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Regularizing the divergent structure of light-front currents
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The divergences appearing in tti@+1)-dimensional fermion-loop calculations are often regulated by
smearing the vertices in a covariant manner. Performing a parallel light-front calculation, we corroborate the
similarity between the vertex-smearing technique and the Pauli-Villars regularization. In the light-front calcu-
lation of the electromagnetic meson current, we find that the persistent end-point singularity that appears in the
case of point vertices is removed even if the smeared vertex is taken to the limit of the point vertex. Reca-
pitulating the current conservation, we substantiate the finiteness of both valence and nonvalence contributions
in all components of the current with the regularized bound-state vertex. However, we stress that each contri-
bution, valence or nonvalence, depends on the reference frame even though the sum is always frame indepen-
dent. The numerical taxonomy of each contribution including the instantaneous contribution and the zero-mode
contribution is presented in the, K, andD-meson form factors.
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[. INTRODUCTION the same result as the one obtained by a covariant Feynman
approach.

With the recent advances in the Hamiltonian renormaliza- However, not all is well. As we have recently shojw],
tion program, light-front dynamic$LFD) appears to be a the amplitudes that are only conditionally convergent must
promising technique to impose the relativistic treatment ofo€ treated with care. A case in point discussed in our work
hadrons. In LFD a Fock-space expansion of bound states [¢] was the calculation of a current matrix element in quan-
made to handle the relativistic many-body effects in a conij!m field tgeory. A typ|tcal imp“(;lﬂde IS given b{} the t“a”9|t‘?
. . - . iagram. One encounters this diagram e.g. when computing
tsrllseteggr\évs&gﬁ:t;veitmaz(e)r::tﬂit;?én(\)/(\;iirl? ILo,r?g;i)t:deiiZ?brﬁi- the meson forr_n factorsee Fi_g. 1] The vertices Qenoted
' 2 by ® are coupling constants in covariant perturbation theory.
mentum fractionx; , perpendicular momenturiy ; and he-  The hard scattering process is the absorption of a photon of
licity \;, i=1,...n.Itisthe aim of LFD to determine those momentumq by a (anti-quark. In the LFD approach the
wave functions and use them in conjunction with hard scatcovariant amplitude is replaced by a series of LF time-
tering amplitudes to describe the properties of hadrons andrdered diagrams. In the case of the triangle diagram they are
their response to electroweak probes. Important steps werepicted in Figs. ) and Xc). The first[Fig. 1(b)] of these
taken towards a realization of this go]. However, at two diagrams is easily interpreted in terms of the LF wave
present there are no realistic results available for wave fundunctions\W. However, the other diagraffrig. 1(c)] has one
tions of hadrons based on QCD alone. In order to calculateertex that can again be written in the same way as before,
the response of hadrons to external probes, one might resdt it contains also another vertex, denoteddb, that can-
to the use of model wave functions. The variational principlenot be written as a LF wave function. The necessity of this
enabled the solution of a QCD-motivated effective Hamil-new element” in LFD has also been discussed in the cases
tonian and the constructed LF quark-model provided a goo@f semileptonic meson decajs] and deeply virtual Comp-
description of the available experimental data spanning vari-
ous meson propertig8]. The same reasons that make LFD
SO attractive to solve bound-state problems in field theory
make it also useful for a relativistic description of nuclear
systems. Presently, it is realized that a parametrization of
nuclear reactions in terms of non-relativistic wave functions _ k, ¥ ¥ "y ¥
must fail. LF methods have the advantage that they are for® @ PP ) PP © P
mally similar to time-ordered many-body theories, yet pro-
vide relativistically invariant observables. Furthermore, as FIG. 1. Covariant triangle diagrafa) is equal to the sum of two
far as the concerned amplitude is unconditionétly abso- light-front time-ordered diagrams, i.e., valeng® and nonvalence
lutely) convergent, the LF Hamiltonian approach must yield(c) diagrams.
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ton scattering6]. One may calt' and W' the vertices of realistic as the model wagl+1)-dimensional and only a
leading order and non-leading order, respectively, in thegoint-vertex was considered.

sense that the leading order vertex corresponds to the lowest In the present work, we extend our analysis of the
Fock state whereas the non-leading order vertex takes inti@rmion-loop to the case of-31 dimensions. In 31 dimen-
account the higher Fock states. The diagrams Withare  sions both the covariant and the LF calculations are diver-
designated asonvalencediagrams while those with vertices gent and the model without any smeared vertex for the fer-
of type ¥ only are designated aslencediagrams. In order mion loop is not well defined. In the recent literat{it®, 16,

to obtain the invariant form factor, the two LF form factors the fermion-loop was regulated by smearing qt_qebound-
must be added. It depends on the situation whether one cajtate vertex in a covariant manner. However, the vertex func-
limit oneself to a single component of the currétto ex-  tion was not symmetric in the four momenta of the constitu-

tract the invariant objects. For the electromagnetic current ognt quarks and could hardly be considered a realistic

