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We discuss the restructuring of the BPS spectrum which occurs on certain submanifolds of the moduli or
parameter space—the curves of the marginal stalfilityS)—using quasiclassical methods. We argue that in
general a “composite” BPS soliton swells in coordinate space as one approaches the CMS and that, as a bound
state of two “primary” solitons, its dynamics in this region is determined by nonrelativistic supersymmetric
guantum mechanics. Near the CMS the bound state has a wave function which is highly spread out. Precisely
on the CMS the bound state level reaches the continuum, the composite state delocalizes in coordinate space,
and restructuring of the spectrum can occur. We present a detailed analysis of this behavior in a two-
dimensional\V=2 Wess-Zumino model with two chiral fields, and then discuss how it arises in the context of
“composite” dyons near weak coupling CMS curvesAfi=2 supersymmetric gauge theories. We also con-
sider cases where some states become massless on the CMS.
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[. INTRODUCTION However, restructuring of the spectrum is nonetheless
possible because of the existence of special submanifolds of
Centrally extended supersymmetry algebras admit a spehe moduli or parameter space where the inequdRlyis
cial class of massive representations which preserve sonsaturated. Specifically, this allows for discontinuities of the
fraction of the supersymmetry of the vacuum, and consespectrum with respect to changes in these moduli. Such
quently form multiplets which are smaller than a genericchanges are “unphysical” in the sense that one shifts be-
massive representation. The states lying in these shortenegeen different superselection sectors. Nonetheless, one is
[or Bogomol'nyi-Prasad-Sommerfiel@PS] multiplets are  often interested in considering such an evolution, as it may
extremely useful probes of the theory because on one hansbrrespond to the extrapolation from a weakly coupled to a
their spectrum is determined almost entirely by kinematicaktrongly coupled regime. In this case, the stability of BPS
constraints(i.e., by the central chargesvhile on the other states can often be used to infer information about the
the multiplet structure ensures their generic stability. Morestrongly coupled region. The caveat of course is that one
precisely, the fact that BPS states lie in short multiplets im-should not cross a submanifold where the bo(®ds satu-
plies that they must remain BPS states, unless a degeneragyted, and where restructuring of the spectrum may occur and
of several BPS multiplets is achieved which can then comBPS states may for example disappear. Such submanifolds
bine to form a generic massive multiplet. In the absence ofre consequently known as curves of marginal stability
such an exotic scenario, the dynamics of the BPS sectqCMS), although their actual co-dimension in the moduli or
forms a closed subsystem. parameter space will vary.
The stability of BPSparticle states follows from the fact ~ Marginal stability curves, and the corresponding disconti-
that their masses are determined by the superalgebra to bgities of the BPS spectrum, are quite ubiquitous in theories

the expectation values of the central chacgje |\/|_i=|1_3i| . with centrally extended supersymmetry algebras. Examples
Since the central charges are additive, this implies via the include: the existence of a CMS for the BPS soliton spec-
triangle inequality that a BPS state whose mass is trum in general classes of two dimensional models discussed

by Cecotti and Vafdl]; and the CMS for the BPS particle
spectrum inN'=2supersymmetric gauge theorigs-5]. In
(D) the latter case an explicit demonstration of the discontinuity
of the spectrum across these curves in the vacuum moduli
space was provided in generic &) theories by Bilal and
Ferrari[4,5]. The realization of these dyonic states in terms
of type IIB string junctions has also led to the appearance of
marginal stability conditions in this contek6,7]. Further-
MgE M;. 2) more, a discontinuity in the BPS spectrum of wall solutions
[ in a Wess-Zumino model with the Taylor-Veneziano-
Yankielowicz superpotentidB], which leads to a glued po-
Even at points where this equality is saturated there is ntential, was also observed recently by Smilga and Veselov
phase space for a physical decay. Thus one concludes tH& 10]. The discontinuity arises in this case as a function of
BPS particles are indeed stable. the mass parameter—a feature also observed in some of the

M=2i Z

is stable with respect to decay into BPS *“constituents” with
masseM;=|Z|,
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as they become more weakly bound. Near the CMS, but still
within the stability domain, one can interpret tii¢" as a
composite particle built from two primary constituen(is
monopole and a dyon of electric charge prvehose interac-
tion can be described by a nonrelativistsupejpotential
depending on the relative separation, within the framework
of supersymmetric quantum mechani&QM) [12]. As one
approaches the CMS, the separation of the two primary con-
stituents diverges, while the bound state level reaches the
continuum(i.e. the binding energy vanishe&urther motion
after crossing the CMS leads to an SQM superpotential
which fails to exhibit a supersymmetric ground state sepa-
rated by a gap from the continuum. Consequently, the
FIG. 1. A schematic representation of the moduli spaceNfor ground state in the sector with unit electric charge is no
=2 SYM with gauge group S@) in terms of the VEVu longer the one-particléV boson state but rather a set of non-
=(tr¢?) of the adjoint scalag. The W bosons only exist outside BPS two-particle states forming a “long” multiplet.
the shaded region, which consequently determines their stability \We will argue that this picture is the general situation for
domain. CMS curves associated with BPS particle states. Namely,
whenever a discontinuity occurs in the BPS spectrum at a
models to be considered in this paper. Finally, we also menpoint in the parameter space, then certain BPS states delo-
tion that marginal stability conditions have more recentlycalize in coordinate space. Indeed, the phenomenon of mar-
been studied in the context of string compactification onginal stability of BPS states involves, by definition, the align-
manifolds with nontrivial cycle$11]. ment of central charges of primary states in such a way that
In order to illustrate the discussion with a particular ex-the binding energy vanishes. In this context it is quite natural
ample, we recall that the notion of marginal stability arisesthat crossing the CMS involves infrared effects, and the
in particular, in the Seiberg-Witten soluti¢@] of V=2 su-  ‘size’ of the marginally stable state should diverge as the
persymmetric(SUSY) gauge theoriegsee e.g[4]). In the  CMS is approached. However, within this general picture of
simplest example of pure super Yang-MillSYM) theory  delocalizationone can identify several different mechanisms
with gauge group S(2), there is a one-dimensional elliptical underlying this behavior.
curve of marginal stability in the moduli spa¢see Fig. 1L The features are somewhat dimension dependent, so it is
On crossing this curve by varying the moduli a restructur-convenient to focus first on11D which will be our primary
ing of the spectrum of BPS states takes place. For instancepncern in this paper. We will then remark on certain aspects
the electrically charged vector bosons™ only exist outside  which distinguish the behavior in3LD in particular. More-
the CMS, and disappear from the spectrum in the interioover, for solitons in #1D its convenient to distinguish two
region. To make these notions a little more general, we cadelocalization mechanisms.
define a “stability domain” as a submanifold of the moduli (1) The first is when there are no massless fields relevant
space in which a particular BPS state exists. This domaito the problem, and consequently one can describe the inter-
will always be bounded by a CMS. In this example, iWe actions of the primary constituents using non-relativistic col-
boson has a stability domain in the exterior region illustratedective coordinate dynamics with linearly realized supersym-
in Fig. 1. On crossing the CMS from the stability domain, it metry and short range potentials. For a large class of systems
is usually stated that the&/ bosons “decay” into a two par- (including the ones to be considered heriés possible to
ticle state consisting of a monopole and a dyon with unitlimit attention to just one collective coordinate — the relative
electric charge. This interpretation is a little awkward be-separatiorr of the primary solitons. We then observe two
cause for a particle to properly decay it must exist in thecharacteristic dynamical scenarios for the near CMS dynam-
spectrum, at least as a quasi-stationary state, and this is nigs:
true after crossing the CMS. The question then arises as to In the first case, the short range potential is of deuteron-
exactly what happens on the CMS resulting in the apparertype which remains finite on the CMS but possesses a single
discontinuity of the BPS spectrum. bound state, whose wave function spreads out as the CMS is
In this paper we will suggest a physical interpretation ofapproached, while the level reaches the continuum at this
this phenomenon, which we summarize below. For this purpoint. On crossing the CMS, there is no longer a supersym-
pose, its convenient to continue with téboson example to  metric ground state reflecting the fact that the BPS state has
make the ideas more concrete. However, one should bear glisappeared from the spectrum to be replaced as a ground
mind that this system is not directly accessible to the semistate by a non-BPS two-particle state with the same quantum
classical techniques that are used in this paper, because thambers.
CMS curve lies at strong coupling. Nonetheless, we will ar-  In the second scenario, the relative separation becomes an
gue that there are several constraints ensuring, at least quadixact modulus on the CMS, and the potential therefore van-
tatively, the generality of this behavior. ishes at this point. In this case, the composite state still de-
Specifically, the emerging picture is that when the modulilocalizes as the CMS is approached as the wave function
approach the CMS, the/= states swell in coordinate space becomes highly spread out. The state is however highly
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guantum mechanical and has no classical analogue. In thfsctive SQM which exhibits the composite soliton as a su-
case, we also observe that the potential may sugpogen-  persymmetric bound state, and verify the behavior described
eral differenf composite states on each side of the CMS. earlier with regard to the approach to the CMS. Its worth
We will study a two-field model exhibiting both these noting that in this model the structure of the stability domain
dynamical regimes in subsequent sections. is quite complex. In particular, there are different dynamical
(2) The second delocalization mechanism arises whemegimes depending on which part of the CMS curve is
there are massless fields involved, these being either the pierossed. In most cases, a composite state only exists on one
mary states themselves, or the fields via which their interacside of the CMS. However, there are regions in the parameter
tions are mediated. space where stability domains for particular composite states
First, in situations where massive primary states interactneet on a CMS, and consequentiyn general different
via massless exchange, we shall argue in Sec. Il that attracomposite states can exist on either side. In this latter regime
tive Coulomb-like interactions between the primary constitu-we observe that the relative separation of the primary states
ents must vanish on the CMS as a consequence of the strugecomes a modulus on the CMS, as the potential vanishes.
ture of the BPS mass spectrum. Therefore this model exhibits both scenarios outlinedlin
Second, a new mechanism arises when one or more of trabove.
primary states is massless. This scenario may be taken as aThe advantage of dealing with the Wess-Zumino model is
special case ofl) in that massless points arise generically asthat all the features of the non-relativistic quantum dynamics
co-dimension one submanifolds on the CMS curve. In thican be calculated analytically. In the vicinity of the CMS we
case it is not possible to reduce the effective dynamics to@btain the explicit form for thgsupejpotential describing
non-relativistic quantum mechanics, and one must considghe interaction of the primary solitons and are able to track
the effective theory of the massless state. We note that motke form of the bound state wave function right onto the
exotic examples of this behavior may ari@e higher dimen- CMS. Moreover, certain qualitative aspects are apparently
siong at Argyres-Douglas pointsl3] in N=2 SYM theory, rather model independent due to the constraints imposed by
or more generally at second order critical points in superthe BPS spectrum.
symmetric theories. To investigate the situation int3LD we consider explic-
Although we have framed this discussion mostly in theitly A’=2 SYM theory with gauge group SB8) which con-
context of 11D field theories many of the features apply tains a spectrum of primary and composite monogdien)
also in higher dimensions. In particular, restructuring of thesolutions. The two “primary” monopole solutions are em-
BPS spectrum via delocalization is apparently a generic phededded along each of the simple roots of the algebra. An
nomenon. However, an important distinction betweerlD  embedding along the additional positive root leads to a
and, say, 3-1D is that in 1D an arbitrarily small attrac- ‘“composite” dyon which becomes marginally stable on a
tion is sufficient to form a bound state while if-3D thisis CMS accessible in the semiclassical region. The major dif-
not the case. For this reason long range forces play a specitrence between the monopole case in four dimensions in
role in 3+1D, where Coulomb-like attractive potentials are comparison to the two-field model in two dimensions is the
required to form bound states at an arbitrarily small effectivepresence of massless exchanges resulting in a long range
coupling. We will discuss this scenario in the form of com- Coulomb-like interaction, which can lead to bound states as
posite dyons in'=2 SYM theory. The general arguments noted above. Recently there has been considerable interest in
outlined above will be presented in Sec. Il, while particularthis system[16—22, in part because the composite dyon
examples of different scenarios will be discussed in subsesonfiguration is an example of a 1/4-BPS statd/in 4 SYM
guent sections. theory. This work, which has centered on the moduli space
In this paper we focus first on clagd) and present an formulation of the low energy dynamics, has resulted in the
exhaustive study of a particular two-dimensional Wess-detailed form of the long range interaction. We observe that,
Zumino model[14] with N'=2 supersymmetry of the type in accord with the general expectations of Sec. Il, the attrac-
considered previously15] in a related context. This is a tive component of the long range for@e termo1/r in the
simple model which exhibits composite solitofkénks) and  effective potential vanishes on the CMS, while a repulsive
a corresponding CMS curve accessible to quasiclassical techoemponent ¢ 1/r?) remains. There is no attraction on the
niques. Thus it serves as an ideal arena to study in detail thather side of the CMS, the terml/r changes its sign. Thus,
effective SQM which determines the presence or otherwis@ BPS bound state which exists in the stability domain on
of the composite soliton. The model involves two weakly one side of the CMS becomes more and more delocalized
interacting chiral fields. In the decoupling limit there are when approaching the CMS, and ceases to exist on the other
“primary” BPS kinks for each field, which when quantized side. Accounting for the fact that long range forces are now
lead to short BPS multiplets containing one bosonic and onerucial, we observe that the qualitative picture is nonetheless
fermionic state(plus antiparticles There are also “compos- quite similar to the two-field Wess-Zumino model, in that the
ite” solitons which are combinations of the primary configu- composite state delocalizes on approach to the CMS.
rations. The layout of the paper is as follows: In Sec. Il we
Switching on an interaction between the fields we see thapresent some general arguments constraining the dynamics
the primary BPS solitons exist throughout the parameteof primary solitons near a CMS. Using these results we dis-
space, while the composite solitons exhibit a finite stabilitycuss, in a simplified setting, the underlying mechanism in-
domain bounded by the CMS. We analyze in detail the efvolved in restructuring the spectrum, introducing the neces-
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sary notation and definitions in passing. In this section, we We can also deduce some generic features of the poten-
also consider the embedding of the effective SQM superaltial, in part from knowledge of the BPS mass spectrum. First,
gebra within the superalgebra of the field theory. As ait is inconsistent for the potential to be of attractive
specific example, we consider the realization of Xie2  Coulomb-like form on the CMS itself. This result follows
superalgebra with central charges in two dimensions in thetraightforwardly from the incompatibility of the BPS mass
two soliton sector. In this regard its worth remarking that thisspectrum with the structure of the bound state energy levels
embedding shows explicitly how the presence of field theoassociated with a Coulomb-like potential. Indeed, the quan-
retic central charges is crucial in allowing a linear realizationtum mechanical spectrum associated with the attractive 1/
of supersymmetry in the effective non-relativistic dynamics.potential will exhibit towers of closely spaced bound states,

