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In any context in which color superconductivity arises in nature, it is likely to involve pairing between
species of quarks with differing chemical potentials. For suitable values of the differences between chemical
potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinni-
kov, Fulde, and Ferrel[LOFF). Condensates of this sort spontaneously break translational and rotational
invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state,
these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the
range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some
shell within the quark matter core of a neutron starwithin a strange quark stathe quark number densities
are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making
it a locus for glitch phenomena.
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I. OVERVIEW In Sec. Il we give a more detailed introduction to the BCS

and LOFF color superconducting states, and their possible

The attraction between two quarks which are antisymmetastrophysical applications. In Sec. lll we describe the LOFF

ric in color renders cold dense quark matter unstable to th&tate in quark matter witdu# 0. We note in particular that,

formation of quark Cooper pairs in a color superconducting!nlike in the original LOFF context, there is pairing both in
state[1-7]. If two (or more different quark flavors are in- J=0 andJ=1 channels. In Sec. IV we derive the gap equa-
volved, and their Fermi momenta are the same, they pair aion for thg LOFF.stat'e for a model Hamiltonian iln Which the
in the standard BCS state. The pairing is guaranteed becaufigl QCD interaction is replaced by a four-fermion interac-
in the absence of an interaction each pair costs no freBon with the quantum numbers of single gluon exchange. In

energy—each quark can be created at its Fermi surface—am£C: V We use the gap equation to evaluate the rangi.of

the interaction then makes the system unstable against on\-”th'n which th? LOFF. statg arises. We wil see that e}t low
ou the translationally invariant BCS state, with gag, is

mation of a condensate of pairs. . ! o
In this paper we study the situation, generic in the realfa\{ored' Atopy Fhere Is a first ordgr transition to the LOFF
world, where the Fermi momenta of the two species are dif? a!r_ed stgte, which breaks transl_atlonal symmetr_y5A§ all
' pairing disappears, and translational symmetry is restored at

ferent. If the Fermi momenta are far apart, no pairing be'a phase transition which is second order in mean field theory.

tween the species is possible. The transition between th

BCS aqd unpaired states as the'SpIi.tting between Fermi Mgt ouq and du, which are in quantitative agreement with
menta increases has been studied in eledi®rand QCD  y4qe obtained by LOFF. This agreement occurs only be-
[9-11 superconductors, assuming that no other state intels5se we have chosen an interaction which is neither attrac-
venes. However, there is good reason to think that anothgf,e nor repulsive in theJ=1 channel, making the=1
state can occur. This is the “LOFF" state, first explored by component of our LOFF condensate irrelevant in the gap
Larkin and Ovchinnikoy12] and Fulde and FerreflL3] in  equation. In Sec. VI we consider a more general Hamiltonian
the context of electron superconductivity in the presence ofy which the couplings corresponding to electric and mag-
Cooper pairs have nonzero momentum. This is favored beyoyy it affects the range ofu within which the LOFF state
cause it gives rise to a region of phase space where each gfises. In Sec. VII we outline future work which follows
the two quarks in a pair can be close to its Fermi surface, anﬁ‘nmediately from what we have done and look farther ahead
such pairs can be created at low cost in free energy. toward possible astrophysical consequences of crystalline
We study the pairing between two species whose cheming|or superconductivity.
cal potentials differ by 8u and find that for a large class of We recommend that the astrophysically inclined reader,

interactions there is a window afu within which states of  jnterested primarily in the consequences of our results, see
the LOFF type are preferred over the BCS and unpaire&ecs, || and VI, skipping those in between.

states. This has important ramifications for compact star phe-

nomenology, since it means that there may be a layer of Il. INTRODUCTION
crystalline quark matter inside the star. This could pin rota-
tional vortices, and lead to the kind of glitch phenomena that
have up to now been thought of as uniquely associated with Our current understanding of the color superconducting
the nuclear crust of neutron stars. state of quark matter leads us to believe that it may occur

ff the weak-coupling limit, in whiclA g<< ., we find values

A. Astrophysical applications of color superconductivity
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naturally in compact stars. The critical temperature belowsisting of equal parts, d, ands would be electrically neutral.
which quark matter is a color superconductor is generallyn our illustrative example, on the other hand, electric neu-
estimated to be of order 10-50 MeV, which suggests thatrality requires a nonzero density of electrons, with chemical
any quark matter which occurs within neutron stars that argotentialu.=53 MeV. Charge neutrality combined with the
more than a few seconds old is in a color superconductinedquirement that the weak interactions are in equilibrium de-
state. termine all the chemical potentials and Fermi momenta:
This estimate of the critical temperature comes both from
models whose parameters are tuned to reproduce zero derffu™ #
sity physic§3-6,14—17 and also from weak coupling meth- B
ods which are quantitatively valid at asymptotically high #d=#
densities[18—29, with chemical potentialsu>10° MeV
[29]. Neither class of methods can be trusted quantitatively = p+ 3 u.=418 MeV, pE= MS— Mgzzgo MeV,
for quark number chemical potentials~400 MeV, as ap-
propriate for the quark matter which may occur in the cores we=53 MeV, p&= . (2.2
of neutron stars. Still, both methods agree that the gaps at the
Fermi surface are of order tens to 100 MeV, with critical The baryon number densit3pB=(1/3772)[(pﬁ)3+(p,(i)3

temperatures about half as large. +(p2)%] is 4 times nuclear matter densityAs one goes

It is therefore important to look for astrophysical CONSe-deeper into a neutron staw, increasesM ¢ decreases some-
quences of color superconductivity. As a Fermi surface pheyhat, andp, and all differences between the quark Fermi
nomenon, it has little effect on the equation of state, andnomenta decreagen this paper, we investigate the conse-
hence little effect on the radius of a compact star. There arguences of pairing between quarks with differing Fermi mo-
nevertheless several effects of color superconductivity undéhenta, For simplicity, we restrict our explicit calculations to

active investigation. The color superconductivity of quarkihe case of two massless quarks with differing chemical po-
matter in neutron stars influences the evolution of mag”Et"EentialsMu and uy, which we write as

fields within the quark mattdB0] (see also Ref.31]). Cool-

ing by neutrino emission is also affectf8P] (see also Ref. =+ O,  puy=m— ou. (2.2
[33]). In quark stars, the physics of the instabilityrtonode

oscillations is dramatically affected by color superconductiv-We expect similar phenomena to those we describe to arise
ity [34], although this is not the case for neutron stars withwherever any one dpg—p| or |pE—pg| or |p2—pg| falls
quark matter present only in their corg35,34. Further- within a suitable range, but we leave the investigation of
more, the phase transition at which color superconductivityquark matter withu, d, and massive quarks to future work.
sets in as a hot proto-neutron star cools may yield a detecty/e also work at zero temperature throughout.

able signature in the neutrinos received from a supernova

—51e=365 MeV, pp=pu,,

+31e=418 MeV, pi=pq,

[36]. Finally, one goal of the present paper is to motivate an B. Isotropic (non-LOFF) pairing
investigation of the possibility thatsome pulsar glitches )
may originate in quark matter. In the color superconducting phase for two massless

If two species of fermion experience an attractive interac9uark flavors at the same chemical potentiatthe conden-
tion, and their Fermi momenta are the same, they pair in th&ate consists of quark—quark pairs which are flavor singlets
standard BCS state. The pairing is guaranteed because in thad color3 antitriplets(and hence also spin singlets, to obey
absence of an interaction each pair costs no free erfeeph ~ Pauli statistics Pairing is of the BCS type: a red up quark of
quark can be created at its Fermi surfa@ad the interaction momentump pairs with a green down quark of momentum
then makes the system unstable against formation of a con=p of the same helicity, so that the spins are antiparallel.
densate of pairs. In the QCD context, if there are two flavorsThe blue quarks are left unpaired. Such pairing is strongest
of quarks with equal Fermi momenta, quarks of two colorsin the vicinity of the Fermi surface, fdip| — u|<A,, where
and two flavors paif3,4] while if there are three flavors of A is the BCS gap parameter.
quarks, all nine quarks pair in a pattern which locks color If, instead, the Fermi momenta are sufficiently different,
and flavor symmetries, breaking chiral symmefi§;37]. no BCS pairing is possible. It is no longer possible to guar-
These idealizations are very instructive, but in any physical
context, the up, down, and strange quarks will all have dif-
fer?m Fermi momenta. To give the reaQer SOme Sense forlHad we chosenM =200 MeV, we would have obtaineg,
typical scales in the_problem, we give an illustrative example_,, MeV, pi=384 MeV, pd=408 MeV, ps =356 MeV and &g
[30]. Th_e numb_ers in th|s paragraph assume that the quarks s times nuclear matter density.
are noninteracting fermions—clearly a bad assumption—and2ngte that in a neutron star with a quark matter core, regions of
so should certainly not be construed as precise. Considefrely hadronic and purely quark matter are separated by a mixed
quark matter with average quark chemical potential phase in which neither the hadronic regions nor the quark matter
=400MeV, made of massless up and down quarks angkgions are separately charge neufad]. The electrically charged
strange quarks with madd =300 MeV. (Mg is a density  quark matter in these regions will have Fermi momenta which differ
dependent effective mass; this adds to the uncertainty in itgualitatively from those in our example, wifi} less than eithepg
value) If the strange quark were massless, quark matter coror pg [38].
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antee that the formation of pairs lowers the free energy, be- 7

cause in the BCS state the two fermions in a pair have equal P ,,’

and opposite momentum, so at most one member of each !

pair can be created at its Fermi surface. The other member —P A S

costs nonzero free energy, which the attractive interaction q /

may be unable to compensate. 7 Ou. k
Assuming that no other state intervenes between the BCS Tae Oy —’ u

state and the state with no condensate, we can apply the k\‘\ ,

results first derived by Clogston and Chandrasekhar in the d N S

context of pairing between spin-up and spin-down electrons
with differing Fermi momentg8]. For small enouglu, the FIG. 1. The momentk, andk, of the two members of a LOFF-
favored BCS state has coincident Fermi surfaqess p‘é state Cooper pair. We choose the veapcommon to all Cooper

= because this maximizes the pairing and thus the gain iRairs, to coincide with the axis. The anglesy,(p) and aq(p)
interaction energy.We denote the gap in this BCS state by indicate the polar angles &, andkg, respectively.

