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Crystalline color superconductivity
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~Received 8 September 2000; published 13 March 2001!

In any context in which color superconductivity arises in nature, it is likely to involve pairing between
species of quarks with differing chemical potentials. For suitable values of the differences between chemical
potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinni-
kov, Fulde, and Ferrell~LOFF!. Condensates of this sort spontaneously break translational and rotational
invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state,
these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the
range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some
shell within the quark matter core of a neutron star~or within a strange quark star! the quark number densities
are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making
it a locus for glitch phenomena.

DOI: 10.1103/PhysRevD.63.074016 PACS number~s!: 12.38.2t, 26.60.1c, 74.20.2z, 97.60.Jd
e
th
in
-
ir
au
fre
a
fo

ea
di
be

t
m

te
th
by

o
an
e
b
h
an

m
f

ire
h

r
ta
ha
wi

S
ible
FF
,
in
a-
e

c-
. In
f
w

F

d at
ory.

h
be-
rac-

ap
ian
g-
s to

s
ad

lline

er,
see

ing
cur
I. OVERVIEW

The attraction between two quarks which are antisymm
ric in color renders cold dense quark matter unstable to
formation of quark Cooper pairs in a color superconduct
state@1–7#. If two ~or more! different quark flavors are in
volved, and their Fermi momenta are the same, they pa
in the standard BCS state. The pairing is guaranteed bec
in the absence of an interaction each pair costs no
energy—each quark can be created at its Fermi surface—
the interaction then makes the system unstable against
mation of a condensate of pairs.

In this paper we study the situation, generic in the r
world, where the Fermi momenta of the two species are
ferent. If the Fermi momenta are far apart, no pairing
tween the species is possible. The transition between
BCS and unpaired states as the splitting between Fermi
menta increases has been studied in electron@8# and QCD
@9–11# superconductors, assuming that no other state in
venes. However, there is good reason to think that ano
state can occur. This is the ‘‘LOFF’’ state, first explored
Larkin and Ovchinnikov@12# and Fulde and Ferrell@13# in
the context of electron superconductivity in the presence
magnetic impurities. They found that near the unpairing tr
sition it is favorable to form a crystalline state in which th
Cooper pairs have nonzero momentum. This is favored
cause it gives rise to a region of phase space where eac
the two quarks in a pair can be close to its Fermi surface,
such pairs can be created at low cost in free energy.

We study the pairing between two species whose che
cal potentials differ by 2dm and find that for a large class o
interactions there is a window ofdm within which states of
the LOFF type are preferred over the BCS and unpa
states. This has important ramifications for compact star p
nomenology, since it means that there may be a laye
crystalline quark matter inside the star. This could pin ro
tional vortices, and lead to the kind of glitch phenomena t
have up to now been thought of as uniquely associated
the nuclear crust of neutron stars.
0556-2821/2001/63~7!/074016~18!/$20.00 63 0740
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In Sec. II we give a more detailed introduction to the BC
and LOFF color superconducting states, and their poss
astrophysical applications. In Sec. III we describe the LO
state in quark matter withdmÞ0. We note in particular that
unlike in the original LOFF context, there is pairing both
J50 andJ51 channels. In Sec. IV we derive the gap equ
tion for the LOFF state for a model Hamiltonian in which th
full QCD interaction is replaced by a four-fermion intera
tion with the quantum numbers of single gluon exchange
Sec. V we use the gap equation to evaluate the range odm
within which the LOFF state arises. We will see that at lo
dm the translationally invariant BCS state, with gapD0 , is
favored. Atdm1 there is a first order transition to the LOF
paired state, which breaks translational symmetry. Atdm2 all
pairing disappears, and translational symmetry is restore
a phase transition which is second order in mean field the
In the weak-coupling limit, in whichD0!m, we find values
of dm1 and dm2 which are in quantitative agreement wit
those obtained by LOFF. This agreement occurs only
cause we have chosen an interaction which is neither att
tive nor repulsive in theJ51 channel, making theJ51
component of our LOFF condensate irrelevant in the g
equation. In Sec. VI we consider a more general Hamilton
in which the couplings corresponding to electric and ma
netic gluon exchange can be separately tuned. This lead
interactions in bothJ50 andJ51 channels, and we show
how it affects the range ofdm within which the LOFF state
arises. In Sec. VII we outline future work which follow
immediately from what we have done and look farther ahe
toward possible astrophysical consequences of crysta
color superconductivity.

We recommend that the astrophysically inclined read
interested primarily in the consequences of our results,
Secs. II and VII, skipping those in between.

II. INTRODUCTION

A. Astrophysical applications of color superconductivity

Our current understanding of the color superconduct
state of quark matter leads us to believe that it may oc
©2001 The American Physical Society16-1
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naturally in compact stars. The critical temperature bel
which quark matter is a color superconductor is gener
estimated to be of order 10–50 MeV, which suggests t
any quark matter which occurs within neutron stars that
more than a few seconds old is in a color superconduc
state.

This estimate of the critical temperature comes both fr
models whose parameters are tuned to reproduce zero
sity physics@3–6,14–17# and also from weak coupling meth
ods which are quantitatively valid at asymptotically hig
densities @18–29#, with chemical potentialsm@108 MeV
@29#. Neither class of methods can be trusted quantitativ
for quark number chemical potentialsm;400 MeV, as ap-
propriate for the quark matter which may occur in the co
of neutron stars. Still, both methods agree that the gaps a
Fermi surface are of order tens to 100 MeV, with critic
temperatures about half as large.

It is therefore important to look for astrophysical cons
quences of color superconductivity. As a Fermi surface p
nomenon, it has little effect on the equation of state, a
hence little effect on the radius of a compact star. There
nevertheless several effects of color superconductivity un
active investigation. The color superconductivity of qua
matter in neutron stars influences the evolution of magn
fields within the quark matter@30# ~see also Ref.@31#!. Cool-
ing by neutrino emission is also affected@32# ~see also Ref.
@33#!. In quark stars, the physics of the instability tor-mode
oscillations is dramatically affected by color superconduc
ity @34#, although this is not the case for neutron stars w
quark matter present only in their cores@35,34#. Further-
more, the phase transition at which color superconducti
sets in as a hot proto-neutron star cools may yield a det
able signature in the neutrinos received from a supern
@36#. Finally, one goal of the present paper is to motivate
investigation of the possibility that~some! pulsar glitches
may originate in quark matter.

If two species of fermion experience an attractive inter
tion, and their Fermi momenta are the same, they pair in
standard BCS state. The pairing is guaranteed because i
absence of an interaction each pair costs no free energy~each
quark can be created at its Fermi surface!, and the interaction
then makes the system unstable against formation of a
densate of pairs. In the QCD context, if there are two flav
of quarks with equal Fermi momenta, quarks of two colo
and two flavors pair@3,4# while if there are three flavors o
quarks, all nine quarks pair in a pattern which locks co
and flavor symmetries, breaking chiral symmetry@6,37#.
These idealizations are very instructive, but in any phys
context, the up, down, and strange quarks will all have d
ferent Fermi momenta. To give the reader some sense
typical scales in the problem, we give an illustrative exam
@30#. The numbers in this paragraph assume that the qu
are noninteracting fermions—clearly a bad assumption—
so should certainly not be construed as precise. Cons
quark matter with average quark chemical potentialm
5400 MeV, made of massless up and down quarks
strange quarks with massMs5300 MeV. (Ms is a density
dependent effective mass; this adds to the uncertainty in
value.! If the strange quark were massless, quark matter c
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sisting of equal partsu, d, ands would be electrically neutral.
In our illustrative example, on the other hand, electric ne
trality requires a nonzero density of electrons, with chemi
potentialme553 MeV. Charge neutrality combined with th
requirement that the weak interactions are in equilibrium
termine all the chemical potentials and Fermi momenta:

mu5m2 2
3 me5365 MeV, pF

u5mu ,

md5m1 1
3 me5418 MeV, pF

d5md ,

ms5m1 1
3 me5418 MeV, pF

s 5Ams
22Ms

25290 MeV,

me553 MeV, pF
e5me . ~2.1!

The baryon number densityrB5(1/3p2)@(pF
u)31(pF

d)3

1(pF
s )3# is 4 times nuclear matter density.1 As one goes

deeper into a neutron star,m increases,Ms decreases some
what, andme and all differences between the quark Fer
momenta decrease.2 In this paper, we investigate the cons
quences of pairing between quarks with differing Fermi m
menta. For simplicity, we restrict our explicit calculations
the case of two massless quarks with differing chemical
tentialsmu andmd , which we write as

md5m̄1dm, mu5m̄2dm. ~2.2!

We expect similar phenomena to those we describe to a
wherever any one ofupF

u2pF
d u or upF

u2pF
s u or upF

d2pF
s u falls

within a suitable range, but we leave the investigation
quark matter withu, d, and massives quarks to future work.
We also work at zero temperature throughout.

B. Isotropic „non-LOFF… pairing

In the color superconducting phase for two massl
quark flavors at the same chemical potentialm, the conden-
sate consists of quark–quark pairs which are flavor sing
and color3̄ antitriplets~and hence also spin singlets, to ob
Pauli statistics!. Pairing is of the BCS type: a red up quark
momentump pairs with a green down quark of momentu
2p of the same helicity, so that the spins are antiparal
The blue quarks are left unpaired. Such pairing is strong
in the vicinity of the Fermi surface, foru upu2mu&D0 , where
D0 is the BCS gap parameter.

If, instead, the Fermi momenta are sufficiently differe
no BCS pairing is possible. It is no longer possible to gu

1Had we chosenMs5200 MeV, we would have obtainedme

524 MeV, pF
u5384 MeV, pF

d5408 MeV, pF
s 5356 MeV and arB

of 5 times nuclear matter density.
2Note that in a neutron star with a quark matter core, regions

purely hadronic and purely quark matter are separated by a m
phase in which neither the hadronic regions nor the quark ma
regions are separately charge neutral@38#. The electrically charged
quark matter in these regions will have Fermi momenta which di
qualitatively from those in our example, withpF

u less than eitherpF
d

or pF
s @38#.
6-2
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CRYSTALLINE COLOR SUPERCONDUCTIVITY PHYSICAL REVIEW D63 074016
antee that the formation of pairs lowers the free energy,
cause in the BCS state the two fermions in a pair have e
and opposite momentum, so at most one member of e
pair can be created at its Fermi surface. The other mem
costs nonzero free energy, which the attractive interac
may be unable to compensate.

Assuming that no other state intervenes between the B
state and the state with no condensate, we can apply
results first derived by Clogston and Chandrasekhar in
context of pairing between spin-up and spin-down electr
with differing Fermi momenta@8#. For small enoughdm, the
favored BCS state has coincident Fermi surfaces,pF

u5pF
d

5m̄ because this maximizes the pairing and thus the gai
interaction energy.3 We denote the gap in this BCS state
D0 . The free energy of this BCS state must be compare
that of the unpaired or ‘‘normal’’ state in which the quar
simply distribute themselves in Fermi seas withpF

u5mu ,
pF

d5md and no condensate forms. The BCS state is
stable ground state of the system only when its nega
interaction energy offsets the large positive free energy c
associated with forcing the Fermi seas to deviate from th
normal state distributions. IfD0!m̄ and dm!m̄, the free
energy of the BCS state relative to that of the normal stat
a givendm is

FBCS2Fnormal5
m̄2

p2 ~2dm22D0
2!. ~2.3!

