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We systematically apply Ginzburg-Landau theory to determine BCS pairing in a strongly coupled uniform
superfluid of three-flavor massless quarks in flavor equilibrium. We elucidate the phase diagram near the
critical temperature in the space of the parameters characterizing the thermodynamic-potential terms of fourth
order in the pairing gap. Within the color and flavor antisymmetric channel with zero total angular momentum,
the phase diagram contains an isoscalar, color-antitriplet phase and a color-flavor-locked phase, reached by a
second order phase transition from the normal state, as well as states reached by a first order phase transition.
We complement the general Ginzburg-Landau approach by deriving the high-density asymptotic form of the
Ginzburg-Landau free energy from the finite temperature weak-coupling gap equation. The dynamically
screened, long-range color magnetic interactions are explicitly taken into account in solving the gap equation.
We find that in the limit of weak coupling, the isoscalar, color-antitriplet phase has higher free energy near the
transition temperature than the color-flavor locked phase. In view of the fact that deconfined quark matter must
be color charge neutral, we incorporate the constraint of overall color neutrality into the general Ginzburg-
Landau theory and the gap equation. This constraint yields a disparity in the chemical potential between colors
and reduces the size of the pairing gap, in the presence of the anisotropy of the order parameters in color space.
In comparison with the case in which there are no chemical potential differences between colors and hence the
superfluid generally has nonzero net color charge, we find that while the constraint of color neutrality has only
negligible effects on the gap in the weak coupling regime, it appreciably destabilizes the isoscalar, color-
antitriplet phase in the strong coupling regime without affecting the color-flavor-locked phase.
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I. INTRODUCTION man [9] and Mermin and Star¢10] in the context of
superfluid 3He, reveals the most energetically favorable

The possibility that degenerate relativistic quark matterphase just beloW ¢, in terms of the parameters characteriz-
becomes a color superconductor at low temperatures hasg the thermodynamic potential to fourth order in the pair-
been considered for the past two decades. As the seminadg gap. The first application of the general Ginzburg-
papers i 1,2] noted, the quark-quark interaction in the color Landau theory was made by Bailin and Lo\# to quark
antitriplet channel is attractive and drives a Cooper pairingpairing with one flavor and total angular momenturs 1.
instability in the system, even in the limit of high densities Here we shall consider more general Cooper pairing between
where the Fermi energy of the quarks dominates over the, d, ands quarks withJ=0. We complement this approach
one-gluon exchange interaction energy. Work in the interby deriving the parameters controlling the fourth order terms
vening period has concentrated on the mean field approacfrom the weak coupling gap equation. Previous widrk,12]
strictly valid only in the weak coupling limitsee, e.g., Refs. has systematically investigated such pairing at zero tempera-
[3] and[4] for reviews. As the density is lowered, nonper- ture; the present study provides a systematic elucidation of
turbative effects arising from self-couplings of the gluonthe equilibrium properties nedr, .
field prevall, finally leading to a confinement transition into  The zero-temperature pairing gap and hefgeare pre-
hadronic matter. Strong coupling effects can modify thedicted to be~10—2100 MeV for baryon chemical potentials
equilibrium order parameter from the weak coupling predic-~1 GeV [13]. This prediction relies on extrapolation from
tion, as effects of spin fluctuation exchange do in superfluidveak coupling to the low density, nonperturbative regime,
3He [5]. The resultant change in the color-superconductingy incorporating into the BCS gap equations effective inter-
phase can also affect the breaking of chiral symmigrna]. actions modeled after instanton-mediated interactions, in
The properties of color superconductivity such as the pairinguch a way as to reproduce constituent quark masses. Appli-
gap and the critical temperaturg,, have yet to be derived cation of the Wilson renormalization group to analysis of the
in the strong coupling regime in a rigorous way. stability of a Fermi liquid against Cooper pairifig4] sug-

In this paper we examine color superconductors by meangests that four-fermion couplings, induced between two par-
of a general Ginzburg-Landau approach, which permits us tticles with zero total momentum by one-gluon exchange or
determine the coarse grained features of such systems at tetvy instantons, grow logarithmically with momentum as
peratures just below ., for arbitrary QCD coupling con- higher modes are successively integrated out closer to the
stant,g. This approach, pioneered by Anderson and Brink-Fermi surface; the scattering amplitudes eventually reach a
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singulariy — a Landau pole — in a way dependent on the[2,19,2(, including the infrared structure of the gluon propa-
number of flavors involved in the pairing. For two flavors gator as in Ref[20]. The latter behavior determines the

(u, d), both gluon- and instanton-induced interactions play alependence of the pairing gap in the weak coupling limit.
role in opening an energy gap in the isoscalar, colorDebye screening of the electric gluons and Landau damping
antitriplet channel with zero total angular momentuth ( of the magnetic gluons, calculated with one-gluon exchange
=0). Pairing in this channel partially breaks baryon numberas modified by a normal medium, provide effective infrared
symmetry and global color rotational invariance, but restoregutoffs of the respective scattering amplitudes.

chiral symmetry. For three flavorai( d, s), on the other Motivated by the fact that deconfined quark matter must
hand, a color-flavor locked staft&5] arises in theJ=0 chan-  be in an overall color singlet state, we also consider the
nel mainly from the gluon-induced interactions when theequilibrium properties of superfluid quark matter under the
strange quark mass is sufficiently small. This state is invaricondition that it be color-charge neutral. In normal quark
ant under simultaneous exchange of color and flavor, but nghatter, in which global color rotational invariance is ensured
under single exchange of color or flavor; chiral symmetry as,y QcD interactions, the constraint of color neutrality leads
well as baryon number symmetry and global color rotational, equality of the chemical potentials for quarks of different
invariance is broken. In the high density regime where the o5 (see, e.g., Ref21]). Superfluid quark matter, on the
Interactions are dominated by. ong—gluon exchange, the C.c’l%ther hand, generally has a preferred direction in color space.
magnetic(transversgforce, which is screened only dynami- Such violation of color rotational invariance together with

g%%lb){ohar:gﬁuedda{g F;Egr?rf]étzemgg?éﬂ[:féﬂﬁels Z:Jr]:fr:_ athe requirement of overall color neutrality leads to differ-
y'long rang P P 9938 ces in the chemical potential between colors, in a way

on the QCD coupling constamgt from the BCS result. This d dent the d ¢ anisot £ 1th i
fact was first noted by Sofl8] using a renormalization ependent on the degree ot anisolropy of Ihe order param-
ters in color space. This disparity in chemical potentials in

group method and an approximate solution to the relevarft = X
gap equation. turn alters the pairing gap, a feature seen in the general

As in prior papers, we focus on the equilibrium propertiesGinzburg-Landau analysis. Beyond the usual terms of sec-
of an ultrarelativistic color superconductor thatismoge- ©nd and fourth order in the pairing gap, color neutrality adds
neous in the sense that the real gluon field vanishes everyterms dependent on the chemical potential differences be-
where and the order parameter is everywhere continuous ifween colors. Such extra terms, which act in the isoscalar,
magnitude and orientation; we denote such a staguper- ~ color-antitriplet channel, do not remove the degeneracy of
fluid quark matter Such homogeneity is similar to that in the order-parameter sets occurring for equal color chemical
superfluid *He and superfluid neutron matter, as noted bypotentials and renormalize the coefficients of the fourth order
Bailin and Love[2], because in both cases breaking of theterms so as to reduce the pairing gap. In order to estimate the
globalU(1) gauge symmetry is accompanied by global sym-influence of color neutrality on the gap in the weak coupling
metry breaking associated with the internal degrees of fredimit, we incorporate color chemical potential differences in
dom. In superfluid quark matter, the possible order paramthe gap equation, and find that in the weak coupling limit,
eters are generallgnisotropicin color spacesee, e.g., Ref. such differences do not significantly modify the gap. Al-
[2]), a situation analogous to superflutHe in which, as though it does not affect the color-flavor-locked phase, the
seen experimentally, the anisotropy lies in spin sgége constraint of color neutrality can appreciably raise the free

We first restrict ourselves to the case, normally assumednergy of the isoscalar, color-antitriplet phase in the strong
in earlier investigations, in which the chemical potentials ofcoupling regime.
different color and flavor quarks are equal. We obtain the We base our calculations in the weak coupling limit on
thermodynamic potential difference between the superfluidhe field-theoretical description of an ordinary supercon-
and normal phases neag from the Ginzburg-Landau ap- ductor as advanced by Namf22] and Eliashberd23], who
proach. The terms of second and fourth order in the pairingeformulated the original BCS problem in terms of electron-
gap are constrained by invariances of the grand canonicghonon interactions. Such a formalism is useful when the
Hamiltonian and by the structure of the order parametersinteractions are nonlocal in time, as are the color magnetic
assumed here to be antisymmetric in color and flavor spacénteractions in the relativistic plasma. This tool was general-
We then identify the degenerate sets of order parameters caeed to a relativistic regime by others in earlier investigations
responding to local energy minima as isoscalar color{e.g., Ref[2]).
antitriplet and color-flavor locked states, and determine their We focus in this paper on a system in flavor equilibrium,
condensation energies. We draw the resultant equilibriumvith no chemical potential differences between flavtas
phase diagram nedr. in the space of parameters character-long as the electrical charge of the quarks is neglecitsia
izing the fourth order terms. We find that in the limit of weak consequence, the energy of the superfluid is invariant under
coupling, the isoscalar, color-antitriplet phase is less favorrotations of the equilibrium states in flavor space. The influ-
able than the color-flavor locked phase n&ar ence of the possible flavor chemical potential differences on

In general, determination of the Ginzburg-Landau paramihe phase diagram, examined by others in earlier investiga-
eters requires inclusion of strong coupling effects. In thetions[4,24], resolves this degeneracy. Such differences may
weak coupling limit, we anchor the general Ginzburg-also give rise to an inhomogeneous phase in which the pair-
Landau approach by deriving the parameters from the reling gap varies periodically in ordinary space. The conditions
evant weak coupling gap equations at finite temperatureletermining the chemical potential differences between
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flavors depend, however, sensitively on the extent to whicleters characterizing the strong-coupling effects and the color-
the system is out of flavor equilibrium. neutrality constraint.

