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We construct the most general effective Lagrangian of the matter sector of the standard model, including
mixing andCP violating terms. The Lagrangian contains the effective operators that give the leading contri-
bution in theories where the physics beyond the standard model shows at a\ sellg,. We perform the
diagonalization and passage to the physical basis in full generality. We determine the contribution to the
different observables and discuss the possible new sourde® ofiolation, the idea being to be able to gain
some knowledge about new physics beyond the standard model from general considerations, without having to
compute model by model. The values of the coefficients of the effective Lagrangian in some theories, including
the standard model, are presented and we try to draw some general conclusions about the general pattern
exhibited by physics beyond the standard model in what con€&Rsiolation. In the process we have had to
deal with two theoretical problems which are very interesting in their own: the renormalization of the CKM
matrix elements and the wave function renormalization in the on-shell scheme when mixing is present.
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I. INTRODUCTION
; Ui = 8 - 2
The origin of CP violation remains, to this date, one of
the unsolved puzzles in particle physics. In the minimal stan-
dard model there is only one source ®P violation, as is However, even if there is no new physics at all beyond the
well known. Although the most general mass matrix does, irstandard model radiative corrections contribute to the matrix
principle, contain a large number of phases, only the lefelements relevant for weak decays and spoil the unitarity of
handed diagonalization matrices survijeombined in a the “CKM matrix” #, in the sense that the corresponding
single Cabibbo-Kobayashi-Maskaw&KM) mixing matrix =~ Smatrix elements are no longer constrained to verify the
which we denote byK]. This matrix contains only one ob- above relation. Obviously, departures from unitarity due to
servable complex phase. the electroweak radiative corrections are bound to be small.
Whether this source dE P violation is enough to explain Later we shall see at what level are violations of unitarity
our world is, at present, an open question. In the near futuréue to radiative corrections to be expected.
new experimental datémostly involving third generation But of course, the violations of unitarity which are really
quarks will allow us to measure with good precision those interesting are those caused by new physics. Physics beyond
elements of the CKM matrix which are poorly known at the standard model can manifest itself in several ways and at
present. One of the commonly stated purposes of the ne®everal scales. In this work we shall adopt the viewpoint that
generation of experiments is to check the “unitarity of thenew physics may appear at a scalewhich is relatively
CKM matrix.” large compared to th&1, scale. This remark includes the
Stated this way, the purpose sounds rather meaningless¢alar sector too; i.e. we assume that the Higgs particle—if it
Of course if one only retains the three known generationgXists at all—it is sufficiently heavy. If this is so, an expan-
mixing occurs through a8 3 matrix that is, by construction, Sion in inverse powers ol is justified and effective La-
necessarily unitary. What is really meant by the above stategrangian techniqueisl] can be used. The scale could, for
ment is whether the observabiematrix elements, which at instance, be the mass of a new heavy fermion, some com-
tree level are proportional to a CKM matrix element, whenpositeness scale, or simply the Higgs boson mass.
measured in charged weak decays, turn out to be in good It is particularly interesting, at least from an instructive
agreement with the tree-level unitarity relations predicted bypoint of view, to consider the case of a new heavy genera-
the standard model. If we write, for instance, tion. We can proceed in two ways. One possibility is to treat
all fermions, light or heavy, on the same footing. We would
then end up with a X4 unitary mixing matrix, the one
(qj|wg|qi>:uijv#. (1)  corresponding to the light quarks being &3 submatrix
which, of course need not be—and in fact, will not be—
unitary. Stated this way the departures from unitafiy-
At the tree level, it is clear thay=K and unitarity of the ready at tree levelcould conceivably be sizeable. The alter-
CKM matrix implies native way to proceed would be, in the philosophy of
effective Lagrangians, to integrate out completely the heavy
generation. One is then left, at lowest order in the inverse
*Email address: espriu@ecm.ub.es mass expansion, with just the ordinary kinetic and mass
"Email address: manzano@ecm.ub.es terms for light quarks, leading—obviously—to an ordinary
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3X 3 mixing matrix, which is of course unitary. Naturally, two reasons to do so. On the one hand, contact with physical
there is no logical contradiction between the two proceduresnatrix elements requires that the external legs are properly
because what really matters is the phys@ahatrix element normalized and there i@ priori no reason why new physics
and this gets, if we follow the second proced(irgegrating ~ cannot contribute to the wave-function renormalization con-
out the heavy fields two type of contributions: from the _stants,_exactly as they do to the effective vertices. It is s_imply
lowest dimensional operators involving only light fields andinconsistent to include one and not the OFher. In fact_, m_the
from the additional operators obtained after integrating ouf@se of the CKM matrix elements, their renormalization
the heavy fields. The result for the observaBimatrix ele- ~ tUrns out to pe_relate_d to the wave-function ren_ormajaauon
ment should obviously be the same whatever procedure watrices, so it is obviously necessary to deal with this issue
follow, but using the second method we learn that the viola2n€ Way or another even in the standard model. On the other
tions of unitarity in the(three generationunitarity triangle ~ Nand, it must be said that the actual on-shell prescription to
are suppressed by some heavy mastce an additional gen- Incorporate the wave-function renormalization conditions is
eration decouples in the observables we are interd@pd  Not fully understood yet when mixing is present. This pro-
This simple consideration illustrates the virtues of the effecvides for us a second motivation to treat this problem care-
tive Lagrangian approach. We shall say more about this latefully- o _ _
The purpose of this paper is to use the philosophy behind Ano.ther motivation to present thg effectwe Lagrangian
effective Lagrangians to try and learn some more insight orgnalysis of the family mixing an@P violation problems is
the issue of possible sources 6P violation beyond the that it can be applied to an analysis of radiative corrections
standard model. We shall, in particular, determine the mosifor instance in the minimal standard model itsetirough
general parametrization, to the lowest non-trivial order, of alithe use of effective couplings. For a particular process the
possible family mixing ancC P-violating effects in the mat- Ieadnjg _contrlbutlon from radlat|ye corrections comes as a
ter sector of the standard modéDf course, being com- redefinition of the effective couplings, i.e. to some specific
pletely general is impossible, so some restrictions shall applyalues for the coefficients of the effective Lagrangian. Once
to our considerations. These shall be spelled out in Sgc. I1.determined, they can be used for other observables without
According to our philosophy we shall, first of all, classify "€€ding to compute them anew. This procedure proved to be
all possible operators of lowest dimensionality which, re-Very efficient in recent years in the context of CERNe
specting all the appropriate symmetries, can be added to tHf@llider LEP physics and neutral currents phenomenology
ones which are present in the minimal standard model. Thek3]- . ) )
we shall analyze the most general kinetic and mass terms Finally and somewhat related to the previous issue is the
(including, obviously, mixing Even these terms may al- fact that an effec;uve Lagrangian .prowdgs a convenient
ready be different from those in the minimal standard modelP0Ok-keeping device to treat deviations with respect to the
the reason being that some field redefinitions which are roustandard model tree level predictions in a particular process.
tinely done in the standard model are not innocuous in mor@uestions like whether is it legitimate or not to use the uni-
general models. We then proceed to diagonalize both, th&ity of the CKM matrix in a given process, given that one is
mass and kinetic terms, and determine the effects of the dRrecisely looking for violations of unitarity, can be posed
agonalization procedure, i.e. of passing to the physical basi@nd answered systematically in an effective Lagrangian
on the most general set of operators of dimension fagain ~ framework. o .
including the possibility of off-diagonal couplings in family ~ The paper is organized in the following way. In the next

space. We then discuss the conditions for these operators t§€ction we extend the effective electroweak Lagrangian in
be CP-odd. the matter sectof4] to the case where there is mixing

Note that in the minimal standard model, only the left- @MoNgst different generations. We shall see which restric-
handed diagonalization matrices appear in physical process&8ns CP-conservation imposes on the coefficients of the ef-
(combined in the CKM matrixK). When operators beyond fective Lagrangian. We shall then discuss in Sec. Il the pas-
the standard model are includédriginally written in the  Sag€ to the physical basis, which is quite interesting in the
basis of weak eigenstajethe passage to the physidaiag- ~ Present framework, and is in fact one of the main results of
ona) basis becomes more involved. Operators involving jusfms work. The effective couplings and some possible observ-

left handed fields transform into more complex structuregble effects are discussed in Sec. IV. In Sec. V we shall take
involving K and redefined effective couplings. These struc-Nto account the effects due to renormalization, comment the

tures were not present before the change of variables b@_xpected size of the standard model radiative correction.s and
cause, in the weak eigenstates basis, they explicitly breaRoint out some open problems. In Sec. VI we shall briefly
SU(2), . For operators involving right handed fields the situ-cOnsider two examples: a heavy doublet and the standard
ation is different. We will show that passing to the physical™m0del with a heavy Higgs boson. Conclusions shall be sum-
basis amounts only to a redefinition of their couplings, with-marized in Sec. VII.
out changing their structure. It comes perhaps as a surprise
that_ bgyond th(_a stgndard model t_he passage to the physical Il EFFECTIVE LAGRANGIAN
basis involves in either cas®n-unitarymatrices.