Agy. The free energy of this BCS state must be compared to

that of the unpaired or “normal” state in which the quarks down quarks pair. In describing the mixed phase associated
simply distribute themselves in Fermi seas wigh=pu,,  with the first order phase transition, one must take careful
pg:Md and no condensate forms. The BCS state is th@ccount of the unpaired blue quarks. This has been done by
stable ground state of the system only when its negativ&edaque{11l]. Second, in Refs[9], [10] the transition be-
interaction energy offsets the large positive free energy codween the color-flavor locked phase and the two-flavor color
associated with forcing the Fermi seas to deviate from theipuperconducting phase has been studied, under the assump-
normal state distributions. IAy<7 and Su<Zx, the free  tion thatu,= uq= us but with pg # pi® because of the non-
energy of the BCS state relative to that of the normal state a&ero strange quark mass. The first order transition that these
a givendu is authors describe is similar to that of Clogston and Chan-
drasekhar, as it is associated with the unpairingsdndud
Cooper pairs, but it differs in that the analogue of the normal
state is one in whiclu and d quarks remain paired. As we
have seen above, treating a realistic situation requires relax-

o ) ing the assumption of equal chemical potentials.
The coefficient 142 depends on the number of fermion spe-

cies which pair and is appropriate to the case of interest to . . B
us. Clogston and Chandrasekhar concluded that the BCS C. Nonisotropic (LOFF) pairing

state is favored forou<ou,=A0/v2. (The relationdu, The Clogston and Chandrasekhar analysis of the first or-
=Ao/v2 is exact only in the weak-coupling limit in which ger unpairing transition assumes that the only possible
Ag<u.) At 6= 6py, there is a first order phase transition phases of the system are a BCS phase and the normal phase.
at which the gap parameter drops discontinuously fijto  However, there is good reason to think that another state can
zero: for§u<éou,, the system is in the BCS phase, unper-ogccur in the crossover region between BCS and no pairing.
turbed from thesu=0 state. As was first realized by Larkin and Ovchinnik¢¢2] and
This analysis is modified in an interesting way at nonzeroryide and Ferrel[13] (LOFF), whereas the BCS state re-
temperature, as was discussed by Lombardo and Sedrakigiires pairing between fermions with equal and opposite mo-
in the context of pairing between neutrons and protons ifmenta, whens~ Su, it may be more favorable to form a
nuclei [40] Thermal excitations smear out the normal StateCondensate of Cooper pairs wittonzerototal momentum.
Fermi surfaces, making pairing between thermally excitquy pairing quarks with momenta which are not equal and
states above the lower Fermi surface and below the uppgjpposite, some Cooper pairs are allowed to have both the up
Fermi surface possible. As a consequencel asincreased  and the down quarks on their respective Fermi surfaces even
from zero, there is a range @fwithin which u, is larger  when §u+0. LOFF found that within a range afu near
than atT=0. At still hlgher temperatures, of course, all pair— §,LL1, a condensate of Cooper pairs with momeaptap and
ing is lost. q—p (see Fig. 1is favored over either the BCS condensate
In applying the work of Clogston and Chandrasekhar togr the normal state. Here, our notation is such thapecifies
color superconductivity, there have been two extensions tg particular Cooper pair, whilg is a fixed vector, the same
their analysis. First, recall that only two colors of up andfor all pairs, which characterizes a given LOFF state. The
magnitudelq| is determined by minimizing the free energy;
the direction ofg is chosen spontaneously. The resulting
3 one tries to construct a “BCS-like” state which had = u, LOFF state breaks translational and rotational invariance. In
andp?= x4 and consequently no pairing fpt<p<p?, one finds ~ Position space, it describes a condensate which varies as a
[39] that this state has a higher free energy than the BCS 6tate Pplane wave with wave vectorc2
which p¢=p%=7). The gain in free energy associated with choos- Once one has demonstrated an instability to the formation
ing pi=u, and p?=uy does not compensate for the lost pairing of @ plane wave, it is natural to expect that the state which
energy. actually develops has a crystalline structure. Larkin and

22
Facs— Fnormal:?(25/~l“2_Ag)- (2.3
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Ovchinnikov in fact argue that the favored configuration is ation. As motivated by the preceding discussion, we consider
crystalline condensate which varies in space like a one€ooper pairs which consist of an up quark and a down quark
dimensional standing wave, cog(2). Such a condensate with respective momenta

vanishes along nodal plangs2]. Subsequent analyses sug-

gest that the crystal structure may be more complicated. Shi- ko=9+p, kyq=9—p, (3.1
mahara[41] has shown that in two dimensions, the LOFF

state favors different crystal structures at different temperaso thatp identifies a particular quark pair, and every quark
tures: a hexagonal crystal at low temperatures, square @gir in the condensate has the same nonzero total momentum
higher temperatures, then a triangular crystal and finally &q. This arrangement is shown in Fig. 1. The helicity and
one-dimensional standing wave as Larkin and Ovchinnikocolor structure are obtained by analogy with the “2SC” state
suggested at temperatures that are higher still. In three dis described in previous wofi8,4]: the quark pairs will be
mensions, the question of which crystal structure is favore%olorgantitriplets, and in our ansatz we consider only pair-
seems unresolveid2]. 1jng between quarks of the same helicity.

LOFF did their analysis in the same context as that o . - . . . . .
Clogston and Chandrasekhar: electromagnetic supercondu, With this in mind, here is a suitable trial wave function

tivity in a magnetic field which causes a Zeeman splitting]%r the LOFF state with wave vecter[12,13,5%.
while not inducing screening currents. They were seeking to
model the physics of magnetic impurities in a supercon-
ductor. Magnetic effects on the motion of the electrp43]

and the scattering of electrons off nonmagnetic impurities Bf= H (cosO,(p) + e*B3eiéLP)

[44,45 disfavor the LOFF state. Although signs of the BCS L s

to LOFF transition in the heavy fermion superconductor . . :

UPd,Al; have been reportdd6], the interpretation of these Xsiné(p)aly.(d+p)a qs(d—p))

experiments is not unambiguo({¥7]. It has also been sug-

gested that the LOFF phase may be more easily realized in % al + al _ 3.2
condensed matter systems which are two-dimensional pel;[u,a Lual p)pgl;[d B Lag(d—P). 32

[41,48 or one-dimensiongdl9], both because in these cases

Su, is larger than in three-dimensional systems and because Bge:as above,L—R,

the magnetic field applied precisely parallel to a one- or two-

dimensional system does not affect the motion of electrongyhere «, 3 are color indicesy, d and L, R are the usual
therein. Evidence for a LOFF phase in a quasi-tWo-fiayor and helicity labels, and' is the particle creation op-
dimensional layered organic superconductor has recemlé‘rator(for example,a/,,, creates a left-handed down quark

been reportedS0]. with color ). The §'s and¢'s are the variational parameters

None of the difficulties which have beset attempts to "€of our ansatz: they are to be chosen to minimize the free

alize the LOFF phase in a system of electrons in a magnetl8nergy of the LOFF state, as described in the next section.

) ; X : Yrastricted regionP of the total phase space. This allowed
ics which leads to these differences has nothing to do with pairing region” will be discussed below. The next product

the motion of the quarks. We therefore expect the originalfiIIS a “blocking region” B, with unpaired up quarks: these

analysis of LOFHwithout the later complications added in are up quarks with momentadt p for which there are no

order to treat the difficulties in the condensed matter physics . . .
; ) . corresponding down quarks with momermga p. The final
contex) to be a good starting point. In this paper we use an

analysis based on that originally done by Fulde and Ferrel’f’rOdUCt fills the blocking reg|orBd_ with unpaired down

[13], but described in more detail by Takada and Izuyamaquarks' The ansatz does not contain a term that would create

[51]’ to argue that for appropriate values of quark numberantiparticle pairs: we have checked the effect of such a term
’ .and found that it has no qualitative effect on our results.

densities, the color superconducting gap may vary periodi- To complete the specification of our ansatz we need to

cally in space, forming a crystalline pattern. More precisely, . - . . .
what we will demonstrate is that if some difference betvveendescrlbe the allowed pairing and blocking regions in phase

chemical potentials falls in the appropriate range, quark ma space. These regions are largely determined by Pauli block-

ter is unstable to the spontaneous breaking of translational 3 &S @ result of populated Fermi seas. In the absence of

invariance by the formation of condensates which vary inpairing interactions, the sy'ste'm Is in' the “nqrmal” st'ate and.
space like a plane wave. Following Larkin and Ovchinnikoy P and down quarks are distributed in Fermi seas with Fermi

u__ d__ H
[12], we expect that once there is an instability to the forma-"OMeNaPE= Ky and pg=uq, respectivelfrecall that we
tion of plane waves the condensate that results will be Crys(_;on5|der massless quarks only, so the single particle energy

talline, but we leave the determination of the crystal structureQf a quark with momentunk i_s e(k)=|k[]. An up quark
of the condensate to future work. carries momentunk,=p-+dq; in p space, therefore, the

Fermi sea of up quarks corresponds to a sphere of radius
M= — Su centered at-q. Similarly, a down quark carries
momentunky= —p+(q, giving a sphere ip space of radius

We begin our analysis of a LOFF state for quark matteruq=u+ du centered at+q. The two offset spheres are
by constructing a variational ansatz for the LOFF wave funcshown in Fig. 2a) (we have drawn the casg|> Su so that

Ill. THE LOFF STATE
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_ The zero free energy condition is
IP-dl=Hgq

e(ky) + e(Kg) = pyt pg=2u, (3.3

where €(k) is the single particle energy of a quark with
momentum k. For massless quarks, we obtajg-+p|
+|g—p|=2u, which describes an ellipsoidal surface pn
space. This surface is indicated by the ellipse shown in Fig.
2(b); notice that the ellipsoid and the two Fermi surfaces all
intersect at a circle.

If the interaction is weak, we expect LOFF pairing to be
favored in a thin layer of phase space around this ellipsoid.
This is manifest in the gap equation derived in the next sec-
) tion [Eq. (4.9)] in which, as in BCS theory, we find a diver-

FIG. 2. The LOFF phase space, as a functiop¢Eq. 3.D].  gent integrand on this ellipsoid in the absence of pairing.
We show thep,=0 plane.(a) The phase space in the limit of pairing smoothes the divergence. As the interaction gets
arbitrarily weak interactions. In the shaded blocking regibpsnd — gynger the layer of favored pairing gets thicker. If there
By, no pairing is possible. In the inner unshaded region, an 'nterWere no blocking regions, we could use the entire ellipsoid,

action can induce hole-hole pairs. In the outer unshaded region, an . . .
; : : . . . Just as BCS pairs condense over the entire spherical surface
interaction can induce particle-particle pairs. The regriEq.

