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Remarks on Dirac-like monopoles, Maxwell and Maxwell-Chern-Simons electrodynamics
in DÄ2¿1 dimensions
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Classical Maxwell and Maxwell-Chern-Simons electrodynamics in~211! dimensions are studied in some
detail. General expressions for the potential and fields are obtained for both models, and some particular cases
are explicitly solved. Conceptual and technical difficulties arise, however, for accelerated charges. The propa-
gation of electromagnetic signals is also studied and their reverberation is worked out and discussed. Further-
more, we show that a Dirac-like monopole yields a~static! tangential electric field. We also discuss some
classical and quantum consequences of the field created by such a monopole when acting upon a usual electric
charge. In particular, we show that at large distances the dynamics of one single charged particle, under the
action of such a potential and a constant~external! magnetic field as well, reduces to that of one central
harmonic oscillator, presenting, however, an interesting angular sector which admits energy eigenvalues.
Among other peculiarities, both sectors, the radial and the angular one, present nonvanishing energy eigenval-
ues for their lowest levels. Moreover, those associated to the angle are shown to respond to discrete shifts of
such a variable. We also raise the question on the possibility of the formation of bound states in this system.
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I. INTRODUCTION

Field-theoretic models defined in a~211!-dimensional
space time have been studied for nearly two decades@1,2#.
Actually, lower-dimensional models have provided many
teresting results which do not take place in the~311! dimen-
sional world, e.g., Schwinger’s mechanism in tw
dimensional QED (QED2) @3# and fractional statistics in
three dimensions@4#. Consequently, lower-dimensional the
ries cannot be considered as mere lower limits of fo
dimensional ones; they have rather revealed characteri
that are intrinsic to its dimensionality.

On the other hand, some~211!D theories, wheneve
supplemented by a Chern-Simons term, turn out to exhib
new interesting physical content, such as, for example, M
well and Einstein-Hilbert actions@2,5#. Furthermore, it has
been claimed that such models@mainly those in the contex
of Maxwell-Chern-Simons~MCS! terms# have relevance for
a deeper understanding of some condensed matter phe
ena, such as the quantum Hall effect~QHE! @6# and high-Tc

superconductivity@7# ~see also, Refs.@8,9#!.
Although Maxwell and Maxwell-Chern-Simons~mainly

the latter, in both Abelian and non-Abelian framework!
have attracted a great deal of effort, it is curious that one
not provided an ‘‘electrodynamical body’’~Liénard-
Wiechert-type potentials, Larmor-like formula, and so for!

*Email address: winder@cbpf.br; present address after Marc
2001: Departmento de Ciencias Exatas, Universidade Federa
Lavras, Caixa Postal 37, Cep. 36200-000, Lavras, Minas Ge
Brazil.

†Email address: helayel@cbpf.br
1Although in a different approach, a classical analysis of the n

Abelian case@SU~2!, more precisely# was performed by D’Hoker
and Vinet@10#.
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for such ~say, Abelian! theories which would be similar to
the one we have for~311!D Maxwell.1 Thus we shall try to
draw the attention to the fact that the ‘‘lack’’ of a comple
‘‘electrodynamical body’’ is related to some serious difficu
ties, for instance, in calculatingAm ~and Fmn) for a single
accelerated pointlike charge. In view of that, a Larmor-li
expression relating energy-flux~radiation! and the accelera
tion of the sources is still missing.

We start the present work by studying the Maxw
~massless! case. Some results are discussed and a numb
difficulties are pointed out. Following, we add a Cher
Simons term to the former model and some consequence
such a procedure are worked out. Going on, we analyze
issue concerning the introduction of a Dirac-like monopo
within both models and some properties of its field. So
effects of its potential on a usual electric charge are d
cussed in both classical and quantum~nonrelativistic! frame-
works. We close this paper by pointing out some conclusi
and prospects.

II. CLASSICAL MAXWELL ELECTRODYNAMICS
IN DÄ„2¿1…

Let us consider theD5(211) Maxwell electrodynamics
(MED3) Lagrangian:2

LMED52
1

4
FmnFmn1 j mAm. ~1!

The invariance of the action under local Abelian gauge tra
formations,Am(x)→Am(x)2]mL(x), is ensured by the con
servation of the three current, say,]m j m50. Moreover with

1,
de
is,

- 2Our conventions read diag(hmn)5(1,2,2), greek letters run-
ning 0,1,2; the 2D spatial coordinates are labeled by latin let
running 1,2, ande0125e0125e125e12511.
©2001 The American Physical Society13-1
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the usual definition of the field strength,Fmn5]mAn

2]nAm , we get Fmn5@F0i51(EW ) i ;F125B#. Next, the
field strength clearly satisfies]mFmn5 j n and ]mF̃m50,
whence there follow

¹B5] tEW * 1 jW* , ¹•EW 5r, and ¹•EW * 5] tB,

where we have definedF̃m5 1
2 emnkFnk5(1B;2EW * ), with

the components of a dual vector given by (UW * ) i5e i j U j .
The dynamical equation for the more basic quantityAm

reads~in the gauge]mAm50): ]2Am(x)5 j m(x). The solu-
tions to this wave equation may be readily obtained
means of the well-known Green’s function method~or by
applying the Hadamard’sdescent method, see Ref.@11# for
further details!. Such a function,G211(x2y), may be ex-
plicitly worked out and reads@the advanced function is easil
obtained by introducing aQ(2t); Q is the usual step func
tion#

Gret
211~x2y!52

Q~t!