Section Il presents a detailed analysis of tqeasiclas- only the lowest of which can be BPS saturated. The Cou-
sical) solitons in the two-field Wess Zumino model with re- lomb wave functionsy~r"e™"'" lead to bound state levels
gard to their BPS properties. We calculate the form of theof the form e, —1/n%. In contrast, we know from the form
CMS, and prove that outside the stability domain the BPSf the BPS mass spectrum that on the CMS the lowest level
solution corresponding to the composite state ceases to exi$h the tower must reach the continuum. Clearly the only way
In Sec. IV we derive and discuss the SQM which describeshis can happen is if the lLAttractive interaction vanishes on
the interaction between the primary solitons in the vicinity ofthe CMS.

CMS and determines whether or not a supersymmetric In other words, if attractive Coulomb-like forces are ge-
bound state exists. We obtain analytic solutions for the sunerically present, there must be a coefficient which we may
perpotential and the bound state wave function. identify as the distance to the CMS,

In Sec. V we consider the more complex situation of
monopoles and dyons iW=2 SYM theory with gauge
group SU3), and review the form of the long range potential
near the CMJ16-22. The attractive component vanishes

on the CMS, in agreement with the gene_ral arguments 0\f/vhereq is used to denote the appropriate charge faisda
Sec. Il, while a repulsive component remains leading to de

localization on the CMS even at the classical level. certain function of the moduli equal &’ on the CMS. The

S ellipsis denotes higher order terms imr.1/
_In Sec;. VI'we trn to the .Clas.@) delocallzaFlon mecha.- A second constraint is the requirement that the potential
nism which involves delocalization due to a field becoming

massless on the CMS. We consider a restriction of the twogdmlts a normalizable bound state arbitrarily close to the

field model, discussed in Sec. Il which, when perturbed by CMS (inside the stability domajn This constraint is dimen-

X . %ion dependent. While in41D and 2+1D an arbitrarily
“?”" which breaks;\/’zlz to A/=1supersymmetry, provides a small attraction can result in such bound state, this is not the
simple example of this phenomenon.

We collect some concluding remarks in Sec. VII, and dis-02%¢ in- higher dimensions_. I+aD, in order to form a
cuss in particular the applicability of our resulté to ’marginalbound state ”Qe attractlc_)n must be strong enough,

stability of theW boson, and also subtleties associated Withfdrr(—V(r))>h /M. In partlculgr, for Fhe 31D dynamics

extended BPS objects ’ of dyo_ns in SW3) SYM, as we will see in Sec. V, the l_aound

' state is due to a Coulomb-like attraction at large distances

[16—22. Although according to Eq(3) the effective Cou-
II. SOLITON DYNAMICS NEAR THE CMS lomb coupling diminishes on approach to the CMS, the
bound state does exist even for an arbitrarily small coupling.
Before Considering a SpeCifiC model in detail, we first dis- In Conc'usion, from the simp'e arguments above we de-
cuss some simple but quite general constraints which argyce that close to the CMS the dynamics is nonrelativistic
useful in providing a qualitative guide to the dynamics ap-and the long range component of the potential controlling the
propriate to the near-CMS regime. restructuring of the spectrum satisfies the following con-
straints. First, on the CMS it either vanishes, or is repulsive.
Secondly, the simplest way to form bound states in dimen-

_ ) ) ) ~sions higher than21D is for the potential to have an attrac-
Consider the dynamics of two primary BPS solitons withtjye Jong range form off the CMS.

masseM , andM, near a CMS curve for the composite BPS
soliton with masdV; . ,. From the CMS condition that the
binding energy vanishe®d) ., ,=M+ M,, itis clear that by
going sufficiently close to the CMS, the relevant energy To understand what happens to the spectrum in the near-
scales—kinetic and binding energy—can be made muclcMS regime it will be useful to present a simple model
smaller than the soliton masses. The system is then nowhich exhibits the relevant features. Specifically, we con-
relativistic, and the effective dynamics is described by supersider below the mechanism via which a restructuring of the
symmetric quantum mechanics on the space of collectivepectrum can occur.

coordinates of the configuration. With spherically symmetric Assume that the model under consideration contains a set
interactions, the relevant part of this system can be reduceof parametergto be denoted generically &4g}), and admits

to one-dimensional SQM associated with the relative separdBPS solitons at a certain valygio}. The parameter§u}

tion r between the primary solitons. can be moduli, or some parameters in the action. The ques-

1
V(r)—>c0nst—(q2—f)m+---, 3

r—o

A. Dominant interactions

B. The restructuring mechanism
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tion is how can BPS solitons disappear from the spectrum _Y(x)
under continuous variations §f.}? Generally speaking, we e e R
would expect that if the BPS state exists g}, it remains /
in the spectrum at least in some finite domain in the vicinity d
of {uo}- ;
The argument is based on the multiplicity of the corre- /
sponding supermultiplet. Indeed, in the models to be consid- - %
ered below, the number of states in the BPS multiplet is
twice smaller than the number of states in the non-BPS mul-
tiplet (this type of “shortening” is typical. This means that V(x)
if a BPS state is to become non-BPS, a factor of two jump in
the number of states must occur. Generally speaking, this FiG, 2. The potentiaV(x) in the problem(4), (7) (solid line
will not happen under continuous deformations{gf}, un-  and the corresponding ground state wave functidashed ling
less from the very beginning we hado BPS multiplets The parametep.=0.98. The units on the vertical and horizontal
which become degenerate at a certain point in the parameteaxkes are arbitrary.
space and combine together to leave the BPS spectrum as a
joint non-BPS multiplet. W(x)= Incoshx— ux, W’'=tanhx— u. 7
We are more interested in another scenario—when a BPS
state becomes non-BPS at a certain critical pfint}, with- At x=0 the derivative of the superpotential vanishes at the
out the pre-arranged doubling of the type mentioned abovesrigin. As u grows(remaining positive the point wheré\’
Are we aware of any simple analogs of this phenomenon? vanishes shifts to the right, towards large positive values of
The answer is yes, a simple example has been known fo{ The ground state wave function is supersymmetric and
a long time. We will discuss it here for two reasons: first, itunique,
nicely illustrates the generalities of the dynamical phenom-
enon discussed in the preceding subsection; and secondly, W) erx
we will need to introduce the corresponding notation later Wo=e [1)= coshxm' ®
anyway. The example can be found in supersymmetric quan-
tum mechanic$SQM) with two supercharges introduced by As one approaches, =1 from below this wave function
Witten [12]. Consider a systenfas motivated abovede-  pecomes flatter on the right semi-axis; representing a swell-
scribed by the Hamiltonian ing of the bound state in coordinate space. The correspond-
ing scalar potential

1
H= E[p2+(w')2+a3w"], (4) L
V()= 5[(W)*=W']
wherep=—id/dx, andW is a function ofx with the prime
denoting differentiation bx. Moreover,o5 is the third Pauli at =0.98 and the ground state wave function are depicted
matrix corresponding to the fact thtr;,0,] forms an ap- Fig. 2.
propriate representation of the Grassmann bilinear. The func- ¢ pointu=1 is critical. Atu>1 the wave functior(8)
tion W will be referred to as the SQM superpotential. Two

at E=0 becomes non-normalizable, and the true ground
conservedreal) supercharges are

state, coinciding with the continuum threshold, is doubly de-
1 1 generate. The transition from one regime to another occurs
/ ) through delocalization in that the zero\Wf', the equilibrium
- + =— - : . o —
Q \/E(pal Wioa), Qo \/E(paz W), (5 pointx,, escapes to infinity. Note that dynamically the SQM
problem under consideration is similar to that of deuterium.

They form the following superalgebra: The potential well in Fig. 2 is ak<1, but the tail of the
wave function stretches very far to the right due to the fact
(Q1?=(Q»*=H, {Q;,Q;}=0. (6)  that theE=0 level is very close to the continuum spectrum.

We can make this somewhat more precise by introducing
If W' has an odd number of zeros then the ground state of “classicality parameter’¥ defined as
the system(4) is supersymmetri¢i.e., the supercharges an-

nihilate i) and unique. This is the analog of the BPS soliton. W' (X)
If W' has no zeros or even number of zeros, the ground state f=—"2 ) 9
is doubly degenerate and is not annihilated by the super- (W' (x)) X=xg

charges. The ground states in this case are analogs of non-

BPS solitons. The unique versus doubly degenerate groungherex, is the classical minimum of the potentidh’ (xo)
state in the problend) imitates “multiplet shortening.” The =0. The parametef may be interpreted as measuring the
transition from the first case to the second under continuouguantum correction to the curvature of the potential at the
deformations of parameters is easy to visualize. Indeed, latlassical equilibrium point. i.e., the system is essentially
us assume, for definiteness, that classical ifé<1, while it is highly quantum if¢>1.
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In the current example, we find that as we approach theharge. More precisely, the Lorentz boost with paramgter

critical point, acts on the superchargé€y, as follows:
regime. In fact this feature is quite generic for short range
i
— exi{iwf’
~W’(x) is linear in the superpotential, while the bosonic
will dominate for large separations. This is despite the fact |t5 now convenient to introduce the Majorana super-

1 5
ex 5’87
and so the system indeed becomes highly quantum in thighile the U(1) transformation with parametey is

potentials and may be viewed as an artifact of the remnant

supersymmetry. Specifically, since the mass tekm Qa

potential is quadraticys~ (W' (x))?, for short range inter-  Notice that the 1), transformations can be viewed as a
actions the fermionidV” term in the superpotentidll B)  complexification of the Lorentz boogt3).

that the fermionic term is a quantum effdut field theory it chargesQi [=1,2: (Qi )T:Qi ] via the relation
corresponds to the 1-loop correction to the effective potential * e “

o
2(1—w)

¢ (10 Qu— Q. (13
ap

} Qp- (14
ap

through integrating out the fermionsThus, although the o-ial2
system becomes more and more weakly bound, in the CMS Q,= (Qi+iQi), (15)
region the system enters a highly quantum regime where the V2

classical minimum of the bosonic potential need not be rel- _

evant. Below we will see that exactly the same phenomenokhere the phase factor &’ contains an arbitrary parameter
occurs for BPS solitons near the CMS in & 1D Wess-  «, which we will fix momentarily. In terms o@Q|, the alge-
Zumino model. bra(11) has the form