(3.2)] is the whole unshaded ared@) When the effects of interac- “ﬂ:'“ .m t.he Zym?eg:|c,iy= |Q| .:O Cas?' dHOW(.a\./er’ as
tions and the formation of the LOFF state are taken into accounto'oWn 1N Fig. 2b), the blocking regions exclude pairing over

the blocking regions shrink. The BCS singularity occurs on theMost of the ellipsoid, leaving a ribbon of unsuppressed

dashed ellipse, defined by + 4= s, + uq, Where making a Coo- LOFF pairing in the vicinity of the circle where the Fermi
per pair costs no free energy in the free case. surfaces intersect. This agrees with our expectation for the

particle distribution in the LOFF state: it is as in the normal

the two Fermi surfaces intersect inspace. In the limit of  state, except that there is a restricted regianound the
arbitrarily weak interactions, the blocking regid®, corre-  aforementioned ribbgnwhere each quark in a pair can be
sponds to the lower shaded area in the figure: pairing doesear its Fermi surface.
not occur here since the region is inside the Fermi sea of up Although the constant single-particle energy contours for
quarks, but outside the Fermi sea of down quarks. Similarlynoninteracting up and down quarks crospispacesee Fig.
the upper shaded area is the blocking redifyn The entire  2(a)], we emphasize that the Fermi surfaces of up and down
unshaded area is the pairing regiBnit includes the region quarks do not cross in momenturk,(andky) space. The
inside both spheres, where hole-hole pairing can occur, anspace ribbon of unsuppressed pairing corresponds to unsup-
the region outside both spheres, where particle-particle paipressed pairing between up and down quarks with momenta
ing can occur. aroundk space ribbons near their respectidésjoint) Fermi

We can now explain how the LOFF wave function ansatzsurfaces.
can describe the normal state with no condensate: we choose In the limit of arbitrarily weak interactions, the ribbon in
0, (p)= 6r(p)=m/2 for p inside both Fermi spheres, and momentum space along which pairing is unsuppressed
otherwise all thef's are zero. With this choice the first term shrinks, as the blocking regions grow to exclude all of the
in Eq. (3.2 fills that part of each Fermi sea corresponding toellipsoid except the one-dimensional circle at which the two
the inner unshaded region of Figia2 The B, andB, terms  spheres in Fig. 2 intersect. This circle has insufficient phase
fill out the remainder of each Fermi sea to obtain the normakpace to lead to a singularity in the gap equation: the inte-
state. Note that in the absence of pairing, the normal statgrand is singular on this circle, but the integral does not
can be described with any choice @f The most convenient diverge. Therefore, the LOFF state is not guaranteed to occur
choice isq=0, in which case,=ky=p, B, vanishes, and if one takes the weak coupling limit at fixedu. In this
By is a spherical shell. Other choices qfcorrespond to respect, the LOFF state is like the BCS state at nonagro
choosing different origins ok, space andy space, but in for weak coupling,Aq—0 and because the BCS state can
the absence of any interactions this has no consequencenly exist if it hasAy>v28u, it must vanish for couplings
Once we turn on interactions and allow pairing, we expect aveaker than some threshold. We shall see, however, that at
particular|g| to be favored. any fixed weak coupling, the LOFF state, like the BCS state,

The phase space picture changes slightly when pairings guaranteed to occur at sondg: the BCS state arises if
interactions are included: the blocking regions are smallebu<Jdu, and the LOFF state arisesdfu,<ou<dSu,.
when a LOFF condensate is present, as indicated in Hig. 2 One of the most striking features of the LOFF state is the
We will account for this effect in the next section. With spin structure of the condensate. The familiar “2SC” state
smaller blocking regions, a larger portion of the phase spacpairs quarks of the same helicity and opposite momentum, so
becomes available for LOFF pairing. Such pairing is guaranthe spins are antiparallel and the quarks are arranged in an
teed to be energetically favorable when it costs zero fre@ntisymmetric combination to form spin singlet Cooper
energy to create an up quark and a down quark, since thegairs. The LOFF state also pairs quarks of the same helicity,
guarks can then pair to obtain a negative interaction energyaut now the quark momenta are no longer antiparallel, as can

o

Iptal=Hy

(a)
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be seen from Fig. 1. Therefore the LOFF Cooper pairs cangeneralize it to include the possibility &R pairing, in ad-
not be spin singlets: they are superpositions of both spin zerdition to LL and RR pairing. We discuss this further in Sec.
and spin one. This is revealed explicitly by evaluating theVI.

nonzeroiynpy expectation values in the LOFF state: The possibility of a LOFF phase in QCD has been men-
tioned briefly in a different context. In their analysis of quark
—(\Pq|eijeaﬁ3¢i“(r)CLz/f“3(r)|‘lfq)=Zerizq'r, matter with a very large isospin densitwith large Fermi

momenta for down andnti-up quark$ Son and Stephanov
have noted that if thd andu Fermi momenta differ suitably,
a LOFF phase will arisg52].
In the physically realizable context of large baryon num-
o - ber density, pairing between quarks and holes with nonzero
wherei, j are flavor indices (¥up, 2=down), &, B are  ,i51 momentum has also been discusEs8-56. This re-
color indices,C=iy"y", L=(1-y5)/2 is the usual left- s in 5 condensate with the quantum numbergoaf),
handed prE)Jectlorl operator, ang,,=(1/2)[v,.v,]. The  ynich varies in space with a wave number equal to B
constantd’, andI'g are left-handed=0 andJ=1 conden-  qnirast, the LOFF phase describes a diquark condensate
sates, respectivelyl’; andI'g are defined analogously. The \hich varies with a wave number @l comparable to 8.
I"'s can be expressed in terms of the variational parameterghe crystalline chiral condensafi6] is favored in QCD at
of the LOFF wave function: asymptotically high densities only if the number of colors is
very large[53], greater than aboul.= 1000 [54,55. At
lower densities, where the interaction is stronger, the crystal-
line chiral condensate may arise in QCD with fewer colors
[56]. Apparently, however, in QCD withl.= 3 this phase is
not favored(although it is close to being competitiveven
when the coupling is so large that,/u>1/2. Note that
crystalline color superconductivity is guaranteed to occur at
4 arbitrarily weak coupling for suitably chosefu, while a
I'k=— > sin6, (p)cosh, (p)e'é® crystalline chiral condensate cannot form anywhere in the
v phase diagram if the coupling is weak.

i<\I’q|((71)ij fa,gglﬁia(r)CL003¢jB(r)|\pq>: ZF'éeizq",
(3.9

4 A
Ii=g > sind (p)cosd (p)e'e®
Vv peP

ay(p)+aqy(p)

X sin
2

)eiaﬁ(p),

X sin

ay(p)—adP)|
% e 4P, (3.5 IV. THE GAP EQUATION AND FREE ENERGY
Having presented a trial wave function for the LOFF
Here V is the spatial volume of the system(p) are the state, we now proceed to minimize the expectation value of
polar angles of the quark momenta, as in Fig. 1, and théhe free energyF) with respect to the variational parameters
dependence on the azimuthal angidollows from our use of the wave functiofithe s and&'s of Eq. (3.2)] to obtain a

of the spinor conventions described in R¢#3,6]. The ex- LOFF gap equation. The free energy B=H-—u N,

pressions fol R andT'R are the same as those(Bi5) except  — ugNg, WhereH is the Hamiltonian, antl, andNg are the
that ¢(p) is replaced byr— ¢(p). In Eq. (3.5 and through- number operators for up and down quarks, respectively. We
out, (IM)Z, becomes/d3p/(27)2 in an infinite system. choose a model Hamiltonian which has a free quark tdgm

Once we have derived a gap equation by minimizing theand an interaction terrhl, , and write the free energy &s
free energy with respect to these variational parameters, we Fo+H,, whereF,=Hq— u N —ugNg is the free energy
expect the condensates to be simply related to gap pararfer noninteracting quarks. To describe the pairing interaction
eters occurring in the gap equation. We will see explicitlybetween quarks, we use an NJL model consisting of a four-
howI', andI'g are determined in the next section. fermion interaction with the color and flavor structure of

Notice that the condensates of Hg.4) are plane waves oOne-gluon exchange:
in position space by virtue of the nonzero momentuga?

a Cooper pairl’ 5 describes pairing which is antisymmetric 3 3 — OTA s T OA

in color, spin, and flavor, whil&'g describes pairing which is H, 8 IX[Ge(dy T ) Py T7)
antisymmetric in color but symmetric in spin and flaver _ _

each case, Pauli statistics are obgydd the original LOFF =Gy TAY) (Yy' TAY) ], (4.1

condensate of electrons there can bellaq since electrons
have no color or flavor, so that only the spin antisymmetricwhere theT” are the color S(B) generators, normalized so
pairing is possible. that tr(TAT®) =25"B. Notice that we have relaxed some con-
The J=0 condensate$4CLy), (¢yCRy) are Lorentz straints on the spin structure of one-gluon exchange: we al-
scalars(mixed under parity, while the J=1 condensates low for the possibility of independent couplin@: andG,
(YCL®Y), (yCRo%y) are 3-vectors(also mixed under for electric and magnetic gluons, respectively. This spoils
parity) which point in thez direction, parallel to the sponta- Lorentz boost invariance but there is no reason to insist on
neously chosen directio§) of the LOFF state. Because the boost invariance in a finite-density system. Indeed, in high
ansatz contains &=1 component, it would be interesting to density quark matter we expect screening of electric gluons
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but only Landau damping of magnetic gluons, and we mightlso be independent @fg. That is, theJ=1 gap parameter
choose to model these effects by settihg<G)y . We post- must vanishAg=0. In Sec. VI, we shall see by direct cal-
pone a discussion of these issues and their implications farulation thatAg is proportional to Gg—Gy)I'g. In the
the LOFF state until Sec. VI. For now, we restrict ourselvespresent analysis witlsg=G,,, therefore,Ag=0 while I'g
to the case of Lorentz invariant single gluon exchange, by~0.
letting Gg=Gy,=G>0. The ¢'s are chosen to cancel the azimuthal phasgs) in

We need to evaluate the expectation valueFoin the  Egs.(3.5. By this choice we obtain maximum coherence in
LOFF state to obtain an expression for the free energy of théhe sums ovep, giving the largest possible magnitudes for
system in terms of the variational parameters of the ansatzhe condensates and gap parameters. We have
The noninteracting part of the free energy is simply

§p)=¢(p)+oL, Er(P)=7m—d(pP)+er, (4.5

<F0>ZPEEB 2(|Q+p|_“u)+p628d 2(la=pl= ) where ¢, and ¢ are arbitraryp-independent angles. These
’ constant phases do not affect the free energy—they corre-
spond to the Goldstone bosons for the broken left-handed