2p E
0

`

J0~kr !sin~kt!dk

52
Q~t!

2p

Q~t22r 2!

At22r 2
, ~2!

wheret5x02y0 and r 5uxW2yW u. The integral above may b
found, for example, in Ref.@12# ~on page 731 and Eq. 6.671
7!. It is worth noticing thatG211 presents a quite differen
behavior with respect to its~311!D counterpart,G311: the
support ofG211 lies no longer on the surface of the ligh
cone, where (x2y)250, as is the case forG311(x2y)
5d@(x02y0)22uxW2yW u2#/2p. Indeed, it rather spread
throughout the whole internal region of the light cone, whe
(x2y)2.0 @blowing up as (x2y)2→01 and vanishing for
space-like intervals, (x2y)2,0]. Thus the Huyghens prin
ciple is satisfied byG311 and violated byG211.

As we shall see, this will lead to profound modificatio
in planar electrodynamics with respect to the~311!D Max-
well theory. For example, by virtue of the failure of Huyg
ens principle, electromagnetic signals reverberate in~211!
dimensions, and a Larmor-like formula for the radiat
power appears to be a highly nontrivial task.

Next, by taking a single pointlike charge,j m(y)
5q*2`

1`żm(s)d211@y2z(s)#ds, we get the general form fo
its potential~we have omitted the homogeneous part of
potential!:

Aret
m ~x!51

q

2pE2`

1`

Q@x02z0~s!#
Q$@x2z~s!#2%

A@x2z~s!#2
żm~s! ds,

~3!

with (x2z)25@(x02z0)22uxW2zWu2#. The expression for the
field strength is also obtained in the usual way, and re
@with P5(x2z)aża andQ5(x2z)az̈a]
06501
y

e

e

s

Fmn~x!5
q

2pE2`

1`Q~x02z0!Q@~x2z!2#

P2 A~x2z!2
@ z̈n ~x2z!m P

1 żn ~x2z!m~12Q!2m↔n#ds. ~4!

Here, it is worth noticing that, in general, we do not get
solve the expressions above. Actually, we have tried to so
elementary accelerated motions, say parabolic and hy
bolic ones. Unfortunately, we have found serious difficult
in performing some integrals that are highly nontrivial a
plagued with serious divergences that have to be suita
handled.3 In ~311!D, the scenario is quite different, becau
we have a d311@(x2z)2# „instead of Q@(x
2z)2#/A(x2z)2

… which, in turn, implies in a straightforward
factorization of the integral ins variable, by picking up only
those points for which (x2z)250.

Hence we conclude that the ‘‘lack’’ of closed analyt
expressions forAm ~and Fmn) in the case of an arbitrary
motion ~Liénard-Wiechert-type expressions! is deeply re-
lated to the failure of the Huyghens’ principle, since the s
lutions to the]2 operator in~211!D, G211, do not satisfy
such a principle~indeed, the same happens for anyGn11, n
even; see, for example, Refs.@11# and @14–16#!.

On the other hand, even the static case~the constant mo-
tion may be easily obtained by a Lorentz boost! reveals some
of the new characteristics of the model. Thus, by takingzm

5(s,0W ) ⇒ żm5(1,0W ), we get

Am~x!

5H A0~rW,t !52
q

2p
lnurWu1

q

2p
lim

t→1`

~ lnut1At22r 2u!,

AW ~rW,t !50,

~5!

Fmn~x!5H F0i~rW,t !51
q

2p

r i

r 2
2

q

2p
r i lim

t→r 1
S t

r 2At22r 2D ,

Fi j ~rW,t !50.
~6!

Here we notice that, besides the well-known lnuxWu behavior of
the potential in planar electrodynamics, there is an extra t
which explicitly diverges. Such a term clearly represents
asymptotic value of the potential asuxW u→1` and is directly
related to theinfrared divergenceof the theory. Indeed, by

3It was already pointed out in the literature that~211!D electro-
dynamics indeed imposes additional troubles in calculating so
quantities; for example, in Ref.@13#, the author discusses som
difficulties brought about by the logarithmic behavior of th
potential.
3-2
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calculatingA0(x) by means ofÃ0(k) ~its Fourier transform!,
we may clearly see that such a term arises when the m
term is set to zero, as below:

A0~rW,t !51
q

2pE0

`J0~pr !

p
dp

5 lim
m→01

K0~mr !

'2 lnurWu2 lim
m→01

ln~m/2!,

whence, we see that asm→01 , the last term above blow
up. On the other hand, the explicitly divergent term appe
ing in theFmn above may be removed by a suitable subtr
tion procedure, which is possible because such a qua
vanishes asymptotically.~Among others, such subtletie
shall be more explicitly discussed in Ref.@17#.!

It is interesting to pay attention to the appearance of s
an infrared divergence at the classical level; indeed, infra
problems in~211!D are much more severe than in four d
mensions. For example, the non-Abelian case, even in
presence of massive matter, makes sense only for very
cial gauge choices@18#.