We summarize the main conclusions of this paper. By We consider uniform quark matter of temperatirand
applying general Ginzburg-Landau theory to the0, color  baryon chemical potentigk, with number of flavordN;=3
and flavor antisymmetric pairing states of superfluid quark(u,d,s) and colorsN.=3. We neglect quark masses and
matter, we elucidate the phase diagram neain the space electrical charges as well as chiral condensates, and do not
of the parameters controlling the fourth order terms in thetake into account at this stage either the color or electromag-
pairing gap. We find that the phase diagram contains an isaietic gauge field, except for virtual gluons mediating inter-
scalar color-antitriplet phase and a color-flavor locked phasegctions between the quarks. We also assume that the system
both reached by a second order phase transition, as well ashas zero net color charge and satisfies the condition, for fla-
region of Ginzburg-Landau parameters for which the transivor equilibrium,
tion to the superfluid phase is of first order. The detailed
structure of the superfluid phase in this regime depends on Mau= Mad= Mas= Ma> (1)
the nature of the sixth order terms in the expansion. In the ) ) )
limit of weak coupling, the color-flavor locked phase is more Whereéw,; is the chemical potential for the quarks of cogor
favorable than the isoscalar color-antitriplet phase. We als@nd flavori. Thus, the ensemble-averaged color charge den-
expand the general Ginzburg-Landau approach and thelties vanish:

Nambu-Eliashberg formalism to incorporate differences in _

the chemical potential between colors, required to preserve (SN aptai(X) Y hi(x)) =0, (2
color-charge neutrality of the system. We find that the color i N

neutrality constraint in the presence of anisotropy of the orhere they; are the quark fields ankl;, the color genera-
der parameters in color space tends to suppress the gap. [0rS- AS a consequence,

Color superconductivity in quark matter becomes an as-
trophysically interesting problem if neutron star interiors are
sufficiently dense that they contain quark matter cdgss. ) —
Generally, a quark superfiid in a neutron star would not b&Vith Na= (% #ai(x) Y¥ai(x)), and
electrically neutral since each quark has fractional electric — 0
charge; rather it would coexist with electrof@d muonsin Nab= (2 ¥ai(X) ¥ Ppi(x)) =0 (4)
e e e s et e o st 8. COnRON(, aong Wi condtor) s
scopic manifestations of both color and electromagnetic syl M as
perconductivity such as Meissner effects, generation of Lon-
don fields, and vortex formation are expected from magnetic L= wal (5
fields and rotations as observed in these celestial objects. We a
will discuss these issues, which may be relevant to magnetic . .
structure, cooling, and rotational evolution of the neutronequwalently, we write
stars[4,26], elsewherd27].

In Sec. Il, we construct the generalized Ginzburg-Landau Than=fa— ﬁ, (6)
theory including color chemical potential differences, and 3
apply it to color and flavor antisymmetric pairing with Then
=0. The equilibrium phase diagrams for various values of ’
the parameters controlling the expansion of the free energy 5
are given here. Section Il is devoted to deriving the gap Z Maa=0. 7)
equations in the weak coupling limit, into which the color a
chemical potential differences are incorporated, and to calcu- ) ] - )
lations of the energy gap for the two types of optimal pairing™or a#b, we introduce the chemical potentigis,, associ-
states derived in Sec. II. In Sec. IV, we calculate the thermoateéd Wwith na, in such a way that the grand-canonical
dynamic potential difference between the superfluid and nortamiltonian reads
mal phases neaf. from the structure of the energy gap

obtained in Sec. lll. Our conclusions are given in Sec. V. We ¢ — _Z (8 b,u/3+,ﬂ b)[Z J d3x$b-(x) yo(// (|-
use units in whichi=c=kg=1. ab - i ' al

nR=nG=nB, (3)

Following Iwasaki and Iwad28], we can regard these,,
as Lagrange multipliers that ensure conditidin The Her-

In this section, we apply the general Ginzburg-Landaumiticity of K requiresuq,= i, .
approach to a quark superfluid that is in an overall color Cooper pairing between quarks, which we assume to be in
singlet state. We then derive the thermodynamic potentials ia channel with zero total angular momentum, is most gener-
terms of the color chemical potential differences. We finallyally characterized by aM;N.X4N;N. gap matrix in color,
draw the equilibrium phase diagrams n&arfor the param-  flavor, and Dirac spacfl9]:

Il. GENERAL GINZBURG-LANDAU APPROACH
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A(K)=AD(kg,|K|) 5+ AP (K, |k|)y-|2y°y5 are energy projection operators for noninteracting massless
’ ' quarks, and ¢. denotes the quark-quarkKantiquark-
+A®) (Ko, k) ¥° ¥+ A®(kq,|K|) antiquark pairing gap.

N N We divide the differenceA Q[ ¢ (Ko, |K|);an] Of the
(5) .k~0 (6) . . . - ab-

AP (Ko, [K) y-ky '+ AP ko, [K[) vk thermodynamic potential nedr. of the superfluid phase,
+A(7)(k0,|k|)y~Ry5+A(8)(ko,|k|)y°, ®) Qge, from that of the normal phasé€),, into two parts:

where k is the relative four-momentum between the two AQ=00+ ey, (15
quarks forming the Cooper pak=k/|k|, andA{}; are the \po o
N{N.X NN, matrices denoting the pairing of the quark of
colora and flavori with that of colorb and flavorj. The ga ~
| colorb and Havor. Ihe gap Q0=20Q[ . (Ko, |k|); %ap=0] (16)
A is formally related to the pair amplitudes™~(x) (y)) via
[22,23,29 has the form of a usual Ginzburg-Landau free energy, and
A(k)=ig d*(x—y)e'at=y QCN:AQ[¢i(kOa|k|);7/«ab]_90 17

is the correction td) induced by the color chemical poten-
tial differences in the superfluithe normal phase satisfies

1ap=0 because of rotational invariance in color spade
C T (21) expressingg in terms of .., we follow the line of argu-
(T (YDTTF(@,IDLE(k=a), (9 ment of Mermin and Starg10]. Note that the grand-
canonical Hamiltonian, described by the chemical potential,
wherey$.=Cy. is the charge-conjugate spincE €iy?y w/3, common to all combinations of spins, flavors, and
in the Pauli-Dirac representatipnl’*V is the full quark- colors, and zero masses, keef®, invariant under
quark-gluon vertexI'?Y is the full antiquark-quark-gluon global U(1) gauge transformations and rotations in color
vertex, D is the full gluon propagator, and the Matsubaraand flavor space; under glob&l(1), and special unitary
frequencies are given by,=in#T. [In Sec. Il we analyze color and flavor rotations of the field operatorsy
this gap equation in the weak coupling limit; see E88).] ~ —e'*U .Uy, the . transform as  ¢.)api;
The Pauli principle requires that(" satisfy —e 29 ) caim(U ) ca(UD ap(UD i (U mj. Taking into
A A account the conditioi10) imposed by the Pauli principle,
Agbij(ko. KD =ApZ5i(—ko, kD), n=1,....6, (10  we obtain, up ta(A%),

( “)T

(T TP (a.k)

koKD= =AY (—ko [K]), n=78. (11 Qo=a Tr(pL )t B [TH(BL b1 )e]
For massless quarks the condensates are eigenstates of +B T (L)l +a” Tr( ¢ )e
chirality [30]. Wilson renormalization-group analysg$4] _ + 9 + 2
show that pairing instability occurs between quarks of the AL T(b b )el™+ By TH(¢-¢-)r- (18)

same chirality, rather than between the left- and right-hande e I
quarks. We thus ignore the terms®), A®), A, andA® %ecause of the relatioA =A* =0, the contributions of the

equark quark condensates separate from those of the
antiquark-antiquark condensates. The subscript tienotes

the pairing gap evaluated for the quark or antiquark quasi-
particle momentdk| equal to the quark Fermi momentum,

in Eq. (8), which are associated with quarks of opposit
chirality [19]. The A andA®) terms in Eq.(8) correspond
to condensation in the odd-parity chanp&B]. Effects of
instantons, which prefer even-parity to odd-parity conden
sateg[13], lead us to drop these terms. Since oAl and  “F: . . .
A®@ remain in Eq.(8), it is convenient to introduce In general, the energies of antiquark eXC|tat|qns,
~[ (k| +kg)?+ ¢ ¢_12 are much larger than the energies
b (Ko, |[KN=AD(ko,|K) FA@(Kg,|K]), (12)  of quark excitations~[ (|k| —kg)?+ ¢} ¢, 1% Thus in the
temperature region nedr. where u/3 is large compared

and rewriteA (k) as with the magnitude of the energy gap, the amplitudes for
virtual excitations of antiquark quasiparticles witk] near
A(k) = 75[¢+(k0,|k|)A+(I2)+ ¢_(k0,|k|)A‘(I2)]. ke are smaller than those for excitations of quark quasipar-

