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The divergences appearing in the~311!-dimensional fermion-loop calculations are often regulated by
smearing the vertices in a covariant manner. Performing a parallel light-front calculation, we corroborate the
similarity between the vertex-smearing technique and the Pauli-Villars regularization. In the light-front calcu-
lation of the electromagnetic meson current, we find that the persistent end-point singularity that appears in the
case of point vertices is removed even if the smeared vertex is taken to the limit of the point vertex. Reca-
pitulating the current conservation, we substantiate the finiteness of both valence and nonvalence contributions
in all components of the current with the regularized bound-state vertex. However, we stress that each contri-
bution, valence or nonvalence, depends on the reference frame even though the sum is always frame indepen-
dent. The numerical taxonomy of each contribution including the instantaneous contribution and the zero-mode
contribution is presented in thep, K, andD-meson form factors.
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I. INTRODUCTION

With the recent advances in the Hamiltonian renormali
tion program, light-front dynamics~LFD! appears to be a
promising technique to impose the relativistic treatment
hadrons. In LFD a Fock-space expansion of bound state
made to handle the relativistic many-body effects in a c

sistent way@1#. The wave functioncn(xi ,kW i ' ,l i) describes
the component withn constituents, with longitudinal mo

mentum fractionxi , perpendicular momentumkW i ' and he-
licity l i , i 51, . . . ,n. It is the aim of LFD to determine thos
wave functions and use them in conjunction with hard sc
tering amplitudes to describe the properties of hadrons
their response to electroweak probes. Important steps w
taken towards a realization of this goal@2#. However, at
present there are no realistic results available for wave fu
tions of hadrons based on QCD alone. In order to calcu
the response of hadrons to external probes, one might re
to the use of model wave functions. The variational princi
enabled the solution of a QCD-motivated effective Ham
tonian and the constructed LF quark-model provided a g
description of the available experimental data spanning v
ous meson properties@3#. The same reasons that make LF
so attractive to solve bound-state problems in field the
make it also useful for a relativistic description of nucle
systems. Presently, it is realized that a parametrization
nuclear reactions in terms of non-relativistic wave functio
must fail. LF methods have the advantage that they are
mally similar to time-ordered many-body theories, yet p
vide relativistically invariant observables. Furthermore,
far as the concerned amplitude is unconditionally~or abso-
lutely! convergent, the LF Hamiltonian approach must yie
0556-2821/2001/63~7!/074014~12!/$20.00 63 0740
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the same result as the one obtained by a covariant Feyn
approach.

However, not all is well. As we have recently shown@4#,
the amplitudes that are only conditionally convergent m
be treated with care. A case in point discussed in our w
@4# was the calculation of a current matrix element in qua
tum field theory. A typical amplitude is given by the triang
diagram. One encounters this diagram e.g. when compu
the meson form factor@see Fig. 1~a!#. The vertices denoted
by F are coupling constants in covariant perturbation theo
The hard scattering process is the absorption of a photo
momentumq by a ~anti-!quark. In the LFD approach the
covariant amplitude is replaced by a series of LF tim
ordered diagrams. In the case of the triangle diagram they
depicted in Figs. 1~b! and 1~c!. The first@Fig. 1~b!# of these
two diagrams is easily interpreted in terms of the LF wa
functionsC. However, the other diagram@Fig. 1~c!# has one
vertex that can again be written in the same way as bef
but it contains also another vertex, denoted byC8, that can-
not be written as a LF wave function. The necessity of t
new elementC8 in LFD has also been discussed in the ca
of semileptonic meson decays@5# and deeply virtual Comp-

FIG. 1. Covariant triangle diagram~a! is equal to the sum of two
light-front time-ordered diagrams, i.e., valence~b! and nonvalence
~c! diagrams.
©2001 The American Physical Society14-1
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ton scattering@6#. One may callC and C8 the vertices of
leading order and non-leading order, respectively, in
sense that the leading order vertex corresponds to the lo
Fock state whereas the non-leading order vertex takes
account the higher Fock states. The diagrams withC8 are
designated asnonvalencediagrams while those with vertice
of type C only are designated asvalencediagrams. In order
to obtain the invariant form factor, the two LF form facto
must be added. It depends on the situation whether one
limit oneself to a single component of the currentJm to ex-
tract the invariant objects. For the electromagnetic curren
a spin-0 particle any single component would suffice to
tract the unique form factor. On the other hand, in situatio
like semileptonic pseudoscalar meson decay, which invo
two independent form factors, or the electromagnetic curr
of a ~axial-!vector particle that is described by three indepe
dent form factors, one must use information from seve
current components to determine the invariant amplitude