+ p;; 2(|a+pl+a=pl = = pa)sin? 6.(p) and right-handed baryon number symmetries—and are there-
fore not constrained by the variational procedure. For conve-
+(same, withL—R). (4.2 nience, we setp, = ¢g=0 and obtain condensates and gap

. o parameters that are purely real.
The first and second terms represent the contributions of the 1o rejative phases, — ¢ determines how the LOFF

unpaired left-handed up and down quarks, respectively. The,ngensate transforms under a parity transformation. Its
third term gives thenoninteracting free energy of the left- oo determines whether the=0 condensate is scalar,

handed quark pairs. The three terms are all repeatedWith oo\ ,qoscalar, or an arbitrary combination of the two and
replaced byR to include the free energy for the right-handed ether thes=1 condensate is vector, pseudovector, or an
quarks. The factors of 2 in E¢4.2) appear because there are 5ppitrary combination. Because single gluon exchange can-

two quark colors“red” and “green”) involved in the con- ¢ change the handedness of a massless quark, the left- and

densate. The “blue” quarks do not participate in the pairingyiqnt handed condensates in the LOFF phase are not coupled
interaction and instead behave as free particles: the blue yp the free energy of Eq(4.3). Our choice of interaction

and down qduarks fil Fermi seas with Fermi momepta  pamijtonian therefore allows an arbitrary choice of
=u, and pg=puq, respectively. Below, we will want to — ¢or. A global U(1), transformation changes, — ¢, and
compare the free energy of the LOFF, BCS and normajndeed this is a symmetry of our toy model. If we included
states. Since at any givem, and uq the free energy of the (1),-breaking interactions in our Hamiltonian, to obtain a
spectator quarks is the same in all three states, we can Ngore complete description of QCD, we would find that the
g|eCt these blue qual’kS in the remainder Of our anaIySiS eveﬁee energy depends m_ ©R, and thus selects a preferred
though they do contribute to the total free energy. value. For example, had we takef) to be the two-flavor
The expectation value ¢, gives the total binding energy instanton interaction as in Ref&3], [4], the interaction en-

of the pairing interaction: ergy would appear aB-* TR+ T''T'R* instead of as in4.3).
H)=—LGV(|TY2+|TR2), 4.3 This would enforce a_lflxed phas_e relatippn— ¢g=0, favor-
(Hi)==2GV(TA* T3 “.3 ing condensates which are parity conseriagl].

where thel'\’s are theJ=0 LOFF condensates defined in e now apply the variational method to determine the

Egs. (3.5. These condensates are simply related] te0 anglesé(p) in our trial wave function, by requiring that the

LOFF gap parameters defined as free energy is minimizedd(F)/36(p)=0. This is compli-
cated by the fact that the pairing regi@hand the blocking
ALR=GribRE (4.4  regionsB, and By are themselves implicitly dependent on

the 6 angles: these angles determine the extent of the LOFF
The gap parameters, correspond to 1P1 Green’s functions pairing, and the phase space regidnsi3,, and B4 change
and are the quantities which will appear in the quasiparticlevhen a condensate is present, as mentioned in Sec. lIl. For
dispersion relations and for which we will derive the self- now we simply ignore any dependence of the phase space
consistency conditions conventionally called gap equationsegions; our result will nevertheless turn out to be correct.
We see from Eq(4.3) that with G>0 the interaction is Everything is the same for left and right condensates so we
attractive in theJ=0 channel and is neither attractive nor hereafter drop thé and R labels. Upon variation with re-

repulsive in theJ=1 channel. spect tod(p), we obtain
Our ansatz breaks rotational invariance, so odee0
iri i 2A S 2
pairing occurs [ 4#0) we expect that there will also hk tan 20(p) = ASIN(Ba(P)/2) .6

=1 pairing Cg#0). As we have seen, this arises even in
the absence of any interaction in the 1 channel as a con-
sequence of the fact that the momenta of two quarks in &here BA(p) = a,(p) + a4(p) is the angle between the two
Cooper pair are not antiparallel ¢f# 0. BecausgH) is in-  quark momenta in a LOFF pair, as shown in Fig. 1. Notice
dependent of gz, the quasiparticle dispersion relations mustthat the denominator on the right-hand side of the above

~la+pl+la—pl—pu—mg’
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expression vanishes along the ellipsoidal surface of optimalnpaired quark with a quark pair, and vice versa in the pair-

LOFF pairing described in Sec. lll. Whexp=0, the quark ing region. Whemy=0, Egs.(4.7) reduce to the more famil-

momenta are antiparallel g8x(p) = and Eq.(4.6) reduces  iar BCS resultE ; »(p) = = Su+/(|p| — ) *+ AZ,

to the simple BCS result: targ2 A, /(|p| — ). With the boundaries of the blocking regions specified, one
With the  angles now expressed in terms of a gap paramean verify by explicit calculation that the variation of these

eterA,, we turn to the LOFF quasiparticle dispersion rela-boundaries upon variation of ths does not change the free

tions. They can be obtained by taking the absolute value oénergy. This can be understood as follows. Notice that be-

the expressions cause we can create zero-energy quasiparticles on the bound-
L aries of the blocking regions, there is no actual energy gap in
Ei(p)=du+3(la+p|—[a—p)) the excitation spectrum of the LOFF state. The chand&jn
N \/ > 2 Gir( L due to variation of the boundaries of the blocking regions is
+zV(la+pl+[a—pl—2u)°+4ALSIM(3BA(P),  zero because this variation simply creates zero-free-energy
N quasiparticles on these boundaries. This justifies our neglect
Ex(p)=—du—z(la+pl—la—pl) of the # dependence of the phase space regions in the deri-
X vation of Eq.(4.6).
+3(la+pl+|a—p| - 22+ 443 si?(3 Ba(P)), Substituting the expressid#.6) for the 6 angles into the

4.7 expression3.5) for thel' , condensate, and using the relation
A,=GI',, we obtain a self-consistency equation for the gap
whose meaning we now describe. For regionspo$pace parametem 5:
which are well outside both Fermi surfacés, (E,) is the

free energy cost of removing a LOFF pair and adding an up 2G 2 sirf(28a(p))

quark with momentung+ p (a down quark with momentum 1=— E .
g—p). For regions ofp space which are well inside both V oper \/(|q+ pl+Iq—pl—2mz+4Aisin2(%ﬁA(p))
Fermi surfacesk; (E,) is the free energy cost of removing a 4.9

LOFF hole pair and adding a down hole with momentgm

—p (an up hole with momentum+p). Where the Fermi This can be compared to the BCS gap equation, obtained
surfaces cross ip space and pairing is maximal, both qua- upon settingg=0 and eliminating the blocking regions:
siparticles are equal superpositions of up and down. In the

region ofp space which is well inside the up Fermi surface 1- 2G 1 4.10
but well outside the down Fermi surfacE; is negative, V & Jpl-m)2+AZ :

corresponding to a domain in which it is energetically favor-

able to have an unpaired up quark with momentqmp  Note that in the LOFF gap equati¢d.9), the gap parameter
rather than aq+p,q—p) quark pair. SimilarlyE is nega-  gppears on the right-hand side both explicitly in the denomi-
tive where it is favorable to have an unpaired down quarkyator and also implicitly in the definition of the pairing re-
with- momentumg—p rather than a LOFF pair. Equations gion P, as given in4.8). This means that if thgq— 0 limit is
(4.7) allow us to finally complete our description of the tgken at fixedsy, the LOFF gap equation will only become
LOFF phase by specifying the definitions of the phase spacghe BCS gap equation if the blocking regions vanish in this
regionsP, B, , andBy. The blocking regior5, is the region  |imit. This happens if, ag—0, A, tends to a limiting value
whereE(p) is negative, and unpaired up quarks are favoredyhich is greater thadu. A state withA ,<Su andq=0 is
over LOFF pairs. Similarly3, is the region wher&,(p) is  “BCS-like,” in that the Cooper pairs have zero momentum,
negative. The region&, <0 andE,<0 are shown as the pyt has no pairing within a regiopt < |p|<p¢. Such states
shaded areas in Fig.(@ for A,=0, and in Fig. 2) for  gyyays have higher free energy than the BCS state obtained
Ap#0. LOFF_ pairing occurs in the region whelfg andE, simply by solving the gap equatiof#.10, appropriate if
are both positive: there are no blocking regions apé=p¢ [39].

In the next section we will solve the LOFF gap equation
(4.9 and determine the circumstances in which the LOFF
gtate is the true ground state of the system. Once we have
obtained a solution to the gap equatich9 for A,, the
condensates are given by =A,/G and

P={p|E1(p)>0 and E,(p)>0} (4.8

corresponding to the entire unshaded regions of Fig. 2. Th
actual quasiparticle dispersion functions g (p)| and
|E,(p)|: they are non-negative everywhere, since they rep
resent energies of perturbations of the LOFF state which is o 4

the presumed ground state of the sysfemn.the blocking 2 2Apsin(3 Ba(P))siN(; Be(P))

regions, elementary excitations are created by replacing aEB:Vpep \/(|q+p|+|q—p|—2ﬁ)2+4A2 sinz(EBA(p))’
A 2
. (4.11

“Since the LOFF condensate contains pairs with momentgm 2 Wheregg(p) = ay(p) — aq(p). (See Fig. 1. We now see ex-
the momentum of its quasiparticle excitations is only definedplicitly that if the interaction is attractive in thé=0 chan-
modulo 2j. The momentum, moduloc® of a quasiparticle of en- nel, creating a nonzerB, andA ,, a nonzera)=1 conden-
ergy |E1(p)| is pmod 2q. satel' is induced regardless of the fact that there is no
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interaction in theJ=1 channel. As a check, note thatf ~ parameterd,, is not a gap in the spectrum of excitations.
=0, sinGBx(p))=1 and sinkBs(p)) is given by the cosine Thelquasiparticle dispersion rel_atioﬁs?) vary with the di-

of the polar angle of. The right-hand side of4.11) there- rection of the momentum, yielding gaps that vary frpm zero
fore vanishes upon integration, afig vanishes wheig=0 (for momenta on the edge of the blocking regions in phase

as it should. It is now apparent that two features contribute tépacee up tq a maximum Odp. ) _ _
a nonzerd . The first is that the momenta in a quark pair We will first discuss the range @fu in which there exists

. . a LOFF state as a local energy minimum. Later we will go
are not antiparallel, whlch_leads o the f_a_ctors O.f gﬁ/_x(p)) . onto study the competition between LOFF and BCS, and see
in Eq. (4.11). The second is that the pairing region is aniso-