(13)  ficles by a factor~O(| ¢, (T~T)|/u); as a consequence,
a* and B;" dominate overa~ and B; , and we seta"
Here, the =g; =0.
The next step is to express the correction teiry in
A (R) = : 14 terms of ¢, and u,,. We need to retain contributions up
(k)= 19 1o second order iNuap. Sincen,=—dQesr/du, and nyy,
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= —0el 91, fOr a#b, the conditions for color neutrality, Wheré A=(dg.ds,ds) is a general complex matrd;, ,

Egs.(3) and(4), can be written as =(dy);, denotes the gap for pairing between quarks of col-
orsb andc with a#b#c and of flavorsj and| with i#j
#1.
%Q = (9~AQ = (7f9 (19 Substituting Eq.(23) into Egs.(18) and (22), we derive
durr Jdpge IMBR the Ginzburg-Landau form di2y andQ ¢y in terms ofA or
dy:
and .
Qo=a Tr(ATA) e+ B[ THATA)L 12+ B, TH (ATA) 2]
JAQ _ )
—=0 (20 =ak+(B1+ LY\, (24
dMab
with
for a#b. _ ) . . .
Up to O(apd?) andO(u2,), the only terms if) ¢y that a=4a”, P1=1681+2B,, B2=2B,, (25

are invariant under globdl(1) gauge transformations and
special unitary transformations in flavor space are propor-
tional to TtM2 Tr(¢l ¢, M)e, and Trip, ¢! M)e,
where

1
N=2 |doE, Y= 2 |di-dylZ, (26)
a A< ab

and
Mapij= 6ij Rab; (21 B ~
Qon=302 [tanl®=2x 2 (df -dp)ppar.  (27)
in deducing this structure we have used the relations ab ab
Tr(¢. ¢1M1)F2Tr(¢1¢+M)F and  Trigl ¢ MDe  one can readily show that under a glohi(1), color, and
=Tr(¢, ¢, M)e, derived from @1)r=(¢,)r [see Eq. flavor rotation of the field operatorgs—e'?U Uy, A trans-
(10)]. The term proportional to Ttk &' M)g, which does  forms asAj;—e™#9(U¢)ap(U¢)ijAjp - The second order and
not occur in the weak coupling limfsee Eq(121)], always fourth order terms inA, included in€),, Eq. (24), are the
has a zero coefficient, even in the strong coupling regimeonly invariants under these transformations. gy, Eq.
The reason is that this term, of second order in the gap, is n@R7), the term of linear order i,y is not affected by global
affected by the dependence of the pairing interaction on theJ(1) gauge transformations,—e~?'¢d,, and flavor rota-
pairing gap, which can only induce terms of at least fourthtions, d,— U;d,_.
order in the gap. We thus write Note thatY', which is dimensionless, ranges from 1/3 to 1.
ForY =1/3, the configurations fod, are determined by
_ T2 t,®
oo AT e B8 g g dy=d5-0=0, [dul?=Idol?=|dsl

The first term on the right side of E§22) comes from the (28)

change in the normal-fluid free-energy for non-zekd, for Y=1, the vectorglg, dg, anddg are all parallel:

while the second is the correction to tB¥ ¢2) term in Q.

Because of color neutralityr and y appear, as we shall see, drl|dgl|ds - (29

g;g ;ﬂ;ﬁﬁjﬂﬁg;&gﬁiﬁ g(r)]rénrz?.atlcx‘?/a In the energy In the weak coupling limit, which we calculate in Sec. IV,
In the remainder of this section, we consider condensateiie coefficientsx, 81, B2, o, andy reduce to

that are antisymmetric in color and flavor. In these conden-

sates, Cooper pairing is characterized by the products be- P 4N(,u/3)ln(l) (30)

tween the color-antitriplet stated (|RG)—|GR))/ 2, Te)'

(|GB)—|BG))/\2, (IBR)—|RB))/\2] and the flavor-

antitriplet  states [(Jud)—|du))/v2, (|ds)—|sd))/V2, _743)
(Isuy—|us)/y2]. Pa 8(7TTC)2N(“/3)’ 3y
For total angular momentuni=0, the Pauli principle
constraint(10) requires that antisymmetry of pairing in color 70(3)
space be accompanied by antisymmetry of pairing in flavor o= N(ul3), (32
space. Such pairing states can occur in the weak coupling 8(mTe)?
limit, because one-gluon exchange in the color antitriplet
channel is attractivé2]. The gap is characterized by the o=—N(u/3), (33
ansatz
= 3In<3Tc>N( 13) (34)
(¢ +)abij= €iji €abcPic » (23 ATRE HI=h
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where o2
AQ=————. 38
L a2 4817 B 39
N(ul3)=— —) (35 . . .
272\ 3 The order parameters in thé=1/3 phase satisfy condi-

tion (28) and lead to degenerate states. This phase is the

is the ideal gas density of states at the Fermi surface, and thglor-flavor locked phasgl5]; the condensate in this phase
zeta function{(3)=1.202. .. . is characterized by its symmetry under simultaneous ex-

Two effects beyond weak coupling must in general bechange of color and flavor. States belonging to this phase
taken into account. The first is the modification of the pairingtransform into one another under glod4(1) gauge trans-
interaction due to the pairing gap, which modifies the coefformations and special unitary transformations in flavor
ficients 8, and g, of the fourth order terms iA. The second space. The simplest among these states is described by
is radiative corrections by the normal medid@l] — i.e.,  (d,);* 6, and [dg),=(dg)¢= (dg)s=«,; the corresponding
quark self-energy, gluon polarization, and quark-quark-gluoryap matrix is given explicitly by
and three-gluon vertex corrections — which modify the co-
efficients Eqs.(30)—(34), mainly through their dependence (&) abij= Ka( 8aiOpj— Oaj i) - (39
on N(u/3) andT,.

We proceed to minimize the Ginzburg-Landau free en-For the color-flavor locked phase, we obtain the magnitude
ergy, Eqs.(24) and (27), with respect to thed,)r. To elu-  of the gap,
cidate effects of the color neutrality, it is instructive to start o
with the optimal expressions for the energy gap and the con- a

densation energy in the case in which jlag, and hence\1 A== 2(B1+ B13)" (40)
and Q ¢y vanish. From(),, written up to second order in,

we find that thermodynamic stability requir@s=8,+3,Y  and the condensation energy

>0 for 1/3=Y =<1. It is straightforward to show that in this _

stable region, only two phases occiyr= 1/3 for 8,>0 and a?

Y=1 for B,<0.! We discuss the physics of the region AQ:‘W- (41)

where 8<0 below.

The order parameters in thé=1 phase satisfy condition In the original definition[15] of the color-flavor locked
(29). All such order parameters lead to states degenerate state, in addition to the gaps,, in the color and flavor
energy. Note that in this order-parameter set, any state iantisymmetric channel, a gap matrixg(J,;dp;+ 6ajdbi)
identical to an isoscalar, color-antitriplet state characterizedrises in the color and flavor symmetric channel. In the weak

by (d,)i= dis (s, the strange flavoror, equivalently, coupling limit, the gap«, can be generated by the attractive
one-gluon exchange interaction in the color-antitriplet chan-
(b +)abij= €anceijs(dc)s, (36 nel. Nonzero values afg, on the other hand, are not driven

by the one-gluon exchange interaction since it is repulsive in
to within a constant phase factor and a special unitary transne color symmetric channel; they are ig) correction to
formation in flavor space. In the corresponding condensate, . that ensures the existence of thg0 solution to the
theu andd quarks are paired in an isosinglet state. We shalle|evant weak coupling gap equatiésee Ref[11]). This
refer to theY =1 phase as the isoscalar phase, even though jtyplies that the gapcs can be ignored in the temperature
contains order parameters having the other orientations ipagion near the onset of the pairing.

complex flavor space than tisedirection. The magnitude of We now construct, in th@,- 8, plane, the phase diagram

the gap in the isoscalar phase is exhibiting the more stable pairing state of the isoscalar and
— color-flavor locked phases. We first address the question of

N= o 37) whether or nofT;, the temperature at which the pairing in-
2(B1tB7)° stability of the normal phase occurs, is the same for these

phases. The onset of this instability is controlled solely by
with condensation energy the pairing interactions in the normal phase between quark
quasiparticles with zero total momentum. The corresponding
amplitudes depend on the color, flavor, and quantum num-

'Formally, this conclusion is the same as that obtained by Pisarslgers such as the_tOtaI angular mom_entum, chirality, and par-
and Rischkeg30] and Scfifer [11], who analyzed an effective po- 'Y of the quarks involved in the pairin?], and for the two
tential of the form(24) at zero temperature. As Sdea[11] points ~ Phases considered here, the quark-quark pairs have antisym-
out, however, “AtT=0 the free energy of the system is not an Metric structures in color and flavor, the same chirality, even
analytic function of the gap so that, strictly speaking, the free enParity, andJ=0 at the onset of the pairing instability. We
ergy cannot be expanded as a power series in the order parametBus conclude that no difference T, arises between these
Only in the vicinity of the finite temperature phase transition doesphases. The amplitudes in the normal system driving the in-
the expansion in powers of the order parameter have a firm founstability do not distinguish between the final possible paired
dation.” states.
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Be
= LS (A e (- d. (43
\° abc
38,+8.=0 L
CFL Let us assume that the overall coefficient)dt y;+ y,Y
+;3§E;, is positive. Then, the local minimum of),
x + ¢ is reached at a nonzero valueof which can be cal-
culated ashy=|B|/3y+[(BI3y)%—al3y]*2 The critical
0 8, temperature T, can be determined from the condition
Qo(Ng) +Qs(No) =0 or, equivalentlyp(T,) = 8%/4y, where
IS we can ignore the temperature dependencﬁaﬁd? Note

First order that T, is greater tharT®. We thus find that = @/2; at
transition T=T,.; i.e., the pairing gap is discontinuous at the transition
point. We remark that this argument is only applicable to the

case in whichT,—TI<T?. In the case thaB<0 and y

<0, one must go to higher order to determine the critical
temperature and the discontinuity of the order parameter at
r'=0 the transition.

