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Classical Maxwell and Maxwell-Chern-Simons electrodynamic&iqil) dimensions are studied in some

detail. General expressions for the potential and fields are obtained for both models, and some particular cases
are explicitly solved. Conceptual and technical difficulties arise, however, for accelerated charges. The propa-
gation of electromagnetic signals is also studied and their reverberation is worked out and discussed. Further-
more, we show that a Dirac-like monopole yieldgsdatio tangential electric field. We also discuss some
classical and quantum consequences of the field created by such a monopole when acting upon a usual electric
charge. In particular, we show that at large distances the dynamics of one single charged particle, under the
action of such a potential and a constéexternal magnetic field as well, reduces to that of one central
harmonic oscillator, presenting, however, an interesting angular sector which admits energy eigenvalues.
Among other peculiarities, both sectors, the radial and the angular one, present nonvanishing energy eigenval-
ues for their lowest levels. Moreover, those associated to the angle are shown to respond to discrete shifts of
such a variable. We also raise the question on the possibility of the formation of bound states in this system.
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I. INTRODUCTION for such(say, Abelian theories which would be similar to
the one we have fof3+1)D Maxwell.! Thus we shall try to
Field-theoretic models defined in @+1)-dimensional draw the attention to the fact that the “lack” of a complete
space time have been studied for nearly two decftles. “electrodynamical body” is related to some serious difficul-
Actually, lower-dimensional models have provided many in-ties, for instance, in calculating, (andF,,) for a single
teresting results which do not take place in (Be 1) dimen- ~ accelerated pointlike charge. In view of that, a Larmor-like
sional world, e.g., Schwinger's mechanism in two- €Xpression relating _ene_rgy-f_IL(x_ad|at|0ﬁ and the accelera-
dimensional QED (QER [3] and fractional statistics in tion of the sources is still missing. ,
three dimensionB4]. Consequently, lower-dimensional theo- W€ start the present work by studying the Maxwell
ries cannot be considered as mere lower limits of four_(massles)scase. Some results are discussed and a number of

dimensional ones; they have rather revealed characteristi fficulties are pointed out. Following, we add a Chem-
that are intrinsic to its dimensionality. Imons term to the former model and some consequences of

. such a procedure are worked out. Going on, we analyze the
OT the tOt:ir hagﬁ’ SOgQ+1)? thef[)rles, \f[v?ene\rl]c_ebr_t issue concerning the introduction of a Dirac-like monopole
suppiemented by a Lhern-simons term, turn out 10 exnIbI §qiniy 1yoth models and some properties of its field. Some
new interesting physical content, such as, for example, Ma

. i : . Xaffects of its potential on a usual electric charge are dis-
well and Einstein-Hilbert actionf2,5]. Furthermore, it has ¢ ;5sed in both classical and quant(monrelativistio frame-

been claimed that such modgfwainly those in the context \yorks. We close this paper by pointing out some conclusions
of Maxwell-Chern-SimongMCS) termg have relevance for  anq prospects.

a deeper understanding of some condensed matter phenom-
ena, such as the quantum Hall effeQHE) [6] and highT Il. CLASSICAL MAXWELL ELECTRODYNAMICS
superconductivityf 7] (see also, Refg8,9)). IN D=(2+1)

Although Maxwell and Maxwell-Chern-Simon@nainly _ _
the latter, in both Abelian and non-Abelian framewgrks  Letus consider th®=(2+1) Maxwell electrodynamics
have attracted a great deal of effort, it is curious that one ha@VED3) Lagrangiar
not provided an ‘“electrodynamical body”(Liénard- 1
Wiechert-type potentials, Larmor-like formula, and so forth Luep=— ZFMVFMV+jMAM' (1)
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the usual definition of the field strengttf,,=d,A, q (+*0(x°—2%)0[(x—2)?]

faVAM, we get FW=[F9i=_+(|§)i;F1_2:B]. Next, the Fu(X)=5— B P2 =27 [z,(x=2),P

field strength clearly satisfieg F*"=j" and d,F*=0,

whence there follow +2,(x=2),(1-Q)—u—v]ds. 4
VBzatE* +f*, VE:p, and V-E* =4;B, Here, it is worth noticing that, in general, we do not get to

solve the expressions above. Actually, we have tried to solve
=1 ke e , elementary accelerated motions, say parabolic and hyper-
where we have definefi” =3 " F_VK_(JZB’ —E%), with bolic ones. Unfortunately, we have found serious difficulties
the components of a dU?' vector given bL)'*()i_: €ijUj. ] in performing some integrals that are highly nontrivial and
The dynamical equation for the more basic quanfty  plagued with serious divergences that have to be suitably
reads(in the gauged, A“=0): 9*A,(x)=],(x). The solu-  handlec® In (3+1)D, the scenario is quite different, because
tions to this wave equation may be readily obtained bywe have a &*(x—2)?] (instead of O[(x

means of the weII—knovyn Green’s function meth@ by —2)2]/\(x=2)?) which, in turn, implies in a straightforward
applying the Hadamard'descent rye}hod&:ee Ref[11] for  factorization of the integral is variable, by picking up only
further detaily. Such a functionG*"*(x—y), may be ex- hose points for whichX—z)2=0.

