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Akulov-Volkov Lagrangian, symmetry currents, and spontaneously broken
extended supersymmetry
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A generalization of the Akulov-Volkov effective Lagrangian governing the self-interactions of the Nambu-
Goldstone fermions associated with spontaneously broken extended supersymmetry as well as their coupling to
matter is presented and scrutinized. The resulting currents associateR gytnmetry, supersymmetry and
space-time translations are constructed and seen to form a supermultiplet structure.
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[. INTRODUCTION stino fields to matter and gauge fields are delineated once
again generalizing the construction of tNe=1 casg13,14.
Many proposed fundamental theories of nature require The N-extended supersymmetry Weyl spinor charﬁs
there to be supersymmet§SUSY) in extra dimensions. gnd aﬁ whereA=1,2, ... N, obey the supersymmetry al-
When reduced to four dimensions, this results in models exgebra(in the absence of any central charges
hibiting an extended supersymmetfy=2. Since the low

energy standard model of elementary particle interactions {Qﬁ,aBd}zzggggdp#
has no supersymmetriy=0, the question of the nature of
the chain of supersymmetry beakdown from higheto N {QA Q2}=0={6A' 68'3}

=0 is quite relevant. In addition, for those models with

=1 supersymmetry at the electroweak scale, the breakdown £ AA O DE

of SUSY from a higheN>1 toN=1, either in stage§par- [P*,Qa1=0=[P*,Qnal @

.tlal supersymmetry breakm_l,gor directly, is of paramount with P# the energy-momentum operator.

importance. Models of_ partial super_symmetr_y. breaking have This algebra can be realized by means of the Akulov-
been extensively studied and require exploiting one of W80lkov nonlinear transformation’] of spontaneously bro-

possible avenues of realization. Either the supersymmetryan N-extended supersymmetry. TReWey! spinor Golds-
current algebra requires the inclusion of certain centraling fields \4%(x) and their Hermitian conjugate fields
chargeqg 1-3], or when embedded in a supergravity model,— . .

- ) . . N\ .7(x) are defined to transform under the nonlinear extended
the gravitino gauge field contains negative norm stgte$). sJ ersvmmetry as
In this paper, we present the construction of the Akulov- persy y
Volkov effective action[7] describing the spontaneous

Q& #\)\ /¥ a N ra
breakdown ofN-extended supersymmetry td=0 [8,9]. S (&N =TAEAT AP(£,6) I NN
This model contains only the Nambu-Goldstone fermions o o
necessary for it to describe the spontaneous breakdown of 5Q(§,§))\QA=fA?-;JrA”(éf)ﬁp?\éA, (2

the extended supersymmetry. Since the supersymmetry
charges are in the fundamental representation of an accorihere £%, £ are Weyl spinoN-SUSY transformation pa-

panying (unbroken SU(N)g symmetry, their Akulov- rametersf, are(for the moment independértonstants with
Volkov realization depends on a single scale, the commojimension magsand

Goldstino decay constant. This fact is explicitly exhibited by

exploiting this non-AbelianSU(N)g symmetry of the _ 1 _ _

N-extended SUSY algebra which manifests itself through a AP(E,6)= [N Ea— Eno"NA]L 3
rescaling invariance of the action resulting in its single scale A

dependence. The Noether currents associated with the chifighomment on notation: Throughout this paper, a summation
SU(N)r symmetries, the\ supersymmetries and the space-conyention is employed in which all repeated indices in a
time translation symmetries are constructed and the SUP€Eingle term are summed over. The only exceptions are the
symmetry transformations of the currents are determined. I§;st terms on the right hand side of E@®) and Eq.(7). In

particular theR-currents, supersymmetry currents and the,qgition, we shall often suppress the indices when they are
energy-momentum tensor are shown to form the components

Mo g sAl
of  superuner10 11 Ths exends previus woftzl VTS % TS o vy € ot f0)
for N=1 supersymmetry. Finally, the couplings of the Gold- P 9 P