Still concerning the generalFmn form, Eq. ~4!, there re-
mains an interesting issue to be pointed out. By taking i
account the terms proportional to the accelerationz̈(s),
which are those that effectively contribute to the energy fl
and so, to a Larmor-like formula, we notice that such ter
are proportional to*ds/A(x2z)2, and might surprisingly
lead us to the result that radiation in~211!D no longer falls
off with r 21. Indeed it may increase proportionally to lnurWu,
as long asz(s) depends ons2, which is the case for constan
accelerated motions.

Next, let us point out a rather peculiar characteristic of
model as long as the propagation of electromagnetic sig
is concerned. Let us start by considering the charge confi
ration: r(yW ,t8)5qd2(yW )d(t8). Its potential reads

Fpulse~xW ,t !5
q

2p

Q~ t2uxW u!

At22uxW u2
, ~7!

in contrast with its ~311!D counterpart Fpulse(xW ,t)
52qd(t2uxW u)/4puxW u. Clearly, although such a signal ha
been sharply sent~at t50 it was just atuxW u50) it cannot
later be recorded as a sharp one: the pulse develops a ‘‘
~its spreading in time! and so it reverberates. Therefore w
now need avery long time to recorda sharp signal sent at a
earlier time. Next, we obtain the superposed case, whic
obtained fromr(yW ,t8)5qd2(yW )Q(t8), and reads
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Fsup~xW ,t !51
q

2p
lnS t1At22uxW u2

uxW u
D Q~ t2uxW u!, ~8!

whence we see that these signals superpose in a logarit
way, differently from the~311! dimensions, where such
superposition takes place linearly,Fsup(xW ,t)52qQ(t
2uxW u)/4puxW u.

The logarithmic superposition leads us to an interest
point if we compare with previous results whent is equal or
slightly greater thanuxW u: while the single pulse potential, Eq
~7!, appears to be very strong, the contrary happens to
superposed case, which is very weak there. However, as
goes by, things straighten up: while single pulses fall o
their superposition appears to broaden the potential.~The
expressions for the electric field are also easily obtained
exhibit similar phenomenon concerning reverberation, wh
the superposition is ‘‘better behaved’’ than theF potential.!
Moreover, notice that as~and only as! t→`, we recover the
static potential, Eq.~5!.

Thus the results discussed above bring an additional c
plication to the~classical, at least! electrodynamics of a sys
tem of interacting charges, since even single pulses em
by an electric charge will demand a very long time to
completely felt by another one. In other words, even th
static feature of the potentials and fieldswill be no longer
determined only by the static configuration of the charges
rather demands a very long time to actually happen, sinc
finite times the electromagnetic quantities are time dep
dent.

Indeed, in~211!D, we may regard the classical propag
tion of a signal as if the wave front travels with velocityc,
and decreasing in a such a way that the back point of
signal has null velocity@this is exactly what Eq.~7! says#.

Actually, similar conclusions concerning the reverbe
tion of signals were already discussed by other auth
@11,15#. For instance, Courant and Hilbert in their classic
book @14# analyze such a propagation and, by virtue of t
failure of the Huyghens principle, they conclude th
D’Alembertian waves~in general!, even if sharply produced
cannot be later recorded with the same sharpness.

Furthermore, we would like here to raise a question
view of what we have understood about the spreading
unavoidably affects the classical propagation of sharp sig
in ~211!D. By facing an electromagnetic signal rather as
wave, reverberation affects its propagation and we can
longer speak of sharp pulses; on the other hand, if we ar
give the electromagnetic signal the status of a particle,
wonder whether the concept of photon as a localized ene
packet should not be reassessed in the framework of pl
electromagnetism.4

4An analogous question is pertinent in the MCS case~next sec-
tion!. There, however, by virtue of the mass gap, reverberatio
more expected to happen, since massive~Klein-Gordon or Proca-
like! fields exhibit such a phenomenum even in~311! dimensions
@19,20#. @See also Ref.@21# in which is studied a modification of the
standard electromagnetism, by the inclusion of a Lorentz-
Parity-violating Chern-Simons-like term in~311! dimensions.#
3-3
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III. MAXWELL-CHERN-SIMONS MODEL

Let us write the Lagrangian for the Maxwell-Cher
Simons electrodynamics~MCS!:

LMCS52
1

4
FmnFmn1

m

2
emnkAm]nAk1 j mAm, ~9!

where (m/2)emnkAm]nAk5(m/2)AmF̃m is the ~Abelian!
Chern-Simons term, which provides a mass for the bosonAm

without breaking the original local gauge symmetry of t
action@2#, SMCS5*d211x LMCS(x). Moreover, the mass pa
rameterm may be taken to be positive or negative. Depen
ing on the choice of its signal, the ‘‘massive photon’’ w
carry polarization equal to11 (m.0) or 21 (m,0).5 No-
tice, however, that in both cases, massless or massive
‘‘photon’’ carries only one physical degree of freedom,
which highlights its ‘‘scalar nature.’’ Actually, since its mas
is given by means of a topological mass term, we do
expect to have any additional degree of freedom.

In a similar way to the massless case,Am potential can be
worked out and reads as below:

Am~x!5E d211yS G211~x2y!hmn1
m

m2
@Gmass~x2y!

2G211~x2y!#emnk]kD j n~y!, ~10!

where the massive Green’s function is given by

G
adv
ret

mass

~x2y!52
1

2p

Q@ t22r 2#cos~mAt22r 2!