P N | S - ij
C. Embedding of SQM within the field theory superalgebra 1Qu:Qpt =28 (v*Y ) apPut 21(7°Y ) ap2"”,  (16)

To establish a link between the field-theoretical descripwhere the X 2 real matrix of central chargeg' is sym-
tion of solitons on the one hand and the supersymmetrignetric and traceless. It is related to the original comgeas
guantum mechanics of two nonrelativistic primary states orfollows:
the other, we now consider the manner in which the quantum
mechanical supercharges emerge from the full field- Zela=zl_jz12 (17)
theoretical superalgebra. The fact that supersymmetry is re-
alized linearly in the two soliton sector may be reinterpreted To consider representations of the algebra we use a Lor-
as the existence of a straightforward embedding of the SQMNtz boost in 1 to put the system in the rest frame where
supercharges. Moreover, near the CMS the system becom@s—0 and P,—M =P, P*. Moreover, we can always
essentially nonrelativistic and we need keep only the leadinghoose the basis in ) to put Z" in the form Z"
term in an expansion in velocities. =|Z|74 . This amounts to fixing the phaseto be equal to

Although the arguments apply more generally, we conthe phase of the central chargé=|Z|€“. Then the algebra
sider for definiteness the realization.dt=2 supersymmetry (16) takes the following component form:
in two dimensions in the two soliton sector. Recall that the

algebra contains four supercharg®s, Q! («=1,2) and (QD?=(QH)%=M+|2|, (Q3)>?=(Q)’=M—|Z|,
has the forn{23,1] (18
{Qu. QB =271 0sPu,  {Qu.Qut=2i(7°Y%) o2, with all other anticommutators vanishing, so that the algebra
splits into two independent subalgebras.
Q! Q;}:Zi()ﬁyo) 52 (11) From Eq.(18) we see thatZ| is a lower bound for the

mass,M=|Z|. WhenM >| Z| the irreducible representation
where P, =(P,,P,) are the energy-momentum operators has dimension four—two bosonic and two fermionic states.
ﬂ 1 _ -
and Z is a complex central charge. We use the Majorand Ne BPS states saturate the lower bodps=|Z[, and in
basis for 2x 2y-matrices this case the second subalgebra becomes trivial and the rep-
’ resentation is two-dimensional—one bosonic and one fermi-
0_ 1 5_ .0 1_ onic stateg23].
=0, =ig,, = =—0;. 12 . .
Yo Y0 Y EYY 71 12 How do all of these generalities help us with the problem
Modulo addition of the central charge, the algeltd) of constructing the SQM near the CMS? In the vicinity of the

can be viewed as a dimensional reduction of theCMS the differencaV —| 2] is small as compared {&| and
N=1algebra in four dimensions. The §01) Lorentz sym- can be identified with the nonrelativistic Hamiltonian,
metry in 3+1 dimensions reduces in+ll to the product
SO(1,1)xU(1)g where S@1,1) is the Lorentz boost in%1
and U(1) is a global symmetry associated with the fermion Note that we viewM as a Hilbert space operator.
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HSQM:M_|Z|' (19) 5 p2+(W,)2+O'3W” 1/2
Qo=7® 03 2| 2|+ oM (23
r

The second subalgebra in E48) with supercharge@% and

Qi then coincides with that of the standard SQM, see Edyhere the square root is to be understood as an expansion in
(6). In the first subalgebra the operafdr+| 2| can be sub- 1/ z.

stituted by 22| up to relativistic corrections. Consequently, |n concluding this section, we note that within the context
SQM. is always possible to elevate it to a superalgebra with four

In Sec. IV we will find all the supercharges in the-1  gypercharges and a central chagéy adding the two ad-
example as explicit functions of the moduli from field- gitional supercharge@3).

theoretic solutions for two solitons,andv. Near the CMS,

where their relative motion is nonrelativistic, the result can
be compared with the quantum mechanical realization of the
superalgebrd18). For Hgou=M —|Z| we take the expres- A. Introducing the model
sion which generalizes E@4) to include a mass parameter,

ll. AN N=2 WZ MODEL IN TWO DIMENSIONS

With the aim of concretely illustrating the general argu-
1 ments of the previous section, we now consider a specific
Hsou=50-[P2+ (W')2+ a3W'], (200 model. A suitable example exists in two dimensions, ob-
2M, tained by dimensional reduction of a four-dimensional Wess-
Zumino model with two chiral superfields. The latter is the
where the superpotentiaV depends on the separatian  deformation of a model considered previously in Ra5].
=2z,—Z,, the conjugate momentum= —id/ds, andM, is  The superpotential is
the reduced mass,
m2 A 3 2 2 m2
MM, W((I),X)_T(D §CD ADX“+ umX +TVX,

Mrzm. (21 (29)
H@heredb and X are two chiral superfieldsn is a mass pa-

rameter,\ is the coupling constant, whilg and v are de-
formation parameters. By an appropriate phase rotation of

Then a realization of the superalgebra can be chosen in t
form (o and 7; are two sets of Pauli matrices

1 Aa > & the fields and the superpotential one can always makad
Qr=V2|2|n®0s,  Q=12|Z[7®03, \ real and positive. The parameteisand v are in general
complex,
1
Q%=I®W[pol+w’(5)az], u=pgtipy, v=Evitivg, (25)
r

The four real dimensionless parameters, w,, v4 andv,

will form our parameter spadgu}. For technical reasons the
parameteu= w4 +iu, wWill be assumed to be small in what
follows, u; ,<1. Furthermore, we will consistently work in

1
Q=18 ——[po
1 \/Z_M,[p 2
The realization(22) explicitly indicates a factorization of f[he gpproxmaﬂon in which the SQM szuperpotentlal Is linear
Ln w; this corresponds to terms @(u<) in the scalar po-

—W'(s)o4]. (22)

both the bosonic and fermionic degrees of freedom assocl|- " S o
ated with the center of mass of the system. We can als ential. This limitation is not a matter of principle but, rather,

include dependence on the total spatial momentBm or t(_achnical convenience. In the limit of _smaJd We can
through a Lorentz boogtl3) with tanhB=P, /\MZ+ P obtain all formulas in closed form. We will also take the
9 I R coupling constank to be small,A\/m<1, so that a quasi-
A couple of comments are now in order. First, it is clear

. . .~ classical treatment is applicallexcept on some exceptional
from this construction that the SQM can only be real'zedsubmanifolds in the parameter space

linearly in BPS sectors with a non-vanishing central charge. As a two-dimensional model, this theory has extended
cherW|se, one ha.Q:. N"/’ (W't.h ¥ a ferrr_nomc ope_rat(?r N=2 supersymmetry, and exhibits solitonic kinks interpo-
in the nonrelativistic limit, implying a nonlinear realization. |ing petween the distinct vacua. In two dimensions the soli-
Secondly, we note that the expressions@drandQj inthe  15ng are particlegin four dimensions they would be domain

first line of Eq.(22) represent the leading terms in the non-y4|i5). The dimensionality of the BPS supermultiplet is two,
relativisticv/c expansion. Itis not difficult to include higher \yhjle that of the non-BPS supermultiplet is four.

order terms in this expansion as follows: Substituting
2 12 1 1/2
p+ (W) + a3 W m m
1
=703 2| 2|+ ) = =-—(U~—
Qi=m1®03 2| Z] M O=——(U+V), X=Z-(U=V), (26)

065018-7



RITZ, SHIFMAN, VAINSHTEIN, AND VOLOSHIN PHYSICAL REVIEW D 63 065018

Rev tons: one going from the vacuum with/,, to one of the
saddle points, and the other soliton going from the saddle
point to the vacuum withV,,.. The parameter labeling the
solutions in this family can be interpreted in terms of the
distance between the basic solitons, and thus the degeneracy
in energy implies that there is no interaction between the
01 /L,/ basic solitons at regk and v, at least for some finite range
of these parameters.
Reu The decoupling of the dynamics of the primary solitons at
) 01 w=0 is trivial, as the superfieldd andV are also decoupled
within the underlying field theory. However, at; # 0, there
is no such decoupling within the field theory but, neverthe-
i) 1,0} {+ less, the primary solitons do not interact at rgsbvided u
andv are real. This is a manifestation of the nontrivial “no-
force” condition for BPS states.

-+ {-1,0} {+ 4}

) . B. Decoupled solitonsp=0 case
FIG. 3. Structure of vacua and solitons in thelReRev plane

for real v and u . At n=0 the model is extremely simple: the fieldsand
V are not coupled. Their VEVs are
we arrive at the following action:

u==*v,, v==*v_, (31
m? (1 — _ _
S= E:ZJ d?xd*6(UU +VV) where we introduce the notation
m ve=+1%*vp. (32
+ EJ d?xd?eW(U,V)+H.c. ] (27)
The masses of the BPS solitons are given by
where the dimensionless superpotentiglis 4
m
1, 1 . w , Mnu,nU:§_2|ani+an:i|- (33
W(U,V)=U—§U +V—§V +§(U_V) +v(U—-V). A
(28) where the topological charges arg,=0,+1 (see Fig. 3.
The vacua of the model are defined &/ du=0, Wl v However, as noted ir{15], not all combinations of
=0, charges are realized. For a generic value of the complex
parametew only the{1,0} and{0,1} solitons and their anti-
1+v—u?+ u(u—v)=0, particles exist as BPS states. To have a BPS state with both
n, andn, nonvanishing, one needs to align in the complex
1-v—v?—pu(u—v)=0. (29 plane the two terms;® and»® , contributing to the mass in
. ) __Eq. (33). The relevant conditions are
For realu and v the solutions to these equations define
four different vacua with real values of the fields and real v \3 n v \3
values of the superpotential(u,v). The vacuum structure Im(— =0, —”Re( —) >0. (34
is illustrated in Fig. 3 for smalk. One of these vacué@le- Vet Ny Vs

noted ag + +} in Fig. 3) corresponds to a maximum of the " ) )
real function)V(u,v) on the real section of the variables 1 heSe conditions define a curve in the compieplane pre-

andv, the other vacuunidenoted ag— —}) corresponds to senteq in Fig._4. . .
a n"lljinimum of W(u U;ﬁd and thet{ rem;)ining tV\F/)o vacua  Thiscurve is the curve of marginal stability for the model.
(+—-)and{—+}) a,re éaddle points In the case under consideration, with no interaction, the CMS

In this situation there exist&l5] a continuous family of coincides with stability domains for composite solitons, they

real BPS solitons, i.e., of solutions to the real BPS equationsc,)nIy exist on t.h's curve. .
The curve in Fig. 4 consists of three parts which can be

1d ow 1.d ow parametrized as
ma'" o ma’ 30 )
= = -+ —
interpolating between thé— —} vacuum with Wy, at z v=tanhe, Imo 0'_3' 39

= —oo and the{+ +} vacuum withW,,, at z=o0. All these
solitons are degenerate in madé=Wac— Whin,» @and can  The part sitting on the real axis between- =1 (corre-
be viewed as a superposition of non-interacting primary solisponding to Imr=0) is the stability domain for th¢1,1}
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{1,-1 _ . _ [l v
} { +} u V++ 2 1+ v, y
14
B =V_+%(1+—:r ,
2.5 254
1,1} W7+=—§V++§V7+M(1+V+V7);
1. 1 Vl
S Kl
{——=} u= vits 1 V+),
=1
14
v=—v+ﬁ(l——+>,
\\‘_\\ 2 v_
2 5 24
FIG. 4. The curve of marginal stability in the complex plane W__=-— 3V §v_+,u(1— viv_). (36)

of v.

composite solitongand their antiparticlos The other two ;ZithoidT:s)iie\slvﬁrceh gdl\é?i?,ebmje_cyl\\ﬁg[[oa;}?s'[thcfrdae“ginn-
parts, Imo==* /3, give the stability domain for thél, become[cf. Eq. (34)]

—1} and{-1,1} solitons.