Earlier, we presented an analysis of contributions fr
the nonvalence diagrams@4#. We constructed both leadin
and non-leading order vertices using pointlike covari
ones. The model that we used was essentially an extensio
Mankiewicz and Sawicki’s (111)-dimensional quantum
field theory model@7#, which was later reinvestigated b
several others@8–12#. While their model@7# was a simple
~111!-dimensional scalar field theory, it included a bindin
effect of the two-body bound state. Indeed, in Ref.@9#, the
relativistic two-body bound-state form factor was discuss
in the full range of the binding energy. The starting mod
wave function was the solution of the covariant Beth
Salpeter equation in the ladder approximation with a rela
istic version of the contact interaction@9#. The covariant
model wave function was a product of two free single p
ticle propagators, the overall momentum-conserving Di
delta function, and a constant vertex function. Consequen
all our form factor calculations were various ways of eva
ating the Feynman triangle diagram in quantum field theo
As pointed out in Ref.@13#, however, the elastic electromag
netic form factors of a bound-state computed from the
angle diagram and from the Hamiltonian front-form dyna
ics are the same@14#. Since our aim was to analyze th
taxonomy of the triangle diagram, we didn’t choose any p
ticular gauge for the electromagnetic gauge field but p
sented the equivalence of the physical form factorF(q2) in
any choice of the electromagnetic gauge1 or in any choice of
the current component.

Our conditionally convergent example of LFD with
fermion-loop showed that the bad component of the curr
J2, with spin-1/2 constituents exhibits a persistent end-po
singularity in the contribution from the nonvalence diagra
@4#. However, the calculation carried out so far was se

1For a recent advocacy of the anti-light-cone gauge,A250, see
M. Morara, R. Soldati, and G. McCartor@in New Directions in
Quantum Chromodynamics, edited by Chueng-Ryong Ji and Dong
Pil Min, AIP Conf. Proc. No. 494~AIP, Melville, NY, 1999!, pp.
284–290#.
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realistic as the model was~111!-dimensional and only a
point-vertex was considered.

In the present work, we extend our analysis of t
fermion-loop to the case of 311 dimensions. In 311 dimen-
sions both the covariant and the LF calculations are div
gent and the model without any smeared vertex for the
mion loop is not well defined. In the recent literature@15,16#,

the fermion-loop was regulated by smearing theqq̄ bound-
state vertex in a covariant manner. However, the vertex fu
tion was not symmetric in the four momenta of the consti
ent quarks and could hardly be considered a reali

approximation of aqq̄ bound state. It was regarded only as
convenient cutoff prescription which makes the one-loop
tegrals finite@15,16#. Furthermore, the calculation of the me
son decay constant reveals that the end-point singularit
not completely canceled by such an asymmetric choice of
vertex function.~See the next section for more details.! We
show in this work that the fermion-loop can also be regula
by taking a non-local gauge-boson vertex. With this meth
satisfying the Ward-Takahashi~WT! identity @17#, we found
the complete cancellation of the end-point singularity n
only in the electromagnetic form factor but also in the dec
constant. The non-local gauge-boson vertex remedies
the conceptual difficulty associated with the asymmetric w
of treatingq and q̄ in the previous calculations@15,16#.

Nevertheless, one should distinguish the bound state f
the confined state. In this work, we are treating the meson
bound states rather than confined states, because we d
yet know how to make a covariant regularization for t
confined-state. Thus, our emphasis here is the inclusion
the non-leading order vertex rather than the model-build
of a realistic meson wave function.

We have performed the LF calculation in parallel to t
covariant Feynman calculation. Our light-front results ent
the similarity between the vertex-smearing-technique~either
for the bound-state vertex or the gauge-boson vertex! and the
Pauli-Villars regularization. For the bosonic loop calculatio
the two methods turn out to be identical. However, for t
fermionic loop calculation, the vertex-smearing-techniq
shares only the same structure of the denominators with
Pauli-Villars regularization. Using the gauge-boson verte
smearing technique, we found that the persistent end-p
singularity is removed even if the smeared vertex is taken
the limit of the point vertex.

A significant entity of our work is the taxonomy of va
lence and nonvalence contributions substantiating the fin
ness of each contribution when the gauge-boson verte
regulated. Our results satisfy current conservation. Howe
we note that each contribution individually depends on
reference frame even though the sum is always frame in
pendent. We thus elaborate the frame dependence of
vidual contributions. Also, the zero-mode contributio
should be distinguished from the instantaneous contribut
For the numerical estimates of physical observables,
present the electromagnetic form factors of thep,K, andD
mesons.

In the next section~Sec. II!, we present both the covarian
Feynman calculations and the LF calculations using the
4-2
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REGULARIZING THE DIVERGENT STRUCTURE OF . . . PHYSICAL REVIEW D 63 074014
energy integration for the electromagnetic form factors o
pseudoscalar meson with spin-1/2 constituents. Section
contains the numerical taxonomy of both the valence
nonvalence diagrams to the electromagnetic form factor
p,K andD-mesons. The conclusion and discussion follow
Sec. IV. The general formula including unequal mass ca
are summarized in Appendix A and the analytic behavior
the valence and nonvalence contributions atQ2→0 limit in
various frames is summarized in Appendix B.