plicitly worked out and readihe advanced function is easily Hence we conclude that the “lack” of closed analytic

qbtained by introducing & (— 7); O is the usual step func- expressions foA, (and F,,) in the case of an arbitrary
tion] motion (Liénard-Wiechert-type expressions deeply re-
lated to the failure of the Huyghens’ principle, since the so-
i1 O(7) (= _ lutions to thed? operator in(2+1)D, G2*1, do not satisfy
Gret (X=¥)=——_— o Jo(kr)sin(k7)dk such a principlgindeed, the same happens for &&Y**, n
even; see, for example, Refd1] and[14-16).

O(7) O(2—r?) On the other hand, even the static cé&be constant mo-
iy ﬁ 2 tion may be easily obtained by a Lorentz bgastveals some
22—

of the new characteristics of the model. Thus, by takifig
o =(s,0) = z#=(1,0), we get
wherer=x°—y% andr=|x—y|. The integral above may be
found, for example, in Ref12] (on page 731 and Eg. 6.671-
7). It is worth noticing thatG*** presents a quite different ()
behavior with respect to it63+1)D counterpartG3*?: the
support ofG?*! lies no longer on the surface of the light

- q - q
0 __ _ [2__ 2
cone, where X—y)?=0, as is the case fo63"(x—y) AT(r. )= 2WIn|r|+27T lim (In|7+7*=r7),

= T—+x

= 8[(xX°—y%)2—|x—y|?]/27r. Indeed, it rather spreads .
throughout the whole internal region of the light cone, where A(r,t)=0,
(x—y)?>0 [blowing up as x—y)?—0, and vanishing for )

space-like intervals,X—y)?<0]. Thus the Huyghens prin-
ciple is satisfied byG3** and violated byG?**.
As we shall see, this will lead to profound modifications

in planar electrodynamics with respect to {3e-1)D Max- o=+ qr 9 iim

well theory. For example, by virtue of the failure of Huygh- Fo(x)= ot 272 2w o+ r2/2=¢2)’
ens principle, electromagnetic signals reverberat€inl) mr ~

dimensions, and a Larmor-like formula for the radiated Fij(F,t)zo.

power appears to be a highly nontrivial task. (6)

Next, by taking a single pointlike chargej*(y)

=0qf " 22#(s)8* " "[y—2(s)]ds, we get the general form for Here we notice that, besides the well-knowfxlbehavior of
its potential(we have omitted the homogeneous part of thethe potential in planar electrodynamics, there is an extra term

potentia): which explicitly diverges. Such a term clearly represents the
asymptotic value of the potential a_é*) +o and is directly
q [+~ o o O{[x—z(9)]1%. related to thenfrared divergenceof the theory. Indeed, by
ALL(X =+—f O[X°—=2Z°(S) |——=—=-7*(5) ds,
)=t 5| OO 29N e emr 2
()

31t was already pointed out in the literature that-1)D electro-
i - > . dynamics indeed imposes additional troubles in calculating some
2_r1(y0_ 5,002 2
W'th (x=2) _[,(X —Z) _|.X_Z|_]' The expression for the quantities; for example, in Refl3], the author discusses some
field strength is also obtained in the usual way, and readgificulties brought about by the logarithmic behavior of the

[with P=(x—2)“z, andQ=(x—2)Z,] potential.
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calculatingA,(x) by means ofA(k) (its Fourier transfort) R q t+ 12— |)2|2 R
we may clearly see that such a term arises when the mass ~ ®gygX,t)=+ Zln ——|0(—|x]), (8
term is set to zero, as below: x|

whence we see that these signals superpose in a logarithmic
way, differently from the(3+1) dimensions, where such a

- q [=Jdo(pr) superposition takes place Iinearly@sup(i,t)=—q®(t
0 L " -
A=+ quo p P —|Xy/amlx. 5 -
The logarithmic superposition leads us to an interesting
= lim Kq(ur) point if we compare with previous results wheis equal or
#=04 slightly greater thamx|: while the single pulse potential, Eq.

(7), appears to be very strong, the contrary happens to the
superposed case, which is very weak there. However, as time
goes by, things straighten up: while single pulses fall off,
their superposition appears to broaden the potenfidie
expressions for the electric field are also easily obtained and
whence, we see that as—0.., the last term above blows exhibit similar phenomenon concerning reverberation, while
up. On the other hand, the explicitly divergent term appearthe superposition is “better behaved” than tepotential)

ing in the Flw above may be removed by a suitable subtraciioreover, notice that a&@nd only agt— o, we recover the
tion procedure, which is possible because such a quantitytatic potential, Eq(5).

vanishes asymptotically(Among others, such subtleties  Thus the results discussed above bring an additional com-
shall be more explicitly discussed in R¢L7].) plication to the(classical, at leagelectrodynamics of a sys-