The coefficient 1/p2 depends on the number of fermion sp
cies which pair and is appropriate to the case of interes
us. Clogston and Chandrasekhar concluded that the B
state is favored fordm,dm15D0 /&. ~The relationdm1
5D0 /& is exact only in the weak-coupling limit in which
D0!m̄.) At dm5dm1 , there is a first order phase transitio
at which the gap parameter drops discontinuously fromD0 to
zero: fordm,dm1 , the system is in the BCS phase, unp
turbed from thedm50 state.

This analysis is modified in an interesting way at nonz
temperature, as was discussed by Lombardo and Sedra
in the context of pairing between neutrons and protons
nuclei @40#. Thermal excitations smear out the normal st
Fermi surfaces, making pairing between thermally exci
states above the lower Fermi surface and below the up
Fermi surface possible. As a consequence, asT is increased
from zero, there is a range ofT within which dm1 is larger
than atT50. At still higher temperatures, of course, all pa
ing is lost.

In applying the work of Clogston and Chandrasekhar
color superconductivity, there have been two extension
their analysis. First, recall that only two colors of up a

3If one tries to construct a ‘‘BCS-like’’ state which haspF
u5mu

andpF
d5md and consequently no pairing forpF

u,p,pF
d , one finds

@39# that this state has a higher free energy than the BCS stat~in
which pF

u5pF
d5m̄). The gain in free energy associated with choo

ing pF
u5mu and pF

d5md does not compensate for the lost pairin
energy.
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down quarks pair. In describing the mixed phase associa
with the first order phase transition, one must take care
account of the unpaired blue quarks. This has been don
Bedaque@11#. Second, in Refs.@9#, @10# the transition be-
tween the color-flavor locked phase and the two-flavor co
superconducting phase has been studied, under the ass
tion thatmu5md5ms but with pF

s ÞpF
u,d because of the non

zero strange quark mass. The first order transition that th
authors describe is similar to that of Clogston and Ch
drasekhar, as it is associated with the unpairing ofusandud
Cooper pairs, but it differs in that the analogue of the norm
state is one in whichu and d quarks remain paired. As we
have seen above, treating a realistic situation requires re
ing the assumption of equal chemical potentials.

C. Nonisotropic „LOFF … pairing

The Clogston and Chandrasekhar analysis of the first
der unpairing transition assumes that the only poss
phases of the system are a BCS phase and the normal p
However, there is good reason to think that another state
occur in the crossover region between BCS and no pair
As was first realized by Larkin and Ovchinnikov@12# and
Fulde and Ferrell@13# ~LOFF!, whereas the BCS state re
quires pairing between fermions with equal and opposite m
menta, whendm;dm1 it may be more favorable to form a
condensate of Cooper pairs withnonzerototal momentum.
By pairing quarks with momenta which are not equal a
opposite, some Cooper pairs are allowed to have both th
and the down quarks on their respective Fermi surfaces e
when dmÞ0. LOFF found that within a range ofdm near
dm1 , a condensate of Cooper pairs with momentaq1p and
q2p ~see Fig. 1! is favored over either the BCS condensa
or the normal state. Here, our notation is such thatp specifies
a particular Cooper pair, whileq is a fixed vector, the same
for all pairs, which characterizes a given LOFF state. T
magnitudeuqu is determined by minimizing the free energ
the direction ofq is chosen spontaneously. The resulti
LOFF state breaks translational and rotational invariance
position space, it describes a condensate which varies
plane wave with wave vector 2q.

Once one has demonstrated an instability to the forma
of a plane wave, it is natural to expect that the state wh
actually develops has a crystalline structure. Larkin a

-

FIG. 1. The momentaku andkd of the two members of a LOFF
state Cooper pair. We choose the vectorq, common to all Cooper
pairs, to coincide with thez axis. The anglesau(p) and ad(p)
indicate the polar angles ofku andkd , respectively.
6-3
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Ovchinnikov in fact argue that the favored configuration i
crystalline condensate which varies in space like a o
dimensional standing wave, cos(2q•r ). Such a condensat
vanishes along nodal planes@12#. Subsequent analyses su
gest that the crystal structure may be more complicated.
mahara@41# has shown that in two dimensions, the LOF
state favors different crystal structures at different tempe
tures: a hexagonal crystal at low temperatures, squar
higher temperatures, then a triangular crystal and finall
one-dimensional standing wave as Larkin and Ovchinnik
suggested at temperatures that are higher still. In three
mensions, the question of which crystal structure is favo
seems unresolved@42#.

LOFF did their analysis in the same context as that
Clogston and Chandrasekhar: electromagnetic supercon
tivity in a magnetic field which causes a Zeeman splitti
while not inducing screening currents. They were seeking
model the physics of magnetic impurities in a superc
ductor. Magnetic effects on the motion of the electrons@43#
and the scattering of electrons off nonmagnetic impurit
@44,45# disfavor the LOFF state. Although signs of the BC
to LOFF transition in the heavy fermion superconduc
UPd2Al3 have been reported@46#, the interpretation of these
experiments is not unambiguous@47#. It has also been sug
gested that the LOFF phase may be more easily realize
condensed matter systems which are two-dimensio
@41,48# or one-dimensional@49#, both because in these cas
dm2 is larger than in three-dimensional systems and beca
the magnetic field applied precisely parallel to a one- or tw
dimensional system does not affect the motion of electr
therein. Evidence for a LOFF phase in a quasi-tw
dimensional layered organic superconductor has rece
been reported@50#.

None of the difficulties which have beset attempts to
alize the LOFF phase in a system of electrons in a magn
field arise in the QCD context of interest to us. Differenc
between quark chemical potentials are generic and the p
ics which leads to these differences has nothing to do w
the motion of the quarks. We therefore expect the origi
analysis of LOFF~without the later complications added
order to treat the difficulties in the condensed matter phy
context! to be a good starting point. In this paper we use
analysis based on that originally done by Fulde and Fer
@13#, but described in more detail by Takada and Izuya
@51#, to argue that for appropriate values of quark num
densities, the color superconducting gap may vary perio
cally in space, forming a crystalline pattern. More precise
what we will demonstrate is that if some difference betwe
chemical potentials falls in the appropriate range, quark m
ter is unstable to the spontaneous breaking of translati
invariance by the formation of condensates which vary
space like a plane wave. Following Larkin and Ovchinnik
@12#, we expect that once there is an instability to the form
tion of plane waves the condensate that results will be c
talline, but we leave the determination of the crystal struct
of the condensate to future work.

III. THE LOFF STATE

We begin our analysis of a LOFF state for quark mat
by constructing a variational ansatz for the LOFF wave fu
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tion. As motivated by the preceding discussion, we consi
Cooper pairs which consist of an up quark and a down qu
with respective momenta

ku5q1p, kd5q2p, ~3.1!

so thatp identifies a particular quark pair, and every qua
pair in the condensate has the same nonzero total mome
2q. This arrangement is shown in Fig. 1. The helicity a
color structure are obtained by analogy with the ‘‘2SC’’ sta
as described in previous work@3,4#: the quark pairs will be
color 3̄ antitriplets, and in our ansatz we consider only pa
ing between quarks of the same helicity.

With this in mind, here is a suitable trial wave functio
for the LOFF state with wave vectorq @12,13,51#:

uCq&5BL
†BR

† u0&,

BL
†5 )

pPP,a,b
„cosuL~p!1eab3ei jL~p!

3sinuL~p!aLua
† ~q1p!aLdb

† ~q2p!…

3 )
pPBu ,a

aLua
† ~q1p! )

pPBd ,b
aLdb

† ~q2p!, ~3.2!

BR
†5as above,L→R,

where a, b are color indices,u, d and L, R are the usual
flavor and helicity labels, anda† is the particle creation op
erator~for example,aLda

† creates a left-handed down qua
with color a!. Theu’s andj’s are the variational parameter
of our ansatz: they are to be chosen to minimize the f
energy of the LOFF state, as described in the next sect
The first product in Eq.~3.2! creates quark pairs within a
restricted regionP of the total phase space. This allowe
‘‘pairing region’’ will be discussed below. The next produ
fills a ‘‘blocking region’’ Bu with unpaired up quarks: thes
are up quarks with momentaq1p for which there are no
corresponding down quarks with momentaq2p. The final
product fills the blocking regionBd with unpaired down
quarks. The ansatz does not contain a term that would cr
antiparticle pairs: we have checked the effect of such a t
and found that it has no qualitative effect on our results.

To complete the specification of our ansatz we need
describe the allowed pairing and blocking regions in ph
space. These regions are largely determined by Pauli blo
ing as a result of populated Fermi seas. In the absenc
pairing interactions, the system is in the ‘‘normal’’ state a
up and down quarks are distributed in Fermi seas with Fe
momentapF

u5mu and pF
d5md , respectively@recall that we

consider massless quarks only, so the single particle en
of a quark with momentumk is e(k)5uku#. An up quark
carries momentumku5p1q; in p space, therefore, the
Fermi sea of up quarks corresponds to a sphere of ra
mu5m̄2dm centered at2q. Similarly, a down quark carries
momentumkd52p1q, giving a sphere inp space of radius
md5m̄1dm centered at1q. The two offset spheres ar
shown in Fig. 2~a! ~we have drawn the caseuqu.dm so that
6-4
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CRYSTALLINE COLOR SUPERCONDUCTIVITY PHYSICAL REVIEW D63 074016
the two Fermi surfaces intersect inp space!. In the limit of
arbitrarily weak interactions, the blocking regionBu corre-
sponds to the lower shaded area in the figure: pairing d
not occur here since the region is inside the Fermi sea o
quarks, but outside the Fermi sea of down quarks. Simila
the upper shaded area is the blocking regionBd . The entire
unshaded area is the pairing regionP: it includes the region
inside both spheres, where hole-hole pairing can occur,
the region outside both spheres, where particle-particle p
ing can occur.

We can now explain how the LOFF wave function ans
can describe the normal state with no condensate: we ch
uL(p)5uR(p)5p/2 for p inside both Fermi spheres, an
otherwise all theu’s are zero. With this choice the first term
in Eq. ~3.2! fills that part of each Fermi sea corresponding
the inner unshaded region of Fig. 2~a!. TheBu andBd terms
fill out the remainder of each Fermi sea to obtain the norm
state. Note that in the absence of pairing, the normal s
can be described with any choice ofq. The most convenien
choice isq50, in which caseku5kd5p, Bu vanishes, and
Bd is a spherical shell. Other choices ofq correspond to
choosing different origins ofku space andkd space, but in
the absence of any interactions this has no conseque
Once we turn on interactions and allow pairing, we expec
particularuqu to be favored.

