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Marginal stability and the metamorphosis of Bogomol’nyi-Prasad-Sommerfield states
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We discuss the restructuring of the BPS spectrum which occurs on certain submanifolds of the moduli or
parameter space—the curves of the marginal stability~CMS!—using quasiclassical methods. We argue that in
general a ‘‘composite’’ BPS soliton swells in coordinate space as one approaches the CMS and that, as a bound
state of two ‘‘primary’’ solitons, its dynamics in this region is determined by nonrelativistic supersymmetric
quantum mechanics. Near the CMS the bound state has a wave function which is highly spread out. Precisely
on the CMS the bound state level reaches the continuum, the composite state delocalizes in coordinate space,
and restructuring of the spectrum can occur. We present a detailed analysis of this behavior in a two-
dimensionalN52 Wess-Zumino model with two chiral fields, and then discuss how it arises in the context of
‘‘composite’’ dyons near weak coupling CMS curves inN52 supersymmetric gauge theories. We also con-
sider cases where some states become massless on the CMS.
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I. INTRODUCTION

Centrally extended supersymmetry algebras admit a
cial class of massive representations which preserve s
fraction of the supersymmetry of the vacuum, and con
quently form multiplets which are smaller than a gene
massive representation. The states lying in these short
@or Bogomol’nyi-Prasad-Sommerfield~BPS!# multiplets are
extremely useful probes of the theory because on one h
their spectrum is determined almost entirely by kinemati
constraints~i.e., by the central charges! while on the other
the multiplet structure ensures their generic stability. Mo
precisely, the fact that BPS states lie in short multiplets
plies that they must remain BPS states, unless a degene
of several BPS multiplets is achieved which can then co
bine to form a generic massive multiplet. In the absence
such an exotic scenario, the dynamics of the BPS se
forms a closed subsystem.

The stability of BPS~particle! states follows from the fac
that their masses are determined by the superalgebra t
the expectation values of the central chargeZi , Mi5uZi u .
Since the central chargesZi are additive, this implies via the
triangle inequality that a BPS state whose mass is

M5U(
i

ZiU ~1!

is stable with respect to decay into BPS ‘‘constituents’’ w
massesMi5uZi u,

M<(
i

M i . ~2!

Even at points where this equality is saturated there is
phase space for a physical decay. Thus one concludes
BPS particles are indeed stable.
0556-2821/2001/63~6!/065018~25!/$15.00 63 0650
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However, restructuring of the spectrum is nonethel
possible because of the existence of special submanifold
the moduli or parameter space where the inequality~2! is
saturated. Specifically, this allows for discontinuities of t
spectrum with respect to changes in these moduli. S
changes are ‘‘unphysical’’ in the sense that one shifts
tween different superselection sectors. Nonetheless, on
often interested in considering such an evolution, as it m
correspond to the extrapolation from a weakly coupled t
strongly coupled regime. In this case, the stability of B
states can often be used to infer information about
strongly coupled region. The caveat of course is that o
should not cross a submanifold where the bound~2! is satu-
rated, and where restructuring of the spectrum may occur
BPS states may for example disappear. Such submanif
are consequently known as curves of marginal stabi
~CMS!, although their actual co-dimension in the moduli
parameter space will vary.

Marginal stability curves, and the corresponding discon
nuities of the BPS spectrum, are quite ubiquitous in theo
with centrally extended supersymmetry algebras. Examp
include: the existence of a CMS for the BPS soliton sp
trum in general classes of two dimensional models discus
by Cecotti and Vafa@1#; and the CMS for the BPS particl
spectrum inN52supersymmetric gauge theories@2–5#. In
the latter case an explicit demonstration of the discontinu
of the spectrum across these curves in the vacuum mo
space was provided in generic SU~2! theories by Bilal and
Ferrari @4,5#. The realization of these dyonic states in term
of type IIB string junctions has also led to the appearance
marginal stability conditions in this context@6,7#. Further-
more, a discontinuity in the BPS spectrum of wall solutio
in a Wess-Zumino model with the Taylor-Venezian
Yankielowicz superpotential@8#, which leads to a glued po
tential, was also observed recently by Smilga and Vese
@9,10#. The discontinuity arises in this case as a function
the mass parameter—a feature also observed in some o
©2001 The American Physical Society18-1
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RITZ, SHIFMAN, VAINSHTEIN, AND VOLOSHIN PHYSICAL REVIEW D 63 065018
models to be considered in this paper. Finally, we also m
tion that marginal stability conditions have more recen
been studied in the context of string compactification
manifolds with nontrivial cycles@11#.

In order to illustrate the discussion with a particular e
ample, we recall that the notion of marginal stability aris
in particular, in the Seiberg-Witten solution@2# of N52 su-
persymmetric~SUSY! gauge theories~see e.g.@4#!. In the
simplest example of pure super Yang-Mills~SYM! theory
with gauge group SU~2!, there is a one-dimensional elliptica
curve of marginal stability in the moduli space~see Fig. 1!.

On crossing this curve by varying the moduli a restruct
ing of the spectrum of BPS states takes place. For insta
the electrically charged vector bosonsW6 only exist outside
the CMS, and disappear from the spectrum in the inte
region. To make these notions a little more general, we
define a ‘‘stability domain’’ as a submanifold of the modu
space in which a particular BPS state exists. This dom
will always be bounded by a CMS. In this example, theW
boson has a stability domain in the exterior region illustra
in Fig. 1. On crossing the CMS from the stability domain,
is usually stated that theW bosons ‘‘decay’’ into a two par-
ticle state consisting of a monopole and a dyon with u
electric charge. This interpretation is a little awkward b
cause for a particle to properly decay it must exist in
spectrum, at least as a quasi-stationary state, and this is
true after crossing the CMS. The question then arises a
exactly what happens on the CMS resulting in the appa
discontinuity of the BPS spectrum.

In this paper we will suggest a physical interpretation
this phenomenon, which we summarize below. For this p
pose, its convenient to continue with theW boson example to
make the ideas more concrete. However, one should be
mind that this system is not directly accessible to the se
classical techniques that are used in this paper, becaus
CMS curve lies at strong coupling. Nonetheless, we will
gue that there are several constraints ensuring, at least q
tatively, the generality of this behavior.

Specifically, the emerging picture is that when the mod
approach the CMS, theW6 states swell in coordinate spac

FIG. 1. A schematic representation of the moduli space forN
52 SYM with gauge group SU~2! in terms of the VEV u
5^trf2& of the adjoint scalarf. The W bosons only exist outside
the shaded region, which consequently determines their stab
domain.
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as they become more weakly bound. Near the CMS, but
within the stability domain, one can interpret theW6 as a
composite particle built from two primary constituents~a
monopole and a dyon of electric charge one!, whose interac-
tion can be described by a nonrelativistic~super!potential
depending on the relative separation, within the framew
of supersymmetric quantum mechanics~SQM! @12#. As one
approaches the CMS, the separation of the two primary c
stituents diverges, while the bound state level reaches
continuum~i.e. the binding energy vanishes!. Further motion
after crossing the CMS leads to an SQM superpoten
which fails to exhibit a supersymmetric ground state se
rated by a gap from the continuum. Consequently,
ground state in the sector with unit electric charge is
longer the one-particleW boson state but rather a set of no
BPS two-particle states forming a ‘‘long’’ multiplet.

We will argue that this picture is the general situation f
CMS curves associated with BPS particle states. Nam
whenever a discontinuity occurs in the BPS spectrum a
point in the parameter space, then certain BPS states d
calize in coordinate space. Indeed, the phenomenon of m
ginal stability of BPS states involves, by definition, the alig
ment of central charges of primary states in such a way
the binding energy vanishes. In this context it is quite natu
that crossing the CMS involves infrared effects, and
‘size’ of the marginally stable state should diverge as
CMS is approached. However, within this general picture
delocalizationone can identify several different mechanism
underlying this behavior.

The features are somewhat dimension dependent, so
convenient to focus first on 111D which will be our primary
concern in this paper. We will then remark on certain aspe
which distinguish the behavior in 311D in particular. More-
over, for solitons in 111D its convenient to distinguish two
delocalization mechanisms.

~1! The first is when there are no massless fields relev
to the problem, and consequently one can describe the in
actions of the primary constituents using non-relativistic c
lective coordinate dynamics with linearly realized supersy
metry and short range potentials. For a large class of syst
~including the ones to be considered here!, its possible to
limit attention to just one collective coordinate – the relati
separationr of the primary solitons. We then observe tw
characteristic dynamical scenarios for the near CMS dyn
ics:

In the first case, the short range potential is of deuter
type which remains finite on the CMS but possesses a si
bound state, whose wave function spreads out as the CM
approached, while the level reaches the continuum at
point. On crossing the CMS, there is no longer a supers
metric ground state reflecting the fact that the BPS state
disappeared from the spectrum to be replaced as a gro
state by a non-BPS two-particle state with the same quan
numbers.

In the second scenario, the relative separation become
exact modulus on the CMS, and the potential therefore v
ishes at this point. In this case, the composite state still
localizes as the CMS is approached as the wave func
becomes highly spread out. The state is however hig

ty
8-2
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MARGINAL STABILITY AND THE METAMORPHOSIS OF . . . PHYSICAL REVIEW D 63 065018
quantum mechanical and has no classical analogue. In
case, we also observe that the potential may support~in gen-
eral different! composite states on each side of the CMS.

We will study a two-field model exhibiting both thes
dynamical regimes in subsequent sections.

~2! The second delocalization mechanism arises w
there are massless fields involved, these being either the
mary states themselves, or the fields via which their inter
tions are mediated.

First, in situations where massive primary states inter
via massless exchange, we shall argue in Sec. II that at
tive Coulomb-like interactions between the primary consti
ents must vanish on the CMS as a consequence of the s
ture of the BPS mass spectrum.

Second, a new mechanism arises when one or more o
primary states is massless. This scenario may be taken
special case of~1! in that massless points arise generically
co-dimension one submanifolds on the CMS curve. In t
case it is not possible to reduce the effective dynamics
non-relativistic quantum mechanics, and one must cons
the effective theory of the massless state. We note that m
exotic examples of this behavior may arise~in higher dimen-
sions! at Argyres-Douglas points@13# in N52 SYM theory,
or more generally at second order critical points in sup
symmetric theories.

Although we have framed this discussion mostly in t
context of 111D field theories many of the features app
also in higher dimensions. In particular, restructuring of
BPS spectrum via delocalization is apparently a generic p
nomenon. However, an important distinction between 111D
and, say, 311D is that in 111D an arbitrarily small attrac-
tion is sufficient to form a bound state while in 311D this is
not the case. For this reason long range forces play a sp
role in 311D, where Coulomb-like attractive potentials a
required to form bound states at an arbitrarily small effect
coupling. We will discuss this scenario in the form of com
posite dyons inN52 SYM theory. The general argumen
outlined above will be presented in Sec. II, while particu
examples of different scenarios will be discussed in sub
quent sections.

In this paper we focus first on class~1! and present an
exhaustive study of a particular two-dimensional We
Zumino model@14# with N52 supersymmetry of the typ
considered previously@15# in a related context. This is a
simple model which exhibits composite solitons~kinks! and
a corresponding CMS curve accessible to quasiclassical t
niques. Thus it serves as an ideal arena to study in detai
effective SQM which determines the presence or otherw
of the composite soliton. The model involves two weak
interacting chiral fields. In the decoupling limit there a
‘‘primary’’ BPS kinks for each field, which when quantize
lead to short BPS multiplets containing one bosonic and
fermionic state~plus antiparticles!. There are also ‘‘compos
ite’’ solitons which are combinations of the primary config
rations.

Switching on an interaction between the fields we see
the primary BPS solitons exist throughout the parame
space, while the composite solitons exhibit a finite stabi
domain bounded by the CMS. We analyze in detail the
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fective SQM which exhibits the composite soliton as a s
persymmetric bound state, and verify the behavior descri
earlier with regard to the approach to the CMS. Its wo
noting that in this model the structure of the stability doma
is quite complex. In particular, there are different dynami
regimes depending on which part of the CMS curve
crossed. In most cases, a composite state only exists on
side of the CMS. However, there are regions in the param
space where stability domains for particular composite sta
meet on a CMS, and consequently~in general different!
composite states can exist on either side. In this latter reg
we observe that the relative separation of the primary st
becomes a modulus on the CMS, as the potential vanis
Therefore this model exhibits both scenarios outlined in~1!
above.

The advantage of dealing with the Wess-Zumino mode
that all the features of the non-relativistic quantum dynam
can be calculated analytically. In the vicinity of the CMS w
obtain the explicit form for the~super!potential describing
the interaction of the primary solitons and are able to tra
the form of the bound state wave function right onto t
CMS. Moreover, certain qualitative aspects are appare
rather model independent due to the constraints impose
the BPS spectrum.