II. CALCULATIONS

The electromagnetic form factors can be extracted fr
the matrix elements of the currentJm:

^p8uJmup&5 iem~p8m1pm!F~q2!, ~2.1!

whereem is the charge of the meson andq25(p82p)2 is the
square of the four momentum transfer. If one uses the p
component,J15J01J3, the LF calculation gives two finite
contributions, theLF valence form factorand theLF nonva-
lence form factor, that add up to the covariant result, as e
pected. The importance of the nonvalence contribution va
strongly with the momentum transfer and depends se
tively on the binding energy of the meson. For small valu
of q2 and small binding energy, the valence part is domina
but elsewhere the nonvalence diagram is essential for ag
ment between the LF calculation and the covariant resul

The form factor can also be extracted from the min
component of the current,J25J02J3. Covariance guaran
tees that it makes no difference whether the form facto
determined using the plus or the minus current matrix e
ment. As LFD is not manifestly covariant, it may happen th
J2 leads to a form factor different from the one determin
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usingJ1. As we showed in Ref.@4#, the matrix element of
J2 diverges even in~111!-dimensional LFD. Unless one
regulatesJ2, the current cannot be conserved. To assure c
rent conservation, it was crucial to identify the term th
causes the divergence. We have identified this term exa
and found that it is an infinite function of the momentu
transfer. If this infinite term is subtracted, the two LF cont
butions become finite as it must be in a conserved curr
Moreover, their sum equals again the covariant result as
pected. Still, the regularized LF contributions obtained fro
J2 are different from the ones extracted from the plus c
rent. The differences grow with increasing binding energ

The covariant fermion triangle-loop@Fig. 1~a!# in 311
dimension is divergent if all the vertices are point-like. In t
recent literature@15,16#, the fermion-loop was regulated b
smearing theqq̄ bound-state vertex in a covariant manne
However, the vertex function used in Refs.@15,16# was not
symmetric in the four momenta of the constituent quarks
we discussed in the Introduction. We note that the conc
tual difficulty associated with the asymmetry could be re
edied if the cutoff prescription is used in the gauge-bos
vertex rather than in theqq̄ bound-state vertex. In Fig. 1~a!,
we thus replace the point photon-vertexgm by a non-local
~or smeared! photon-vertexSL(k2p)gmSL(k2p8), where
SL(p)5L2/(p22L21 i e) andL plays the role of a momen
tum cut-off. Our method is gauge invariant, and satisfies
WT identity @17#. Even though we have computed the cov
riant amplitude@Fig. 1~a!# with unequal constituent masse
for the clarity of presentation we will focus in this section o
the equal mass case, i.e.mq5mq̄5m. The basic formulas for
the general case are given in the Appendix.

The covariant amplitude@Fig. 1~a!# for a pseudoscala
meson is given in the equal-mass case by
ty

und-
split the

ring
ators with
^p8uJmup&54Nc g2L4E d4k

~2p!4

~m22k21p•p8!km1~k22m22k•p8!pm1~k22m22k•p!p8m

D~k!D~k2p!D~k2p8!DL~k2p!DL~k2p8!
, ~2.2!

whereNc is the number of colors andg, modulo the obvious charge factorem is the normalization constant fixed by the uni
of the form factor at zero momentum transfer and the denominator factorD(k) from the quark propagator with momentumk
is given byD(k)5k22m21 i e. While the bound-state vertex is still pointlike, it satisfies a corresponding relativistic bo
state equation and a binding effect of the two-body bound state is thus included in our analysis. We note that one can
denominators in Eq.~2.2! into four terms~see below! to show the similarity between the methods of photon-vertex-smea
and the Pauli-Villars regularization, namely the vertex-smearing-technique shares the same structure of the denomin
the Pauli-Villars regularization. To investigate the issue of the end-point singularity@4#, we present theJ2 calculation in the
following.

First, the valence contribution shown in Fig. 1~b! is obtained in the range 0,k1,p1. By picking up the pole of the
spectator quark, i.e.,k25(m21kW'

2 2 i e)/k1, we obtain

^p8uJ2up&5
24p iNc g2L4

~L22m2!2 E dk1d2kW'

~2p!4

$2k1p2p821kW'•pW'8 p21kW'•pW'p822pW'•pW'8 k2%

k1~k12p1!~k12p81!

3F 1

E~p,L!E~p8,L!
2

1

E~p,L!E~p8,m!
2

1

E~p,m!E~p8,L!
1

1

E~p,m!E~p8,m!
G , ~2.3!

where the energy denominatorE(p,L) is defined as
4-3
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E~p,L!5
m21kW'

2

k1
2p22

L21~kW'2pW'!2

k12p1
. ~2.4!