The phase space picture changes slightly when pai
interactions are included: the blocking regions are sma
when a LOFF condensate is present, as indicated in Fig. 2~b!.
We will account for this effect in the next section. Wit
smaller blocking regions, a larger portion of the phase sp
becomes available for LOFF pairing. Such pairing is guar
teed to be energetically favorable when it costs zero f
energy to create an up quark and a down quark, since t
quarks can then pair to obtain a negative interaction ene

FIG. 2. The LOFF phase space, as a function ofp @Eq. ~3.1!#.
We show thepy50 plane. ~a! The phase space in the limit o
arbitrarily weak interactions. In the shaded blocking regionsBu and
Bd , no pairing is possible. In the inner unshaded region, an in
action can induce hole-hole pairs. In the outer unshaded region
interaction can induce particle-particle pairs. The regionP @Eq.
~3.2!# is the whole unshaded area.~b! When the effects of interac
tions and the formation of the LOFF state are taken into acco
the blocking regions shrink. The BCS singularity occurs on
dashed ellipse, defined byeu1ed5mu1md , where making a Coo-
per pair costs no free energy in the free case.
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The zero free energy condition is

e~ku!1e~kd!5mu1md52m̄, ~3.3!

where e(k) is the single particle energy of a quark wit
momentum k. For massless quarks, we obtainuq1pu
1uq2pu52m̄, which describes an ellipsoidal surface inp
space. This surface is indicated by the ellipse shown in F
2~b!; notice that the ellipsoid and the two Fermi surfaces
intersect at a circle.

If the interaction is weak, we expect LOFF pairing to b
favored in a thin layer of phase space around this ellipso
This is manifest in the gap equation derived in the next s
tion @Eq. ~4.9!# in which, as in BCS theory, we find a diver
gent integrand on this ellipsoid in the absence of pairi
Pairing smoothes the divergence. As the interaction g
stronger, the layer of favored pairing gets thicker. If the
were no blocking regions, we could use the entire ellipso
just as BCS pairs condense over the entire spherical sur
upu5m in the symmetric,dm5uqu50 case. However, as
shown in Fig. 2~b!, the blocking regions exclude pairing ove
most of the ellipsoid, leaving a ribbon of unsuppress
LOFF pairing in the vicinity of the circle where the Ferm
surfaces intersect. This agrees with our expectation for
particle distribution in the LOFF state: it is as in the norm
state, except that there is a restricted region~around the
aforementioned ribbon! where each quark in a pair can b
near its Fermi surface.

Although the constant single-particle energy contours
noninteracting up and down quarks cross inp space@see Fig.
2~a!#, we emphasize that the Fermi surfaces of up and do
quarks do not cross in momentum (ku andkd) space. Thep
space ribbon of unsuppressed pairing corresponds to un
pressed pairing between up and down quarks with mome
aroundk space ribbons near their respective~disjoint! Fermi
surfaces.

In the limit of arbitrarily weak interactions, the ribbon i
momentum space along which pairing is unsuppres
shrinks, as the blocking regions grow to exclude all of t
ellipsoid except the one-dimensional circle at which the t
spheres in Fig. 2 intersect. This circle has insufficient ph
space to lead to a singularity in the gap equation: the in
grand is singular on this circle, but the integral does n
diverge. Therefore, the LOFF state is not guaranteed to o
if one takes the weak coupling limit at fixeddm. In this
respect, the LOFF state is like the BCS state at nonzerodm:
for weak coupling,D0→0 and because the BCS state c
only exist if it hasD0.&dm, it must vanish for couplings
weaker than some threshold. We shall see, however, th
any fixed weak coupling, the LOFF state, like the BCS sta
is guaranteed to occur at somedm: the BCS state arises i
dm,dm1 and the LOFF state arises ifdm1,dm,dm2 .

One of the most striking features of the LOFF state is
spin structure of the condensate. The familiar ‘‘2SC’’ sta
pairs quarks of the same helicity and opposite momentum
the spins are antiparallel and the quarks are arranged i
antisymmetric combination to form spin singlet Coop
pairs. The LOFF state also pairs quarks of the same helic
but now the quark momenta are no longer antiparallel, as
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be seen from Fig. 1. Therefore the LOFF Cooper pairs c
not be spin singlets: they are superpositions of both spin z
and spin one. This is revealed explicitly by evaluating t
nonzero^cc& expectation values in the LOFF state:

2^Cque i j eab3c ia~r !CLc j b~r !uCq&52GA
Lei2q•r,

i ^Cqu~s1! i j eab3c ia~r !CLs03c j b~r !uCq&52GB
Lei2q•r,

~3.4!

where i, j are flavor indices (15up, 25down), a, b are
color indices,C5 ig0g2, L5(12g5)/2 is the usual left-
handed projection operator, andsmn5( i /2)@gm ,gn#. The
constantsGA

L andGB
L are left-handedJ50 andJ51 conden-

sates, respectively.GA
R andGB

R are defined analogously. Th
G’s can be expressed in terms of the variational parame
of the LOFF wave function:

GA
L5

4

V (
pPP

sinuL~p!cosuL~p!ei jL~p!

3sinS au~p!1ad~p!

2 De2 if~p!,

GB
L5

4

V (
pPP

sinuL~p!cosuL~p!ei jL~p!

3sinS au~p!2ad~p!

2 De2 if~p!. ~3.5!

Here V is the spatial volume of the system,a(p) are the
polar angles of the quark momenta, as in Fig. 1, and
dependence on the azimuthal anglef follows from our use
of the spinor conventions described in Refs.@2,3,6#. The ex-
pressions forGA

R andGB
R are the same as those in~3.5! except

thatf(p) is replaced byp2f(p). In Eq. ~3.5! and through-
out, (1/V)Sp becomes*d3p/(2p)3 in an infinite system.

Once we have derived a gap equation by minimizing
free energy with respect to these variational parameters
expect the condensates to be simply related to gap pa
eters occurring in the gap equation. We will see explici
how GA andGB are determined in the next section.

Notice that the condensates of Eq.~3.4! are plane waves
in position space by virtue of the nonzero momentum 2q of
a Cooper pair.GA describes pairing which is antisymmetr
in color, spin, and flavor, whileGB describes pairing which is
antisymmetric in color but symmetric in spin and flavor~in
each case, Pauli statistics are obeyed!. In the original LOFF
condensate of electrons there can be noGB , since electrons
have no color or flavor, so that only the spin antisymme
pairing is possible.

The J50 condensateŝcCLc&, ^cCRc& are Lorentz
scalars~mixed under parity!, while the J51 condensates
^cCLs03c&, ^cCRs03c& are 3-vectors~also mixed under
parity! which point in thez direction, parallel to the sponta
neously chosen directionq̂ of the LOFF state. Because th
ansatz contains aJ51 component, it would be interesting t
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generalize it to include the possibility ofLR pairing, in ad-
dition to LL andRRpairing. We discuss this further in Se
VI.

The possibility of a LOFF phase in QCD has been me
tioned briefly in a different context. In their analysis of qua
matter with a very large isospin density~with large Fermi
momenta for down andanti-up quarks! Son and Stephanov
have noted that if thed andū Fermi momenta differ suitably
a LOFF phase will arise@52#.

In the physically realizable context of large baryon nu
ber density, pairing between quarks and holes with nonz
total momentum has also been discussed@53–56#. This re-
sults in a condensate with the quantum numbers of^q̄q&,
which varies in space with a wave number equal to 2m; in
contrast, the LOFF phase describes a diquark conden
which varies with a wave number 2uqu comparable to 2dm.
The crystalline chiral condensate@56# is favored in QCD at
asymptotically high densities only if the number of colors
very large @53#, greater than aboutNc51000 @54,55#. At
lower densities, where the interaction is stronger, the crys
line chiral condensate may arise in QCD with fewer colo
@56#. Apparently, however, in QCD withNc53 this phase is
not favored~although it is close to being competitive! even
when the coupling is so large thatD0 /m.1/2. Note that
crystalline color superconductivity is guaranteed to occu
arbitrarily weak coupling for suitably chosendm, while a
crystalline chiral condensate cannot form anywhere in
phase diagram if the coupling is weak.

IV. THE GAP EQUATION AND FREE ENERGY

Having presented a trial wave function for the LOF
state, we now proceed to minimize the expectation value
the free energŷF& with respect to the variational paramete
of the wave function@theu’s andj’s of Eq. ~3.2!# to obtain a
LOFF gap equation. The free energy isF5H2muNu
2mdNd , whereH is the Hamiltonian, andNu andNd are the
number operators for up and down quarks, respectively.
choose a model Hamiltonian which has a free quark termH0
and an interaction termHI , and write the free energy asF
5F01HI , whereF05H02muNu2mdNd is the free energy
for noninteracting quarks. To describe the pairing interact
between quarks, we use an NJL model consisting of a fo
fermion interaction with the color and flavor structure
one-gluon exchange:

HI5
3

8 E d3x@GE~ c̄g0TAc!~c̄g0TAc!

2GM~ c̄g iTAc!~c̄g iTAc!#, ~4.1!

where theTA are the color SU~3! generators, normalized s
that tr(TATB)52dAB. Notice that we have relaxed some co
straints on the spin structure of one-gluon exchange: we
low for the possibility of independent couplingsGE andGM
for electric and magnetic gluons, respectively. This spo
Lorentz boost invariance but there is no reason to insist
boost invariance in a finite-density system. Indeed, in h
density quark matter we expect screening of electric glu
6-6
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CRYSTALLINE COLOR SUPERCONDUCTIVITY PHYSICAL REVIEW D63 074016
but only Landau damping of magnetic gluons, and we mi
choose to model these effects by settingGE!GM . We post-
pone a discussion of these issues and their implications
the LOFF state until Sec. VI. For now, we restrict ourselv
to the case of Lorentz invariant single gluon exchange,
letting GE5GM5G.0.

We need to evaluate the expectation value ofF in the
LOFF state to obtain an expression for the free energy of
system in terms of the variational parameters of the ans
The noninteracting part of the free energy is simply

^F0&5 (
pPBu

2~ uq1pu2mu!1 (
pPBd

2~ uq2pu2md!

1 (
pPP

2~ uq1pu1uq2pu2mu2md!sin2 uL~p!

1~same, with L→R!. ~4.2!

The first and second terms represent the contributions of
unpaired left-handed up and down quarks, respectively.
third term gives the~noninteracting! free energy of the left-
handed quark pairs. The three terms are all repeated wiL
replaced byR to include the free energy for the right-hand
quarks. The factors of 2 in Eq.~4.2! appear because there a
two quark colors~‘‘red’’ and ‘‘green’’ ! involved in the con-
densate. The ‘‘blue’’ quarks do not participate in the pairi
interaction and instead behave as free particles: the blu
and down quarks fill Fermi seas with Fermi momentapF

u

5mu and pF
d5md , respectively. Below, we will want to

compare the free energy of the LOFF, BCS and norm
states. Since at any givenmu andmd the free energy of the
spectator quarks is the same in all three states, we can
glect these blue quarks in the remainder of our analysis e
though they do contribute to the total free energy.

The expectation value ofHI gives the total binding energ
of the pairing interaction:

^HI&52 1
2 GV~ uGA

L u21uGA
Ru2!, ~4.3!

where theGA’s are theJ50 LOFF condensates defined
Eqs. ~3.5!. These condensates are simply related toJ50
LOFF gap parameters defined as

DA
$L,R%5GGA

$L,R% . ~4.4!

The gap parametersDA correspond to 1PI Green’s function
and are the quantities which will appear in the quasipart
dispersion relations and for which we will derive the se
consistency conditions conventionally called gap equatio
We see from Eq.~4.3! that with G.0 the interaction is
attractive in theJ50 channel and is neither attractive n
repulsive in theJ51 channel.