a spin-0 particle any single component would suffice to ex-noroximation of ajq bound state. It was regarded only as a

tract the unique form factor. On the other hand, in situationg,nyenient cutoff prescription which makes the one-loop in-
like semileptonic pseudoscalar meson decay, which '”VOIVet%grals finite{ 15,16 Furthermore, the calculation of the me-

two independent form factors, or the electromagnetic currendy, gecay constant reveals that the end-point singularity is

of a (axial-vector particle that is described by three indepen-, completely canceled by such an asymmetric choice of the

dent form factors, one must use information from severa[,ertex function.(See the next section for more detailé/e
current components to determine the invariant amplitudes. gy in this work that the fermion-loop can also be regulated
Earlier, we presented an analysis of contributions fromOy taking a non-local gauge-boson vertex. With this method
the nonvalence diagranid]. We constructed both leading satisfying the Ward-TakahastT) identity [17], we found
and non-leading order vertices using pointlike covarianihe complete cancellation of the end-point singularity not
ones. The model that we used was essentially an extension ghly in the electromagnetic form factor but also in the decay
Mankiewicz and Sawicki's (% 1)-dimensional quantum constant. The non-local gauge-boson vertex remedies also
field theory model[7], which was later reinvestigated by the conceptual difficulty associated with the asymmetric way
several other§8-12. While their model[7] was a simple of treatingg andq in the previous calculationd5,16].
(1+1)-dimensional scalar field theory, it included a binding  Nevertheless, one should distinguish the bound state from
effect of the two-body bound state. Indeed, in H&f, the  the confined state. In this work, we are treating the mesons as
relativistic two-body bound-state form factor was discussedhound states rather than confined states, because we do not
in the full range of the binding energy. The starting modelyet know how to make a covariant regularization for the
wave function was the solution of the covariant Bethe-confined-state. Thus, our emphasis here is the inclusion of
Salpeter equation in the ladder approximation with a relativihe non-leading order vertex rather than the model-building
istic version of the contact interactiof®]. The covariant of 5 realistic meson wave function.
model wave function was a product of two free single par- \ve have performed the LF calculation in parallel to the
ticle propagators, the overall momentum-conserving DiraGovariant Feynman calculation. Our light-front results entail
delta function, and a constant vertex function. Consequentlythe similarity between the vertex-smearing-techni¢gither
all our form factor calculations were various ways of evalu-for the bound-state vertex or the gauge-boson veeer the
ating the Feynman triangle diagram in quantum field theorypgyji-villars regularization. For the bosonic loop calculation,
As pointed out in Ref{13], however, the elastic electromag- the two methods turn out to be identical. However, for the
netic form factors of a bound-state computed from the tritermionic loop calculation, the vertex-smearing-technique
angle diagram and from the Hamiltonian front-form dynam-ghares only the same structure of the denominators with the
ics are the samél4]. Since our aim was to analyze the payji-villars regularization. Using the gauge-boson vertex-
taxonomy of the triangle diagram, we didn’t choose any parsmearing technique, we found that the persistent end-point
ticular gauge for the electromagnetic gauge field but presingularity is removed even if the smeared vertex is taken to
sented the equivalence of the physical form fa&6g%) in  the limit of the point vertex.
any choice of the electromagnetic gatigein any choice of A significant entity of our work is the taxonomy of va-
the current component. . lence and nonvalence contributions substantiating the finite-
Our conditionally convergent example of LFD with a ness of each contribution when the gauge-boson vertex is
fermion-loop showed that the bad component of the currentegulated. Our results satisfy current conservation. However,
J~, with spin-1/2 constituents exhibits a persistent end-poinfye note that each contribution individually depends on the
Singularity in the contribution from the nonvalence diagramreference frame even though the sum is a|WayS frame inde-
[4]. However, the calculation carried out so far was semipendent. We thus elaborate the frame dependence of indi-
vidual contributions. Also, the zero-mode contribution
should be distinguished from the instantaneous contribution.
IFor a recent advocacy of the anti-light-cone gauye=0, see  FOr the numerical estimates of physical observables, we
M. Morara, R. Soldati, and G. McCartdin New Directions in  Present the electromagnetic form factors of th¢, andD
Quantum Chromodynamicsdited by Chueng-Ryong Ji and Dong- mMesons.
Pil Min, AIP Conf. Proc. No. 494AIP, Melville, NY, 1999, pp. In the next sectioriSec. I), we present both the covariant
284-29Q. Feynman calculations and the LF calculations using the LF
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energy integration for the electromagnetic form factors of ausingJ*. As we showed in Refl4], the matrix element of
pseudoscalar meson with spin-1/2 constituents. Section 10~ diverges even in1+1)-dimensional LFD. Unless one
contains the numerical taxonomy of both the valence andegulates]™, the current cannot be conserved. To assure cur-
nonvalence diagrams to the electromagnetic form factors dfent conservation, it was crucial to identify the term that
7,K andD-mesons. The conclusion and discussion follow incauses the divergence. We have identified this term exactly
Sec. IV. The general formula including unequal mass casegnd found that it is an infinite function of the momentum
are summarized in Appendix A and the analytic behavior oftransfer. If this infinite term is subtracted, the two LF contri-
the valence and nonvalence contributiongdt-0 limit in  butions become finite as it must be in a conserved current.