It is interesting to pay attention to the appearance of suclem of interacting charges, since even single pulses emitted
an infrared divergence at the classical level; indeed, infraretdy an electric charge will demand a very long time to be
problems in(2+1)D are much more severe than in four di- completely felt by another one. In other words, even the
mensions. For example, the non-Abelian case, even in thetatic feature of the potentials and fieldsll be no longer
presence Of massive matter, makes sense 0n|y for Very Spgetermﬂ]ed Only by the Statlclconflguratlon of the Chal’geS. It
cial gauge choicefL8]. rather demands a very long time to actually happen, since at

Still concerning the generdt ,, form, Eq. (4), there re- finite times the electromagnetic quantities are time depen-

mains an interesting issue to be pointed out. By taking intd€Nt _ .
g . P y g Indeed, in(2+1)D, we may regard the classical propaga-
account the terms proportional to the acceleratigs),

~—In|r|— lim In(u/2),
u—04

are proportional tofds/(x—2)%, and might surprisingly Actually, similar conclusions concerning the reverbera-
lead us to the result that radiation (2+21)D no longer faJIs tion of signals were already discussed by other authors
off with r 1. Indeed it may increase proportionally tdrin  [11,15. For instance, Courant and Hilbert in their classical
as long ag(s) depends ors?, which is the case for constant book [14] analyze such a propagation and, by virtue of the
accelerated motions. failure of the Huyghens principle, they conclude that
Next, let us point out a rather peculiar characteristic of theD’Alembertian wavesgin general, even if sharply produced,
model as long as the propagation of electromagnetic signatsannot be later recorded with the same sharpness.
is concerned. Let us start by considering the charge configu- Furthermore, we would like here to raise a question in
ration: p(y,t’)=qs2(y) 8(t'). Its potential reads view of what we have understood about the spreading that
unavoidably affects the classical propagation of sharp signals
in (2+1)D. By facing an electromagnetic signal rather as a
wave, reverberation affects its propagation and we can no

R q O(t- |>?|) longer speak of sharp pulses; on the other hand, if we are to
Dpusd X,t) = o (7)  give the electromagnetic signal the status of a particle, we
T \t2—|x|? wonder whether the concept of photon as a localized energy

packet should not be reassessed in the framework of planar
electromagnetisr.

in contrast with its (3+1)D counterpart <Dpu|se(>?,t)
=—qd&(t—|x|)/4m|x|. Clearly, although such a signal has
been sharply senfat t=0 it was just at|x|=0) it cannot
later be recorded as a sharp one: the pulse develops a “tai

(its Sprezdlng ml tlm)eand So It re;erkr)]erate.s. Trllerefore we like) fields exhibit such a phenomenum even®1) dimensions
nOW, ne(_a avery long time to_ recora sharp signal sent at_an [19,20. [See also Ref21] in which is studied a modification of the
earlier time. Next, we obtain the superposed case, which IStandard electromagnetism, by the inclusion of a Lorentz- and

obtained fromp(y,t')=qé%(y)®(t'), and reads Parity-violating Chern-Simons-like term {{8+1) dimensions.

“An analogous question is pertinent in the MCS césext sec-
Ition). There, however, by virtue of the mass gap, reverberation is
more expected to happen, since massktein-Gordon or Proca-
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IIl. MAXWELL-CHERN-SIMONS MODEL

Let us write the Lagrangian for the Maxwell-Chern-
Simons electrodynamiaMcCS):

1
.

ZF o ©

m
LMCS: - EEMVKAM(?VAK‘F].MA#,

where (m/2)e/”"AMaVAK:(m/2)AM|~:“ is the (Abelian)
Chern-Simons term, which provides a mass for the bdspn

without breaking the original local gauge symmetry of the

action[2], Sycs=fd?" X Lycs(X). Moreover, the mass pa-
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A“(x)=+%—fjm dsO[x°—2%(s)]10[(x—2)?]
X cogmy(x—2)'] (X_Z)z]'zfurE wrK 7, (X—2)
/—(X—Z)Z 26 v K
o ( msir[m\/(x—z)z] N co{m\/(x—z)z]— 1)
[V(x=2)*]? [V(x=2)*]°
— 21—
5 cogmy(x—2)%] 1)” an
(x—2)

from which we may notice the difficulties which arise in

ing on the choice of its signal, the “massive photon” will
carry polarization equal te-1 (m>0) or —1 (m<0).°> No-

tice, however, that in both cases, massless or massive, %

“photon” carries only one physical degree of freedom
which highlights its “scalar nature.” Actually, since its mass

is given by means of a topological mass term, we do nog

expect to have any additional degree of freedom.
In a similar way to the massless casg, potential can be
worked out and reads as below:

A“(X) — f d2+ ly

m
G> Xy 7+ G Tx-y)

—GZH(X—Y)]G’”WK) 1Y), (10

where the massive Green’s function is given by

mass

1 O[t2—r?]codmyt?—r?)
Grgt (X—y)=—5—
adv

o[+ t]

with t=x°—y° and r=|x—y|. We clearly see that, as

—0, thenG™3s,G2*1 Similarly to its massless counter-
part, GM@**does not satisfy the Huyghens’ principle: again,
the support spreads throughout the whole regigr )2
=0.