As we see from Eq.~2.3!, the result depends on the reference frame. However, as we will see later the sum of the vale
nonvalence contributions will of course be identical in any frame. In the present section, we choose the frame wq1

5ap1 andpW'50 and the momentum fractionx is defined byk15(12x)p1. Then the LF valence form factor@see Eq.~2.1!#
is given by

Fval
2 ~q2!5

2Nc g2L4

~21a!1qW'
2 /M2E0

1

dxE d2kW'

~2p!3

~12x!~M21qW'
2 !2~11a!kW'•qW'

~12x!x2~x1a!2

3
1

S m21kW'
2

12x
1

m21kW'
2

x
2M2D S m21kW'

2

12x
1

L21kW'
2

x
2M2D

3
1

S m21kW'
2

12x
1

m21~kW'2qW'!2

x1a
2

M21qW'
2

11a
D S m21kW'

2

12x
1

L21~kW'2qW'!2

x1a
2

M21qW'
2

11a
D , ~2.5!

whereM is the meson mass. The limit to the point vertex can be taken by lettingL→` and we find that the result is finite in
this frame.

Next, the nonvalence contribution shown in Fig. 1~c! is obtained in the rangep1,k1,p81. Here, the pole is not taken a
the spectator but ask25p821@m21(kW'2pW'8 )22 i e#/(k12p81

… †for the term corresponding to the Pauli-Villars particl

k25p821@L21(kW'2pW'8 )22 i e#/(k12p81)]. Following a procedure similar to the one described in the valence case
find the LF nonvalence form factor to be given by

Fnv
2 ~q2!52

2Nc g2L4~11a!

~L22m2!@M2~21a!1qW'
2 #
E

0

a

dxE d2kW'

~2p!3

1

x2~11x!~a2x!
F N~m!

D0D1D2
2

N~L!

D5D3D4G , ~2.6!

where

N~m!5Fm21kW'
2 2~11x!S M21qW'

2

11a
2

m21~kW'2qW'!2

a2x
D GFm21~kW'2qW'!2

a2x
1M2G1

~11x!M2~M21qW'
2 !

11a
2kW'•qW'M2,

~2.7!

N~L!5Fm21kW'
2 2~11x!S M21qW'

2

11a
2

L21~kW'2qW'! 2

a2x
D GFL21~kW'2qW'!2

a2x
1M2G1

~11x!M2~M21qW'
2!

11a
2kW'•qW'M2,

D05
M21qW'

2

11a
2

m21~kW'2qW'! 2

a2x
2

m21kW'
2

11x
,

D15M22
M21qW'

2

11a
1

m21~kW'2qW'! 2

a2x
1

L21kW'
2

x
,

D25M22
M21qW'

2

11a
1

m21~kW'2qW'!2

a2x
1

m21kW'
2

x
,

D55
M21qW'

2

11a
2

L21~kW'2qW'!2

a2x
2

m21kW'
2

11x
,

D35M22
M21qW'

2

11a
1

L21~kW'2qW'!2

a2x
1

L21kW'
2

x
,

074014-4
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D45M22
M21qW'

2

11a
1

L21~kW'2qW'!2

a2x
1

m21kW'
2

x
.

We find from Eq.~2.6! that the two terms in the integran
are individually finite as long as the parameterL is finite.
There is neither an ultraviolet divergence nor an end-po
singularity. However, in the limit to the point vertex~i.e. L
→`), we find that each term has not only a linear dive
gence in thekW' integration, but also an end-point singulari
in thex integration, which cancel each other exactly. Thus
the point vertex limit, we find that the end-point singulari
is completely removed even though the result is logarith
cally divergent as it must be in the~311!-dimensional
fermion-loop with point vertices. This shows a striking d
ference from the calculation without relying on the vert
regularization from the beginning@4#. The critical reason for
this is that the end-point singularity for the fermion-loop is
consequence of the bottomless nature of the Dirac sea
the vertex-smearing effectively provides the weighting in
Dirac sea deemphasizing the lower part. The previou
identified end-point singularity@4# is exactly canceled by the
identical end-point singularity from the term generated
the vertex-smearing corresponding to the Pauli-Villars p
ticle. Therefore, in the regularized case, all the physical
grees of freedom are taken into account.

In addition, the sum of the valence and nonvalence c
tributionsF(q2)5Fval(q

2)1Fnv(q
2) is of course identical to

the results obtained by other components of the current,
eitherJ1 or J' @15,16#.2 Also, the net resultF(q2) is inde-
pendent of the choice of reference frame.

A similar calculation can be made for the pseudosca
meson decay constantf. Taking a non-local gauge-boson ve
tex, we verified again the exact cancellation of linear a
logarithmic divergences in the~two-point! fermion loop. The
result for the equal mass case such as the pion is given

f 5
Nc g mL4

4A2p2~L22m2!2E0

1

dx logFC~m,m!C~L,L!

C~m,L!C~L,m!G ,
~2.8!

whereC(m1 ,m2) is given by

C~m1 ,m2!5x~12x!M22~12x!m1
22xm2

2 . ~2.9!

If the asymmetricqq̄ bound-state vertex-smearing is used
in Refs.@15,16#, the above result, Eq.~2.8!, is replaced by

f 5
Nc g mL2

4A2p2~L22m2!
E

0

1

dx logFC~m,m!

C~m,L!G . ~2.10!