various frames is summarized in Appendix B. Moreover, their sum equals again the covariant result as ex-
pected. Still, the regularized LF contributions obtained from
Il. CALCULATIONS J~ are different from the ones extracted from the plus cur-

rent. The differences grow with increasing binding energy.
The electromagnetic form factors can be extracted from The covariant fermion triangle-loofFig. 1(a)] in 3+1
the matrix elements of the curredt: dimension is divergent if all the vertices are point-like. In the
(p’|34Ip)=ien(p’ -+ pH)F(q?), 2.1) recentlllteratugl&ld, the fermion Ipop was rggulated by
smearing theyq bound-state vertex in a covariant manner.
Whereem is the Charge of the meson aqa: (p’ — p)2 is the However, the vertex function used in Re[$5,16| was not
square of the four momentum transfer. If one uses the plussymmetric in the four momenta of the constituent quarks as
component, )™ = J%+J3, the LF calculation gives two finite We discussed in the Introduction. We note that the concep-
contributions, theLF valence form factoand theLF nonva-  tual difficulty associated with the asymmetry could be rem-
lence form factarthat add up to the covariant result, as ex-edied if the cutoff prescription is used in the gauge-boson
pected. The importance of the nonvalence contribution variesertex rather than in thgq bound-state vertex. In Fig.(d),
strongly with the momentum transfer and depends sensiwe thus replace the point photon-verteX by a non-local
tively on the binding energy of the meson. For small valuegor smearefl photon-vertexS, (k—p) y*Sy(k—p’), where
of g2 and small binding energy, the valence part is dominantS, (p) = A%/(p?— A?+ie€) andA plays the role of a momen-
but elsewhere the nonvalence diagram is essential for agregsm cut-off. Our method is gauge invariant, and satisfies the
ment between the LF calculation and the covariant results. WT identity [17]. Even though we have computed the cova-
The form factor can also be extracted from the minus-iant amplitude]Fig. 1(a)] with unequal constituent masses,
component of the currenfi=J°—J3. Covariance guaran- for the clarity of presentation we will focus in this section on
tees that it makes no difference whether the form factor ishe equal mass case, ira;=mg=m. The basic formulas for
determined using the plus or the minus current matrix elethe general case are given in the Appendix.
ment. As LFD is not manifestly covariant, it may happen that The covariant amplitud¢Fig. 1(a)] for a pseudoscalar
J~ leads to a form factor different from the one determinedmeson is given in the equal-mass case by

d* (m?—k2+p-p )k“+(k2—m?—k-p")p*+ (k2—m?—k-p)p'*
(2m)* D(k)D(k—p)D(k—p")Ds(k—p)D(k—p")

<p’IJ"|p>=4Nc92A4J : (2.2

whereN. is the number of colors angl modulo the obvious charge factey, is the normalization constant fixed by the unity
of the form factor at zero momentum transfer and the denominator fBq¢tor from the quark propagator with momentum
is given byD (k) =k?—m?+ie. While the bound-state vertex is still pointlike, it satisfies a corresponding relativistic bound-
state equation and a binding effect of the two-body bound state is thus included in our analysis. We note that one can split the
denominators in Eq2.2) into four terms(see belowto show the similarity between the methods of photon-vertex-smearing
and the Pauli-Villars regularization, namely the vertex-smearing-technique shares the same structure of the denominators with
the Pauli-Villars regularization. To investigate the issue of the end-point singuldtitwe present thd™ calculation in the
following.

First, the valence contribution shown in Figbl is obtained in the range<Ok* <p*. By picking up the pole of the

spectator quark, i.ekfz(m2+12f—ie)/k+, we obtain

(p'13| >__47TiNc92A4f dk*d%k, {—k+p7p’7+|ZL-5ip7+|zi-5ip'7—5i-5ikf}
p P (AZ_mZ)Z (277)4 k+(k+_p+)(k+_pr+)
1 1 1 1

X - - + ,
E(p,A)E(p",A) E(p,A)E(p’,m) E(p,mE(p’,A) E(p,mE(p’,m)

(2.3

where the energy denominatB(p,A) is defined as
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2k2 A2+|2_-)2
—p - (ky pL). (2.4

E(p,A)=
(p,A) K —p*

As we see from Eq(2.3), the result depends on the reference frame. However, as we will see later the sum of the valence and
nonvalence contributions will of course be identical in any frame. In the present section, we choose the framg*where
=ap” and 5¢ =0 and the momentum fractionis defined byk " =(1—x)p*. Then the LF valence form factfsee Eq(2.1)]

is given by

2N, g?A f J d?k, (1-x)(M?+g%)—(1+a)k, -q,

- 2\
Frall @)= (2+a)+G2/M? (2m)3 (1—X)X2(x+ )2

+ +
1—X X 1—X X

m?+k? m?+k? ~ MZ)

m2+k>  AZ+K? B MZ)

1

E — - (2.5
m?+k* A2+(k,—q,)2 M2+q, 2

1—-x X+ a 1+«

m?+k?  m?+(k,—q,)? M2+q?