The bifurcations ab= =1 are due to the vanishing of the 2 312 2 312
. . b . Vo uvy voituvy
mass of one of the primary solitons at these points. It is Im| ——| =0, Im|———| =0, (37
explained by the degeneracy of vacua at these values— vi+,uv, vi—,uv,

instead of four vacua only two remain at=*1 (strictly
speaking there are still four, but they coalesce in pairs where the conditions clearly differ only by a choice of the
These are simple analogs of the Argyres-Douglas pdirBs  branch of the square root in the terms lineaginAnalytical
in gauge theories. expressions for the CMS are simpler in terms of the complex
parameter ofo [related tov by Eg. (35)]. In the complex
C. Stabilization by p o-plane the CMS is given by the curves

The model afu=0 is a very degenerate case. Indeed, the 30,
extra{=*1,+1} states exisbnly on the CMS and are nothing 02=L Uy COShT cost” ey,
but systems of two noninteractifg- 1,0} and{0,=1} soli-
tons. The relative separation between the primary solitons is

an extra classical modulus, on quantum level {hel,+ 1} P sin22t Re{,ucosr’r’z o is }
solitons are not localized states. As we will show, the intro- 3 2 3

duction of a nonvanishing Im = u, expands the domain of
stability for the extra BPS state which then occupies a finite
area near the original curve. Thus, settjag nonzero leads
to an attraction of the primary solitons.

Using u as a perturbation parameter we find the VEVSwhere the indices 1 and 2 refer to the real and imaginary
and values of the superpotentidl for the four vacua to first parts,oc= o +io0>.

T . 304 i T
0=~z * sinh—R w cosht oi—igl|, (38

order inw: The curves of marginal stability in the plane are pre-
sented in Fig. 5. They form the boundaries of the stability
C— el P I e domains for the composite BPS states marked in the figure.
rek u=ver 2 ! v+)  UTv-t 2 ! v_) ' Figure 5 exemplifies different metamorphoses of the com-
posite BPS solitons on the CMS: crossing some boundaries
2, 3 _ leads to disappearance of the BPS state from the spectrum,
Wiy= §V++ §V—+M(1_Vf Vi), on others the original BPS state disappears but a new one
appears.
P v M v, The figure alsp shows exc_eptional points on the CMS,
{+-}: u=v++5(1+— , v=—v_+ > 1+ —], where two stability subdomains of the same BPS soliton
Ve - touch each other. We shall address a dynamical scenario at
such points in Sec. IV C. Note also four points of bifurcation
W. = Ev?’ -~ Evg (1t v, v): (the Argyres-Douglas pointswhere a pair of the vacuum
L R R el states collide.
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We will use perturbation theory ip. The part of the CMS
chosen for consideration at zeroth ordepircorresponds to
real v: —1<v;<1, v,=0. Then, at this orderg=0 and
the solution foru andv reads

u@=y,  tanf v, , m(z—z,)],

v©@=yp,_tanjr,_m(z—2z,)], (41)
v, where v, =rv;=1 [see Eq.(32)] and the parameters,

andz, are arbitrary and denote the positions of the centers of
theu andv solitons.

At first order inu, the soliton solutions become complex.
With an expansion about the leading order solutiof,
v(® of the form

u=u@+(u+iuy)+---, v=vO+(vy+ivy)+ -,
(42)
Eqgs.(39) lead to
FIG. 5. The domains of stability for the composite BPS states
(shown foru,=0.2). The hatched region along the real axis is the 0) ©)_ . (0)
stability domain for the{1,1} solitons and its antiparticles; in the maz't™ —2uugt pg (U —ot),
cross hatched one thgl,—1} solitons and its antiparticles are
stable. 14d
, — —v3=—20;— p, (UO =),
D. A loosely bound composite BPS state m dz
In this subsection we will find a solution to the BPS equa- 1 d
tions for the composit¢1,1} soliton. The construction ex- — —u,=2uy,— ,,2+a[,,§+_(u(0))2]
plicitty demonstrates that in the vicinity of the CMS this m dz
soliton is a loosely bound state of the primary constituents. — 1, [U© — (@]
For definiteness we choose the region near the weakis '
and the{— —}—{+ +} transition. The BPS equations have 1d
the form a&Uz:ZU(O)UPLV2+Q[V§—_(U(O))2]
1 dU_ i * %2 * (1% * + (©)— 43
— —=d 1+ v* —(u*)%+ u* (u* —v*)] Mo U =0 H], (43
m dz
where
EOI—v=é“[1— v (0*)P - (uF—u*)] (39
m dz 3 vV
where vyt
. W, - W__ Vi +° Let us consider the equation fou,. The function
go= : P — (40) cost[v,,m(z—2z)] is the solution of the homogeneous part
WL =WE_ |vi+v of this equation, and the full solution is
|
2 —watalr], — (U000)%] - o[ u@(x) —0 V0]
Uy(z)= cosH][ va(z—zu)]mf dx s . (45)
— cost[ v, m(x—z,)]
As z— —« the solution satisfies the boundary condition
. V2 M2 Vi-
lim u (z)=——+—(1——) (46)
Z— —0 2 2V+ 2 Vi+

consistent with Inu_ _ in Eq. (36) at the order considered here. As-« the solutionu,(z) grows exponentially unless the
relation
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(47

fw — vt a1, — (UO(x)?] = p uO(x)—vO(x)]
dx =0
— cost[ vy, m(x—z,)]

is fulfilled. Once this relation is met the—« boundary where
conditionu,—Imu, , is also satisfied.

The relation(47) can be viewed as a constraint ensuring - l[vs +08 ] (49)
orthogonality of the inhomogeneous part in theequation 2t 71 T
and the zero mode cosfjv;. m(z—z)] in u;. This approxi- _ . _ _
mate zero mode corresponds to a shift of tkeoliton center ~ and the functionw, of the soliton separatios=z,-z, is
and at the same time also represents the spatial dependerfigfined as
of the corresponding fermionic zero mot&he relation(47)

then fixes the separatian,—z, of the two primary solitons _ 1J'°° dx V-
: S)= 5 tanh—x+v_ms|. 50
and can be presented in the form W,(s) 2) % cositx v, Xy (50
V2 It is important that the conditio48) also ensures that the
W, (2= 7)) = (48) S imp 9
1 MoK solution forv,,

vota[ v2_— 0 O(x))2]+ po [ u@(x) —vO(x)]

cosi[ v,_m(x—2z,)]

v,(z)= cost[ v,_m(z— z,,)]mJ'Z dx , (51)

is finite at bothz— + andz— —«, and thus satisfies the where the ellipsis stands for higher powers and mixed
proper boundary conditions. As for the solutions for the reaproducts of the two exponents: expfr-mg and
parts,u; andv,, described by the first pair of equations in exp(—2v,mg. At »=0 the integral in Eq(50) can be ex-
(43), these solutions always exist, due to the existence of regdressed in terms of elementary functions,

BPS solitons in the model with real parametgt§], as dis-

cussed in Sec. lll A. Thus no additional constraint arises.

Here we make a few remarks on the properties of the Wo(s)=cothms— — ms , (54)
functionw,(s), defined by the integrab0). The symmetry sinff ms
properties of this function can easily be seen by writing it as
the derivativew,(s)=dg,(s)/ds of the function and the asymptotic behavior afy(s) ass— + :
Wo(s)=1—(4ms+2)e 2Ms+. .. (55)

g,(s)= gﬁc dz{1—tanj v, mz]tanH v_m(z+s)]},

(52 is in agreement with the— 0 limit of the expressior53).
o _ ) Plots ofw,(s) for a few values ofv are shown in Fig. 6.
which is symmetric under separate reversal of the sign of  The limited magnitude ofv,(s), |w,(s)|<1, means that

or s. Thusw,(s) is even in the index: w_,(S)=W,(S),  the BPS solution we consider only exists in the range
and is odd in the variable: w,(—s)=—w,(s), and is

monotonically increasing fromv,(s— —»)=—1 to w,(s

Y . S < . 56
—+o)=+1. At large positives its asymptotic behavior is [val <|pal 6 (56

given by . _ - .
As expected the boundaries of this range coincide with the
part of CMS found previously by algebraic means near the
vytuv_ .
w,(s)=1- [v.exp —2v_my9) real v axis.
It is then simple to find the value for the distansg
—v_exp—2v.m9J+--- (53) between the primary solitons in the BPS composite state.
Say, forv;=0, we have whemfu,| —|vo| <|us
. 2In the next section we W!|| show that f[his orthogonality condition gMlsol = niny, where 7= / |'“2| _ (57)
is equivalent to the vanishing of a particular supercharge. | o] —|vsl
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W, (s) A. SQM superpotential from field-theoretic supercharges
Lr - = The action(27) for the Wess-Zumino model leads to the
, - 7 following expression for the supercharg®s :
o5l /1 .7 2
7/ m 0,1 ; AA,0, /%
//, Q= 2N dz[ duyp+ duy Yy p+imd Wy
1o -5 y 5 10 ° +(u—v,g— )], (60)
g/
/ . .
A whereu, ¢, andv, 7, are the bosonic and fermionic com-
. ponents of thaJ andV superfields, andV(u,v) is the su-
s, perpotential of the model. The two remaining supercharges
— | Q. are just the complex conjugates ©f, .

Let us first evaluate the supercharges for th&oliton in
FIG. 6. Plots ofw,(s) at »=0 (solid), »=0.8 (dashedl and  the leading approximation, i.e., when=u,;=u,=0. The

v=0.95 (dot-dashej] s is measured in units of . field u is given by Eq. (41), u=u®= vy tanH v, m(z
—2,)], while v is a constanty=—v,;_. For the fermionic
IV. QUANTUM MECHANICS OF TWO SOLITONS fields we substitute zero modes, two of which are in the field

The BPS state which connects the vadua+} and Y, and there are none in,

{——1} and exists within the stability domain can be viewed ib 1
as a bound state of onesoliton, located ar=z,, and one Yrero modes:( ”) a,u®, (612)
v-soliton, located az=z,. The equilibrium separation be- a, /V2My

tween the solitonss=z,—z,, at which the minimum is _ _ 3o 2\ 3
achieved at givem, and u,, is determined from Eq4g). In !N this expressiorM,=(4m“/3\%)»;, is the mass of the
this section we consider the supersymmetric quantum medsoliton,a, andb, are real fermionic operators entering as
chanics of the two soliton system. The SQM system decoefficients of the normalized zero modes, and their algebra
scribes the BPS bound stdtehich is the ground state in the 1S fixed by canonical quantization,
problem) within the stability domain, as well as low-lying 2_p2_ _
non-BPS exited states. a,=b,=1, {a,,b,}=0. (62)

Thg formulation of thls problem refers toan effgcuve de—Upon these substitutions, the supercha@gebecomes
scription of the two solitons as heavy particles with masses
M, and M, in terms of their coordinateg, andz,. This a,
approximation is natural near the CMS where the binding Q=VM, ib | (63
energy is small relative to the soliton masses. For slowly !

moving solitons|z,|,|z,|<1 the nonrelativistic energy can which can be rewritten in terms of real chargese Eq(15)

be written as in Sec. Il C for definitiong
2 > Qi=V2M,a,, Q3=\2M,b,, Q3=Q37=0. (64
u v
=M,=+M, =+
E=M, 2 M, 2 U(s), (58) The result for the supercharges matches the general construc-

tion of Sec. Il C wherein the operatoes, and b, can be
where the dot denotes the time derivative, ang) is the realized as Pauli matrices, e.g,= 7, andb,=7,.
interaction potential depending on the separaterz,—z, Now let us find the supercharges corresponding to the
between the solitons. Separating out the center of mass col.3 configuration of theu- andv-solitons atv,= 1= u,
ordinate, we come to a standard quantum mechanical Hamif= 0. We choose boosted soliton solutions,
tonian for the relative motion,

u®= v1+tan>{ va( z—27,— M£t> }
2 u

P +U(s). (59

2M,

H=
: (65)

p
@)= vl_tam{ vl_m( z-z,+ 3t
v

The supersymmetric generalization of this Hamiltonian is

given in Eq.(20) which depends on the superpotentié(s). wherep is their relative momentum, and the total momentum
Below we will find the expression for this SQM superpoten-is zero. The fermions are given by E@1) for ¢ and by a
tial by comparing the field theoretic supercharges evaluatedimilar expression for; with the substitutioru—uv, where

on the soliton solutions with the SQM realization in E2Q2). u- andv-fermions anticommute. With time-dependent solu-
An alternative derivation oV’ based solely on conventional tions the termsdg;uy, d,v 7 now contribute to the super-
bosonic considerations is presented in the Appendix. chargegq60),
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Ql= V2(My+M,)(a,coss+a, sind), The SQM Hamiltonian then has the form
2_ oM +M ) i 1 e
Q3 2(M,+M,)(b,cosé+b, sing), HSQM:(Q;)ZZ(Qi)ZIZM [p2+(W’(s))2—|W’(s)ab].
r

