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Gauge field copies
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The problem of Wu-Yang ambiguities in three dimensions is related to the problem of the existence of
torsion-free driebeins for an arbitrary potential. The ambiguity is only at the level of boundary conditions. We
also find that in three dimensions any smooth Yang-Mills field tensor can be uniquely written as the non-
Abelian magnetic field of a smooth Yang-Mills potential.
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Wu and Yang@1# gave an explicit example of two~gauge
inequivalent! Yang-Mills potentials AW i(x)5$Ai

a(x),a
51,2,3% generating the same non-Abelian magnetic field

BW i@A#~x!5e i jk~] jAW k1 1
2 AW j3AW k!. ~1!

Since then there has been a wide discussion of the phen
enon in the literature@2–15#. We may refer to gauge poten
tials giving the same non-Abelian magnetic field, as gau
field copies in contrast with gauge equivalent potentials t
generate magnetic fields related by a homogeneous g
transformation. If we require all higher covariant derivativ
of Bi

a also match then there are effectively no gauge cop
@11#.

Deser and Wilczek@4# first pointed out the consistenc
condition forAW m andAW m8 5AW m1DW m to generate the same fiel

strength. Using the Bianchi identity, they obtained thatDW m
had to satisfy the equation

@ F̃mn ,Dn#50, ~2!

where in two dimensions,

F̃mnab5
1

2
emneabcF mn

c 5Mab, ~3!

and in four dimensions

F̃mnab5
1

2
emnrseabcF rs

c 5Mam,bn. ~4!

Treating this as an eigenvalue equation forD, we have the
condition for existence of nontrivial solutions ofD is that the
determinant ofM is zero. In two dimensions the determina
corresponding toM vanishes identically and thereD neces-
sarily has nontrivial solutions. However in four dimensio
this determinant is generically nonzero and there are ha
any gauge copies.

This sort of analysis exists only in even dimensions.
three Euclidean dimensions, we only get the constra
BW i@A#3DW i50. This equation has many solutions, but this
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only a consisitency condition. It does not mean that anyDW i
satisfying this equation gives a gauge copy. Recently Fre
man and Khuri@15# have exhibited several examples of co
tinuous families of gauge field copies ind53. Their tech-
nique was to use a local map of the gauge field system in
spatial geometry with a second rank symmetric tensorGi j

5Bi
aBj

a detB and a connection with torsion constructed fro
it.

We adopt a different method and directly ask the quest
as to how many different solutions~if any!, does the system
of equations defined by Eq.~1! have for any specifiedBW i(x).
For that we proceed with the analysis using the Cauc
Kowalevsky existence theorems on systems of partial dif
ential equations. The equations for the gauge field copies
not a priori in the form where this theorem can be applie
However, by reorganizing the equations a bit they can
brought to the form so that these theorems can be applie
that system.

I. EXISTENCE OF A FOR ARBITRARY B

Let us first state the Cauchy-Kowalevsky existence th
rem that we use@16#.

Let a set of partial equations be given in the form

]zi

]x1
5(

j 51

m

(
r 52

n

Gi jr

]zj

]xr
1Gi ~5!

for values i 51, . . . ,m, being m equations inm dependent
variables; the coefficientsGi jr and the quantitiesGi are func-
tions of all the variables, dependent and independent.
c1 , . . . ,cm ,a1 , . . . ,an be a set of values o
z1 , . . . ,zm ,x1 , . . . ,xn , respectively, in the vicinity of
which all the functionsGi jr and Gi are regular; and let
f1 , . . . ,fm be a be a set of functions ofx2 , . . . ,xn , which
acquire values c1 , . . . ,cm respectively when x2
5a2 , . . . ,xn5an , which are regular in the vicinity of thes
values of x2 , . . . ,xn , and which are otherwise arbitrary
Then a system of integrals of the equations can be de
mined, which are regular functions ofx1 , . . . ,xn in the vi-
cinity of the valuesx15a1 ,x25a2 , . . . ,xn5an , and which
acquire the valuesf1 , . . . ,fm whenx15a1; moreover, the
system of integrals determined in accordance with these c
ditions, is the only system of integrals that can be determi
as regular functions.
©2001 The American Physical Society01-1
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Our system of equations is

BW 15]2AW 32]3AW 21AW 23AW 3 , ~6!