SP(a)Np*=ard \\"
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it is readily established that the above extended SUSY algedifferent scales. Thus we encounter yet another exafile

bra is indeed satisfied by the associated variations. of how supersymmetry very tightly constrains the allowed
Using these Goldstino field extended SUSY transformadynamics of a model.

tions, it is straightforward to generalize the Akulov-Volkov ~ Further note that in terms of the rescal@shprimed

N=1 SUSY construction to form the extended SUSY invari-fields, the extended nonlinear SUSY transformations take the

ant action,I' yy=[d*X Ly, Where form
f2 RUEENS=TE+ AP(E,E)I NS
EAV:_EdeTA (5) (g é) A gA (g g) pMA
, S SREEON=TE+AP(£, 69N, (10)
where f is a scale with dimension massThe Akulov-
Volkov vierbein A; is the 4x 4 matrix defined as with
O AP(§€)=£[)\ P En— EATNA] (11)
AM=5,M+ —2(7\A(9M0'V)\A). (6) J jfLMA AT SAOAA]-
A

, ) , ) .. Clearly, the supersymmetry algebra
Expanding the determinant, a canonically normalized kinetic

term for each of the Goldstino fields is secured after the [5Q(§E),5Q(77,;)])\K=_2i5P(§BU;B_ nBO_EB))\X
rescalings

Y [8%(£,8),6% 5, m)INs= =21 67(¢ég0 7P~ mgr )\,
AAZTAA. (7) (12
continues to be satisfied. Here the space-time variations,
Since all self-interactions of the Goldstinos have thes®(a), of the unprimed fields are of the same form as for the
functional form (in  a short hand notation primed fields[cf. Eq. (4)].

f2E(NAON A F2 ,ONAN A/ F2) = F2F (N AONATF2,ONpNATE2), it The Akulov-Volkov Lagrangian is invariant while the
follows that there is really only one scale in the action andGoldstino SUSY transformations are covariant under a glo-
the Akulov-Volkov Lagrangian can be written as bal SU(N) symmetry which has the properties of Rrsym-

metry. Under thisSU(N)g symmetry, the Goldstino fields

2 transform as

EAV: - EdeTA (8)
SR(@)Ni=—iINgwa (TR
where
SN2 =iwa(THANE, (13)
i -
A =5, + f—z()\AaMo")\A). (9) wherew,, a=1,2,... N2—1, are theSU(N)R transforma-

tion parameters and? denote the fundamental representa-

. . o ) tion matrices ofSU(N). It follows that
Since this Akulov-Volkov action is the unique extended

SUSY invariant structure containing the lowest mass dimen- SR SRUAEH =5 EONY
sion Goldstino self-interactions, it follows that the extended [67(), 056, ) INA=67(LR RN
SUSY algebra is completely broken at this single scdle, [SR(w) 5Q(§E)]XA: PRITR ER)F (14)

which can be identified as the common Goldstino decay con-

stant[8]. That is, one cannot sequentially break the variousynich is precisely what is required of &symmetry. Here
supersymmetries at different scales and still realize the alge-

bra of Eq.(1). This conclusion is in accord with a heuristic ggAziggwa(Ta)ﬁ

argumen{ 15] which follows from the form of the extended

SUSY algebra, Eq.1). If one demands that the Hilbert space EA =i (Ta)A—B (15)
Ra a BSqa

of states be positive definite, then the algebra dictates that it
cannot be that some of the supersymmetry chgrges ann_ihilate This symmetry is also reflected in the extended SUSY
the vacuum while others do not. As was previously po'ntedalgebra, Eq(1), which remains invariant under @®U(N)

out [1], however, this argument is purely formal since for . —
spontaneously broken symmetries, the associated symmetrr())/tatlon of the supersymmetry charges. TQé and Qx

charges really do not exist. In our approach, we reach afansform as thél andN fundamental representations of this
identical conclusion using very concrete effective Lagrang->U(N)r symmetry, so that
ian techniques which explicitly encapsulate the relevant dy-

a Bi—_i/Ta\BAC
namics. The result is certainly a very strong constraint and is [R%Q71=1(T%)cQ
very different from the situation often encountered involving .= = .
multiple global symmetries which can generally be broken at [R%Qg]=—1Qc(T%g, (16)
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while the energy-momentum operatorRsnvariant:

f
S(X) I ay=8Lav(X) — 3, EdeiA(X)(A_l)’V‘(X)