At22r 2
Q@6 t#

with t5x02y0 and r 5uxW2yW u. We clearly see that, asm
→0, thenGmass→G211. Similarly to its massless counte
part, Gmass does not satisfy the Huyghens’ principle: aga
the support spreads throughout the whole region (x2y)2

>0.
Next, the general expression forAm , as produced by a

single pointlike charge, takes the form

5Talking aboutspin in ~211! dimensions, we should be carefu
since its meaning is rather different from its~311!D counterpart. In
fact, for a massive particle, its ‘‘spin’’ in~211!D has some simi-
larities with the helicity of its massless correspondent in~311!D:
only the positive,11, or negative,21, polarizations may take
place, while no component of zero polarization appears. See R
@22# and @23#.
06501
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Am~x!51
q

2p
2E

2`

1`

dsQ@x02z0~s!#Q@~x2z!2#

3H cos@mA~x2z!2#

A~x2z!2
żm1

m

m2
emnkF żn~x2z!k

3S m sin@mA~x2z!2#

@A~x2z!2#2
1

cos@mA~x2z!2#21

@A~x2z!2#3 D
1 z̈nżkS cos@mA~x2z!2#21

A~x2z!2 D G J , ~11!

from which we may notice the difficulties which arise
trying to solve it for arbitrary motions of the charge~indeed,
the general solution to such an expression deeply depend
the massless one!. There is also a new sort of term, no
present in the massless case, which is explicitly accelera
dependent~a radiationlike term, the last one in the equati
above!. Such a term, in turn, will lead to another one th
explicitly depends ond3z/ds3 in the expression forFmn : a
back-reaction-like term. By virtue of its length, we shall n
give the explicit form for this field here. We refer the read
to Ref. @17#, where a detailed derivation of the results abo
will be presented. We only anticipate that the possibility th
the radiation increases like a lnurWu also takes place here.

Even though a general solution forAm ~andFmn) for ar-
bitrary motions appears to be far off our possibilities, it
instructive to work out static quantities which already exhi
some of the new properties brought about by the Che
Simons term. They read as follows:

Am~x!55 F~xW !51
q

2p
K0~muxW u!

Ai~xW !52
q

2p

m

m2

e i j xj

uxW u
S 1

uxW u
2m K1~muxW u!D ,

~12!

Fmn~x!55 Ei~xW !52
q

2p

mxi

uxW u
K1~muxW u!

B~xW !51
q

2p
mK0~muxW u!5mF~xW !.

~13!

Now, we see thatAm acquires a better asymptotic behavio
Am→0 as uxW u→` ~at large distances,K0 and K1 roughly

behave ase2umxW u/AumxW u). Indeed, even the long-range sect
of AW now decreases asuxW u21. Such a sector is related to th
well-known nondynamical massless pole and also to the p
sibility of topological objects such as vortexlike magne
field. In addition, due to the Chern-Simons term, the cha
now produces a nonvanishing static magnetic field. Nev
theless, this does not lead to radiation at all. Indeed, it is e
to show that¹•SW * 5¹•(EW * B)50, with SW * being the Poyn-
ting vector.

We should now comment on the short-distance beha
of these quantities. By recalling that, foruzu!1, the modified

fs.
3-4
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Bessel functions behave asK0(z)'2 ln(z/2) and K1(z)
'z21, we see that, near the charge,F and B diverge as
lnumxWu while EW blows up asuxW u21. The vector potential, on
the other hand, exhibits a very peculiar behavior: it vanis
as uxW u→0! Such a result is actually in accordance with E

~10!: the Ai components should vanish asAt22uxW u2→0.
Moreover, the fact that, asuxW u→0, B' lnumxWu implies that

a charge within the Chern-Simons framework is a richer
ject than within a pure Maxwell context: along with its ma
sive electric field, it also produces a flux ‘‘tube’’ of magnet
field, of widthm21 and strengthq/m ~what demandsm to be
sufficiently large!. It is precisely in this nonvanishing cha
acter ofB that there lies the possibility of the fractional st
tistics exhibited by such ‘‘charges’’@24#.

Furthermore, it is easy to conclude, using Eq.~10! for
example, that uponm→2m, A05F and EW remains un-
changed whileAW andB changes their signals.

Next, we shall treat the propagation of signals in t
Maxwell-Chern-Simons framework. We shall start by o
taining and analyzing the single pulse case, which is p
duced by r(yW ,t8)5qd2(yW )d(t8). The quantities read@we
have omittedQ(t2uxW u) in all expressions below#

Fpulse~xW ,t !51
q

2p

cos~mAt22uxW u2!

At22uxW u2
, ~14!

Apulse
i ~xW ,t !52

q

2p

m

m2
e i j ] jS cos~mAt22uxW u2!21

At22uxW u2
D ,

for the potentials, while the fields are

Epulse
i ~xW ,t !51

q

2p
] iS cos~mAt22uxW u2!

At22uxW u2
D

1
q

2p

m

m2
e i j ] t] jS cos~mAt22uxW u2!21

At22uxW u2
D

Bpulse~xW ,t !52
q

2p

m

m2
¹x

2S cos~mAt22uxW u2!21

At22uxW u2
D .