To investigate the situation in 311D we consider explic-
itly N52 SYM theory with gauge group SU~3! which con-
tains a spectrum of primary and composite monopole~dyon!
solutions. The two ‘‘primary’’ monopole solutions are em
bedded along each of the simple roots of the algebra.
embedding along the additional positive root leads to
‘‘composite’’ dyon which becomes marginally stable on
CMS accessible in the semiclassical region. The major
ference between the monopole case in four dimension
comparison to the two-field model in two dimensions is t
presence of massless exchanges resulting in a long r
Coulomb-like interaction, which can lead to bound states
noted above. Recently there has been considerable intere
this system@16–22#, in part because the composite dyo
configuration is an example of a 1/4-BPS state inN54 SYM
theory. This work, which has centered on the moduli sp
formulation of the low energy dynamics, has resulted in
detailed form of the long range interaction. We observe th
in accord with the general expectations of Sec. II, the attr
tive component of the long range force~the term}1/r in the
effective potential! vanishes on the CMS, while a repulsiv
component (}1/r 2) remains. There is no attraction on th
other side of the CMS, the term}1/r changes its sign. Thus
a BPS bound state which exists in the stability domain
one side of the CMS becomes more and more delocal
when approaching the CMS, and ceases to exist on the o
side. Accounting for the fact that long range forces are n
crucial, we observe that the qualitative picture is nonethe
quite similar to the two-field Wess-Zumino model, in that t
composite state delocalizes on approach to the CMS.

The layout of the paper is as follows: In Sec. II w
present some general arguments constraining the dyna
of primary solitons near a CMS. Using these results we d
cuss, in a simplified setting, the underlying mechanism
volved in restructuring the spectrum, introducing the nec
8-3
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RITZ, SHIFMAN, VAINSHTEIN, AND VOLOSHIN PHYSICAL REVIEW D 63 065018
sary notation and definitions in passing. In this section,
also consider the embedding of the effective SQM supe
gebra within the superalgebra of the field theory. As
specific example, we consider the realization of theN52
superalgebra with central charges in two dimensions in
two soliton sector. In this regard its worth remarking that t
embedding shows explicitly how the presence of field th
retic central charges is crucial in allowing a linear realizat
of supersymmetry in the effective non-relativistic dynami

Section III presents a detailed analysis of the~quasiclas-
sical! solitons in the two-field Wess Zumino model with r
gard to their BPS properties. We calculate the form of
CMS, and prove that outside the stability domain the B
solution corresponding to the composite state ceases to e
In Sec. IV we derive and discuss the SQM which descri
the interaction between the primary solitons in the vicinity
CMS and determines whether or not a supersymme
bound state exists. We obtain analytic solutions for the
perpotential and the bound state wave function.

In Sec. V we consider the more complex situation
monopoles and dyons inN52 SYM theory with gauge
group SU~3!, and review the form of the long range potent
near the CMS@16–22#. The attractive component vanishe
on the CMS, in agreement with the general arguments
Sec. II, while a repulsive component remains leading to
localization on the CMS even at the classical level.

In Sec. VI we turn to the class~2! delocalization mecha
nism which involves delocalization due to a field becomi
massless on the CMS. We consider a restriction of the t
field model, discussed in Sec. III which, when perturbed b
term which breaksN52 to N51supersymmetry, provides
simple example of this phenomenon.

We collect some concluding remarks in Sec. VII, and d
cuss in particular the applicability of our results to margin
stability of theW boson, and also subtleties associated w
extended BPS objects.

II. SOLITON DYNAMICS NEAR THE CMS

Before considering a specific model in detail, we first d
cuss some simple but quite general constraints which
useful in providing a qualitative guide to the dynamics a
propriate to the near-CMS regime.

A. Dominant interactions

Consider the dynamics of two primary BPS solitons w
massesM1 andM2 near a CMS curve for the composite BP
soliton with massM112. From the CMS condition that the
binding energy vanishes,M1125M11M2, it is clear that by
going sufficiently close to the CMS, the relevant ener
scales—kinetic and binding energy—can be made m
smaller than the soliton masses. The system is then n
relativistic, and the effective dynamics is described by sup
symmetric quantum mechanics on the space of collec
coordinates of the configuration. With spherically symmet
interactions, the relevant part of this system can be redu
to one-dimensional SQM associated with the relative sep
tion r between the primary solitons.
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We can also deduce some generic features of the po
tial, in part from knowledge of the BPS mass spectrum. Fi
it is inconsistent for the potential to be of attractiv
Coulomb-like form on the CMS itself. This result follow
straightforwardly from the incompatibility of the BPS ma
spectrum with the structure of the bound state energy le
associated with a Coulomb-like potential. Indeed, the qu
tum mechanical spectrum associated with the attractiver
potential will exhibit towers of closely spaced bound stat
only the lowest of which can be BPS saturated. The C
lomb wave functionsc;r ne2r /n lead to bound state level
of the formen}21/n2. In contrast, we know from the form
of the BPS mass spectrum that on the CMS the lowest le
in the tower must reach the continuum. Clearly the only w
this can happen is if the 1/r attractive interaction vanishes o
the CMS.

In other words, if attractive Coulomb-like forces are g
nerically present, there must be a coefficient which we m
identify as the distance to the CMS,

V~r ! →
r→`

const2~q22 f !
1

4pr
1•••, ~3!

whereq is used to denote the appropriate charge andf is a
certain function of the moduli equal toq2 on the CMS. The
ellipsis denotes higher order terms in 1/r .

A second constraint is the requirement that the poten
admits a normalizable bound state arbitrarily close to
CMS ~inside the stability domain!. This constraint is dimen-
sion dependent. While in 111D and 211D an arbitrarily
small attraction can result in such bound state, this is not
case in higher dimensions. In 311D, in order to form a
bound state the attraction must be strong enou
*drr „2V(r )….\2/M . In particular, for the 311D dynamics
of dyons in SU~3! SYM, as we will see in Sec. V, the boun
state is due to a Coulomb-like attraction at large distan
@16–22#. Although according to Eq.~3! the effective Cou-
lomb coupling diminishes on approach to the CMS, t
bound state does exist even for an arbitrarily small coupli

In conclusion, from the simple arguments above we
duce that close to the CMS the dynamics is nonrelativis
and the long range component of the potential controlling
restructuring of the spectrum satisfies the following co
straints. First, on the CMS it either vanishes, or is repulsi
Secondly, the simplest way to form bound states in dim
sions higher than 211D is for the potential to have an attrac
tive long range form off the CMS.

B. The restructuring mechanism

To understand what happens to the spectrum in the n
CMS regime it will be useful to present a simple mod
which exhibits the relevant features. Specifically, we co
sider below the mechanism via which a restructuring of
spectrum can occur.

Assume that the model under consideration contains a
of parameters~to be denoted generically as$m%), and admits
BPS solitons at a certain value$m0%. The parameters$m%
can be moduli, or some parameters in the action. The q
8-4
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MARGINAL STABILITY AND THE METAMORPHOSIS OF . . . PHYSICAL REVIEW D 63 065018
tion is how can BPS solitons disappear from the spectr
under continuous variations of$m%? Generally speaking, we
would expect that if the BPS state exists at$m0%, it remains
in the spectrum at least in some finite domain in the vicin
of $m0%.

The argument is based on the multiplicity of the cor
sponding supermultiplet. Indeed, in the models to be con
ered below, the number of states in the BPS multiple
twice smaller than the number of states in the non-BPS m
tiplet ~this type of ‘‘shortening’’ is typical!. This means that
if a BPS state is to become non-BPS, a factor of two jump
the number of states must occur. Generally speaking,
will not happen under continuous deformations of$m%, un-
less from the very beginning we hadtwo BPS multiplets
which become degenerate at a certain point in the param
space and combine together to leave the BPS spectrum
joint non-BPS multiplet.

We are more interested in another scenario—when a B
state becomes non-BPS at a certain critical point$m* %, with-
out the pre-arranged doubling of the type mentioned abo
Are we aware of any simple analogs of this phenomenon

The answer is yes, a simple example has been known
a long time. We will discuss it here for two reasons: first
nicely illustrates the generalities of the dynamical pheno
enon discussed in the preceding subsection; and seco
we will need to introduce the corresponding notation la
anyway. The example can be found in supersymmetric qu
tum mechanics~SQM! with two supercharges introduced b
Witten @12#. Consider a system~as motivated above! de-
scribed by the Hamiltonian

H5
1

2
@p21~W8!21s3W9#, ~4!

wherep52 id/dx, andW is a function ofx with the prime
denoting differentiation byx. Moreover,s3 is the third Pauli
matrix corresponding to the fact that@s1 ,s2# forms an ap-
propriate representation of the Grassmann bilinear. The fu
tion W will be referred to as the SQM superpotential. Tw
conserved~real! supercharges are

Q15
1

A2
~ps11W8s2!, Q25

1

A2
~ps22W8s1!. ~5!

They form the following superalgebra:

~Q1!25~Q2!25H, $Q1 ,Q2%50. ~6!

If W8 has an odd number of zeros then the ground stat
the system~4! is supersymmetric~i.e., the supercharges an
nihilate it! and unique. This is the analog of the BPS solito
If W8 has no zeros or even number of zeros, the ground s
is doubly degenerate and is not annihilated by the su
charges. The ground states in this case are analogs of
BPS solitons. The unique versus doubly degenerate gro
state in the problem~4! imitates ‘‘multiplet shortening.’’ The
transition from the first case to the second under continu
deformations of parameters is easy to visualize. Indeed
us assume, for definiteness, that
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W~x!5 ln coshx2mx, W85tanhx2m. ~7!

At m50 the derivative of the superpotential vanishes at
origin. Asm grows~remaining positive!, the point whereW8
vanishes shifts to the right, towards large positive values
x. The ground state wave function is supersymmetric a
unique,

C05e2W(x)u↓&5
emx

coshx
u↓&. ~8!

As one approachesm* 51 from below this wave function
becomes flatter on the right semi-axis; representing a sw
ing of the bound state in coordinate space. The correspo
ing scalar potential

V~x!5
1

2
@~W8!22W9#

at m50.98 and the ground state wave function are depic
in Fig. 2.

The pointm51 is critical. Atm.1 the wave function~8!
at E50 becomes non-normalizable, and the true grou
state, coinciding with the continuum threshold, is doubly d
generate. The transition from one regime to another occ
through delocalization in that the zero ofW8, the equilibrium
point x0, escapes to infinity. Note that dynamically the SQ
problem under consideration is similar to that of deuteriu
The potential well in Fig. 2 is atx,1, but the tail of the
wave function stretches very far to the right due to the f
that theE50 level is very close to the continuum spectrum

We can make this somewhat more precise by introduc
a ‘‘classicality parameter’’j defined as

j[
W-8~x!

„W9~x!…2
U

x5x0

, ~9!

wherex0 is the classical minimum of the potential:W8(x0)
50. The parameterj may be interpreted as measuring t
quantum correction to the curvature of the potential at
classical equilibrium point. i.e., the system is essentia
classical ifj!1, while it is highly quantum ifj@1.

FIG. 2. The potentialV(x) in the problem~4!, ~7! ~solid line!
and the corresponding ground state wave function~dashed line!.
The parameterm50.98. The units on the vertical and horizont
axes are arbitrary.
8-5
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In the current example, we find that as we approach
critical point,

j;
1

2~12m!
1•••, ~10!

and so the system indeed becomes highly quantum in
regime. In fact this feature is quite generic for short ran
potentials and may be viewed as an artifact of the remn
supersymmetry. Specifically, since the mass termVF
;W9(x) is linear in the superpotential, while the boson
potential is quadratic,VB;„W8(x)…2, for short range inter-
actions the fermionicW9 term in the superpotential~II B !
will dominate for large separations. This is despite the f
that the fermionic term is a quantum effect~in field theory it
corresponds to the 1-loop correction to the effective poten
through integrating out the fermions!. Thus, although the
system becomes more and more weakly bound, in the C
region the system enters a highly quantum regime where
classical minimum of the bosonic potential need not be
evant. Below we will see that exactly the same phenome
occurs for BPS solitons near the CMS in a 111D Wess-
Zumino model.

C. Embedding of SQM within the field theory superalgebra

To establish a link between the field-theoretical desc
tion of solitons on the one hand and the supersymme
quantum mechanics of two nonrelativistic primary states
the other, we now consider the manner in which the quan
mechanical supercharges emerge from the full fie
theoretical superalgebra. The fact that supersymmetry is
alized linearly in the two soliton sector may be reinterpre
as the existence of a straightforward embedding of the S
supercharges. Moreover, near the CMS the system beco
essentially nonrelativistic and we need keep only the lead
term in an expansion in velocities.

Although the arguments apply more generally, we co
sider for definiteness the realization ofN52 supersymmetry
in two dimensions in the two soliton sector. Recall that t
algebra contains four superchargesQa , Qa

† (a51,2) and
has the form@23,1#

$Qa ,Qb
†%52~gmg0!abPm , $Qa ,Qb%52i ~g5g0!abZ̄,

$Qa
† ,Qb

†%52i ~g5g0!abZ, ~11!

where Pm5(P0 ,P1) are the energy-momentum operato
and Z is a complex central charge. We use the Majora
basis for 232g-matrices,

g05s2 , g15 is3 , g55g0g152s1 . ~12!

