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Gauge field copies
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The problem of Wu-Yang ambiguities in three dimensions is related to the problem of the existence of
torsion-free driebeins for an arbitrary potential. The ambiguity is only at the level of boundary conditions. We
also find that in three dimensions any smooth Yang-Mills field tensor can be uniquely written as the non-
Abelian magnetic field of a smooth Yang-Mills potential.
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Wu and Yand 1] gave an explicit example of tmM@auge  only a consisitency condition. It does not mean that Apy
inequivalent  Yang-Mills potentials A;(x)={A%(x),a satisfying this equation gives a gauge copy. Recently Freed-
=1,2,3 generating the same non-Abelian magnetic field man and Khur[15] have exhibited several examples of con-

tinuous families of gauge field copies th=3. Their tech-

Bi[Al(X) = €ij (9;A+ 3A; X A)). (1)  nique was to use a local map of the gauge field system into a

spatial geometry with a second rank symmetric terSgr
Since then there has been a wide discussion of the phenom-B{'B? detB and a connection with torsion constructed from
enon in the literatur¢2—15]. We may refer to gauge poten- it.
tials giving the same non-Abelian magnetic field, as gauge We adopt a different method and directly ask the question
field copies in contrast with gauge equivalent potentials thaas to how many different solutiori any), does the system
generate magnetic fields related by a homogeneous 9auge equations defined by E¢L) have for any specifieéi(x).
transformation. If we require all higher covariant derivativesgq, that we proceed with the analysis using the Cauchy-
of Bf also match then there are effectively no gauge copiegowalevsky existence theorems on systems of partial differ-
[11]. ential equations. The equations for the gauge field copies are

Deser and WilczeK4] first pointed out the consistency not a priori in the form where this theorem can be applied.
condition forA,, andAl’L=AM+ A, to generate the same field However, by reorganizing the equations a bit they can be

strength. Using the Bianchi identity, they obtained tﬁ@t brought to the form so that these theorems can be applied to

had to satisfy the equation that system.
[]EM'AV]:()' (2 I. EXISTENCE OF A FOR ARBITRARY B
where in two dimensions, Let us first state the Cauchy-Kowalevsky existence theo-
. rem that we us¢l16].
~ Let a set of partial equations be given in the form
FMVabZEG’U'VEabCFCMV: Mab’ (3) p q g
o"Zi m " 072J
. . . — = G. — +G; 5
and in four dimensions X4 121 22 U ox, : ©
,Eﬂvabzléwpaeabclzc — Mamby (4) for valuesi=1, ... m, beingm equations inm dependent
2 Po variables; the coefficients;;, and the quantitie§; are func-
tions of all the variables, dependent and independent. Let
Treating this as an eigenvalue equation fogrwe have the ¢, ... c,,a;,...,a, be a set of values of
condition for existence of nontrivial solutions Afis that the Z1, o Zmi X1, ... Xn, respectively, in the vicinity of
determinant oM is zero. In two dimensions the determinant which all the functionsG;;, and G; are regular; and let
corresponding tM vanishes identically and there neces- ¢, ... ¢, be a be a set of functions &, . .. x,, Which
sarily has nontrivial solutions. However in four dimensionsacquire  values ¢y, ...,c, respectively when x,
this determinant is genel’ically nonzero and there are hardl)& as, ... Xp=a,, which are regu|ar in the V|C|n|ty of these
any gauge copies. _ _ _ _ values ofx,, ... Xx,, and which are otherwise arbitrary.
This sort of analysis exists only in even dimensions. InThen a system of integrals of the equations can be deter-
three Euclidean dimensions, we only get the constrainfined, which are regular functions &f, ... X, in the vi-
éi[A]xﬁizo. This equation has many solutions, but this iscinity of the valuex;=a;,x,=a,, ... X,=a,, and which
acquire the value#, .. .,¢,, whenx;=a,; moreover, the
system of integrals determined in accordance with these con-
*Email address: pushan@imsc.ernet.in ditions, is the only system of integrals that can be determined
"Email address: sharat@imsc.ernet.in as regular functions.
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Our system of equations is _((915\3_5\3%5\1_,_ gz) . (glx gs)_lg\l‘ (93(I§1>< |§3)
B1=02A3= dahot Apx Ag, © — (A3 AyxX Ag—B1) - (BoXBg) — Ay d5(B,X By)
By=d5A1 = diAgt Agx Ay, @ +03(By)- B+ (918,) - (985 = 0. (15)
Ba=01A,— d,A; + Ay XA, (80  Now we can substitute the expression oy from Eq. (13).