We turn to the Ginzburg-Landau energy, E¢24) and

7), for a color-singlet system. As we shall see, the con-
phases are favored, when the constraint of color neutrality does ncraint of color neutrality acts to modify the pairing gap with-
affect the free energy; =0. The,, 3, are the fourth order coef- OUt removing the degeneracy of the order parameters occur-
ficients in the Ginzburg-Landau free energy, E2f), andl” [Egs.  INg when the differences in color chemical potentials
(46) and(27)] describes effects of the constraint of color neutrality. Vanish. Generally, the deviations of the chemical potential
The cross indicates the weak coupling limit. In the region of firstdifferencesﬁab from zero can be determined from the color
order transitions, the overall fourth order coefficieBt,is not posi-  neutrality conditiong19) and (20) as

tive definite.

Bl+ﬁg=o

FIG. 1. Phase diagram in the Ginzburg-Landau regime, showin%2
regions where the isoscaldtS) and color-flavor locked(CFL)

- :i LAY 2
Figure 1 shows the map of the isoscalar and color-flavor Hab=g|3(da-dy)r 5ab§ el (44

locked phases in thg;-3, plane, for the case in whici1,
or equivalently,I", is set equal to zero. The regions sub- Substitution of this expression into Eq24) and(27) leads
tended by these phases are restricted by the region in whidh the Ginzburg-Landau form

B>0, for 1/3=Y <1, is violated. By comparing the conden- _
sation energies, Eq$38) and (41), we find that in the weak AQ=aN+[(B1—T)+(B2+3T)Y]\?, (45)
coupling limit, described here by Eq&0)—(32), the color-

flavor locked state is favored over the isoscalar channel, with

result consistent with the conclusion drawn from the weak

coupling analysefl1,17 at zero temperature. 1

The region in whichB<0 corresponds to éirst order o
phase transition from the normal to the superfluid state at a

temperature greater thaf{ at which (T%) vanishes, and The coefficientl” is positive definite as long as the color-
the normal state becomes unstable against Cooper pairinginglet system is thermodynamically stable against color
The situation is similar to condensed matter systems ifiluctuations, i.e.,«QzAQ/aMabauba)(dc)F=6o-<O. This con-

which the Ginzburg-Landau free energy contains a term Cugition holds in the weak coupling limit, Eq33); vacuum
bic in the magnitude of the order parameter, and also similagg|arization effects in the low-density regime, which lead to
to the situation in which the chiral phase transition in QCDcolor  antiscreening or positive  color  susceptibility,
W'th two-flavor ma_ss_lt_ess q“?‘”‘_s changes from second order aZQ/&ﬁabaﬁba>0, are in the direction to preserve this
to first order at a tricritical point in thg versusT plane[31]. condition. We thus assunie>0 for arbitrary coupling con-
To see this structure, we add to the Ginzburg-Landau expan:- '

) - . stantg.
sion up to fourth order irA, Eq. (24), the sum of the sixth Note that Eq(45) is identical with Eq(24) except thajs,
order invariants,

and B, are replaced by, —1T" andB,+ 3T; i.e., inclusion of
the color neutrality results in a renormalization®f and 3,.
QGZ(?1+;2Y+73§))\3: (42) This i; d.ue tq the fact that the constraint of color neutra}lity
itself is invariant under color rotations and thus chemical
potential differences between colors yield the fourth order
where\ andY are given by Eq(26), and terms invariant with respect to rotations in color space.

5 - (46)
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B I, this phase, in which the order parameters are anisotropic
in color space, moves farther away from the weak coupling
point, (81,8,) given by Egs(31) and(32). With increasing
36,+6,=0 I', the color-flavor locked phase begins to cover the region
CFL occupied by the isoscalar phase.
To answer the question of which phase is more stable at

x low densities will require understanding in detail how strong
coupling effects, which develop as the baryon chemical po-
0 tential u is lowered, modifyB,, B,, andI" with increasing

B, 0. These effects are too uncertain for us to be able to predict
in general the more stable state néar

8,=—3T

First order

transition IIl. GAP EQUATION

We turn now to deriving the high-density asymptotic form
of the thermodynamic potential differende) nearT,, as
we used in the previous section. The gap equation in the
weak coupling limit provides information on the overall tem-
r>o0 perature dependence of the gap and the quasiparticle struc-
tures, in contrast to the Ginzburg-Landau approach devel-
oped in the previous section, which concentrates on limited
temperature region nedr. and coarse-grained features of
the superfluid. For the moment, we consider an arbitrary

_ i color neutral condensate of the forth3). For the two opti-
order parametersy =1/3 (the color-flavor locked phaséor mal pairing states considered in Sec. Il, we obtain the behav-

B2+ 3I'>0 andY =1 (the isoscalar phaséor 5,+ 31'<0. ior of the energy gap from the finite-temperature gap equa-

gge\/vrr?t?g:?st magnitude of the gap in the isoscalar phase C%%n, with the constraint of color neutrality. In Sec. IV, we

derive the coefficients given by Eq$30)—(34) from the
— structure of the energy gap.

B8,+B8,=—2r

FIG. 2. Same as Fig. 1 with the constraint of color neutrality,
described by'>0.

We then obtain from Eq(45) the two sets of optimal

A= — #1 47 In obtaining the gap equation in the weak coupling limit,
2(B1+ Br+2IN) it is convenient to first introduce the notation for the quark
, . field, (. ,¢§i). We then write a self-consistent Schwinger-
with condensation energy Dyson equation to determine the proper self-eneidl) up
22 to O(g?) [2]:
AQ=— . 48
4(B1+p2+20N) 49 d3q
We observe from the energy gap and condensation energy, 2(k)= _ngf (2m)3 n%jd DZf(k—q)
Egs.(47) and(48), thatA and|AQ| are suppressed at fixed
B1 and B, by the parametel’ characterizing the color neu- yENA2 0
trality. This suppression, together witM+#0 as can be X 0 — y* (N T2 G(a)
found from substitution of condition29) into Eq. (44),
comes from the fact that the condensate is intrinsically an- Y'NPI2 0
isotropic in color space, as we shall see in Sec. lll A. We 0 — " (\BYT12) (49)

remark in passing that in the weak coupling limit, where only
contributions of leading order inT,/x remain,I” is domi- L .
nated byB, and 8, and hence does not significantly affect where the_ summation is over Matsubara frequencigs,
the gap. In the color-flavor locked phase, on the other hand, !N@ T With n odd for fermions,
the gap size and the condensation energy are still given
by Egs.(40) and (41). For this phase, we can find=0
from substitution of conditior{28) into Eq. (44). This van-
ishing reflects the fact that the condensate in the color-flavor
locking is isotropic in color space, as suggested by
condition(28).

We conclude this section by examining the influence of
the requirement of color neutrality on the phase diagram in .
the B,- 3, plane. As we see in Fig. 2, the phase diagram forS the quark propagitor with normal state Hartree-Fock con-
I'>0, this requirement shifts the isoscalar phasd’tip the ~ tributions ignored, A= YATY® and Mapij= 8 (Sapm/3
B direction and— 3T in the B, direction. With increasing + u,p), and ij‘j is the gluon propagator, specified below.

G(ll)( k) G(12)( k))

(50

yk+y°M Rk P
A(K) yk—y°MT
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The self-energy and quark propagator are related by

G Hk)=Gg (k) =X (k), (51)
where
yk+v°M 0 -1
Go(k)= o e O (52

is the noninteracting quark propagator.
The off-diagonal component of E¢49) yields the gap
equation in the weak coupling limit:

d3q
— _ 2 aBry,
Atk gTJ (2m)3 n%dD’uV(k D
( a\T B

Xyt ) G@(q)y A (53

where
GEY(q)=(yq— Y’ M) A(Q[A(@)(yg—y°MT)*
XA(g)—(yg+°M) ]t (54)

is the 21-component d&(q). The summation oven on the

PHYSICAL REVIEW D 63 074018

the energy matrix for quark quasiparticles. Here, we have
used MM T=(ReM)?+ O(M?) and made the approxima-
tion in G?Y(q), Eq. (54), that (yg—y°MT)"A(q)(yq
—y°MT)~AT(q). This approximation is sufficient to de-
scribe the gap matrix up to first order iV, since||q|

— /3| ap| is much smaller than the square of the gap mag-
nitude in the momentum region where the gap is appreciable
(as we shall see in Sec. ll)AWe have also disregarded the
contributions of antiquark quasiparticles to the integral over
g in Eq. (55); in the weak coupling regime, these contribu-
tions are suppressed by one powerAfu compared with

the quark quasiparticle contributions since the integral is
dominated by the region immediately close|gh= u/3. Us-

ing the definition(12), we obtain

Ak)=—y°¢, (K)A (k)

and the quasiparticle energies

(59

e (K)=[(|k|~ReM)2+ @' (w,(k),K) ., (w,(K),K)]V2.
(60)

Equation(55) can now be rewritten in terms @b, as
d3q
(2m)°

b (0 (k),K)=— % 27

right side of Eq(53) leads to the self-consistent gap equation

d3q
(2m)®

Aw=(K),k)=— —g Ef

(AT
q),k—aq)y* >

XD (e (k)= e,

X A(wn(q),q)sgl(q)tam( wZ(TQ)”
Xy — (55

where the(on-shel) gap matrixA (k) is given by

Ak)=A" (k) YAk A" (k)»°, (56)
with the Hermitian frequency matrix
w.(K)=*e.(k)—i lmM (57)
and
(& (K))apij= 5@ [ Sac( K| — 1/3) — Regac]
X[ Sepl K| — p/3) — Repuep]
1 1/2
+3 o, Bdi(o,(k0Agh (@, k)
(58

X D& (k)= e (). k—0)

- ~ 1
><TF[Y“Af(Q)V”AWk)]Z(?\“)T

X ¢ (w,(d),9)e, (q)tanl‘( 2(Tq)) NP,

(61)

The gap equatiof6l) contains the color chemical poten-
tial differencesu,y,, which are determined by the color neu-
trality conditions, Egs(3) and (4), written in terms ofng,,,
with n,=n,,; thesen,,, characterizing the color charge
densities, are given by

Nab= TE f

E T y°G(a)],

(2m)? i (62

where

G =[(yq+y’M)—A(q)(yq— Y’ M) *A(q)]?