We note that the logarithmic divergence is not complet
canceled in the unequal mass case if the minus compone

2In the electromagnetic form factor, there is no zero-mode con
bution in theJ' current.
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the weak current is used with the asymmetricqq̄ bound-state
vertex smearing. The non-local gauge-boson vertex use
this work does not suffer from such an incomplete cance
tion of divergences no matter which component of the c
rent is used.

In the next section, we present the numerical taxonomy
the p, K, and D meson electromagnetic LF form facto
choosing various reference-frames, as well as the value
the decay constantsf p , f K and f D .

III. NUMERICAL RESULTS

In Table I, we present our model parameters such as
constituent quark masses (m), and the cutoff values (L), as
well as the decay constants that we calculated here and c
pared to the experimental data@24#. The meson masses~M!
are taken as the experimental values@24#. Our model param-
eters have been chosen to fit both the charge radii and
decay constants to the experimental data well, although
available data for the decay constant of theD-meson is only
an upper limit. We also compare in Table I the decay co
stants from our symmetric non-local gauge-boson ver
( f sym) with those from the asymmetricqq̄ bound-state vertex
( f asym) smearing case. However, we note that our calculat
here is limited in value because the zero-range approxi
tion is used for the bound-state vertices.

Three different reference frames were considered:
Drell-Yan-West~DYW! frame, the target-rest frame~TRF!
and the Breit frame. The corresponding kinematics is giv
in Table II. The DYW frame has gained some popularity
deep-inelastic scattering calculations because in that fr
q150 identically. This frame can be obtained by taking t

i-

TABLE I. Our model parameters of constituent quark massesm,
and cutoff valuesL ~in units of GeV! used in this work. The decay
constantsf sym @ f asym# obtained by Eq.~2.8! @Eq. ~2.10!# are also
compared with the experimental valuesf exp @24#.

Meson mq Lq mq̄ L q̄ f sym@ f asym# f exp@MeV#

p 0.25 0.90 0.25 0.90 92.5@122.2# 92.460.25
K 0.25 0.90 0.48 0.91 112.5@139.4# 113.461.1
D 1.78 1.79 0.25 0.90 108.6@191.5# <154.9

TABLE II. The kinematics in the reference frames used in th

work, wherek5Q2/2M and n̂5(cosf, sinf).

Kinematics Target rest
frame

Breit
frame

DYW
frame

q1 k1QA11k/2Mcosu 1Q cosu 0
q2 k2QA11k/2Mcosu 2Q cosu Q2/p1

qW' QA11k/2Msinun̂ Q sinun̂ Qn̂
p1 M AM21Q2/42q1/2 p1

p2 M AM21Q2/42q2/2 M2/p1

pW'
0 2qW'/2 0
4-5
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FIG. 2. Pion,K, andD meson form factors in the Drell-Yan-West~DYW! frame compared with experimental data for pion@18–22# and
kaon @23#. The partFnv

1 vanishes identically in this reference frame.
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a→0 limit in the frame presented in Sec. II. In the lim
a→1, the frame presented in Sec. II coincides with t
target-rest frame withu50.

Now we comment on our results shown in the figur
below.~In all of these figures, we use thick solid lines for th
covariant form factor, thick dashed lines forFval

1 , thick dot-
dashed lines forFnv

1 , thin dashed and dot-dashed lines for t
corresponding minus LF form factors.! We show in Fig. 2
the results of our numerical calculations using the DY
frame and compare with the experimental data@18–23#. Our
total results, represented by the solid line in each figure,
also in very good agreement with the experimental data
the pion and kaon form factors, respectively.

In the DYW frameFnv
1 vanishes identically. Remarkably

we find that the nonvalence part of the minus current, wh
in this reference frame coincides with the zero-mode con
bution, makes a very important contribution to the total fo
factor and may even dominate over the valence part in
whole Q2-range considered. There are quantitative diff
ences between the results obtained for the different mes
07401
s
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f

h
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e
-
ns,

which are to a large extent due to the difference in bindi
the tighter the binding, the more importantFnv

2 becomes. We
checked the binding effect in the case of the pion. By va
ing the quark mass alone from the realistic value of 0
GeV to 0.07007 GeV, thus lowering the binding energy
0.1% of the pion mass, we found that the value ofFval

2 at
Q250 was increased from 6% to 69%. Still, forQ2

.0.3 GeV2 Fval
2 is lower thanFnv

2 . This indicates that for
the larger values ofQ2, the relativistic effects can still be
large.

The frame dependence of the different components of
current can be studied by comparing the results of calc
tions in different frames and at different values of the po
angleu. It is worth mentioning that the results must be i
dependent of the azimuthal anglef, because rotations abou
thez-axis are kinematical transformations.~We used this fact
as a check on the correctness of our codes.!