[R3,P~]=0. (17)

It should be noted that E¢16) requires the Akulov-Volkov xA”(g(x),Z(x))
realization of the SUSY transformations to form fundamental

representations dBU(N)g which, along with Eq.(13), im-  \unich constitutes Noether's theorem.
plies that the Goldstino decay constants must all be the same. T4 extract the various currents and their conservation

Combining these various results, it follows that the |,y one allows the local transformation parametgrand
Akulov-Volkov Lagrangian[8,9] of Eq. (8) is invariant un-  —a . . .
der SU(N)g transformations while transforming as a total {o 10 assume the various forms of th_e assomate_d_GoIdstmo
divergence under SUSY and space-time translations: transformation laws. For example, taking the explicit form to

be that of a space-time translation of the Goldstino field

(23

R —
6 (w)Lay=0 La(X)=2ald \a(x)
8UEE) Lav=0,[ AP(£,6)Lav] 20=ara N N(x) (24)
a P
6P (a)Lav= dpla’Lav]. (18) and substituting into Noether’s theorem, Eg83), leads to

Hence the action constructed from this Lagrangian is invari-the conserved Noether energy-momentum tensor

ant under these transformations. f2
Th(x) == 2 ([deB (X)) (A H5(x) (25
II. SYMMETRY CURRENTS

and its conservation law
Noether’s theorem can be used to construct the conserved1

currents associated with the above symmetries of the action. a,d, T*"(x)= 6" (x;a)T oy (26)
First introduce the local variation by means of the functional a
differential operator with
—Ad 6 P a N Ac
8(x)=%(x + A (x) —= , 19 6 (X;@)=a,| IFNA(X)——— TN (X) = . (@)
( ) gA( ) 5)\X(X) é,/ ( ) 5)\Aa(X) ( ) M 5)\A(X) 5)\Aa(x)
which allows for space-time and field dependent Weyl spinorimilarly, the parameters can be chosen as
variation parameters;(x) and {(x). When applied to the 5,‘§(x)=—i)\B“(x)wa(Ta),'i
Akulov-Volkov Lagrangian, Eq(8), this yields _ .
P =T0(THENP(x) (28)

f
_ -1 X
O(Y) Lav(x) = 5RO (A )y(X)a, which correspond to the form of a GoldstiSdJ(N)g trans-

o formation. This time substitution into Noether's theorem
X[ (x=Y)A(L(x),(x)]—18*x—y) produces the conservaicurrent

X[deB(x) (A~ A(X) (La(X) 03 NA(X)

_ R¥(w)= w,R¥(x) = %T*;(x)mu)wa(Ta>éavf3<x>]
— 9, M) 0 (X)) (20) f

(29
Further defining the variation operator, and its conservation law
— SR/y-
5:f d*x8(x), (22) 9,R*(w)=8"(X;0)ay, (30
where the Ward identity functional differential operator de-
it follows that scribing R transformations is given by
i .
SLAVX) = — SdetA(x)(A™H)4(x) SR )= wg| —I(THENEX) —
2 ONg(X)
TN A T VA -
X[(A(X)ﬂ,uo' A (X)+)\A(X)(9#O' g (X)], (22) +i(Ta)g)\Ca(X) 6{[3(_1()() . (31)
while the local variation of the Akulov-Volkov actiodd; 5y
=[d*xL,y, is secured as Finally, the parameters can be chosen to have the form of the

