!, these interactions are dynamical
screened by the Landau damping of the virtual gluons
volved @16,17#. Since the dominant contributions fromD(p)
are peaked aroundp50, we focus our attention on
07401
s

e

e

p-

-

up0u!m/3 andupu!m/3. The gluon propagator in the Landa
gauge can be written within the RPA as

Dmn
ab~p!52

dabPmn
T

2p21mD
2 xT~p0 /upu!

2
dabPmn

L

2p21mD
2 xL~p0 /upu!

,

~70!

with the dimensionless transverse and longitudinal polar
tions

xT~x!5
x2

2
1

x~12x2!

4
lnS x11

x21D , ~71!

xL~x!5~12x2!F12
x

2
lnS x11

x21D G , ~72!

and transverse and longitudinal projection operators

Pi j
T 5d i j 2

pipj

upu2
, P00

T 5P0i
T 5Pi0

T 50, ~73!

Pmn
L 5

pmpn

p2
2gmn2Pmn

T , ~74!

where the Debye mass is given by

mD5F g2

6p2
Tr M 21S 31

Nf

2 D g2T2

3 G 1/2

. ~75!

In Eq. ~70!, the term proportional toPT describes the
transverse or color magnetic sector, while that proportio
to PL describes the longitudinal or color electric sector. La
dau damping provides an effective infrared cutoff in t
magnetic sector,;(pmD

2 up0u/4)1/3, for up0u!upu. This cutoff
dominates the determination of the energy gap; the infra
cutoff given by a putative magnetic mass@20# makes negli-
gible difference. In the presence of color pairing, certain
the magnetic gluons acquire a mass as a consequence o
Meissner effect@33,34#, while the Debye mass of some o
the electric gluons is reduced@34#. We ignore here these
effects of the superconducting medium, although they po
bly change theg dependence of the gap matrix in the we
coupling limit.

For the purpose of solving the gap equation~61! to lead-
ing logarithmic order ing, i.e., to subleading order ing for
the logarithm of the gap, it is practical to approximate t
polarized gluon propagator~70!; we first set2p2'upu2 and
xL(x)'1, neglect the real part ofxT(x), and replace
Im xT(x)52px/4 for small uxu by 2(px/4)u(ApmD/2
2upu). The effect of this latter replacement is to introduce
high momentum cutoff for the Landau-damped magne
gluons. Then, we replace the gluon propagator by its r
part, so that
8-10
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Dmn
ab~p!.2ReF dabPmn

T

upu22 ipmD
2 p0u~ApmD/22upu!/4upuG

2
dabPmn

L

upu21mD
2

. ~76!
-
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This form is equivalent to that in Ref.@20#. In the gap
equation~61!, we may replaceuqu by uku, and then replace
q̂ by k̂ in the explicit Dirac structures
Tr@gmL2(q̂)gnL1( k̂)#Pmn

L,T(k2q), so that both these
terms become22. We then find that the gap is determine
by
f1„v6~k!,k…52
g2

4 (
h56

hE d3q

~2p!3 H uq2ku2

uq2ku41$pmD
2 @h«h~q!2«6~k!#/4uq2ku%2u~ApmD/22uq2ku!

1
1

uq2ku21mD
2 J 1

4
~la!Tf1„vh~q!,q…«h

21~q!tanhS vh~q!

2T Dla, ~77!
es
-

t
e

-

or-

l:
whereu is the angle betweenk andq. The dominant contri-
bution to the integral in Eq.~77! comes from collinear scat
tering between the quarks of momentak andq. Concentrat-
ing on the corresponding momentum region, cosu.1 and
uku.uqu, allows us to solve for the logarithm of the gap
subleading order ing by reducing Eq.~77! to

f1„v6~k!,k…

5
g2

16p2 (
h56

hE
0

`

duqu H 1

3
lnF uh«h~q!2«6~k!u

MT
G

1 lnS MT

2uqu D1 lnS mD

2uqu D J 1

4
~la!Tf1„vh~q!,q…

3«h
21~q!tanhS vh~q!

2T Dla, ~78!

with MT[ApmD/2. Below, we shall consider the two opt
mal pairing states analyzed in Sec. II and estimate from E
~69! and~78! the chemical potential differences between c
ors and the reduction in the pairing gaps induced by imp
tion of color neutrality.

A. Isoscalar, color-antitriplet channel

Cooper pairing in the isoscalar phase is described b
gap of the form~36!, to within a constant phase factor and
special unitary transformation in flavor space. This gap m
trix is generally accompanied by nonzero chemical poten
differences between colors, as we found in the Ginzbu
Landau regime in Sec. II. We estimate here the chem
potential differences, using the gap equation~78! and the
color neutrality conditions~3! and ~4! with Eq. ~69!.