) p _ (72
Q3= \/_(—au sind+a, coss), o ' o

2M; An explicit matrix realization of the four operatoss, ,

and b, ,, satisfying the Clifford algebra, caa priori be

p . chosen in the factorized forma,=7® 03, by=mQ0c
2__ = . u 1 39 u 2 3
Q1= \/Z_I\/Ir( by siné+b, cosd), (66) a,=l®oq, andb,=1®0,. This factorized form of the fer-

mionic operators realizes a description in terms of two inde-

where we have defined cés\M,/(M,+M,). We ob- pendent particles. This choice is perfectly acceptable and re-
serve that the relative motion implies that the “composite” alizes the\’=2superalgebra18). However, it differs from
state is non-BPS in the absence of any interaction betwedh€ specific realizatior{22) by an orthogonal rotation by
the solitons. angle 8. In order to match the conventions used in E2P)

In order to switch on the interaction we consider nonzerdor & description of the two-soliton system, one has to use an
w and v,. To obtain the result to first order in these param-eduivalent representation of these operators, obtained by the
eters it is enough to substitute the same leading order expreverse rotation:
sions for the bosonic and fermionic fields accounting for the

terms linear inu and v, in the expressiori60) for the su- a,=7,®030086—1®0ySing,
percharges, as well as for the phasef the central charge. _
The linear dependence qn and v, arises from the terms by=7,®03C086—1®0,siné,
m? a,=T1,®03SiNd+1® 0y coSs,
o f a2l (U0 ®) =i ]y (v* %) (67) e '
b,=m®o3sin5+1® 0, CcoSé. (73
in Eq. (60). The phasex is also linear inv, [see Eq.44)],
and needs to be taken into account in Ei) when relating The final expression for the full quantum Hamiltonian of
Q, with Q12. the two-soliton system can be written as
The resulting supercharges al@i(, Q% are not changed
and are written here for completengss p2  OM, [makw, ()= va]® 3 pakW, (S)
1 P HSQMZZM + 2 (1_ 2)2 E (1_ 2) 03
Qi=V2(M +M,)a, Q3=+v2(M,+M,)b, ' V1 V1 (72
1_ ~ PR 2_ WS with M, given in Eq.(71) and we use the matrix represen-
= a+W'(s)b], = b—W'(s)a], rg q P
Q2 \/2|\/|r[p (s)b, Q1 2M, [P (s)al tation (73) for the fermiongomitting the tensor product with

(68)  unity in Hgq).

It is worth noting a couple of limits in which the potential
where we denote simplifies, and can be expressed in terms of elementary func-
tions. Recall first of all that whem;=0 the functionw(s)
is known analyticallyjsee Eq.(54)]. If v, is not too large,
i.e., »1=0.5, there also exists a convenient simplified form
in which the superpotential is very closely approximated by
the expression

a=a,cosé+a,sind, b=b,cosé+b,sind,

a=—a,sind+a,coss, b=-—b,siné+b,coss.
(69

The quantum-mechanical superpotentiaore precisely

its derivativeW') is then read fronQ} (or Q?) to be Wapprof ) = 3M [ 1z tani(ms) — v ], (75
M where the reduced mas4, is taken atv,;=0. In this super-
W' (s)= '2 [ oKW, (S)— 7], (700 potential we recognize the simplified model discussed in Sec.
1-v] Il B [see Eq.(7)]. Another simple case arises whef is
close to 1, i.e., ¥ v2<1,
where
MM, 2me (1332 1 ,_ M, _
Mr:ngpTl’ KZE(VE_,_'FVE_), w _\/1_—V§(/~L2ms va). (76)
(71
The potential in this case reduces to that of the harmonic
and the functiorw,(s) is defined by Eq(50). oscillator.
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In the limit of large separation, the potential energy in theas expected is the wavelength for the lightest particle in the
Hamiltonian (74) tends to a constant which depends on themodel. We also observe that the spin dependent term con-

sign of s,

M, (* pok—vp)?

2 (1-v)?

(77

(Note, however, that the spin dependent term does not

contribute) These constants denote the energy levels at
which the continuum states appear while the ground state,
which is the{1,1} BPS soliton, is a zero energy eigenfunc-

tion of Hgqp.

The origin of the two continuum thresholds is that at non-

zero u the classification for solitons we introducedat 0

is no longer sufficient—thei-soliton interpolating between
the{— +} and{+ +} vacua(see Fig. 3is different from the
u-soliton interpolating between tHe- —} and{+ —} vacua,
and a similar distinction arises between the and
v-solitons. Thus, the system under consideration at large
describes two channels: theplus v solitons at positives,
and theu plusv at negatives. It is straightforward to verify

this by calculating the two binding energies,
AE,=My1—M—M,

m3
:F[|W++_W77|_|W++_W7+|

_|W—+_W——|],
(78)
AE,:Ml'l_Ma‘i‘M;
m3
:F[|W++_W——|_|W+—_W——|
—|W++—W+,|],
from which we observe thaAE.=—U_. . Note that, al-

though the quantitieAE.. are of second order in, andv,,
it is sufficient to use the expressiofi36) which are only
valid to first order inu (and are formally exact im) for the
values of ;. This is due to the fact that for real and u
the values ofWV;; are real andAE.. vanishes. Thus\E.

arises as an effect quadratic in the imaginary parts of the

differences of}}; which by themselves are linear i, and
M2

the potential as— * o,
U(s)—U.+K.exp —2v,_m|s|)+---, (79
where the coefficient of the leading exponential term is
B(vist i )uok
vy (1= ) (1= v))

X[ = 6M, (kT vo) +Mag(1—vi)v;_]. (80)

We have made the assumption here that<v,, . We see
that the characteristic distansés defined by Ithv, _ which

tributes to the exponential tail. Moreover, on the CMS where
Mok Fv,=0, it is the only contribution. This “fermionic
dominance” takes place in a very narrow region near the
CMS,

(1— V%)Vl, m

| oK+ vy < 6 M (81)
r

The effect of this regime of enhanced quantum corrections
near the CMS will be considered in more detail in the next
subsection.

B. Properties of the two-soliton system

As expected, the second term in the potential in &d)
is of higher order than the first one in the loop expansion
parametein. However the second term is of lower order in
the small parametet, and, by tuningu,, one can study this
potential both in the classical limit corresponding to
>\2/m? and in the quantum limi,<\?/m?, or anywhere
in between as long as the condition for validity of the for-
mula (74), u,<<1, is maintained. Upon a slightly more de-
tailed inspection of classicals quantum effects in the
Hamiltonian(74) one can readily see that in fact the quasi-
classical parameter in this system is not just the ratio
N2/(m?u,) but is determined by the parameter

B WHH(SO)

=—, 82

(W"(s))? #2
introduced in Sec. Il, wherg, is the classical equilibrium
separation determined by E¢8). Recall that¢ measures
the quantum correction to the curvature of the potential near
the classical minimum, the system being essentially classical
for §<1, and highly quantum fog>1.

For the model at hand we find

"

w;, (So) A2

== 2muoy1— Vi), (S0))? m?’

(83

Finally, we also write down the asymptotic behavior of Near the CMS the equilibrium distansg is large, and¢

takes the form

K A2

T N o
v+ (mok+ V) M

(84)

where for definiteness we have again assumed that
<wq, . Notice that the conditiohé|> 1 agrees with Eq81)
which, as discussed above, defines the essentially quantum
regime in the narrow region along the CMS.

When the system admits a supersymmetric ground state,
the corresponding wave functiafy(s) can always be found
as
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FIG. 7. Plots of the full potentidl (s) (arbitrary unit$ at v,=0, v,/u,=0.95 for several values &f. The classical equilibrium point
is atms~2.56 and is shown by heavy dag) Details of the potential near minimum fdr=0.009 (solid), £=0.9 (dasheg, and for ¢
=4.45(dot-dashed (b) The potential shown at a larger scale. The curvegfo4.45 are practically unresolvable and coincide with the solid
curve; the dashed curve correspondst0125. It can be noticed that the latter value #till corresponds to moderate values)dim:
NImM2=~7 Tu,.

o(S)=constexp—W(s)] Once one crosses the CMS, the wave functi®®) is no
longer normalizable, and the physical ground state of the
M, #2k9, (S)—voms system is non-supersymmetric. The broadening of the wave
= constex _3F , (85  function for the bound state near the CMS is exhibited in
Fig. 8. Thus, as discussed in Sec. Il B the bound state level
reaches the continuum on the CMS, where it completely de-
where for definiteness we again assume>0, andg,(s), localizes, and on crossing the CMS tfe1} bound state is
defined by Eq(52), is the integral ofw,(s). Independently no longer present in the physical spectrum.
of the quasiclassical paramet&rthe maximum ofiy(s) is
always located as,. However the spread of the wave func- ¢ another dynamical regime: Extra moduli on the CMS
tion, i.e., the dispersion of the distance between the solitons o ) i
in the BPS bound state, essentially depends on the parameterThe scenario discussed above, involving a short range su-
¢£. As £-0 the full potential has a minimum ats,, and perpotentla_l WhICh remains finite on the CMS,_ is only_a ge-
the system is classically located at the minimum. At larger "N€riC description for the near CMS dynamics in certain sys-

the minimum of the full potential shifts towards-0, reach- tems. As discussed in Sec. I, a different dynamical scenario
ing s=0 in the limit &1, but the maximum of t,he wave Is possible if there exist extra moduli on the CMS. However,

function is still ats=s,. In the latter extreme quantum limit
the system resembles the deuteron: the wave functior
spreads over distances much larger than the size of the intel
action region. In the two-soliton system this behavior is even
more drastic at largé than in the deuteron: the wave func-
tion reaches itsnaximumfar beyond the interaction region.
The classical and the quantum behavior of the system a
different values of is illustrated by a series of plots in Figs.

7 and 8.

One may also note that in general the interaction of the
two solitons is maximal at distances of order ! nears
=0: the potential is asymmetric ia and changes rapidly
nears=0, i.e., the force is strongest when the solitons sub-
stantially overlap. In a narrow region near the CMS, given
by Eg.(81), an attraction at short distances creates an essen- F|G. 8. Plots of the ground state wave functigi(s) for
tially quantum state, resembling a deuteron. Deeper into thg=17.7 (dashedl and £= 177 (solid). As above, these parameters
stability region an exponentially shallow minimum of the correspond to’,/u,=0.95 and the classical equilibrium point is at
potential at larges, results in a quasiclassical bound state. ms~2.56.

2
1_V1

-10 10 20 30
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ever, as one approaches the CMS the wave function still
spreads out due to the fact thaj— 0. In particular, at large

A M

rrrrr Wo(s sgn(s), 88
(s \ o9 sans) e

ChP and one observes that the zero energy bound state exists for
-\ both positive and negative, (see Fig. 9h The wave func-
tion at larges is

S-S :»77 m3
______________________ ) ex 2?#250'3

(89

times either||) or |1) depending on the eigenvalue of.

As | u,|—0 the bound state level approaches the continuum
FIG. 9. Possible scenarios for the BPS spectrum, taken from @pectrum while the wave function swells. At=0 the wave

small region of Fig. 5, wher®, and P, refer to the two primary  fynction is completely delocalized and there is no binding.

solitons, whileC refers to the composite kinkia a composite As alluded to above, this dynamical regime is distinct

bo_und stateC exists only on one side of the CM$&) a bound state from that considered previously when¢’ remained finite on

exits on bath sides of the CMS. the CMS; rather the CMS was characterized by the escape of

the root of W’ (s)=0 to infinity. In contrast, in the example

it turns out that the two-field model also exhibits a dynamicalconsidered here the root of the equatiati(s)=0 does not

regime of this type, and we observe in this case that thehift at all. Despite this one may note thatstill diverges

approach to the CMS is still characterized by delocalizatiomear the CMS due to its inverse dependencesen

of the bound state wave function, albeit in a somewhat dif- |n fact, precisely on the CMS the potential vanishes, and

ferent manner to the case considered above. thus a new quantum modulus arises corresponding to the
First, recall that in the example considered above withrelative separation of the constituents.

u,#0, the approach to the CMS was determined by Eq.