1—-x X+« 1+«

whereM is the meson mass. The limit to the point vertex can be taken by lettinrge and we find that the result is finite in
this frame.

Next, the nonvalence contribution shown in Figc)lis obtained in the range™ <k*<p’*. Here, the pole is not taken as
the spectator but als*=p’*+[m2+(lzi—fﬂ)z—ie]/(k*—p’*) [for the term corresponding to the Pauli-Villars particle,
k‘=p"+[A2+(IZl—51)2—ie]/(k+—p’+)]. Following a procedure similar to the one described in the valence case, we
find the LF nonvalence form factor to be given by

(D)= 2Ncng4(1+a) f f d?k, 1 N(m) N(A) 2.6
= (A2=m?)[M?(2+ a)+q?] (2m)3 x2(1+x)(a—x) | DOD1D2  D5D3D4)’ '
where
. M2+0%  m2+ (K, —q,)2| || m?+(k, —q,)? (1+x)MA(M2+qg?) . .
— 2 2 _ L_ 1 1 2l L 2 1 . ) 2
N(m)—_m +Kki—(1+x) 15 X po— + 5o kK -q, M7,
2.7
R M2+q® A2+ (K, —q,) 2| || A2+ (K, —q,)? (1+x)M2(M T
— 2 2 L_ 2l 1 1 1 2 . 2
N(A)—_m +KE = (14| = p— o~ +M Tra -k, -q,M?,

MR (G,
1+a a—X C14x

M2+df m2+(Rﬂ_&J2 A2+Ei
+ + ,
1+« a—X X

MG (R =G )7 R
+ +

= 2_
D2=M 1+« a—X X

MZ+gf  A%+(k -q)® mP+ki
D5= - - :
1+« a—X 1+X

MZ+qf  A%+(k —q)® AP+KE
+ +
1+« a—X X
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M2+ g2 21 (ki =32 m2+Kk2 TABLE I. Our quel parameters of cor\stitgent quark masses
D4=M2— a  AHko—a) + L and cutoff values\ (in units of GeVj used in this work. The decay
1+ a a—X X constantsf Y™ [ f2Y™ obtained by Eq(2.8) [Eq. (2.10] are also

. . . compared with the experimental valugsP [24].
We find from Eq.(2.6) that the two terms in the integrand

are individually finite as long as the parameteris finite.  peson m
There is neither an ultraviolet divergence nor an end-point

o Ag Mg Ag YT feMev]

singularity. However, in the limit to the point vertéke. A 7 025 090 025 090 920222 92.4+0.25
—), we find that each term has not only a linear diver-K 025 0.90 048 0091 112[8394 113411
gence in the!?L integration, but also an end-point singularity D 178 179 025 0.90 108[@91.§ <1549

in thex integration, which cancel each other exactly. Thus, in
the point vertex limit, we find that the end-point singularity ] ) —
is completely removed even though the result is logarithmithe weak current is used with the asymmegrgcbound-state
fermion-loop with point vertices. This shows a striking dif- this work does not suffer from such an incomplete cancella-
ference from the calculation without relying on the vertextion of divergences no matter which component of the cur-
regularization from the beginnirfg]. The critical reason for ent is used. _ .
this is that the end-point singularity for the fermion-loop is a [N the next section, we present the numerical taxonomy of
consequence of the bottomless nature of the Dirac sea ariié 7. K, and D meson electromagnetic LF form factors
the vertex-smearing effectively provides the weighting in thechoosing various reference-frames, as well as the values of
Dirac sea deemphasizing the lower part. The previouslyhe decay constants,,fy andfp .
identified end-point singularitj4] is exactly canceled by the
identical end-point singularity from the term generated by I1l. NUMERICAL RESULTS
the vertex-smearing corresponding to the Pauli-Villars par-
ticle. Therefore, in the regularized case, all the physical de- " Table I, we present our model parameters such as the
grees of freedom are taken into account. constituent quark masses), and the cutoff valuesX), as

In addition, the sum of the valence and nonvalence con'ell as the decay constants that we calculated here and com-
tributionsF (92) = F(q2) + F(g?) is of course identical to pared to the experimental ddt24]. The meson masse&M)

the results obtained by other components of the current, i.ére taken as the experimental vali2g]. Our model param-
eitherd™ or J* [15,16.2 Also, the net resulE(q?) is inde- eters have been chosen to fit both the charge radii and the

pendent of the choice of reference frame. decay constants to the experimental data well, although the