The reverberation of the pulse is evident: it is very stro
when t is equal or slightly greater thanuxW u and decreases a
time goes by, vanishing ast→`. The superposed case
obtained by integrating expressions above fromuxW u to t. For
example, the scalar potential superposes as

Fsup~xW ,t !5E
uxW u

t

F~xW ,t!dt51
q

2p
E

uxW u

t cos~mAt22uxW u2!

At22uxW u2
dt.

~15!
06501
s
.

-

-
-

g

Here, a new result takes place in the MCS framework:
cannot exactly evaluate how electromagnetic signals su
pose for arbitrary cases~say, finite times!, since the integral
above is not available, in closed form, unlesst→` ~the other
electromagnetic quantities also depend on the same integ!.
At this limit, we get~see, for example, Ref.@12#, page 419,
Eq. 3.754-2!:

lim
t→`

E
uxW u

t cos~mAt22uxW u2!

At22uxW u2
dt5K0~muxW u!,

which, in turn, leads us to the static potential, Eq.~12!, ast
→`. A similar scenario holds for the other quantities. Th
we see that, in the case of theEW field, only its longitudinal
component survives asymptotically.

IV. DIRAC-LIKE MONOPOLE AND ITS TANGENTIAL
ELECTRIC FIELD

Now, let us draw attention to the introduction of a Dira
like object into the previously studied models and to disc
some characteristics and consequences of the fields prod
by this sort of monopole.

As it is well known, such an~pointlike! object shows up
by breaking the Bianchi identity@25#,6 ]mF̃m5g, which in
terms of the potentials gets the form

E
t
dtE

xy
d2x $e i j @] i ,] t#Aj~xW ,t !2@]x ,]y#F~xW ,t !%5g;

~16!

in the static limit, it reduces to

@]x ,]y#F~xW !52gd2~xW !. ~17!

Now, the above equation may be satisfied only ifF carries a
‘‘singular structure.’’ Indeed, by recalling that

@]x ,]y#arctanS y

xD5]xS x

x21y2D 1]yS y

x21y2D
exactly coincides with

¹2lnAx21y2512pd~x!d~y!,

we identically solve Eq. ~17! by taking @as usual r
5Ax21y2 andw5arctan(y/x)]

F~xW !52
g

2p
arctanS y

xD ⇒ F~r ,w!52
g

2p
w. ~18!

6In the Maxwell-Chern-Simons case, the naı¨ve breaking of such
an identity yields the breaking of gauge invariance. Thus o
should take into account that the monopole induces an extra ele
current in order to balance]m j m50, and so restores gauge invar
ance@see Refs.@26# and @27# for details. See also Ref.@28# for an
alternative approach to a similar problem in~311! dimensions#.
3-5
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The appearance of the angle function above suggests u
need for a single-valuedness requirement:F(w)5F(w
12pn). Its remarkable angular~instead of being radial! de-
pendence leads to a very interesting~static! electric field@EW
52(¹F1] tAW ), as usual#:

EW~x,y!51
g

2p

xŷ2yx̂

x21y2
⇒ EW~r ,w!51

g

2p

êw

r
, ~19!

whence we clearly see the announced property of thg
monopole: it yields a~static! tangential electric field.7 @As far
as we have seen, such a peculiarity takes place only i~2
11!D electrodynamics. Furthermore, we do expect that s
a property survives at time-dependent regimes.# Moreover, it
is worth noticing that a pointlike magnetic vortex is chara
terized by a vector potential identical in structure to the t
gential electric field above@29#. Thus we may identify a
‘‘duality’’ between both objects: the vortex is obtained fro
the monopole~more precisely, from its ‘‘string’’ —see be
low! by taking the electric field and the charge of the first
be respectively the vector potential and the magnetic
associated to the latter.

On the other hand, it is a well-known fact that in~211!D
the ‘‘worldline’’ of a monopole is reduced to a point in~2
11!-dimensional space time~see, for example, Refs.@26#
and @27#; see also Ref.@30#, where is presented a study o
monopoles in non-Abelian Chern-Simons theory supp
mented by Higgs mechanism!. Therefore the singular poin
above cannot be identified with the monopole itself. Ac
ally, the modified Bianchi equation,]mF̃m5gd2(xW ), has to
be rather viewed as an equation for the ‘‘string’’ of to th
monopole. What happens is that at static limit the ‘‘string
@indeed, reduced to a spatial point in the~211!D case# ap-
pears to be localized at the origin.

Although such a localization seems to state us thag
should be rather faced as a peculiar electric charge, we s
that this is not so. Indeed, what occurs is that, at static lim
the vanishing of radiation,*¹•SW * d2x5*¹•(EW* B) d2x50,
demands that the monopole magnetic field must also van
~Notice that such a requirement,B50, is intimately related
to the tangential feature ofEW, once thatEW* becomes radial,
and so¹•EW* Þ0.! Hence what we may state is that such
object yields only nonvanishing~tangential! electric field at
the static limit.

Next, we analyze the~classical! dynamics of a usual elec
tric chargeq with massm, moving under the action of such
tangential field. Its equations of motion are easily obtain
and read as follows:

2pm

gq
ẍ52

y

x21y2
and

2pm

gq
ÿ51

x

x21y2
, ~20!