Modulo addition of the central charge, the algebra~11!
can be viewed as a dimensional reduction of
N51algebra in four dimensions. The SO~3,1! Lorentz sym-
metry in 311 dimensions reduces in 111 to the product
SO(1,1)3U(1)R where SO~1,1! is the Lorentz boost in 111
and U(1)R is a global symmetry associated with the fermi
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charge. More precisely, the Lorentz boost with parameteb
acts on the superchargesQa as follows:

Qa→FexpS 1

2
bg5D G

ab

Qb , ~13!

while the U(1)R transformation with parameterh is

Qa→FexpS i

2
hg5D G

ab

Qb . ~14!

Notice that the U~1! R transformations can be viewed as
complexification of the Lorentz boost~13!.

Its now convenient to introduce the Majorana sup
chargesQa

i @ i 51,2; (Qa
i )†5Qa

i ] via the relation

Qa5
e2 ia/2

A2
~Qa

11 iQa
2 !, ~15!

where the phase factor e2 ia/2 contains an arbitrary paramete
a, which we will fix momentarily. In terms ofQa

i the alge-
bra ~11! has the form

$Qa
i ,Qb

j %52d i j ~gmg0!abPm12i ~g5g0!abZ i j , ~16!

where the 232 real matrix of central chargesZ i j is sym-
metric and traceless. It is related to the original complexZ as
follows:

Ze2 ia5Z 112 iZ 12. ~17!

To consider representations of the algebra we use a
entz boost in 111 to put the system in the rest frame whe
P1→0 and P0→M5APmPm. Moreover, we can always
choose the basis in U~1! R to put Z i j in the form Z i j

5uZut3
i j . This amounts to fixing the phasea to be equal to

the phase of the central charge,Z5uZueia. Then the algebra
~16! takes the following component form:

~Q1
1!25~Q2

2!25M1uZu, ~Q2
1!25~Q1

2!25M2uZu,
~18!

with all other anticommutators vanishing, so that the alge
splits into two independent subalgebras.

From Eq.~18! we see thatuZu is a lower bound for the
mass,M>uZu. WhenM.uZu the irreducible representatio
has dimension four—two bosonic and two fermionic stat
The BPS states saturate the lower bound,MBPS5uZu, and in
this case the second subalgebra becomes trivial and the
resentation is two-dimensional—one bosonic and one fer
onic state@23#.

How do all of these generalities help us with the proble
of constructing the SQM near the CMS? In the vicinity of t
CMS the differenceM2uZu is small as compared touZu and
can be identified with the nonrelativistic Hamiltonian,1

1Note that we viewM as a Hilbert space operator.
8-6
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HSQM5M2uZu. ~19!

The second subalgebra in Eq.~18! with superchargesQ2
1 and

Q1
2 then coincides with that of the standard SQM, see

~6!. In the first subalgebra the operatorM1uZu can be sub-
stituted by 2uZu up to relativistic corrections. Consequentl
the first subalgebra just leads to a generic multiplet struc
~in this case just duplication! for every state found in the
SQM.

In Sec. IV we will find all the supercharges in the 111
example as explicit functions of the moduli from field
theoretic solutions for two solitons,u andv. Near the CMS,
where their relative motion is nonrelativistic, the result c
be compared with the quantum mechanical realization of
superalgebra~18!. For HSQM5M2uZu we take the expres
sion which generalizes Eq.~4! to include a mass paramete

HSQM5
1

2Mr
@p21~W8!21s3W9#, ~20!

where the superpotentialW depends on the separations
5zu2zv , the conjugate momentump52 id/ds, andMr is
the reduced mass,

Mr5
MuM v

Mu1M v
. ~21!

Then a realization of the superalgebra can be chosen in
form (s i andt i are two sets of Pauli matrices!:

Q1
15A2uZut1^ s3 , Q2

25A2uZut2^ s3 ,

Q2
15I ^

1

A2Mr

@ps11W8~s!s2#,

Q1
25I ^

1

A2Mr

@ps22W8~s!s1#. ~22!

The realization~22! explicitly indicates a factorization o
both the bosonic and fermionic degrees of freedom ass
ated with the center of mass of the system. We can a
include dependence on the total spatial momentumP1

through a Lorentz boost~13! with tanhb5P1 /AM21P1
2.

A couple of comments are now in order. First, it is cle
from this construction that the SQM can only be realiz
linearly in BPS sectors with a non-vanishing central char
Otherwise, one hasQ5AMc ~with c a fermionic operator!
in the nonrelativistic limit, implying a nonlinear realization
Secondly, we note that the expressions forQ1

1 andQ2
2 in the

first line of Eq.~22! represent the leading terms in the no
relativisticv/c expansion. It is not difficult to include highe
order terms in this expansion as follows:

Q1
15t1^ s3F2uZu1

p21~W8!21s3W9

2Mr
G1/2

,

06501
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Q2
25t2^ s3F2uZu1

p21~W8!21s3W9

2Mr
G1/2

, ~23!

where the square root is to be understood as an expansio
1/uZu.

In concluding this section, we note that within the conte
of the presentN52 system one can formulate a gene
statement: given the subalgebra~6! with two supercharges i
is always possible to elevate it to a superalgebra with f
supercharges and a central chargeZ by adding the two ad-
ditional supercharges~23!.

III. AN NÄ2 WZ MODEL IN TWO DIMENSIONS

A. Introducing the model

With the aim of concretely illustrating the general arg
ments of the previous section, we now consider a spec
model. A suitable example exists in two dimensions, o
tained by dimensional reduction of a four-dimensional We
Zumino model with two chiral superfields. The latter is th
deformation of a model considered previously in Ref.@15#.
The superpotential is

W~F,X!5
m2

l
F2

l

3
F32lFX21mmX21

m2

l
nX,

~24!

whereF and X are two chiral superfields,m is a mass pa-
rameter,l is the coupling constant, whilem and n are de-
formation parameters. By an appropriate phase rotation
the fields and the superpotential one can always makem and
l real and positive. The parametersm andn are in general
complex,

m[m11 im2 , n[n11 in2 . ~25!

The four real dimensionless parametersm1 , m2 , n1 andn2
will form our parameter space$m%. For technical reasons th
parameterm[m11 im2 will be assumed to be small in wha
follows, m1,2!1. Furthermore, we will consistently work in
the approximation in which the SQM superpotential is line
in m; this corresponds to terms ofO(m2) in the scalar po-
tential. This limitation is not a matter of principle but, rathe
for technical convenience. In the limit of smallm we can
obtain all formulas in closed form. We will also take th
coupling constantl to be small,l/m!1, so that a quasi-
classical treatment is applicable~except on some exceptiona
submanifolds in the parameter space!.

As a two-dimensional model, this theory has extend
N52 supersymmetry, and exhibits solitonic kinks interp
lating between the distinct vacua. In two dimensions the s
tons are particles~in four dimensions they would be domai
walls!. The dimensionality of the BPS supermultiplet is tw
while that of the non-BPS supermultiplet is four.

Substituting

F5
m

2l
~U1V!, X5

m

2l
~U2V!, ~26!
8-7
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RITZ, SHIFMAN, VAINSHTEIN, AND VOLOSHIN PHYSICAL REVIEW D 63 065018
we arrive at the following action:

S5
m2

2l2 H 1

4E d2xd4u~ŪU1V̄V!

1S m

2 E d2xd2uW~U,V!1H.c.D J , ~27!

where the dimensionless superpotentialW is

W~U,V!5U2
1

3
U31V2

1

3
V31

m

2
~U2V!21n~U2V!.

~28!

The vacua of the model are defined by]W/]u50, ]W/]v
50,

11n2u21m~u2v !50,

12n2v22m~u2v !50. ~29!

For realm and n the solutions to these equations defi
four different vacua with real values of the fields and re
values of the superpotentialW(u,v). The vacuum structure
is illustrated in Fig. 3 for smallm. One of these vacua~de-
noted as$11% in Fig. 3! corresponds to a maximum of th
real functionW(u,v) on the real section of the variablesu
andv, the other vacuum~denoted as$22%) corresponds to
a minimum of W(u,v), and the remaining two vacu
($12% and$21%) are saddle points.

In this situation there exists@15# a continuous family of
real BPS solitons, i.e., of solutions to the real BPS equatio

1

m

d

dz
u5

]W
]u

,
1

m

d

dz
v5

]W
]v

, ~30!

interpolating between the$22% vacuum with Wmin at z
52` and the$11% vacuum withWmax at z5`. All these
solitons are degenerate in mass:M5Wmax2Wmin , and can
be viewed as a superposition of non-interacting primary s

FIG. 3. Structure of vacua and solitons in the Reu, Rev plane
for real n andm .
06501
l

s,

i-

tons: one going from the vacuum withWmin to one of the
saddle points, and the other soliton going from the sad
point to the vacuum withWmax. The parameter labeling th
solutions in this family can be interpreted in terms of t
distance between the basic solitons, and thus the degene
in energy implies that there is no interaction between
basic solitons at realm andn, at least for some finite rang
of these parameters.

The decoupling of the dynamics of the primary solitons
m50 is trivial, as the superfieldsU andV are also decoupled
within the underlying field theory. However, atm1Þ0, there
is no such decoupling within the field theory but, neverth
less, the primary solitons do not interact at rest~providedm
andn are real!. This is a manifestation of the nontrivial ‘‘no
force’’ condition for BPS states.

B. Decoupled solitons,µÄ0 case

At m50 the model is extremely simple: the fieldsU and
V are not coupled. Their VEVs are

u56n1 , v56n2 , ~31!

where we introduce the notation

n65A16n. ~32!

The masses of the BPS solitons are given by

Mnu ,nv
5

4

3

m3

l2
unun1

3 1nvn2
3 u, ~33!

where the topological charges arenu,v50,61 ~see Fig. 3!.
However, as noted in@15#, not all combinations of

charges are realized. For a generic value of the comp
parametern only the$1,0% and$0,1% solitons and their anti-
particles exist as BPS states. To have a BPS state with
nu andnv nonvanishing, one needs to align in the compl
plane the two terms,n1

3 andn2
3 , contributing to the mass in

Eq. ~33!. The relevant conditions are

ImS n2

n1
D 3

50,
nv

nu
ReS n2

n1
D 3

.0. ~34!

These conditions define a curve in the complexn plane pre-
sented in Fig. 4.

This curve is the curve of marginal stability for the mode
In the case under consideration, with no interaction, the C
coincides with stability domains for composite solitons, th
only exist on this curve.

The curve in Fig. 4 consists of three parts which can
parametrized as

n5tanhs, Im s50,6
p

3
. ~35!

The part sitting on the real axis betweenn561 ~corre-
sponding to Ims50) is the stability domain for the$1,1%
8-8
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MARGINAL STABILITY AND THE METAMORPHOSIS OF . . . PHYSICAL REVIEW D 63 065018
composite solitons~and their antiparticles!. The other two
parts, Ims56p/3, give the stability domain for the$1,
21% and$21,1% solitons.

The bifurcations atn561 are due to the vanishing of th
mass of one of the primary solitons at these points. I
explained by the degeneracy of vacua at these value
instead of four vacua only two remain atn561 ~strictly
speaking there are still four, but they coalesce in pai!.
These are simple analogs of the Argyres-Douglas points@13#
in gauge theories.

C. Stabilization by µ

The model atm50 is a very degenerate case. Indeed,
extra$61,61% states existonly on the CMS and are nothin
but systems of two noninteracting$61,0% and $0,61% soli-
tons. The relative separation between the primary soliton
an extra classical modulus, on quantum level the$61,61%
solitons are not localized states. As we will show, the int
duction of a nonvanishing Imm5m2 expands the domain o
stability for the extra BPS state which then occupies a fin
area near the original curve. Thus, settingm2 nonzero leads
to an attraction of the primary solitons.

Using m as a perturbation parameter we find the VEV
and values of the superpotentialW for the four vacua to first
order inm:

$11%: u5n11
m

2 S 12
n2

n1
D , v5n21

m

2 S 12
n1

n2
D ,

W115
2

3
n1

3 1
2

3
n2

3 1m~12n2n1!;

$12%: u5n11
m

2 S 11
n2

n1
D , v52n21

m

2 S 11
n1

n2
D ,

W125
2

3
n1

3 2
2

3
n2

3 1m~11n1n2!;

FIG. 4. The curve of marginal stability in the complex pla
of n.
06501
s
—

e

is

-

e

$21%: u52n11
m

2 S 11
n2

n1
D ,

v5n21
m

2 S 11
n1

n2
D ,

W2152
2

3
n1

3 1
2

3
n2

3 1m~11n1n2!;

$22%: u52n11
m

2 S 12
n2

n1
D ,

v52n21
m

2 S 12
n1

n2
D ,

W2252
2

3
n1

3 2
2

3
n2

3 1m~12n1n2!. ~36!