Note that in this substitution, the derivatives do not actaon
whereB;, B,, andB; are treated as given variables and wesince in that case we get ters- B, X B; and B;- B, X Bs
want to solve forA;, A,, andAz. With this definition of the  that vanish. We get the coefficient ef as (Dl[A]I§3) . (|§l

B’s, the Bianchi identityD;B;=0 follows auto_matic_ally. X és)+(D2[A]§3) . (ézx §3) Whenever this coefficient is
However the existence theorem cannot be applied directly tﬂonzero, the linear equation far is invertible and this ex-

this set of equations. For that we rewrite the equations in a,. . . . N ~ = .
different wa; Consider g plicitly gives us« as a function oA;, A,, andB;. Generi-

cally we do not expect any problem in solving fer
031&223253+'&2X5~3— |§1, (9) We now have&g_ as a Io<_:a_| function oﬂl, 5\2, and éi’s

and we can substitute for it in Eq®) and (10). We further
expect that the field configurations are mostly nonvanishing
so that the coefficient§;;, andG; are regular and we can
apply the theorem to ged;, A, and henceA; as unique

functionals ofB;(x).
Alternatively, we could consider the system of equations

(93/&1:(91A_>3_A->3XA-)1+ éz. (10)

The existence theorem implies that we have solutionﬁfpr
andA, for any specifie®,, B,, andA;. ButA; andA, so
obtained have to satisfy E¢B). Is this always possible with

some choice 05\3, and if yes, is the choice aﬁg unique? To &3A2: 02'&3+'&2X'&3— éll (16)
address this question, we presume that the initial data on

X3=0 satisfies Eqs(6)—(8). This is always possible for any oAy = 91 Ag— AgxX AL+ By, 17)
given I§i(x) as follows from the analysis of the+11-

dimensional case. Then E®) may be equivalently replaced (93(5\3>< gs) - _ ((915\3_5\%5\14_ gz) % gl

by another equation obtained by applyifigon it and using

Egs.(6) and(7). This is just the Bianchi identity. We write it —(9,A3+ A, X A3—B1) X B,

in the form

— A X 9381~ 33(9iB;) — Ay X 3385,
A3X 83: _(9383_(9282_A2>< Bz_(lel_Alx Bl .

11 (18)

As-B3)=05(Bs2a(AL,A;,B))). 1
Now let us decompos@; in directions parallel and per- 93(A3-B3) = d5(|Bs[ (A1, A2,B1)) (19

pendicular toBs, Here in the last equation(A;,A,,B;) is to be replaced by
the expression obtained far from Eq. (15) and 0735\1 and
A, are to be replaced using Eq46) and (17). This sys-

. - L tem of equations is in the form where the Cauchy-
In the generic case, whefB|+0, Eq.(11) determinesA;, Kowalevsky theorem can be applied and this system

entirely. Taking the cross product of E(L1) with B;, we  ynjquely determines all the unknown variables once the ini-

1&3:a§3+5\si. (12)

get tial data is specified. The first two equations contain the six
1 unknowns,&1 andﬁ\z. The third one contains the two com-
Asz=aBs— »_Zésx[(,&zx B,)+(A;XBy)+(a,B)], ponents ofA; transverse tc§3 and the fourth one has the
Byl component ofA; parallel toBs. Thus all the nine degrees of