In Fig. 3 we show the results of our numerical calcu
tions in the Breit frame atu50, which differs from the
target-rest frame atu50 by a boost in thez-direction only,
so the results are identical in these two frames. The fi
4-6
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FIG. 3. Pion,K, andD meson form factors in the target-rest frame~TRF! or the Breit frame, both atu50.
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thing we notice is the great difference with the DYW fram
Now there is a sizable contribution fromFnv

1 , which domi-
nates at higher values of the momentum transfer: atQ250,
Fval

1 coincides with the covariant form factor. It crossesFnv
1

at some value ofQ2, the crossover point being smaller fo
larger binding energy. It is of special interest to separate
instantaneous part, i.e. the contribution toF1 from diagrams
with one internal instantaneous propagator. They are give
the figures by crosses (3). It turns out that they give a very
large contribution to the pion form factor but become neg
gible for the heavyD-meson case.

Turning to the minus current we see that in this refere
frame the relative importance ofFnv

2 becomes more promi
nent than in the DYW frame for the more tightly boun
mesonsp and K. In the case of the pion the dominance
Fnv

2 is so strong that it can hardly be distinguished from
covariant form factor. The figures~in Fig. 3! suggest that a
Q250 the values obtained are frame independent. Thi
indeed the case as we found in our calculations and ca
understood as the equality of the form factors in the lo
wave-length limit.

A first glance at the angle dependence is given in Fig
07401
.
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In both the target-rest frame and the Breit frame foru
5p/2 the transferred momentum is purely transverse. As
pure Lorentz boosts in the transverse direction,K1 and K2,
are dynamical in LFD, we must expect a strong frame
pendence and this is indeed what we find. Asq150 in the
Breit frame for u5p/2, the partFnv

1 vanishes identically.
Still, the DYW frame results differ for the minus curren
which is clear from a comparison with Fig. 2. The reason
that the minus component of the current in DYW frame
not proportional to the minus component of the current in
Breit frame foru5p/2. For the same reason the zero-mo
contributions differ in the two frames. In the DYW frame
is very close to the total form factor, while in the Breit fram
it even overshoots the covariant form factor at large value
Q2 by a factor of almost 2. In this connection we want
mention the work of Frederico et al.@15#, who performed a
calculation similar in spirit to ours, but claimed that in th
Breit frame atu5p/2 Fval

2 is always very close to the cova
riant form factor. This discrepancy was due to the differen
of their Fval

2 definition in the Breit frame atu5p/2, where
they removed the term that is odd under the transforma
p22k2→2(p22k2) in their definition@25#. However, our
4-7
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FIG. 4. Pion form factor in the target-rest frame and the Breit frame atu5p/2.
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definition ofFval
2 is general for any angleu and our results on

the u-dependence are smooth as shown in Fig. 9.
We show the systematics of the angle dependence for

case of the pion only. Our results are depicted in Figs. 5
~The thick solid line foru50, thin dotted line foru5p/4,
the thick dashed line foru5p/2, the thin dot-dashed line fo
u53p/4, and the thick long-dashed line foru5p.! One sees
immediately that the angle dependence is smooth but ca
very strong, both for the valence and the nonvalence pa
calculated from either the plus or the minus current.

One might try to exploit the angle dependence to optim
the calculation of the form factor in a noncovariant fram
work. However, as the figures above clearly show, there
no value for the angleu where bothFnv

1 andFnv
2 are negli-

gible, or even suppressed, compared to the valence parts
all values ofQ2. On the contrary, as the values of the for
factor components atQ250 are frame independent, we ca
be sure thatFnv

2 must be very important for an important pa
of the Q2 range.
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As a summary of what we found concerning the an
dependence we show in Fig. 9 the complete angle dep
dence for two values of the momentum transfer,Q250 and
0.1 GeV2. All curves in this figure are clearly smooth an
demonstrate the fact that there is no preferred value for
polar angleu.

IV. CONCLUSION AND DISCUSSION

In this paper, we have analyzed all the components of
current quantized on the light-front to compute the elect
magnetic form factors of pseudoscalar mesons with spin
constituents. Since our aim in this work was to analyze
taxonomy of the triangle diagram, we did not choose a
particular electromagnetic gauge but just presented
equivalence of the physical form factorF(q2) in any choice
of the current component. The divergence appearing in
~311!-dimensional fermion-loop calculations was regulat
by the covariant vertex-smearing-technique. Performing
FIG. 5. Pion LF form factorsFval
1 andFnv

1 in the target-rest frame for five different values of the polar angleu.
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FIG. 6. Pion LF form factorsFval
1 andFnv

1 in the Breit frame for five different values of the polar angleu.
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light-front calculation, we verified that the vertex-smearin
technique is similar to the Pauli-Villars regularization. In t
J2 computation, we find that the critical smearing effect p
sists even in the limit to the point vertex because the e
point singularity existing otherwise is completely remov
once the limit is taken at the end of the calculation. If t
limit is taken at the beginning of the calculation, howev
we have already shown that the end-point singularity in
nonvalence contribution leads to an infinitely different res
from that obtained by the covariant Feynman calculation@4#.
Our taxonomical analysis demonstrated that each individ
contribution, whether valence or nonvalence, is finite rega
less of which component of the current is considered. Ho
ever, we stress that each contribution depends on
reference-frame even though the sum does not. Of cou
the invariance of the sum ensures the current conserva
Also, the zero-mode contribution should be distinguish
from the instantaneous contribution as we have numeric
estimated the differences.
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From our numerical calculations we can conclude tha
obtain agreement with the covariant form factor one ne
both the valence and the nonvalence parts. For tightly bo
states the nonvalence parts dominate in an important pa
the range ofQ2 values that we studied. It is natural that th
result runs counter to nonrelativistic intuition, which sa
that the valence parts should dominate, because the tig
bound states are not expected to be non-relativistic. In R
@4# it was demonstrated in the~111!-dimensional case, tha
by weakening the bindingFval