065012-3



T. E. CLARK AND S. T. LOVE PHYSICAL REVIEW D63 065012

Goldstino nonlinear SUSY transformations The pu antisymmetric improvement tern3”#* are defined
_ as
CA)=FER+AL(E,6) 9 MA(X) _ _ _ _ _
S - GPH(7,7,£,6) = AP (1, m)QH(£,6)— A*(7,7)QA(£,8).
) =T AP(E,6) N (), (32 (39)
. — . . . . Finally the SUSY variation of the energy-momentum tensor
with the £ and ¢ appearing on the right hqnd side being thedoes not lead to another conserved current but only to a
USl_Jal constant spinor SUSY transformatlon_garameters. St‘i’ivially conserved antisymmetric term and the on-shell van-
doing, the supersymmetry curren@®,, and Q,. are ob- shing Euler-Lagrange equation terms so that
tained from Noether’s theorem as . o o
_ _ SUEOTH'=0,[AP(£,E)TH = AH(£,6)TP"]
QH(§,6)=2T,(X)A"(,6), (33 _
_ +AH(E,E)d,TP". (40
where Q“(£,£) = £aQk,(X) + QX (x)€*A. The current con-

. . Hence, the currentBR*, Q*, andT*” form the component
servation equation takes the form Q b

currents of a supercurrent. Given tRecurrent, the SUSY
— — currents and the energy-momentum tensor can be defined by
9,QM(&,6)= 8% £,E)T v, (349 suSY variations oR*(w) through the above transformation
equations. Due to thR invariance of theN extended SUSY
algebra, all of the lower componef and SUSY currents
s transform into the energy-momentum tensor. The form of the
currents, their conservation laws and multiplet structure ex-
SN a(X) hibit an entirely similar structure to that found for tie
=1 nonlinear SUSY theor{12].

with

SRUX;£,6) = (FER+AP(£,E)I,N%(X))

Aa p Aa
TESEHANE I (X))nga(x)' Ill. MATTER AND GAUGE FIELDS
(35 The N extended supersymmetry algebra can also be non-
linearly realized on matter(non-Goldstino, non-gauge
The conserved currents in the effective theory are relateglg|ds, generically denoted by', wherei can represent any
through their SUSY transformation properties. The SUSY| grentz or internal symmetry labels, using the standard real-
transformation,s9(¢,€) = [d*x69(x; &,£), of the R current  ization[13,14,17
produces the supersymmetry current plus a term that is a _ - .
Belinfante improvement term for the supersymmetry cur- 5Q(§,§)¢'=AP(§,§)(9P¢'. (41
rents as well as additional Euler-Lagrange equation terms: ) _ )
The matter fields also carry a representation of the chiral

59 5,5 RA(w)=— QM (& ,zR) +3,0P4( w,g,z) SU(N)g symmetry so that
+AM(§,E)(9PRP((U). (36) 5R(w)¢i=iwa(Ra)}¢i, (42
Here thepy antisymmetric improvement terms are definedWith (R®)] constituting a set o8 U(N) representation matri-

as ces. It is straightforward to check that the extended SUSY
algebra is obeyed by these transformations:

9P @,€,6)=AP(£,6)R () — AH(€,6R(w). (37)

Note that on-shell, the divergence of tRecurrent vanishes

[6°(£,€),8% n,m)]=—2i 6" (¢an— noé)

as a consequence of tiiecurrent conservation law and the [89(£,£),6%(a)]=0=[N(w),5"(a)]
field equations.
Analogously, the Noether SUSY currents transform into [5R(w),50(§,§)]: - 89ég 'ER)
the Noether energy-momentum tensor, its Belinfante im-
provements, other trivially conservédithout need of field [sR(w),8R(0)]=6R(wX 8), (43)

equationgantisymmetric terms and Euler-Lagrange equation

terms that enter through the_divergence of the SUPErsyMmegpare & andER are defined in Eq(15) and the cross prod-
try currents which again vanish on-shell: uct is given in terms of th&U(N) structure constantigc,