Note that the right sides of Eqs.~69! and ~78! with
Im M50 are integrals of an even function of«(q), since
under«→2«, u1

2 ↔v1
2 and f↔12 f . It is thus convenient

to diagonalize the matrix«2(q) up to first order in the chemi
cal potential differences, entering viaM̃. We first transform
bases in color space from the original (RGB) basis to a new
s.
-
i-

a

-
l
-

al

basis (R8G8B8) to diagonalize the matrixf1
† (q)f1(q)

wheref1(q)[f1„«(q),q…. WhenM̃50, the unitary ma-
trix U that carries out this diagonalization also diagonaliz
«2(q). As we shall see,U is determined solely by the direc
tion of the vectord, with componentsda[(da)s , in complex
color space and hence is independent ofq. In the isoscalar
channel where the i j components of f1

† f1 obey
(f1

† f1)(uu)5(f1
† f1)(dd) , (f1

† f1)(ss)50, and
(f1

† f1)( i j )50 for iÞ j , it is sufficient to diagonalize the
submatrix (f1

† f1)(uu) . The result reads

u†~f1
† f1!(uu)u5S udu2 0 0

0 udu2 0

0 0 0
D , ~79!

where

u[Uuu[~uR8 ,uG8 ,uB8!, ~80!

with

uR85
d̂* 3~e3d̂!

Aue3d̂u2
, uG85

e* 3d̂*

Aue3d̂u2
, uB85d̂. ~81!

Here,d̂[d/udu, ande is an arbitrary complex unit vector tha
satisfiese3d̂Þ0. Equation~79! describes the pairing stat
with the conventiondR85dG850 anddB8Þ0. The fact that
the matrix (f1

† f1)(uu) is effectively of rank 2, correspond
ing to a reduction of the color symmetry fromSU(3) to
SU(2), implies that the condensate in the isoscalar, col
antitriplet channel is anisotropic in color space.

The unitary matrixU can be taken to be block diagona
U (uu)5U (dd)5U (ss)5u andU ( i j )50 for iÞ j . Then, multi-
plication of the gap equation~78! with Im M50 by U on the
right andU† on the left gives
8-11
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u†@f1~k!# (ud)uS 0 1 0

21 0 0

0 0 0
D 5

g2

16p2E0

`

duquH 1

3
lnF uu†« (uu)

2 ~k!u2u†« (uu)
2 ~q!uu

MT
2 G S 1 0 0

0 1 0

0 0 0
D

1
1

3
lnF uu†« (ss)

2 ~k!u2u†« (ss)
2 ~q!uu

MT
2 G S 0 0 0

0 0 0

0 0 1
D 1 lnS MT

2

4uqu2D 1 lnS mD
2

4uqu2D J
3

1

4
u†~la!Tuu†@f1~q!# (ud)uu†« (uu)

21 ~q!tanhS « (uu)~q!

2T Duu†lauS 0 1 0

21 0 0

0 0 0
D ,

~82!
ity

tio

a
ta
n

l

n

x

the

gy
the

q.
e

where « ( i i ) is the i i component of«, and we have used
« (uu)5« (dd) and f1(du)52f1(ud) . The Gell-Mann matrix
terms can be transformed, via the Fierz ident
(la)ab(l

a)cd52(2/3)dabdcd12daddbc , to

(
abcd

uba8
* ~la!abuab8ucc8

* ~la!cdudd8

52
2

3
da8b8dc8d812~ub8•ud8!~ua8•uc8!* .

~83!

Before taking into account the effects of nonzeroM̃, it is
instructive to understand the structure of the gap equa
with M̃50. We first choose the complex unit vectore in
such a way as to simplify the matrixu†f1(ud)u, and then
write down a reduced gap equation. Because of the inv
ance of the grand canonical Hamiltonian under color ro
tions in the absence ofM̃, it is sufficient to treat the states i
which d3d* 50. These states are related to the states
which d3d* Þ0 by a gauge transformation,d→e22iwd, and
a special unitary transformation,d→Ucd.

For the states satisfyingd3d* 50, we can write d
5udud̃exp(iw0), whered̃ is the real unit vector proportiona
to d, andw0 is the phase common to all the elements ofd.
Let us takee to be a real unit vector that satisfiese3dÞ0.
We then obtain

u†f1(ud)u5S 0 2udu 0

uduexp~2iw0! 0 0

0 0 0
D , ~84!

as well as the relation,

ua8•ub85da8b8@da8R81da8G8exp~22iw0!

1da8B8exp~2iw0!#.

The matrix equation~82! thus reduces to the single equatio
07401
n

ri-
-

in

ud~k!u52
g2

24p2E0

`

duqu H 1

3
lnS uE2~q!2E2~k!u

MT
2 D

1 lnS MT
2

4uqu2
D 1 lnS mD

2

4uqu2
D J

3ud~q!uE21~q!tanhS E~q!

2T D , ~85!

where

E~q!5F S uqu2
m

3 D 2

1ud~q!u2G1/2

~86!

is the R8R8 and G8G8 component of the diagonal matri
$@u†« (uu)

2 (q)u#M̃50%
1/2. Note that Eq.~85! with dR5dG50

is equivalent to the gap equation usually analyzed for
isoscalar color-antitriplet channel~see, e.g., Refs.@20,32#!. In
the weak coupling limit of interest here, where a tiny ener
gap arises in the momentum region immediately close to
Fermi surface, we can replace theE2(x) (x5k,q) in the
logarithmic term of Eq.~85! with the B8B8 component
(uxu2m/3)2 of the diagonal matrix. We then assume in E
~85! that uqu'm/3 in the last two logarithms and shift th
integration variable fromuqu to uqu2m/3. The resulting equa-
tion reads

ud~k!u5
g2

18p2E0

dd~ uqu2m/3!