The BPS masses are given byuWi j 2Wi 8 j 8u and the align-
ment conditions which define the CMS to first order inm
become@cf. Eq. ~34!#,

Im S n2
2 2mn1

n1
2 1mn2

D 3/2

50, ImS n2
2 1mn1

n1
2 2mn2

D 3/2

50, ~37!

where the conditions clearly differ only by a choice of th
branch of the square root in the terms linear inm. Analytical
expressions for the CMS are simpler in terms of the comp
parameter ofs @related ton by Eq. ~35!#. In the complex
s-plane the CMS is given by the curves

s256m2 cosh
3s1

2
cosh1/2s1 ,

s25
p

3
6 sinh

3s1

2
ReFm cosh1/2S s11 i

p

3 D G ,
s252

p

3
6 sinh

3s1

2
ReFm cosh1/2S s12 i

p

3 D G , ~38!

where the indices 1 and 2 refer to the real and imagin
parts,s5s11 is2.

The curves of marginal stability in then plane are pre-
sented in Fig. 5. They form the boundaries of the stabi
domains for the composite BPS states marked in the figu

Figure 5 exemplifies different metamorphoses of the co
posite BPS solitons on the CMS: crossing some bounda
leads to disappearance of the BPS state from the spect
on others the original BPS state disappears but a new
appears.

The figure also shows exceptional points on the CM
where two stability subdomains of the same BPS soli
touch each other. We shall address a dynamical scenar
such points in Sec. IV C. Note also four points of bifurcati
~the Argyres-Douglas points! where a pair of the vacuum
states collide.
8-9
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D. A loosely bound composite BPS state

In this subsection we will find a solution to the BPS equ
tions for the composite$1,1% soliton. The construction ex
plicitly demonstrates that in the vicinity of the CMS th
soliton is a loosely bound state of the primary constituen
For definiteness we choose the region near the realn-axis
and the$22%→$11% transition. The BPS equations hav
the form

1

m

du

dz
5eia@11n* 2~u* !21m* ~u* 2v* !#

1

m

dv
dz

5eia@12n* 2~v* !22m* ~u* 2v* !# ~39!

where

eia5AW112W22

W 11* 2W 22*
5

n1
3 1n2

3

un1
3 1n2

3 u
. ~40!

FIG. 5. The domains of stability for the composite BPS sta
~shown form250.2). The hatched region along the real axis is
stability domain for the$1,1% solitons and its antiparticles; in th
cross hatched one the$1,21% solitons and its antiparticles ar
stable.
06501
-

s.

We will use perturbation theory inm. The part of the CMS
chosen for consideration at zeroth order inm corresponds to
real n: 21,n1,1, n250. Then, at this order,a50 and
the solution foru andv reads

u(0)5n11tanh@n11m~z2zu!#,

v (0)5n12tanh@n12m~z2zv!#, ~41!

where n165An161 @see Eq.~32!# and the parameterszu
andzv are arbitrary and denote the positions of the center
the u andv solitons.

At first order inm, the soliton solutions become comple
With an expansion about the leading order solutionsu(0),
v (0) of the form

u5u(0)1~u11 iu2!1•••, v5v (0)1~v11 iv2!1•••,
~42!

Eqs.~39! lead to

1

m

d

dz
u1522u(0)u11m1~u(0)2v (0)!,

1

m

d

dz
v1522v (0)v12m1~u(0)2v (0)!,

1

m

d

dz
u252u(0)u22n21a@n11

2 2~u(0)!2#

2m2@u(0)2v (0)#,

1

m

d

dz
v252v (0)v21n21a@n12

2 2~v (0)!2#

1m2@u(0)2v (0)#, ~43!

where

a5
3

2
n2

n112n12

n11
3 1n12

3
. ~44!

Let us consider the equation foru2. The function
cosh2@n11m(z2zu)# is the solution of the homogeneous pa
of this equation, and the full solution is

s

e

u2~z!5 cosh2@n11m~z2zu!#mE
2`

z

dx
2n21a@n11

2 2„u(0)~x!…2#2m2@u(0)~x!2v (0)~x!#

cosh2@n11m~x2zu!#
. ~45!

As z→2` the solution satisfies the boundary condition

lim
z→2`

u2~z!52
n2

2n1
1

m2

2 S 12
n12

n11
D ~46!

consistent with Imu22 in Eq. ~36! at the order considered here. Asz→` the solutionu2(z) grows exponentially unless th
relation
8-10
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E
2`

`

dx
2n21a@n11

2 2„u(0)~x!…2#2m2@u(0)~x!2v (0)~x!#

cosh2@n11m~x2zu!#
50 ~47!
ng

e

e

is fulfilled. Once this relation is met thez→` boundary
conditionu2→Im u11 is also satisfied.

The relation~47! can be viewed as a constraint ensuri
orthogonality of the inhomogeneous part in theu2-equation
and the zero mode cosh22@n11m(z2zu)# in u1. This approxi-
mate zero mode corresponds to a shift of theu-soliton center
and at the same time also represents the spatial depend
of the corresponding fermionic zero mode.2 The relation~47!
then fixes the separationzu2zv of the two primary solitons
and can be presented in the form

wn1
~zu2zv!5

n2

m2k
, ~48!
e
ea
in
re

.
th

a

f

on

06501
nce

where

k5
1

2
@n11

3 1n12
3 #, ~49!

and the functionwn of the soliton separations5zu2zv is
defined as

wn~s!5
1

2E2`

` dx

cosh2 x
tanhFn2

n1
x1n2msG . ~50!

It is important that the condition~48! also ensures that th
solution forv2,
v2~z!5 cosh2@n12m~z2zv!#mE
2`

z

dx
n21a@n12

2 2„v (0)~x!…2#1m2@u(0)~x!2v (0)~x!#

cosh2@n12m~x2zv!#
, ~51!
ed

the
the

ate.
is finite at bothz→1` and z→2`, and thus satisfies th
proper boundary conditions. As for the solutions for the r
parts,u1 and v1, described by the first pair of equations
~43!, these solutions always exist, due to the existence of
BPS solitons in the model with real parameters@15#, as dis-
cussed in Sec. III A. Thus no additional constraint arises

Here we make a few remarks on the properties of
function wn(s), defined by the integral~50!. The symmetry
properties of this function can easily be seen by writing it
the derivativewn(s)5dgn(s)/ds of the function

gn~s!5
m

2 E2`

`

dz$12tanh@n1mz# tanh@n2m~z1s!#%,

~52!

which is symmetric under separate reversal of the sign on
or s. Thus wn(s) is even in the indexn: w2n(s)5wn(s),
and is odd in the variables: wn(2s)52wn(s), and is
monotonically increasing fromwn(s→2`)521 to wn(s
→1`)511. At large positives its asymptotic behavior is
given by

wn~s!512
n11n2

n
@n1 exp~22n2ms!

2n2 exp~22n1ms!#1•••, ~53!

2In the next section we will show that this orthogonality conditi
is equivalent to the vanishing of a particular supercharge.
l

al

e

s

where the ellipsis stands for higher powers and mix
products of the two exponents: exp(22n2ms) and
exp(22n1ms). At n50 the integral in Eq.~50! can be ex-
pressed in terms of elementary functions,

w0~s!5cothms2
ms

sinh2 ms
, ~54!

and the asymptotic behavior ofw0(s) ass→1`:

w0~s!512~4ms12!e22ms1••• ~55!

is in agreement with then→0 limit of the expression~53!.
Plots ofwn(s) for a few values ofn are shown in Fig. 6.

The limited magnitude ofwn(s), uwn(s)u<1, means that
the BPS solution we consider only exists in the range

un2u<um2uk. ~56!

As expected the boundaries of this range coincide with
part of CMS found previously by algebraic means near
real n axis.

It is then simple to find the value for the distances0
between the primary solitons in the BPS composite st
Say, forn150, we have whenum2u2un2u!um2u

emus0u5h ln h, where h5A um2u
um2u2un2u

. ~57!
8-11



ed

-

m
de
e

e
se

in
wl
n

c
m

i

n
te

l

e

-

ges

eld

as
bra

truc-

the

m

lu-
-

RITZ, SHIFMAN, VAINSHTEIN, AND VOLOSHIN PHYSICAL REVIEW D 63 065018
IV. QUANTUM MECHANICS OF TWO SOLITONS

The BPS state which connects the vacua$11% and
$22% and exists within the stability domain can be view
as a bound state of oneu-soliton, located atz5zu , and one
v-soliton, located atz5zv . The equilibrium separation be
tween the solitons,s5zu2zv , at which the minimum is
achieved at givenn2 andm2, is determined from Eq.~48!. In
this section we consider the supersymmetric quantum
chanics of the two soliton system. The SQM system
scribes the BPS bound state~which is the ground state in th
problem! within the stability domain, as well as low-lying
non-BPS exited states.

The formulation of this problem refers to an effective d
scription of the two solitons as heavy particles with mas
Mu and M v in terms of their coordinateszu and zv . This
approximation is natural near the CMS where the bind
energy is small relative to the soliton masses. For slo
moving solitonsużuu,użvu!1 the nonrelativistic energy ca
be written as

E5Mu

żu
2

2
1M v

żv
2

2
1U~s!, ~58!

where the dot denotes the time derivative, andU(s) is the
interaction potential depending on the separations5zu2zv
between the solitons. Separating out the center of mass
ordinate, we come to a standard quantum mechanical Ha
tonian for the relative motion,

H5
p2

2Mr
1U~s!. ~59!

The supersymmetric generalization of this Hamiltonian
given in Eq.~20! which depends on the superpotentialW(s).
Below we will find the expression for this SQM superpote
tial by comparing the field theoretic supercharges evalua
on the soliton solutions with the SQM realization in Eq.~22!.
An alternative derivation ofW8 based solely on conventiona
bosonic considerations is presented in the Appendix.

FIG. 6. Plots ofwn(s) at n50 ~solid!, n50.8 ~dashed!, and
n50.95 ~dot-dashed!; s is measured in units of 1/m.
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A. SQM superpotential from field-theoretic supercharges

The action~27! for the Wess-Zumino model leads to th
following expression for the superchargesQa :

Q5
m2

A2l2E dz@] tuc1]zug0g1c1 im] ūW̄g0c*

1~u→v,c→h!#, ~60!

whereu, ca andv, ha are the bosonic and fermionic com
ponents of theU and V superfields, andW(u,v) is the su-
perpotential of the model. The two remaining superchar
Q̄a are just the complex conjugates ofQa .

Let us first evaluate the supercharges for theu-soliton in
the leading approximation, i.e., whenn25m15m250. The
field u is given by Eq. ~41!, u5u(0)5n11tanh@n11m(z
2zu)#, while v is a constant,v52n12 . For the fermionic
fields we substitute zero modes, two of which are in the fi
ca , and there are none inha ,

czero modes5S ibu

au
D 1

A2Mu

]zu
(0). ~61!

In this expressionMu5(4m3/3l2)n11
3 is the mass of the

u-soliton,au andbu are real fermionic operators entering
coefficients of the normalized zero modes, and their alge
is fixed by canonical quantization,

au
25bu

251, $au ,bu%50. ~62!

Upon these substitutions, the superchargeQa becomes

Q5AMuS au

ibu
D , ~63!

which can be rewritten in terms of real charges@see Eq.~15!
in Sec. II C for definitions#,

Q1
15A2Muau , Q2

25A2Mubu , Q2
15Q1

250. ~64!

The result for the supercharges matches the general cons
tion of Sec. II C wherein the operatorsau and bu can be
realized as Pauli matrices, e.g.,au5t1 andbu5t2.

Now let us find the supercharges corresponding to
$1,1% configuration of theu- and v-solitons atn25m15m2
50. We choose boosted soliton solutions,

u(0)5n11tanhFn11mS z2zu2
p

Mu
t D G ,

v (0)5n12tanhFn12mS z2zv1
p

M v
t D G , ~65!

wherep is their relative momentum, and the total momentu
is zero. The fermions are given by Eq.~61! for c and by a
similar expression forh with the substitutionu→v, where
u- andv-fermions anticommute. With time-dependent so
tions the terms] tuc, ] tvh now contribute to the super
charges~60!,
8-12
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Q1
15A2~Mu1M v!~au cosd1av sind!,

Q2
25A2~Mu1M v!~bu cosd1bv sind!,

Q2
15

p

A2Mr

~2au sind1av cosd!,

Q1
25

p

A2Mr

~2bu sind1bv cosd!, ~66!

where we have defined cosd5AMu /(Mu1M v). We ob-
serve that the relative motion implies that the ‘‘composit
state is non-BPS in the absence of any interaction betw
the solitons.

In order to switch on the interaction we consider nonz
m andn2. To obtain the result to first order in these para
eters it is enough to substitute the same leading order exp
sions for the bosonic and fermionic fields accounting for
terms linear inm and n2 in the expression~60! for the su-
percharges, as well as for the phasea of the central charge
The linear dependence onm andn2 arises from the terms

m2

A2l2E dz@m~u(0)2v (0)!2 in2#g0~c* 2h* ! ~67!

in Eq. ~60!. The phasea is also linear inn2 @see Eq.~44!#,
and needs to be taken into account in Eq.~15! when relating
Qa with Qa

1,2.
The resulting supercharges are (Q1

1 , Q2
2 are not changed

and are written here for completeness!