One of the major contributions presented in this work is Let us first state the assumptions behind the present
the detailed treatment of the issue of wave-function andramework. We shall assume that the scale of any new phys-
CKM matrix elements renormalization constants. There arécs beyond the standard model is sufficiently high so that an
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inverse mass expansion is granted, and we shall organize the T s
effective Lagrangian accordingly. We shall also assume that D,U=4d,U+ig E'WMU—ig’UE B,
the Higgs field either does not exist or is massive enough to

permit an effective Lagrangian treatment by expanding in r

inverse powers of its mask| . In short, we assume that all D;fL= d,f +ig > ‘W, fL+ig’
as yet undetected new particles are heavy, with a mass much

larger than the energy scale at which the effective Lagrang- _

ian is to be used. Thus it is natural to use a non-linear real- +IgS§'G/LfL1 (4)
ization of theSU(2), X U(1)y symmetry where the unphysi-

7_3
Q_ E B,qu

cal scalar fields are collected in a unitark2 matrixU (see o A
e.g.[1)). DMfRzaMfR+|g’QB#fR+|gS§-GMfR.
An additional assumption that we may make at some
point is that, whatever is the source ©P-violation beyond The following terms are universal. They must be present

the standard model, when compared to @ conserving in any effective theory whose long-distance properties are
part, is “small.” This statement does need qualification. those of the standard model. They correspond to the standard
What really matters, of course, is the observable value of thenodel kinetic and mass ternte/e use the notation f to de-
CP violating parameters, which are customarily calculatedscribe both left and right degrees of freedom simultanegusly
in the mass eigenstate basis. On the other hand, new physics

may (or may not, we do not know for sur@ppear naturally [:km: iﬁ(LyﬂDth,

in the weak basis; i.e. with fields transforming as irreducible
representations of the gauge group. When operators beyond
the standard model are included they will have, in general, a
CP-violating and aCP-conserving part when written in the o
weak basis. For the sake of discussion let us imagine an L= —f(U(#y|+ 7y HR+ (Y T+ 2y HuTL)f.

scenario where the origin of fermion masses is unrelated

with the physics that contributes to effective operators beX_, Xg, and Xgq4 are non-singular Hermitian matrices hav-
yond those already contained in the standard m@uhaps  ing only family indices, and!, andy, are arbitrary matrices
because the former is associated to a very large scEten  znd have only family indices too. Note that in geneXal

new physics can be separated somehow in two parts: one pagtx, = as the only restriction is gauge invariance. In the
contributes to the kinetic and Yukawa OperatorS in the Wea%tandard modeL these matrices can a|WayS be reabsorbed by
basis and is responsible for the known mass structure of thg, appropriate redefinition of the fieldwe shall see this
matter sector; the other part contributes, again in the Weagxpncmy laten), so one does not even contemplate the pos-
basis, to a set of effective operatdtbe one described later sibility that left and right “kinetic” terms are differently

by Egs.(8)]. If we assume, for example, that the latter arenormalized, but this is perfectly possible in an effective
totally or almostCP conserving then can have the peculiar theory, and the transformations required to bring these ki-
situation that manyC P-violating phases may appear in the petic terms to the standard form do leave some fingerprints.
coefficients of the effective operators when we pass to the |n order to write the above terms in the familiar form in
physical base; phases which would not be observable in thgye standard model we shall perform a series of chiral
minimal standard model. In Short, it is conceivable tG& Changes of variables. In generaL due to the axial anoma|y,

conserving physics triggeiG P-violation in the physical ba-  these changes will modify th€ P violating terms

sis. Of course the converse is theoretically also possbie,

violaying pha;es may disappear once things are written in the £, = *A#¥( 61BsB,,,+ 92W35W2V+ 6’3625GZV)' (6)

physical basis.

Let us commence our classification of the operatorgyut we will not care about that here.

present in the matter sector of the effective electroweak La- Notice the appearance of the unitary matdxcollecting

grangian. We shall use the following projectors: the (unphysical Goldstone bosons. The Higgs field—as em-
phasized above—should it exist, has been integrated out.
Since the global symmetries are non-linearly realized the

1++° 1—9° MRS g 1= above Lagrangian is not renormalizable.
T L 2 ~T o o In addition to Eq.(5) a number of operators of dimension
(3)  four should be included in the matter sector of the effective

electroweak Lagrangian. They are, to begin with, necessary
as counterterms to remove some ultraviolet divergences that

whereR is the right projector and. the left projector in appear at the quantum level due to the non-linear nature of

chirality space, and" is the up projector and® the down  Ed. (5). Moreover, physics beyond the standard model does

projector inSU(2) space. The different gauge groups act onin general contribute to the coefficients of those operators, as

the scalarU, and fermionic,f, ,fg, fields in the following it may do to X, , Xgy Xrq, Yy andyy. The dimension 4

way: operators can be written generically as

LR =T Xgyt 7Xrg) y*D R, (5)

073008-3



D. ESPRIU AND J. MANZANO PHYSICAL REVIEW D63 073008

E,_=f_yﬂM|_Of_‘Lf+ H.c., We perform first the unitary change of variables

Y F= [V L+ (Ve + Vrar RIS, )
Lg=fy,MgOzRf+H.c., - ~
with the help of the unitary matrice¥, , Vg, and Vgq.

whereM | and Mg are matrices having family indices only Hence

andO{* andOf are operators of dimension one having weak

indices(u,d) only. These operators were first written p4] YAV = (VY VR + VY Ve, (10

in the case where mixing between families is absent. They

have been recently considered[Bl and[6]. The extension and

to the three-generation case is new.

The complete list of the dimension four operators is X —V/x V=D,

1:'_ 1. u t ~ ~
’CL |fML'y U(DMU) Lf+HC, XRUHV;UXRUVRL]:DRL“ (11)

2_:enp2 31T ~ ~
EL_IfMLyM(DMU)T U Lf+HC, XRd_)VEdXRdVRd:DRda

L3=ifM}y*UrU"(D,U) U LI+ H.c., whereD, , Dg, and Dgq4 are diagonal matrices with eigen-

. values different from zero. Then, with the help of the non-
Li=itM{y*UrUD LT+ H.C, (8)  unitary transformation
LL={tMLy*UT(D U)Rf+H.c., f—[D_ 2L+ (Dgry? +Drd ) RIf, (12)
£2=itMZy*7°U"(D,U)Rf+H.c., we obtain

o DL_)(D*l/Z)*D D*l/2:|’
L3=iTM3y*72UT(D,U) PR+ H.c. : Lt

D~ (Dri)* DrDra =1, (13

Without any loss of generality we take the matrices in family
spaceM[, Mg, M2 andM3 Hermitian, whileM?, M3 and
M{ are completely general. If we require the above operators

; ; [
tSerel(\joP conserving, the matrice®l; p must be realsee and the matrisy!,»+ 479 transforms into