E~q!
tanhS E~q!

2T D1

2

3 ln F ~bm/3!2

u~ uqu2m/3!22~ uku2m/3!2u
G ud~q!u,

~87!

with

b[256p4S 2

3g2D 5/2

; ~88!
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the cutoff d, obeying ud(uqu5m/3)u!d!mD , is chosen so
that ud(uqu.d)u is vanishingly small. Here, we have use
mD

2 5g2m2/6p21O(g2T2).
Let us now consider a color-singlet system and ask

particular, whether or not the degeneracy of the ord
parameter sets is removed in the weak coupling limit by
chemical potential differences between colors stemm
from color neutrality~3! and~4!. As a first step, we write the
solution to the gap equation~87!, following a line of argu-
ment of Pisarski and Rischke@20#, and express the chemica
potential deviationsm̃ab in terms of the obtained gap. W
then examine how such deviations in turn affect the gap
self. As we shall see, the degeneracy is not removed u
subleading order ing for the logarithm of the gap.

We now implement a process developed by Pisarski
Rischke @20# to convert the integral equation~87! into an
equivalent differential equation@Eq. ~92! below# via the ap-
proximation

1

2
lnF ~bm/3!2

u~ uqu2m/3!22~ uku2m/3!2u
G

→u~ uuqu2m/3u2uuku2m/3u!lnS bm/3

uuqu2m/3u D
1u~ uuku2m/3u2uuqu2m/3u!lnS bm/3

uuku2m/3u D .

~89!

With this approximation and the change of variables,

x[ lnF 2bm/3

uuku2m/3u1E~k!G , y[ lnF 2bm/3

uuqu2m/3u1E~q!G ,
xF[ lnF 2bm/3

E~ uku5m/3!G , ~90!

we obtain

ud~x!u5ḡ2H xE
x

xF
dytanhS E~y!

2T D ud~y!u

1E
ln(bm/3d)

x

dyytanhS E~y!

2T D ud~y!uJ , ~91!

where ḡ[g/3A2p, and ln(bm/3uuku2m/3u).x and
ln(bm/3uuqu2m/3u).y have been used. Differentiation o
Eq. ~91! with respect tox leads finally to

d2ud~x!u

dx2
52ḡ2tanhS E~x!

2T D ud~x!u. ~92!

We summarize the results of Eq.~92!, as obtained by
Pisarski and Rischke@20#. At T50, the magnitude of the ga
is given by
07401
n
r-
e
g

t-
to

d

ud~x!u5
2

3
bme2p/2ḡsin~ ḡx!. ~93!

It was pointed out that the BCS-like exponential term and
sinusoidalx dependence arise from nearly static magne
gluons that undergo Landau damping and mediate the lo
range part of the magnetic interactions, and that both
higher frequency magnetic gluons, which are little affect
by Landau damping, and Debye-screened electric glu
play a dominant role in determining the pre-exponential f
tor.

The overall coefficient of them/g5 in the prefactor is
usually considered to be correct up to a factor of order un
for the reason that radiative corrections such as quasipar
wave function renormalization@18# and vertex corrections
@32# do not modify the asymptotic form of the gap. Howeve
it is still uncertain the extent to which this result is exa
since contributions of the Meissner effect and Debye scre
ing in the superconducting medium remain to be clarifi
@34#.

Expression~93! indicates that the gap takes on a pe
value ud(xF)u5(2bm/3)e2p/2ḡ at uku5m/3, smoothly
reaches half its peak value atuuku2m/3u;ud(xF)uep/3ḡ, and
becomes of order (g ln g)ud(xF)u at uuku2m/3u;mD . The
critical temperatureTc is given by

Tc5
eg

p
ud~xF ,T50!u, ~94!

whereg50.5772 . . . is theEuler constant. It was stresse
by Pisarski and Rischke@20# that expression~94! is of the
usual BCS form, a feature stemming from the fact that in
weak coupling limit @35#, ud(x,T)u.ud(x,T
50)u@ ud(xF ,T)u/ud(xF ,T50)u#. This expression, except fo
a factor of order unity due to quasiparticle wave functi
renormalization, was reproduced by Brown, Liu, and R
@36# using finite temperature diagrammatic perturbati
theory in the normal phase. SinceM̃ vanishes atT5Tc , the
critical temperature itself is unchanged by the color neut
ity constraint.

We turn to the calculations of the chemical potential d
viations m̃ab as functions ofudu given by Eq.~93!; we con-
sider only zero temperature for simplicity. Up to lowest o
der in M̃/m, the difference betweennab given by Eq.~69!
and the corresponding normal-phase valuedabnN
[dab2(Nf /3)N(m/3)m/3 can be written as

nab2nNdab52NfN~m/3!m̃ab12 (
a85R8,G8

uaa8uba8
* dn,

~95!

where

dn[
1

V H (
uqu,m/3

F212
uqu2m/3

E~q! G1 (
uqu.m/3

F12
uqu2m/3

E~q! G J
~96!
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KEI IIDA AND GORDON BAYM PHYSICAL REVIEW D 63 074018
is the number density excess due to pairing@37#, andV is the
system volume. This excess can be estimated from Eqs.~86!
and ~93! as

dn.
3p

2ḡm
N~m/3!ud~xF!u2. ~97!