(63)
is the 11-component of the propagat@fq). In terms of
d)t ’

GU(q)=(yg— Y’ M {[(go+i Im M)?—(|g|+ReM)?

— () p_(q)] AT (@) +[(do+i Im M)?

—(la|—-ReM)?= " (a) p ()] A~ ()},
(64)
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where we have again used the approximationq (
M) TA(g)(yq—y°M T)=~AT(q). As in the deriva-
tion of the gap equatio(b5), this approximation is sufficient

to determinen,;, up to first order inM. Substituting Eq(64)
into Eq. (62), we find

Nab= TEf E 2{(do— M T—|ql)

X[(do+i Im M)?—(|g|+ReM)?= " (q)p_(q)]*
+(go— M T+]aD[(do+i Im M)?
ReM)2— ' (q) b ()] Vapii -

(2m) o

—(lal- (65)

The Matsubara frequency summation in this equation yields

the usual BCS expression

—uH(Q[1-2f (0. (d))]

v_<q>[1—2f(—w_<q>)]+0<¢1¢_/;ﬁ)}abn,
(66)

where

f(e)= (67)

eT+1

is the distribution function for quark quasiparticles, and the

BCS coherence factors are given by

u(q)= E[e (q)—ReM+|qlle, *(a)
n 2L%y n '

1
vi(a)=5le,(@)+ReM—|qlle, (q) (68)

with u?(q) +v%(q)=1. In obtaining up to leading order
in ¢, , Eq.(66) can be simplified as

—M)—=f(lg[ = u/3)

+{UZ () f (e (@) +v3 (D1~ Fe (D)} Fi=otabii»

(69
where we have used the fact that,(Q)|\m =0
=&_(q)|im m=0=2(0) and thus ¢, (e(q),q)
=¢(—&(0),9).

In specifying the gluon propagat®*?(p=k—q), it is

PHYSICAL REVIEW D 63074018

|pol <€ /3 and|p|< u/3. The gluon propagator in the Landau
gauge can be written within the RPA as

L
5aﬁPM

—p2+mdxL(po/|p)’
(70)

-
0apP uy

De5(p)=— -
—p2+m3xr(po/|p))

with the dimensionless transverse and longitudinal polariza-
tions

(l x?)  [x+1
XT(X)_ 7 In x—l)’ (71)
xL(X)=(1—x3) 1—gln<%”, (72)

and transverse and longitudinal projection operators

PiP;

Ph=6y=1 2 Pw=Pa=PL=0. (73
S (74
p
where the Debye mass is given by
92 g2T 172
mp= QTrMZnL 3+ ?) =5 (75)

In Eq. (70), the term proportional t®®" describes the
transverse or color magnetic sector, while that proportional
to PL describes the longitudinal or color electric sector. Lan-
dau damping provides an effective infrared cutoff in the
magnetic sector;- (7m3| pol/4)*?, for |po|<|p|. This cutoff
dominates the determination of the energy gap; the infrared
cutoff given by a putative magnetic ma20] makes negli-
gible difference. In the presence of color pairing, certain of
the magnetic gluons acquire a mass as a consequence of the
Meissner effec{33,34], while the Debye mass of some of
the electric gluons is reduceg®4]. We ignore here these
effects of the superconducting medium, although they possi-
bly change they dependence of the gap matrix in the weak
coupling limit.

For the purpose of solving the gap equatiéi) to lead-
ing logarithmic order ing, i.e., to subleading order ig for
the logarithm of the gap, it is practical to approxmate the

essential to take into account the long-range nature of thpolarized gluon propagatd70); we first set—p?~|p|? and

color magnetic interactiongl6,18,20,32 Once the effects

xL(X)=1, neglect the real part ofyt(x), and replace

of a normal medium are included in the random-phase apim y+(x)=—mx/4 for small |x| by —(wx/4)6(\/7mp/2

proximation (RPA),

these interactions are dynamically —|p|). The effect of this latter replacement is to introduce a

screened by the Landau damping of the virtual gluons inhigh momentum cutoff for the Landau-damped magnetic

volved[16,17]. Since the dominant contributions frob(p)
are peaked aroundp=0, we focus our attention on

gluons. Then, we replace the gluon propagator by its real
part, so that
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.
D7 (p)=—R E{ Oop
|p|2—iwm3po8(\mmp/2—|p|)/4p|

This form is equivalent to that in Ref20]. In the gap
equation(61), we may replaceq| by |k|, and then replace

g by k in the explicit Dirac structures

8,5P" Tl y*A~(q)y"A"(K)]P})(k=q), so that both these
aB’ v . . .
—— (76)  terms become-2. We then find that the gap is determined
|p|*+mp by

¢ (w=(K),k :—_ z d | |a—k[?
) (2m)* [ la—k[*+{7md[ e (@) — e+ (K) 1/4|q—K[}20(Vmmp/2— |q—k|)
-1 w,(q)|
m] (AT ¢+(w77(Q)1Q)87, (Q)tam'( ZT ))\ , (77

where is the angle betweek andg. The dominant contri-  pasis R'G’'B’) to diagonalize the matrixp’ (q) ¢ (q)

bution to the integral in Eq.77) comes from collinear scat- _ ~ . i
tering between the quarks of momettandg. Concentrat- V\/_here¢+(q)—¢+(s(q),q). WhenM—Q, the unitary ma
trix U that carries out this diagonalization also diagonalizes

ing on the corresponding momentum region, éed and 2 ; i .
|k|=|q|, allows us to solve for the logarithm of the gap to & (). As we shall see) is determmed_ solely .by the direc
. . . tion of the vector, with componentsl,=(d,)s, in complex
subleading order iy by reducing Eq(77) to - a s )
color space and hence is independengofn the isoscalar

channel where theij components of ¢>+¢>+ obey

b+ (@:(Kk).k) (¢+¢+)(uu) (¢" 1) (da) (¢! b4)(s9=0 and
2 " _ (¢>+¢+)(,]) 0 for i#j, it is sufficient to dlagonallze the
:12 5 > 9 od| |[§| |7]8”(q’1/| 8+(k)|} submatrix @+¢+)(uu) The result reads

T == T

1 MT)+| mD)]( Vb (w,(0),0) el
N 5| +In| 57— “

2lof) "\ 2[q| e Ul b @eu=| 0 ld? 0], (79
0 0O O

-1 w77 q) @

Xe, (q)tanl‘( o7 )7\ , (78)

where

with M= \/=mp/2. Below, we shall consider the two opti-
mal pairing states analyzed in Sec. Il and estimate from Eqs. u=U,,=(Ur ,Ug’ ,Ug/), (80)
(69) and(78) the chemical potential differences between col-
ors and the reduction in the pairing gaps induced by imposi-

tion of color neutrality. with

A. Isoscalar, color-antitriplet channel d* X (exd) e xd*

S . . . Upr=——, U =—F/—,
Cooper pairing in the isoscalar phase is described by a Vlex d|2 \/ ex dl?
gap of the form(36), to within a constant phase factor and a | | | |

special unitary transformation in flavor space. This gap ma-
trix is generally accompanied by nonzero chemical potentiaHere, d=d/|d|, andeis an arbitrary complex unit vector that

differences between colors, as we found in the Ginzburgsatisfiesex d+0. Equation(79) describes the pairing state
Landau regime in Sec. Il. We estimate here the chemicalith the conventiordg =dg,=0 anddg #0. The fact that
potential differences, using the gap equatidi®) and the  the matrix (4" 4. ), is effectively of rank 2, correspond-
color neutrality condition3) and (4) with Eq. (69). ing to a reduction of the color symmetry fro®U(3) to
Note that the right sides of Eqs69) and (78) with  gyy(2), implies that the condensate in the isoscalar, color-
Im M=0 are mgegralzs of an even function e{q), since  antitriplet channel is anisotropic in color space.
undere——e, Ut —vy andf—1—f. Itis thus convenient The unitary matrixU can be taken to be block diagonal:
to diagonalize the matrix?(q) up to first order in the chemi- Uy =Y (dgy=VYsy=U andU;;,=0 for i #j. Then, multi-
cal potential differences, entering viat. We first transform  plication of the gap equatiof78) with Im AM=0 by U on the
bases in color space from the origin®GB) basis to a new right andU™ on the left gives

ug-=d. (81)