Di—(Drd*DreDri*=1,

In addition to the above ones, physics beyond the standard 1 , ~4~t~ 15 eSS ~—1/2 d
model generates, in general, an infinite tower of higher- (Pr™ )" ViYuVriDry T+ (DL 79"V YqVRdDRa 7
dimensional operators with=5 [these operators are even- —yfuyf d

; . =Yy tYa7 (14
tually required as counterterms too due to the non-linear na-

ture of the Lagrangiari5)]. On dimensional grounds these wherey{, and yL are the Yukawa couplings. Thus, the left

operators shall be suppressed by powers of the scalear- 5 right kinetic terms can be brought to the canonical form
acterizing new physics or by powers ofrd (v being the 5t the sole expense of redefining the Yukawa couplings.
scale of the breaking—250 GgVTherefore, if the scale of  gjnce this is all there is in the standard model, we see that the
new physics is sufficiently high the contribution of higher ggect of considering the more general coefficients for the
dimensional operators can be neglected as compared 0 thog@etic terms is irrelevant. This will not be the case when

of d=4. Of course for this to be true the later must be yqgitional operators are considered. Fermions transform, up
non-vanishing and sizeable. Thanks to the violation of thgq this point, in irreducible representations of the gauge
Appelquist-Carazzone decoupling theoréij in spontane- roup.

ously broken theories, this is often the case, unless the new \y;o now perform the unitary change of variables
physics is tuned so as to be decoupling as is the case in the
minimal supersymmetric standard modsee e.g[8] for a f[(V ™+ Vg™ L+ (Vry™+ Veg™RIf, (15
recent discussion on this mafter
with unitary matricesV,, Vry, Vi g4 @nd Vg4 and having
Ill. PASSAGE TO THE PHYSICAL BASIS family indices only. They are chosen so that the Yukawa

i . ) terms become diagonal and definite positisee e.g[9])
Let us first consider the operators which are already

present in the standard model, E§). The diagonalization (Vi PV (v 4y i) (V™ + V)

and passage to the physical basis are of course well known,

but some modifications are required when one considers the =d! +df79. (16)
general case in Ed5) so it is worth going through the dis-

cussion with some detail. After all these transformations,, transforms into
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L= —H(U+K"79U) 2d] + (790 + K 7'U) 74d T RS f— V(DY) YAV M+ Vg7 LT+ (VR (DR ~YA/g !
+H.c, 17 +Vrd(D]) YA ggrRE
where K=V] V4 is well known Cabibbo-Kobayashi-  =(C{7"+C{7)Lf+(Ckr'+CRrRf. (24)
Mask trix. Note in Eq17) th h =|
Obﬁi:lwa matrix. Note in Eq17) that when we set) =1 we Note that because of the presence of the matrigeshe
matricesC are in general non-unitary. We begin with the
— Uit o daf effective operators involving left handed fields. In this case
Ln=—f(7d,+ dy)Rf+H.c., (18 \when we perform transformatiaf24) we obtain
which is a diagonal mass term. Fermions now transform in £ —fy,OfLf+H.c., (25
reduciblerepresentations of the gauge group.
The left and right kinetic terms now read with the operatorO{* containing family and weak indices
given by
R _:r unR
Llin=1Ty"D,RE, 19 OF=N7Of 7+ NK O 7+ KINK 79074
and +KN TdO’LLTu, (26)
— ] ] . where we have defined
Lyn=ify*L{d,+ig'| Q— = |B,+ig=W
" : 2/ 2k N=cUTM, Ccl. (27)
- +
+iglk Zwr kT owe +igS£.GM}f_ Thus new structures do appear involving the CKM makix
2 2 2 and left-handed fields. The former cannot be reduced to our
(20) starting set of operators by a simple redefinition of the origi-
nal couplingsM, .
CP violation is present if and only iK #K* . The case of the effective operators involving right handed
As is well known, some freedom for additional phase re-fields (Cg) is, in this sense, simpler because transformation
definitions is left. If we make the replacement (24) only redefine the matricedr. The operators involving

right-handed fields are
f— (WL ™+ W T L+ (Wrym+ Wre®)R]f,  (21)

LR=ify,MROLRi+H.c., (29)
we have to change with
K=V Via= W VI ViaW =W KWia, (22 o#=U'(D,U), 0%=7U'(D,U),
(29)
and o4=7U"(D,U)7
du:VIuyLVRu_)WIuVIuyLVRuWRu:W[udeJWRu' Note that because of the H.c. it} we can chang®} by

u'(D,U)7* along withM3 by M3". So under the transfor-
(23 mation (24) we obtain

_yT t i _ i _
do=V{aYiVra— W] V] oYV rdWra= W[ sdgWra, LB—iTy,OLRi+H.c.,

but if we want to keem!, andd, diagonal real and definite with the operator€) ;r containing family and weak indices
positive, and if we suppose that they do not have degeneratgiven by
eigenstates the only possibility for the unitary matrivéss
to be diagonal withWg, ¢y=W, (). This freedom can be Ole=CAMBCRTOL '+ CR'MBCR Ok ¢
used, for example, to extract five phases frEmAfter this
no further redefinitions are possible neither in the left nor in +C5TMpRCgTdogTd+CgTMpRCgTdogTu' (30
the right handed sector. hence
So much for the standard model. Let us now move to the
more general case represented at low energies by thé 3 3
operators listed in the previous section. We have to analyze E LP— 2 (if_yl/jOpRRH H.c)
the effect of the transformations given by E¢®), (12) and p=1 p=1
(15) [here we include in Eq15) the effect of Eq.(21)] on 3
Fhe .operators{8). The composition of those transformations _ 2 (if_y#MgO’,ijJrH.c.), (31)
is given by p=1
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with

— T 74 e T
Lil=fy* N' = —K'N'K—=|Z,+ —| N*K—=W!
M1_ ~T gl t a2 t 13 Cwsw! 2 2)°F sw 2.
Mz=C.MzC,+CLMiC, +C.M:C_, +
+KTN17W;) Lf+H.c., (36)
Mz=c'mic,+cimic,+cimic_, (32)
£o=Fyu S N2Tu+K*N2KTd z
Mi=c'mic_+c'mic_+ctmic,, L=  ewswl 2 2 m
—(CU4d ; e LAV
where C.=(Cr*CRg)/2. Hence, transformation&4) can +S— —N K?WM-FK N 7WM Lf+H.c.,
be absorbed by a mere redefinition of the matrigls, M3 W
andM3. (37
— e T 79
IV. EFFECTIVE COUPLINGS AND CP VIOLATION EE: _fy,u[ " ( N3?_ KTN3KE) ZM
After the transformations discussed in the previous sec- W
tion we are now in the physical basis and in a position to s T ot Lt 37+ _
discuss the physical relevance of the couplings in the effec- + §V —N K7W# —K'N 7Wu Lf+H.c.
tive Lagrangian. On dimensional grounds the contribution of
all possible dimension four operators to the vertices can be (38)

parametrized in terms of effective couplin@ee e.g[10])
The contribution fromZ { is a little bit different and de-
o nTFu et serves some additional comments. Let us first see how this
Letr=~ sy (aLL +agRIN- G, f—efy" (b L +brR)A, effective operator looks in the physical basis and after setting
e — e_ U=l
fy*(gLL +9rR)Z, f— —fy*
Sw

2CySw
o e T ﬁﬁz—f_y#[(N“ U—KIN*KTY)| —id,+eQA,
X(hLL+hRR)?WMf— gvf’yﬂ(hLL-i-hRR)?WMf,
L 2|z 4926, + = NKw!
(33 Codu | 2 Q rT Y95 bu Sw 2 Wu
where we define T
—KTN“?WM Lf+H.c. (39

ar=alrr+agr, b r=blrr '+ b,
(34 One sees that{ is the only operator potentially contributing

OLr=0[r™+ gERTd_ to thg gluon. and photon effective couplings. This is of course
surprising since both the photon and the gluon are associated

After rewriting the effective operator) in the physical to currents which are exactly conserved and radiative correc-
basis, their contribution to the couplingg,a, ;bg, . .. can tions (including those from new physicsare prohibited at
be found out by setting) =1 . zero momentum transfer. However one should note that the