BW 25]3AW 12]1AW 31AW 33AW 1 , ~7!

BW 35]1AW 22]2AW 11AW 13AW 2 , ~8!

whereBW 1 , BW 2, andBW 3 are treated as given variables and w
want to solve forAW 1 , AW 2, andAW 3. With this definition of the
B’s, the Bianchi identityDiBi50 follows automatically.
However the existence theorem cannot be applied directl
this set of equations. For that we rewrite the equations
different way. Consider

]3AW 25]2AW 31AW 23AW 32BW 1 , ~9!

]3AW 15]1AW 32AW 33AW 11BW 2 . ~10!

The existence theorem implies that we have solution forAW 1

andAW 2 for any specifiedBW 1 , BW 2, andAW 3. But AW 1 andAW 2 so
obtained have to satisfy Eq.~8!. Is this always possible with
some choice ofAW 3, and if yes, is the choice ofAW 3 unique? To
address this question, we presume that the initial data
x350 satisfies Eqs.~6!–~8!. This is always possible for an
given BW i(x) as follows from the analysis of the 111-
dimensional case. Then Eq.~8! may be equivalently replace
by another equation obtained by applying]3 on it and using
Eqs.~6! and~7!. This is just the Bianchi identity. We write i
in the form

AW 33BW 352]3BW 32]2BW 22AW 23BW 22]1BW 12AW 13BW 1 .
~11!

Now let us decomposeAW 3 in directions parallel and per
pendicular toBW 3,

AW 35aBW 31AW 3' . ~12!

In the generic case, whereuBW uÞ0, Eq. ~11! determinesAW 3'

entirely. Taking the cross product of Eq.~11! with BW 3, we
get

AW 35aBW 32
1

uBW 3u2
BW 33@~AW 23BW 2!1~AW 13BW 1!1~] iBW i !#,

~13!

wherea can be arbitrarily chosen.
We now address the question whethera can also be de-

termined. Taking the dot product of~11! with BW 3, we get

BW 3•] iBW i1~BW 33BW 1!•AW 11~BW 33BW 2!•AW 250. ~14!

This is a constraint thatAW 1 and AW 2 have to satisfy. It is
satisfied onx350. In order that it is satisfied at allx3, we
apply ]3 on Eq.~14! and use Eqs.~9! and ~10!. We obtain
06770
to
a

n

2~]1AW 32AW 33AW 11BW 2!•~BW 13BW 3!2AW 1•]3~BW 13BW 3!

2~]2AW 31AW 23AW 32BW 1!•~BW 23BW 3!2AW 2•]3~BW 23BW 3!

1]3~] iBW i !•BW 31~] iBW i !•~]3BW 3!50. ~15!

Now we can substitute the expression forAW 3 from Eq. ~13!.
Note that in this substitution, the derivatives do not act ona

since in that case we get termsBW 3•BW 13BW 3 andBW 3•BW 23BW 3

that vanish. We get the coefficient ofa as (D1@A#BW 3)•(BW 1

3BW 3)1(D2@A#BW 3)•(BW 23BW 3). Whenever this coefficient is
nonzero, the linear equation fora is invertible and this ex-
plicitly gives usa as a function ofAW 1 , AW 2, andBW i . Generi-
cally we do not expect any problem in solving fora.

We now haveAW 3 as a local function ofAW 1 , AW 2, andBW i ’s
and we can substitute for it in Eqs.~9! and~10!. We further
expect that the field configurations are mostly nonvanish
so that the coefficientsGi jr and Gi are regular and we can
apply the theorem to getAW 1 , AW 2 and henceAW 3 as unique
functionals ofBW i(x).