Q1
15A2~Mu1M v!a, Q2

25A2~Mu1M v!b,

Q2
15

1

A2Mr

@pã1W8~s!b̃#, Q1
25

1

A2Mr

@pb̃2W8~s!ã#,

~68!

where we denote

a5au cosd1av sind, b5bu cosd1bv sind,

ã52au sind1av cosd, b̃52bu sind1bv cosd.
~69!

The quantum-mechanical superpotential~more precisely
its derivativeW8) is then read fromQ2

1 ~or Q1
2) to be

W8~s!5
3Mr

12n1
2 @m2kwn1

~s!2n2#, ~70!

where

Mr5
MuM v

Mu1M v
5

2

3

m3

l2

~12n1
2!3/2

k
, k5

1

2
~n11

3 1n12
3 !,

~71!

and the functionwn(s) is defined by Eq.~50!.
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The SQM Hamiltonian then has the form

HSQM5~Q2
1!25~Q1

2!25
1

2Mr
@p21„W8~s!…22 iW9~s!ãb̃#.

~72!

An explicit matrix realization of the four operatorsau,v
and bu,v , satisfying the Clifford algebra, cana priori be
chosen in the factorized form:au5t1^ s3 , bu5t2^ s3 ,
av5I ^ s1, andbv5I ^ s2. This factorized form of the fer-
mionic operators realizes a description in terms of two in
pendent particles. This choice is perfectly acceptable and
alizes theN52superalgebra~18!. However, it differs from
the specific realization~22! by an orthogonal rotation by
angled. In order to match the conventions used in Eq.~22!
for a description of the two-soliton system, one has to use
equivalent representation of these operators, obtained by
inverse rotation:

au5t1^ s3 cosd2I ^ s1 sind,

bu5t2^ s3 cosd2I ^ s2 sind,

av5t1^ s3 sind1I ^ s1 cosd,

bv5t2^ s3 sind1I ^ s2 cosd. ~73!

The final expression for the full quantum Hamiltonian
the two-soliton system can be written as

HSQM5
p2

2Mr
1

9Mr

2

@m2kwn1
~s!2n2#2

~12n1
2!2

1
3

2

m2kwn1
8 ~s!

~12n1
2!

s3

~74!

with Mr given in Eq.~71! and we use the matrix represe
tation ~73! for the fermions~omitting the tensor product with
unity in HSQM).

It is worth noting a couple of limits in which the potentia
simplifies, and can be expressed in terms of elementary fu
tions. Recall first of all that whenn150 the functionw0(s)
is known analytically@see Eq.~54!#. If n1 is not too large,
i.e., n1<0.5, there also exists a convenient simplified fo
in which the superpotential is very closely approximated
the expression

Wapprox8 ~s!53Mr@m2 tanh~ms!2n2#, ~75!

where the reduced massMr is taken atn150. In this super-
potential we recognize the simplified model discussed in S
II B @see Eq.~7!#. Another simple case arises whenn1

2 is
close to 1, i.e., 12n1

2!1,

W85
3Mr

A12n1
2 ~m2ms2n2!. ~76!

The potential in this case reduces to that of the harmo
oscillator.
8-13
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RITZ, SHIFMAN, VAINSHTEIN, AND VOLOSHIN PHYSICAL REVIEW D 63 065018
In the limit of large separation, the potential energy in t
Hamiltonian~74! tends to a constant which depends on
sign of s,

U65U~s→6`!5
9Mr

2

~6m2k2n2!2

~12n1
2!2

. ~77!

~Note, however, that the spin dependents3 term does not
contribute.! These constants denote the energy levels
which the continuum states appear while the ground st
which is the$1,1% BPS soliton, is a zero energy eigenfun
tion of HSQM.

The origin of the two continuum thresholds is that at no
zerom the classification for solitons we introduced atm50
is no longer sufficient—theu-soliton interpolating between
the$21% and$11% vacua~see Fig. 3! is different from the
ũ-soliton interpolating between the$22% and$12% vacua,
and a similar distinction arises between thev- and

ṽ-solitons. Thus, the system under consideration at largs
describes two channels: theu plus v solitons at positives,
and theũ plus ṽ at negatives. It is straightforward to verify
this by calculating the two binding energies,

DE15M1,12Mu2M v

5
m3

l2 @ uW112W22u2uW112W21u

2uW212W22u#,
~78!

DE25M1,12Mũ1M ṽ

5
m3

l2 @ uW112W22u2uW122W22u

2uW112W12u#,

from which we observe thatDE652U6 . Note that, al-
though the quantitiesDE6 are of second order inm2 andn2,
it is sufficient to use the expressions~36! which are only
valid to first order inm ~and are formally exact inn) for the
values ofWi j . This is due to the fact that for realn andm
the values ofWi j are real andDE6 vanishes. ThusDE6

arises as an effect quadratic in the imaginary parts of
differences ofWi j which by themselves are linear inn2 and
m2.

Finally, we also write down the asymptotic behavior
the potential ass→6`,

U~s!→U61K6 exp~22n12musu!1•••, ~79!

where the coefficient of the leading exponential term is

K65
3~n111n12!m2k

n1n11~12n1!~12n1
2!

3@26Mr~m2k7n2!1ms3~12n1
2!n12#. ~80!

We have made the assumption here thatn12,n11 . We see
that the characteristic distances is defined by 1/mn12 which
06501
e
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as expected is the wavelength for the lightest particle in
model. We also observe that the spin dependent term c
tributes to the exponential tail. Moreover, on the CMS whe
m2k7n250, it is the only contribution. This ‘‘fermionic
dominance’’ takes place in a very narrow region near
CMS,

um2k7n2u!
~12n1

2!n12

6

m

Mr
. ~81!

The effect of this regime of enhanced quantum correcti
near the CMS will be considered in more detail in the ne
subsection.

B. Properties of the two-soliton system

As expected, the second term in the potential in Eq.~74!
is of higher order than the first one in the loop expans
parameterl. However the second term is of lower order
the small parameterm2 and, by tuningm2, one can study this
potential both in the classical limit corresponding tom2
@l2/m2 and in the quantum limitm2!l2/m2, or anywhere
in between as long as the condition for validity of the fo
mula ~74!, m2!1, is maintained. Upon a slightly more de
tailed inspection of classicalvs quantum effects in the
Hamiltonian~74! one can readily see that in fact the qua
classical parameter in this system is not just the ra
l2/(m2m2) but is determined by the parameter

j5
W-8~s0!

„W9~s0!…2
, ~82!

introduced in Sec. II, wheres0 is the classical equilibrium
separation determined by Eq.~48!. Recall thatj measures
the quantum correction to the curvature of the potential n
the classical minimum, the system being essentially class
for j!1, and highly quantum forj@1.

For the model at hand we find

j5
wn1

- ~s0!

2mm2A12n1
2
„wn1

8 ~s0!…2
l2

m2 . ~83!

Near the CMS the equilibrium distances0 is large, andj
takes the form

j5
k

n11~m2k7n2!

l2

m2 , ~84!

where for definiteness we have again assumed thatn12

,n11 . Notice that the conditionuju@1 agrees with Eq.~81!
which, as discussed above, defines the essentially quan
regime in the narrow region along the CMS.

When the system admits a supersymmetric ground st
the corresponding wave functionc0(s) can always be found
as
8-14
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FIG. 7. Plots of the full potentialU(s) ~arbitrary units! at n150, n2 /m250.95 for several values ofj. The classical equilibrium point
is at ms'2.56 and is shown by heavy dot.~a! Details of the potential near minimum forj50.009 ~solid!, j50.9 ~dashed!, and for j
54.45~dot-dashed!. ~b! The potential shown at a larger scale. The curves forj<4.45 are practically unresolvable and coincide with the so
curve; the dashed curve corresponds toj5125. It can be noticed that the latter value ofj still corresponds to moderate values ofl/m:
l2/m2'7.7m2.
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c0~s!5const exp@2W~s!#

5const expF23
Mr

m

m2kgn1
~s!2n2ms

12n1
2 G , ~85!

where for definiteness we again assumem2.0, andgn(s),
defined by Eq.~52!, is the integral ofwn(s). Independently
of the quasiclassical parameterj the maximum ofc0(s) is
always located ats0. However the spread of the wave fun
tion, i.e., the dispersion of the distance between the solit
in the BPS bound state, essentially depends on the param
j. As j→0 the full potential has a minimum ats5s0, and
the system is classically located at the minimum. At largej
the minimum of the full potential shifts towardss50, reach-
ing s50 in the limit j@1, but the maximum of the wave
function is still ats5s0. In the latter extreme quantum lim
the system resembles the deuteron: the wave func
spreads over distances much larger than the size of the i
action region. In the two-soliton system this behavior is ev
more drastic at largej than in the deuteron: the wave fun
tion reaches itsmaximumfar beyond the interaction region
The classical and the quantum behavior of the system
different values ofj is illustrated by a series of plots in Figs
7 and 8.

One may also note that in general the interaction of
two solitons is maximal at distances of orderm21 near s
50: the potential is asymmetric ins and changes rapidly
nears50, i.e., the force is strongest when the solitons s
stantially overlap. In a narrow region near the CMS, giv
by Eq. ~81!, an attraction at short distances creates an es
tially quantum state, resembling a deuteron. Deeper into
stability region an exponentially shallow minimum of th
potential at larges0 results in a quasiclassical bound state
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Once one crosses the CMS, the wave function~85! is no
longer normalizable, and the physical ground state of
system is non-supersymmetric. The broadening of the w
function for the bound state near the CMS is exhibited
Fig. 8. Thus, as discussed in Sec. II B the bound state le
reaches the continuum on the CMS, where it completely
localizes, and on crossing the CMS the$1,1% bound state is
no longer present in the physical spectrum.

C. Another dynamical regime: Extra moduli on the CMS

The scenario discussed above, involving a short range
perpotential which remains finite on the CMS, is only a g
neric description for the near CMS dynamics in certain s
tems. As discussed in Sec. II, a different dynamical scen
is possible if there exist extra moduli on the CMS. Howev

FIG. 8. Plots of the ground state wave functionc0(s) for
j517.7 ~dashed! and j5177 ~solid!. As above, these paramete
correspond ton2 /m250.95 and the classical equilibrium point is a
ms'2.56.
8-15
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RITZ, SHIFMAN, VAINSHTEIN, AND VOLOSHIN PHYSICAL REVIEW D 63 065018
it turns out that the two-field model also exhibits a dynami
regime of this type, and we observe in this case that
approach to the CMS is still characterized by delocalizat
of the bound state wave function, albeit in a somewhat
ferent manner to the case considered above.

First, recall that in the example considered above w
m2Þ0, the approach to the CMS was determined by
~48!. In the ‘‘interior’’ domain, un2u,um2uk, the equation
W8(s)50 has a solution and consequently the compo
soliton was BPS saturated. Upon approach to the CMS,
zero ofW8(s) runs to infinity and, after crossing the CMS
un2u.um2uk, there is no longer a solution toW8(s)50 and
hence no BPS soliton. This scenario is illustrated by F
9~a!.

Now we consider a different dynamical regime, see F
9~b!, where, in both the ‘‘interior’’ and ‘‘exterior’’ regions,
the spectrum of BPS states is the same~although possibly
rearranged!. In this case one still has delocalization on t
CMS, although only for the wave function in this case
there is no diverging~classical! separation of the constitu
ents.

To this end let us setn50 @i.e., discard the term linear in
U,V in the superpotential~24!#. As explained in Sec. III A,
at n50 the CMS is very simple,

Im m[m250. ~86!

The SQM system~20! one arrives at in this case is describ
by the superpotential,

W8~s!52
m3

l2
m2w0~s!, ~87!

wherew0(s) was defined in Eq.~54!. For our purposes it is
important thatw0(0)50, and that there are no other zeros
w0(s). Thus the solitons always overlap classically. Ho

FIG. 9. Possible scenarios for the BPS spectrum, taken fro
small region of Fig. 5, whereP1 and P2 refer to the two primary
solitons, whileC refers to the composite kink:~a! a composite
bound stateC exists only on one side of the CMS;~b! a bound state
exits on both sides of the CMS.
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ever, as one approaches the CMS the wave function
spreads out due to the fact thatm2→0. In particular, at large
usu,

w0~s!→ sgn~s!, ~88!

and one observes that the zero energy bound state exist
both positive and negativem2 ~see Fig. 9b!. The wave func-
tion at larges is

expS 2
m3

l2
m2ss3D ~89!

times eitheru↓& or u↑& depending on the eigenvalue ofs3.
As um2u→0 the bound state level approaches the continu
spectrum while the wave function swells. Atm250 the wave
function is completely delocalized and there is no binding

As alluded to above, this dynamical regime is distin
from that considered previously whereW8 remained finite on
the CMS; rather the CMS was characterized by the escap
the root ofW8(s)50 to infinity. In contrast, in the example
considered here the root of the equationW8(s)50 does not
shift at all. Despite this one may note thatj still diverges
near the CMS due to its inverse dependence onm2.