Our ansatz breaks rotational invariance, so onceJ50
pairing occurs (GAÞ0) we expect that there will also beJ
51 pairing (GBÞ0). As we have seen, this arises even
the absence of any interaction in theJ51 channel as a con
sequence of the fact that the momenta of two quarks i
Cooper pair are not antiparallel ifqÞ0. BecausêH& is in-
dependent ofGB , the quasiparticle dispersion relations mu
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also be independent ofGB . That is, theJ51 gap parameter
must vanish:DB50. In Sec. VI, we shall see by direct ca
culation thatDB is proportional to (GE2GM)GB . In the
present analysis withGE5GM , therefore,DB50 while GB
Þ0.

Thej’s are chosen to cancel the azimuthal phasesf(p) in
Eqs.~3.5!. By this choice we obtain maximum coherence
the sums overp, giving the largest possible magnitudes f
the condensates and gap parameters. We have

jL~p!5f~p!1wL , jR~p!5p2f~p!1wR , ~4.5!

wherewL andwR are arbitraryp-independent angles. Thes
constant phases do not affect the free energy—they co
spond to the Goldstone bosons for the broken left-han
and right-handed baryon number symmetries—and are th
fore not constrained by the variational procedure. For con
nience, we setwL5wR50 and obtain condensates and g
parameters that are purely real.

The relative phasewL2wR determines how the LOFF
condensate transforms under a parity transformation.
value determines whether theJ50 condensate is scala
pseudoscalar, or an arbitrary combination of the two a
whether theJ51 condensate is vector, pseudovector, or
arbitrary combination. Because single gluon exchange c
not change the handedness of a massless quark, the left
right-handed condensates in the LOFF phase are not cou
in the free energy of Eq.~4.3!. Our choice of interaction
Hamiltonian therefore allows an arbitrary choice ofwL
2wR . A global U~1!A transformation changeswL2wR , and
indeed this is a symmetry of our toy model. If we include
U~1!A-breaking interactions in our Hamiltonian, to obtain
more complete description of QCD, we would find that t
free energy depends onwL2wR , and thus selects a preferre
value. For example, had we takenHI to be the two-flavor
instanton interaction as in Refs.@3#, @4#, the interaction en-
ergy would appear asGL* GR1GLGR* instead of as in~4.3!.
This would enforce a fixed phase relationwL2wR50, favor-
ing condensates which are parity conserving@3,4#.

We now apply the variational method to determine t
anglesu(p) in our trial wave function, by requiring that th
free energy is minimized:]^F&/]u(p)50. This is compli-
cated by the fact that the pairing regionP and the blocking
regionsBu and Bd are themselves implicitly dependent o
the u angles: these angles determine the extent of the LO
pairing, and the phase space regionsP, Bu , andBd change
when a condensate is present, as mentioned in Sec. III.
now we simply ignore anyu dependence of the phase spa
regions; our result will nevertheless turn out to be corre
Everything is the same for left and right condensates so
hereafter drop theL and R labels. Upon variation with re-
spect tou(p), we obtain

tan 2u~p!5
2DA sin~bA~p!/2!

uq1pu1uq2pu2mu2md
, ~4.6!

wherebA(p)5au(p)1ad(p) is the angle between the tw
quark momenta in a LOFF pair, as shown in Fig. 1. Not
that the denominator on the right-hand side of the ab
6-7
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ALFORD, BOWERS, AND RAJAGOPAL PHYSICAL REVIEW D63 074016
expression vanishes along the ellipsoidal surface of opti
LOFF pairing described in Sec. III. Whenq50, the quark
momenta are antiparallel sobA(p)5p and Eq.~4.6! reduces
to the simple BCS result: tan 2u5DA /(upu2m̄).

With theu angles now expressed in terms of a gap para
eterDA , we turn to the LOFF quasiparticle dispersion re
tions. They can be obtained by taking the absolute value
the expressions

E1~p!5dm1 1
2 ~ uq1pu2uq2pu!

1 1
2A~ uq1pu1uq2pu22m̄ !214DA

2 sin2~ 1
2 bA~p!!,

E2~p!52dm2 1
2 ~ uq1pu2uq2pu!

1 1
2A~ uq1pu1uq2pu22m̄ !214DA

2 sin2~ 1
2 bA~p!!,

~4.7!

whose meaning we now describe. For regions ofp space
which are well outside both Fermi surfaces,E1 (E2) is the
free energy cost of removing a LOFF pair and adding an
quark with momentumq1p ~a down quark with momentum
q2p). For regions ofp space which are well inside bot
Fermi surfaces,E1 (E2) is the free energy cost of removing
LOFF hole pair and adding a down hole with momentumq
2p ~an up hole with momentumq1p). Where the Fermi
surfaces cross inp space and pairing is maximal, both qu
siparticles are equal superpositions of up and down. In
region ofp space which is well inside the up Fermi surfa
but well outside the down Fermi surface,E1 is negative,
corresponding to a domain in which it is energetically fav
able to have an unpaired up quark with momentumq1p
rather than a (q1p,q2p) quark pair. Similarly,E2 is nega-
tive where it is favorable to have an unpaired down qu
with momentumq2p rather than a LOFF pair. Equation
~4.7! allow us to finally complete our description of th
LOFF phase by specifying the definitions of the phase sp
regionsP, Bu , andBd . The blocking regionBu is the region
whereE1(p) is negative, and unpaired up quarks are favo
over LOFF pairs. SimilarlyBd is the region whereE2(p) is
negative. The regionsE1,0 and E2,0 are shown as the
shaded areas in Fig. 2~a! for DA50, and in Fig. 2~b! for
DAÞ0. LOFF pairing occurs in the region whereE1 andE2
are both positive:

P5$puE1~p!.0 and E2~p!.0% ~4.8!

corresponding to the entire unshaded regions of Fig. 2.
actual quasiparticle dispersion functions areuE1(p)u and
uE2(p)u: they are non-negative everywhere, since they r
resent energies of perturbations of the LOFF state whic
the presumed ground state of the system.4 In the blocking
regions, elementary excitations are created by replacing

4Since the LOFF condensate contains pairs with momentumq,
the momentum of its quasiparticle excitations is only defin
modulo 2q. The momentum, modulo 2q, of a quasiparticle of en-
ergy uE1(p)u is p mod 2q.
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unpaired quark with a quark pair, and vice versa in the p
ing region. Whenq50, Eqs.~4.7! reduce to the more famil-
iar BCS result:E$1,2%(p)56dm1A(upu2m̄)21DA

2.
With the boundaries of the blocking regions specified, o

can verify by explicit calculation that the variation of the
boundaries upon variation of theu’s does not change the fre
energy. This can be understood as follows. Notice that
cause we can create zero-energy quasiparticles on the bo
aries of the blocking regions, there is no actual energy ga
the excitation spectrum of the LOFF state. The change in^F&
due to variation of the boundaries of the blocking regions
zero because this variation simply creates zero-free-en
quasiparticles on these boundaries. This justifies our neg
of the u dependence of the phase space regions in the d
vation of Eq.~4.6!.

Substituting the expression~4.6! for the u angles into the
expression~3.5! for theGA condensate, and using the relatio
DA5GGA , we obtain a self-consistency equation for the g
parameterDA :

15
2G

V
(
pPP

2 sin2~ 1
2 bA~p!!

A~ uq1pu1uq2pu22m̄ !214DA
2 sin2~ 1

2 bA~p!!

.

~4.9!

This can be compared to the BCS gap equation, obtai
upon settingq50 and eliminating the blocking regions:

15
2G

V (
p

1

A~ upu2m̄ !21D0
2

. ~4.10!

Note that in the LOFF gap equation~4.9!, the gap paramete
appears on the right-hand side both explicitly in the deno
nator and also implicitly in the definition of the pairing re
gionP, as given in~4.8!. This means that if theq→0 limit is
taken at fixeddm, the LOFF gap equation will only becom
the BCS gap equation if the blocking regions vanish in t
limit. This happens if, asq→0, DA tends to a limiting value
which is greater thandm. A state withDA,dm andq50 is
‘‘BCS-like,’’ in that the Cooper pairs have zero momentum
but has no pairing within a regionpF

u,upu,pF
d . Such states

always have higher free energy than the BCS state obta
simply by solving the gap equation~4.10!, appropriate if
there are no blocking regions andpF

u5pF
d @39#.

In the next section we will solve the LOFF gap equati
~4.9! and determine the circumstances in which the LO
state is the true ground state of the system. Once we h
obtained a solution to the gap equation~4.9! for DA , the
condensates are given byGA5DA /G and

GB5
2

V (
pPP

2DA sin~ 1
2 bA~p!!sin~ 1

2 bB~p!!

A~ uq1pu1uq2pu22m̄ !214DA
2 sin2~ 1

2 bA~p!!
,

~4.11!

wherebB(p)5au(p)2ad(p). ~See Fig. 1.! We now see ex-
plicitly that if the interaction is attractive in theJ50 chan-
nel, creating a nonzeroGA andDA , a nonzeroJ51 conden-
sate GB is induced regardless of the fact that there is

d

6-8
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interaction in theJ51 channel. As a check, note that ifq

50, sin(12bA(p))51 and sin(12bB(p)) is given by the cosine
of the polar angle ofp. The right-hand side of~4.11! there-
fore vanishes upon integration, andGB vanishes whenq50
as it should. It is now apparent that two features contribut
a nonzeroGB . The first is that the momenta in a quark pa

are not antiparallel, which leads to the factors of sin(1
2bA(p))

in Eq. ~4.11!. The second is that the pairing region is anis

tropic, since if it were not the factor of sin(1
2bB(p)) would

ensure that the right-hand side of~4.11! vanishes upon inte
gration.

As written, the gap equations~4.9! and ~4.10! are ultra-
violet divergent. In QCD, of course, asymptotic freedom i
plies that the interaction between quarks decreases at
momentum transfer and we have not yet represented this
in our toy model. In previous work@3,6,5#, we chose to
mimic the effects of asymptotic freedom~and to render the
right-hand side of the gap equation finite! by introducing a
form factor associated with each fermion leg in the fo
fermion interaction. This is not a good strategy whenqÞ0.
The two incident quarks carry momentaq1p and q2p
while the outgoing quarks carry momentaq1p8 and q
2p8. Were we to cut off these four momenta with for
factors on each leg, we would have a cutoff which depe
explicitly on q. This is not a good representation of wh
happens in full QCD, in which the condition for when th
interaction becomes weak is determined by the momen
p2p8 transferred through the gluon and has nothing to
with q. For simplicity, we choose to introduce a hard cuto
in our Nambu–Jona–Lasinio~NJL! model, rather than a
smooth form factor, and choose simply to cut off the m
mentump. This is not equivalent to cutting off the momen
tum transfer, but has the desired feature of being
q-independent cutoff. That is, we limit the integration regi
to upu,L in the BCS gap equation~4.10! and to$pPP and
upu,L% in the LOFF gap equation~4.9!. In the BCS case
this criterion is equivalent to cutting off the momentum
each fermion leg. In the LOFF case, it is not equivalent a
is more appropriate. The choice we have made is not
only cutoff one might try. For example, we have also o
tained results upon cutting off momenta outside a large
lipsoid in p space, confocal with the centers of the two Fer
spheres in Fig. 2, but have found that this makes little d
ference relative to the simpler choice of the large sph
upu,L.