Alternatively, we could consider the system of equatio

]3AW 25]2AW 31AW 23AW 32BW 1 , ~16!

]3AW 15]1AW 32AW 33AW 11BW 2 , ~17!

]3~AW 33BW 3!52~]1AW 32AW 33AW 11BW 2!3BW 1

2~]2AW 31AW 23AW 32BW 1!3BW 2

2AW 13]3BW 12]3~] iBW i !2AW 23]3BW 2 ,

~18!

]3~AW 3•BW 3!5]3„uBW 3u2a~AW 1 ,AW 2 ,BW i !…. ~19!

Here in the last equationa(AW 1 ,AW 2 ,BW i) is to be replaced by
the expression obtained fora from Eq. ~15! and ]3AW 1 and
]3AW 2 are to be replaced using Eqs.~16! and ~17!. This sys-
tem of equations is in the form where the Cauch
Kowalevsky theorem can be applied and this syst
uniquely determines all the unknown variables once the
tial data is specified. The first two equations contain the
unknownsAW 1 andAW 2. The third one contains the two com
ponents ofAW 3 transverse toBW 3 and the fourth one has th
component ofAW 3 parallel toBW 3. Thus all the nine degrees o
freedom are uniquely determined. Therefore generica
there are no gauge field copies. The only ambiguity in
choice of the potential is limited to a subspace that speci
the initial conditions as required in the theorem.

II. EXISTENCE OF TORSION FREE DRIEBEINS
FOR ARBITRARY A

In this section we address the question whether there
ists any continuous family of potentials that generate
same magnetic field. LetAW i and AW i1eeW i generate the sam
1-2
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magnetic field, wheree is a small parameter. TheneW i satis-
fies the equation

e i jk~] jeW k1AW j3eW k!50. ~20!

This is precisely the equation for a driebeineW i to have zero
torsion with respect to the connection one formAW i . Thus we
are asking if there exists a driebein with zero torsion fo
given arbitrary connection one form. This is an importa
question in the context of general relativity. We also hav
consistency condition by taking the covariant derivative
this equation, that is given by

BW k3eW k50. ~21!

Let us rewrite the equations in a more convenient way.
take our system of equations as

]3eW25]2eW31AW 23eW32AW 33eW2 , ~22!

]3eW15]1eW31AW 13eW32AW 33eW1 , ~23!

and the consistency condition~21!. This set is equivalent to
the set of Eq.~20!. As in the previous case, we first look
the consistency condition. Let us decomposeeW3 as

eW35bBW 31eW3' . ~24!

Again Eq. ~21! fixes for useW3' in terms of the magnetic
fields ~in the generic casesBW 3Þ0). We get

eW35bBW 32
1

uBW 3u
BW I3eW I , ~25!

whereI goes over 1,2. Now we can substitute this form ofeW3

in Eqs.~22! and ~23!. We obtaineW1 andeW2 as unique func-
tions of b and the magnetic fields. However thiseW1 andeW2
has to satisfy the consistency conditions

BW 3•BW I3eW I50, ~26!

where againI goes over 1,2. Taking]3 of Eq. ~26!, we get,
using Eqs.~22! and ~23!

D3~BW 33BW I !•eW I1BW I•BW 33DIeW350. ~27!

Putting in the expression ofeW3, we get a linear equation fo
b,

D3~BW 33BW I !•eW I1~BW I3BW 3!•~DIBW 3!b

2~BW I3BW 3!•DIF 1

uBW 3u
~BW J3eW J!G50. ~28!

This equation can be inverted to solve forb as a function of
eW1 , eW2 , AW 1 , AW 2, and BW i whenever (BW I3BW 3)•(DIBW 3) is
nonzero.
06770
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Formally we could have also looked at the set of eq
tions

]3eW25]2eW31AW 23eW32AW 33eW2 , ~29!