1 andFval
2 approximate the co-

variant form factor more and more closely. Here we fou
that indeed for less tightly bound states the valence p
come closer to the covariant result, but even atQ250 Fval

2

gives only 69% of the covariant form factor.
If two reference frames can be connected by a kinemat

Lorentz transformation the LF form factors calculated
these two frames must be the same. Otherwise they m
differ. We found that the angle dependence within a cho
reference frame is always smooth, although it may be v
FIG. 7. Pion LF form factorsFval
2 andFnv

2 in the target-rest frame for five different values of the polar angleu.
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FIG. 8. Pion LF form factorsFval
2 andFnv

2 in the Breit frame for five different values of the polar angleu.
fo
r

m
io
oin
d

re
r-
un
r t
si
y
ion

i
re
th

l-
in-
ults
is

.S.

eit
ics
e
rm
he

En-
owl-

he

g
-
es-

gral
d-
-
of

rm
strong. For some values of the polar angleu two reference
frames may be connected by a kinematical Lorentz trans
mation, e.g., the target-rest frame and the Breit frame fou
50. On the other hand, the DYW frame and the Breit fra
for u50 are not connected by a kinematical transformat
and the form factor components consequently do not c
cide. More details of the frame-dependence can be foun
Ref. @26#.

While the calculations carried out in this work are mo
realistic than the~111!-dimensional case with the point ve
tex, they are still semi-realistic as the model uses a bo
state rather than a confined state. Moreover, we used fo
vertices those obtained from a Bethe-Salpeter equation u
a contact interaction@7# which are of zero range and ma
emphasize the importance of the nonvalence contribut
rather differently from a more realistic model. Thus, there
still much room for extending our model towards a mo
realistic model. However, the essential conclusions about

FIG. 9. Systematics of the angle dependence of the LF fo
factors atQ250.1 GeV2 ~thick lines! and 0 GeV2 ~thin lines! in the
Breit frame.
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similarity to the Pauli-Villars regularization and the cance
lations of both ultra-violet divergence and the end-point s
gularity remain intact. Nevertheless, the numerical res
may differ from a more realistic model calculation. Th
point is presently under investigation.
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APPENDIX A: UNEQUAL-MASS CASE

If we number the momenta of the internal lines of t
fermion triangle ask1 ~spectator!, k25p1k1, and k35p8
1k1 ~struck quark! respectively, and the correspondin
masses asm1 , m2, and m3, then we find for the trace ap
pearing in the numerator of the covariant integral the expr
sion

Tm54@2~m2m32k2•k3!k1
m1~m1m32k1•k3!k2

m

1~m1m22k1•k2!k3
m#. ~A1!

The valence diagram is obtained if one calculates the inte
over k1

2 by closing the contour around the pole correspon
ing to putting the spectatork1 on the mass-shell. This corre
sponds to the following values for the minus components
the momenta to be used in the expression forTm:
4-10
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k1
25

kW1'
2 1m1

2

k1
1

, k2
25p21k1

2 , k3
25p8 21k1

2 .

~A2!

To obtain the nonvalence diagram one closes the con
around the pole corresponding tok3. Then one gets for the
part of the propagator with the massm3

k3
25

kW3'
2 1m3

2

k3
1

, k1
252p8 21k3

2 , k2
25p22p8 21k3

2 .

~A3!

For the part of the propagator with the cutoffL8 the same
formula can be used, but withm3 replaced byL8.

As the smearing we use affects only the denomina
parts of the propagator of the struck quark, the replacem
of m3 by L8 in Tm occurs only in the minus components.

The energy denominators are easy to find. One obta
for the valence parts,

D~k2p!5p21
kW1'

2 1m1
2

k1
1

2
kW2'

2 1m2
2

k2
1

,

D~k2p8!5p8 21
kW1'

2 1m1
2

k1
1

2
kW3'

2 1m3
2

k3
1

.

~A4!

The nonvalence part has the same denominatorD(k2p8),
but D(k2p) is changed to

D8~k2p!5p22p8 21
kW3'

2 1m3
2

k3
1

2
kW2'

2 1m2
2

k2
1

. ~A5!

The energy denominatorsDL and DL8
8 are obtained by the

substitutionsm2→L andm3→L8, respectively.
In the case wherem15m25m3 andL5L8 the final for-

mulas are much simplified. The explicit formulas in the ma
text are valid for the equal-mass case. The general case
be easily constructed from the expressions~A1!–~A5!.