The operators involving right-handed fields give rise toffective couplings listed in Eq33) are not directly observ-

2, 72 A s . able yet because one must take into account the renormaliza-
;%Vé sign/usgof t%e V\?:igbsewrg gn/glg regpec?i;/eelf/he COSINUS " tion of the external legs. In faat ! is the only operator that

can possibly contribute to such renormalization at the order
we are working. This issue will be discussed in detail in the

SIvinE Y e (7 g next section. When the contribution from the external legs is
pP_ _fuind N i RV ¥ 2 R Y ¥ . g
pzl Lr=~Ty (Mgt Mg) SW( > Wt Wﬂ) taken into account one observes tifEt can be eliminated
5 B altogether from the neutral gauge bosons coupliagsl this
e 7 — . efr i i -
n Tz RT3 — | = owe includes theZ couplings where the conserved current argu
CwSw 2 * Sw\ 2 # ment does not apply
. 3 Another way of seeing thigas pointed out irj5]) is by
n T_W; + T—ZM SRI+H.C (35) realizing that after use of the equations of moti@ﬁ trans-
2 CwSw 2 forms into a Yukawa term, so the effect gf’ can be ab-

sorbed by a redefinition of the fermion masses and the CKM
For the operators involving left-handed fields we have in-matrix, if the fermions are on-shell, as it will be the case in
stead the present discussion. Then it is clear tﬁ:—ﬁtmay possibly
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contribute to the renormalization of the CKM matrix ele-
ments only(i.e. to the charged current segtor

S'#=NTH0#* 7+ KTNT0# 7+ KTNTK* 790# 7

All this considered, from Eqs(33) and (35—(39), and +NTK* 7“0* 79, (46)
from the results presented in the next section concerning
wave function renormalization, we obtain for the photon andso in order to haveC P invariance we require
gluon couplings the following contribution coming from the
effective operatorg8): N=N*,
aL:aR:bL:bRZO, (40) NK:NK*:
both for the up and down components. For theouplings KTNK* =KTNK, (47
the contribution of effective operato(8) is
which can be fulfilled requiring
gr'=—N'=N'T+ N2+ N2+ N3+ N3T,
N=N*, K=K*. (48

d_petnle NI N2T o N2 N3 N3 T
gr=KINTHNTAH NTHNT=N=N")K, Note that this last condition is sufficient but not necessary,

I ~ o~ o~ (4D however if we ask forCP invariance of the complete La-
gh= Mg+ M +ME+MET+ME+MET, grangian(as we shoulgthe last condition is both sufficient
and necessary. Analogously, the right-handed contribution,
gd=M2+ M2 - Mi-MLi—M3— M3 given by Eq.(35), is CP invariant provided

The contribution from wave-function renormalization can- IT/IQZIT/I,%*. (49

cels the dependence from the vertices on the Hermitian com-

bination N*+ N*', which is the only one that appears from  Equations(40), (41) and (42) thus summarize the contri-

the vertices themselves. bution from dimension four operators to the observables. In
As for the effectiveW couplings we give next the contri- addition there will be contributions from other higher dimen-

bution coming from the vertices contained in E§) only. sional operators, such as for instance dimension five ones

Naturally, in order to get the full effective couplings one (magnetic moment-type operators for exampl&e expect

must still add the contribution from wave-function renormal- these to be small in theories such as the ones we are consid-

ization and from the renormalization of the CKM matrix €ring here. The reason is that we assume a large mass gap

elements induced by Ed8). Actually we will see in Sec. between the energies at which our effective Lagrangian is

V D that these contributions cancel each other at tree level s@oing to be used and the scale of new physics. This auto-
in fact the following results include the full dependence onmatically suppresses the contribution of higher dimensional

N4

h = (—=N'= N+ N2=N2T— N3 N3T4+ N* - N*TK,
(42
hg=(ME+ ML +ME—M2ET—M3—M3T).

The above effective couplings thus summarize all effec
due to the mixing of families in the low energy theory cause

by the presence of new physics at some large staleet us
now investigate the possible new source<df violation in
the above effective couplings.

Generically we can write

£, =fy,SLi+H.c., (43)
where
F=NO*M+NKAMO* 9+ KINK o9
+KIN70# 7, (44)
then undeiCP we have
£ —fy,SHf, (45)

with

operators. However, non-decoupling effects may be left in
dimension four operators, which may depend logarithmically
in the scale of the new physics. The clearest example of this
is the standard model itself. Since the Higgs boson is there
an essential ingredient in proving the renormalizability of the
theory, removing it induces new divergences which eventu-
tgﬁlly manifest themselves as logarithms of the Higgs boson
gmnass. This enhancéfor a relatively heavy Higgs bospithe
importance of thed=4 coefficients, albeit in the standard
model they are smallexcept for the topnonetheless since
the logW2/M3, is preceded by a prefactyf/16m2, wherey
is a Yukawa couplingsee[5]).

Apart from the issue of wave-function and CKM renor-
malization, to which we shall turn next, we have finished our
theoretical analysis and we can start drawing some conclu-
sions.

One of the first things one observes is that there are no
anomalous photon or gluon couplings, diagonal or not in
flavor. This excludes the appearance from new physics con-
tributions to the effective couplings and observables consid-
ered here involving the photon and the gluon. As we have
seen this can be understood on rather general grounds but it
is still nice to see it explicitly.

We also observe at once that many complex phases ap-
pear(or disappearin the coefficients of the effective opera-
tors after the passage to the physical basis. Even if the ma-
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trices M| g were real (and thus the effective operators invisible in the ongoing generation of experiments trying to
themselves preservetiP) phases do appear after the diago-test theCP-violating sector of the standard model. Devia-
nalization, both due to the appearance of the usual CKMions from the tree-level predictions, expressed through the
matrix in those effective operators involving left-handed coefficients of the effective Lagrangian and their effective
fields, but also because the diagonalization matrices appeaoupling counterpart will measurable at present only if they
explicitly, both for left and right-handed operators. Further-are sizably larger than the radiative corrections themselves. It
more the effective operators couplings are redefined by mds not so easy, however, to build models where this is so. We
trices which are not unitary in general. It is conceivable thatrefer the reader to Sec. VI for a few more comments on this.
this might enhance slightly thé P violation induced by the We would also like to draw the reader’s attentiorj 18] and
effective operators, for instance very large custodially breakreferences therein.

ing contributions in the new physicgrovided that these

evade the rather stringent bounds coming fromghmaram-

eter[11]) would give rather different values to the matrices V. RADIATIVE CORRECTIONS AND

Xgry @nd Xgq, yielding eigenvalues smaller than one in one RENORMALIZATION

of the two. These might enhan€P violation in the right- As we mentioned in the previous section, the effective
handed sector. couplings presented in E¢42) for the charged current ver-

In the standard model there is a link between the existencgeces are not the complete story because CKM and wave-
of three families and the presence®@P violation. This dis-  function renormalization gives a non-trivial contribution
appears completely, both in the left and right-handed sectorgnere. In this section we shall consider the contribution to the
once additional operators are included. The newppservables due to wave-function renormalization and the
CP-violating contributions need not, in fact, be suppresse¢engrmalization of the CKM matrix elements. The issue, we
by the product of all the mass differences, as it happens ignhall see, is far from trivial.
the standard model. This is obviously so if the physics re- when we calculate cross sections in perturbation theory
sponsible for the effective operators in the weak basis igve have to take into account the residues of the external leg
CP-violating, but even if it turns out that the new physics is propagators. The meaning of these residues is clear when we
such that the effective operators do not viol&@® in the  do not have mixing. In this case, if we work in the on-shell
weak basis, both the effective left and right-handed couscheme, we can attempt to absorb these residues in the wave
plings contain many independent phases as pointed out ifinction renormalization constants and forget about them.
Sec. Il. Indeed from Eq$24)—(27) we see that we can have However the Ward identities force us to set up relations be-
up to 9 independent phases in the left se€tloin K and the  tween the renormalization constants that invalidate the naive
other 8 in theN'’s, the latter not observable in the standardgn-shell schemg@l14]. The issue is resolved in the following
mode) and from Eqgs(24) and(32) we see the we can have way: Take whatever renormalization scheme that respects
up to 18 independent phases in the right sector which wergvard identities and use the corresponding renormalization
not observable in the standard modegdee[12] for some  constants everywhere in except for the external legs contri-

work on right-handed phases and mixing matric&@bvi-  butions. For the latter we just have to impose the mass pole
ously if the matricesM are allowed to be complex more and unit residue conditions. This recipe is equivalent to use
phases are available. the Ward identities-complying renormalization constants ev-