]3eW15]1eW31AW 13eW32AW 33eW1 , ~30!

]3~BW 33eW3!52~]3BW 2!3eW22~]3BW 1!3eW1

2BW 23~]2eW31AW 23eW32AW 33eW2!

2BW 13~]1eW31AW 13eW32AW 33eW1!, ~31!

]3~BW 3•eW3!5]3~ uBW 3u2!b~eW1 ,eW2 ,AW 1 ,AW 2 ,BW i !.
~32!

In the last equation,b has to be replaced by its solution from
Eq. ~28! and ]3eI is to be substituted from Eqs.~29! and
~30!.

We expect the non-Abelian potentials and magnetic fie
are smooth and nonvanishing so that the coeffiecient fu
tions for the set of differential equations are regular. App
ing the Cauchy-Kowalevsky theorem to this set, we ge
unique smooth solution foreW1 , eW2, and eW3. Thus, for any
potential there is a torsion-free driebein, and the only am
guity is in the choice of the driebein to fix the initial cond
tions required by the theorem.

III. AN EXPLICIT CALCULATION

We now illustrate these results by an explicit calculati
for the special caseAi

a5d i
a . In momentum space, the equ

tion looks like

e i jk~2 ip jd
ac1eabcd j

b!ek
c~p!50 ~33!

or

~2 i e i jkpjd
ac1d i

adk
c2d i

cdk
a!ek

c~p!50. ~34!

In three dimensions we can choose three orthogonal vec
We choose three such vectors as (pW ,nW ,mW ) wherepW coincides
with the pW that appears in the equation andnW andmW are unit
vectors. We also orient (pW ,nW ,mW ) such thatpW 3mW 5upW unW and
pW 3nW 52upW umW . Next we write a general solution forek

c in
terms of the dyad basis as

ekc5a1ncmk1a2nkmc1a3nknc1a4mkmc1a5pcmk

1a6pkmc1a7pcnk1a8pknc1a9pkpc , ~35!

whereai ’s are unknown coefficients to be determined.
Substituting the solution in the equation, we get vario

relations among the coefficients.a5 , a6 , a7 , a8, and a9
turn out to be zero identically. In addition, we get

2 i upW ua152 i upW u3a25a35upW u2a4 . ~36!

Therefore, we get a nonzero solution only if
1-3
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upW u51, ~37!

in which case,

2 ia152 ia25a35a45a. ~38!

Thus the general solution is,

eib~x!5E dV a~V!eip̂•x~m̂1 i n̂ ! i~m̂2 i n̂ !b . ~39!

Here the integration is over all directions of the vectorp̂.
The solutions have an arbitrary functiona(V). We may fix
a(V) by using initial data onx350 surface. This may be
interpreted as the arbitrary choice ofeW i(x) at the boundary.
However if we requireeW i(x) vanishes rapidly at infinity,
there may not be any solutions. Thus gauge copies woul
absent in this case.

A similar exercise can be carried out for any const
vector potential and gives an identical result.
06770
be
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IV. CONCLUSIONS

In this paper we have looked at two problems regard
the existence of non-Abelian vector potentials. First
asked the question if there exists a vector potential for
arbitrary magnetic field. We found that there are ma
choices ofAW i(x) on thex350 surface that reproducesBW i(x)
on the surface.~This is the gauge field ambiguity in 111
dimensions.! For each such boundary condition onAW i(x) we
have seen~in the generic case! that there is a unique potentia
AW i(x) that reproduces the given magnetic field everywhe
The non-Abelian Bianchi identity does not constrain the no
Abelian magnetic fields in contrast to the Abelian case. T
ambiguity in the choice of the potentials is~in the generic
case! only due to the ambiguity inAW i(x) on thex350 sur-
face. Thus it is related to the gauge copy problem in 111
dimensions.
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