Using these expressions in the color neutrality conditions~3!
and ~4!, we obtain, with the help of Eqs.~7! and ~81!,

m̃ab5~3d̂ad̂b* 2dab!
dn

9N~m/3!
. ~98!

The chemical potential deviationsm̃ab are thus of order
ud(xF)u2/ḡm.

Such chemical potential deviations do not modify any
the terms, up to subleading order ing, in the logarithm of the
magnitude of the gapudu given by Eq.~93!. This is because
uuqu2m/3uum̃abu!ud(xF)u2 in the momentum region
uuqu2m/3u&d, where the gap is appreciable. We remark t
this robustness of the exponential term and the leading
exponential factor in Eq. ~93! is supported by the
renormalization-group analysis developed by Son@18#. For
example, let us consider the case in whichdR5dG50 and
dBÞ0. In this case, Cooper pairing occurs between
quarks of colorR and G with momenta6k close to the
Fermi surface having Fermi momentumkF5m/31m̃RR

5m/31m̃GG . In the renormalization-group analysis, th
scattering amplitude between these quarks is characte
by the parametert52 lnuuku2kFu. The scattering amplitude
becomes singular at the onset of pairing@41#. The value oft
at which this singularity occurs — the Landau poletL —
tells us the scale of the energy gap according toud(uk
u5kF)u;mDe2tL. Up to subleading order ing, non-zero
m̃RR has no effect ontL , which behaves astL5p/2ḡ
16 lng1••• .

In the weak coupling limit, up to subleading order ing for
the logarithm of the gap, we thus find that the degenerate
of d’s obtained withM̃50 persists in the color-singlet sys
tem studied here, a result consistent with that obtained f
the general Ginzburg-Landau theory in Sec. II. Neverthele
it is instructive to examine the leading contribution ofm̃ab to
the zero-temperature gap, in view of the fact that a stron
coupled quark system may develop a considerable en
gap ~see, e.g., Ref.@13#!.

The properties of this contribution can be roughly und
stood by finding the eigenvalues of« (uu)

2 (q), 5« (dd)
2 (q), the

square of the quasiparticle energy given by Eq.~60!. This
analysis is only applicable to the case in whichd3d* 50
and hence ImM50. @If Im MÞ0, one must go back to th
original gap equation~78! dependent on the matrices«h and
vh , which are not diagonalized by the same unitary tra
formation.# Up to O(M̃), these eigenvalues are given by
07401
f

t
e-

e

ed

et

m
s,

ly
gy

-

-

ER8
2

~q!5S uqu2
m

3
2dmR8D 2

1ud~q!u2,

EG8
2

~q!5S uqu2
m

3
2dmG8D 2

1ud~q!u2,

EB8
2

~q!5S uqu2
m

3
2dmB8D 2

, ~99!

where

dm5dmB8522dmR8522dmG8[
pud~xF!u2

3ḡm
~100!

is the chemical potential shift fromm/3. The order of the
eigenvalues corresponds to that in Eq.~79!. Note that the
chemical potential shiftdm, stemming from the anisotropy
of the condensate in color space, is independent of its c
orientation. This reflects the fact that the properties o
color-singlet system do not depend on the choice of co
axes. It is also important to note thatdm is positive definite.
This feature arises due to the property discussed in Ref.@37#.
Not only does positivedm enlarge the Fermi surface of th
gapless quarks of colorB8, but it also decreases the Ferm
energy of the quarks of colorsR8 or G8, leading to overall
suppression of the energy gap.

In order to calculate in detail theO(m̃ab) correction to the
magnitude of the gap in the case in whichd3d* 50, we
note thatU diagonalizesM and hence«2(q). This is evident
from the relation

Mabi j5d i j H Fm

3
1

pud~xF!u2

3ḡm
Gdab2

p@~f1
† f1!(uu)# uku5m/3

2ḡm
J ,

~101!

obtained from Eq.~98!. It is thus straightforward to show
that the gap equation~82! reduces to Eq.~85! in which the
quasiparticle energyE(q) is replaced byER8(q), 5EG8(q).
The solution to this equation reads

ud~x8!u5
2C1bm

3
expS 2

p

2ḡ
D sin~ ḡx8!,

x8[ lnF 2C1bm/3

uuku2m/31dm/2u1ER8~k!
G , ~102!

where the correction factor is

C1.129
dm

m
, ~103!

and we have usedmD
2 5g2m2/6p21O(g2dm2).

Note thatC1 is less than unity. As a consequence t
anisotropy of the condensate in a color-singlet system ac
reduce the gap size.

This reduction, together with the reduction in the densit
of states at the Fermi surfaces for colorsR8 andG8 due to
8-14
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SUPERFLUID PHASES OF QUARK MATTER: . . . PHYSICAL REVIEW D 63 074018
dmR8,G8 , leads to a decrease in the condensation energ
the system. These features arise despite the fact that ther
no Fermi momentum differences between the two colors
sociated with the pairing. This situation is in contrast to t
case of ferromagnetic superconductors@38# and to the case
of color-flavor-locked quark superfluids with nonze
strange quark mass@39#, where Fermi momentum mis
matches between the electron spins and between the q
flavors involved in the pairing, respectively, play a role
reducing the magnitude of the gap.