A o ] in what range ofsu the LOFF state is the global minimum.
tropic, since if it were not the factor of siffs(p)) would e expect the BCS state to be preferred when the mismatch
ensure that the right-hand side @ 11) vanishes upon inte- 5, petween the Fermi energies of the two species is small.
gration. , When the mismatch is comparable to the BCS gap (

As written, the gap equation#.9) and (4.10 are ultra- ~A,) We expect a transition to LOFF, and at largir we

wplet d|vergent. In QCD’ of course, asymptotic freedom Im'expect all pairing to cease. These expectations are largely
plies that the interaction between quarks decreases at Iar% e out

momentum transfer and we have not yet represented this fact o —

in our toy model. In previous work3,6,5, we chose to d‘ffm getneral ‘I'Ye f'XtA_ltS;V ﬁf“:ﬁ—o-“ GeV,ta_md ts)tutdhy

mimic the effects of asymptotic freedofand to render the |her'en| coup |.ngAS re;;]g whic V\;e parame r'ﬁ? hy €

right-hand side of the gap equation finitey introducing a  Pysical quantitydo, the BCS gap of Eq(4.10 which in-
creases monotonically with increasi@ When we wish to

form factor associated with each fermion leg in the four- ;
fermion interaction. This is not a good strategy whgn0.  Study the dependence on the cutoff, we varyvhile at the

The two incident quarks carry momentg+p and q—p same.time varying the cguplir@ §uch thatd, is k_ept.fixed. .
while the outgoing quarks carry momentg-p’ and g (_Thls is in the same spirit as using a ren_ormallzatlon condi-
—p’. Were we to cut off these four momenta with form tion on a physical quantity-A,—to fix the “bare”
factors on each leg, we would have a cutoff which depend§0UPling—G.) We expect that the relation between other
explicitly on g. This is not a good representation of what Physical quantities and, will be reasonably insensitive to
happens in full QCD, in which the condition for when the variation of the cutofA. .
interaction becomes weak is determined by the momentum We wish to determinéu,, the boundary separating the
p—p’ transferred through the gluon and has nothing to dd-OFF phase and the normal phase. The LOFF to unpaired
with g. For simplicity, we choose to introduce a hard cutoff phase transition is second order, so it occurs where the solu-
in our Nambu—Jona—LasiniéNJL) model, rather than a tion A, to the LOFF gap equatiof#.9) is zero. Settingh
smooth form factor, and choose simply to cut off the mo-=0 in the gap equatio4.9) yields an analytical expression
mentump. This is not equivalent to cutting off the momen- relating 6u andq, for any givenG and A. In Fig. 3@ we

tum transfer, but has the desired feature of being #how theA,=0 curve for three couplings corresponding to
g-independent cutoff. That is, we limit the integration regionAo=0.1GeV (strong coupling A,=0.04GeV and A,

to |p|<A in the BCS gap equatiot4.10 and to{pe P and =0.01 GeV(weak coupling. We have only drawn the zero-
|p|<A} in the LOFF gap equatiofé.9). In the BCS case, 9ap curve in the region whexg=éu. We expect this to be
this criterion is equivalent to cutting off the momentum of the region of interest for LOFF pairing because whgn
each fermion leg. In the LOFF case, it is not equivalent and® du the two spheres of Fig. 2 do in fact intersect. We have
is more appropriate. The choice we have made is not theerified that, as described in some detail in RéB], there
only cutoff one might try. For example, we have also ob-are regions of Fig. @ with q<éu within which the LOFF
tained results upon cutting off momenta outside a large elgap equatior{4.9) has(one or even twpnonzero solutions,
lipsoid in p space, confocal with the centers of the two Fermibut these solutions all correspond to phases whose free en-
spheres in Fig. 2, but have found that this makes little dif-ergy is either greater than that of the normal phase or greater
ference relative to the simpler choice of the large spheréhan that of the BCS phase or both. Figure 3 shows that for a
|p|<A. given coupling strength, parametrized I, there is a
maximum éu for which the LOFF state exists: we call it
Op,. For u>déu,, the mismatch of chemical potentials is
too great for the LOFF phase to exist.

We solve the gap equatiqd.9) numerically(and analyti- We see from Fig. @ that as the coupling gets weaker,
cally in the limit Ap<d6u,q,A,) and calculate the LOFF Ju,/Aq gets gradually larger(Of course,du, itself gets
state free energy as a function 8f. and g, for given cou- smaller: the quantities plotted adu/A, andg/A,.) Note
pling G, average chemical potential, and cutoff A. We  that in theAy,— O limit, the zero gap curve is essentially that
vary g to minimize the LOFF free energy, and compare itshown in the figure foA,=0.01 GeV, in agreement with the
with that for the standard BCS pairirig.10 to see which is curve obtained at weak coupling by Fulde and Feifr&].
favored. In this way we can map out the phase diagram foilhe fact that this curve ceases to move in thg—0 limit
the three phases of pairing between the two species of quarkieans thatu,— 0 while du,/Ay— const in this limit.

BCS, LOFF, and unpaired. For 6u— S, from below, we see from Fig. 3 that there

Note that the solution to the gap equation, the LOFF gaps a solution to the LOFF gap equation only at a single value

V. RESULTS
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FIG. 3. (&) The zero-gap curves for the LOFF state. To the right of a solid curve, there is no solution to the LOFF gap equation, to the
left of the curve there is a solution, and on the curve the gap parameter is zero. The three cufvemastongest to weakest coupling
Ay=0.1,0.04,0.01 GeV. The regiam< Su is complicated to describfl3], and solutions found in this region never give the lowest free
energy state at a givefj. (b) Here, we choosé ;=0.04 GeV and focus on the region ne®,, the maximum value o at which the
LOFF state exists. The dashed curve shows the valig which minimizes the free energy of the LOFF state at a gi§endu, , discussed
below, is also indicated.

of g. For example, at\;=0.04 GeV we findg=0.88Q\, OSu<du,=0.744A,. At each Su<dSu,, we plot the gap
=1.183%u, at su,=0.744,. (In agreement with Refs. parameter and free energy characterizing the LOFF state
[12,13, in the weak coupling limit we findj=0.906\,  with the bestq for that Su. Although the BCS gap, is
=1.206u, at 6u,=0.754.) For any value ofSu<du,,  larger than the LOFF gap,, asdu increases we see from
solutions to the LOFF gap equation exist for a rang¢gpf  Eq. (2.3) that the BCS state pays a steadily increasing free-
We must now find the value d§| for which the free energy energetic price for maintaining¥= p'd:, whereas the LOFF

of the LOFF state is minimized. We obtain the free energy Ofiate pays no such price. We now see that the LOFF state has
the LQFF state at a point in Fig. 3 by first solving th(_a 98P|ower free energy than the BCS state &> duq, in this
equation (4.90 numerically to obtainA,, and then using casedu;=0.7104,. At Su=3u,, the gap parameter is

§:4o.f)e?c?1(tgl}g i\éalft;(FOvteHgagIzeor:/vmd(:fs)rriinnde(t/?gi.ch Ax=0.0078 GeV=0.198,. (Had we calculatedsu, by
K= Ofta comparing the BCS free energy with that of the unpaired

choice of q yields the lowest free energy. The resulting . .
“best-q curve” curve is shown in Fig. ®) for A, state instead of with that of the LOFF state, we would have

—0.04GeV® obtainedéu,;=0.711A,. As the inset to Fig. 4 confirms, the

Finally, for each point on the begteurve we ask whether BCS free energy varies so rapidly that this makes an almost
the LOFF free energy at thaé and (bes) q is more or less imperceptible difference. In later figures, we therefore obtain
than the free energy of the BCS state at the sameln this 941 Via the simpler route of comparing BCS vs normalt
way, we find Su; at which a first order phase transition the coupling corresponding thy=40 MeV, we have found
between the LOFF and BCS states occurs. In Fig. 4 we shofpat the LOFF state is favored over both the BCS state and
the competition between the BCS and LOFF states as a funéde normal state in a “LOFF window” 0.73X06u/Ag
tion of the Fermi surface mismatau, for a fixed coupling ~<0.744.

corresponding ta\,=40MeV. The LOFF state exists for  With solutions to the gap equation in hand, we can obtain
theJ=0 condensaté ,=GA, and theJ=1 condensaté'z

given in Eq.(4.1). In Fig. 5, we show both condensates
within the LOFF windowdu ;< du<du,. We see first of

all thatI'g# 0, as advertised. For the choice of parameters in
Figs. 4 and 5 we find'g/I"5 essentially constant over the

5As a check on our determination of the bgstve have confirmed
that the total momentum of the LOFF state with the lepit zero,

as must be the case for the ground state of the system at a given . .
(by a theorem attributed to Blodb7]). This is a powerful check, whole LOFF window, varying from 0.121 aju, to 0.133 at

because it requires the net momentum of the unpaired quarks in the”"2- .IncreaSInng tends to increasé’s/T's, as does .d.e_

blocking regiongwhich is in the negative direction; see Fig. Pto creasingA. Second of all, we see that the phase tra_nSItlon at
be cancelled by the net momentum carried by the LOFF condend&=Su2, between the LOFF and normal phases, is second
sates. When, in future work, our ansatz is extended to describe @der in the mean-field approximation we employ through-

LOFF crystal rather than a single plane wave, this check will noOUt. - _ _
longer be powerful. Once we go froni~exp(dq-r) to T Near the second-order critical poiéitt,, we can describe

~cos(2y-r) or to a more involved crystalline pattern, the total mo- the phase transition with a Ginzburg-Landau effective poten-
mentum of the condensates and of the unpaired quarks will each Héal. The order parameter for the LOFF-to-normal phase tran-
zero. sition is
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FIG. 4. LOFF and BCS gaps and free energies as a functiodupfwith coupling chosen so thah,=40MeV and with
=0.4GeV, A=1 GeV. Free energies are measured relative to the normal state. Abgaed have varied) to find the best LOFF state.
The vertical dashed line marl&.= du,, the value ofsu above which the LOFF state has lower free energy than BCS. The expanded inset
(whereins=10"7 GeV*) focuses on the regioiu, < du< Su, where the LOFF state has the lowest free energy.