In fact, precisely on the CMS the potential vanishes, a
thus a new quantum modulus arises corresponding to
relative separation of the constituents.

V. DYONS IN SU„3… NÄ2 SYM

We turn now to consider similar phenomena inN52
SYM. To study a model which exhibits a CMS in the wea
coupling region, one approach is to extend the gauge gr
to rank greater than one.3 Here we consider one of the sim
plest examples of this kind with gauge group SU~3!. In the
Coulomb phase this theory exhibits BPS dyon solutions w
electric and magnetic charges associated with either of
unbroken U~1!’s of the Cartan torus. After choosing a con
venient basis of simple roots for the algebra, one can clas
the BPS monopole solutions into one of two types: tho
whose magnetic charge is aligned along a simple roo
‘‘fundamental monopoles’’—and those whose magne
charge is aligned along the non-simple root. These ‘‘comp
ite monopoles’’ generically possess CMS curves at we
coupling, and so their dynamics in this regime is amenabl
a semi-classical consideration.

Composite dyons in this, and the closely relatedN54
system, have recently been studied in some detail@16,18–
22,25#, with the conclusion that the low energy dynamics
two fundamental dyons at generic points of the Coulo
branch acquires an additional potential term. This term
associated with the misalignment of the adjoint Higgs VE

3Alternatively, one can add hypermultiplet matter with a lar
mass. In this case there is a discontinuity in the spectrum of qu
monopole bound states on a CMS curve, which has been studie
Henningson@24#, and the mechanism involves delocalization in
manner analogous to that discussed in this section.

a
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MARGINAL STABILITY AND THE METAMORPHOSIS OF . . . PHYSICAL REVIEW D 63 065018
of the two dyons, and leads to the formation of compos
BPS dyons as bound states in this system. We will rev
some of these results below, and emphasize the implicat
for the dynamics in the near CMS region. The removal of
composite state on the CMS again arises through deloca
tion.

A. The BPS mass formula

We first review the features of the classical BPS m
formula for N52 SYM theories with higher rank gaug
groups~see e.g.@26,22#!, limiting ourselves to SU~N!. For
the consideration of solitonic mass bounds, we need cons
only the bosonic Hamiltonian which has the form

H52TrE d3xH 1

2
~Ei !

21
1

2
~Bi !

21D0F* D0F

1DiF* DiF1
1

2
@F* ,F#2J , ~90!

where Ei and Bi ( i 51,2,3) are the electric and magnet
fields, and F is the complex adjoint scalar (F5(F1

1 iF2)/A2 in terms of the two real adjoint scalars!. We use
the normalization TrTaTb5(1/2)dab for the generators.

The classical vacua satisfy@F* ,F#50, thus requiring
the VEV of F to lie in the Cartan subalgebraH,

^F&5f•H. ~91!

Note that the remaining Weyl freedom may be fixed by d
manding that Ref•ba>0 for a given set of simple root
$ba%. This defines a region which foruf•bau@L coincides
with the semiclassical moduli space of the theory. In t
region we can safely neglect field-theoretic perturbative
nonperturbative quantum effects. We will only consider t
case where the gauge group is maximally broken
U(1)N21, for gauge group SU(N).

For a soliton solution we may define the charge vectoQ

Q•H5~q1 ig!•H5E
S`

2
dSi~Ei1 iBi !, ~92!

where use of the unitary gauge is implied. The real (q) and
imaginary (g) parts of each component ofQ have the inter-
pretation of electric and magnetic charges in the correspo
ing U~1!; they are quantized and form a lattice spanned
simple roots,

q5qaba5ena
Eba, g5gaba5

4p

e
na

Mba. ~93!

Heree is the gauge coupling, andna
E andna

M are the integral
electric and magnetic quantum numbers. We also norma
the simple roots ba with the conventions (ba)251,
ba61

•ba521/2, so that the coroots coincide with the roo
For general bosonic configurations, there is

Bogomol’nyi mass bound following from Eq.~90! which
takes the form
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M>maxuZ6u, Z15A2f* •Q, Z25A2f•Q.
~94!

This bound is saturated by solutions of the Bogomol’n
equations,

Bi5Dib, Ei5Dia, ~95!

along with the equationDi
2a7e2@b,@b,a##50 which, mak-

ing use of Eq.~95!, expresses Gauss’ law in the gaugeA0
57a. The fields a,b are real and imaginary parts o
exp(ia)F where the angle of rotationa is defined in terms of
the chargesQ ~see e.g.,@27,16,22#!.

In the framework of theN54 supersymmetry algebra th
parametersZ6 are realized as central charges, and it is a
vantageous to view the system in this context~implying six
instead of two real scalarsF). Within N54 SUSY it is
generally the case thatuZ1uÞuZ2u, and states which saturat
the Bogomol’nyi boundM>maxuZ6u will preserve only
four of the sixteen supercharges, and will thus be 1/4 sup
symmetric. If, however,uZ1u5uZ2u, states which saturate
this bound will preserve 1/2 of theN54 supersymmetry.
The possibility of having 1/4 BPS states, which only occu
for gauge groups of rank larger than one, dramatically
creases the number of CMS curves accessible to semicl
cal analysis, since 1/4 BPS states generically exhibit regi
in the parameter space where they become marginally st
with respect to ‘‘decay’’ into 1/2 BPS states. In this sense
is useful to think of 1/4 BPS configurations as composite

The discussion above was framed withinN54 SYM, but
this was simply for orientation. In order to preserve any fra
tion of supersymmetry, four of the six real adjoint scala
must vanish asymptotically, and thus the configurations d
cussed above all ‘‘descend’’ to give classical solutions
N52 SYM. The difference is that now onlyZ2 remains as
a central charge@22# and all states saturating the boundM
5uZ2u are 1/2 BPS states from the point of view of theN
52 SUSY algebra. As noted in@22#, those charge sectors fo
which uZ2u,uZ1u will have no BPS states from the point o
view of the N52 system. Indeed, in this case states w
M5uZ2u are not allowed becauseM>uZ1u. Thus uZ2u
.uZ1u is a necessary condition for the existence ofN52
BPS states.

Restricting our attention now to the gauge group SU~3!,
we notice that on the Coulomb branch the gauge group
broken down to the Cartan subalgebra U(1)2 and there can
be field configurations which are electrically and magne
cally charged under either of these U~1!’s @28#. Following
Weinberg @28# we use the term ‘‘fundamental dyons’’ t
refer to those configurations whose charges are aligned a
one of these simple roots. Configurations whose charges
aligned along non-simple roots~i.e., b11b2) will be re-
ferred to as ‘‘composite.’’ We shall focus on a particul
composite configuration which has received considerable
tention in the recent literature—namely, the composite dy
which has equal magnetic,nM

a 5(1,1), and differing electric,
nE

a5(q1 /e,q2 /e), charges along the simple roots.
8-17
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B. Marginal stability and Coulomb-like interaction

The BPS mass formula for the~1,1! dyon with nM
a

5(1,1), nE
a5(q1 /e,q2 /e) takes the form

M (1,1)5uZ2u5A2u~q11 ig !f•b11~q21 ig !f•b2u,
~96!

whereg54p/e. This configuration has a CMS curve whe
the ~1,1! dyon is marginally stable with respect to two fu
damental dyons: the first is aligned alongb1, and hasnM

a

5(1,0), nE
a5(q1 /e,0), while the second is aligned alon

b2, and hasnM
a 5(0,1), nE

a5(0,q2 /e). The masses of the
fundamental dyons are

Ma5A2u~qa1 ig !f•bau5maF11
qa

2

2g2
1OS qa

4

g4D G ,

~97!

where in the second equality we have made use of the
that e2!1 in order to write the electric contribution to th
dyon mass as a small correction to the mass of the co
sponding fundamental monopole,ma5A2guf•bau. Intro-
ducingva as the argument of the VEVs,

f•ba5uf•baueiva ~98!

we see that the marginal stability conditionM (1,1)5M1
1M2 fixes the argument of the ratiof•b1/f•b2,

v5v12v2 , ~99!

to be equal to the argument of the ratio of complex char
Q2 /Q1 whereQi5qi1 ig. This implies that the CMS equa
tion is v5vc wherevc is defined as

sinvc5
~q22q1!g

Ag21q1
2Ag21q2

2
. ~100!

ProvidednE
a and nM

a are of a similar order, the anglevc is
small in the limite2!1, i.e., when the electric corrections
the dyon masses are much smaller than the correspon
monopole mass as in Eq.~97!. Thus in this limit the VEVs
f•ba are only slightly disaligned, and we can make use
an expanded version of Eq.~100!,

vc5
Dq

g
„11O~qi

2/g2!…, Dq5q22q1. ~101!

We are now in a position to verify the general claim
Sec. II A that the Coulombic interaction vanishes on t
CMS. At large distances dyons can be viewed as po
charges which interact at rest through electrostatic, magn
static, and scalar exchange. The electrostatic and magn
static interactions are fixed by the corresponding charg
while the scalar exchange can be read off from
asymptotic form of the Higgs field of one of the prima
dyons~in a physical gauge where the configuration is a lin
superposition of the fundamental dyon solutions@29,27#!.
The effective Coulombic interaction then takes the form
06501
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VCoul52
1

8pr
@q1q21g22Ag21q1

2Ag21q2
2 cosv#.

~102!

Similar expressions have appeared in@27# and@19#. One ob-
serves that on the CMS, where the anglev is given by Eq.
~100!, the Coulombic potentialVCoul vanishes.

When expanded to second order inqi /g, the potential
V Coul takes the form

VCoul'
~Dq!22~gv!2

16pr
, ~103!

whereDq5q22q1 is defined in Eq.~101!. If the VEVs were
aligned, i.e.,v50, we see that to quadratic order, the pote
tial is repulsive@29,30# @as opposed to the SU~2! case@31##
and depends only on the electric charge differenceDq. How-
ever, for (gv/Dq).1 the potential is attractive and the~1,1!
BPS dyon exists with a massM (1,1) given in the same ap
proximation by

M (1,1)5uZ2u'~M11M2!2Mr

~Dq2gv!2

2g2 S gv

Dq
.1D ,

~104!

where Mr5m1m2 /(m11m2) is the reduced mass of th
monopoles, and the corresponding massesM1,2 andm1,2 are
defined in Eq.~97!. On the other side of the CMS in th
range ugv/Dqu,1 we have repulsion and the~1,1! BPS
dyon doesnot exist.

It is interesting to note that the Coulombic potential r
verts to attractive form once more when (gv/Dq),21, and
the ~1,1! bound states reappear. This has a simple interpr
tion in the framework ofN54 supersymmetry: the lowes
mass in this range saturates theuZ1u central charge~note that
now uZ1u.uZ2u),

M (1,1)5uZ1u'~M11M2!2Mr

~Dq1gv!2

2g2 S gv

Dq
,21D .

~105!

In terms ofN54 SUSY the~1,1! state at (gv/Dq),21 is
1/4 supersymmetric, but preserves a different subalgebr
compared to the (gv/Dq).1 case above. Moreover, th
generators of this subalgebra arenot part of theN52 super-
algebra. In terms ofN52 this means that the supermultipl
is not shortened, but nonetheless the Bogomol’nyi boun
saturated at the classical level.4 Thus, we see an interestin
example where the ‘‘BPS’’ nature of the state does not im
multiplet shortening. The presence of these states inN52
SYM theories was also noted in@22#.

We now address the question of what happens to the~1,1!
state on the CMS, i.e., whenugv/Dqu51 and the 1/r terms
in the potential vanish? As we will see in Sec. V D the d
namics on the CMS is governed by repulsive 1/r 2 terms

4This saturation will be lifted by field-theoretic quantum corre
tions.
8-18
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demonstrating, even at the classical level, that there is
localized bound state on the CMS.

C. Zero modes and moduli spaces

We will shortly consider the low energy dynamics of th
fundamental dyons comprising the~1,1! system. However,
we first recall a few details regarding the zero mode struc
of dyon solutions inN52 SYM. For BPS dyons in pureN
52 SYM theories the unbrokenN51supersymmetry is
enough in this case to pair the bosonic and fermionic z
modes@32# so we shall focus here just on the bosonic mod
Generic dyon solutions, corresponding to the embedding
the SU~2! monopole along some root of SU~3! have four
bosonic zero modes@28,26# parametrizing the moduli space

M15R33S1. ~106!

These modes are naturally identified as the center of m
position in R3 and theS1 is an isometry conjugate to th
conserved electric charge.

For dyons embedded along a simple root, this is
moduli space for all choices of field-theoretic moduli. How
ever, if we consider composite monopoles, then the mo
pole moduli spaceM enlarges to a space of dimension eig
as is compatible with separating the constituents into
isolated fundamental monopoles@26,27#. This result was ob-
tained in@26# using the index calculations of Weinberg@28#
for real Higgs fields.