(48). In the “interior” domain, |v,|<|u,|x, the equation V. DYONS IN SU(3) A'=2 SYM

W’'(s)=0 has a solution and consequently the composite '

soliton was BPS saturated. Upon approach to the CMS, the We turn now to consider similar phenomena =2

zero of W’ (s) runs to infinity and, after crossing the CMS at SYM. To study a model which exhibits a CMS in the weak

| v5|>| |k, there is no longer a solution ¥’ (s)=0 and  coupling region, one approach is to extend the gauge group

hence no BPS soliton. This scenario is illustrated by Figto rank greater than orfeHere we consider one of the sim-

9(a). plest examples of this kind with gauge group (8J In the
Now we consider a different dynamical regime, see Fig.Coulomb phase this theory exhibits BPS dyon solutions with

9(b), where, in both the “interior” and “exterior” regions, electric and magnetic charges associated with either of the

the spectrum of BPS states is the safakthough possibly unbroken W1)'s of the Cartan torus. After choosing a con-

rearranged In this case one still has delocalization on thevenient basis of simple roots for the algebra, one can classify

CMS, although only for the wave function in this case asthe BPS monopole solutions into one of two types: those

there is no divergingclassical separation of the constitu- whose magnetic charge is aligned along a simple root—

ents. “fundamental monopoles’—and those whose magnetic
To this end let us set=0 [i.e., discard the term linear in charge is aligned along the non-simple root. These “compos-

U,V in the superpotential24)]. As explained in Sec. Ill A, ite monopoles” generically possess CMS curves at weak

at v=0 the CMS is very simple, coupling, and so their dynamics in this regime is amenable to
a semi-classical consideration.
Im = p,=0. (86) Composite dyons in this, and the closely relatee 4

system, have recently been studied in some dgi#ij18—
The SQM systen(20) one arrives at in this case is described 22:29, with the conclusion that the low energy dynamics of
by the superpotential, two fundame_ntal dyons at generic points of the_Coqum_b

branch acquires an additional potential term. This term is

associated with the misalignment of the adjoint Higgs VEVs
3

W'(S):Z%Mzwo(s), (87

SAlternatively, one can add hypermultiplet matter with a large
mass. In this case there is a discontinuity in the spectrum of quark
wherew,(s) was defined in Eq(54). For our purposes it is  monopole bound states on a CMS curve, which has been studied by
important thatvy(0)= 0, and that there are no other zeros of Henningson[24], and the mechanism involves delocalization in a
Wo(s). Thus the solitons always overlap classically. How-manner analogous to that discussed in this section.
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of the two dyons, and leads to the formation of composite M=maxZ.|, Z,=\2¢*-Q Z_=2¢-Q.
BPS dyons as bound states in this system. We will review - (94)
some of these results below, and emphasize the implications

for the dynamics in the near CMS region. The removal of the

composite state on the CMS again arises through delocalizd 1S Pound is saturated by solutions of the Bogomol'nyi
fon. equations,

A. The BPS mass formula Bi=D;b, E;=Dja, (95

We first review the features of the classical BPS mass

formula for N=2 SYM theories with higher rank gauge along with the equationDizaI e?[b,[b,a]]=0 which, mak-

groups(see e.g[26,22), limiting ourselves to SIN). For  ng use of Eq.(95), expresses Gauss' law in the gaulyg
the consideration of solitonic mass bounds, we need consider + 5. The fieldsa,b are real and imaginary parts of

only the bosonic Hamiltonian which has the form exp(a)® where the angle of rotatioa is defined in terms of
1 1 the charge® (see e.q.[27,16,22).
H= 2Trf d3x(—(Ei)2+ =(B))?+Dy®*D® In the framework of the\/=4 supersymmetry algebra the
2 2 parameters. are realized as central charges, and it is ad-

1 vantageous to view the system in this cont@miplying six
+D;®*D;®+ E[(I)*,(I)]Z], (90)  instead of two real scalar®). Within N=4 SUSY it is
generally the case thag, |#|Z_|, and states which saturate
the Bogomol'nyi boundM=maxZ.| will preserve only
four of the sixteen supercharges, and will thus be 1/4 super-
symmetric. If, however|Z,|=|Z_|, states which saturate
this bound will preserve 1/2 of th&/=4 supersymmetry.
The possibility of having 1/4 BPS states, which only occurs
for gauge groups of rank larger than one, dramatically in-

where E; and B; (i=1,2,3) are the electric and magnetic
fields, and ® is the complex adjoint scalard(=(d,
+id,)/\/2 in terms of the two real adjoint scalar§Ve use
the normalization TI2TP= (1/2)5%" for the generators.

The classical vacua satisfyd*,®]=0, thus requiring

the VEV of @ to lie in the Cartan subalgebtd, creases the number of CMS curves accessible to semiclassi-
D)= b H 91 cal analysis, since 1/4 BPS states generically exhibit regions
(P)=¢-H. (91) in the parameter space where they become marginally stable

Note that the remaining Weyl freedom may be fixed by de_wrth respect to “decay” into 1/2 BPS states. In this sense it

manding that Reb- B?=0 for a given set of simple roots is useful to think of 1/4 BPS configurations as composite.

i . . . L The discussion above was framed wittifi=4 SYM, but
{B%}. This defines a region which fgep: %> A coincides this was simply for orientation. In order to preserve any frac-

with the semiclassical moduli space of the theory. In this ion of supersymmetry, four of the six real adjoint scalars

, , ; : [
region we can safely neglect field-theoretic perturbative an(ﬁnust vanish asymptofically, and thus the configurations dis-

nonperturbative quantum effects. We will _only consider theCussed above all “descend” to give classical solutions in
case where the gauge group is maximally broken t

- O\=2 SYM. The difference is that now onlg_ remains as
N—1
U(llzi)r a,sz)olirtgr?l;gfut‘ci](r)(r)]uv?/esngg define the charge veqor a central charg¢22] and all states saturating the bouktl
=|Z_| are 1/2 BPS states from the point of view of thé
=2 SUSY algebra. As noted [22], those charge sectors for
Q-H=(g+ig)-H= f ZdSi(Ei+iBi), (920  which|Z_|<|Z.]| will have no BPS states from the point of
Se view of the A/'=2 system. Indeed, in this case states with
M=|Z_| are not allowed becauskl=|Z,|. Thus|Z_|
where use of the unitary gauge is implied. The regl4nd ~ >|z_ | is a necessary condition for the existence\6f 2
imaginary @) parts of each component Qf have the inter- BPS states.
pretation of electric and magnetic charges in the correspond- Restricting our attention now to the gauge group(3y
ing U(1); they are quantized and form a lattice spanned bywe notice that on the Coulomb branch the gauge group is
simple roots, broken down to the Cartan subalgebra U{ &nd there can
4 be field configurations which are electrically and magneti-
_ _E _ ALY cally charged under either of thesg1s [28]. Following
4=0af"=em g—gaﬂa—?na E (%3 Weinberg[28] we use the term “fundamental dyons” to
refer to those configurations whose charges are aligned along
Heree s the gauge coupling, amtf andn}' are the integral ~ one of these simple roots. Configurations whose charges are
electric and magnetic quantum numbers. We also normalizaligned along non-simple root§.e., g+ ) will be re-
the simple roots B2 with the conventions £%)2=1, ferred to as “composite.” We shall focus on a particular
BA=1. p2=—1/2, so that the coroots coincide with the roots. composite configuration which has received considerable at-
For general bosonic configurations, there is atention in the recent literature—namely, the composite dyon
Bogomol'nyi mass bound following from Eq90) which  which has equal magnetin§,=(1,1), and differing electric,
takes the form n2=(qg./e,q,/e), charges along the simple roots.
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B. Marginal stability and Coulomb-like interaction

The BPS mass formula for thél,1) dyon with n,
=(1,1), n¢=(q,/e,q,/e) takes the form

M(1,1)=|Zfl=\/El(q1+ig)¢-ﬁ1+(q2+i9)¢-ﬁzl,(%)

whereg=4/e. This configuration has a CMS curve where
the (1,1) dyon is marginally stable with respect to two fun-
damental dyons: the first is aligned aloy@j, and hasn?,
=(1,0), ng=(q,/e,0), while the second is aligned along
A%, and hasn$,=(0,1), n2=(0,9,/€). The masses of the
fundamental dyons are

q_gH

g*/ )

2
1+ o
29?2

My= \/§|(Qa+ig)¢'ﬁa|:ma

97

where in the second equality we have made use of the fa

thate?<1 in order to write the electric contribution to the

dyon mass as a small correction to the mass of the corre-

sponding fundamental monopole),= 29| ¢- £2|. Intro-
ducingw, as the argument of the VEVs,

¢ pP=|p- pleva

we see that the marginal stability conditidl ; )=M;,
+ M, fixes the argument of the rati¢- 8/ ¢- 2,

(98)

(99

W=w1— Wy,

PHYSICAL REVIEW D 63 065018

1
Veour= — %[qlcw 9°—\g*+ qlzvg2+ qzzCOSw].

(102

Similar expressions have appeared2i] and[19]. One ob-
serves that on the CMS, where the anglés given by Eq.
(100), the Coulombic potentidVc,, vanishes.

When expanded to second order dn/g, the potential
V cou takes the form

(Ag)?—(gw)?

167r ’ (103

Veour®

whereAg=q,—q; is defined in Eq(101). If the VEVs were
aligned, i.e.w=0, we see that to quadratic order, the poten-
tial is repulsive[29,30 [as opposed to the §P) case[31]]
and depends only on the electric charge differege How-
ever, for Qw/Aq)>1 the potential is attractive and tli&,1)
EEPS dyon exists with a madd ; 1) given in the same ap-

55

(104

where M,=m;m,/(m;+m,) is the reduced mass of the
monopoles, and the corresponding maddgs andm, , are
defined in Eq.(97). On the other side of the CMS in the
range |gw/Ag|<1 we have repulsion and thel,1) BPS
dyon doesot exist.

It is interesting to note that the Coulombic potential re-

%roximation by

(Ag—gw)?
292

1)
301

Ma=|Z-[=(M;+Mjy)—M, Aq

to be equal to the argument of the ratio of complex chargeserts to attractive form once more whegef/Aq)<—1, and

Q,/Q, whereQ;=q;+ig. This implies that the CMS equa-
tion is w= w; Wherew, is defined as

(209

Sinw.= .
o+ afVo+a

(100

Providedni andnj, are of a similar order, the angte, is
small in the limite?<1, i.e., when the electric corrections to
the dyon masses are much smaller than the correspondi
monopole mass as in E7). Thus in this limit the VEVs
&- B2 are only slightly disaligned, and we can make use o
an expanded version of E¢L00),

We=

Aq 212
z;(1+CXqu ), Ag=0,—q;. (101

We are now in a position to verify the general claim of

Sec. Il A that the Coulombic interaction vanishes on the
CMS. At large distances dyons can be viewed as poin
charges which interact at rest through electrostatic, magneto-

static, and scalar exchange. The electrostatic and magnetd ) i . X
dn the potential vanish? As we will see in Sec. V D the dy-

static interactions are fixed by the corresponding charge
while the scalar exchange can be read off from th
asymptotic form of the Higgs field of one of the primary

gdramics on the CMS is governed by repulsive

the (1,1) bound states reappear. This has a simple interpreta-
tion in the framework ofA/=4 supersymmetry: the lowest
mass in this range saturates fi#&,_| central chargénote that

now | Z,|>[Z_]),

(Ag+gw)?

May=IZ:[=(M1+M3)— M, 292

(105

i terms ofA'=4 susY the(1,)) state at gw/Ag)<—1 is
f1/4 supersymmetric, but preserves a different subalgebra as

compared to the Jw/Aq)>1 case above. Moreover, the
generators of this subalgebra aret part of theN'=2 super-
algebra. In terms afV=2 this means that the supermultiplet
is not shortened, but nonetheless the Bogomol'nyi bound is
saturated at the classical leVeThus, we see an interesting
example where the “BPS” nature of the state does not imply
multiplet shortening. The presence of these stated/#n2
$YM theories was also noted j22].