How can we check for the presence of all this wealth oferywhere and afterwards perform a finite renormalization of
new phases? In the left-handed sector the analysis is usualiie external fields in order to assure mass pole and residue
done in terms of the unitarity triangle. Clearly the unitarity one for the propagators. This is the commonly used prescrip-
triangle as such is gone once the additiodal4 operators tion in the context of the popular and convenient on-shell
are included. To see this we need only to examine(B®.  scheme[14] and, in the context of effective theories was
The total charged current vertex will be proportional to used in[15] and in[5].

Now let us now turn to the case where we have mixing.
U=K+GK, (50)  This was studied some time ago by Aakial. [16] and a
on-shell scheme was proposed. Unfortunately the issue is not
whereG is a combination of thél matrices. Sincés is not  settled. We have studied the problem with some detail anew
anti-Hermitian,l/ is not unitary in a perturbative sense. This since, as already mentioned, the contribution from wave-
of course is what happens when the contribution from theunction renormalization is important in the present case. We
new physics is considered, but it is clear that this will happerhave found out that the set of conditions imposed by Aoki
in the standard model too when radiative corrections are inet al. over-determine the renormalization constants and is in
cluded, since radiative corrections give very specific, bufact incompatible with the analytic structure of the theory.
non-zero, values for the effective couplings which also leadvioreover, even if this problem is ignored, it was found some
to violations of unitarity. time ago[17] that the proposal conflicts with the Becchi-

However, these deviations of unitarity due to radiativeRouet-Stora-TyutifBRST) symmetry of the theory. There-
corrections shall be small. We expect contributions of ordefore, now we will analyze the renormalization issue with
g?/16m® from the gauge sector and of order some detail and then we shall propose a couple of schemes
(y?/1672)logM3/MZ, from the scalar sector to the couplings; which are free of the over-determination problem. Once we
at most of order a few times 16. This is almost certainly have obtained those schemes we will show how they must be
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used in order to avoid conflict with Ward identities. s TRy ~1_7%
ui(p)S; ~(p)i(pi—my)  “=ui(pi), 5
The renormalized fermionic propagator is given by {(POS; (P (P —my) i(P1) ®7

i where we do not sum over repeated indices and wpére

S(p)= ——— —m? (on-shel). With uj we indicate the Dirac spinor satis-
p—m—23(p) fying the on-shell condition
=i(p—m-2(p)* (Bi=m)ui(p;) = 0. (58)
=i[(1—§(p)(|i)—m)‘l)(p—m)]‘1 From Egs.(53) and (54) we obtain
=i(p—m) MA-[~iZ(pli(p-m) ! S m?)m; + SR (m?) R
=i(p—m)L+i(p—m) L -iZ(p)li(p-m) T+, +H[E2RmP)m;+ 3L (m?)IL)us(p) =0, (59
(51)

and from there
where, since we have mixing, the renormalized self-energy

3 (p) have family indices. Unless explicitly said otherwise, S mP)m+ 27 (m?)=0,

all expressions are valid both for up and down type fermions. (60)
We will indicate the weak indices or d only when neces-

sary. From Poincar@variance we can write iiij(mjz)mj +§h(mj2):o,

iij(p)=ﬁ(ﬁﬁR(pz)R+iﬁL(pz)L)+iﬁ(p2)R+ih(pz)(IS_é) Analogously from Egs(53) and (55) we obtain

W (p: ) (M3 7R(m? S (m2) L+ SR(m?
whereL andR are left and right projectors respectively, so ur(p) (M (MO R+ mE (M) L+ Zj(mD)R

S, (P = —i(p—m—S(p))y =~ i(p—m) 5, +i,(p). F(mIL=0, Y

(53 and from there
The on-shell conditions given by Aokt al. are . .

m2R(m?)+ 3 (m?) =0,
S H(ppuf(py) =0, (54) 62

ui(p)S; (P =0, (55 m 31t (m?)+ 3 (md) =0,

F(pi—my) 1S (P uR(py) = uf(py), (56)  From Egs.(53) and (56) we obtain
|
SR +mEE R (M) + 225 () +m G (m) + 2 (m?)=0,

(63

SIHmD) +mPER (A + S (mf) +myEE (m?) + 3 (mf)) =0,

and finally from Eqgs(53) and(57) we obtain again the same as well as those obtained by the exchafgelL.
equations that we have derived from the condit{gf). So With the help of the mass counterterm and the left and
we can write the whole set of Aolét al. renormalization right wave-function renormalization constants the renormal-

conditions as ized self energ;iij can be written as
0=3M(mA)m;+3R(md),

. 1 1
=3 - EpL(5th+ 5Z5)— E[bR(&ZBT-I— 5Zf)

0=m32R(m?)+SR(md), (64) J i
A - - 1 1
0=32%(m?) + m? R (m?) + 37 (mP)) + S R(Zi my+m; 6Z) + S L(8Z;] my+m; 6Z;)
+mEF (m?)+2F (m?)), + 5 6m; (65
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where.j; is the bare self-energy. Using EdS2), (64), and 67— 57"= 57— s7RT=0. (74)
(65 we can obtain the following relations among bare self-

energies Note that apart from taking the real part in E(89), (71),

(Eﬁ-"(mjz)—Eiyj”(mjz))mj+(Eﬁ(mj2)—EhT(mj2))=0, (66) E)?\/Ze)ryxézg?\ﬁnﬂﬁgr?mfigog al. condition(55) to avoid _
. pect that another set of con

and a similar relation exchangirRe L. But we know that ~sistent condition that include conditios5) (for i#j, and

this relations are not satisfied because self-energies are ni@king the real part in the diagonal casmn be given, and

Hermitian due, e.g., to the branch cut generated by the loopctually this is the case.

of massless virtual fotons. The appearance of this type of Performing the calculations in the incoming fermion

(false relations is due to the over-determination of condi-Scheme we obtain the following set of wave-function renor-

tions (54)—(57). malization constants:
There are several ways to solve this over-determination,
here we will present the ones that we believe are more physi- 2
cal. 85"+ 67 = {31 ()M =32 (m?)ym?
A. “Incoming fermion” scheme + Eiij( mjz)mi m; — EﬁRT(miz)mj m;

To avoid over-determination we will define the following

R/ 2y e Rt/ 2 L2
renormalization conditions. We will keep for:j the Aoki + 2 (m)m; — 2 () m;+ X (mi)m,

et al. renormalization conditiori54) namely —sHmAmY (%)) (75)
ij i il ’
S;i(p)ui(p)=0 i#j, p*—m;, (67)
2
which physically means that we have no mixing on shell of 5zh - 5ziLJ.T= 5 Z{EﬁL(mf)mfnLEﬁ”(miz)miz
the incoming fermions and in terms of self energies amounts m; —m;
to
+ 3 Rm?) mymy+ 3R (mf)mym,
_S k2 SRim2\ it
O—Eiyj (mj)mj+2ij(mj), i#], (68 +2h(mj2)mi+2iLjT(mi2)mj+2iFf(mj2)mj
and a similar condition exchangim—L. Fori=j we only +3RmAHm} (i#])), (76)
impose this condition over the real part of the inverse propa- .
gator

| ) SZi"+ 6z =mZ &R (m) + TR T (md) + 37 (m?)
Re(iS™ ;i (p)uf(p)=0 p?—m;, (69) , , ,
-, . . +375 (M) +mER (md)+ 25 (m)
the restriction to the real part is necessary because fermions

need not be stable particlés fact they are not in genepado +2}-i’(mi2) +2h’*(mi2))+2gR( m?)