B. Color-flavor locking

We proceed to examine color-flavor locking, described
the order parameter~39! to within a constant phase facto
and a special unitary transformation in flavor space. We fi

note the relationm̃ab}( i@(f1
† f1) uku5m/3#abii1const3dab ,

which can be derived up to first order inf1
† f1 from the

color-singlet conditions~3! and~4! as well as Eq.~69!. Here,
the constant affixed todab ensures Eq.~7!. Substituting Eq.
~39! into this relation we find ( i@(f1

† f1) uku5m/3#abii

54dabukAu2, and thus obtainM̃50. This result, coming
from the isotropy of the condensate in color space, is con
tent with that from the general Ginzburg-Landau analysis
Sec. II. We can thus derive the behavior of the energy ga

T50 and nearTc from the gap equation~78! with M̃50.

Substitution of ansatz~39! andM̃50 into Eq.~78! leads to
an equation forkA :
d

07401
of
are
s-
e

ark

y

st

s-
n
at

kA~k!5
g2

18p2E0

d
d~ uqu2m/3!

3
1

2
lnF ~bm/3!2

u~ uqu2m/3!22~ uku2m/3!2u
G

3H 2
2

3 F2kA~q!

E(8)~q! G tanhS E(8)~q!

2T D
1

1

6 F2kA~q!

E(1)~q!G tanhS E(1)~q!

2T D J , ~104!

with

E(8)~q!5@~ uqu2m/3!21ukA~q!u2#1/2,

E(1)~q!5@~ uqu2m/3!214ukA~q!u2#1/2. ~105!

Here, we have used the color structure

(
bc

1

4
~la!ba~dbidc j2db jdci!~la!cd52

2

3
~daidd j2da jddi!

~106!

and the diagonalized form of the quasiparticle ene
squared,

UCFL
T «2~q!UCFL

5da8b8d i 8 j 8E(8)
2 ~q!1da8B8db8B8d i 8s8d j 8s8

3@E(1)
2 ~q!2E(8)

2 ~q!#, ~107!

with
UCFL5
1

A6 1
22 0 0 0 0 0 0 0 A2

0 A6 0 0 0 0 0 0 0

0 0 A6 0 0 0 0 0 0

0 0 0 A6 0 0 0 0 0

1 0 0 0 2A3 0 0 0 A2

0 0 0 0 0 A6 0 0 0

0 0 0 0 0 0 A6 0 0

0 0 0 0 0 0 0 A6 0

1 0 0 0 A3 0 0 0 A2

2 ; ~108!
here the bases are taken to be (Ru,Gu,Bu,Rd,Gd,Bd,
Rs,Gs,Bs) in the original color-flavor space an
(R8u8,G8u8,B8u8,R8d8,G8d8,B8d8,R8s8,G8s8,B8s8) in
the transformed color-flavor space.

At T50, the gap equation~104! is equivalent to that ob-
tained by Scha¨fer @11#. The analogy between Eq.~104! and
Eq. ~87! allows us to writekA in the form ~93! valid up to
subleading order ing for the logarithm ofudu @11#:
kA~x(8)!5221/3exp~ iwA!
2bm

3
expS 2

p

2ḡ
D sin~ ḡx(8)!,

~109!

where

x(8)[ lnS 22/3bm/3

uuku2m/3u1E(8)~k! D , ~110!
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andwA is the phase ofkA .
At finite temperatures, the assumption thatkA(k,T)

.kA(k,T50)@kA(uku5m/3,T)/kA(uku5m/3,T50)# holds
as in the isoscalar, color-antitriplet channel. AtT5Tc ,
where E(8)(q)5E(1)(q), the gap equation~104! has the
same structure as Eq.~87! obtained for the isoscalar, color
antitriplet channel. Thus, the critical temperatureTc equals
the result, Eq.~94!, in the isoscalar channel. Such equali
persisting in the strong coupling regime~see Sec. II!, stems
from the fact that both these types of pairing are induced
the same instability of the normal phase.

IV. GINZBURG-LANDAU REGION AT HIGH DENSITIES

We are now in a position to calculate, in the weak co
pling limit, the Ginzburg-Landau free energy, Eq.~15!, the
difference between the superfluid and normal phases nea
transition temperatureTc . As earlier, we ignore the norma
state Hartree-Fock terms in the Schwinger-Dyson equa
~49!, and identify the thermodynamic potential in the norm
phase with that of an ultrarelativistic, noninteracting Fer
gas of Fermi energym/3. We thus obtain@21#

DV5DV ideal1V loop1V res, ~111!

where

DV ideal52
1

12p2 FTr M 423Nf S m

3 D 4G ~112!

is the difference in the ideal-gas contribution between
superfluid and normal phases,

V loop52
T

2 (
n odd

E d3q

~2p!3
Tr@2G~q!S~q!