7Strictly speaking, such a field does not produce a genuine N
ton’s force on another charge~usual or peculiar one!, since the force
between them does not lie on the line that links both particles
may be readily seen.
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or in (r ,w) coordinates:

2pm

gq
~ r̈ 2r ẇ2!50 and

2pm

gq

d

dt
~r 2ẇ !51. ~21!

Now, due to the angle-dependent feature of the potential,
notice that the particle ‘‘angular momentum’’ is clearly n
conserved. As far as we have seen, such a nonconserv
imposes an intricate coupling between the coordinates, w
implies in serious difficults towards analytical resolution
the differential equations. A typical plot of the motion (x-y
coordinates! of the charged particle is shown in Fig. 1. B
virtue of the tangentially repulsive nature of the electric fie
the particle is quickly drifted away, despite the signals of t
charges.

A further system which deserves more attention is tha
which we also have the presence of an external~constant, for
concreteness! magnetic field. A realistic planar system ma
be obtained at very low temperatures~around or less than 1
K! and sufficiently strong magnetic field~at least 10 T! per-
pendicular to a very thin plate.8 Such a perpendicular field i
got by taking a vector potential entirely confined to the 2
spatial plane, for example,AW 5AW 15B0x ĵ , AW 5AW 252B0y î

~Landau gauges! or still AW 5 1
2 AW 11AW 2 ~symmetric gauge!.

-

s

8Such systems may be realized, for instance, in the interface
tween two semiconductors. Furthermore, since the motion of
charges~electrons, for concreteness! takes place as if the third di
mension~perpendicular to the plane of motion! were frozen, the
generally employed 2D~spatial! treatment is justified, and has bee
shown to give us a very good explanation of the physical phen
ena which occur within such systems, e.g., the quantum Hall eff

FIG. 1. Typical plot (x-y coordinates! of the trajectory of a
charged particle~initially at rest inx51,y50) under the action of
the tangential electric field alone~with 2pm/qg51).
3-6
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Now, our present system is composed by the elec
charge subject to the external magnetic and to the tange
electric field as well. Again, the classical equations of mot
are easy to be obtained and read~equations of motion inr ,w
immediately follow!

m

q
ẍ52

q

2p

y

x21y2
1B0ẏ and

m

q
ÿ51

g

2p

x

x21y2
2B0ẋ.

~22!

Or, by defining complex dynamical variables ash5x1 iy
andh* 5x2 iy , we get

2m~ ḧh* 1hḧ* !1 iqB0~ ḣh* 2hḣ* !50 and

4pm~ ḧḣ* 1ḣḧ* !1 iqg
~ ḣh* 2hḣ* !

hh*
50.

Despite their symmetric appearance, the resolution of
equations above is not too easy. Indeed, we expect that
may be even more difficult to be solved than those in
absence of magnetic field~previous case!.

On the other hand, numerical resolution shows us that
magnetic field tends to compensate the repulsive effect of
electric one so that the~classical! motion of the particle ap-
pears to drift in a slower way, describing an almost regu
spiral-like pattern~see Fig. 2!. Notice also that the distanc
between two neighbor arms of such a pattern decreases a
radial distance increases: the particle asymptotically ‘‘
proaches’’ to perform a closed trajectory~in the next section,

FIG. 2. Now, the system is supplemented by a homogene
external magnetic field,qB051 ~we take the same initial condition
and values of the parameters of the preceding case!.
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we shall see that, the quantum dynamics of the charged
ticle asymptotically,r→`, reduces to that of one centra
harmonic oscillator!.

There is, however, at least one important informati
which may be analytically obtained: in both cases,B050
andB0Þ0, the velocity of the charged particle is bounded
the angle, as below:

~vW !2~ t !5
qg

mp
w~ t !1~vW 0!2. ~23!

It is worth noticing that the number of windings of th
charge around the origin must be taken into account, i.e.,
kinetic energy is determined by the total angle described
the charge.@As a sort of quantum counterpart, we shall s
that asr→` the ~angular! energy eigenvalues have to b
shifted asw→w12p ~see the next section for details!.#

V. PRELIMINARY ANALYSIS OF THE QUANTUM
CHARGE-MONOPOLE SYSTEM

Next, we shall present a preliminary~nonrelativistic!
quantum analysis of the system above: one electric charq
moving under the action of the monopole scalar potential
of an external constant magnetic fieldB0. The Hamiltonian
~the puregq system is readily obtained by settingAW 50),

H5
1

2m
~pW 2qAW !21qV

for this system is obtained by takingAW in a particular gauge
~Landau or symmetric!, as well as V(x,y)52(g/
2p)arctan(y/x)52(g/2p)arg(rW). @Notice that the potentia
remains invariant under general scale transformation, sax
→ f (x,y) x and y→ f (x,y) y, but the same symmetry is no
present in the full Hamiltonian, even forf (x,y)5a5const.#

For the analysis to be presented here, concerning the
conservation of the angular momentum and some of its c
sequences, as well as asymptotic behaviors of the pre
system, it will be more convenient to write the Hamiltonia
above in polar coordinates,r , w, and AW in the symmetric
gauge, as below:

H5
1

2m Fpr
21

pr

r
1~qB0!2r 2G1

1

2m

pw
2

r 2
1

qB0

2m
pw2

gq

2p
w,

~24!

with r and w defined as before andpW 5prêr1(pw /r )êw ,
whence there follows thatpr↔2 i\(]/]r ) and pw

↔2 i\(]/]w).
Now, we notice the first remarkable feature of this Ham

tonian: H is explicitly angle dependent and so noninvaria
under rotations; conversely, the angular momentum opera
J5pw52 i\(]/]w), is not conserved,@J,H#51 i\gq/2p
Þ0.