an appropriate condition for the mass pole is &), which R 2

in terms of self energies amounts to +2 7 (m?), (77)

0= M)+ (m2)m+25(mA)+25(mP), (70 and, as usual, similar conditions obtained after the exchange

R+ L.
and a similar condition exchangirig—L. We also add the We also have we also have
unit residue condition

which can be shown to be equivalent to

= — ) + 3 mE)mi+ 2R (m?) + 2 (mf) + X (mp)
E is™1y. —m)- 1=y 2_,m?.

up(P)ReEIS™ )i (p)(Pp—m;) up(p), pT—m; (72 +E:—IT(m|2)} -

The diagonal antihermitian parts of the bare self-energy are
finite, so it can be shown that in order to keep the renormalHere it is worth noting that even though this scheme has less

ized ones finite we only need to impose conditions than the Aokét al. set we still obtain restrictions
over bare self energies, namel
57— 571 = 57R— 57R" + const. (73) g y
In the on-shell scheme without mixingZ};— 6z5"= 6zf SHMA)+35T (M) =3Rmd) + 35 (mf), (79

— 8ZR"=0 is tacitly assumed. However due to the rephasing
freedom only condition73) is necessary to absorb all the but in this case it can be seen by direct calculation to one
divergencies. Here, for simplicity reasons, we also take  loop that this relation holds.
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B. “Outcoming fermion” scheme Here again we obtain the relatig9). Note that diagonal
Another possibility is to define an on-shell scheme by thecounterterms coincide in both schemes while this is not the
following set of conditions. We impose case for off-diagonal ones and of course when there is no
mixing the usual renormalization constants are reproduced.
u?(p)sl}l(p)zo (i#], p?—m?), (80) So far we have presented the above schemes without

specifying weak indicesl or d. In the next subsections we
which physically means that we have no mixing on shell ofwill see that the above schemes can be imposed alternatively
the outcoming fermions and in terms of self energieson up or down type fermions but noin both at the same

amounts to time The reason is that gauge symmetry impose certain re-
A A lations between renormalization constants that are not ful-
ozmiziij(miZ)JrziFJ?(miZ), (81) filled in the former case.
plus theR« L condition. C. The role of Ward identities
For i=) we again impose this condition only over . . . .
) ] We ag P y Let us obtain the Ward identities that relate renormaliza-
Re(iS™*) that is . . . :
tion constants in the physical base. The non-physical base
W(p)RiS™ 1) (p)=0, p2om?, 82 belongs to an irreducible representation Y, (2) (weak
'(PIRel Jii(P) Pr—=m 82 double} and we want the renormalization group to respect
which in terms of self energies amounts to this representation, that is

R R . . 0_ 5L(1/2)
0= R(m?) + 7R (m2))my+ SR(m?) +3R7(m?), Ue=2Z""2u

(83 (87)
0 _ —L(1/2
and, as customary, the exchandged-L condition. The unit d =2 W2,
residue conditions are the same as in the incoming fermion . 1 1/2)
scheme. where the wave function renormalizati@h(’? is the same

Performing the calculations in the outcoming fermion for the two components of the weak doublet. The non-
scheme we obtain the following set of wave-function renor-Physical basis is related to the physical one via a bi-unitary
malization constants: transformation given by

2 L o 2 Lt 2. 2 UE:VEUUE! U =Viu,
{Eiyj (mi)mi_zi)j/ (myym; (88)

6Zk + 6751 =
] 1
m2—

R 2 Rt 2
+ 27 (mE)mym; = Z 3 (me) mymy,

m{
d=V0dl, d=Viqd,,

+Eﬁ(mi2)mj—2rfT(ij)mi+2h(mi2)mi SO we obtain
—stimm (i#]), (84) up=Vpiz-M2v u =z,
(89)
2
675 — 825" = ———{m3f(m?) + m3 T (md) d?=V01z-(Ry (d =792,
m—m;
] |
e SR(m?) + mS R m2 where we have defined the wave function renormalization for
my 25 (M) + my 257 (mj) the up and down flavors in the physical basis Z$(/?
+mym 3 2Rm?) +mm 7R (m) =VPiZ-v, and z =P izHYy  respectively.
el et 2 From Egs.(89) we immediately obtaifl18]
+mi2i}j, (mi)+mj2i)j/ (mj)} (HE]), 0 0ty ,0 L(1/2n /T dL—(1/2 L(1/2 dL—(1/2
(85 KO=VIv0 =zut2ay! v zdt- (2= Zul(L2)K 7dL=(1/2),
(90)
5z + 52 =mP (ST (mf) + 7% (mf) + 37 (mf) and
+3T(mE)+m SR (D) +2F T(m?) Z“”‘l’Z)Z“L(l’Z)zVJ[UZ”(”Z)ZL“’Z’VLu
+3E (M) +3E T(m?) +32R(m?) VIR AL LECRIVARVAS
+ Eﬁ/RT(mlz), (86) — sz LT(1/2)Zd L(l/Z)KT. (91)
and, in addition, those obtained after the replacerfentL . If we define the CKM renormalization constant K§=K
The mass counterterm is identical to the one obtained in the- SK we can rewrite Eqs(90) and (91) in perturbation
incoming fermion scheme. theory as
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d2 d2
m +m;
(6z8-— zd”)——dz SKINANAK); (i #]),
m; m;

1
5K=§(5Z“'—K—K52d'-), (92)

N| =

67U+ 571 =K (529 + 579K (93 ©8

Equationg92) and(93) relating renormalization constants in 1 s570R_ 570RT) _ 2midm?
the physical base are consequencé&tf (2) gauge invari- 2( ij ij )_qu—m
ance and must be satisfied by any renormalization scheme. . ' (99)

Now we can see that a simple solution to obtain all renor-
malization constants respecting Ward identities is to impose dL_ edlt iR dRt
one of the presented on-shell schemes for the dwm 5 (8Zi —d0Zi ) =5 (52“ —0Z;")=0. (100
fermions and then use E(3) to obtain the left Hermitian
part of the wave function for the ujplown) fermions. For the Had we have used the same conditions for the up fermions
anti-Hermitian and right Hermitian parts of the Ugown) we would have obtained
fermions we can use the same expressions used for the down
(up), but with theu«~d replacement. This procedure leads to
a finite set of Green functions and it is obviously compliant
with the Ward identities. However, this procedure alone does
not lead to up and down propagators with the desired prop- 1 UR Rt
erties listed in one of the two on-shell schemes. Thus for 7 (9Z"+6Z;; ) =0, (102
external legs the above renormalization prescription must be
supplemented with an additional finite renormalization, en-

(KIN*N*HK); - (1#]),

—(5z”L+ 8Zi) = — (N*+N*Ty;; , (101)

u2+ u2

. . . . . . 1 m
suring the compliance with the incoming or outgoing _(52;}'-_ 5zi”j'-*): —'—(N4+ N“)]. (i#)),
schemegdepending whether the particle is in the in or out 2 m] -m/
statg. We will illustrate this point in the next section where (103

we calculate the contribution to the renormalization of the -

CKM matrix given by Eq(92) and the wave function renor- E(&Z“R— S5ZURT)— 2m;m; (NN (1)
malization which in the effective Lagrangian comes in both 2 ij ij my2— mu2 ij 1)
cases solely front{ . ' (104)