1 ln G0
21~q!G~q!# ~113!

is the contribution, again up toO(g2), of quark loops in the
superfluid vacuum, and

V res52H T

4 (
n odd

E d3q

~2p!3
Tr@G~q!S~q!#J

T5Tc ,M̃50

,

~114!

resulting from the mean-field approximation@19# adopted in
writing Eq. ~49!, guarantees that the energy gapD vanishes
at T5Tc .

We now expand the thermodynamic potential differen
~111! with respect toD(q)[D(q05uqu2m/3,q) andm̃ab . In
calculatingV loop up to O(D4) and O(D2M̃), we use the
quark propagatorG given by Eq.~50!, the proper self-energy
S given by Eq.~51!, and the noninteracting quark propagat
G0 given by Eq.~52!.
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The explicit Dirac structure ofG can be obtained from
G(11), Eq. ~63!, G(21), Eq. ~54!,

G(12)~q!5@D̃~q!~gq2g0M T!21D~q!2~gq1g0M!#21

3D̃~q!~gq2g0M T!21, ~115!

and

G(22)~q!5@~gq2g0M T!2D~q!~gq1g0M!21D̃~q!#21.
~116!

Thus,

Tr@G~q!S~q!#52TrH 1

gq1g0MD̃~q!
1

gq2g0M T
D~q!

1F 1

gq1g0MD̃~q!
1

gq2g0M T
D~q!G 2

1•••J ~117!

and

Tr@ ln G0
21~q!G~q!#

5TrH 1

gq1g0MD̃~q!
1

gq2g0M T
D~q!

1
1

2 F 1

gq1g0MD̃~q!
1

gq2g0M T
D~q!G 2

1•••J .

~118!

Combining Eqs.~117! and~118! with Eq. ~113! and perform-
ing the Matsubara frequency summation, we finally obtai

V loop5V loop
(0) 1V loop

(1) , ~119!

where

V loop
(0) 52

1

2E d3q

~2p!3
tanhS uqu2m/3

2T D 1

uqu2m/3

3Tr@f1
† ~q!f1~q!#1

3

8E d3q

~2p!3 F tanhS uqu2m/3

2T D
3

1

~ uqu2m/3!3
2cosh22S uqu2m/3

2T D 1

2T~ uqu2m/3!2G
3Tr@f1

† ~q!f1~q!f1
† ~q!f1~q!# ~120!
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is the usual Ginzburg-Landau expansion obtained forM̃
50, and

V loop
(1) 52

1

2E d3q

~2p!3 F tanhS uqu2m/3

2T D 1

~ uqu2m/3!2

2cosh22S uqu2m/3

2T D 1

2T~ uqu2m/3!G
3Tr@f1

† ~q!f1~q!M̃# ~121!

is theO(M̃) correction to the first term on the right side
Eq. ~120!. We have again ignored the contributions of an
quark quasiparticles, and used the relation Tr(f1

† f1M̃)

5Tr(f1f1
† M̃T), coming from f1

T (q)5f1(q) @see Eq.
~10!#.

We turn now to calculatingV loop
(0) and V loop

(1) for the iso-
scalar, color-antitriplet channel considered in Secs. II and
and derive the high-density Ginzburg-Landau form ofDV
used in Sec. II. We remark in passing that the calculation
V loop

(0) for the color-flavor locking reproduce the values ofā,
b1, andb2 that will be derived below for the isoscalar cha
nel.

To derive the coefficients of the Ginzburg-Landau fr
energy for isoscalar, color-antitriplet pairing, we first car
out the integrals overq in V loop

(0) , Eq. ~120!, andV loop
(1) , Eq.

~121!. Here we evaluatef1(q,T), whoseq and T depen-
dences are effectively decoupled forT<Tc ~see Ref.@35#!,
as

f1~q,T!.f1~ uqu5m/3,T!sin~ ḡy!uT50 , ~122!

wherey is given by Eq.~90!. We also use the approximatio

tanhS uqu2m/3

2T D→u„kud~xF ,T50!u2uuqu2m/3u…

3tanhS uqu2m/3

2T D
1u„uuqu2m/3u2kud~xF ,T50!u…

3
uqu2m/3

uuqu2m/3u
, ~123!

wherek is a positive number of orderg21, andxF is given
by Eq. ~90!. With this choice, tanh@(uqu2m/3)/2T#
.(uqu2m/3)/uuqu2m/3u for uuqu2m/3u*kud(xF ,T50)u,
and sin(ḡy)uT50.1 for uuqu2m/3u&kud(xF ,T50)u. We thus
obtain

V loop
(0) 52N~m/3!lnFeg~2bm/3!1/2ud~xF ,T50!u1/2

pT G
3Tr~f1

† f1!F1
3

2

7z~3!

8~pTc!
2

N~m/3!

3Tr~f1
† f1f1

† f1!F ~124!
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V loop
(1) 5

3

m
lnS 3Tc

m DN~m/3!Tr~f1
† f1M̃!F

[xTr~f1
† f1M̃!F , ~125!

where the coefficients of Tr(•••)F include the leading con-
tributions with respect tog, and the temperature has been s
equal to the critical temperature, Eq.~94!, except in the co-
efficient of Tr(f1

† f1)F . The termV res, expressed as

V res5N~m/3!lnFeg~2bm/3!1/2ud~xF ,T50!u1/2

pTc
GTr~f1

† f1!F

2
7z~3!