We now address the question of what happens t@lHi

tate on the CMS, i.e., whdgw/Aq|=1 and the 1/ terms

21ferms

dyons(in a physical gauge where the configuration is a linear

superposition of the fundamental dyon solutidi29,27)).
The effective Coulombic interaction then takes the form

“This saturation will be lifted by field-theoretic quantum correc-
tions.
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demonstrating, even at the classical level, that there is no ds%N=g;Nydz“dz”=m(r)[dr2+r2d02+r2 sir? 6d¢?]

localized bound state on the CMS.
2

+ 29
C. Zero modes and moduli spaces e m(r)

1 2
dy+ Ecosedq:} , (108

We will shortly consider.the low energy dynamics of the iy 4 “running” mass parameter,
fundamental dyons comprising th&,1) system. However,
we first recall a few details regarding the zero mode structure o
of dyon solutions inV=2 SYM. For BPS dyons in purd/ m(r)=M,+ —, (109
=2 SYM theories the unbrokegV=1supersymmetry is e’r
enough in this case to pair the bosonic and fermionic zero
modeq 32] so we shall focus here just on the bosonic modeswhich asymptotes to the reduced ma&éswhen the relative
Generic dyon solutions, corresponding to the embedding o$eparatiorr diverges.
the SU2) monopole along some root of $8) have four In terms of the internal (1) anglesy; of the fundamental
bosonic zero modd®8,2€ parametrizing the moduli space, monopoles, the combinatiof~ ¢, + ¢, is conjugate to the
total electric chargey; (or more precisely, ta;/e),

M;=R3x s, (106
myqg,+m
= 101 2Q2, (110
These modes are naturally identified as the center of mass My + My
position in R® and theS! is an isometry conjugate to the , ,
conserved electric charge. while y=(mq¢,—myi)/(My+m,) is conjugate toAg/e,

For dyons embedded along a simple root, this is thd-€- to the relative electric charge introduced abf34,35.
moduli space for all choices of field-theoretic moduli. How-
ever, if we consider composite monopoles, then the mono- D. Moduli space dynamics

pole moduli space\ enlarges to a space of dimension eight,  Aq first discussed in this context by Mant¢86], the

as is compatible with separating the cqnstituents into tWC?ow-energy dynamics of fundamental monopoles may be un-
|S(_)Iate(_j fundamental mlonopoI%,Zﬂ.. This resul_t was ob- 4erst00d as geodesic motion on the underlying moduli space.
tained in[26] using the index calculations of Weinbel@8]  Tpjs picture extends to dyon solutions with aligned charges,
for real Higgs fields. , ., but recent work on the dynamics of the fundamental con-
|:20r the case at h'and, the mqgneth Chafg‘@*@(ﬂ _ stituents of the1,1) system[16—22 has shown that for two
+p7°) and asymptotically the eight dimensional moduli f,nqamental dyons with misaligned charges the Lagrangian
space is simply\, X M. However, its exact form has also {q)iowing from the geodesic approximation needs to be cor-
been deduced if83-35,29, rected by a new ternil9,22. In this subsection we will
partially review these results, while emphasizing the features
RX M of the near CMS region.
TN (107 The construction of Ref§19,22 can be reformulated in
VA terms of the following Lagrangian for the relative moduli
Z'={r,x}:
The firstR® factor corresponds to the center of mass posi- 1 .
tion, while the secondR factor refers to the coordinate con- Lre|=§g;'§ 247" +9)\ 2"G”, (112
jugate to the total electric charge. The corresponding metric
is flat. The relative moduli spacé1ry is positive mass
Taub-NUT (Newton-Unti-Tamburinp space (which is as-
ymptotically R®x St). Its four coordinates* describe the
relative distance between the cores, with the corresponding
polar and azimuthal angle8 and ¢, and also the relative
phasey, conjugate to the relative electric charde. The GV:SM wd” (112
factor Z denotes a discrete identification for the charge coor- X
dinates, ensuring that the asymptotic geometry has a compact
factor Stx S, associated with the conserved charges. Herew is the angle of disalignment between the condensates
The Taub-NUT metric, in our conventiohtakes the form  ¢- 8, see Eq(98). The term containing” is dynamically
significant due to nontrivial fibering of tH&" associated with
x in the Taub-NUT metric.
The classical Hamiltonian then has the form

M2: R3X

where the metrig,) is given by Eq.(108) and the “gauge
potential” G”, which is a Killing vector generating thg
isometry, is

SWe follow [22] with the exception tha) is rescaled to have a
period of 27 rather than 4r, and consequently the conjugate mo-

- X 1
mentum is integer[(g,—q,)/e] rather than half-integef(q, Ho == qk? _ _ 11
—q4)/2e] valued. rel =5 (T, = Gu)(m,—G,), (113
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where wﬂ=gl'j('z”+ G") are the canonical momenta. In text of N=2 SYM theories was first discussed in detail by
terms of the original field theory this Hamiltonian is inter- Gauntlet{32] in the case where the Higgs VEVs are aligned,
preted asM—|Z_|, and thus BPS states are “vacuum” and this discussion has since been generalized to the case
states of this Hamiltonian. considered here by Badt al. [20] for N=4, and by Gaunt-
Two of the canonical momenta, namety, and 7, are lett et al.[22] for N=2. The crucial feature of this system is
conserved quantities conjugate to isometries along the azihat the relative moduli space inherits a triplet of complex
muthal anglee and the phasg. The value ofr, is the  structuresd®, a=1.3, and is a hyper-Kder manifold.
z-projection of the angular momentuly, and, is equal to Consequently, the system exhibif§=4 supersymmetric

Ag/e. Substituting these and the inverse metdg into Eq.  quantum mechanics with four real superchar@swhere

(113 we obtain the indexA can be associated loosely with a quaternionic
structureJ™=(1,J%). These supercharges satisfy the supe-
’ 7Tr2 . 77(2, s 1 ralgebra,
rel— 2 2 .
2m(r) -~ 2m(r)r2  2m(r)r2sir @ (Qn, Q8= 28naH s (119
Aq 2
X | 1,— 2—ec050) +V(r), (1149  whereH, is the supersymmetric completion of the Hamil-
tonian defined in Eq(113), to be interpreted aM —|Z_]|.
where One can compare this with the SQM constructed in Sec. Il.
An interesting feature of this system is that the symme-
M, o\t 2 \2 tries of the superalgebra and the moduli space combine to
V(n=—|1+— ) (Aq—gw+Aq 5 ensure that the wave functions have a nontrivial dependence
29 e“M,r eMr on the angular moduli, as well as the relative separation

(119 Specifically, the ground state wave function has the func-
tional form [20] W=V (r,o,) where o, are the basis
1-forms on theS® parametrized by ,¢,x). This depen-
dence is hinted at through theé-dependent terms in the
Hamiltonian(114) above. One may speculate that because of
the high degree of symmetry in this system—the bosonic
system possesses an additional conserved quantity of Runge-
Lenz type[25]—a more precise separation of variables may
e . ; T
cosby=2l,—, (116 be possible, but we will not pursue this issue here. We note
A only that, as demonstrated above, the delocalization on the
_ ) ) CMS is associated with the cancellation of the terms of
it (gw/Ag)>1 and|2l,e/Aq|<1. There is no solution for  »(1/r) and depends purely on the relative separation. More-

(gw/Ag)<1, ie., the BPS state ceases to exist upon crosyyer, this conclusion in the classical bosonic system appar-
ing the CMS whereggw=Aq. We see that the system de- ently extends to SQNi20].

scribes the composite state as a bound state of the dynamics
whose spatial size, corresponding to the separation of the
primary constituents, diverges on approach to the CMS.

is the only term inH . which depends on the field-theoretic
moduli ¢ (via w).

This Hamiltonian vanishes whem, =0, 7,=0, and the
equilibrium valuesry and 6, of the corresponding coordi-
nates are given by

2w Aq
e’M, Jo—AQq’

)

VI. DELOCALIZATION VIA MASSLESS FIELDS

It is instructive to expand the potentis((r) at larger On particular submanifolds of the CMS, the discussion
5 ) 5 ) we have presented above may be incomplete because certain
V(r)=M (Aq—gw) +(AQ) —(gw)”  (gw)” fields may become massless. Indeed, generically there will
r 292 16m7r 8e’M,r? ' be particular points on the CMS where states which are

(117  stable on both sides are massless. The presence of these sin-
gularities in moduli space can then be thought of as the “ori-

where we omitted 17 terms and higher powers ofrl/The  gin” of the CMS, since marginally stable states may not be
constant termV(r—o) marks the start of the continuum. single valued on traversing a contour around the singularity,
Indeed, addingZ_| from Eq. (104 we obtainM;+M, in  and so a discontinuity in the spectrum becomes necessary for
the limit r—o0. The 1f term coincides with the Coulombic consistency. For example, this point of view provided one of
potential (103 discussed earlier. It provides attraction for the first arguments for the fact that the W boson must be
|gw/Ag|>1, the range where the bound states exist. Theemoved from the spectrum inside the strong coupling CMS
range gw/Aq)<—1 corresponds, as discussed above, tdn N=2 SYM [3].
M1.1)=|2+|. What we see in addition is the repulsive 2/ In this section we will discuss the behavior of BPS states
term which leads to the existence of an equilibrium at largenear these singular points. Within a simple 2D Wess-Zumino
ro near the CMS. However, on the CMS it becomes themodel we will find that the discontinuity of the BPS spec-
dominant term, and so there is no localized state on th&um is explained by the delocalization of fermionic zero
CMS. modes of the soliton on the CMS. The CMS in this case

We conclude this section with some brief comments aboutorresponds to the “collision” of two vacua in the parameter
guantization. The quantization of the dyon system in the conspace, and thus one might anticipate similar phenomena in
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N=2 SYM theory near Argyres-Doulgas poirts3] when m? N, )
the singularities associated with monopole and quark vacua W1, ¢2) = K¢1_§‘P1+7“P1‘P2- (119
collide. Unfortunately, this occurs at strong coupling and is
out of the range of our semi-classical analysis. In fact, W(¢1,¢5) is harmonic
52
A. Breaking N'=2 to N'=1 and the restructuring ;i =0 for N=2, (120

of WZ solitons
as it is the imaginary part of the four dimensional superpo-

The model is a simplified version of th&/=2 Wess- aniial which is analytic ing;+ie,. This is therefore a re-
Zumino mode[14] in two dimensions considered in Sec. lll. flection of A’=2supersymmetry in two dimensions.
We shall set the second fiel to zero, but consider a new Now, to break\’=2 down toA’=1 we consider a more
perturbation which breaks/=2down to N’=1. This setup  general, nonharmonic, superpotentit{ ¢, , ),
was introduced in Ref.37] (see Sec. B

The superpotential prior to perturbation is then of the m? N
standard Landau-Ginzburg form, and its worthwhile recall- W@1,92) =z P17 3¢
ing a few pertinent details of these theories. A general clas-
sification of the /=2 Landau-Ginzburg—type theories in where u is the soft breaking parameter. There are two
two dimensions was given ifiL], while construction of the vacuum branches,
representations of the\/=2 superalgebra with central
charges was presented in Rdfg3]. It was shown that the {(plz iﬂ; <Pz=0],
supermultiplet of BPS soliton states is shortened, and this 2\
shortened multiplet consists of two stafgsd} as we dis- —
cussed earlier in Sec. lll. In particular, iN=2 theories __ M. _ . ypumm (122
there exists a conserved fermion charfyeThe fermion #1 28 2T '

charge of thas andd states is fractional but the difference is _ _
unity, f,—fg=1. but the second exists only f@>m, and vacua collide when

M
iHAees+ S5, (12D

What changes on passing fg=1 in two dimensions? #— M L _ _ _ o
The irreducible representation of tiié=1 algebra for BPS This model eXh'b'tS. a classical kink solutl_on \.Nh'Ch inter-
states is now one-dimensionab the best of our knowledge polates between the first set of vacua, and is given by
this was first noted in Ref.37]). The only remnant of the m mz
fermion charge is a discrete subgrazipwhich is spontane- gol=xtanh7, ©,=0. (123
ously broken.

It is natural then to expect a restructuring of the BPS; satisfies the classical BPS equations,
spectrum when\V'=2 is broken down toaNV=1. We will
study the manner in which restructuring occurs by consider- doi W
ing the spectrum of fermionic zero modes of a soliton solu- 9z (9_%- (124
tion as we vary the soft breaking parameter We observe
that for smallu the BPS spectrum remains the same as in th&'he zero modes corresponding to this kink are as follqe)s:
unbrokenN=2 theory. However, starting at a critical value One bosonic mode:
u,—-corresponding to a “point of marginal stability”—
half the BPS states disappear from the spectrum. This occurs 1
because quasiclassically the counting of states in the super- Xo=C—— "~ (129

: . . costf(mz2)
multiplet is related to the counting of zero modes of the
soliton and wheru reachesu, some of the fermionic zero  of the field ¢, corresponds téthe spontaneous breaking) of
modes become non-normalizable. To follow their fate oneransiational invariance,
can introduce a large box. Then the number of states does
not change, but a=u, the identification of states with Xo*de, /dz.
zero modes implies that half the BPS states spread out all
over the box while foru> u, they lie on the boundary of The constanC in Eq. (125 is a normalization constant; its
the box and are removed from the physical Hilbert spaceexplicit numerical value is not importar({Below the normal-
This picture is quite analogous to the quantum mechanicdkation constants in the zero modes will be omittét) Two
discussion in Sec. Il. However, as we shall see, the quanturigrmionic modes: The first zero mode of the field , (the
description is complicated here by the presence of a masslesslices number the superfields and fermionic components in
field. the basis where)®=0,, y'=io3) has the same forny,

We take the Khler metric to be canonical and the cubic as the translational mode. It is not accidental, the correspond-
superpotential of the model is conveniently represented iing differential operators are the same due Ao=1
terms of real bosonic variables , i=1,2, supersymmetry. The second fermionic zero mode
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system in a large box, i.e., impose boundary conditiors at
=*+1/2 wherelL is large but finite. We choose these condi-
tions in a form which preserves the remnant supersymmetry
in the soliton backgroundi.e., the BPS nature of the soli-

ton),
(az(Pi -

5 W
the Ipid;

124%

P =+ :0,
ﬁ(pi)|z *L/2

) Yiolz=+12=0,  Witlz==12=0
(129

(see Ref[37] for detail9. It is easy to check that the soliton

(long-dashed line Note that the vertical scale has been altered forsolution(123) as well as the zero modé€$25), (126) are not

ease of presentation.

exp(—uz)
- = 2
fo cosif(mz2) (128

appears in the fielgr, ;. At u=0 the existence of this mode
is a consequence of thE=2 SUSY, andé, coincides with

deformed by these boundary conditions, i.e., B3 re-
mains a solution of the classical BPS equations with the
appropriate boundary conditions at finlte

In the finite box there is no problem with normalization;
the zero modé€126) remains a solution of the Dirac equation
in the soliton background for ajk. However, atu>m the
mode is localized on the left wall of the box instead of sitting
on the soliton as is the case a<m. Thus, atu=m the

Yo. At nonvanishingu, when the extended SUSY is broken critical phenomenon of delocalization starts. As we will
this zero mode is maintained by virtue of the Jackiw-RebbSNoW below, upon quantization this means that some BPS

index theoren{38].