Next, the general expression fér,,
single pointlike charge, takes the form

as produced by a

STalking aboutspinin (2+1) dimensions, we should be careful,
since its meaning is rather different from {&+1)D counterpart. In
fact, for a massive particle, its “spin” ii2+1)D has some simi-
larities with the helicity of its massless correspondent3n1)D:
only the positive,+1, or negative,—1, polarizations may take

the general solution to such an expression deeply depends on
the massless opeThere is also a new sort of term, not
esent in the massless case, which is explicitly acceleration
ependenta radiationlike term, the last one in the equation
above. Such a term, in turn, will lead to another one that
xplicitly depends ord®z/ds® in the expression foF ,,: a
ack-reaction-like term. By virtue of its length, we shall not
give the explicit form for this field here. We refer the reader
to Ref.[17], where a detailed derivation of the results above
will be presented. We only anticipate that the possibility that

the radiation increases like alihalso takes place here.

Even though a general solution fér, (andF,,) for ar-
bitrary motions appears to be far off our possibilities, it is
instructive to work out static quantities which already exhibit
some of the new properties brought about by the Chern-
Simons term. They read as follows:

r

®(x)=+ 5 _Ko(mlx|)

A9 = - qg meéx|1
A(X)=—z———=| —=—mK ,
\ (X)==5_ X (|x| m Ky(m[x])

(12

(. q mx .
E'(X):—EWKKWXD

Fu(X)= (13
B()Z)=+meo(m|§|)=mtb(>Z).

\

Now, we see thaf, acquires a better asymptotic behavior:
A,—0 as|>?|f>m (at large distances{, and K; roughly
behave ag~I™¢//|mx). Indeed, even the long-range sector
of A now decreases 4%| . Such a sector is related to the
well-known nondynamical massless pole and also to the pos-
sibility of topological objects such as vortexlike magnetic
field. In addition, due to the Chern-Simons term, the charge
now produces a nonvanishing static magnetic field. Never-
theless, this does not lead to radiation at all. Indeed, it is easy
to show thatV - S* =V - (E*B) =0, with S* being the Poyn-
ting vector.

place, while no component of zero polarization appears. See Refs. We should now comment on the short-distance behavior

[22] and[23].

of these quantities. By recalling that, faf <1, the modified
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Bessel functions behave a§y(z)~—In(z2) and K,(2) Here, a new result takes place in the MCS framework: we
~z ! we see that, near the chargk, and B diverge as cannot exactly evaluate how electromagnetic signals super-
In|m§1 while E blows up asm—l_ The vector potential, on pose f(_)r arbitrary case(_say, finite timeg since the integral
the other hand, exhibits a very peculiar behavior: it vanishe@20Ve is not available, in closed form, uniésse (the other

> . . . electromagnetic quantities also depend on the same integral
as|x|—0! Such a result is actually in accordance with Eq. o . Iim?t, we Set(see, for exam?)le, Ref12], page 419,9

(10): the A' components should vanish 42— |x|2—0. Eq. 3.754-2

Moreover, the fact that, d%|— 0, B~In|mx implies that
a charge within the Chern-Simons framework is a richer ob- t cogmy 72— |)Z|2) R
ject than within a pure Maxwell context: along with its mas- im f dr=Kg(m|x|),
sive electric field, it also produces a flux “tube” of magnetic towd X2 |X|2

field, of widthm~! and strengtfy/m (what demands to be
sufficiently large. It is precisely in this nonvanishing char- which, in turn, leads us to the static potential, EtR), ast
acter ofB that there lies the possibility of the fractional sta- —. A similar scenario holds for the other quantities. Thus
tistics exhibited by such “chargesf24]. we see that, in the case of thefield, only its longitudinal
Furthermore, it is easy to conclude, using Ef0) for  component survives asymptotically.
example, that upom— —m, A°=d and E remains un-
changed whileA andB changes their signals. IV. DIRAC-LIKE MONOPOLE AND ITS TANGENTIAL
Next, we shall treat the propagation of signals in the ELECTRIC FIELD

Maxwell-Chern-Simons framework. We shall start by 0b- .\ it s draw attention to the introduction of a Dirac-
taining and analyzing the single pulse case, which is P %ike object into the previously studied models and to discuss

duced byp(y.t')=qé%(y)5(t'). The quantities readwe  gome characteristics and consequences of the fields produced