074018-11



KEI IDA AND GORDON BAYM PHYSICAL REVIEW D 63074018

0O 1 0 ) 1|T2(k) 1LZ()|100
w u'e u—u'e u
¢, (]wgu| 1 0 0 =1§W2 dlgl§ 3ln| — v w P 1 o
0 0 0 ° T 00 0
0 0 O
1 |[|ufe?g(ku—u'e? u M2 m3
+_|n{| (ss)() . (ss)(Q)| 0 0 0|+ T2 ‘in 02
0
1 T -1 8(uu)(q)
XZU ) TUUL b (@) wguu'e y(a)tanh —5=—Juur“u| =1 0 0],
0
(82
|
where g;;y is the ii component ofe, and we have used 9 (= 1 [|E2(q)—E2(K)|
S(UU):S(dd) and¢+(du):_¢+(ud). The Gell-Mann matrix |d(k)|:——2J d|q| §|n(—2)
terms can be transformed, via the Fierz identity 2470 M7
(M) ab(N) ca= = (2/3)Fapbcdt 20240pc, tO M2 m2
+1In p Tz Jrln(4| 72)]
a%dU;ar()\a)abuab'U:cr()\a)cdudd' q q :
_ E(q
X|d(q)|E 1(q)tam(?). (89)
_§5a/b150/d/+2(ub/'ud/)(ua/'ucr)*.
where
(83
m 2 1/2
Before taking into account the effects of nonzev it is E(Q)=H|Q|—§ +|d(Q)|2} (86)

instructive to understand the structure of the gap equation

with M=0. We first choose the complex unit vectrin s the R'R’ and G'G’ component of the diagonal matrix
such a way as to simplify the matriqub+(ud)u, and then {[UTS(ZUU)(Q)U]M=0}U2- Note that Eq.(85) with dg=dgs=0
write down a reduced gap equation. Because of the invaris equivalent to the gap equation usually analyzed for the
ance of the grand canonical Hamiltonian under color rotajspscalar color-antitriplet chann@ee, e.g., Ref$20,32). In
tions in the absence of1, it is sufficient to treat the states in the weak coupling limit of interest here, where a tiny energy
which dxd*=0. These states are related to the states imap arises in the momentum region immediately close to the
which dx d* #0 by a gauge transformatiod—~e~2¢d, and  Fermi surface, we can replace th#(x) (x=k,q) in the
a special unitary transformatiod;— U .d. logarithmic term of Eq.(85) with the B'B’ component
For the states satisfyinglxd*=0, we can writed (x| — u/3)? of the diagonal matrix. We then assume in Eq.
= |d|dexple), whered is the real unit vector proportional (85 that|g|~u/3 in the last two logarithms and shift the
to d, and ¢ is the phase common to all the elementgdof ~ integration variable fron| to |g| — w/3. The resulting equa-
Let us takee to be a real unit vector that satisfiex d=0.  tion reads
We then obtain

9> (od(lal-p/3)  [E(9)|1
0 —|d © d(k)|= —; tanh —= |5
187%Jo  E(Q)
u' u=| |dlexp2ige) O O, (84
b+ (ud) 0 ) (bul3)?
0 0 o X : —|ld(a)],
|(Jal = w/3)2— (k| — u/3)?]
as well as the relation, (87)
Uar'ubr:5a7b1[5a1R1+5alG/eXK_2igDo) with
+ Sarpr€XP(2i ¢o) ]. 5 |52
) i ) i b=2567* —| ; (88
The matrix equatiori82) thus reduces to the single equation 3¢?
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the cutoff 8, obeying|d(|g|= u/3)|<d<mp, is chosen so

that |d(|g|> )| is vanishingly small. Here, we have used

m3 =g u?l6m2+ O(g?T?).

Let us now consider a color-singlet system and ask, ir|
particular, whether or not the degeneracy of the order
parameter sets is removed in the weak coupling limit by th
chemical potential differences between colors stemmin

from color neutrality(3) and(4). As a first step, we write the
solution to the gap equatiof87), following a line of argu-
ment of Pisarski and Rischk&0], and express the chemical

potential deviationsw,y, in terms of the obtained gap. We

e

PHYSICAL REVIEW D 63 074018

2 —
|d(x)| = 3bue” "sin(gx). (93)

t was pointed out that the BCS-like exponential term and the
sinusoidalx dependence arise from nearly static magnetic

luons that undergo Landau damping and mediate the long-
ange part of the magnetic interactions, and that both the
higher frequency magnetic gluons, which are little affected

by Landau damping, and Debye-screened electric gluons
play a dominant role in determining the pre-exponential fac-

tor.

then examine how such deviations in turn affect the gap it-  The overall coefficient of thes/g® in the prefactor is
self. As we shall see, the degeneracy is not removed up tgsyally considered to be correct up to a factor of order unity,

subleading order i for the logarithm of the gap.

for the reason that radiative corrections such as quasiparticle

We now implement a process developed by Pisarski angiaye function renormalizatiofil8] and vertex corrections

Rischke[20] to convert the integral equatiof87) into an
equivalent differential equatiofEq. (92) below] via the ap-
proximation

| (bul3)?
—In
27 |(lal = w13)®= (k| — n13)?
bu
ol w3l 1 - i3] 2
bu/3
+ 9(||k|_M/3|_||Q|_M/3|)|n(||k|_—w3|>-

(89

With this approximation and the change of variables,

| 2bu/3 | 2bul3
X=EN s —— |, =N s
K= wB+ER)| Y~ "ldl— w/3+E()
| 2bul3 } 90)
Xe=IN| —7—= |,
FUE(K[=1/3)
we obtain
— XF E(y)
|d<x>|=gz(x [ aytant 52 ey
X

* £
i Jln(blu/g,g)dyytam‘( 2T |d(y)|}, (91)

where g=g/3y27, and Inpw/3||k|—u/3)=x and
In(bu/3||q| — u/3])=y have been used. Differentiation of
Eq. (91) with respect tax leads finally to

— E(x)
— 2 _—
g tan)’( o7

We summarize the results of EQ2), as obtained by
Pisarski and Rischkg0]. At T=0, the magnitude of the gap
is given by

d?d(x)|

dx?

d(x)]. (92

[32] do not modify the asymptotic form of the gap. However,
it is still uncertain the extent to which this result is exact
since contributions of the Meissner effect and Debye screen-
ing in the superconducting medium remain to be clarified
[34].

Expression(93) indicates that the gap takes on a peak
value |d(xg)|=(2bu/3)e” ™% at |k|=u/3, smoothly
reaches half its peak value k| — w/3|~|d(xg)|e™*, and
becomes of ordergIng)ld(xg)| at ||k|—u/3|~mp. The
critical temperaturd .. is given by

e?
Te=—|d(x T=0)] (94)

where y=0.5772 ... is theEuler constant. It was stressed
by Pisarski and RischkE20] that expressior{94) is of the
usual BCS form, a feature stemming from the fact that in the
weak  coupling limit  [35], |d(x,T)|=|d(x,T
=0)|[|d(xg,T)|/|d(xg, T=0)|]. This expression, except for
a factor of order unity due to quasiparticle wave function
renormalization, was reproduced by Brown, Liu, and Ren
[36] using finite temperature diagrammatic perturbation
theory in the normal phase. Sindd vanishes aT =T, the
critical temperature itself is unchanged by the color neutral-
ity constraint.

We turn to the calculations of the chemical potential de-
viations u4p, as functions ofd| given by Eq.(93); we con-
sider only zero temperature for simplicity. Up to lowest or-
der in M/ u, the difference between,,, given by Eq.(69)
and the corresponding normal-phase valué,,ny
= 5,2 (N/3)N(u/3) /3 can be written as

Nab— NnGab=2NN(u/3) Rap+2 >,
a! :R,,G’

Ugar Uy, 0N,

(95
where

1

v{ ‘QEMB

on=

|Q|—M/3}
1-———|+ 1
E(q) \q%/s
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is the number density excess due to paifi@d|, andV is the 5 w 2
system volume. This excess can be estimated from B6s. ER,(C]):( lal— 3” 5MR’) +|d(a)[?,
and(93) as
2 K 2
3 EG/(Q):<|Q|_§_5MG' +1d(a)|?,
v
on=—N(u/3)|d(xg)|%. (97
2g9u 5 7 2
Eg (@)= lal- 3~ due'| . (99
Using these expressions in the color neutrality conditi@s where
and (4), we obtain, with the help of Eq$7) and(81),
_ 7|d(xg)[?
op=pg = —28up = —20ug=——=— (100
~ 3gu

Feap= (30,05 — (98)

n
NI
ON(1f3) is the chemical potential shift frou/3. The order of the

eigenvalues corresponds to that in E@9). Note that the
chemical potential shifSu, stemming from the anisotropy
of the condensate in color space, is independent of its color

ol
|d(XF)|h/9ﬁ- el il o . forientation. This reflects the fact that the properties of a
Such chemical potential deviations do not modify any of o6 _ginglet system do not depend on the choice of color

the terms, up to subleadiljg ordergnin the Iog.ari_thm of the axes. It is also important to note thét. is positive definite.
magnitude of the gafd| given by Eq.(93). This is because s feature arises due to the property discussed in[B@.

||af = /3] iap| <[ d(xe) [ in ~ the  momentum  region, Not only does positiveSu enlarge the Fermi surface of the
||al— w/3)= 6, where the gap is appreciable. We remark thaigapless quarks of cold’, but it also decreases the Fermi
th|S rObUStness Of the exponentla| term and the Iead|ng pr%nergy of the quarks of COIOB/ or G” |eading to overall
exponential factor in EC](93) is SUppOFtEd by the suppression of the energy gap.