V. RESULTS

We solve the gap equation~4.9! numerically~and analyti-
cally in the limit DA!dm,q,D0) and calculate the LOFF
state free energy as a function ofdm and q, for given cou-
pling G, average chemical potentialm̄, and cutoff L. We
vary q to minimize the LOFF free energy, and compare
with that for the standard BCS pairing~4.10! to see which is
favored. In this way we can map out the phase diagram
the three phases of pairing between the two species of qu
BCS, LOFF, and unpaired.

Note that the solution to the gap equation, the LOFF g
07401
to

-

-
ge
ct

-

s

m
o

-

a

d
e

-
l-
i
-
e

t

r
rk:

p

parameterDA , is not a gap in the spectrum of excitation
The quasiparticle dispersion relations~4.7! vary with the di-
rection of the momentum, yielding gaps that vary from ze
~for momenta on the edge of the blocking regions in ph
space! up to a maximum ofDA .

We will first discuss the range ofdm in which there exists
a LOFF state as a local energy minimum. Later we will
on to study the competition between LOFF and BCS, and
in what range ofdm the LOFF state is the global minimum
We expect the BCS state to be preferred when the mism
dm between the Fermi energies of the two species is sm
When the mismatch is comparable to the BCS gap (dm
;D0) we expect a transition to LOFF, and at largerdm we
expect all pairing to cease. These expectations are lar
borne out.

In general we fixL51 GeV andm̄50.4 GeV, and study
different coupling strengthsG which we parametrize by the
physical quantityD0 , the BCS gap of Eq.~4.10! which in-
creases monotonically with increasingG. When we wish to
study the dependence on the cutoff, we varyL while at the
same time varying the couplingG such thatD0 is kept fixed.
~This is in the same spirit as using a renormalization con
tion on a physical quantity—D0—to fix the ‘‘bare’’
coupling—G.! We expect that the relation between oth
physical quantities andD0 will be reasonably insensitive to
variation of the cutoffL.

We wish to determinedm2 , the boundary separating th
LOFF phase and the normal phase. The LOFF to unpa
phase transition is second order, so it occurs where the s
tion DA to the LOFF gap equation~4.9! is zero. SettingDA
50 in the gap equation~4.9! yields an analytical expressio
relating dm and q, for any givenG and L. In Fig. 3~a! we
show theDA50 curve for three couplings corresponding
D050.1 GeV ~strong coupling!, D050.04 GeV and D0
50.01 GeV~weak coupling!. We have only drawn the zero
gap curve in the region whereq>dm. We expect this to be
the region of interest for LOFF pairing because whenq
>dm the two spheres of Fig. 2 do in fact intersect. We ha
verified that, as described in some detail in Ref.@13#, there
are regions of Fig. 3~a! with q,dm within which the LOFF
gap equation~4.9! has~one or even two! nonzero solutions,
but these solutions all correspond to phases whose free
ergy is either greater than that of the normal phase or gre
than that of the BCS phase or both. Figure 3 shows that f
given coupling strength, parametrized byD0 , there is a
maximum dm for which the LOFF state exists: we call
dm2 . For dm.dm2 , the mismatch of chemical potentials
too great for the LOFF phase to exist.

We see from Fig. 3~a! that as the coupling gets weake
dm2 /D0 gets gradually larger.~Of course,dm2 itself gets
smaller: the quantities plotted aredm/D0 and q/D0 .) Note
that in theD0→0 limit, the zero gap curve is essentially th
shown in the figure forD050.01 GeV, in agreement with th
curve obtained at weak coupling by Fulde and Ferrell@13#.
The fact that this curve ceases to move in theD0→0 limit
means thatdm2→0 while dm2 /D0→const in this limit.

For dm→dm2 from below, we see from Fig. 3 that ther
is a solution to the LOFF gap equation only at a single va
6-9
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FIG. 3. ~a! The zero-gap curves for the LOFF state. To the right of a solid curve, there is no solution to the LOFF gap equation
left of the curve there is a solution, and on the curve the gap parameter is zero. The three curves are~from strongest to weakest coupling!:
D050.1,0.04,0.01 GeV. The regionq,dm is complicated to describe@13#, and solutions found in this region never give the lowest fr
energy state at a givendm. ~b! Here, we chooseD050.04 GeV and focus on the region neardm2 , the maximum value ofdm at which the
LOFF state exists. The dashed curve shows the value ofuqu which minimizes the free energy of the LOFF state at a givendm. dm1 , discussed
below, is also indicated.
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of q. For example, atD050.04 GeV we findq50.880D0
51.183dm2 at dm250.744D0 . ~In agreement with Refs
@12,13#, in the weak coupling limit we findq50.906D0
51.20dm2 at dm250.754D0 .) For any value ofdm,dm2 ,
solutions to the LOFF gap equation exist for a range ofuqu.
We must now find the value ofuqu for which the free energy
of the LOFF state is minimized. We obtain the free energy
the LOFF state at a point in Fig. 3 by first solving the g
equation ~4.9! numerically to obtainDA , and then using
~4.4! and~4.6! to evaluatê F01HI& given in ~4.2! and~4.3!.
For each value ofdm,dm2 we can now determine which
choice of q yields the lowest free energy. The resultin
‘‘best-q curve’’ curve is shown in Fig. 3~b! for D0
50.04 GeV.5

Finally, for each point on the best-q curve we ask whethe
the LOFF free energy at thatdm and~best! q is more or less
than the free energy of the BCS state at the samedm. In this
way, we find dm1 at which a first order phase transitio
between the LOFF and BCS states occurs. In Fig. 4 we s
the competition between the BCS and LOFF states as a f
tion of the Fermi surface mismatchdm, for a fixed coupling
corresponding toD0540 MeV. The LOFF state exists fo

5As a check on our determination of the bestq, we have confirmed
that the total momentum of the LOFF state with the bestq is zero,
as must be the case for the ground state of the system at a givedm
~by a theorem attributed to Bloch@57#!. This is a powerful check,
because it requires the net momentum of the unpaired quarks i
blocking regions~which is in the negativez direction; see Fig. 2! to
be cancelled by the net momentum carried by the LOFF cond
sates. When, in future work, our ansatz is extended to descri
LOFF crystal rather than a single plane wave, this check will
longer be powerful. Once we go fromG;exp(2iq•r ) to G
;cos(2q•r ) or to a more involved crystalline pattern, the total m
mentum of the condensates and of the unpaired quarks will eac
zero.
07401
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dm,dm250.744D0 . At each dm,dm2 , we plot the gap
parameter and free energy characterizing the LOFF s
with the bestq for that dm. Although the BCS gapD0 is
larger than the LOFF gapDA , asdm increases we see from
Eq. ~2.3! that the BCS state pays a steadily increasing fr
energetic price for maintainingpF

u5pF
d , whereas the LOFF

state pays no such price. We now see that the LOFF state
lower free energy than the BCS state fordm.dm1 , in this
casedm150.7104D0 . At dm5dm1 , the gap parameter is
DA50.0078 GeV50.195D0 . ~Had we calculateddm1 by
comparing the BCS free energy with that of the unpair
state instead of with that of the LOFF state, we would ha
obtaineddm150.711D0 . As the inset to Fig. 4 confirms, th
BCS free energy varies so rapidly that this makes an alm
imperceptible difference. In later figures, we therefore obt
dm1 via the simpler route of comparing BCS vs normal.! At
the coupling corresponding toD0540 MeV, we have found
that the LOFF state is favored over both the BCS state
the normal state in a ‘‘LOFF window’’ 0.710,dm/D0
,0.744.

With solutions to the gap equation in hand, we can obt
the J50 condensateGA5GDA and theJ51 condensateGB
given in Eq. ~4.11!. In Fig. 5, we show both condensate
within the LOFF windowdm1,dm,dm2 . We see first of
all thatGBÞ0, as advertised. For the choice of parameters
Figs. 4 and 5 we findGB /GA essentially constant over th
whole LOFF window, varying from 0.121 atdm1 to 0.133 at
dm2 . IncreasingD0 tends to increaseGB /GA , as does de-
creasingL. Second of all, we see that the phase transition
dm5dm2 , between the LOFF and normal phases, is sec
order in the mean-field approximation we employ throug
out.

Near the second-order critical pointdm2 , we can describe
the phase transition with a Ginzburg-Landau effective pot
tial. The order parameter for the LOFF-to-normal phase tr
sition is

he

n-
a

o

be
6-10



.
inset

CRYSTALLINE COLOR SUPERCONDUCTIVITY PHYSICAL REVIEW D63 074016
FIG. 4. LOFF and BCS gaps and free energies as a function ofdm, with coupling chosen so thatD0540 MeV and with m̄
50.4 GeV, L51 GeV. Free energies are measured relative to the normal state. At eachdm we have variedq to find the best LOFF state
The vertical dashed line marksdm5dm1 , the value ofdm above which the LOFF state has lower free energy than BCS. The expanded
~whereins51027 GeV4) focuses on the regiondm1,dm,dm2 where the LOFF state has the lowest free energy.
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F~r !52 1
2 ^e i j eab3c ia~r !Cg5c j b~r !& ~5.1!

so that in the normal phaseF(r )50, while in the LOFF
phaseF(r )5GAei2q•r. Expressing the order parameter

terms of its Fourier modesF̃(k), we write the LOFF free
energy~relative to the normal state! as

F~$F̃~k!%!5(
k

~C2~k2!uF̃~k!u21C4~k2!uF̃~k!u4

1O~ uF̃ u6!!. ~5.2!

For dm.dm2 , all of theC2(k2) are positive and the norma
state is stable. Just below the critical point, all of the mo

F̃(k) are stable except those on the sphereuku52q2 , where

FIG. 5. The two LOFF condensatesGA(J50) andGB(J51) for
the same choice of parameters as in Fig. 4. We focus on the re
dm1,dm,dm2 . For reference, in the BCS phaseGA5D0 /G
50.005 83 GeV3 andGB50.
07401
s

q2 is the value ofuqu at dm2 ~so thatq2.1.2dm2.0.9D0 at
weak coupling!. In general, therefore, many modes on th
sphere can become nonzero, giving a condensate with a c
plex crystal structure. We consider the simplest case o

plane wave condensate where only the one modeF̃(k
52q2)5GA is nonvanishing. Dropping all other modes, w
have

F~GA!5a~dm2dm2!~GA!21b~GA!4, ~5.3!

wherea andb are positive constants. Finding the minimum
energy solution fordm,dm2 , we obtain simple power-law
relations for the condensate and the free energy:

GA~dm!5KG~dm22dm!1/2, F~dm!52KF~dm22dm!2.
~5.4!

These expressions agree well with the numerical res
shown in Figs. 4 and 5. The Ginzburg-Landau method d
not specify the proportionality factorsKG andKF , but ana-
lytical expressions for these coefficients can be obtained
the weak coupling limit by explicitly solving the gap equ
tion @51#, yielding

GAKG52Adm2A~q2 /dm2!221.1.15AD0,

KF5~4m̄2/p2!~~q2 /dm2!221!.0.178m̄2. ~5.5!