D. Contribution of £} to wave-function renormalization 1

. - 55zt~ 57 =2 55zt~ s7i™) =0, (109
The operatorL| is the only one contributing to self-
energies and, hence, to the wave-function renormalizatiofge that Egs(96) and (101 are indeed incompatible with
constants. It also gives a c_:ontrlbutl(mnong othersto the 0 \ard identity(93) as expected. A solution to this incom-
neutral current vertices whidlsee Eq(39)], when compared ity is simply to take one of the two sets as valid for

to the tree level standard model contribution, is proportional ne of the fermiongor even none of them: for example we

to can use the minimal schemaise the Ward identity to de-
[(N4+N4T) 78— (KT(N4+ N4 T K) 79 (94) termine the_ left He_rmitian part of the r_enorma!ization of_the
other fermion, while keeping the anti-Hermitian and right
The contribution fromZ { to the bare self-energies is Hermitian parts from the original prescription. The renormal-
ization of the CKM matrix is then fixed by E¢92). Then we
SRud_yLud_-qg proceed to renormalize the external fermions with additional
finite renormalization constantg'~? and z9-(*2) with
3 Ru=3Rd=q SuL(1/2)7uL(1/2 5dL(1/2)7dL(112) anticfyi : :
' ZUt(12)7uL(112) g 7dL(12)7dL(1/2) satisfying the incoming or

outgoing schemes, as appropriate. For instance a consistent
scheme in the present case would be to retain E3f)—
(100), and then Eq9.102—(105. Then replace Eq101) by

(93), which implies

SMI=KT(N*+N*HK,
3 MU= — (N*+ N4, (95)

hence using either the incoming or outcoming on-shell renor-
malization conditions we obtaitboth give identical results

1
5(8ZH+ 6Z 1) = (N N*T),; . (106)
in the present case, but note that this is not true in general

2
1 Note the sign difference with respect to Eg01).
_(5zidjL+ 5zﬂLT):(KT(N4+ |\|4‘r)|<)ij , (96) The above one is a Ward identity-compliant set of wave
2 function renormalization constants. From them, it is imme-
diate to read the way the CKM matrix renormalizes. As for
_(5ZdR+ 5ZdRT) 0, (97) the addltl_ona_ll(flnlt_e, if radiative corrections were included
renormalization, in the present case this amounts to
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8Z5-=0,
1 SuL SulLt 4 4t
1 SulL ZuLt

but the whole procedure igor the external legsequivalent to use directly Eq§96)—(105) in the first place.
The bare kinetic term in the physical base in the standard model is given by

+
T

2

Lyin= if_)’“

e T " t
ﬂ“+|§v K—WM+K

2 Wi

L+ieQA, +i

T;—Qsiv)L—QsﬁvR

To calculate the tree level contribution 6 via this term after renormalization we write it as

A
m Z#+IgS§~G#]f. (108)

£km_>if_y,u[(ZULT(lIZ)ZuLT(lIZ)L+ZuRT(l/2)R) P (Z9LTAR)ZALE U2 4 Z7dRT(12)R) 9] ZuL(l/Z)KZdL(71/2)T_W+
2 122

d,ti ©
+i—
M SW

+
4 ZdLH(-12)K t7u LT(1/2)T7W;

CwSw

L+ieQA, +i

T;—Qsév)L—QﬁvR

X [(Zu L(l/Z)ZUL l/ZL +Zu R(l/Z)R) Ut (ZdL(l/Z)ZdL(llz)L + Zd R(l/Z)R) Td]f,

RN
ZM+|955'GM

(109

where we have introduced the additional finite renormalization consZAht¥? and Z9“(¥2 necessary to avoid mixing and
maintain residue 1 in the propagators. We have also renormdfizatording to the Ward identit§90). With the renormal-
ization constants taken into account we observe that the total contributi6fi tif the neutral current vertices vanishes. This
is a very non-trivial check of the whole procedure. Of course nothing prevents the appearbifiat bfgher orders when one,
for instance, performs loops with the effective operators. But this a purely academic question at this point.

Finally let us see what happens to the charged current vertices. The total contribuflgp aﬁdﬁ,‘_1 including renormal-
ization constants to the charged vertex is

[+

52UL+ 52ULT 52uL_ 52ULT §ZUL+ (SZULT
|+ y - y ( 5 +(N4—N4T))K

52dL+ 52dLT +52dL_ 52dLT
4 4

_( 52UL+ 52ULT 52uL_ 6ZULT 5zuL+ 52ULT N4 N4T KK 52dL+ 52dLT 52dL_52dLT
S\t 7 B )R+ 4 T 4
52UL_ §ZULT 52dL_ §2dLT
- 4_p\4n_ 22 9% o 97
I+ (N4—N*h 2 K+K 2
=K+ (N*=N*NHK, (110
|

where we have used the Ward ident{88) along with Egs. VI. SOME EXAMPLES
(26)_51100)’ IIEqs. (1.82)._(102 and Eq.(_lo:). we o:)ser\r/]e Let us now try to get a feeling about the order of magni-
t attt.be tt.ota (]:ZT” ution oLy, + £ is in fact equal to the e of the coefficients of the effective Lagrangian. We shall
contribution ofZ}

alone. The contributions coming from the consider two examples: the effective theory induced by the

wave function and CKM renormalizations cancel out at tre€integration of a heavy doublet and the standard model itself
level. Another point to note is that this particular contribu- in the limit of a heavy Higgs boson.

tion preserves the perturbative unitarity Kf in accordance In the heavy doublet case we shall make use of some

with the equations-of-motion argument. This completes theecent work by Del Aguila and co-workef49]. These au-
theoretical analysis of the CKM and wave-function renor-thors have recently analyzed the effect of integrating out

malization. heavy matter fields in different representations. For illustra-
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tion purposes we shall only consider the doublet case here. 1 1

As emphasized ifi19] while additional chiral doublets are (a¢¢)ij=§)\§””)\]§d)—2,

surely excluded by the LEP data, vector multiplets are not. M
Let us assume that the standard model is extended with a

doublet of heavy fermion§ of massM, with vector cou- -~ ~ )

pling to the gauge field. For the time being we shall assume Yo Yull = @guM?),

a light Higgs boson. In addition there will be an extended

Higgs-Yukawa term of the form ~ o~
99 Ya— Yd(l +agaM?).

AYQPRU+ N PQgRd 11
i QARUFATQERY, (119 The above results are taken frdt9] and have been de-

rived in a linear realization of the symmetry group, where the

where Higgs fieldh is explicitly included, along with the Goldstone
bosons. It is easy however to recover the leading contribu-
1 o1tie, u tion to the coefficients of our effective operatd®. The
b= — i . =", f:( ) procedure would amount to integrating out the Higgs field,
V2\v+h+ies d of course. This would lead to two type of contributions: tree-

(112 level and one loop. The latter are enhanced by logs of the

. , Higgs boson mass, but suppressed by the usual loop factor
The heavy doublet can be exactly integrated. This procey g2 |n addition there are the multiplicative Yukawa cou-

dure is described in detail if19]. After this operation we jings It is not difficult to see though that only the light
generate the following effective couplingall of them cor-  tarmion Yukawa couplings appear and hence the loop con-

responding to operators of dimension)six tribution is small. To retain the tree-level contribution only
) — we simply replacep by its vacuum expectation value.
t (1) . . .
1D gfagyy“Li+H.C., Sinceal;) anda') are zero there is no net contribution to
_ _ — ‘ the left effective couplings. On the contrary,,, @44, and
|¢TT’D,L¢faE/)q)7”T‘Lf+ H.c., a4, contribute to the effective operators containing right-

B handed fields
i$'D, dfa s y" R+ H.c,,
ot — d M2T+ MZT 2
ip'D ,pf *79Rf+H.c., 113 R R v
¢ Dudtagar's (113 — =—§(a¢d+“;d+%u+“§>u),
1 _
—¢'7D  pfayyy* T Rf+H.C,

V2 MZ—M3E' o2 ,
2 _E(aqf)qﬁ_a(ﬁ(ﬁ)!
—¢'ptpa,Ru+H.c,
B (116
— ¢ pfpag,Rd+H.c.,
ME+ME 12
T g’
D,ud): 8M+Ig§'WM+I?BM b. (114 Mg‘i‘MgT v2 : : )
T 16 @t @paT GpuT guT ags T Agy)-
The coefficients appearing in EQL13) take the values
a&}q)zo (115 As we can see, the contribution to the effective couplings,

and hence to the observables, is always suppressed by a
power ofM ~2, the scale of the new physics, as announced in