In the explicit formulas we use the notation

km52k1
m , x5

p12k1

p1
~valence!,

x5
k12p1

p1
~nonvalence!, a5

p8 12p1

p1
.

~A6!

APPENDIX B: ANALYTICITY

From the covariant expression for the amplitude one
prove that the form factors are analytic functions ofQ2. This
proof is not valid for the LF-time-ordered amplitudes. O
can, however, expand the expressions that one obtains fo
different parts of the form factor in terms ofQ and determine
theQ-dependence at small values ofQ2. It turns out that the
07401
ur

r
nt

s,

an

n

the

results depend on the kinematics: it matters in which re
ence frame one does the calculations.

We use the formulas for the momenta given in Table
and expand the trace and the energy denominators in po
of Q. From this expansion the analyticity properties of t
amplitudes follow. We have numerically verified that
blow-up of Figs. 5–8 for smallQ2 illustrates the analyticity
properties of the amplitudes discussed in this appendix.
three different reference frames are discussed consecuti

1. Target-rest frame

We discuss the valence part of the plus-current in det
the other LF form factors can be treated in a similar wa
First we expand the momenta:

q65q cosu1O~Q2!, qW'5Q sinu n̂1O~Q3!,

p8 65M1Q cosu1O~Q2!, pW'8 5Q sinu n̂1O~Q3!.
~B1!

The trace consists of a piece that is independent ofQ and
a piece that consists of two parts, one that is proportiona
QkW1'•n̂ sinu and a part proportional toQ cosu. The de-
nominatorD(k2p8) has a similar behavior, butD(k2p) is
independent ofQ.

Upon integration overkW1' the terms proportional to
kW1'•n̂ sinu vanish. Consequently, the valence partFval

1 has
the small-Q behavior

Fval
1 ;Fval

1 01Fval
1 1Q cosu. ~B2!

The other cases, nonvalence plus-current, valence
nonvalence minus-current, show the same pattern. There
pieces independent ofQ, parts with the Q dependence
QkW1'•n̂ sinu and ones proportional toQ cosu. As the
pieces proportional tokW1'•n̂ vanish upon integration, all the
components of the form factor show a behavior similar
Eq. ~B2!. So, only foru5p/2 do we find that the LF time-
ordered amplitudes calculated in the target-rest frame
analytic inQ2.

2. Breit frame

In the case of the Breit frame we can follow the same l
as in the case of the target-rest frame. The only differenc
that now no terms of the formQkW1'•n̂ sinu appear. As
those terms give no contribution to first order inQ anyway,
this does not alter the result: also in the Breit frame
components of the form factor have the same small-Q be-
havior as in Eq.~B2!.

3. Drell-Yan-West frame

In the Drell-Yan-West frame there is no angle depe
dence. However, there is a term linear inQ. It is proportional
to Qn̂•kW1' . Of course, this term also vanishes upon integ
4-11
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tion over kW1' . Therefore, in the Drell-Yan-West frame w
find no term linearly dependent onQ, so the amplitudes are
analytic inQ2.

4. Zero mode

The zero mode is defined as the contribution to the n
valence amplitude that survives in the limitq1→0. It is easy
to see that only the minus-current can have a zero-mode
because the integral definingFnv

1 has an integrand that re
mains finite whenq1 goes to 0. However, the integrand d
fining Fnv

2 diverges when the limitq1→0 is taken. In order
to determine the limit, one may expand the integrand in po
ers ofq1. As q1 is taken to be zero in the Drell-Yan-We
frame, the analysis cannot be done in that frame, but it
most easily be carried out in the Breit frame.

The algebra being straightforward but tedious, we sh
not give the details. Rather we quote the final result. If
consider the smeared case, the most divergent part of
integrand forFnv

2 has the behavior 1/q1 2. As the integration
over k1

1 ranges from2p8 1 to 2p1, we can scale the inte
nc
.
.

07401
-

rt,

-

n

ll
e
he

gration variable as in Eq.~A6! and obtain an integral overx
from 0 to 1. The Jacobian beingq1, it cancels one factorq1

in the denominator, so we only need to show that the lead
term vanishes to prove that the zero-mode contribution
finite.

Upon carrying out the algebra we find the following r
sult. The leading part is proportional to

x2~kW3'
2 1m3

2!~kW3'
2 1L8 2!2~12x!2~kW2'

2 1m2
2!~kW2'

2 1L2!.
~B3!

This part of the integrand does not vanish, becausekW2'

5pW'2kW'ÞkW3'5pW 8'2kW' . However, if we takeL85L
and m25m3, being the mass of the struck quark, and
kW2' , kW3' , and kW' differ only by a constant vector, this
function vanishes after integration overx from 0 to 1 andkW'

over the whole ofR2. So we see that the coefficient of th
contribution proportional to 1/q1 vanishes. The remaining
part, the piece that survives the limitq1→0, is the zero
mode contribution. In the Breit frame as well as the targ
rest frame it is well-defined and finite.
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