8~pTc!
2

N~m/3!Tr~f1
† f1f1

† f1!F , ~126!

acts as a counterterm to the coefficient of Tr(f1
† f1)F , lead-

ing to DV50 at T5Tc @2#. Then the sum ofV loop
(0) andV res

reduces to the usual Ginzburg-Landau partV0:

V05N~m/3!lnS T

Tc
DTr~f1

† f1!F

1
1

2

7z~3!

8~pTc!
2

N~m/3!Tr~f1
† f1f1

† f1!F

[a1Tr~f1
† f1!F1b2

1Tr@~f1
† f1!2#F . ~127!

From Eq.~125! we derive the value ofx, Eq. ~34!. Equation
~127! indicates thatb1

150 and implies the coefficients in
Eqs.~30!–~32!.

The coefficients in Eq.~127! agree with those obtained b
Bailin and Love@2# for a BCS-type short-range pairing in
teraction and forM̃50. The agreement with the term o
fourth order inf1 arises because the main contribution
the corresponding integral in Eq.~120! comes from the mo-
mentum regionuuqu2m/3u&kud(xF ,T50)u, where the gap
is almost flat. The agreement for the second order term inf1

is obvious. On the other hand, the coefficient
Tr(f1

† f1M̃)F in V loop
(1) , as can be seen from Eq.~125!, is

different from 2(6/m)N(m/3)ln(L/Tc) with the ultraviolet
cutoff L as in a BCS superconductor, due to the behav
f1(q,T)}sin(ḡy)uT50 induced by the long-range dynam
cally screened magnetic interactions.

The difference in the ideal-gas free energy of the sup
fluid and normal phases,DV ideal, Eq. ~112!, gives rise to a
term proportional to TrM̃2, with coefficient given by Eq.
~33!. The color neutrality conditions, Eqs.~19! and~20!, thus
imply

m̃ab52
1

3m
lnS 3Tc

m D @3da~xF ,T!db* ~xF ,T!

2ud~xF ,T!u2dab#, ~128!
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in agreement with Eq.~44! with (da) i5d isda . Comparing
this expression to theT50 result, Eq.~98!, we find that
m̃ab /ud(xF ,T)u2 is identical at bothT50 and T.Tc . Ex-
pression~128! can also be derived from the same analy
that yields Eq.~98! if we replace, in Eq.~95!, dn as given by
Eq. ~96! with

dn5V21(
q

H tanhS uqu2m/3

2T D2
uqu2m/3

E~q!
tanhS E~q!

2T D J .

~129!

The equality in m̃ab /ud(xF ,T)u2 in the T50 and T.Tc
cases arises from the fact that both have nearly the s
momentum dependence of the gap.

V. CONCLUSION

In this paper we have laid out the Ginzburg-Landau str
ture of superconducting quark matter. Even in the homo
neous case considered here, many questions remain.
electrical charge neutrality, in addition to color neutrali
should be duly taken into account. The system conside
here is composed of three flavor massless quarks in fla
equilibrium, as characterized by Eq.~1!. Such matter, when
normal, is electrically neutral in itself. BelowTc , however, it
has nonzero net electric charge, unless the order parame
isotropic in flavor space. This isotropy is retained by t
color-flavor locked phase; however, in the isoscalar chan
strange quarks remain gapless, leading to a deficit of the
number of strange quarks relative to the total baryon num
and, hence, to positive net charge. This charge, in neu
star matter, would be neutralized by charged leptons.

It is straightforward to extend the formalism obtained
the absence of leptons to the situation of electrical cha
neutrality. When the system is in overall beta equilibriu
the quark chemical potentials, for each colora, obey mau
1me5mad5mas , whereme is the electron chemical poten
tial. Then the quark chemical potential,ma , for color a, de-
fined by

ma[mai1qime , ~130!

is the same for all flavorsi; here,qi is the electric charge o
the quark of flavori. This relation replaces condition~1!. As
a consequence of electrical charge neutrality, Eq.~5! remains
valid. We keep the same definition~6! of the m̃aa . The ma-
trix M̃, given by Eq.~21!, can now be rewritten as a trace
less matrix

M̃abi j5d i j ~m̃ab2qimedab!. ~131!

Near Tc , DV is still given by Eqs.~24! and ~27!, since
the lepton pressure, which is of orderme

4 @;O(m̃ab
4 )#, is

negligible compared withVCN which is of orderm2m̃ab
2 .

„Up to leading order in da , we obtain me
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52(x/2s)(aiqi@(da* ) i(da) i #F1O(me
3/m2) from the electric

neutrality condition,]DV/]me50, and Eq.~44! from the
color neutrality conditions ~19! and ~20!. Thus, me

;O(m̃ab).… Since electricity does not distinguish betwe
colors, the presence ofme in the isoscalar channel@(da) i
5d isda# reduces the average Fermi momentum of theu and
d quarks, and thus results in a uniform suppression in
magnitudes of the gap and condensation energy; in Eqs.~47!
and ~48!, b1 is replaced byb11G/2. Accordingly, in the
phase diagram illustrated in Fig. 2, the isoscalar phas
shifted by G/4 in the b1 direction and23G/4 in the b2
direction. Note that the general flavor-antitriplet states
longing to this phase can no longer be reduced to the
scalar channel by flavor rotations since the values ofme and
the gap suppression depend on the electric charges of qu
involved in Cooper pairing.