An interesting feature of the zero modg is that it is
asymmetric inz for u# 0. Moreover, this mode is normal-
izable only for

u<m. (127
This is readily seen from its asymptotics,

go(z_>oo)~e_(ﬂ+m)z, éo(Z—>—00)~e_("_m)Z.

(128

The explicit form of the zero mode for few values afis

exemplified in Fig. 10. The loss of normalizability occurs at

m=m, when

d[{ &ZW]
e
Ipidg;

in one of the vacua between which the soliton solution inter-' """
polates. In other words, one of the vacuum states has gapless

excitations at this point. Indeed, in tlze- —o vacuum, the
eigenvalues of the fermion mass matrix aneand w—m,
and thus indeed at the point=m where the vacuum

soliton states have disappeared from the physical Hilbert
space.

B. Quantization

We shall not present a detailed analysis of the quantiza-
tion of the system here as it requires a somewhat different
treatment to the supersymmetric quantum mechanics we
have considered thus far. In this case, one needs to consider
the dynamics of the light field in addition to the collective
coordinates of the soliton.

However, provided we only consider a region somewhat
away from the CMS, the spectrum is easily determined. As
usual, the remnantv=1supersymmetry pairs the nonzero
modes(one bosonic to two fermionjaround the solitoiisee
e.g. Sec. 3G 0f37]), and the relevant contributions cancel.
Thus the soliton spectrum is determined by the zero modes,
corresponding to which we have one bosonic collective co-
ordinatez, corresponding to the center of the kink, and two
real Grassmann collective coordinatesand «a, determined
by the zero modesy; ;= a1 xo(2) + - - - and ¢, 1= a,&0(2)
Combining them into one complex parametgr
=(a;+iay)/\2, the collective coordinate dynamics at
=0 is determined by the quantum mechanical system

1. .
Leti=—M+ =Mz +iM 77,

5 (130

branches meet, there is a massless field. This system repre-

sents a simplified analog of an Argyres-Douglas point in that

the massless field arises through the collision of vacua. FuwhereM is the physical kink mass, which we can set to one.

thermore, we see that this infrared effect destabilizes one of The quantization is carried out in the standard manner. If

the fermionic zero modes of the soliton. zo and n are the canonical coordinates, we introduce the
To study the infrared behavior in detail let us put thecanonical momenta
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(131) similar to the 3+1 D effective dynamics of two BPS dyons
in N=2 andN=4 supersymmetric gauge theor{d9—232.
In 3+1D the effective Coulombic interaction governs dy-
namics near the CMS. We demonstrated this in Sec. V for
[Wzo,zo]: —i, {m, nt=-i. (132 the composite dyon in S@3), showing how the BPS states
swell upon the approach to the CMS.
One then proceeds to construct the raising and lowering op- One may wonder whether some of the conclusions noted
erators in the standard manner. From E481) and(132) it above regarding the behavior of composite bound states near
is clear thaty can be viewed as the lowering operator, while the CMS might not be artifacts of the quasiclassical approxi-
7 is the raising operator. One then defines the “vacuunfnation. In particular, returning to pur&/=2 SYM with

state” in the kink sector by the condition that it is annihilated 9auge group S(2), the classic example of marginal stability
by 7, with which we started this discussion is that of ivbosons

on a CMS curve at strong couplingt,5], for which our
n|‘vac’)=0. methods are not directly applicable. We are going to dwell
o on this issue in a separate publicatif89]. Here we will
The application ofy produces a state which is degeneratebriefly present two suggestive arguments pointing to the con-
with the vacuum statg‘vac ') and 7|‘vac ') are two quan-  Clusion that this phenomenon involves delocalization in the
tum states which form dshortenejl representation of\’ ~ same manner as the examples we have discussed.
=2 supersymmetryat x=0). It is clear that these two The first observation involves duality. If we consider a
states, which are degenerate in mass, have fermion numbegion very close to the CMS for thw boson and not too far
differing by unity. from the monopole singularity, we can consider a point par-
What happens gt #07? At x<m the situation is exactly ticle approximation for the monopoles and dyons within the
the same as g=0 (apart from the fact that the fermion dual magnetic description. Provided we are close enough to
number is not conserved now and we must classify the statehe CMS, a nonrelativistic approximation is reliable. From
with respect to theiZ, properties. We have two degenerate this viewpoint the dissociation of thé is superficially quite
quantum states, both are spatially localized and belong to thgimilar to that of the bound states of dyons discussed in Sec.
physical sector of the Hilbert space. At=m only the v/ with the roles of electric and magnetic charge reversed.
vacuum state iS |Oca|ized. The Spatial structure of the Second The Second Observaﬂon inv0|ves the rea“zation Of the
state |‘'vac’) has a flat component, which extends to theBPS states considered here in terms of string junctions
boundaries of the box. At>m this component is peaked at [6,16,40,7 in type IIB string theory and its extension to
the boundary. The easiest way to see this is to introduce ap-theory [41]. Although there are still subtleties with this
external source coupled tg; ;. Thus, the statey|‘'vac ") realization, specifically concerning a mismatch between
disappears from the physical sector of the Hilbert space. Theld- and string-theoretic counting of bosonic modulr], it
superchargeQ, acting on the staté‘'vac’) produces this is interesting that the disappearance of marginally stable
state itself, rather than another stefd/e recall thatQ, an-  states in this framework appears to universally imply delo-
nihilates |‘vac’).) Formally this looks like a spontaneous calization. The crucial point is that this process involves

T =20, Typ=—17

and impose théantjcommutation relations

breaking of the remnant supersymmetry. shrinking one or more of the spokes of the junction to zero
length, while it has recently been pointed ¢4dg] that the
VIl. CONCLUDING REMARKS equilibrium separation of the two constituent states in the

field theory is inversely proportional to the length of the

Using quasiclassical methods we have argued that the ur%'hrinking prongs

?neirzlgldn(g eiﬁ?ﬁ:rglllgsb Ofn&érrglgt?\llligtiitgsleeriOIrﬁ(;:Etrils Ollgﬁ_r' As a final remark, it is worth commenting on additional
g y persy q btleties which arise when considering extended BPS ob-

tum mechanics. Composite BPS states which disappear qQ .
the CMS were found to do so through a process of delocallcts: In particular, although we concentrated here on BPS

ization in coordinate space. Within the quantum mechanica‘i’artides’ the notion of marginal stability is more general as
description this process was associated with the bound staf/Persymmetry algebras may also admit central charges sup-
level reaching the continuum, while further progress beyond©rted by extended BPS objects such as strings and domain
the CMS leads to a potential with a non-supersymmetrid"’ans- Indeed, our classical analysis in Sec. Ill may be lifted
ground state. This is a generic picture. In certain cases th® four dimensions where the kink solutions describe BPS
CMS can be a boundary between sectors with different comdomain walls. However, we concentrated on particle states
posite solitons, the quantum mechanical potential then varspecifically for the reason that quantization in this case leads
ishes on the CMS. to quantum mechanics, which is of course well-understood.

One of the crucial features allowing a detailed investiga-The main technical difficulty in extending these arguments to
tion of the effective quantum mechanical dynamics in thesolitons such as domain walls is that in addition to the dy-
two field model considered in Secs. Il and IV was the linearnamics of relative collective coordinates, one also needs to
realization of supersymmetry in the two-soliton sector of theconsider the massless sector of the field theory on the world
non-relativistic SQM system. This embedding ir1D is  volume of the soliton.
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_ag
—j a
APPENDIX: CLASSICAL SOLITON POTENTIAL
1_with the variablgj being eliminated in favor o$, using the
relation (A5). Performing this simple operation on the ex-
pressiongA4) and(A5) one finds

In this appendix we present an alternative derivation o
the classical potentiafW’(s))? entering the SQM Hamil-
tonian. This approach is purely bosonic, but requires knowl
edge of the composite soliton solutions obtained in Sec. Ill.

We start from the expressidi@g) for the binding energy ~ 2E(S)=U(s)=U.

AE., m® 3(V2_M2KWvl(mS))2 m® 3(v,— uyk)?
3 2 2 Y
m> 3(vy— ok A KV{yVi_ N KVi4yVqi_
AE, —— T (vo— pok) _ (A1) 1+h1 1+71
A KVi4Vp_ (A7)

(For va/ <0 the relative sign betweem, and u, in this  \yhich represents the classical interaction energy of two pri-
expression must be reversedhe formula(Al) gives the  mary solitons separated by a distasclaturally, the mini-
minimum of U(s)—U , , whereU , is the value of potential mum of AE(s), as found from this expression, coincides

ats=, while the position of the minimum isis given by it that given by Eq(A1) at the separatioadetermined by
Eqg. (48). We can combine these two results in order to findgq, (4g).

the classical expression far(s) l_3y using the standard Le_g- Comparing the last term on the right hand side of Eg.
endre transform approach. We introduce a source term in th@q) with the expressioli77) for U, we see that they coin-
original superpotential24), thus replacingV(®,X) by cide. Thus, the potential is
- , m? | . »
W@, X; ) =P, X)— — X, (A2) m3 3(v2— kW, (Ms))
A Ua(s)=17 )
KV14 V1

wherej is a dimensionles&and in general complgxparam-

eter corresponding to the strength of the source. For a statighere the subscript reminds us that this is the potential found

classical configuration described by this superpotential that the classical level. This result correctly reproduces the

calculation of the energy in fact gives the minimum of theenergy difference between the asymptotic states at both in-

functional £(j ): finities. With this normalization, one may readily check that
the minimum(zerog of the potential corresponds in E(.9)

to the mass of the BP&L,1} soliton,

_ _ m?1
E(G)=E(j)+ JTEJ dzd?OX(x,0)+H.c.|, (A3)

8 m3 3 mg(V1+_V1_)2
whereE(j) is the value of the original energy on the con- M1,1:§ FK+ AiN2T < (A9)
figuration which extremizes the action at a given source
strengthj, and X(x, ) is the X superfield evaluated on that

configuration.(In fact, being staticX does not depend on Comparing the above expression for the potential with the

general form of the SQM Hamiltonian,

time))
Clearly the effect of the source term is equivalent to a 1
hift in »: +j f it i ffici = [p2? "(S))2 4 \a
shift in v: v—wv+j, and for our purposes it is sufficient to HSQM_ZMr[p +(W ()’ +W(s)gs]l,  (AL0)

consider a purely imaginary sourcesij,. Then thes de-

pendent part of the functiondlj) for the two-soliton static _ _ _ _
configuration is read directly from E@A1) after replacing we readily derive the superpotentiaip to a sign
vy by vot+j:

M2 pu2KW,, (MS) = v,

m® 3(vo+j,— uok)? W'(s)=6M, — .
(s) DY Kllz(V1+V1_)l/2

Y KVq14Vq_ ' (Ad)

(A11)

A&(j2)=

and the relation between theependent equilibrium position This coincides with the resul(0) derived in Sec. IV A, by
s and the value of is derived from Eq(48), evaluating the field-theoretic supercharges.
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