_ _ _ — O bc

59 ’ H(E E)=2i _ Tmv so that X 0)a:fa wpb. .
(7. 7)Q(&.8) (ovn=na.6) The formalism required to construct extended SUSY in-
+3,GPH(n,1,€,6) variant actions involving matter fields, gauge fields and their

o o interactions with Goldstinos is very similar to that previously
+A*(n,7)d,QP(&,§). (389)  deduced for the case =1 supersymmetry. As such, we
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shall only outline the necessary steps and refer the reader to 56(9)V|M=(A_1)V(DV9)| ) (54)
the literature[13,14] to fill in the details. a
The SUSY covariant derivative of the matter field, ¢, For all realizations, the gauge transformation and SUSY

is defined as transformation commutator yields a gauge variation with a
SUSY transformed value of the gauge transformation param-
D,p=(A"1,3d,0, (44)  eter:
where @A™1)" is the inverse Akulov-Volkov vierbein, [8%(0),6°(¢,6)]= 6%(AP(£,6)3,0— 5°£,6)0). (55
AZ(A*1)5= d,,- So doing, it transforms under SUSY as the . )
standard realization so that Alternately, by requiring the local gauge transformation pa-

rameter to also transform under the standard realization,

8RUE,E)(D,d)=AP(£,6)3,(D, ). (45)

If the matter field belongs to a representation of an intern
local symmetry grou

82&,6)0,=AP(£,6)0,0,, (56)

a :
{hen the gauge and SUSY transformations commute.
To construct an invariant kinetic energy term for the
5G(a)¢i:i0|(|_l)}¢j, (46) gauge fields it is convenie_nt for the anti-symm_etri(_: tensor
field strength to be brought into the standard realization. This

where 6,= 6,(x) are the space-time dependent gauge trans's achieved by defining

formation parameters andL'()} are a set ofj representation o a—lvas a—1\8

matrices, then the gauge covariant derivative is given by Fiuv= (A A ) Fiap. (57)

whereF, ,; the usual field strength

(D) =0, + (LA . (47)
Flag=duA 5= gA . +if A, Axs. 58

HereA,,, 1=12,...,ding, are theG gauge fields having lah T PR 8
gauge transformation properties Under SUSY transformation$;, ,, varies as

8%(0)A,,=(D,0),=3,0,+9f A;,00 (48 8EEF) = AP3,Fy 0, AP, 0,APF,, (59)
with g the gauge coupling constant aﬁﬂi( are the grouy  while
structure constants. Thege, carry the non-standard SUSY _
realization SUAEOF =N, F - (60)

SRAEDA, = AP(EE)IA +d AP(EDA . (49 These standard realization building blocks, the Akulov-
(EOAL=ANED AL IAEDA,. (49 Volkov vierbeine, A’ , (A™1)”, the covariant derivatives,

By once again using the inverse Akulov-Volkov vierbein, theDM(j)i D\ ,DMTA and the field strength tensaf, ,,,, and
gauge covariant derivative ap can also be made SUSY higher covariant derivatives thereof, can be combined to
covariant via make SUSY and gauge invariant actions.

(Du#)'=(A"H(D, ), (50 IV. INVARIANT ACTIONS

so that it transforms as the standard realization under SUSY and gauge invariant actions can be constructed us-
the extended nonlinear SUSY, ﬁ(gf)(pﬂd,)i ing the fact that the matter fields and their covariant deriva-
—AP(£.8)9.(D. ). The gauge field is chosen to be a Sm_t!ves_transf_orm accordlng to the stgndard reahzatu_)n. The
glet Sidggrﬁ( trgfs)formatigns gR(w)A =0, so the gauge final ingredient needed is the Goldstino SUSY covariant de-
andR transformations comm;,lte w0 rivatives which can be analogously defined as

Alternatively, a redefined gauge field can be introduced as D,J\ﬁ=(Afl)Zc9y)\Z

V. =(A"H2A,,, (51)
I wM DMXZ\:(Ail);angv (61)

so that it transforms as the standard realization ) o
so that their SUSY transformation is also that of the standard

5Q(§,E)V|M= AP(£,6) Vi, (52)  realization
and the gauge covariant derivative takes the form ﬁ(g,g(pM):Apap(D#)\z)
(D) =(A"H23,¢'+(LHV, 4. (53) (£ B(DNY = AP (D). 2