D(r)=—3(€ij€ap3tt “(1) CyspP(1)) (5.1)  q,is the value ofq| at Su, (so thatg,=1.26u,=0.9A, at
] o weak coupling. In general, therefore, many modes on this
so that in the normal phasé(r)=0, while in the LOFF  gphere can become nonzero, giving a condensate with a com-
phase®(r)=T,e'*¥". Expressing the order parameter in plex crystal structure. We consider the simplest case of a

terms of its Fourier modeé(k), we write the LOFF free p|ane wave condensate where On'y the one m&c{«

energy(relative to the normal states =2q,)=I", is nonvanishing. Dropping all other modes, we
have
FDK)}) = (Co(k?)|D(K)|2+ Cy(k)|D(K)|*
({ ( )}) ;( 2( )| ( )| 4( )| ( )| F(FA):a(é,u_5/1/2)(FA)2+b(FA)4, (53)
+O(|{1‘)|6))_ (5.2) wherea andb are positive constants. Finding the minimum-

energy solution forSu<Su,, we obtain simple power-law
For Su>du.,, all of theC,(k?) are positive and the normal relations for the condensate and the free energy:
state is stable. Just below the critical point, all of the modes
P T a(61) =Kr(Spo— 0m) ™ F(5p)=—Ke(Sup— Su)>.

d(K) are stable except those on the spHéte= 2q,, where (5.4)

These expressions agree well with the numerical results
0.002 T T T shown in Figs. 4 and 5. The Ginzburg-Landau method does
r not specify the proportionality factots andKg, but ana-

r A lytical expressions for these coefficients can be obtained in
3 the weak coupling limit by explicitly solving the gap equa-
GeV tion [51], yielding

GAKr=2V8u2\(dz/8u2)?— 1=1.15A,,

Ke=(4p? m?)((z/ p0)®—1)=0.178u". (5.5

0.001

Notice that becausedfu,— Suq)/ du, is quite small, the
I'g power-law relationg5.4) are a good model of the system
. | | throughout the entire LOFF intervalu,<éu<<déu, where
067 07 0.73 0.76 thg LOFF phase is favc_)red over the BCS phase. The
SWA, Ginzburg-Landau expreSS|c(|5.3) gives the free energy of
the LOFF phase neafu,, but it cannot be used to deter-
FIG. 5. The two LOFF condensatEs(J=0) andl'g(J=1) for mine the locationsu, of the first-order phase transition
the same choice of parameters as in Fig. 4. We focus on the regiotthere the LOFF window terminatékocating the first-order
Su<S6u<Su,. For reference, in the BCS phadg,=A,/G point requires a comparison of LOFF and BCS free ener-
=0.00583 GeV andI'3=0. gies.

074016-11



ALFORD, BOWERS, AND RAJAGOPAL PHYSICAL REVIEW 363 074016

0.76 T T T T formed at very largep, and hence to the choice @f. As
discussed above, pairing far from the favored ribbon in phase
0.75 space becomes irrelevant fap— 0, and indeed in this limit
we find that theA dependence oF z/I" 5 decreases. How-
0.74 ever, for Ap=40 MeV we find that changing\ from 1.2
SWA, GeV to 0.8 GeV increasdsg /T", by more than 50%.

0.73 We chose to show results fdro=40MeV in Fig. 4 be-
cause with this choice, the LOFF window occurs at values of
Su comparable to that in the illustrative exampgzl): Su
=1(uq— my) =27 MeV. Of course, neithefu nor the value
of A, are accurately known for the quark matter which may
exist within a compact star. Still, it seems possible that their
0.7 L ! ! ! ratio could be appropriate for the quark matter to be in the
0 0.02 0.04 A 006 008 0.1 LOFF phase. If there is a range of radii within a compact star

0 in which quark matter occurs witldu,<ou<déu,, this

0.72

0.71 |

FIG. 6. The interval ofsu within which the LOFF state occurs, quark ”_‘a“er will be a crystalline color SUpe.rcondUCtor'
as a function of the couplingparametrized as usual by the BCS gap In Fig. 4, the LOFF gap parametexA s 7.8 MeV
A,). Below the solid line, there is a LOFF state. Below the dashedit 4= Juy. It remains larger than typical neutron star
line, the BCS state is favored. The different lines of each typel€mperaturesT,s~1keV until very close todu=dpu,.
correspond to different cutoffA =0.8 GeV to 1.6 GeV.Su, /A Similarly, the LOFF free energy, which is &0 °GeV*

1 0
and Su, /A, show little cutoff dependence, and the cutoff depen-=4.8X(10 MeV)* at Su=386u,, is much larger thanTﬁS
dence disappears completely &g, Su—0. throughout the LOFF window except very close &u
= 6w, . Furthermore, we shall see in Sec. VII C that the free

It is interesting to explore how the width of the LOFF energy of the LOFF state is of the right order to lead to
window depends on the strength of the coupling, and to coninteresting glitch phenomena.
firm that it is insensitive to the cutoff. We do this in Fig. 6,
where we plotdu,/A, (solid lines and du,/A, (dashed VI. MORE GENERAL HAMILTONIAN AND ANSATZ
lines). The LOFF state is favored fobu,/Ag<dul/Ag _ o _
<SuylAy, i.e., between the solid and dashed curves in Fig. In Sec. IV, we introduced the four-fermion interaction
6. In the weak coupling limit, the LOFF window tends to HamiltonianH, of Eq. (4.1) with independent couplingSge
0.707< 8/ Ay<0.754 andA , at Su, tends to 0.28,, asin  and Gy for the interactions which model the exchange of
Refs.[12], [13]. Note that if one takes the weak-coupling €lectric and magnetic gluons. It proves convenient to use the
limit Ag—0 at fixed Su, neither BCS nor LOFF pairing linear combinations
survives becauséu/A,—. However, for any arbitrarily Ga=1(Ge+3Gy)
small but nonzero coupling, the LOFF phase is favored A=3(Ge M7
within a range oféu. Figure 6 thus demonstrates that in an
analysis of the LOFF state in the weak-coupling limit, it is

convenient to keepu/A, fixed while takingA,—0. We see  f the coupling constants in terms of which the expectation

from Fig. 6 that strong coupling helps the BCS state morg,),,e ofH, in the LOFF state3.2) becomes
than it helps the LOFF state. When the coupling gets strong

enough, there is no longer any window of Fermi surface <HI>:_%GAV(|F,I&|2+|FE|2)_%GBV(|FE|2+|FE|2)-
mismatchdu in which the LOFF state occurs: the BCS state (6.2
is always preferred.

The different lines of each type in Fig. 6 are for different Thus, a positive coupling describes an attractive interac-
cutoffs and show that there is in fact little sensitivity to the tion which induces d=0 condensaté’,. As we have seen,
cutoff. The A dependence obu, /Ay, and Su,/A, is mild  in the LOFF state this is necessarily accompanied hy a
for all values ofA, which are of interest, and is weakest for =1 condensat&g . In our analysis to this point, we have set
Ao—0. This is because in that limit pairing can only occur Ga=G>0 andGg=0. We now discuss the general case, in
very close to the unblocked ribbon of the ellipsoid of Fig. which Gg#0.

2(b), along which the integrand in the gap equation is singu- Before beginning, let us consider how to cho@g/G,
lar and pairing is allowed. Thus most of the pairing regidan in order for our model Hamiltonian to be a reasonable toy
and in particular the region nedr, become irrelevant in this model for QCD at nonzero baryon density. At zero density,
limit. of course, Lorentz invariance requir€g=0. At high den-

The one physical quantity which we have explored whichsities, on the other hand, electric gluons are screened while
does turn out to depend qualitatively ok is the ratio  static magnetic gluons are ndgMagnetic gluons with non-
I'g/T 5. Those quarks with momenta as large fasvhich  zero frequency are dampégdVe now know[18] that at as-
pair have momenta which are almost antiparallel, and symptotically high densities it is in fact the exchange of mag-
contribute much less tbg than tol',. For this reason, the netic gluons which dominates the pairing interaction. This
ratio I'g/T"5 is sensitive to the number of Cooper pairs suggests the choiceGg=0, corresponding toGg/Gp

Gg=1(Gg—G), (6.
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=—1/3. At the accessible densities of interest to us, it is 1 . . .
presumably not appropriate to negléast completely. Note
also that the four-fermion interaction induced by instantons 085 BLL,/A
in QCD only yields interactions in flavor-antisymmetric 09 L zmo i
channels. It results in an attractive interaction in the0
channel and no interaction in thk=1 channel. Thus, al- 085 4
though the instanton interaction cannot be written in the form /A WA,
(4.1), for our purposes it can be thought of as adding a con- 08 .
tribution to G, , but none toGg. Hence our model is likely
to best represent high density QCD for a ratio of couplings 0.75
lying somewhere in the range 0.7
1 GB | 1 |
— §<a< 0. (6.3 0'65_3 2 1 0 1 2

Gg/Ga
We plot our results over a wider range of couplings below.
OnceGg#0 and there is an interaction in tde=1 chan-
nel, we expect, in addition to th&=1 condensaté'z, aJ
=1 gap parameteAg. The quasiparticle dispersion rela-
tions are then determined iy, andAg, which are defined
as

FIG. 7. The interval o5 in which the LOFF state is favored at
weak coupling, as a function of the ratio of couplinGg /G, -
Below the solid line, there is a LOFF state. Below the dashed line,
the ordinary BCS state is favoredsg=0 corresponds to the
Lorentz-invariant interaction witls=G,, . QCD at high density
is likely best described by a coupling in the rang*§<GB/GA

Ap=Gal 5, <0.