renormahzatlon-group analysis dev_elopeq by $8]. For In order to calculate in detail th@(u4p) correction to the
example, let us consider the case in whitf=d;=0 and magnitude of the gap in the case in whidxd* =0, we

dg#0. In this case, COOPer pairing occurs between th%ote thatU diagonalizesM and hence?(q). This is evident
quarks of colorR and G with momenta*k close to the from the relation

Fermi surface having Fermi momentui= u/3+ g

The chemical potential deviationg,, are thus of order

=ul3+ ugs. In the renormalization-group analysis, the w o wld(xp)|? 77[(¢1¢+)(uu)]|k|:,u./3
scattering amplitude between these quarks is characterizel!abij= ij §+3T - 2, '
by the parameter= —In||lk| —kg|. The scattering amplitude gu gu (101)
becomes singular at the onset of pair[dd]. The value ot

at which this singularity occurs — the Landau pdle—  obtained from Eq(99). It is thus straightforward to show

tells us the scale of the energy gap according|dfk  that the gap equatiof82) reduces to Eq(85) in which the
|=kF)|~mDe’tL. Up to subleading order im, non-zero quasiparticle energf(q) is replaced byEg/(q), =Es/(Q).
rr has no effect ont,, which behaves ag, =/2g  The solution to this equation reads

+6Ing+--- .

In the weak coupling limit, up to subleading ordergfor .., 2Cibu ™\ —
the logarithm of the gap, we thus find that the degenerate set |[dx")]= 3 exp( B 2_5 sin(gx’),
of d's obtained withA1=0 persists in the color-singlet sys-
tem studied here, a result consistent with that obtained from { 2C,bul3
the general Ginzburg-Landau theory in Sec. Il. Nevertheless, x'=In
it is instructive to examine the leading contributionzof, to 1| = wf3+ 6pul2 + Eri (k)
the zero-temperature gap, in view of the fact that a strongly(m1ere the correction factor is
coupled quark system may develop a considerable energy
gap(see, e.g., Ref.13]). S

The properties of this contribution can be roughly under- Ci=1-9—, (103
stood by finding the eigenvalues &f,,(q), =&fyq(a), the "
square of the quasiparticle energy given by E&p). This  gnd we have usenh? = g?u2/6m2+ O(g25u?).
analysis is only applicable to the case in whigh d* =0 Note thatC; is less than unity. As a consequence the
and hence InM=0. [If Im M0, one must go back to the anjsotropy of the condensate in a color-singlet system acts to
original gap equatioii78) dependent on the matrices, and  reduce the gap size.

,, Which are not diagonalized by the same unitary trans-  Thijs reduction, together with the reduction in the densities
formation] Up to O(M), these eigenvalues are given by  of states at the Fermi surfaces for col&ts and G’ due to

] . (102
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dur ', leads to a decrease in the condensation energy of
the system. These features arise despite the fact that there are ka(k)= — ul3)
no Fermi momentum differences between the two colors as-
sociated with the pairing. This situation is in contrast to the 1 (bu/3)?
; ul3)
case of ferromagnetic superconduct{8] and to the case X—=In
of color-flavor-locked quark superfluids with nonzero 27 11(al = wl3)?=(|K| = u/3)?
strange quark masg39], where Fermi momentum mis- ) Eg)(q)
matches between the electron spins and between the quark ( A anl‘( (8) )
flavors involved in the pairing, respectively, play a role in 3| E@(a) 2T
reducing the magnitude of the gap. 1[2kA(q) ’_(E(l)(Q))}
= an , (104
6| E(1)(a) 2T

B. Color-flavor locking with
E = —ul3)%+ |k 2112
We proceed to examine color-flavor locking, described by @@ [(al = uf3) ™+ leal@)]]
the order paramete39) to within a constant phase factor Eqy(a)=[(|al—u/3)?+4|ka(a) 212 (105
and a special unitary transformation in flavor space. We ﬂrshere we have used the color structure
note the relationu,,=; [(¢+q§+)|k| M,3]ab|,+const>< Sab s X )
which can be derived up to first order uﬁ+¢+ from the « @
—(\ Spi0ci— OpiOci) (N cg= — 5 (841 0di — 6ai4i

color-singlet condition$3) and(4) as well as Eq(69). Here, % 4 Joal 9i i ~ Fbjci) (A ) g 3( ai%dj ~ 0a; Oai)
the constant affixed td,, ensures Eq(7). Substituting Eq. (106
(39) into this relation we j'”d Zil(¢% @+)i=pslabii  and the diagonalized form of the quasiparticle energy
=45,/ kal% and thus obtainM=0. This result, coming squared,
from the isotropy of the condensate in color space, is consis- UL e2(q)U
tent with that from the general Ginzburg-Landau analysis in cre (DUcr
Sec. Il. We can thus derive the behavior of the energy gap at =5 ,b,gi,j,E(ZS)(q)+ Sarp Onrpr Sirgi Brsr
T=0 and nearfT. from the gap equatioi78) with M=0.

- ~ . X ,
Substitution of ansat#39) and M=0 into Eq.(78) leads to [Efu(a) ~ Efgy(@)] (107
an equation fork, : with
|
-2 0 0 0 0O 0 0 0 42
0 V6 0 © 0 0 0 0 o©
0 0 V6 O 0 0 0 0 ©
0o o0 0 V6 0 O O 0 O
1
UCFL:% 1 0 0 0 -3 0 0 0 2{: (108
0 0 0 O O 6 0 0 ©
0O 0 0 O O 0 V6 0 O
0 0 0 O 0 O 0 V6 O
1 0 0 0 V3 0 0 0 2
|
here the bases are taken to bRu(Gu,Bu,Rd,Gd,Bd, 2bu - o
RsGs,Bs) in the original color-flavor space and KA(x(g)):2‘1’3exp(igoA)Tex — | sin(gX(g))
(R'vu’,G'u’,B’u’,R'd’,G'd’,B'd",R's’,G's’,B’s') in
the transformed color-flavor space. (109
At T=0, the gap equatiofil04) is equivalent to that ob- \here
tained by Schier [11]. The analogy between E¢L04) and -
Eq. (87) allows us to writex, in the form (93) valid up to ezl 2% ul3 110
subleading order iny for the logarithm ofd| [11]: @7V Tk[— w/3[+Eg)(k)
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and ¢, is the phase ok, . The explicit Dirac structure ofs can be obtained from
At finite temperatures, the assumption theg(k,T)  G@Y, Eq.(63), G?Y, Eq. (54),

=kpa(K, T=0)[ ka(|k|=u/3,T)/ kp(|k|=u/3,T=0)] holds

as in the isoscalar, color-antitriplet channel. At=T., GU2(q) =[A(q)(yq— Y M T)2A(Q)— (yq-+ y°M)]

where Eg)(q)=E(1)(q), the gap equatior(104 has the q Dya—y D=rary

same structure as E(B7) obtained for the isoscalar, color- X A 0AgTy 1

antitriplet channel. Thus, the critical temperatdrg equals XA@ =y MY (119

the result, Eq(94), in the isoscalar channel. Such equality,

persisting in the strong coupling regintgee Sec. )| stems and

from the fact that both these types of pairing are induced by

the same instability of the normal phase. G@(q)=[(yq— Y’ M )= A(q)(yq+ v’ M)~ A(q)] L.
(116)
IV. GINZBURG-LANDAU REGION AT HIGH DENSITIES

. - . Thus,
We are now in a position to calculate, in the weak cou-

pling limit, the Ginzburg-Landau free energy, E45), the
difference between the superfluid and normal phases near the
transition temperatur@,. As earlier, we ignore the normal Tr[G(q)E(q)]=2Tr[ 5
state Hartree-Fock terms in the Schwinger-Dyson equation yq+y M
(49), and identify the thermodynamic potential in the normal
phase with that of an ultrarelativistic, noninteracting Fermi
gas of Fermi energy/3. We thus obtaif21]

A
a) VL )

2

1
+ A A
4 M (q) = PMT (a)

AQ=AQgeart Qyoopt Lress (119 + - ] (117

where
and

T

1 4
Anidef—m{TrM“—wf(%) } (112 T{In Gy X(a)G(a)]

is the difference in the ideal-gas contribution between the =Tr[ 0 A(g) ) TA(Q)
superfluid and normal phases, Ya+y' M Yq—y M

1
(9) A(q)

2
Q=3 3, [ -z oty M eyt
nodd J (2) (118
+InGy Y()G(a)] (113

Combining Eqs(117) and(118 with Eq. (113 and perform-

is the contribution, again up 10(g?), of quark loops in the ing the Matsubara frequency summation, we finally obtain

superfluid vacuum, and o L
Qloop: Ql(ogp+ Ql(ogp! (119

T d®
Qres:_{ Ef qTr[G(q)E(q)]] : where

4 5dd (277)3 T:Tc,ﬁ/tzo
(114

Q(O):_EJ' d3q s |‘(|q|_,u/3) 1
resulting from the mean-field approximatiph9] adopted in o0 2] (2m)3 2T J|g|—u/3

writing Eq. (49), guarantees that the energy gapranishes 5 o= uf3
a”*( : ZTM )

3( d
<T@ @1+ 5] o

atT=T..
—|t
27)3

We now expand the thermodynamic potential difference
(111) with respect taA (q)=A(qo=|q| — #/3,0) andu,p. In

calculating Qj50p UP to O(A%) and O(A2M), we use the % 1 —cosh‘z( |q|_'“/3) 1

quark propagato given by Eq.(50), the proper self-energy (lg|— wm3)® 2T ) 27(|q|— u/3)?
>, given by Eq.(51), and the noninteracting quark propagator . .