have omitted® (t—|x|) in all expressions belov by this sort of monopole.
As it is well known, such aripointlike) object shows up
R q cogmvt®—|x|?) by breaking the Bianchi identitj25],° 4,F#=g, which in
DpusdX,t) =+ — —————, (14 terms of the potentials gets the form
2 Vi2— |)Z|2
[at] dxte 10 a0A 50102100} =0;
L g m _ [cogmvt®—|x|)-1 v Jxy
Alpulse(x’t) - 2_ _26” 9 . d (16
a 2_|vl2
m 5= x| in the static limit, it reduces to
for the potentials, while the fields are [0, ,ay]d)(i): —g52(>2). (17)
_ q cogmVt?—|x|?) Now, the above equation may be satisfied onlitarries a
E e()? )=+ —0'| ——eos— “singular structure.” Indeed, by recalling that
puls ' N
2T\ e
AN y
m cogmyt?—|x|?)~1 [ﬁx,ﬁy]arctar{; _&X(x2+y2 +ﬁy(x2+y2
+ — —— € ﬁtﬂj
2 -
2™ m Vt?—|x|? exactly coincides with
" 2 22—
i a m_ [ cogmyt—[x?)—1 V23 +y?= +2m8(x) 8(y),
BpusdX,1) =~ o ?VX o %2 ' we identically solve Eq.(17) by taking [as usualr
= x?+y? and ¢ =arctang/x)]
The reverberation of the pulse is evident: it is very strong
. . a > g y g
whent is equal or slightly greater thax| and decreases as Px)=—oarctan > | = @(r,e)=—5—¢. (18

time goes by, vanishing as—«. The superposed case is

obtained by integrating expressions above fr1<§|1nto t. For

example, the scalar potential superposes as . . .
P P Perp 8In the Maxwell-Chern-Simons case, the velbreaking of such

-~ an identity yields the breaking of gauge invariance. Thus one
R t R q (tcogmy - |x|2) should take into account that the monopole induces an extra electric
q)sup(xrt): f-q)(X,T)dT: . = dr. current in order to balance,j*=0, and so restores gauge invari-
Ixl 21 J 1] N r2—|x|? ance[see Refs[26] and[27] for details. See also Reff28] for an

(15 alternative approach to a similar problem(B+1) dimensiong
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The appearance of the angle function above suggests us tr
need for a single-valuedness requiremefit(¢)=d (¢
+2mn). Its remarkable anguldinstead of being radiade-

pendence leads to a very interestiistatio electric field[f 401
=—(V®+4,A), as usudt

g Xy=yx_ - g6
vt UL R C B

axy)=+

whence we clearly see the announced property of ghe
monopole: it yields dstatig tangential electric field [As far
as we have seen, such a peculiarity takes place onlin 20
+1)D electrodynamics. Furthermore, we do expect that suct
a property survives at time-dependent regirhb®reover, it
is worth noticing that a pointlike magnetic vortex is charac-
terized by a vector potential identical in structure to the tan- 10
gential electric field abov¢29]. Thus we may identify a
“duality” between both objects: the vortex is obtained from
the monopolelmore precisely, from its “string” —see be-
low) by taking the electric field and the charge of the first to
be respectively the vector potential and the magnetic flux
associated to the latter. FIG. 1. Typical plot -y coordinate} of the trajectory of a

On the other hand, it is a well-known fact that@+1)D  charged particléinitially at rest inx=1,y=0) under the action of
the “worldline” of a monopole is reduced to a point {2  the tangential electric field alor@ith 2rm/qg=1).
+1)-dimensional space timésee, for example, Ref$26]
and[27]; see also Refl30], where is presented a study of or in (r,¢) coordinates:
monopoles in non-Abelian Chern-Simons theory supple-
mented by Higgs mechanigmTherefore the singular point 2mm .. ., 2mmd .
above cannot be identified with the monopole itself. Actu- W(r_”" )=0 and Eﬁ(r =1 (2]
ally, the modified Bianchi equatiom#ﬁ“=g52(§), has to .
be rather viewed as an equation for the “string” of to the Now, due to the angle-dependent feature of the potential, we

monopole. What happens is that at static limit the “string” notice that the particle “angular momentum” is clearly not
[indeed, reduced to a spatial point in tt®+1)D casg ap-  conserved. As far as we have seen, such a nonconservation

pears to be localized at the origin. imposes an intricate coupling between the coordinates, what
Although such a localization seems to state us tpat implies in serious difficults towards analytical resolution of

should be rather faced as a peculiar electric charge, we stret¥¢ differential equations. A typical plot of the motior-{

that this is not so. Indeed, what occurs is that, at static limitcoordinates of the charged particle is shown in Fig. 1. By

the vanishing of radiationfV - & d=[V. (g»* B) d>=0, virtue of the tangentially repulsive nature of the electric field,

demands that the monopole magnetic field must also vanisfil€ Particle is quickly drifted away, despite the signals of the

Notice that such a requiremeri$=0, is intimately related charges. . . .
t( the t tial feat q 7 thai®* b y dial A further system which deserves more attention is that in
0 the tangential feature @, once thale™ becomes radial, hich we also have the presence of an extefeahstant, for

and soV-&* #0.) Hence what we may state is that such anconcretenegsmagnetic field. A realistic planar system may
object yields only nonvanishingangential electric field at  pe obtained at very low temperatur@sound or less than 1
the static limit. K) and sufficiently strong magnetic fieldt least 10 T per-
Next, we analyze théclassical dynamics of a usual elec- pendicular to a very thin platéSuch a perpendicular field is
tric chargeq with massm, moving under the action of such a got by taking a vector potential entirely confined to the 2D-
tangential field. Its equations of motion are easily obtainecgpatial plane, for exampleﬁf\:,&l:Box], A:'&f —BoyAi

and read as follows: T .
(Landau gaugesor still A=3A;+ A, (Symmetric gauge

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

2m.. y 2am..
X=— and y=+ ,
gq x2+y? gq x2+y?