Notice that because (dm22dm1)/dm2 is quite small, the
power-law relations~5.4! are a good model of the system
throughout the entire LOFF intervaldm1,dm,dm2 where
the LOFF phase is favored over the BCS phase. T
Ginzburg-Landau expression~5.3! gives the free energy o
the LOFF phase neardm2 , but it cannot be used to dete
mine the locationdm1 of the first-order phase transitio
where the LOFF window terminates~locating the first-order
point requires a comparison of LOFF and BCS free en
gies!.

on
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ALFORD, BOWERS, AND RAJAGOPAL PHYSICAL REVIEW D63 074016
It is interesting to explore how the width of the LOF
window depends on the strength of the coupling, and to c
firm that it is insensitive to the cutoff. We do this in Fig.
where we plotdm2 /D0 ~solid lines! and dm1 /D0 ~dashed
lines!. The LOFF state is favored fordm1 /D0,dm/D0
,dm2 /D0 , i.e., between the solid and dashed curves in F
6. In the weak coupling limit, the LOFF window tends
0.707,dm/D0,0.754 andDA at dm1 tends to 0.23D0 , as in
Refs. @12#, @13#. Note that if one takes the weak-couplin
limit D0→0 at fixed dm, neither BCS nor LOFF pairing
survives becausedm/D0→`. However, for any arbitrarily
small but nonzero coupling, the LOFF phase is favo
within a range ofdm. Figure 6 thus demonstrates that in
analysis of the LOFF state in the weak-coupling limit, it
convenient to keepdm/D0 fixed while takingD0→0. We see
from Fig. 6 that strong coupling helps the BCS state m
than it helps the LOFF state. When the coupling gets str
enough, there is no longer any window of Fermi surfa
mismatchdm in which the LOFF state occurs: the BCS sta
is always preferred.

The different lines of each type in Fig. 6 are for differe
cutoffs and show that there is in fact little sensitivity to t
cutoff. TheL dependence ofdm1 /D0 and dm2 /D0 is mild
for all values ofD0 which are of interest, and is weakest f
D0→0. This is because in that limit pairing can only occ
very close to the unblocked ribbon of the ellipsoid of F
2~b!, along which the integrand in the gap equation is sin
lar and pairing is allowed. Thus most of the pairing regionP,
and in particular the region nearL, become irrelevant in this
limit.

The one physical quantity which we have explored wh
does turn out to depend qualitatively onL is the ratio
GB /GA . Those quarks with momenta as large asL which
pair have momenta which are almost antiparallel, and
contribute much less toGB than toGA . For this reason, the
ratio GB /GA is sensitive to the number of Cooper pa

FIG. 6. The interval ofdm within which the LOFF state occurs
as a function of the coupling~parametrized as usual by the BCS g
D0). Below the solid line, there is a LOFF state. Below the dash
line, the BCS state is favored. The different lines of each ty
correspond to different cutoffsL50.8 GeV to 1.6 GeV.dm1 /D0

and dm2 /D0 show little cutoff dependence, and the cutoff depe
dence disappears completely asD0 ,dm→0.
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formed at very largep, and hence to the choice ofL. As
discussed above, pairing far from the favored ribbon in ph
space becomes irrelevant forD0→0, and indeed in this limit
we find that theL dependence ofGB /GA decreases. How-
ever, for D0540 MeV we find that changingL from 1.2
GeV to 0.8 GeV increasesGB /GA by more than 50%.

We chose to show results forD0540 MeV in Fig. 4 be-
cause with this choice, the LOFF window occurs at values
dm comparable to that in the illustrative example~2.1!: dm
5 1

2 (md2mu)527 MeV. Of course, neitherdm nor the value
of D0 are accurately known for the quark matter which m
exist within a compact star. Still, it seems possible that th
ratio could be appropriate for the quark matter to be in
LOFF phase. If there is a range of radii within a compact s
in which quark matter occurs withdm1,dm,dm2 , this
quark matter will be a crystalline color superconductor.

In Fig. 4, the LOFF gap parameterDA is 7.8 MeV
at dm5dm1 . It remains larger than typical neutron st
temperaturesTns;1 keV until very close todm5dm2 .
Similarly, the LOFF free energy, which is 4.831028 GeV4

54.83(10 MeV)4 at dm5dm1 , is much larger thanTns
4

throughout the LOFF window except very close todm
5dm2 . Furthermore, we shall see in Sec. VII C that the fr
energy of the LOFF state is of the right order to lead
interesting glitch phenomena.

VI. MORE GENERAL HAMILTONIAN AND ANSATZ

In Sec. IV, we introduced the four-fermion interactio
HamiltonianHI of Eq. ~4.1! with independent couplingsGE
and GM for the interactions which model the exchange
electric and magnetic gluons. It proves convenient to use
linear combinations

GA5 1
4 ~GE13GM !,

GB5 1
4 ~GE2GM !, ~6.1!

of the coupling constants in terms of which the expectat
value ofHI in the LOFF state~3.2! becomes

^HI&52 1
2 GAV~ uGA

L u21uGA
Ru2!2 1

2 GBV~ uGB
L u21uGB

Ru2!.
~6.2!

Thus, a positive couplingGA describes an attractive interac
tion which induces aJ50 condensateGA . As we have seen
in the LOFF state this is necessarily accompanied byJ
51 condensateGB . In our analysis to this point, we have s
GA5G.0 andGB50. We now discuss the general case,
which GBÞ0.

Before beginning, let us consider how to chooseGB /GA
in order for our model Hamiltonian to be a reasonable
model for QCD at nonzero baryon density. At zero dens
of course, Lorentz invariance requiresGB50. At high den-
sities, on the other hand, electric gluons are screened w
static magnetic gluons are not.~Magnetic gluons with non-
zero frequency are damped.! We now know@18# that at as-
ymptotically high densities it is in fact the exchange of ma
netic gluons which dominates the pairing interaction. T
suggests the choiceGE50, corresponding toGB /GA

d
e

-
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CRYSTALLINE COLOR SUPERCONDUCTIVITY PHYSICAL REVIEW D63 074016
521/3. At the accessible densities of interest to us, it
presumably not appropriate to neglectGE completely. Note
also that the four-fermion interaction induced by instanto
in QCD only yields interactions in flavor-antisymmetr
channels. It results in an attractive interaction in theJ50
channel and no interaction in theJ51 channel. Thus, al-
though the instanton interaction cannot be written in the fo
~4.1!, for our purposes it can be thought of as adding a c
tribution to GA , but none toGB . Hence our model is likely
to best represent high density QCD for a ratio of couplin
lying somewhere in the range

2
1

3
,

GB

GA
,0. ~6.3!

We plot our results over a wider range of couplings belo
OnceGBÞ0 and there is an interaction in theJ51 chan-

nel, we expect, in addition to theJ51 condensateGB , a J
51 gap parameterDB . The quasiparticle dispersion rela
tions are then determined byDA andDB , which are defined
as

DA5GAGA ,

DB5GBGB . ~6.4!

Following through the variational calculation as in Sec.
leads to the coupled gap equations:

DA5
2GA

V

3 (
pPP

2SA~DASA1DBSB!

A~ uq1pu1uq2pu22m̄ !214~DASA1DBSB!2
,

DB5
2GB

V

3 (
pPP

2SB~DASA1DBSB!

A~ uq1pu1uq2pu22m̄ !214~DASA1DBSB!2
,

SA5sin~ 1
2 bA~p!!,

SB5sin~ 1
2 bB~p!! ~6.5!

with bA(p)5au(p)1ad(p), bB(p)5au(p)2ad(p) defined
in terms of the angles in Fig. 1. The pairing regionP is still
defined by~4.8! but with new quasiparticle dispersion rel
tions obtained from Eqs.~4.7! with DA

2SA
2 replaced by

(DASA1DBSB)2.
For GB50, the coupled equations~6.5! reduce to Eqs.

~4.9! and~4.11!. Note that if, instead,GB.0 andGA50, we
find an attractive interaction in theJ51 channel in Eq.~6.1!
and no interaction in theJ50 channel. Analysis of Eqs.~6.5!
in this case yields a nonzero value ofDB , while DA50 even
though GAÞ0. The geometry of the LOFF pairs require
GAÞ0 whenGBÞ0.
07401
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Rather than describing how every figure in Sec.
changes whenGBÞ0, we choose to focus on the question
how the interval ofdm within which the LOFF state occur
~the LOFF window! changes as a function ofGB /GA . To
further simplify the presentation, we specialize to the we
coupling limit in whichD0→0. This means that, as in Fig. 6
the LOFF window is independent of the cutoffL.

We show the dependence of the LOFF window
GB /GA in Fig. 7. The lower boundarydm5dm1 is, as in
Sec. V, the same~up to a very small correction! as thedm at
which the BCS and normal states have equal free energ
We find the upper boundarydm5dm2 by first dividing Eqs.
~6.5! by DA and then looking for a value ofdm at which
DA→0 andDB→0 but DA /DB remains nonzero. As before
this defines a zero-gap curve, anddm2 is the maximum value
of dm reached by this curve.

We find that the lower boundarydm1 is completely unaf-
fected by the value ofGB , since the BCS state is purelyJ
50. So in the weak-coupling limit we obtain the result
Sec. V, dm1 /D050.707, independent ofGB /GA . In con-
trast, dm2 , the upper boundary of the LOFF window, in
creases with increasingGB . This is understandable: th
LOFF state always produces aJ51 condensate, so we ex
pect it to be fortified byGB.0 and penalized byGB,0.
There is no analogue of this behavior in an electron sup
conductor@12,13#, where there can be noJ51 condensate.
Our J51 condensate affects the gap equation and free
ergy only if GBÞ0; for this reason, our weak coupling re
sults are in agreement with those of LOFF@12,13# only if
GB50, as in Sec. V. The effect of a couplingGB in the
physically interesting range~6.3! is to reduce the LOFF win-
dow, but only slightly.

In both this section and the previous one, we have ca
lateddm2 by examining the competition between LOFF pa
ing and no pairing. Should we instead have considered

FIG. 7. The interval ofdm in which the LOFF state is favored a
weak coupling, as a function of the ratio of couplingsGB /GA .
Below the solid line, there is a LOFF state. Below the dashed l
the ordinary BCS state is favored.GB50 corresponds to the
Lorentz-invariant interaction withGE5GM . QCD at high density
is likely best described by a coupling in the range2

1
3 ,GB /GA

,0.
6-13
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ALFORD, BOWERS, AND RAJAGOPAL PHYSICAL REVIEW D63 074016
competition between LOFF pairing and the formation
^uu& and ^dd& condensates, each at their respective Fe
surface, each withq50? Assuming as usual that the col
antisymmetric channel is the most attractive one, flavor sy
metric pairing requires spin-symmetric pairing, i.e.,J51
@58#. Within the model and ansatz that we have conside
the question is easily answered. If we chooseGA.0 and
GB50, as in Secs. III–V, there is no interaction in the sp
symmetric, flavor-symmetric, color-antisymmetric chann
If we strengthen magnetic gluon exchange relative to elec
gluon exchange by choosingGB,0, the interaction in this
channel is repulsive. We have confirmed this by evaluat
the expectation value ofHI in a state with spatially uniform
J51 pairing and^uCs0iu& condensate@obtained by using
two u creation operators in the ansatz~3.2!, settingdm50 as
appropriate for̂ uu& pairing, settingq50 and removing the
blocking regions#. We find thatGA gives no interaction in
this channel andGB,0 is repulsive. Thus, for the same re
son that the LOFF window shrinks forGB,0, there can be
no ^uu& or ^dd& pairing. However, the scenario is apparen
different at asymptotically high density: it has been sho
by Schäfer @58# that long-range single-gluon exchange do
in fact induce pairing in thisJ51 channel.~The long-range
interaction emphasizes near-collinear scattering which is
tractive for both electric and magnetic gluons.! For either a
pointlike interaction withGB.0 or a long-range interaction
dominated by near-collinear scattering, we therefore exp
competition between LOFF pairing and^uu& and^dd& pair-
ing, since the latter would then be favored fordm.dm2 .