A second important problem is how the strange qu
mass affects the quark superfluidity. A non-zero stran
quark mass not only breaks invariance of the gra
canonical Hamiltonian with respect to rotations in flav
space, but it also necessitates the presence of a neutral
gas of leptons even in the normal phase. The resultingms
dependence of the stability of color-flavor locking over t
isoscalar state was considered by several authors~see, e.g.,
Refs.@39,40#!, who found that in contrast to the case of th
isoscalar channel, color-flavor locking is destabilized by
Fermi momentum mismatch betweens quarks andu, d
quarks produced by a nonzero value ofms .

It is instructive to consider the effect ofms in terms of the
general Ginzburg-Landau approach constructed here. In
highly relativistic regime (ms!m/3), in addition to the terms
in the massless limit,DV contains a term proportional to
Tr(f1

† f1M2)F , whereMabi j5dabd i j mi with mu5md50.
This term tends to suppress the pairing gap just like the t
proportional to Tr(f1

† f1M̃)F coming from color neutrality.
Note that because of color-flavor locking, the resulting a
isotropy of the condensate in flavor space acts to fix its co
orientation. The transition temperatureTc is also reduced in
the color-flavor locked state, leading to aTc in the color-
flavor locked state smaller thanTc in the isoscalar channel
which is independent ofms . The equilibrium phase diagram
for the superfluid transition, in them versusT plane, is sen-
sitive not only to the effects of the color neutrality and t
strong coupling, as stressed in the present work, but als
effects of electric neutrality and finite strange quark mas

ACKNOWLEDGMENTS

We are grateful to T. Hatsuda for helpful discussions. K
would like to acknowledge the hospitality of the Departme
of Physics of the University of Illinois at Urbana-Champaig
and G.B. the hospitality of the Aspen Center for Phys
during the course of this research. This work was suppo
in part by a Grant-in-Aid for Scientific Research provided
the Ministry of Education, Science, and Culture of Jap
through Grant No. 10-03687 and in part by National Scien
Foundation Grant No. PHY98-00978.
8-18



rk
0,

s
0,

.

c

ys

art.

,

l

ett.

.

on

rks
id,
er

s

.

SUPERFLUID PHASES OF QUARK MATTER: . . . PHYSICAL REVIEW D 63 074018
@1# B.C. Barrois, Nucl. Phys.B129, 390 ~1977!.
@2# D. Bailin and A. Love, Phys. Rep.107, 325 ~1984!.
@3# D.H. Rischke and R.D. Pisarski, in Proceedings, Fifth Wo

shop on QCD, Villefranche-sur-Mer, France, 200
nucl-th/0004016.

@4# M. Alford, J.A. Bowers, and K. Rajagopal, in Proceeding
Physics of Neutron Star Interiors, Trento, Italy, 200
hep-ph/0009357.

@5# See, e.g., A.J. Leggett, Rev. Mod. Phys.47, 331 ~1975!; P.W.
Anderson and W.F. Brinkman, inThe Physics of Liquid and
Solid Helium, Part II,edited by K.H. Bennemann and J.B
Ketterson~Wiley, New York, 1978!, p. 177.

@6# F. Wilczek, Nucl. Phys.A663, 257c~2000!.
@7# K. Rajagopal, Nucl. Phys.A661, 150c~1999!.
@8# B. Vanderheyden and A.D. Jackson, Phys. Rev. D62, 094010

~2000!.
@9# P.W. Anderson and W.F. Brinkman, Phys. Rev. Lett.30, 1108

~1973!.
@10# N.D. Mermin and C. Stare, Phys. Rev. Lett.30, 1135~1973!.
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@32# T. Schäfer and F. Wilczek, Phys. Rev. D60, 114033~1999!.
@33# D.K. Hong, V.A. Miransky, I.A. Shovkovy, and L.C.R

Wijewardhana, Phys. Rev. D61, 056001~2000!.
@34# D.H. Rischke, Phys. Rev. D62, 034007~2000!; 62, 054017

~2000!.
@35# In the weak coupling limit, the term tanh@E(x)/2T# in Eq. ~92!

deviates appreciably from unity only in a momentum regi
whereuuku2m/3u is of order or smaller thanud(xF ,T50)u.

@36# W.E. Brown, J.T. Liu, and H.-C. Ren, Phys. Rev. D61,
114012~2000!; 62, 054016~2000!.

@37# Note that at fixed chemical potential, the number of the qua
in a superfluid is larger than in a normal degenerate flu
leading to smaller chemical potential for a color with a larg
gap in a color-singlet quark superfluid.

@38# P. Fulde and R.A. Ferrell, Phys. Rev.135, A550 ~1964!; A.I.
Larkin and Yu.N. Ovchinnikov, Zh. E´ksp. Teor. Fiz.47, 1136
~1964! @Sov. Phys. JETP20, 762 ~1965!#.

@39# M. Alford, J. Berges, and K. Rajagopal, Nucl. Phys.B558, 219
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