13 freedom are uniquely determined. Therefore generically

there are no gauge field copies. The only ambiguity in the
choice of the potential is limited to a subspace that specifies
the initial conditions as required in the theorem.

wherea can be arbitrarily chosen.
We now address the question whetleran also be de-

termined. Taking the dot product ¢£1) with B;, we get

II. EXISTENCE OF TORSION FREE DRIEBEINS

By 0:Bi+ (BsXBy)- A+ (BaxB,)-A,=0. (14 FOR ARBITRARY A

This is a constraint thaﬂl and 5\2 have to satisfy. It is In this section we address the question whether there ex-
satisfied orx;=0. In order that it is satisfied at all;, we  iSts any continuous family of potentials that generate the
apply 95 on Eq.(14) and use Eqs9) and(10). We obtain same magnetic field. Lek; and A; + ee; generate the same
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magnetic field, where is a small parameter. Thesy satis- ~ Formally we could have also looked at the set of equa-
fies the equation tions

eijk(&j§k+§jxék)=0. (20 d3€,= €3t AxX €3~ AzX ey, (29)
This is precisely the equation for a driebeﬁnto have zero 53§1=&153+5~1>< 53—5\3><51, (30
torsion with respect to the connection one fofim Thus we o L L
are asking if there exists a driebein with zero torsion for a d3(BgXe3)=—(d3By) X e,—(d3B1) X e,
given arbitrary connection one form. This is an important - I,
question in the context of general relativity. We also have a —ByX (9,63 Ay Xe3—AzXey)

consistency condition by taking the covariant derivative of
this equation, that is given by

ékX ék:O (21) &3(§3.é3):a3(|§3|2)ﬁ(éllé2|'&l15\2|§i)'

—B;X(9,63+A;X€3—AzX€;), (3

(32)
Let us rewrite the equations in a more convenient way. We i ] )
take our system of equations as In the last equation3 has to be replaced by its solution from
Eqg. (28) and d;€, is to be substituted from Eq$29) and
0362= 083+ Ap X €3~ AgX €, (29 (0. . . o
We expect the non-Abelian potentials and magnetic fields
are smooth and nonvanishing so that the coeffiecient func-
tions for the set of differential equations are regular. Apply-
and the consistency conditid@1). This set is equivalent to "9 the Cauchy-Kow.aIevsIEy theorem to this set, we get a
the set of Eq(20). As in the previous case, we first look at unique smooth solution foe;, e,, andes. Thus, for any
the consistency condition. Let us decompégeas potential there is a torsion-free driebein, and the only ambi-
' guity is in the choice of the driebein to fix the initial condi-
(24) tions required by the theorem.

(93&12(?1634‘/5\1)( é3_'&3><é)11 (23)

e3=BB3+ e3J_ .

Again Eq. (21) fixes for uses, in terms of the magnetic lll. AN EXPLICIT CALCULATION
fields (in the generic caseB;#0). We get We now illustrate these results by an explicit calculation
1 for the special cas&?= 5. In momentum space, the equa-
é3:ﬂ§3_ _,_é| Xé| s (25) tion looks like
|83 H c b\ ~C
€ijk(—ip;0°°+ €ancd; ) €(p) =0 (33

wherel goes over 1,2. Now we can substitute this form?@f
in Egs.(22) and (23). We obtaine, ande, as unique func-
tions of 8 and the magnetic fields. However thes and e, (—i€jcpj 0%+ 8285 — 8L 8%)el(p) =0. (34)
has to satisfy the consistency conditions

In three dimensions we can choose three orthogonal vectors.