Our ansatz only containsLL andRR pairing. We leave a
complete analysis of the generalization toLR pairing to fu-
ture work. We have, however, constructed the ansatz for
tially uniform LR pairing with dm50 and q50. We find
that the interaction in thisJ51 channel is attractive ifGE
1GM.0 and is independent of the linear combination
couplings GE23GM . The J51 channel with LR pairing
yields a^uCg iu& condensate instead of theJ51 condensate
^uCs0iu& obtained for the case ofLL and RR pairing. In
agreement with Ref.@58# we find that magnetic gluon ex
change, withGE50 andGM.0, is attractive in thêuCg iu&
channel. Note that in the nonrelativistic limit^uCg iu& and
^uCs0iu& are equivalentJ51 condensates. In the relativist
setting relevant in quark matter, we find that pointlike inte
actions in these two channels have opposite sign.

We have set up the gap equation describing a spat
uniform ^uCg iu& condensate and solved it forGE5GM
5G, D0540 MeV, mu50.4 GeV, andL51 GeV. We find
a gap of 8 keV and a free energy which is about five ord
of magnitude smaller than that of the LOFF phase.~If we
chooseGE50 andGM.0, the interaction is still attractive
but the gap is even smaller.! Therefore, even though fo
dm.dm2 we expect LR pairing and consequent^uCg iu&
and^dCg id& condensates, the resulting condensation ene
is so small that it is a good approximation to neglect th
condensates in the evaluation ofdm2 , as we have done. W
leave for future work a complete analysis of the competit
between the LOFF phase~with an ansatz extended to allo
LR-LOFF pairing! and the spatially uniform̂uCg iu& con-
densate.
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VII. CONCLUSIONS, FUTURE WORK AND
ASTROPHYSICAL IMPLICATIONS

A. Conclusions

We have studied the formation of a rotational-symmet
breaking LOFF state involving pairing between two flavo
of quark whose chemical potentials differ by 2dm. This state
is characterized by a gap parameter and a diquark con
sate, but not by an energy gap in the dispersion relation
the LOFF state, each Cooper pair carries momentum 2q with
uqu'1.2dm. The condensate and gap parameter vary
space with wavelengthp/uqu.

We focused primarily on an NJL-type four-fermion inte
action with the quantum numbers of single gluon exchan
In the limit of weak coupling~BCS gapD0!m) the LOFF
state is favored for values ofdm which satisfy dm1,dm
,dm2 , where dm1 /D050.707 anddm2 /D050.754. The
LOFF gap parameter decreases from 0.23D0 at dm5dm1 to
zero at dm5dm2 . These are the same results found
LOFF in their original analysis. Except for very close
dm2 , the critical temperature above which the LOFF sta
melts will be much higher than typical neutron star tempe
tures. At stronger coupling the LOFF gap parameter
creases relative toD0 and the window ofdm/D0 within
which the LOFF state is favored shrinks. The window gro
if the interaction is changed to weight electric gluon e
change more heavily than magnetic gluon exchange.

Because it violates rotational invariance by involvin
Cooper pairs whose momenta are not antiparallel, the qu
matter LOFF state necessarily features nonzero conden
in both theJ50 andJ51 channels. Both condensates a
present even if there is no interaction in theJ51 channel. In
this case, however, theJ51 condensate does not affect th
quasiparticle dispersion relations; that is, theJ51 gap pa-
rameter vanishes. If there is an attraction in theJ51 channel
~as, for example, if the strength of the electric gluon inter
tion is increased! the size of the LOFF window increases.

The quark matter which may be present within a comp
star will be in the crystalline color superconductor~LOFF!
state if dm/D0 is in the requisite range. Fordm as in the
illustrative example~2.1!, this occurs if the gapD0 which
characterizes the uniform color superconductor presen
smaller values ofdm is about 40 MeV. This is in the middle
of the range of present estimates. Bothdm andD0 vary as a
function of density and hence as a function of radius in
compact star. Although it is too early to make quantitati
predictions, the numbers are such that crystalline color
perconducting quark matter may very well occur in a ran
of radii within a compact star. It is therefore worthwhile
consider the consequences.

B. Future work

The prospect of spontaneous violation of translational a
rotational symmetry in dense quark matter is very excitin
In the remainder of this paper we will begin to explore o
particularly interesting consequence: glitch behavior in qu
matter within compact stars. First, however, we list a num
of direct extensions of our work, several of which are p
6-14
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CRYSTALLINE COLOR SUPERCONDUCTIVITY PHYSICAL REVIEW D63 074016
requisites to a quantitative exploration of the astrophys
consequences of crystalline color superconducting qu
matter in compact stars.

~1! We have restricted ourselves to two flavors of qua
and varieddm freely. It is crucial to look at more realistic
examples, imposing charge neutrality and weak equilibriu
and including the strange quark. We expect a LOFF ph
wherever̂ us&, ^ds& or ^ud& pairs approach their unpairin
transitions, but this must be verified quantitatively. Furth
generalizations would include bare quark masses and s
taneous generation of constituent quark masses by c
condensation.

~2! It would be valuable to complement our Nambu–Jon
Lasinio ~NJL! model study with a controlled calculation u
ing one gluon exchange in the asymptotically high dens
limit. There are two reasons why this is worthwhile. First,
will allow a controlled analysis without model assumption
albeit one of quantitative value only at extremely high de
sities. In particular, this would allow a better estimation
the relative magnitude of theJ51 and J50 condensates
which was the one feature which we found to depe
strongly on the choice of cutoff in our model. Second, qua
quark scattering by the exchange of a gluon at weak coup
is dominated by small-angle scattering, whereas in an N
model of the type we have used this is not the case. This
actually affect the sign of the interaction in theJ51 channel
and perhaps thereby increase the range of the LOFF wind
as we pointed out in the preceding section. Moreover, i
known that the LOFF window is much wider in one dime
sion than in three@49#, and since the three-dimensional phy
ics at asymptotically high densities can be treated as a su
one-dimensional theories@21,26#, we have another reason t
suspect that the LOFF window may be wider at asympt
cally high densities than our present analysis would sugg

~3! As we have discussed at length in Sec. VI, it would
of interest to extend our treatment to include pairing betw
quarks of the same flavor and pairing between quarks
opposite chirality.

~4! Perhaps the most crucial unresolved issue is the q
tion of what crystal structure the LOFF phase chooses. L
kin and Ovchinnikov concluded that the condensate varie
spacelike cos(2q•r ), forming a one-dimensional standin
wave with nodal planes spaced everyp/(2uqu). The compe-
tition between this planar structure and one with, say, a cu
or body-centered-cubic crystal structure is subtle. In two
mensions, the answer depends sensitively on the temper
@41#; in three dimensions, it is apparently still unresolv
even in the original LOFF context@42#. In the QCD context,
with the added complication of aJ51 condensate, it will be
quite interesting to determine what pattern is favored.

~5! Finally, it would be very interesting to investigate th
astrophysical consequences of the LOFF phase. Since i
curs in a range ofdm, one would expect that quark matte
stars could contain a layer of crystalline LOFF condens
In the next section, we take some preliminary steps in
investigation.

C. Looking ahead to astrophysical consequences

Many pulsars have been observed to glitch. Glitches
sudden jumps in rotation frequencyV which may be as large
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asDV/V;1026, but may also be several orders of magn
tude smaller. The frequency of observed glitches is stat
cally consistent with the hypothesis that all radio puls
experience glitches@59#. Glitches are thought to originat
from interactions between the rigid crust, somewhat m
than a kilometer thick in a typical neutron star, and rotatio
vortices in the neutron superfluid. The inner kilometer of t
crust consists of a rigid lattice of nuclei immersed in a ne
tron superfluid@60#. Because the pulsar is spinning, the ne
tron superfluid~both within the inner crust and deeper insid
the star! is threaded with a regular array of rotational vor
ces. As the pulsar’s spin gradually slows due to emission
electromagnetic radiation, these vortices must gradu
move outwards since the rotation frequency of a superflui
proportional to the density of vortices. Deep within the st
the vortices are free to move outwards. In the crust, howe
the vortices are pinned by their interaction with the nucle
lattice. What happens next varies from model to model. P
haps the vortices exert sufficient force on the crust to tea
apart, resulting in a sudden breaking and rearrangemen
the crust and a change in the moment of inertia@61#. Perhaps
a large cluster of vortices within the inner crust builds
enough outward pressure to overcome the pinning force, s
denly becomes unpinned, and moves macroscopically
ward @62–68#. This sudden decrease in the angular mom
tum of the superfluid within the crust results in a sudd
increase in angular momentum of the rigid crust itself, a
hence a glitch. Perhaps, due to interactions between neu
vortices and proton flux tubes, the neutron vortices pile
just inside the inner crust before suddenly coming unpinn
@69#. Although the models differ in important respects,
agree that the fundamental requirements are the presen
rotational vortices in a superfluid and the presence of a r
structure which impedes the motion of vortices and wh
encompasses enough of the volume of the pulsar to con
ute significantly to the total moment of inertia.6

Although it is premature to draw quantitative conclusion
it is interesting to speculate that some glitches may origin
deep within a pulsar which features a quark matter core,
region of that core in which the color superconducting qu
matter is in a LOFF crystalline color superconductor pha
The first prerequisite for a quantitative answer to whet
this may occur is to repeat our analysis in the more gen
context of three-flavor quark matter with a nonzero stran
quark massMs , to estimate over what range of densiti
LOFF phases may arise, as either^ud&, ^us& or ^ds& con-
densates approach their unpairing transitions. Compariso
existing models which describe howpF

u , pF
d , and pF

s vary
within a quark matter core in a neutron star@38# would then
permit an estimate of how much the LOFF region contribu
to the moment of inertia of the pulsar. Furthermore, a th
flavor analysis is required to determine whether the LO

6The first model of glitches which was proposed@70# relies on the
cracking and settling of the neutron star crust~‘‘starquakes’’! as the
neutron star spins down. This model does not require the pres
of rotational vortices. However, this model fails to explain the ma
nitude and frequency of glitches in the Vela pulsar@67,68#.
6-15
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phase is a superfluid. If the only pairing is betweenu andd
quarks, this 2SC phase is not a superfluid@3,9#, whereas if all
three quarks pair in some way, a superfluidis obtained@6,9#.7

Henceforth, we suppose that the LOFF phase is a su
fluid, which means that if it occurs within a pulsar it will b
threaded by an array of rotational vortices. It is reasonabl
expect that these vortices will be pinned in a LOFF crys
in which the diquark condensate varies periodically in spa
Indeed, one of the suggestions for how to look for a LO
phase in terrestrial electron superconductors relies on the
that the pinning of magnetic flux tubes~which, like the rota-
tional vortices of interest to us, have normal cores! is ex-
pected to be much stronger in a LOFF phase than in a
form BCS superconductor@71#.