A similar calculation can be made for the pseudoscalar@vailable data for the decay constant of bxeneson is only
meson decay constahtTaking a non-local gauge-boson ver- @1 Upper limit. We also compare in Table | the decay con-
tex, we verified again the exact cancellation of linear andt@nts from our symmetric non-local gauge-boson vertex

logarithmic divergences in th@wo-point fermion loop. The  (f*™) with those from the asymmetrigg bound-state vertex
result for the equal mass case such as the pion is given by(f®™ smearing case. However, we note that our calculation
here is limited in value because the zero-range approxima-

N.g mA# 1
j . dxlog

C(m,m)C(A,A) tion is used for the bound-state vertices.
f:
4\/§7T2(A2_m2)2

C(m,A)C(A,m)

) Three different reference frames were considered: the
2.8 Drell-Yan-West(DYW) frame, the target-rest fram@RF)

' and the Breit frame. The corresponding kinematics is given
in Table Il. The DYW frame has gained some popularity in
deep-inelastic scattering calculations because in that frame
C(my,my)=x(1-x)M?—(1—x)m?—xmz. (2.9 q* =0 identically. This frame can be obtained by taking the

whereC(mq,m,) is given by

If the asymmetricqabound-state vertex-smearing is used as TABLE Il. The kinematics in the reference frames used in this
in Refs.[15,16], the above result, Eq2.9), is replaced by ~ Work, wherex=Q?/2M andn=(cosé, sing).

N, g mA?2 1 C(m,m) Kinematics Target rest Breit DYW
f=—————| dxlogl =——|. (2.10 frame frame frame
4\2m3(A2—m?)Jo C(m,A)
q* k+Q\1+ k/2Mcosé +Q cosé 0
We note that the logarithmic divergence is not completelyq™ k— Q1+ k/2Mcos# —Qcosd Q%p*
canceled in the unequal mass case if the minus component gf Q1+ «x/2Msin 6n Qsin#n Qn
p* M WM?Z+Q%4—q* 2 p*
p- M MZ+Q%4—q /2 M?p*
2In the electromagnetic form factor, there is no zero-mode contriﬁL 0 _dL/z 0

bution in theJ, current.

074014-5



BAKKER, CHOI, AND JI PHYSICAL REVIEW D63 074014

1.0 T
DYW Frame
¢ Pvd = F-Iot= Foov
08 [ © ----Fa. i
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o e Amendolia 1986
% o Volmer 2000
w
04 -
02
0.0 L TnThmmmee- faltalad st T D -
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1.0 T T T 1.0 T
DYW frame DYW frame
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—-— F7,, (=zero-mode) N —-— F7,, (szero-mode)
06 I el |
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02 "~._ i
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FIG. 2. PionK, andD meson form factors in the Drell-Yan-We@YW) frame compared with experimental data for pja8—22 and
kaon[23]. The partF;, vanishes identically in this reference frame.

a—0 limit in the frame presented in Sec. Il. In the limit which are to a large extent due to the difference in binding:
a—1, the frame presented in Sec. Il coincides with thethe tighter the binding, the more importdhf, becomes. We
target-rest frame wit#=0. checked the binding effect in the case of the pion. By vary-

Now we comment on our results shown in the figuresing the quark mass alone from the realistic value of 0.25
below. (In all of these figures, we use thick solid lines for the GeV to 0.07007 GeV, thus lowering the binding energy to
covariant form factor, thick dashed lines 8(,, thick dot-  0.1% of the pion mass, we found that the valueRQf; at
dashed lines foF , thin dashed and dot-dashed lines for the@”=0 was increased from 6% to 69%. Still, fa@?
corresponding minus LF form factoysVe show in Fig. 2 >0.3 GeV F, is lower thanF . This indicates that for
the results of our numerical calculations using the pywthe larger values of?, the relativistic effects can still be
frame and compare with the experimental ddi@—23. Our ~ 1arge. _
total results, represented by the solid line in each figure, are | "€ frame dependence of the different components of the

also in very good agreement with the experimental data ofurrent can be studied by comparing the results of calcula-
the pion and kaon form factors, respectively tions in different frames and at different values of the polar

+ . ; . angle 6. It is worth mentioning that the results must be in-
In the DYW frameF,, vanishes identically. Remarkably, dependent of the azimuthal angle because rotations about

we f|_nd that the nonvalenqe part of .the minus current, WhIC!ﬁ{he z-axis are kinematical transformatior{§Ve used this fact
in this reference frame coincides with the zero-mode contri-

. . Lo as a check on the correctness of our codes.
bution, makes a very important contribution to the total form |, Fig. 3 we show the results of our numerical calcula-
factor and may even dominate over the valence part in thgons in the Breit frame a®=0. which differs from the

whole Q?-range considered. There are quantitative differ'target-rest frame a#=0 by a boost in the-direction only,
ences between the results obtained for the different mesongg the results are identical in these two frames. The first
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FIG. 3. Pion,K, andD meson form factors in the target-rest frafd&RF) or the Breit frame, both a#=0.