Ag=Ggl;. (6.4) Rather than describing how every figure in Sec. V
changes wheGg# 0, we choose to focus on the question of
Following through the variational calculation as in Sec. Iv how the interval ofsu within which the LOFF state occurs

leads to the coupled gap equations: (the LOFF window changes as a function @z/G,. To
further simplify the presentation, we specialize to the weak-
2G4 coupling limit in whichA,—0. This means that, as in Fig. 6,
AA:T the LOFF window is independent of the cutoft
We show the dependence of the LOFF window on
5 2SA(ApSA+ ARSg) Gg/G, in Fig. 7éJThe lower boundarﬁ,uzg‘ﬂl is, as in
, Sec. V, the saméup to a very small correctigras thedu at
peP V(la+pl+]a—pl—2m)*+4(AxSa+ ApSs)” which the BCS and normal states have equal free energies.
We find the upper boundar§u = du, by first dividing Egs.
A :ﬁ (6.5 by A, and then looking for a value ofu at which
BT v Ap—0 andAg—0 butA,/Ag remains nonzero. As before,
this defines a zero-gap curve, afid, is the maximum value
> 2S5(ApSa+AgSg) of du reached by this curve.
P J(lg+p|+|a—p|—2m) 2+ 4(ApSa+ ApSp)? We find that the lower boundar§u., is completely unaf-

fected by the value oGy, since the BCS state is purely
=0. So in the weak-coupling limit we obtain the result of

—ain L

Sa=SiN(z Ba(P)), Sec. V, u,/Ay=0.707, independent oBgz/G,. In con-
. trast, du,, the upper boundary of the LOFF window, in-

Sg=sin(3 Be(P)) (6.5  creases with increasingg. This is understandable: the

LOFF state always producesJa=1 condensate, SO we ex-

with Ba(p) = ayu(p) + aq(P), Be(P) = au(p) — @y(p) defined  pect it to be fortified byGg>0 and penalized by55<O0.
in terms of the angles in Fig. 1. The pairing regiBris still  There is no analogue of this behavior in an electron super-
defined by(4.8) but with new quasiparticle dispersion rela- conductor{12,13, where there can be nb=1 condensate.
tions obtained from Eqs(4.7) with A3Si replaced by OurJ=1 condensate affects the gap equation and free en-
(AASA+ARSE)2 ergy only if Gg#0; for this reason, our weak coupling re-

For Gg=0, the coupled equation®.5) reduce to Egs. sults are in agreement with those of LOFE2,13 only if
(4.9 and(4.11). Note that if, insteadGg>0 andG,=0, we  Gg=0, as in Sec. V. The effect of a couplif@g in the
find an attractive interaction in the=1 channel in Eq(6.1)  physically interesting rangé.3) is to reduce the LOFF win-
and no interaction in thd=0 channel. Analysis of Eq$6.5  dow, but only slightly.

in this case yields a nonzero valuef, while A,=0 even In both this section and the previous one, we have calcu-
thoughI'p#0. The geometry of the LOFF pairs requires latedSu, by examining the competition between LOFF pair-
I'a#0 whenT'g#0. ing and no pairing. Should we instead have considered the
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competition between LOFF pairing and the formation of VIl. CONCLUSIONS, FUTURE WORK AND
(uu) and(dd) condensates, each at their respective Fermi ASTROPHYSICAL IMPLICATIONS
surface, each witly=0? Assuming as usual that the color
antisymmetric channel is the most attractive one, flavor sym-
metric pairing requires spin-symmetric pairing, .85 1 We have studied the formation of a rotational-symmetry-
[58]. Within the model and ansatz that we have consideredoreaking LOFF state involving pairing between two flavors
the question is easily answered. If we cho@g>0 and  of quark whose chemical potentials differ b2 This state
Gg=0, as in Secs. IlI-V, there is no interaction in the spin-is characterized by a gap parameter and a diquark conden-
symmetric, flavor-symmetric, color-antisymmetric channel.sate, but not by an energy gap in the dispersion relation. In
If we strengthen magnetic gluon exchange relative to electrighe | OFF state, each Cooper pair carries momentgmigh

gluon exphange py choosingg <0, t.he intergction in this. |~1.25u. The condensate and gap parameter vary in
channel is repulsive. We have confirmed this by evaluatlng;pm:e with wavelengthr/|q|.

the expectation value dfi, in a state with spatially uniform
J=1 pairing and(uCcs°u) condensatgobtained by using ac
two u creation operators in the ans&®&2), settingédu=0 as
appropriate fofuu) pairing, settingg=0 and removing the
blocking region$ We find thatG, gives no interaction in
this channel an@z<0 is repulsive. Thus, for the same rea-
son that the LOFF window shrinks f@g<0, there can be
no(uu) or {(dd) pairing. However, the scenario is apparently . e .
diff<ere21t at< as>ymptotically high density: it has been shownLOFF in their original analysis. Except for very close to

- : ) the critical temperature above which the LOFF state
by Schéer [58] that long-range single-gluon exchange does®#2: ! X ;
inyfact induce pairing ir?this]g= 1 chganngel.(The Iong-r%nge melts will be much higher than typical neutron star tempera-

interaction emphasizes near-collinear scattering which is alt_ures. At stro_nger coupling the .LOFF gap parametgr de-
P g creases relative td\y and the window ofdu/Aq within

tractive for both electric and magnetic gluonBor either a : . . .
pointlike interaction withGg>0 or a long-range interaction Wh'Ch Fhe LOF.F state Is favored Sh”F"‘S- The vv_mdow grows
{ the interaction is changed to weight electric gluon ex-

dominated by near-collinear scattering, we therefore expeé h heavily th tic af h
competition between LOFF pairing afdu) and(dd) pair- change more heavlly than magnetic giuon exchange.

g, Since he e would then be avored e ;. BECAUSE 1 Mlaes roitonal ivarnce by moving
Our ansatz only containisL. andRR pairing. We leave a mattgr L%FF state necessarily features noFr)12er0 éondeﬂsates
complete analysis of the generalizationltB pairing to fu- y

ture work. We have, however, constructed the ansatz for spér—] both thleO andqzl 'channells. 3°th condensates are
tially uniform LR pairing with sz=0 andg=0. We find present even if there is no interaction in the 1 channel. In

that the interaction in thid=1 channel is attractive iG¢ this case, however, thé=1 condensate does not affect the

+Gy>0 and is independent of the linear combination quuasiparticle dispersion relations; that is, the 1 gap pa-
cougllingsG ~3G,,. The J=1 channel with LR pairing rameter vanishes. If there is an attraction indkel channel
E M - -

) i . (as, for example, if the strength of the electric gluon interac-
zlbelcdsofilgu g&;i}ggr}g?rlﬁitec;gseted?i o;r':ge;é C(;?r?nensﬁ;[e tion is increasedthe size of the LOFF window increases.
a reUement with Reff58] we find that ma netiF(): Iug.n ex- The quark matter which may be present within a compact
cﬁan e WithGe=0 aﬁdG -0 is attractivgin th«égc ) star will be in the crystalline color superconductOFF)
g€, E i M= ALtV T UISHY state if Su/A, is in the requisite range. Fafu as in the
e oo, IUSAIVe exampl . s occurs i the gaghy whic
7 at S Lo characterizes the uniform color superconductor present at
setting relevant in quark matter, we find that pointlike |nter—Smaller values 0By is about 40 MeV. This is in the middle
actions in these wo channels ha"‘? opposng sign. ._.of the range of present estimates. B.Gyb andAg vary as a
We have siet up the gap equation desc_rlblng a Spat""“q{unction of density and hence as a function of radius in a
uniform (uCy'u) condensate and solved it f@Bg=Gy

—G, Ag=40MeV, u,=0.4GeV, andA =1 GeV. We find compact star. Although it is too early to make quantitative

a gap of 8 keV and a free energy which is about five Order%redlcnons, the numbers are such that crystalline color su-

. erconducting quark matter may very well occur in a range
of magnitude smaller than thgt of thg LO.FF .phaﬁé.vvg of radii within a compact star. It is therefore worthwhile to
chooseGg=0 andG,,>0, the interaction is still attractive :

: consider the consequences.

but the gap is even smallgrTherefore, even though for

du>d6u, we expect LR pairing and consequentCy'u)
and(dCy'd) condensates, the resulting condensation energy
is so small that it is a good approximation to neglect these The prospect of spontaneous violation of translational and
condensates in the evaluation &f,, as we have done. We rotational symmetry in dense quark matter is very exciting.
leave for future work a complete analysis of the competitionin the remainder of this paper we will begin to explore one
between the LOFF phagwith an ansatz extended to allow particularly interesting consequence: glitch behavior in quark
LR-LOFF pairing and the spatially uniforquCy'u) con-  matter within compact stars. First, however, we list a number
densate. of direct extensions of our work, several of which are pre-

A. Conclusions

We focused primarily on an NJL-type four-fermion inter-
tion with the quantum numbers of single gluon exchange.
In the limit of weak coupling(BCS gapA,<u) the LOFF
state is favored for values ofu which satisfy Su<du
<6m,, wWhere Su/Ay=0.707 anddu,/Ayg=0.754. The
LOFF gap parameter decreases from .23t Su= Suq to
zero at Su=46u,. These are the same results found by

B. Future work
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requisites to a quantitative exploration of the astrophysicahsAQ/Q~ 10, but may also be several orders of magni-
consequences of crystalline color superconducting quarkude smaller. The frequency of observed glitches is statisti-
matter in compact stars. cally consistent with the hypothesis that all radio pulsars
(1) We have restricted ourselves to two flavors of quark.experience glitche$59]. Glitches are thought to originate
and varieddu freely. It is crucial to look at more realistic from interactions between the rigid crust, somewhat more
examples, imposing charge neutrality and weak equilibriumhan a kilometer thick in a typical neutron star, and rotational
and including the strange quark. We expect a LOFF phasggtices in the neutron superfluid. The inner kilometer of the
wherever(us), (ds) or (ud) pairs approach their unpairing ¢rst consists of a rigid lattice of nuclei immersed in a neu-
transitions, but this must be verified quantitatively. Further;.o superfluid 60]. Because the pulsar is spinning, the neu-

generalizations would include bare quark masses and spofi,, g nerfluid(both within the inner crust and deeper inside

taneous generation of constituent quark masses by Ch'r%e staf is threaded with a regular array of rotational vorti-

condensation. , X o
(2) It would be valuable to complement our Nambu—Jona-C&S: As the pulsar’s spin gradually slows due to emission of

Lasinio (NJL) model study with a controlled calculation us- electromagnetic .radiation, th.ese vortices must gradqal!y
; ; itynove outwards since the rotation frequency of a superfluid is

limit. There are two reasons why this is worthwhile. First, it Proportional to the density of vortices. Deep within the star,
will allow a controlled analysis without model assumptions, the vortices are free to move outwards. In the crust, however,
albeit one of quantitative value only at extremely high den-the vortices are pinned by their interaction with the nuclear
sities. In particular, this would allow a better estimation of lattice. What happens next varies from model to model. Per-
the relative magnitude of thé=1 andJ=0 condensates, haps the vortices exert sufficient force on the crust to tear it
which was the one feature which we found to dependapart, resulting in a sudden breaking and rearrangement of
strongly on the choice of cutoff in our model. Second, quark-the crust and a change in the moment of ingil. Perhaps
quark scattering by the exchange of a gluon at weak coupling large cluster of vortices within the inner crust builds up
is dominated by small-angle scattering, whereas in an NJlenough outward pressure to overcome the pinning force, sud-
model of the type we have used this is not the case. This caslenly becomes unpinned, and moves macroscopically out-
actually affect the sign of the interaction in the=1 channel ward[62-68. This sudden decrease in the angular momen-
and perhaps thereby increase the range of the LOFF windowum of the superfluid within the crust results in a sudden
as we pointed out in the preceding section. Moreover, it iSncrease in angular momentum of the rigid crust itself, and
known that the LOFF window is much wider in one dimen- hence a glitch. Perhaps, due to interactions between neutron
sion than in thre¢49], and since the three-dimensional phys-yortices and proton flux tubes, the neutron vortices pile up
ics at asymptotically high densities can be treated as a sum Qist inside the inner crust before suddenly coming unpinned
one-dimensional theori¢21,26, we have another reason to [6g]. Although the models differ in important respects, all
suspect that the LOFF window may be wider at asymptotingree that the fundamental requirements are the presence of
cally high densities than our present analysis would suggesfetational vortices in a superfluid and the presence of a rigid