3)—
@hq =0, the introduction. The contribution from many other models
involving heavy fermions can be deduced frddf] in a
(@)= — Loonwt similar way and general patterns inferred. _ _
Pu’i] 270 Toge? The second example we would like to briefly discuss is

the standard model itself. Particularly, the standard model in
1 1 the limit of a heavy Higgs boson. In the case without mi.xing
(@pq)ij = NS the effective coefficients were derived [i]. The results in
2 v the general case where mixing is present are given by
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i - M g

(M2+M2T),; = 16];1'2 midzvzm. %—IOQI;AL—E-I—; Sij »

(Wi, = — 16qu2 (mi“2+mi"2)5ij+$“2Kijmj’+ mK | m} %—Ioglt:—ngg |

5+ 1, = — 1617T2 (miu2—|—midZ)5ij—;;PZKijm?—m?K?}m}J %_Iogz_?rg |
(N*+N*T), :1;-772 mi2s; _4lzi2kmE2KL' %_IOQI;AL_EH—}_% , (117
(N2T+N?);, :161772 mo, —4*:i2km32KL %_IOQ%EJF g)

(NLENI, = 161772 mi2s, +4lzi2kngKlj (%_I g'\:—zHJrg |

(N3+N3"); =0,

(NZ_ NZT)”_ — _(N4_ N4T)

where we have used dimensional regularization with4

—2e and {y°,y#}=0; we have also defined d# 1/e— vy
+log4m. From EQs.(117), (41) and (42) we immediately
obtain the contribution to th& and W current vertices

., 1 mPs; (1 | ME.+5
= ~ 10— T 5,
o 1672 2v? \e w? 2
d 1 ms (1 | Mﬁ+5
=—————| x—log—+5],
9 1672 2v2 \e w? 2
u 1 miuzﬁij 1 | Ma+5
=—————| x—log—+ 5],
9r 1672 2v?% \e u? 2
(118
.1 m®s(1 | ME,+5)
= - — 0”— =1,
R 1672 2v?% \e u? 2
b L mi2K;; + Km® [ 1 | Mi 5
= ~—l0g—+ 5,
- 1672 4p? € u? 2
A 1 mk;mf (1 | Mﬁ+5
=————F—|x—log—+ 3
R 16w 202 u? 2

ijo

These coefficients summarize the non-decoupling effects of a
heavy Higgs boson in the standard model. Note that a heavy
Higgs boson gives rise to radiative corrections that do not
contribute to flavor changing neutral currents, but generates
contributions to the charged currents that alter the unitarity
of the left mixing matrixX4 and produces a right mixing
matrix which is non-unitary and of course is not present at
tree level.

The divergence of these coefficients just reflect that the
Higgs boson is a necessary ingredient for the standard model
to be renormalizable. These divergences cancel the singulari-
ties generated by radiative corrections in the light sector. At
the end of the day, this amounts to cancelling att &nd
replacingu— My .

Although, strictly speaking, the above results hold in the
minimal standard model, experience from a similar calcula-
tion (without mixing in the two-Higgs doublet modéR0]
leads us to conjecture that they also hold for a large class of
extended scalar sectors, provided that all other scalar par-
ticles in the spectrum are made sufficiently heavy. Unless
some additionaCP violation is included in the two-doublet
potential, there is only one phase: the one of the standard
model.

Thus we have seen how different type of theories lead to
a very different pattern for the coefficients of the effective
theory and, eventually, to th€P-violating observables.
Theories with scalars are, generically, non-decoupling, with
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large logs, which are nevertheless suppressed by the usuaie tuning of the potential is present such as in e.g. super-
loop factors. Theories with additional fermions are decou-symmetric theorigsnon-decoupling and in order to make its
pling, but provide contributions already at tree level. Forcontribution larger than the universal radiative corrections
heavy doublets only in the right-handed sector, it turns out.one requires a heavy Higgs bos@ithough their contribu-
tion, with respect to universal radiative corrections is never-
theless enhanced by the top Yukawa coupling
In general, even if the physics responsible for the genera-
In this work we have performed a rather detailed analysigion of the additional effective operators @P-conserving,
of the issue of possible departures from the standard modg@hases which are present in the Yukawa and kinetic cou-
in the charged current sector, with an special interest in thglings become observable. This should produce a wealth of
issue of possible new sources@P violation. The analysis phases and ne®@ P-violating effects. As we have seen, con-
we have performed is rather general. We only assume thaibutions reaching the 1% level are not easy to find, so it
all—so far—undetected degrees of freedom are heavyyjj| pe extremely difficult to find any sizeable deviation with
enough for an expansion in inverse powers of their mass tgespect the standard model in the ongoing experiments.
be justified. _ o A systematic study of the phenomenology of these cou-
We have retained in all cases the leading contribution t lings is now under way, as is clear that a lot of work re-

the observables from the effective Lagrangian. To be full mains to be done, such as identifying the adequate observ-

consistent one should, at the same time, include the One'loozﬂ)les for the wealth of phases that might appear

corrections from the standard model without a Higgs bos_o 'Eurthermore, we have obtained the effective Lagrangian at
(universa). We have not done so, so our results are sensmv?he M scalé and we still have to scale down to the or
to the contribution from the new physics—encoded in the, w

coefficients of the effective Lagrangian—inasmuch as thié<aon mass, which IS a nontrivial task.
dominates over the standard model radiative corrections, ON @ more practical level our results are relevant on three
Anyhow, it is usually possible to treat radiative correctionsdifferent fronts. First of all we have, hopefully, clarified the
with the help of effective couplings, thus falling back againiSSue of wave-function and CKM matrix elements renormal-
in an effective Lagrangian treatment. ization. While the use we have made of our proposal is lim-
There are two main theoretical results presented in thiéed (only one coefficient of the effective Lagrangian contrib-
work. First of all, we have performed a complete study of allutes to the wave function and CKM renormalizatipnsur
the possible new operators, to leading order, and the way tproposal meets all the necessary requirements. Secondly, we
implement the passage to the physical basis when these achn incorporate a good part of the radiative corrections in the
ditional interactions are included. To our knowledge this isstandard model itself in the=4 effective operatorgwe
the first time that this issue has been considered in théave seen that explicitly for the Higgs contributjicso our
present framework with such an exhaustive detail. Secondlyesults will be relevant the day that experiments become ac-
we have analyzed in detail the issue of wave function andurate enough so that radiative corrections are required. Fi-
CKM matrix element renormalization. Both need to be in- na||y' the effective Lagrangian approach consists not 0n|y in
cluded when the contribution from the effective operators toyriting down the Lagrangian itself, but it comes with a well
the different observables is considered. This has been, t0 Ofined set of counting rules. This set of counting rules al-
knowledge, been ignored in past treatments in the literaturgg\s in the case of the CKM matrix elements a perturbative
As mentioned in the paper, the issue is interesting by itselfreatment of the unitarity constraint. If one assumes that the
We have also computed the relevant coefficients in &ontribution from new physics and radiative corrections are
number of theories. Theories with extended matter sectorsomparable, then it is legitimate to use the unitarity relations
give, in principle, relatively large contributions, since theyin all one-loop calculations. On the contrary the tree-level
contribute at the tree level. When only heavy doublets argyedictions should be modified to account for the presence of
Considered, the relevant left Couplings are left Untouchedt.he new_physics Wthh introduces new phases_ Thrs proce_
Observable effects should be sought after in the right-handegyre can be extended to arbitrary order.
sector. The Contribution from the new phySiCS iS decoupling Note added in proofWe recenﬂy became aware of yet
(i.e. vanishes when the scale is sent to infinityowever the  another modification of the Aot al.and Denner and Sacks
limits on additional vector generations are weak, roughly ongenormalization conditions by Barroso, Brucher and Santos

requires only their mass to be heavier than the top one, s@2] which apparently leads to gauge independent results.
this may lead to large contributions. Of course, there are

mixing parametersn, which can be bound from flavor

VIl. CONCLUSIONS
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