Gy given by Eq.(52). XTrl ¢ (AP (A) P (A) P (q)] (120
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is the usual Ginzburg-Landau expansion obtained fgr  and

=0, and
0® =202 )N w3 T bt 6, R
Qb - _ Ef d3q { ’—(|q|—p,/3) 1 Ioop_; n 7 (nI3)Tr(py b M)
loop™ 2 2 2T —ul3 2 ~
(2m (lal ~ /) = XTH(8] 6, M) (129
lal— /3 1 N . .
—cosh ? 2T ) 2T(|q[— w/3) where the coefficients of Tr( - )¢ include the leading con-

tributions with respect tg, and the temperature has been set
Na P M 121 equal to the critical temperature, E@4), except in the co-
Lo+ (@ (@M] (23 efficient of Tr(¢1¢+)F. The term() ., expressed as

is the O(M) correction to the first term on the right side of

Eq. (120. We have again ignored the contributions of anti- N(u/3)in e”(2bu/3)Y4d(xe , T=0)|*2 ol

quark quasiparticles, and used the relation ¢lr¢h, M) Qres=N(u T YR

=Tr(¢. L M), coming from ¢1(q)=¢.(q) [see Eq. 743)

(10, o " - NRTHPL b bl )k, (126
We turn now to calculatindjy), and Q59 for the iso- 8(mT,)

scalar, color-antitriplet channel conS|dered in Secs. Il and I,

and derive the high-density Ginzburg-Landau formAdf acts as a counterterm to the coefficient ofcﬁ'}(¢+)F, lead-

used in Sec. Il. We remark in passing that the calculations ofng to AQ=0 atT=T, [2]. Then the sum onl(&)p and Qs
fggp for the color-flavor locking reproduce the valuesaf  reduces to the usual Ginzburg-Landau gt

B1, and 3, that will be derived below for the isoscalar chan-

nel. T

To derive the coefficients of the Ginzburg-Landau free Qp=N (M/3)|n( )Tr(dﬁ b+ )F

energy for isoscalar, color-antitriplet pairing, we first carry

out the integrals oveq in Q). Eq. (120, andQ ), Eq. 1 7¢(3) . .
(122). Here we evaluateb_ (q, T) whoseq and T depen- t3 8T SN(uR)TrH(p by dbi)e
dences are effectively decoupled fo=T, (see Ref[35]), (mTe)

as =

a Tl d e+ BT (P d)%Te. (12D

¢+(aT)=¢. (o] =#/3T)singy)lr—o, (122 From Eq.(125 we derive the value of, Eq.(34). Equation

wherey is given by Eq(90). We also use the approximation (127 indicates that3; =0 and implies the coefficients in
il Egs.(30)—(32).
q / B The coefficients in Eq127) agree with those obtained by
anr‘( 2T )He(’dd(XF T=0)[ =l —w/3) Bailin and Love[2] for a BCS-type short-range pairing in-
I — /3 teraction and forM=0. The agreement with the term of
— M
xtan!‘(

fourth order in¢, arises because the main contribution to
2T the corresponding integral in E¢L20) comes from the mo-
_ mentum region|q| — w/3|< x|d(Xxg, T=0)|, where the gap
*6(al— /3]~ xld(xe , T=0)]) is almost flat. 'Idh|e|agree|men|t for the secc|)nd order tergh,in
lql— u/3 is obvious. On the other hand, the coefficient of
XW' (123 Tr(¢p! b, M)g in Qfolgp as can be seen from E(L25), is
different from — (6/u)N(u/3)In(A/T,) with the ultraviolet
where k is a positive number of ordeg™ !, andxg is given  cutoff A as in a BCS superconductor, due to the behavior
by Eg. (90. With this choice, tanlflal—w/3)/2T] 4 (qg,T)=sin@y)lr_, induced by the long-range dynami-
=(lal = w/3)/[la|—u/3| for |[|a|—u/3[=«[d(xe, T=0)|,  cally screened magnetic interactions.
and sinfy)|r—o=1 for ||q| — u/3|= «|d(xg , T=0)|. We thus The difference in the ideal-gas free energy of the super-
obtain fluid and normal phases\Qi4ea, EQ.(112), gives rise to a

term proportional to T2, with coefficient given by Eq.
(33). The color neutrality conditions, Eq&L9) and(20), thus

e¥(2bu/3)Y3d(xe , T=0)| 12
Ql(go)p:_N(Mlg)ln ( M ) | ( F )|

7T imply
7¢(3)
XTHE e+ 3 g 2Nl Feab=— %In(%)[wa(xp T} (%, T)
XTr(pl . bl bi)e (124 —|d(xe , T)[2650], (128

074018-17



KEI IDA AND GORDON BAYM PHYSICAL REVIEW D 63074018

in agreement with Eq(44) with (dp);=8isd,. Comparing  =—(x/20)2 50 (d%)i(da)i 1+ Ol 1?) from the electric
this expression to th@=0 result, Eq.(98), we find that neutrality condition,dAQ/du.=0, and Eq.(44) from the
1ap/|d(xg, T)|? is identical at bothT=0 andT=T.. Ex-  color neutrality conditions(19) and (20). Thus, u.
pression(128 can also be derived from the same analysis~O(j,;,).) Since electricity does not distinguish between
that yields Eq(98) if we replace, in Eq(95), én as given by  colors, the presence gi, in the isoscalar channgld,);

Eq. (96) with = §;sd,] reduces the average Fermi momentum ofutend
d quarks, and thus results in a uniform suppression in the

» lal— /3| |q — i3 E(q) magnitudes of the gap and condensation energy; in Bas.

sn=Vv~1> itan 2T ) B 5T | [ and (48), B, is replaced byg;+1I'/2. Accordingly, in the
q (129 phase diagram illustrated in Fig. 2, the isoscalar phase is

shifted byI'/4 in the B, direction and—3I'/4 in the 8,
~ direction. Note that the general flavor-antitriplet states be-
The equality inuap/|d(xe,T)|? in the T=0 and T=T,  longing to this phase can no longer be reduced to the iso-
cases arises from the fact that both have nearly the samgalar channel by flavor rotations since the valuegofnd
momentum dependence of the gap. the gap suppression depend on the electric charges of quarks
involved in Cooper pairing.
A second important problem is how the strange quark
V. CONCLUSION mass affects the quark superfluidity. A non-zero strange

In this paper we have laid out the Ginzburg-Landau struc_quark_mass not qnly b_reaks Invariance .Of th? grand-
canonical Hamiltonian with respect to rotations in flavor

ture of superconducting quark matter. Even in the homoge* . . o
pace, but it also necessitates the presence of a neutralizing

neous case considered here, many questions remain. Fir . X
gas of leptons even in the normal phase. The resultigg

electrical charge neutrality, in addition to color neutrality, - .
should be duly taken into account. The system considereﬂeper‘dence of the stab|l_|ty of color-flavor locking over the
oscalar state was considered by several auttsars, e.g.,

here is composed of three flavor massless quarks in flav .
P d efs.[39,40), who found that in contrast to the case of the

equilibrium, as characterized by E(.). Such matter, when | o .
d y EQ) isoscalar channel, color-flavor locking is destabilized by the

normal, is electrically neutral in itself. BeloW, , however, it ; t . ich bet K du. d
has nonzero net electric charge, unless the order parameterFlgrm' momentum mismatch between quarks andd,

isotropic in flavor space. This isotropy is retained by thequarks.produc.ed by a nonzero valueny. .

color-flavor locked phase; however, in the isoscalar channel, 'S instructive to consider the effect af in terms of the
strange quarks remain gapless, leading to a deficit of the tot@€Neral Ginzburg-Landau approach constructed here. In the
number of strange quarks relative to the total baryon numbefp!9hly relativistic regime fs<u/3), in addition to the terms
and, hence, to positive net charge. This charge, in neutrofy th? masszless limitAQ) contains a term proportional to
star matter, would be neutralized by charged leptons. Tr(¢: ¢+ M%), whereM api;= 8ap;m; with m,=my=0.

It is straightforward to extend the formalism obtained in This term tends to suppress the pairing gap just like the term
the absence of leptons to the situation of electrical charggroportional to Tr€b1¢+M)F coming from color neutrality.
neutrality. When the system is in overall beta equilibrium,Note that because of color-flavor locking, the resulting an-
the quark chemical potentials, for each colgrobey u,,  isotropy of the condensate in flavor space acts to fix its color
+ o= Mmag= Mas, Whereu, is the electron chemical poten- orientation. The transition temperatufg is also reduced in
tial. Then the quark chemical potential,, for colora, de- the color-flavor locked state, leading toTa in the color-
fined by flavor locked state smaller than, in the isoscalar channel,

which is independent ahg. The equilibrium phase diagram
(130 for the superfluid transition, in the versusT plane, is sen-

sitive not only to the effects of the color neutrality and the

strong coupling, as stressed in the present work, but also to

is the same for all flavors here,q; is the electric charge of - gfacts of electric neutrality and finite strange quark mass.
the quark of flavoii. This relation replaces conditidid). As

a consequence of electrical charge neutrality,(Bgremains
valid. We keep the same definiti@f) of the u,,. The ma-
trix M, given by Eq.(21), can now be rewritten as a trace- ACKNOWLEDGMENTS
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