Although other angle-dependent Hamiltonians have b
studied and shown to be relevant in physics~see, for ex-
ample, Ref.@31#!, a remarkable difference between them a
the one presented here is that the latter is not separa

us
3-7
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Indeed, as far as we have seen, the system appears to p
an intricate coupling between its degrees of freedom, des
of the coordinates chosen.~Perhaps, some nonstandard tran
formation could lead us to such a separation, but could a
lead us, on the other hand, to results which were of h
physical interpretation. Such an issue remains to be inve
gated.!

It is clear, from the Hamiltonian~24! and also from the
fundamental commutation relations,@r ,w#5@pr ,pw#50 and
@r ,pr #5@w,pw#51 i\, that the nonseparability arises fro
the nonconservation of the angular momentum,@J,H#Þ0.
Indeed, as it may be easily checked, such an angular se
would be separable if it had the general form (1/r 2)(J2

1aJ1bw). So, it is the lack of a 1/r 2 factor in J and inw
terms that prevents us from having a split of variables.

On the other hand, by facingH as being nonseparable, th
analytical resolution of the eigenvalue problem,Huc&
5Euc&, appears to be of very hard achievement.@Actually,
the presence of the terms proportional tow andr —or pow-
ers of r— in H prevents us from solving this eigenvalu
problem by means of, for example, hypergeometric functi
~see, for example Ref.@32#!.#

Therefore a numerical resolution appears to be a m
suitable ~and direct! attempt towards solving the problem
~results will be communicated as soon as they were
tained!. Here, however, we shall deal with some analytic
results at asymptotic limits, even though some of them
pear to be quite qualitative. We shall mainly discuss the l
its r→0 andr→`:

~i! r→0: we have seen that near the origin~where the
string is localized!, the charged particle experiences a ve
strong tangentially repulsive electric field~see previous sec
tion for details!. Since asr→0 this field blows up, it is
expected thatq can never reach the origin, say, its wa
function must vanish there:uc(r 50,w).[0. Such a re-
quirement may be viewed as the counterpart of the D
veto in ~311!D: a single charge moving under the action
the magnetic monopole field could not cross the string of
associated vector potential@25#. @In addition, such a require
ment will impose~seer→` limit below! severe restrictions
on the asymptotic wave solutions.#

Thus what remains to be determined is how quicklyuc&
vanishes asr→0. Nevertheless, contrary to ther→` limit,
in which the Hamiltonian gets separable~see below!, here
the variables are not naı¨vely separated. This arises becau
pw

2/r 2 is one of the leading terms, similarly to the origin
problem, described by the Hamiltonian~24!. ~In this sense
numerical techniques could help us in order to get so
information about the present system asr→0, say, the form
of the wave functions and eigenvalues.!

~ii ! r→`: supposing that the canonical momenta rem
finite in this limit, we get

H~r ,w!r→`'
1

2m
~pr

21q2B0
2r 2!1

qB0

2m
pw2

gq

2p
w,

~25!
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in which the variables appear explicitly split, say,Hr→`

5Hr→`
r 1Hr→`

w . Thus, at this limit, we have that~the limit
r→` is implicit hereafter!

@Huc~r ,w!&] 5@Enuc~r ,w!&]⇒~Hr1Hw!uR~r !F~w!&

5@~Er1Ew!uRF&], ~26!

which leads us to

HrRk~r !5Ek
r Rk~r ! and HwF l~w!5El

wF l~w!. ~27!

Therefore, asr→`, we get the following set of differentia
equations:

\2
d2

dr2
R1~2mEr2q2B0

2r 2!R50, ~28!

i\
d

dw
F1~ew1bw!F50, ~29!

with b51mg/pB0 andew52mEw/qB0.
We notice that, at this limit, the radial part of the Ham

tonian reduces to that of one central harmonic oscilla
whose solutions may be written in terms of Hermite polyn
mials,Hn :

Rk~u!5R0e2u2/2Hk~u!,

with u5qB0. This implies the well-known eigenvaluesEk
r

5\vc(k11/2), where vc5qB0 /m is the cyclotron fre-
quency. Now, by virtue of the requirementuc(r 50,w)&[0,
only the k5odd solutions will survive. This implies in a
nonvanishing value for the lowest~renormalized! energy
level, Ek

15\vc .
On the other hand, the angular sector appears to be q

unusual. Indeed, by solving the differential equation inw, we
readily obtain

F l~w!5F0 expF i

\ S bw

2
1e l

wDwG . ~30!

It is worth noticing the neww2-like phase factor, along with
the usual linear one. As a first remark, we should stress
it cannot be removed by any suitable gauge transformat
indeed, it must rather be faced as a consequence of thew-like
scalar potential. Although quite unusual, it leads us to n
and interesting results. First, notice thatF(w) has periodicity
2p(bp1e l

w). Thus the requirement thatF be single valued,
i.e., continuous, is equivalent to set

2p~bp1e l
w!52p l\⇒El

w5E0
w1

vc

2
l\. ~31!