thing we notice is the great difference with the DYW frame.In both the target-rest frame and the Breit frame fbr
Now there is a sizable contribution froffy,, which domi- = 7/2 the transferred momentum is purely transverse. As the
nates at higher values of the momentum transfe®%t 0, pure Lorentz boosts in the transverse directidp,and K,
F ., coincides with the covariant form factor. It crosge§, ~ are dynamical in LFD, we must expect a strong frame de-
at some value of)?, the crossover point being smaller for pendence and this is indeed what we find.cfs=0 in the
larger binding energy. It is of special interest to separate th&reit frame for = /2, the partF, vanishes identically.
instantaneous part, i.e. the contributionR6 from diagrams  Still, the DYW frame results differ for the minus current,
with one internal instantaneous propagator. They are given iwhich is clear from a comparison with Fig. 2. The reason is
the figures by crossesx(). It turns out that they give a very that the minus component of the current in DYW frame is
large contribution to the pion form factor but become negli-not proportional to the minus component of the current in the
gible for the heavyD-meson case. Breit frame foré= /2. For the same reason the zero-mode
Turning to the minus current we see that in this referenceontributions differ in the two frames. In the DYW frame it
frame the relative importance &, becomes more promi- is very close to the total form factor, while in the Breit frame
nent than in the DYW frame for the more tightly bound it even overshoots the covariant form factor at large values of
mesonsw andK. In the case of the pion the dominance of Q* by a factor of almost 2. In this connection we want to
F.. is so strong that it can hardly be distinguished from themention the work of Frederico et dlL5], who performed a
covariant form factor. The figureén Fig. 3 suggest that at calculation similar in spirit to ours, but claimed that in the
Q?=0 the values obtained are frame independent. This iBreit frame ato= /2 F ,, is always very close to the cova-
indeed the case as we found in our calculations and can bént form factor. This discrepancy was due to the difference
understood as the equality of the form factors in the long-of their F,, definition in the Breit frame ab==/2, where
wave-length limit. they removed the term that is odd under the transformation
A first glance at the angle dependence is given in Fig. 4p —k™ — —(p~ —k™) in their definition[25]. However, our
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FIG. 4. Pion form factor in the target-rest frame and the Breit frame=atr/2.

definition ofF, is general for any angl@ and our results on

the #-dependence are smooth as shown in Fig. 9.

As a summary of what we found concerning the angle

dependence we show in Fig. 9 the complete angle depen-

We show the systematics of the angle dependence for tHéence for two values of the momentum transfef~0 and
case of the pion only. Our results are depicted in Figs. 5-80-1 GeV2. All curves in this figure are clearly smooth and

(The thick solid line for6=0, thin dotted line ford= w/4,
the thick dashed line fof= /2, the thin dot-dashed line for Polar angled.

0=3/4, and the thick long-dashed line fér= 77.) One sees
immediately that the angle dependence is smooth but can be
very strong, both for the valence and the nonvalence parts,
calculated from either the plus or the minus current.

demonstrate the fact that there is no preferred value for the

IV. CONCLUSION AND DISCUSSION

_ € o In this paper, we have analyzed all the components of the
One might try to exploit the angle dependence to optimizeyrrent quantized on the light-front to compute the electro-

the calculation of the form factor in a noncovariant frame'magnetic form factors of pseudosca|ar mesons with Spin_l/z

work. However, as the figures above clearly show, there igonstituents. Since our aim in this work was to analyze the
no value for the angl@ where bothF, andF,, are negli-  taxonomy of the triangle diagram, we did not choose any
gible, or even suppressed, compared to the valence parts, fparticular electromagnetic gauge but just presented the
all values ofQ?. On the contrary, as the values of the form equivalence of the physical form facts(g?) in any choice
factor components @?=0 are frame independent, we can of the current component. The divergence appearing in the
be sure thaF ,, must be very important for an important part (3+1)-dimensional fermion-loop calculations was regulated

of the Q? range. by the covariant vertex-smearing-technique. Performing the

2.0 1.0
TRF
— 06=0
N e 0=m/4
1.5 N ----06=m2
\\ —-— 0=3n/4
—_——-0=1
4 “‘g
o / // TRF
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] 2 9=n/4
-0.5 ‘ll ----6=n2
I
—-— 9=3m4
) ——=-0=n
e T T ———— ] 1.0 : ‘ ‘
15 2.0 0.0 05 15 20

Q[GeV

FIG. 5. Pion LF form factor$

+
val

1.0
Q[GeV]

andF/, in the target-rest frame for five different values of the polar arfgle
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Breit frame
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e 0=m/4
----0=n2 b
—-— 6=3w4
——-08=nx

Fn+val(02)

15 2.0 0.0 0.5 1.0 15 2.0
QGeV)