(20

8Such systems may be realized, for instance, in the interface be-
tween two semiconductors. Furthermore, since the motion of the
charges(electrons, for concretengstkes place as if the third di-

"strictly speaking, such a field does not produce a genuine Newmension(perpendicular to the plane of motipmere frozen, the
ton’s force on another chardgesual or peculiar onesince the force  generally employed 2@spatia) treatment is justified, and has been
between them does not lie on the line that links both particles, ashown to give us a very good explanation of the physical phenom-
may be readily seen. ena which occur within such systems, e.g., the quantum Hall effect.
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we shall see that, the quantum dynamics of the charged par-
ticle asymptotically,r —oo, reduces to that of one central
harmonic oscillator

There is, however, at least one important information
which may be analytically obtained: in both casBg~=0
andB,+# 0, the velocity of the charged particle is bounded by
the angle, as below:

(020~ p(0)+ (50)” 23

It is worth noticing that the number of windings of the
charge around the origin must be taken into account, i.e., the
kinetic energy is determined by the total angle described by
the charge[As a sort of quantum counterpart, we shall see
that asr—« the (angulaj energy eigenvalues have to be
shifted asep— ¢+ 27 (see the next section for details

V. PRELIMINARY ANALYSIS OF THE QUANTUM
CHARGE-MONOPOLE SYSTEM

Next, we shall present a preliminargnonrelativisti¢
quantum analysis of the system above: one electric clirge

FIG. 2. Now, the system is supplemented by a homogeneougwoving under the action of the monopole scalar potential and
external magnetic field)B,= 1 (we take the same initial conditions Of an external constant magnetic fiegdd. The Hamiltonian

and values of the parameters of the preceding)case

Now, our present system is composed by the electric
charge subject to the external magnetic and to the tangential

(the puregq system is readily obtained by settiﬁg= 0),

H—1 h—qA)2+qV
—ﬁ(p—q )°+q

electric field as well. Again, the classical equations of motion

are easy to be obtained and rdaduations of motion im, ¢
immediately follow

Meee X Y LBy andy=+ >
q 27 x24y? o a’ 27 x24y?

—BoxX.

(22

Or, by defining complex dynamical variables as-x+iy
and n* =x—iy, we get

2m(pn* + ny*)+iqBo(ny* —n7*)=0 and

(nn* —9n*)
*

nn

Amrm(py* + ny*)+iqg 0.

for this system is obtained by takirfg in a particular gauge
(Landau or symmetrjc as well as V(x,y)=-—(g/
Zw)arctany/x)=—(g/27r)arg(F). [Notice that the potential
remains invariant under general scale transformation, >say:
—f(x,y) x andy—f(x,y) y, but the same symmetry is not
present in the full Hamiltonian, even fd(x,y) =a=const]

For the analysis to be presented here, concerning the non-
conservation of the angular momentum and some of its con-
sequences, as well as asymptotic behaviors of the present
system, it will be more convenient to write the Hamiltonian

above in polar coordinates, ¢, and A in the symmetric
gauge, as below:

1P, 9B 99
2m 2 2mPeT 27 ®
(24)

1 p
= |p2+ T4 2p2
H Sml PP (gBg)“r

Despite their symmetric appearance, the resolution of thaith r and ¢ defined as before ang= prér+(p¢/r)é¢,
equations above is not too easy. Indeed, we expect that thayhence there follows thatp,« —i%(d/dr) and p,
may be even more difficult to be solved than those in the——i%(d/d¢).

absence of magnetic fielghrevious case

Now, we notice the first remarkable feature of this Hamil-

On the other hand, numerical resolution shows us that theonian: H is explicitly angle dependent and so noninvariant
magnetic field tends to compensate the repulsive effect of thender rotations; conversely, the angular momentum operator,

electric one so that theclassical motion of the particle ap-

J=p,=—ih(dld¢), is not conserved,J,H]|=+ihgg/2m

pears to drift in a slower way, describing an almost regular#0.

spiral-like pattern(see Fig. 2. Notice also that the distance

Although other angle-dependent Hamiltonians have been

between two neighbor arms of such a pattern decreases as thteidied and shown to be relevant in physisse, for ex-
radial distance increases: the particle asymptotically “ap-ample, Ref[31]), a remarkable difference between them and

proaches” to perform a closed trajectdig the next section,

the one presented here is that the latter is not separable.
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Indeed, as far as we have seen, the system appears to presienivhich the variables appear explicitly split, sail, ..
an intricate coupling between its degrees of freedom, despite H; . +H{ ... Thus, at this limit, we have thdthe limit
of the coordinates chosefRerhaps, some nonstandard trans-r —o is implicit hereaftey
formation could lead us to such a separation, but could also '

) = +H¢
lead us, on the other hand, to results which were of hard [RIg(r @] =[Enl#(r, @))]=(H"+ H9)|R()©(e)

physical interpretation. Such an issue remains to be investi- =[(E"+E®)|RD)], (26)
gated) .
It is clear, from the Hamiltoniari24) and also from the which leads us to

fundamental commutation relations, ¢]=[p, ,p,]=0 and H'R(r)=ER(r) and H®®(¢)=Ef®/(¢). (27)
[r.pr]1=[¢,p,]=+i%, that the nonseparability arises from
the nonconservation of the angular momentyihH]+0.