Bs-Bixe =0, (260 we choose three such vectors ﬁsf( rﬁ) Whereﬁ coincides
where agairl goes over 1,2. Takings of Eq. (26), we get, with the p that appears Ln Eh(f equation araldinadm are unit
using Eqs(22) and (23) vectors. We also orientp(n,m) such thatpx m=|p|n and

pxn=—|p|m. Next we write a general solution fa& in
D3(B3XxB))-€+B,-B3xXD,e3=0. (27)  terms of the dyad basis as
Putting in the expression @, we get a linear equation for Ckc™ A1 NcMi+ azNKMc + agNkNe + a4MMe + asPcMy
B, +agPxMc+ azPcNk+ agPiNe + agPiPe (35
D3(B3XBy)-e+(B;xXB3)-(DB3)B wherea;’s are unknown coefficients to be determined.
1 Substituting the solution in the equation, we get various
—(§|X§3)~D.[T(§JX§J) =0. (28)  relations among the coefficientas, as, a;, as, andag
| B3| turn out to be zero identically. In addition, we get
This equation can be inverted to solve fras a func»t|on. of —i|pla;=—i|p|fay=as=|p|?a,. (36)
e, &, A, A,, and B; whenever B, XBj3)-(D|B3) is
nonzero. Therefore, we get a nonzero solution only if
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(37)
in which case,
—ia;=—la,=az=as=a. (38

Thus the general solution is,
eib(x)zf dQ a(Q)ePX(m+in)(m—in),. (39

Here the integration is over all directions of the vecfor
The solutions have an arbitrary functia((2). We may fix
a(Q) by using initial data orx3=0 surface. This may be

interpreted as the arbitrary choice @{x) at the boundary.
However if we requireéi(x) vanishes rapidly at infinity,

PHYSICAL REVIEW D 63 067701

IV. CONCLUSIONS

In this paper we have looked at two problems regarding
the existence of non-Abelian vector potentials. First we
asked the question if there exists a vector potential for any
arbitrary magnetic field. We found that there are many

choices ofA;(x) on thex;=0 surface that reproducé(x)
on the surface(This is the gauge field ambiguity in+11

dimensions. For each such boundary condition ér(x) we
have seeifiin the generic cagehat there is a unique potential

Ai(x) that reproduces the given magnetic field everywhere.
The non-Abelian Bianchi identity does not constrain the non-
Abelian magnetic fields in contrast to the Abelian case. The
ambiguity in the choice of the potentials (& the generic
case only due to the ambiguity ir;(x) on thex;=0 sur-
face. Thus it is related to the gauge copy problem inll
dimensions.

ACKNOWLEDGMENTS

there may not be any solutions. Thus gauge copies would be

absent in this case.

We thank Professor Ramesh Anishetty and Professor K.

A similar exercise can be carried out for any constantMariwalla for helpful discussions and Professor P. P. Di-

vector potential and gives an identical result.

vakaran for a useful comment.

[1] T.T. Wu and C.N. Yang, Phys. Rev. I?, 3845(1975.

[2] C.H. Gu and C.N. Yang, Sci. Sirl8, 484 (1979; 20, 47
(1977.

[3] C.L. Shen, Fudan JournéNatural Science2, 61 (1976.

[4] S. Deser and F. Wilczek, Phys. Le®5B, 391 (1976.

[5] R. Roskies, Phys. Rev. D5, 1731(1977).

[6] M. Calvo, Phys. Rev. 15, 1733(1977.

[7] M.B. Halpern, Phys. Rev. 6, 1798(1977); Nucl. Phys B39,
477 (1978.

[8] S. Coleman, Phys. LetZ.0B, 59 (1977.

[9] S. Solomon, Nucl. Phy€3147, 174(1979.

[10] C.G. Bollini, J.J. Giambiagi, and J. Tiomno, Phys. L&3B,
185(1979.

[11] L.S. Brown and W.I. Weisberger, Nucl. PhyB157, 285
(1979.

[12] S. Deser and W. Drechsler, Phys. L&6B, 189 (1979.

[13] M. Mostow, Commun. Math. Phyg.8, 137 (1979.

[14] F.A. Doria, Commun. Math. Phyg9, 435 (1981); J. Math.
Phys.22, 2943(1981).

[15] D.Z. Freedman and R.R. Khuri, Phys. Lett3B9, 263(1994).

[16] A.R. Forsyth,Theory of Differential EquationgDover, New
York, 1959, Part IV.

067701-4