FIG. 6. Pion LF form factoré ., andF 7, in the Breit frame for five different values of the polar angle

light-front calculation, we verified that the vertex-smearing- From our numerical calculations we can conclude that to
technique is similar to the Pauli-Villars regularization. In the obtain agreement with the covariant form factor one needs
J~ computation, we find that the critical smearing effect per-both the valence and the nonvalence parts. For tightly bound
sists even in the limit to the point vertex because the endstates the nonvalence parts dominate in an important part of
point singularity existing otherwise is completely removedthe range ofQ? values that we studied. It is natural that this
once the limit is taken at the end of the calculation. If theresult runs counter to nonrelativistic intuition, which says
limit is taken at the beginning of the calculation, however,that the valence parts should dominate, because the tightly
we have already shown that the end-point singularity in thd>ound states are not expected to be non-relativistic. In Ref.
nonvalence contribution leads to an infinitely different result(4] it was demonstrated in the+1)-dimensional case, that
from that obtained by the covariant Feynman calculafgln by weakening the binding ., andF, approximate the co-
Our taxonomical analysis demonstrated that each individuatariant form factor more and more closely. Here we found
contribution, whether valence or nonvalence, is finite regardthat indeed for less tightly bound states the valence parts
less of which component of the current is considered. Howcome closer to the covariant result, but everQdt=0 F
ever, we stress that each contribution depends on thgives only 69% of the covariant form factor.

reference-frame even though the sum does not. Of course, If two reference frames can be connected by a kinematical
the invariance of the sum ensures the current conservatiohorentz transformation the LF form factors calculated in
Also, the zero-mode contribution should be distinguishedhese two frames must be the same. Otherwise they must
from the instantaneous contribution as we have numericallgiffer. We found that the angle dependence within a chosen

estimated the differences. reference frame is always smooth, although it may be very
T 1.0 T
TRF
—6=0 0.8
U 0
| ———p=
02 A\ —-— 0=3mw4 )
: \ ———0=n 0.6
> \ o
g I\ <
s \ *
w L \ 0.4
0.1 N j
\ \
\ Y
S~ 0.2
\ S~
AR \\\‘~~
NS T
0.0 N S e - 0.0 | | L
.0 0.5 15 2.0 0.0 0.5 15 2.0

FIG. 7. Pion LF form factor$, andF,, in the target-rest frame for five different values of the polar argle
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FIG. 8. Pion LF form factors$,, andF, in the Breit frame for five different values of the polar angle

strong. For some values of the polar angléwo reference  similarity to the Pauli-Villars regularization and the cancel-

frames may be connected by a kinematical Lorentz transforations of both ultra-violet divergence and the end-point sin-
mation, e.g., the target-rest frame and the Breit framegfor gularity remain intact. Nevertheless, the numerical results
=0. On the other hand, the DYW frame and the Breit framemay differ from a more realistic model calculation. This

for 6=0 are not connected by a kinematical transformationpoint is presently under investigation.

and the form factor components consequently do not coin-

cide. More details of the frame-dependence can be found in
Ref. [26].
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vertices those obtained from a Bethe-Salpeter equation usingq they want to thank the staff of the Department of Physics
a contact interactiofi7] which are of zero range and may 4 vy for their kind hospitality. B.L.G.B. wants to thank the
emphasize the importance of the nonvalence contributiongaff of the Department of Physics at NCSU for their warm
rather differently from a more realistic model. Thus, there ishospitality during a stay when this work was completed. The
still much room for extending our model towards a morenorth Carolina Supercomputing Center and the National En-
realistic model. However, the essential conclusions about thgrgy Research Scientific Computer Center are also acknowl-

edged for the grant of Cray time.
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Breit frame

APPENDIX A: UNEQUAL-MASS CASE

If we number the momenta of the internal lines of the
fermion triangle ask; (spectator, k,=p+k;, and ky=p’
+k; (struck quark respectively, and the corresponding
masses asn;, m,, andms, then we find for the trace ap-
pearing in the numerator of the covariant integral the expres-
sion

TH=4[ — (mymg—K;- Kz)Ky + (myms—K; - k3) k5

+(mimy—Kky-ko)KE]. (A1)

The valence diagram is obtained if one calculates the integral
overk; by closing the contour around the pole correspond-
FIG. 9. Systematics of the angle dependence of the LF forning to putting the spectatdr; on the mass-shell. This corre-
factors atQ?=0.1 Ge\? (thick lineg and 0 Ge¥ (thin lines inthe ~ sponds to the following values for the minus components of

Breit frame. the momenta to be used in the expressionTiér

O(radian)
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k2 +m2 results depend on the kinematics: it matters in which refer-
k; = EE " t ky=p +k;, ky=p’ ~+k;. ence frame one does the calculations.
Ky We use the formulas for the momenta given in Table I

(A2) and expand the trace and the energy denominators in powers
of Q. From this expansion the analyticity properties of the
LHmplitudes follow. We have numerically verified that a
blow-up of Figs. 5-8 for smal? illustrates the analyticity
properties of the amplitudes discussed in this appendix. The
three different reference frames are discussed consecutively.

around the pole corresponding kg. Then one gets for the
part of the propagator with the masg

2 2
_k3L+m3

Ko
3 k;.