Indeed, as it may be easily checked, such an angular sect§

Therefore, ag — o0, we get the following set of differential
guations:

would be separable if it had the general form r3)(J? , & . 22 e
+aJ+be). So, it is the lack of a 17 factor inJ and in ¢ f ﬁRHsz ~a"Bor)R=0, (28
terms that prevents us from having a split of variables. d

On the other hand, by facirg as being nonseparable, the ifh—®+(e?+ L) D=0, (29)
analytical resolution of the eigenvalue problerhi|) de
=E|y), appears to be of very hard achieveméActually,  \ith B=+mg 7B, and e?=2mE¥/qB,.
the presence of the terms proportionakt@ndr —or pow- We notice that, at this limit, the radial part of the Hamil-

ers ofr— in H prevents us from solving this eigenvalue tonian reduces to that of one central harmonic oscillator,
problem by means of, for example, hypergeometric functionsvhose solutions may be written in terms of Hermite polyno-
(see, for example Ref32]).] mials,H:
Therefore a numerical resolution appears to be a more _ —u2p
suitable (and direct attempt towards solving the problem Ri(u)=Roe ™ "Hy(u),
(results will be communicated as soon as they were obyjith u=qB,. This implies the well-known eigenvaluds,
tained. Here, however, we shall deal with some analyticalzﬁwc(k-}_ 1/2)' where wC:qBO/m is the Cyc|0tron fre-
results at asymptotic limits, even though some of them apguency. Now, by virtue of the requirement(r =0,¢))=0,
pear to be quite qualitative. We shall mainly discuss the lim-only the k=odd solutions will survive. This implies in a
itsr—0 andr —oo: nonvanishing value for the lowestenormalized energy
(i) r—0: we have seen that near the oridimhere the level, Ei=tfio,.
string is localized, the charged particle experiences a very On the other hand, the angular sector appears to be quite
strong tangentially repulsive electric fielsee previous sec- Unusual. Indeed, by solving the differential equatiorirwe
tion for detaily. Since asr—0 this field blows up, it is €adily obtain _
expected thag can never reach the origin, say, its wave P — & !
function must vanish therg(r=0,9)>=0. Such a re- (@) 0€X h
qguirement may be viewed as the counterpart of the Dira
veto in (3+1)D: a single charge moving under the action of

B—(P—I—ef”

5 . (30)

¢

(ft is worth noticing the newp?-like phase factor, along with

. ; : .. the usual linear one. As a first remark, we should stress that
the m‘f"gnet'c monopole f|e|d could no_t. cross the strmg- of St cannot be removed by any suitable gauge transformation;
associated vector potentid@5]. [In addition, such a require- indeed, it must rather be faced as a consequence of-fhe

ment will impose(seer — < limit below) severe restrictions scalar potential. Although quite unusual, it leads us to new

on the asymptotic wave solutiors. and interesting results. First, notice tdate) has periodicity
Thus what remains to be determined is how quiddy  27(Bm+ €f). Thus the requirement thdt be single valued,

vanishes as— 0. Nevertheless, contrary to the-co limit, i.e., continuous, is equivalent to set

in which the Hamiltonian gets separalleee beloy, here w

the variables are not naely separated. This arises because 2w(Bmtef)=2mlh=Ef=E§+ flﬁ. (3D

pi/r2 is one of the leading terms, similarly to the original

problem, described by the HamiltonidB4). (In this sense  Now, if we identify the parametdras the number of wind-
numerical techniques could help us in order to get soméngsq gives aroundy (for example, in the counter clockwise
information about the present systemras0, say, the form sensg thenl shall be taken as a non-negative integer

of the wave functions and eigenvalues. deed, the negative values would be associated to the clock-
(i) r—oo: supposing that the canonical momenta remainwvise sensg Therefore the eigenvalues associated to the an-
finite in this limit, we get gular variable feel whether it is running between 0 ang 2

27 and 44, and so forth. In other words, wheneveris
shifted, say, by 7, its associated eigenvalues respond to this
B 9q change by shifting up their values.
2m e 27 ® However, before completing a winding arougdq par-
(25 ticle would have vanishing energy, sinkceO. It is precisely

1
H(r @) 5 (PF+a7BEr?) +
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here thatE¢=—gq/2 enters: sincé&Eg is a classical value, Up, even in the case of repulsive potenfiab]. Here, we

the lowest(angulay energy level ofq charge is nonvanish- have just ralsgd SUC.h a question, and a precise answer de-
ing. In other words, since the angular potential is actingion Mands further investigation.