For the case at hand, the magnetic charge isg5g(b1

1b2) and asymptotically the eight dimensional mod
space is simplyM13M1. However, its exact form has als
been deduced in@33–35,29#,

M25R33
R3MTN

Z
. ~107!

The first R3 factor corresponds to the center of mass po
tion, while the secondR factor refers to the coordinate con
jugate to the total electric charge. The corresponding me
is flat. The relative moduli spaceMTN is positive mass
Taub-NUT ~Newton-Unti-Tamburino! space~which is as-
ymptotically R33S1). Its four coordinateszm describe the
relative distancer between the cores, with the correspondi
polar and azimuthal anglesu and w, and also the relative
phasex, conjugate to the relative electric chargeDq. The
factorZ denotes a discrete identification for the charge co
dinates, ensuring that the asymptotic geometry has a com
factor S13S1, associated with the conserved charges.

The Taub-NUT metric, in our conventions5 takes the form

5We follow @22# with the exception thatx is rescaled to have a
period of 2p rather than 4p, and consequently the conjugate m
mentum is integer@(q22q1)/e# rather than half-integer@(q2

2q1)/2e# valued.
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dsTN
2 5gmn

TNdzmdzn5m~r !@dr21r 2du21r 2 sin2 udw2#

1
g2

e2m~r !
Fdx1

1

2
cosudwG2

, ~108!

with a ‘‘running’’ mass parameter,

m~r !5Mr1
2p

e2r
, ~109!

which asymptotes to the reduced massMr when the relative
separationr diverges.

In terms of the internal U~1! anglesc i of the fundamental
monopoles, the combinationj5c11c2 is conjugate to the
total electric chargeqt ~or more precisely, toqt /e),

qt5
m1q11m2q2

m11m2
, ~110!

while x5(m1c22m2c1)/(m11m2) is conjugate toDq/e,
i.e., to the relative electric charge introduced above@34,35#.

D. Moduli space dynamics

As first discussed in this context by Manton@36#, the
low-energy dynamics of fundamental monopoles may be
derstood as geodesic motion on the underlying moduli sp
This picture extends to dyon solutions with aligned charg
but recent work on the dynamics of the fundamental c
stituents of the~1,1! system@16–22# has shown that for two
fundamental dyons with misaligned charges the Lagrang
following from the geodesic approximation needs to be c
rected by a new term@19,22#. In this subsection we will
partially review these results, while emphasizing the featu
of the near CMS region.

The construction of Refs.@19,22# can be reformulated in
terms of the following Lagrangian for the relative modu
zm5$rW,x%:

L rel5
1

2
gmn

TN żmżn1gmn
TN żmGn, ~111!

where the metricgmn
TN is given by Eq.~108! and the ‘‘gauge

potential’’ Gn, which is a Killing vector generating thex
isometry, is

Gn5
e

g
Mrvdx

n . ~112!

Herev is the angle of disalignment between the condensa
f•ba; see Eq.~98!. The term containingGn is dynamically
significant due to nontrivial fibering of theS1 associated with
x in the Taub-NUT metric.

The classical Hamiltonian then has the form

H rel5
1

2
gTN

mn~pm2Gm!~pn2Gn!, ~113!
8-19
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where pm5gmn
TN( żn1Gn) are the canonical momenta. I

terms of the original field theory this Hamiltonian is inte
preted asM2uZ2u, and thus BPS states are ‘‘vacuum
states of this Hamiltonian.

Two of the canonical momenta, namelypw andpx , are
conserved quantities conjugate to isometries along the
muthal anglew and the phasex. The value ofpw is the
z-projection of the angular momentuml z , andpx is equal to
Dq/e. Substituting these and the inverse metricgTN

mn into Eq.
~113! we obtain

H rel5
p r

2

2m~r !
1

pu
2

2m~r !r 2
1

1

2m~r !r 2 sin2 u

3S l z2
Dq

2e
cosu D 2

1V~r !, ~114!

where

V~r !5
Mr

2g2 S 11
2p

e2Mrr
D 21S Dq2gv1Dq

2p

e2Mrr
D 2

~115!

is the only term inH rel which depends on the field-theoret
moduli f ~via v).

This Hamiltonian vanishes whenp r50, pu50, and the
equilibrium valuesr 0 and u0 of the corresponding coordi
nates are given by

r 05
2p

e2Mr

Dq

gv2Dq
, cosu052l z

e

Dq
, ~116!

it (gv/Dq).1 and u2l ze/Dqu,1. There is no solution for
(gv/Dq),1, i.e., the BPS state ceases to exist upon cro
ing the CMS wheregv5Dq. We see that the system de
scribes the composite state as a bound state of the dyna
whose spatial size, corresponding to the separation of
primary constituents, diverges on approach to the CMS.

It is instructive to expand the potentialV(r ) at larger

V~r !5Mr

~Dq2gv!2

2g2
1

~Dq!22~gv!2

16pr
1

~gv!2

8e2Mrr
2

1•••,

~117!

where we omitted 1/r 3 terms and higher powers of 1/r . The
constant termV(r→`) marks the start of the continuum
Indeed, addinguZ2u from Eq. ~104! we obtainM11M2 in
the limit r→`. The 1/r term coincides with the Coulombi
potential ~103! discussed earlier. It provides attraction f
ugv/Dqu.1, the range where the bound states exist. T
range (gv/Dq),21 corresponds, as discussed above,
M (1,1)5uZ1u. What we see in addition is the repulsive 1/r 2

term which leads to the existence of an equilibrium at la
r 0 near the CMS. However, on the CMS it becomes
dominant term, and so there is no localized state on
CMS.

We conclude this section with some brief comments ab
quantization. The quantization of the dyon system in the c
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text of N52 SYM theories was first discussed in detail b
Gauntlett@32# in the case where the Higgs VEVs are aligne
and this discussion has since been generalized to the
considered here by Baket al. @20# for N54, and by Gaunt-
lett et al. @22# for N52. The crucial feature of this system
that the relative moduli space inherits a triplet of compl
structuresJ(a), a51..3, and is a hyper-Ka¨hler manifold.
Consequently, the system exhibitsN54 supersymmetric
quantum mechanics with four real superchargesQA where
the indexA can be associated loosely with a quaternio
structureJ(A)5(1,Ja). These supercharges satisfy the sup
ralgebra,

$QA ,QB%52dABH rel , ~118!

whereH rel is the supersymmetric completion of the Ham
tonian defined in Eq.~113!, to be interpreted asM2uZ2u.
One can compare this with the SQM constructed in Sec.

An interesting feature of this system is that the symm
tries of the superalgebra and the moduli space combin
ensure that the wave functions have a nontrivial depende
on the angular moduli, as well as the relative separatior.
Specifically, the ground state wave function has the fu
tional form @20# C05C0(r ,sa) where sa are the basis
1-forms on theS3 parametrized by (u,w,x). This depen-
dence is hinted at through theu-dependent terms in the
Hamiltonian~114! above. One may speculate that because
the high degree of symmetry in this system—the boso
system possesses an additional conserved quantity of Ru
Lenz type@25#—a more precise separation of variables m
be possible, but we will not pursue this issue here. We n
only that, as demonstrated above, the delocalization on
CMS is associated with the cancellation of the terms
O(1/r ) and depends purely on the relative separation. Mo
over, this conclusion in the classical bosonic system app
ently extends to SQM@20#.

VI. DELOCALIZATION VIA MASSLESS FIELDS

On particular submanifolds of the CMS, the discussi
we have presented above may be incomplete because ce
fields may become massless. Indeed, generically there
be particular points on the CMS where states which
stable on both sides are massless. The presence of thes
gularities in moduli space can then be thought of as the ‘‘o
gin’’ of the CMS, since marginally stable states may not
single valued on traversing a contour around the singular
and so a discontinuity in the spectrum becomes necessar
consistency. For example, this point of view provided one
the first arguments for the fact that the W boson must
removed from the spectrum inside the strong coupling C
in N52 SYM @3#.

In this section we will discuss the behavior of BPS sta
near these singular points. Within a simple 2D Wess-Zum
model we will find that the discontinuity of the BPS spe
trum is explained by the delocalization of fermionic ze
modes of the soliton on the CMS. The CMS in this ca
corresponds to the ‘‘collision’’ of two vacua in the paramet
space, and thus one might anticipate similar phenomen
8-20
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N52 SYM theory near Argyres-Doulgas points@13# when
the singularities associated with monopole and quark va
collide. Unfortunately, this occurs at strong coupling and
out of the range of our semi-classical analysis.

A. Breaking NÄ2 toNÄ1 and the restructuring
of WZ solitons

The model is a simplified version of theN52 Wess-
Zumino model@14# in two dimensions considered in Sec. II
We shall set the second fieldX to zero, but consider a new
perturbation which breaksN52down toN51. This setup
was introduced in Ref.@37# ~see Sec. 8!.

The superpotential prior to perturbation is then of t
standard Landau-Ginzburg form, and its worthwhile reca
ing a few pertinent details of these theories. A general c
sification of theN52 Landau-Ginzburg–type theories
two dimensions was given in@1#, while construction of the
representations of theN52 superalgebra with centra
charges was presented in Refs.@23#. It was shown that the
supermultiplet of BPS soliton states is shortened, and
shortened multiplet consists of two states$u,d% as we dis-
cussed earlier in Sec. III. In particular, inN52 theories
there exists a conserved fermion chargef. The fermion
charge of theu andd states is fractional but the difference
unity, f u2 f d51.

What changes on passing toN51 in two dimensions?
The irreducible representation of theN51 algebra for BPS
states is now one-dimensional~to the best of our knowledge
this was first noted in Ref.@37#!. The only remnant of the
fermion charge is a discrete subgroupZ2 which is spontane-
ously broken.

It is natural then to expect a restructuring of the B
spectrum whenN52 is broken down toN51. We will
study the manner in which restructuring occurs by consid
ing the spectrum of fermionic zero modes of a soliton so
tion as we vary the soft breaking parameterm. We observe
that for smallm the BPS spectrum remains the same as in
unbrokenN52 theory. However, starting at a critical valu
m* —-corresponding to a ‘‘point of marginal stability’’—
half the BPS states disappear from the spectrum. This oc
because quasiclassically the counting of states in the su
multiplet is related to the counting of zero modes of t
soliton and whenm reachesm* some of the fermionic zero
modes become non-normalizable. To follow their fate o
can introduce a large box. Then the number of states d
not change, but atm5m* the identification of states with
zero modes implies that half the BPS states spread ou
over the box while form.m* they lie on the boundary o
the box and are removed from the physical Hilbert spa
This picture is quite analogous to the quantum mechan
discussion in Sec. II. However, as we shall see, the quan
description is complicated here by the presence of a mas
field.

We take the Ka¨hler metric to be canonical and the cub
superpotential of the model is conveniently represented
terms of real bosonic variablesw i , i 51,2,
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W~w1 ,w2!5
m2

4l
w12

l

3
w1

31lw1w2
2 . ~119!

In fact, W(w1 ,w2) is harmonic

]2W
]w i]w i

50 for N52, ~120!

as it is the imaginary part of the four dimensional superp
tential which is analytic inw11 iw2. This is therefore a re-
flection of N52supersymmetry in two dimensions.

Now, to breakN52 down toN51 we consider a more
general, nonharmonic, superpotentialW(w1 ,w2),

W~w1 ,w2!5
m2

4l
w12

l

3
w1

31lw1w2
21

m

2
w2

2 , ~121!

where m is the soft breaking parameter. There are tw
vacuum branches,

H w156
m

2l
; w250J ,

H w152
m

2l
; w256

Am22m2

2l J , ~122!

but the second exists only form.m, and vacua collide when
m5m.

This model exhibits a classical kink solution which inte
polates between the first set of vacua, and is given by

w15
m

2l
tanh

mz

2
, w250. ~123!

It satisfies the classical BPS equations,

]w i

]z
5

]W
]w i

. ~124!

The zero modes corresponding to this kink are as follows:~a!
One bosonic mode:

x05C
1

cosh2~mz/2!
~125!

of the fieldw1 corresponds to~the spontaneous breaking o!
translational invariance,

x0}dw1 /dz.

The constantC in Eq. ~125! is a normalization constant; it
explicit numerical value is not important.~Below the normal-
ization constants in the zero modes will be omitted.! ~b! Two
fermionic modes: The first zero mode of the fieldc1,2 ~the
indices number the superfields and fermionic component
the basis whereg05s2 , g15 is3) has the same formx0
as the translational mode. It is not accidental, the correspo
ing differential operators are the same due toN51
supersymmetry. The second fermionic zero mode
8-21
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j05
exp~2mz!

cosh2~mz/2!
~126!

appears in the fieldc2,1. At m50 the existence of this mod
is a consequence of theN52 SUSY, andj0 coincides with
x0. At nonvanishingm, when the extended SUSY is broke
this zero mode is maintained by virtue of the Jackiw-Re
index theorem@38#.