(3) As we have discussed at length in Sec. VI, it would bestrycture which impedes the motion of vortices and which
of interest to extend our treatment to include pairing betwee'éncompasses enough of the volume of the pulsar to contrib-
quarks of the same flavor and pairing between quarks ofite significantly to the total moment of inerfia.
opposite chirality. ) ) ) Although it is premature to draw quantitative conclusions,
~ (4) Perhaps the most crucial unresolved issue is the quegjs interesting to speculate that some glitches may originate
tion of what crystal structure the LOFF phase chooses. Largeep within a pulsar which features a quark matter core, in a
kin and Ovchinnikov concluded that the condensate varies |rﬂeg|on of that core in which the color Superconducting quark
spacelike cos@r), forming a one-dimensional standing matter is in a LOFF crystalline color superconductor phase.
wave with nodal planes spaced everi(2|q|). The compe-  The first prerequisite for a quantitative answer to whether
tition between this planar structure and one with, say, a cubighjs may occur is to repeat our analysis in the more general
or body-centered-cubic crystal structure is subtle. In two ditontext of three-flavor quark matter with a nonzero strange
mensions, the answer depends sensitively on the temperatuifark massM,, to estimate over what range of densities
[41]; in three dimensions, it is apparently still unresolved| OFF phases may arise, as eiterd), (us) or (ds) con-
even in the original LOFF contex42]. In the QCD context, densates approach their unpairing transitions. Comparison to
with the added complication of &=1 condensate, it will be  gyisting models which describe hopt, pd, andpt vary
quite interesting to determine what pattern is favored. within a quark matter core in a neutron sfa8] would then

(5) Finally, it would be very interesting to investigate the permit an estimate of how much the LOFF region contributes
astrophysical consequences of the LOFF phase. Since it 05 the moment of inertia of the pulsar. Furthermore, a three

curs in a range obu, one would expect that quark matter f5y0r analysis is required to determine whether the LOFF
stars could contain a layer of crystalline LOFF condensate.

In the next section, we take some preliminary steps in this———

investigation. 5 _ , _ .
The first model of glitches which was propodé&d] relies on the

cracking and settling of the neutron star cr(i'starquakes’) as the
neutron star spins down. This model does not require the presence

Many pulsars have been observed to glitch. Glitches aref rotational vortices. However, this model fails to explain the mag-
sudden jumps in rotation frequen€ywhich may be as large nitude and frequency of glitches in the Vela pulfar,68|.

C. Looking ahead to astrophysical consequences
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phase is a superfluid. If the only pairing is betweeandd  only based on dimensional analysis and because the values
quarks, this 2SC phase is not a superf(@®], whereas ifall of A, b andF | ogr are uncertain(We know the values of
three quarks pair in some way, a superflisiobtained6,9].”  all the ratiosAy/Ag, SulAg, q/A, and consequentlpA
Henceforth, we suppose that the LOFF phase is a supeguite accurately in the LOFF phase. It is of course the value
fluid, which means that if it occurs within a pulsar it will be of the BCS gap\, which is uncertain. It is therefore pre-
threaded by an array of rotational vortices. It is reasonable tenature to compare our crude result to the results of serious
expect that these vortices will be pinned in a LOFF crystalcalculations of the pinning of crustal neutron vortices as in
in which the diquark condensate varies periodically in spaceRefs. [72,66,68. It is nevertheless remarkable that they
Indeed, one of the suggestions for how to look for a LOFFprove to be similar: the pinning energy of neutron vortices in
phase in terrestrial electron superconductors relies on the fattte inner crust i$66]
that the pinning of magnetic flux tubéwhich, like the rota-

tional vortices of interest to us, have normal coresex- E,~1-3 MeV (7.3
pected to be much stronger in a LOFF phase than in a uni-
form BCS superconductdi1]. and the pinning force per unit length[i66,67]
A real calculation of the pinning force experienced by a
vortex in a crystalline color superconductor must await the Ep 1-3 MeV
determination of the crystal structure of the LOFF phase. We fp~ b_§~ (25—50fm(4—20fm (7.4

can, however, attempt an order of magnitude estimate along

the same lines as that done by Anderson and |68 for  \yhere the form of this expression is appropriate because
neutron vortices in the inner crust of a neutron star. In that-py perhaps, therefore, glitches occurring in a region of

context, this estimate has since been made quantitativgystalline color superconducting quark matter may yield
[72,66,68. With parameters chosen as in Fig. 4, we find thatgimijar phenomenology to those occurring in the inner crust.

at ou = Suy the LOFF phase is favored over the normal state  The reader may be concerned that a glitch deep within the
by a free energy opr~5X (10 M‘?VA) and the spacing be- quark matter core of a neutron star may not be observable:
tween nodes in the LOFF crystallis= 7/(2[q[)~9 fm. The  the vortices within the crystalline color superconductor re-
thickness of a rotational vortex is given by the correlationgion suddenly unpin and leap outward:; this loss of angular
length {~1/A,~25fm. All these numbers are quite uncer- momentum is compensated by a gain in angular momentum
tain, but we will use them for the present. In the context ofof the layer outside the LOFF region; how quickly, then,
crustal neutron superfluid vortices, there are three distinc§oes this increase in angular momentum manifest itself at the
length scales: the vortex thicknegsthe lattice spacing be- gyrfaceof the star as a glitch? If the LOFF layer is the outer
tween nucleib, andR, the radius of the individual nuclei. |ayer of the quark matter core—not unreasonable since the
(The condensate vanishes within regions of Siz&eparated  chemical potential differences will be larger here than deeper
are comparable: since the condensate varies likened®(it  glitch speeds up the nucleon superfluid outside the quark
is as ifR~b. The fact that these length scales are similar inmatter core, and the rotation of this superfluid is coupled to
the LOFF phase will complicate a quantitative calculation ofihe rotation of the outer crust on very short time scfs.
the pinning energy; it makes our order of magnitude estimaThjs rapid coupling, due to electron scattering off vortices
tion easier, however. The pinning energy is the differenceyng the fact that the electron fluid penetrates throughout the
between the energy of a section of vortex of lentivhich  star, is usually invoked to explain that the core nucleon su-
is centered on a node of the LOFF crystal vs one which igerfluid speeds up quickly after a crustal glitch: the only long
centered on a maximum of the LOFF crystal. It is of order re|axation time is that of the vortices within the inner crust
[73]. Here, we invoke it to explain that the outer crust speeds
Ep~FLopb®~4 MeV. (7.0 up rapidly after a LOFF glitch has accelerated the quark
matter at the base of the nucleon superfluid. After a glitch in
the LOFF region, the only long relaxation times are those of
the vortices in the LOFF region and in the inner crust.
E. 4MeV A quantitative theory of glitches originating within quark
b \ . . .
fo~ 2~ Bom? (7.2 matter in a LOFF pha;e must await the further microscopic
calculations sketched in Sec. VIIB. In particular, an under-
) _ _ standing of points 1 and 4 of Sec. VIIB is a mandatory
A complete calculation will be challenging because ¢,  rerequisite. However, our rough estimate of the pinning
and is likely to yield anf,, which is somewhat less than that fyrce on rotational vortices in a LOFF region suggests that
we have obtained by dimensional analyl$i6,68. Note that s force may be comparable in magnitude to that on vorti-
our estimate off, is quite uncertain both because it is ces in the inner crust of a conventional neutron star, which
yields glitches in accord with those observed in pulsars. This
is surely strong motivation for further investigation.

The resulting pinning force per unit length of vortex is of
order

"As an aside, note that the crystalline chiral condenf&ge (due Perhaps the most interesting consequence of these specu-
to particle-hole pairing which may form at sufficiently strong cou- lations arises in the context of compact stars made entirely of
pling or at very largeN,) is not a superfluid. strange quark matter. The work of WittEéP4] and Farhi and
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Jaffe[75] raised the possibility that strange quark matter maysuperconductor phase. This raises the possibility of glitches
be energetically stable relative to nuclear matter even at zerio strange quark stars. Because the variation in density with
pressure. If this is the case it raises the question whethegadius is gradual, if a shell of LOFF quark matter exists it
observed compact stars—pulsars, for example—are strang@ed not be particularly thin. And, we have seen, the pinning
quark star§76,77] rather than neutron stars. A conventional forces may be comparable in magnitude to those in the inner
neutron star may feature a core made of Strange quark mdffust Of a Conventlonal neutron star. It haS I‘ecenﬂy been
ter, as we have been discussing above. Strange quark staf§iggestedfor reasons unrelated to our consideratjotist
on the other hand, are ma@&@mosj entirely of quark matter ~Certain accreting compact stars may be strange quark stars
with either no hadronic matter content at all or with a thin[82), although the evidence is far from unambigu8s]. In
crust, of order 100 meters thick, which contains no neutrorfontrast, it ha}s been thought that, because they glitch, con-
superfluid[77,78. The nuclei in this thin crust are supported ventional radlo pu_Isars cannot be strange quark_stars. Our
above the quark matter by electrostatic forces; these forceg(.)rk questlons_thls asse_.\rtl_on by raising the possibility @hat
cannot support a neutron fluid. Because of the absence |Fches may originate within a Iayer.of quark matter which
superfluid neutrons, and because of the thinness of the crué?, in a crystalline color superconducting state.
no successful models of glitches in the crust of a strange
quark star have been proposed. Since pulsars are observed to
glitch, the apparent lack of a glitch mechanism for strange We are grateful to C. Nayak for pointing out Ref&2]
guark stars has been the strongest argument that pulsars camd[13] to us at the Aspen Center for Physics more than one
not be strange quark stafg9-81. This conclusion must year ago. We are grateful to him and to P. Bedaque, J.
now be revisited. Berges, |. Bombaci, D. Blaschke, D. Chakrabarty, R. Jaffe, J.
Madsen’s conclusiorf34] that a strange quark star is Madsen, D. Psaltis, S.-J. Rey, M. Ruderman, T. &aha\.
prone tor-mode instability due to the absence of dampingSedrakian, E. Shuster, D. Son, M. Stephanov, |. Wasserman,
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