, kiy=—p" "+ks, ky=p —p'tk;3.
1. Target-rest frame
(A3)
We discuss the valence part of the plus-current in detail;

For the part of the propagator with the cutdff the same the other LF form factors can be treated in a similar way.
formula can be used, but witlm; replaced byA’. First we expand the momenta:

As the smearing we use affects only the denominator ~ R
parts of the propagator of the struck quark, the replacement  q~=qcosf+O(Q?), q,=Qsindn+0O(Q3),
of ms by A’ in T# occurs only in the minus components.

The energy denominators are easy to find. One obtains,

for the valence parts, P’ =M+Qcosf+0(Q%, p|=Qsindn+0(Q°).

(B1)
ki, +mi k3, +mj

ki ks

D(k=p)=p~ + , The trace consists of a piece that is independei@ ahd

a piece that consists of two parts, one that is proportional to
R +m? R, +mi lel_i-ﬁsina and/a part proportional t@ cos6. The de-
L 1731 3 nominatorD (k—p’) has a similar behavior, bl (k—p) is
ki ki independent of.
(A4) Upon integration overk, , the terms proportional to
ki | -nsin@ vanish. Consequently, the valence paff, has
the smallQ behavior

D(k—=p")=p" "+

The nonvalence part has the same denominBide—p'),
but D(k—p) is changed to
K2, +mi K3, +md Fua~Fil+FitQ cosé. (B2)
+ + (AS)
k3 k2

D'(k=p)=p —p" "+
The other cases, nonvalence plus-current, valence and

The energy denominato®, andD),, are obtained by the nonvalence minus-current, show the same pattern. There are
substitutionsm,— A andms— A, respectively. plgcesAlndependent o, parts with theQ dependence

In the case wheren,=m,=m; andA=A" the final for-  Qky,-nsing and ones proportional td® cosé. As the
mulas are much simplified. The explicit formulas in the mainpieces proportional t&; , - n vanish upon integration, all the
text are valid for the equal-mass case. The general case caomponents of the form factor show a behavior similar to

be easily constructed from the expressioAs)—(A5). Eqg. (B2). So, only for6= /2 do we find that the LF time-
In the explicit formulas we use the notation ordered amplitudes calculated in the target-rest frame are
analytic inQ?2.
p+ _ k+
k#=—Kkf{, x= " (valence,
2. Breit frame
P P In the case of the Breit frame we can follow the same line
k™ — p'T—p

as in the case of the target-rest frame. The only difference is

that now no terms of the fornQk, , -nsin@ appear. As
(AB)  those terms give no contribution to first order@nanyway,

this does not alter the result: also in the Breit frame the
APPENDIX B: ANALYTICITY components of the form factor have the same siQale-

. . _ havior as in Eq(B2).
From the covariant expression for the amplitude one can

prove that the form factors are analytic functionsQst. This
proof is not valid for the LF-time-ordered amplitudes. One
can, however, expand the expressions that one obtains for the In the Drell-Yan-West frame there is no angle depen-
different parts of the form factor in terms gfand determine ~ dence. However, there is a term lineaQnlt is proportional
the Q-dependence at small values®¥. It turns out that the to Qn-k; , . Of course, this term also vanishes upon integra-

X= (nonvalencg, a=

+

3. Drell-Yan-West frame
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tion overk, , . Therefore, in the Drell-Yan-West frame we gration variable as in E(f/A6) and obtain an integral over

find no term linearly dependent dd, so the amplitudes are from O to 1. The Jacobian beirg’, it cancels one factog™
analytic inQ2. in the denominator, so we only need to show that the leading

term vanishes to prove that the zero-mode contribution is
finite.
Upon carrying out the algebra we find the following re-
The zero mode is defined as the contribution to the nonsult. The leading part is proportional to
valence amplitude that survives in the limit — 0. It is easy . . . .
to see that only the minus-current can have a zero-mode park?(k3 | +m3) (k5 , + A’ 2)—(1—x)?(k3 | +m3) (k3 , +A?).
because the integral definirfg,, has an integrand that re- (B3)
mains finite wherg® goes to 0. However, the integrand de- __ . . . -
fining F,, diverges when the limigg™ —0 is taken. In order Thls pa}rt Of the Jntegr?nd does not .van|sh, becakise
to determine the limit, one may expand the integrand in pow=P. —Ki #ks  =p’L —k, . However, if we takeA’=A
ers ofq*. As q* is taken to be zero in the Drell-Yan-West @nd m;=mj, being the mass of the struck quark, and as
frame, the analysis cannot be done in that frame, but it cak, , . k3, , andk, differ only by a constant vector, this

most easily be carried out in the Breit frame. function vanishes after integration ovefrom 0 to 1 andk,

The algebra being straightforward but tedious, we shalbver the whole ofR,. So we see that the coefficient of the
not give the details. Rather we quote the final result. If wecontribution proportional to " vanishes. The remaining
consider the smeared case, the most divergent part of theart, the piece that survives the limit"—O0, is the zero
integrand forF ., has the behavior @/ 2. As the integration mode contribution. In the Breit frame as well as the target
overk; ranges from—p’ * to —p™, we can scale the inte- rest frame it is well-defined and finite.
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