it is expected that, by conservation of energy, this charge has

nonvan[shing(a_lso angul@rkinetic energy, as long as it has VI. CONCLUSION AND PROSPECTS
started its motion. This is the reason why there appears an _
E¢ with an intrinsically classical nature. We have shown that classica2+1)D Maxwell and

The results above may be viewed as a quantum analog dfaxwell-Chern-Simons electrodynamics present some inter-
Eq. (23). For example, the fact that® be given by the full esting novelties as Compafed t.o Maxwell theory(?ﬁl)D,_ .
angle including many windingsis now represented by pa- name]y, the reverberatllon of signals and the far-from-trivial

) L -5 . question of a Larmor-like formula. As we have seen, such
ramef[erl, and the 'n't'f"‘l klr.1et|c, energyg (which may be phenomena are intimately related to the failure of the Huygh-
classically set to zejo'survives’ at quantum level, but ac- gns principle. Namely, the latter is very difficult to be ob-
quiring a intrinsic nonvanishing value. tained even for constant accelerated motiguarabolic and

Moreover, we could be tempted to naively applgpera- v nernolic ones The integrals involved are highly non-
tor on|yy,) above, to get trivial and appear to diverge, so demanding some suitable
regularization scheme. On the other hand, we hope that some

Iy =(Bo+ed) | ) = Blo+m)+ 11| ), hints about such a Larmor formula could be obtained with
the help of numerical calculations. Next, as a natural exten-
sion of our present results, we shall pursue an investigation

and hence to guess thafy) carry continuous angular mo- of the canonical quantization of the electromagnetic radiation
mentum. However, this is not a legitimate procedure, befor the models contemplated hei@s].

cause i) are not eigenvectors df (recall that{ J,H]+0). Concerning the Dirac-like monopole, it also presents
Actually, as far as we have seen, the only two quantitiesome new properties whenever compared to (&8s 1)D
which may be simultaneously diagonalized ify)-basis are  counterpart; for instance, its static tangential electric field.
H, andH, [the components of the asymptotic Hamiltonian, Furthermore, acting on a single charged particle, it leads us
Eq. (29)]. to interesting classical and quantum results. For example, the

Clearly, the results and remarks above are strictly validgq system(with B,) has been shown to give rise, at least
only at the asymptotic limits specified previously. Whetherasymptotically and at nonrelativistic regimes, to a central
similar scenario does happen at arbitrary distarjessthe  harmonic oscillator, with an interesting angular sector which
classical result23) doeg, remains to be studied and will be contributes to the energy eigenvalues.
strongly dependent on the separation of variables in the As future prospects, solutions to the Hamiltonian of Eq.
original Hamiltonian, Eq(24). (24) in its general form shall be the object of a further inves-

A naive analysis of the limits discussed above would leadigation[37]. It would be also of relevance to compute pos-
us to conclude that, since the charged particle is repelledible effects of this peculiar potential on spin particles, for
from the origin by thee potential and since as—« its instance, planar Dirac fermions. Moreover, by virtue of its
dynamics reduces to that of one central harmonic oscillatopeculiar scalar potentigdhnd unusual consequengesuch a
(whose wave functions fall off exponentiallyit is expected monopole could be relevant to condensed matter problems.
that the system yields physical bound states. Therefore evefor instance, by looking at this object as a sort of impurity
though the purgq system does not admit bound stdtesce  (scattey within a sample, could its presence modify the Hall
that the confining 2-type potential is absent, for this case, in conductivity? And eventually, what would such a modifica-
Eq. (25), we get indeed a radially free partitlevhen it is  tion actually look like?
supplemented by a suitable external magnetic field, the pos-
sibility for such states may be raised.

Nevertheless, when electrons are moving on the plane
subject only to a perpendicular magnetic field, then the The authors are grateful to Professor S.A. Dias, Professor
choice of Landau gauge immediately reduces the quanturB, Schroer, F. Araruna, H. Belich, J. L. Boldo, R. Casana, G.
problem to that of one harmonic oscillator in one dimensioncypa Castillo, O. Del Cima, R. Klippert, L. Moraes, A.
and a free particle motion in the other direction. In this caseNogueira, R. Paunov, and R. Rodrigues for useful discus-
we cannot have bound staféslowever, when the system is sjons. They also express their gratitude to Professor M. Hen-
supplemented by an extra, say, scalar poterttial in the  neaux for a careful reading of an earlier version of this
present casgeit is also well known that bound states show manuscript and for having drawn their attention to the work

of Ref.[10]. Professor Ashok Das and Professor M. Plyush-
chay are deeply acknowledged for a number of very perti-
*Nevertheless, whenever two species of fermions are combineB€nt comments and for having drawn our attention to some
into a unique four-component spinor, the presence of a constariglevant references. Finally, the authors would also like to
magnetic field induces flavor symmetry breakdown and fermionthank Professor R. Jackiw for having pointed out the work of
condensates appd@3]. Such condensates are, however, quite senRef. [21]. CNPg-Brasil is also acknowledged for financial
sible to thermal effects and disappear at finite temperd@4ge support.
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