An interesting feature of the zero modej0 is that it is
asymmetric inz for mÞ0. Moreover, this mode is norma
izable only for

m,m. ~127!

This is readily seen from its asymptotics,

j0~z→`!;e2(m1m)z, j0~z→2`!;e2(m2m)z.
~128!

The explicit form of the zero mode for few values ofm is
exemplified in Fig. 10. The loss of normalizability occurs
m5m, when

detH ]2W
]w i]w j

J 50

in one of the vacua between which the soliton solution int
polates. In other words, one of the vacuum states has ga
excitations at this point. Indeed, in thez→2` vacuum, the
eigenvalues of the fermion mass matrix are:m and m2m,
and thus indeed at the pointm5m where the vacuum
branches meet, there is a massless field. This system r
sents a simplified analog of an Argyres-Douglas point in t
the massless field arises through the collision of vacua. F
thermore, we see that this infrared effect destabilizes on
the fermionic zero modes of the soliton.

To study the infrared behavior in detail let us put t

FIG. 10. The kink profile~solid line!, with the zero modej0 for
m/m50 ~dotted line!, m/m50.8 ~short-dashed line!, andm/m51
~long-dashed line!. Note that the vertical scale has been altered
ease of presentation.
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system in a large box, i.e., impose boundary conditions az
56L/2 whereL is large but finite. We choose these cond
tions in a form which preserves the remnant supersymm
in the soliton background~i.e., the BPS nature of the soli
ton!,

S ]zw i2
]W
]w i

D uz56L/250,

S d i j ]z2
]2W

]w i]w j
Dc j 2uz56L/250, c i1uz56L/250

~129!

~see Ref.@37# for details!. It is easy to check that the solito
solution~123! as well as the zero modes~125!, ~126! are not
deformed by these boundary conditions, i.e., Eq.~123! re-
mains a solution of the classical BPS equations with
appropriate boundary conditions at finiteL.

In the finite box there is no problem with normalizatio
the zero mode~126! remains a solution of the Dirac equatio
in the soliton background for allm. However, atm.m the
mode is localized on the left wall of the box instead of sitti
on the soliton as is the case atm,m. Thus, atm5m the
critical phenomenon of delocalization starts. As we w
show below, upon quantization this means that some B
soliton states have disappeared from the physical Hilb
space.

B. Quantization

We shall not present a detailed analysis of the quant
tion of the system here as it requires a somewhat differ
treatment to the supersymmetric quantum mechanics
have considered thus far. In this case, one needs to con
the dynamics of the light field in addition to the collectiv
coordinates of the soliton.

However, provided we only consider a region somew
away from the CMS, the spectrum is easily determined.
usual, the remnantN51supersymmetry pairs the nonze
modes~one bosonic to two fermionic! around the soliton~see
e.g. Sec. 3G of@37#!, and the relevant contributions cance
Thus the soliton spectrum is determined by the zero mod
corresponding to which we have one bosonic collective
ordinatez0 corresponding to the center of the kink, and tw
real Grassmann collective coordinatesa1 anda2 determined
by the zero modes,c1,25a1x0(z)1••• and c2,15a2j0(z)
1•••. Combining them into one complex parameterh
5(a11 ia2)/A2, the collective coordinate dynamics atm
50 is determined by the quantum mechanical system

Le f f52M1
1

2
Mż0

21 iM h̄ḣ, ~130!

whereM is the physical kink mass, which we can set to on
The quantization is carried out in the standard manne

z0 and h are the canonical coordinates, we introduce
canonical momenta

r

8-22



o

ile
um
ed

te

b

n
at
e
t

o
he
t

Th

s

u
er
-

r
ca
ic
sta
n

tri
t

om
a

a
th
a

th

s

y-
for
s

ted
near
xi-

y

ell

on-
the

a

ar-
he
h to
m

ec.
d.
the
ons
o
s
en

ble
lo-
es
ro

the
e

al
ob-
PS
as
sup-

ain
ed
PS
tes
ads
od.
to
y-

s to
orld

MARGINAL STABILITY AND THE METAMORPHOSIS OF . . . PHYSICAL REVIEW D 63 065018
pz0
5 ż0 , ph52 i h̄ ~131!

and impose the~anti!commutation relations

@pz0
,z0#52 i , $ph ,h%52 i . ~132!

One then proceeds to construct the raising and lowering
erators in the standard manner. From Eqs.~131! and~132! it
is clear thath can be viewed as the lowering operator, wh
h̄ is the raising operator. One then defines the ‘‘vacu
state’’ in the kink sector by the condition that it is annihilat
by h,

hu ‘vac 8&50.

The application ofh̄ produces a state which is degenera
with the vacuum state.u ‘vac 8& and h̄u ‘vac 8& are two quan-
tum states which form a~shortened! representation ofN
52 supersymmetry~at m50). It is clear that these two
states, which are degenerate in mass, have fermion num
differing by unity.

What happens atmÞ0? At m,m the situation is exactly
the same as atm50 ~apart from the fact that the fermio
number is not conserved now and we must classify the st
with respect to theirZ2 properties!. We have two degenerat
quantum states, both are spatially localized and belong to
physical sector of the Hilbert space. Atm5m only the
vacuum state is localized. The spatial structure of the sec
stateh̄u ‘vac 8& has a flat component, which extends to t
boundaries of the box. Atm.m this component is peaked a
the boundary. The easiest way to see this is to introduce
external source coupled to« i j c̄ ic j . Thus, the stateh̄u ‘vac 8&
disappears from the physical sector of the Hilbert space.
superchargeQ1 acting on the stateu ‘vac 8& produces this
state itself, rather than another state.~We recall thatQ2 an-
nihilates u ‘vac8&.! Formally this looks like a spontaneou
breaking of the remnant supersymmetry.

VII. CONCLUDING REMARKS

Using quasiclassical methods we have argued that the
derlying dynamics of marginally stable solitons is det
mined~generically! by non-relativistic supersymmetric quan
tum mechanics. Composite BPS states which disappea
the CMS were found to do so through a process of delo
ization in coordinate space. Within the quantum mechan
description this process was associated with the bound
level reaching the continuum, while further progress beyo
the CMS leads to a potential with a non-supersymme
ground state. This is a generic picture. In certain cases
CMS can be a boundary between sectors with different c
posite solitons, the quantum mechanical potential then v
ishes on the CMS.

One of the crucial features allowing a detailed investig
tion of the effective quantum mechanical dynamics in
two field model considered in Secs. III and IV was the line
realization of supersymmetry in the two-soliton sector of
non-relativistic SQM system. This embedding in 111D is
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similar to the 311 D effective dynamics of two BPS dyon
in N52 andN54 supersymmetric gauge theories@19–22#.
In 311D the effective Coulombic interaction governs d
namics near the CMS. We demonstrated this in Sec. V
the composite dyon in SU~3!, showing how the BPS state
swell upon the approach to the CMS.

One may wonder whether some of the conclusions no
above regarding the behavior of composite bound states
the CMS might not be artifacts of the quasiclassical appro
mation. In particular, returning to pureN52 SYM with
gauge group SU~2!, the classic example of marginal stabilit
with which we started this discussion is that of theW bosons
on a CMS curve at strong coupling@4,5#, for which our
methods are not directly applicable. We are going to dw
on this issue in a separate publication@39#. Here we will
briefly present two suggestive arguments pointing to the c
clusion that this phenomenon involves delocalization in
same manner as the examples we have discussed.

The first observation involves duality. If we consider
region very close to the CMS for theW boson and not too far
from the monopole singularity, we can consider a point p
ticle approximation for the monopoles and dyons within t
dual magnetic description. Provided we are close enoug
the CMS, a nonrelativistic approximation is reliable. Fro
this viewpoint the dissociation of theW is superficially quite
similar to that of the bound states of dyons discussed in S
V, with the roles of electric and magnetic charge reverse

The second observation involves the realization of
BPS states considered here in terms of string juncti
@6,16,40,7# in type IIB string theory and its extension t
F-theory @41#. Although there are still subtleties with thi
realization, specifically concerning a mismatch betwe
field- and string-theoretic counting of bosonic moduli@17#, it
is interesting that the disappearance of marginally sta
states in this framework appears to universally imply de
calization. The crucial point is that this process involv
shrinking one or more of the spokes of the junction to ze
length, while it has recently been pointed out@42# that the
equilibrium separation of the two constituent states in
field theory is inversely proportional to the length of th
shrinking prongs.

As a final remark, it is worth commenting on addition
subtleties which arise when considering extended BPS
jects. In particular, although we concentrated here on B
particles, the notion of marginal stability is more general
supersymmetry algebras may also admit central charges
ported by extended BPS objects such as strings and dom
walls. Indeed, our classical analysis in Sec. III may be lift
to four dimensions where the kink solutions describe B
domain walls. However, we concentrated on particle sta
specifically for the reason that quantization in this case le
to quantum mechanics, which is of course well-understo
The main technical difficulty in extending these arguments
solitons such as domain walls is that in addition to the d
namics of relative collective coordinates, one also need
consider the massless sector of the field theory on the w
volume of the soliton.
8-23
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APPENDIX: CLASSICAL SOLITON POTENTIAL

In this appendix we present an alternative derivation
the classical potential„W8(s)…2 entering the SQM Hamil-
tonian. This approach is purely bosonic, but requires kno
edge of the composite soliton solutions obtained in Sec.

We start from the expression~78! for the binding energy
DE1 ,

DE152
m3

l2

3~n22m2k!2

kn11n12
. ~A1!

~For n2 /m2,0 the relative sign betweenn2 and m2 in this
expression must be reversed.! The formula ~A1! gives the
minimum ofU(s)2U1 , whereU1 is the value of potentia
at s5`, while the position of the minimum ins is given by
Eq. ~48!. We can combine these two results in order to fi
the classical expression forU(s) by using the standard Leg
endre transform approach. We introduce a source term in
original superpotential~24!, thus replacingW(F,X) by

W̃~F,X; j !5W~F,X!2
m2

l
jX, ~A2!

wherej is a dimensionless~and in general complex! param-
eter corresponding to the strength of the source. For a s
classical configuration described by this superpotential
calculation of the energy in fact gives the minimum of t
functionalE( j ):

E~ j !5E~ j !1S j
m2

l

1

2E dzd2uX~x,u!1H.c.D , ~A3!

whereE( j ) is the value of the original energy on the co
figuration which extremizes the action at a given sou
strengthj, andX(x,u) is the X superfield evaluated on tha
configuration.~In fact, being static,X does not depend on
time.!

Clearly the effect of the source term is equivalent to
shift in n: n→n1 j , and for our purposes it is sufficient t
consider a purely imaginary source,j 5 i j 2. Then thes de-
pendent part of the functionalE( j ) for the two-soliton static
configuration is read directly from Eq.~A1! after replacing
n2 by n21 j :

DE~ j 2!52
m3

l2

3~n21 j 22m2k!2

kn11n12
, ~A4!

and the relation between thej dependent equilibrium position
s and the value ofj is derived from Eq.~48!,
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n21 j 25m2kwn1
~ms!. ~A5!

The quantity of interest for us here, however, is not the fu
tional E( j ) as a function ofj, but rather the binding energ
DE as a function ofs. The latter is found in the standard wa
from the relation

DE5E~ j !2 j
dE
dj

~A6!

with the variablej being eliminated in favor ofs, using the
relation ~A5!. Performing this simple operation on the e
pressions~A4! and ~A5! one finds

DE~s!5U~s!2U1

5
m3

l2

3„n22m2kwn1
~ms!…2

kn11n12
2

m3

l2

3~n22m2k!2

kn11n12
,

~A7!

which represents the classical interaction energy of two
mary solitons separated by a distances. Naturally, the mini-
mum of DE(s), as found from this expression, coincide
with that given by Eq.~A1! at the separations determined by
Eq. ~48!.

Comparing the last term on the right hand side of E
~A7! with the expression~77! for U1 we see that they coin
cide. Thus, the potential is

Ucl~s!5
m3

l2

3„n22m2kwn1
~ms!…2

kn11n12
, ~A8!

where the subscript reminds us that this is the potential fo
at the classical level. This result correctly reproduces
energy difference between the asymptotic states at both
finities. With this normalization, one may readily check th
the minimum~zero! of the potential corresponds in Eq.~79!
to the mass of the BPS$1,1% soliton,

M1,15
8

3

m3

l2 k1
3

4

m3

l2

~n112n12!2

k
. ~A9!

Comparing the above expression for the potential with
general form of the SQM Hamiltonian,

HSQM5
1

2Mr
@p21„W8~s!…21W9~s!s3

# , ~A10!

we readily derive the superpotential~up to a sign!

W8~s!5A6Mr

m3/2

l

m2kwn1
~ms!2n2

k1/2~n11n12!1/2
. ~A11!

This coincides with the result~70! derived in Sec. IV A, by
evaluating the field-theoretic supercharges.
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