Now, if we identify the parameterl as the number of wind-
ingsq gives aroundg ~for example, in the counter clockwis
sense!, then l shall be taken as a non-negative integer~in-
deed, the negative values would be associated to the cl
wise sense!. Therefore the eigenvalues associated to the
gular variable feel whether it is running between 0 and 2p,
2p and 4p, and so forth. In other words, wheneverw is
shifted, say, by 2p, its associated eigenvalues respond to t
change by shifting up their values.

However, before completing a winding aroundg, q par-
ticle would have vanishing energy, sincel 50. It is precisely
3-8
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REMARKS ON DIRAC-LIKE MONOPOLES, MAXWELL . . . PHYSICAL REVIEW D 63 065013
here thatE0
w52gq/2 enters: sinceE0

w is a classical value
the lowest~angular! energy level ofq charge is nonvanish
ing. In other words, since the angular potential is acting onq,
it is expected that, by conservation of energy, this charge
nonvanishing~also angular! kinetic energy, as long as it ha
started its motion. This is the reason why there appears
E0

w with an intrinsically classical nature.
The results above may be viewed as a quantum analo

Eq. ~23!. For example, the fact thatvW 2 be given by the full
angle~including many windings! is now represented by pa
rameterl; and the initial kinetic energy,vW 0

2 ~which may be
classically set to zero! ‘survives’ at quantum level, but ac
quiring a intrinsic nonvanishing value.

Moreover, we could be tempted to naively applyJ opera-
tor on uckl& above, to get

Juckl&5~bw1e l
w!uckl&5@b~w1p!1 l #uckl&,

and hence to guess thatuckl& carry continuous angular mo
mentum. However, this is not a legitimate procedure,
causeuckl& are not eigenvectors ofJ ~recall that@J,H#Þ0).
Actually, as far as we have seen, the only two quanti
which may be simultaneously diagonalized inuckl&-basis are
Hr andHw @the components of the asymptotic Hamiltonia
Eq. ~25!#.

Clearly, the results and remarks above are strictly va
only at the asymptotic limits specified previously. Wheth
similar scenario does happen at arbitrary distances@as the
classical result~23! does#, remains to be studied and will b
strongly dependent on the separation of variables in
original Hamiltonian, Eq.~24!.

A naive analysis of the limits discussed above would le
us to conclude that, since the charged particle is repe
from the origin by thew potential and since asr→` its
dynamics reduces to that of one central harmonic oscilla
~whose wave functions fall off exponentially!, it is expected
that the system yields physical bound states. Therefore e
though the puregq system does not admit bound states@once
that the confiningr 2-type potential is absent, for this case,
Eq. ~25!, we get indeed a radially free particle#, when it is
supplemented by a suitable external magnetic field, the p
sibility for such states may be raised.

Nevertheless, when electrons are moving on the pl
subject only to a perpendicular magnetic field, then
choice of Landau gauge immediately reduces the quan
problem to that of one harmonic oscillator in one dimensi
and a free particle motion in the other direction. In this ca
we cannot have bound states.9 However, when the system i
supplemented by an extra, say, scalar potential~as in the
present case!, it is also well known that bound states sho

9Nevertheless, whenever two species of fermions are comb
into a unique four-component spinor, the presence of a cons
magnetic field induces flavor symmetry breakdown and ferm
condensates appear@33#. Such condensates are, however, quite s
sible to thermal effects and disappear at finite temperature@34#.
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up, even in the case of repulsive potential@35#. Here, we
have just raised such a question, and a precise answe
mands further investigation.

VI. CONCLUSION AND PROSPECTS

We have shown that classical~211!D Maxwell and
Maxwell-Chern-Simons electrodynamics present some in
esting novelties as compared to Maxwell theory in~311!D,
namely, the reverberation of signals and the far-from-triv
question of a Larmor-like formula. As we have seen, su
phenomena are intimately related to the failure of the Huy
ens principle. Namely, the latter is very difficult to be o
tained even for constant accelerated motions~parabolic and
hyperbolic ones!. The integrals involved are highly non
trivial and appear to diverge, so demanding some suita
regularization scheme. On the other hand, we hope that s
hints about such a Larmor formula could be obtained w
the help of numerical calculations. Next, as a natural ext
sion of our present results, we shall pursue an investiga
of the canonical quantization of the electromagnetic radiat
for the models contemplated here@36#.

Concerning the Dirac-like monopole, it also presen
some new properties whenever compared to its~311!D
counterpart; for instance, its static tangential electric fie
Furthermore, acting on a single charged particle, it leads
to interesting classical and quantum results. For example
gq system~with B0) has been shown to give rise, at lea
asymptotically and at nonrelativistic regimes, to a cent
harmonic oscillator, with an interesting angular sector wh
contributes to the energy eigenvalues.

As future prospects, solutions to the Hamiltonian of E
~24! in its general form shall be the object of a further inve
tigation @37#. It would be also of relevance to compute po
sible effects of this peculiar potential on spin particles,
instance, planar Dirac fermions. Moreover, by virtue of
peculiar scalar potential~and unusual consequences!, such a
monopole could be relevant to condensed matter proble
For instance, by looking at this object as a sort of impur
~scatter! within a sample, could its presence modify the H
conductivity? And eventually, what would such a modific
tion actually look like?
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