Moreover, the redefined gauge fiewl'L transforms under Since they are singlets under any internal symmetry, all pure
gauge transformations as Goldstino terms are manifestly gauge invariant. On the other
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hand, recall thak , and\” transform as fundamental repre- retaining operators through mass dimension 6, is given by
sentations of theSU(N)g symmetry while the Akulov- (1/f)[DM)\,‘§(QM)’2"+(QM)ﬁaDM)\Aa], where QM)’;" and

Volkov action isR-symmetric. o o {6,\,0&( contain the pure non-Goldstino field contributions to

These Staf‘dafd reallzayon building bloc.ks cons!stlng %the conserved gauge invariant supersymmetry currents with
the gauge singlet Gold§tlno _SUSY_ covariant denvanvesbnce again all field derivatives being replaced by SUSY co-
Dyuha,D,\", the matter fields¢', their SUSY-gauge cova- variant derivatives and the vector field strengths in the stan-
riant derivativesD , ¢', and the field strength tensaf,,.,,  dard realization. That is, it is this term in the effective La-
along with their higher covariant derivatives can be com-grangian which, using the Noether construction, produces the
bined to make SUSY and gauge invariant actions. These ingo|dstino independent piece of the conserved supersymme-
variant action terms then dictate the couplings of the Goldstry current. This Lagrangian describes processes involving
tino which, in general, carries the residual consequences @fe emission or absorption of a single helicity Goldstino.

the spontaneously broken extended supersymmetry. Finally the remaining terms in the effective Lagrangian all
A generic SUSY and gauge invariant action is thus contontain two or more Goldstino fields. In particular, the next
structed as term in the expansion begins with the coupling of two Gold-
stino fields to matter or gauge fields. Retaining terms through
Feﬁzf d*x delAceﬁ(DM)\A,D#)\A, ¢i,DM¢i,}‘,W) mass dimension 8 and focusing only on the \ terms, we
can write this term as
(63)
am Y Ba Apv
where Lq is any gauge invariant function of the stan- (12D AAD AP (M) h?
dard realization basic building blocks. Using the nonlinear 5 PR Auvp
SUSY transformations ﬁQ(g,g)detA=(9p(AP detA) and +(U)D AJD, DA (Mo)g,,,
5Q(§,§) L:e.ﬁ:A"&p[,eﬁ ; it follows thatéQ(g,g)Feﬁ: 0. This + (1/f2)DP[D#)\KDVTBa]( Ms)gﬂ?’l’ ,
structure is once again completely analogous to that found aa
for the case oN=1 supersymmetry13,14. where the standard realization composite operators that con-

_ It proves convenient to expantl; in this effective action  t5in matter and gauge fields are denoted byMhe They can
in powers of the number of Goldstino fields which appearpe enumerated by their operator dimension, Lorentz struc-

when covariant derivatives are replaced by ordinary derivagre, field content an&-transformation behavior. Combining
tives and the Akulov-Volkov vierbein appearing in the stan-ine various contributions gives

dard realization field strengths are set to unity. The leading

term in this expansion consists of all gauge and SUSY in- 1 A
variant operators made only from matter fields and their ~ Lett=Lm(. Dy, Fy,) + ?[DM?\Z(QM)Q’L
SUSY covariant derivatives. Any Goldstino field which

then appears arises only from higher dimension terms in the _ _ . 1 .
matter covariant derivatives and/or the field strength tensor. +(Qw)a; DA T+ D ADABY(My)
Denoting the non-Goldstino fields’” Lagrangian by f
Lyu(#,D,¢,F,,), then this leading term is given by the 1 o
Lagrangian with the same functional form, but with all de- + —Dﬂ)\ﬁﬁpr)\B“(MZ)g”p
rivatives replaced by SUSY covariant ones and the field 2 “
strength tensor replaced by the standard realization field

Apv
Baa

strength:Ly(#,D, ¢, F,,). Note that the coefficients of this i an TBu Auvp

term are fixed by the normalization of the gauge and matter * f2DP[D“AAD”)‘ IMg)gqq + ' (64)
fields, their masses and self-couplings; that is, the normaliza-

tion of the Goldstino independent Lagrangian. The next ACKNOWLEDGMENTS
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