A real calculation of the pinning force experienced by
vortex in a crystalline color superconductor must await
determination of the crystal structure of the LOFF phase.
can, however, attempt an order of magnitude estimate a
the same lines as that done by Anderson and Itoh@62# for
neutron vortices in the inner crust of a neutron star. In t
context, this estimate has since been made quantita
@72,66,68#. With parameters chosen as in Fig. 4, we find th
at dm5dm1 the LOFF phase is favored over the normal st
by a free energyFLOFF;53(10 MeV4! and the spacing be
tween nodes in the LOFF crystal isb5p/(2uqu);9 fm. The
thickness of a rotational vortex is given by the correlati
length j;1/DA;25 fm. All these numbers are quite unce
tain, but we will use them for the present. In the context
crustal neutron superfluid vortices, there are three dist
length scales: the vortex thicknessj, the lattice spacing be
tween nucleib, and R, the radius of the individual nuclei
~The condensate vanishes within regions of sizeR separated
by spacingb.! In the LOFF phase, the latter two length sca
are comparable: since the condensate varies like cos(pr/b) it
is as if R;b. The fact that these length scales are similar
the LOFF phase will complicate a quantitative calculation
the pinning energy; it makes our order of magnitude estim
tion easier, however. The pinning energy is the differen
between the energy of a section of vortex of lengthb which
is centered on a node of the LOFF crystal vs one which
centered on a maximum of the LOFF crystal. It is of orde

Ep;FLOFFb
3;4 MeV. ~7.1!

The resulting pinning force per unit length of vortex is
order

f p;
Ep

b2 ;
4 MeV

80 fm2 . ~7.2!

A complete calculation will be challenging becauseb,j,
and is likely to yield anf p which is somewhat less than th
we have obtained by dimensional analysis@66,68#. Note that
our estimate off p is quite uncertain both because it

7As an aside, note that the crystalline chiral condensate@56# ~due
to particle-hole pairing which may form at sufficiently strong co
pling or at very largeNc) is not a superfluid.
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only based on dimensional analysis and because the va
of DA , b andFLOFF are uncertain.~We know the values of
all the ratiosDA /D0 , dm/D0 , q/D0 and consequentlybD0
quite accurately in the LOFF phase. It is of course the va
of the BCS gapD0 which is uncertain.! It is therefore pre-
mature to compare our crude result to the results of ser
calculations of the pinning of crustal neutron vortices as
Refs. @72,66,68#. It is nevertheless remarkable that the
prove to be similar: the pinning energy of neutron vortices
the inner crust is@66#

Ep;1 – 3 MeV ~7.3!

and the pinning force per unit length is@66,67#

f p;
Ep

bj
'

1 – 3 MeV

~25– 50 fm!~4 – 20 fm!
, ~7.4!

where the form of this expression is appropriate becausj
,b. Perhaps, therefore, glitches occurring in a region
crystalline color superconducting quark matter may yie
similar phenomenology to those occurring in the inner cru

The reader may be concerned that a glitch deep within
quark matter core of a neutron star may not be observa
the vortices within the crystalline color superconductor
gion suddenly unpin and leap outward; this loss of angu
momentum is compensated by a gain in angular momen
of the layer outside the LOFF region; how quickly, the
does this increase in angular momentum manifest itself at
surfaceof the star as a glitch? If the LOFF layer is the out
layer of the quark matter core—not unreasonable since
chemical potential differences will be larger here than dee
inside the quark matter—there is no problem. The LO
glitch speeds up the nucleon superfluid outside the qu
matter core, and the rotation of this superfluid is coupled
the rotation of the outer crust on very short time scales@73#.
This rapid coupling, due to electron scattering off vortic
and the fact that the electron fluid penetrates throughout
star, is usually invoked to explain that the core nucleon
perfluid speeds up quickly after a crustal glitch: the only lo
relaxation time is that of the vortices within the inner cru
@73#. Here, we invoke it to explain that the outer crust spee
up rapidly after a LOFF glitch has accelerated the qu
matter at the base of the nucleon superfluid. After a glitch
the LOFF region, the only long relaxation times are those
the vortices in the LOFF region and in the inner crust.

A quantitative theory of glitches originating within quar
matter in a LOFF phase must await the further microsco
calculations sketched in Sec. VII B. In particular, an und
standing of points 1 and 4 of Sec. VII B is a mandato
prerequisite. However, our rough estimate of the pinn
force on rotational vortices in a LOFF region suggests t
this force may be comparable in magnitude to that on vo
ces in the inner crust of a conventional neutron star, wh
yields glitches in accord with those observed in pulsars. T
is surely strong motivation for further investigation.

Perhaps the most interesting consequence of these sp
lations arises in the context of compact stars made entirel
strange quark matter. The work of Witten@74# and Farhi and
6-16
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Jaffe@75# raised the possibility that strange quark matter m
be energetically stable relative to nuclear matter even at
pressure. If this is the case it raises the question whe
observed compact stars—pulsars, for example—are stra
quark stars@76,77# rather than neutron stars. A convention
neutron star may feature a core made of strange quark
ter, as we have been discussing above. Strange quark
on the other hand, are made~almost! entirely of quark matter
with either no hadronic matter content at all or with a th
crust, of order 100 meters thick, which contains no neut
superfluid@77,78#. The nuclei in this thin crust are supporte
above the quark matter by electrostatic forces; these fo
cannot support a neutron fluid. Because of the absenc
superfluid neutrons, and because of the thinness of the c
no successful models of glitches in the crust of a stra
quark star have been proposed. Since pulsars are observ
glitch, the apparent lack of a glitch mechanism for stran
quark stars has been the strongest argument that pulsars
not be strange quark stars@79–81#. This conclusion must
now be revisited.

Madsen’s conclusion@34# that a strange quark star
prone tor-mode instability due to the absence of dampi
must also be revisited, since the relevant fluid oscillatio
may be damped within or at the boundary of a region
crystalline color superconductor.

The quark matter in a strange quark star, should one e
would be a color superconductor. Depending on the mas
the star, the quark number densities increase by a facto
about 2 to 10 in going from the surface to the center@77#.
This means that the chemical potential differences among
three quarks will vary also, and there could be a range
radii within which the quark matter is in a crystalline col
e
c

.

,
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superconductor phase. This raises the possibility of glitc
in strange quark stars. Because the variation in density w
radius is gradual, if a shell of LOFF quark matter exists
need not be particularly thin. And, we have seen, the pinn
forces may be comparable in magnitude to those in the in
crust of a conventional neutron star. It has recently be
suggested~for reasons unrelated to our considerations! that
certain accreting compact stars may be strange quark
@82#, although the evidence is far from unambiguous@83#. In
contrast, it has been thought that, because they glitch, c
ventional radio pulsars cannot be strange quark stars.
work questions this assertion by raising the possibility t
glitches may originate within a layer of quark matter whi
is in a crystalline color superconducting state.
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@58# T. Schäfer, Phys. Rev. D62, 094007~2000!.
@59# M. A. Alpar and C. Ho, Mon. Not. R. Astron. Soc.204, 655

~1983!. For a recent review, see A. G. Lyne, inPulsars: Prob-
lems and Progress, edited by S. Johnson, M. A. Walker, an
M. Bailes~Astronomical Society of the Pacific, San Francisc
1996!.

@60# J. Negele and D. Vautherin, Nucl. Phys.A207, 298 ~1973!.
@61# M. Ruderman, Astrophys. J.382, 587 ~1991!; M. Ruderman,

T. Zhu, and K. Chen,ibid. 492, 267 ~1998!, and references
therein.

@62# P. W. Anderson and N. Itoh, Nature~London! 256, 25 ~1975!.
@63# P. W. Andersonet al., Philos. Mag. A45, 227 ~1982!.
@64# M. A. Alpar, P. W. Anderson, D. Pines, and J. Shaham, A

trophys. J. Lett.249, L29 ~1981!.
@65# M. A. Alpar, P. W. Anderson, D. Pines, and J. Shaham, A

trophys. J.276, 325 ~1984!.
@66# M. A. Alpar, P. W. Anderson, D. Pines, and J. Shaham, A

trophys. J.278, 791 ~1984!.
@67# For reviews, see D. Pines and A. Alpar, Nature~London! 316,

27 ~1985!; D. Pines, inNeutron Stars: Theory and Observa
tion, edited by J. Ventura and D. Pines~Kluwer, New York,
1991!, p. 57; M. A. Alpar, in The Lives of Neutron Stars,
edited by M. A. Alparet al. ~Kluwer, New York, 1995!, p.
185.

@68# For more recent developments and references to further w
see R. I. Epstein and G. Baym, Astrophys. J.387, 276 ~1992!;
M. A. Alpar, H. F. Chau, K. S. Cheng, and D. Pines,ibid. 409,
345 ~1993!; B. Link and R. I. Epstein,ibid. 457, 844 ~1996!.

@69# A. Sedrakian and J. M. Cordes, Mon. Not. R. Astron. Soc.307,
365 ~1999!, and references therein.

@70# M. A. Ruderman, Nature~London! 223, 597 ~1969!; G. Baym
and D. Pines, Ann. Phys.~N.Y.! 66, 816 ~1971!.

@71# R. Modleret al., Phys. Rev. Lett.76, 1292~1996!.
@72# M. A. Alpar, Astrophys. J.213, 527 ~1977!.
@73# M. A. Alpar, S. A. Langer, and J. A. Sauls, Astrophys. J.282,

533 ~1984!.
@74# E. Witten, Phys. Rev. D30, 272 ~1984!.
@75# E. Farhi and R. L. Jaffe, Phys. Rev. D30, 2379~1984!.
@76# P. Haensel, J. L. Zdunik, and R. Schaeffer, Astron. Astroph

160, 121 ~1986!.
@77# C. Alcock, E. Farhi, and A. Olinto, Phys. Rev. Lett.57, 2088

~1986!; Astrophys. J.310, 261 ~1986!.
@78# N. K. Glendenning and F. Weber, Astrophys. J.400, 647

~1992!.
@79# M. A. Alpar, Phys. Rev. Lett.58, 2152~1987!.
@80# J. Madsen, Phys. Rev. Lett.61, 2909~1988!.
@81# R. R. Caldwell and J. L. Friedman, Phys. Lett. B264, 143

~1991!.
@82# X.-D. Li, I. Bombaci, M. Dey, J. Dey, and E. P. J. van de

Heuvel, Phys. Rev. Lett.83, 3776~1999!; X.-D. Li, S. Ray, J.
Dey, M. Dey, and I. Bombaci, Astrophys. J. Lett.527, L51
~1999!; B. Datta, A. V. Thampan, and I. Bombac
astro-ph/9912173; I. Bombaci, astro-ph/0002524.

@83# D. Psaltis and D. Chakrabarty, Astrophys. J.521, 332 ~1999!;
D. Chakrabarty, Phys. World13, 26 ~2000!.
6-18


