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Akulov-Volkov Lagrangian, symmetry currents, and spontaneously broken
extended supersymmetry
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A generalization of the Akulov-Volkov effective Lagrangian governing the self-interactions of the Nambu-
Goldstone fermions associated with spontaneously broken extended supersymmetry as well as their coupling to
matter is presented and scrutinized. The resulting currents associated withR symmetry, supersymmetry and
space-time translations are constructed and seen to form a supermultiplet structure.
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I. INTRODUCTION

Many proposed fundamental theories of nature requ
there to be supersymmetry~SUSY! in extra dimensions.
When reduced to four dimensions, this results in models
hibiting an extended supersymmetry,N>2. Since the low
energy standard model of elementary particle interacti
has no supersymmetry,N50, the question of the nature o
the chain of supersymmetry beakdown from higherN to N
50 is quite relevant. In addition, for those models withN
51 supersymmetry at the electroweak scale, the breakd
of SUSY from a higherN.1 to N51, either in stages~par-
tial supersymmetry breaking!, or directly, is of paramoun
importance. Models of partial supersymmetry breaking h
been extensively studied and require exploiting one of t
possible avenues of realization. Either the supersymm
current algebra requires the inclusion of certain cen
charges@1–3#, or when embedded in a supergravity mod
the gravitino gauge field contains negative norm states@4–6#.
In this paper, we present the construction of the Akulo
Volkov effective action @7# describing the spontaneou
breakdown ofN-extended supersymmetry toN50 @8,9#.
This model contains only the Nambu-Goldstone fermio
necessary for it to describe the spontaneous breakdow
the extended supersymmetry. Since the supersymm
charges are in the fundamental representation of an acc
panying ~unbroken! SU(N)R symmetry, their Akulov-
Volkov realization depends on a single scale, the comm
Goldstino decay constant. This fact is explicitly exhibited
exploiting this non-Abelian SU(N)R symmetry of the
N-extended SUSY algebra which manifests itself throug
rescaling invariance of the action resulting in its single sc
dependence. The Noether currents associated with the c
SU(N)R symmetries, theN supersymmetries and the spac
time translation symmetries are constructed and the su
symmetry transformations of the currents are determined
particular theR-currents, supersymmetry currents and t
energy-momentum tensor are shown to form the compon
of a supercurrent@10,11#. This extends previous work@12#
for N51 supersymmetry. Finally, the couplings of the Go
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stino fields to matter and gauge fields are delineated o
again generalizing the construction of theN51 case@13,14#.

The N-extended supersymmetry Weyl spinor chargesQa
A

andQ̄ȧ
A , whereA51,2, . . . ,N, obey the supersymmetry a

gebra~in the absence of any central charges!

$Qa
A ,Q̄Bȧ%52dB

Asaȧ
m Pm

$Qa
A ,Qb

B%505$Q̄Aȧ ,Q̄Bḃ%

@Pm,Qa
A#505@Pm,Q̄Aȧ# ~1!

with Pm the energy-momentum operator.
This algebra can be realized by means of the Akulo

Volkov nonlinear transformations@7# of spontaneously bro-
ken N-extended supersymmetry. TheN Weyl spinor Golds-
tino fields lA8

a(x) and their Hermitian conjugate field

l̄ ȧ8
A(x) are defined to transform under the nonlinear exten

supersymmetry as

dQ~j,j̄ !lA8
a5 f AjA

a1Lr~j,j̄ !]rlA8
a

dQ~j,j̄ !l̄ ȧ8
A5 f Aj̄ ȧ

A1Lr~j,j̄ !]rl̄ ȧ8
A , ~2!

wherejA
a , j̄ ȧ

A are Weyl spinorN-SUSY transformation pa-
rameters,f A are~for the moment independent! constants with
dimension mass2 and

Lr~j,j̄ !5
1

i f A
@lA8srj̄A2jAsrl̄A8 #. ~3!

@Comment on notation: Throughout this paper, a summa
convention is employed in which all repeated indices in
single term are summed over. The only exceptions are
first terms on the right hand side of Eq.~2! and Eq.~7!. In
addition, we shall often suppress the indices when they
summed over. Thus, for example,jsmj̄[jA

asaȧ
m j̄Aȧ.#

Further representing the space-time translations as

dP~a!lA8
a5ar]rlA8

a

dP~a!l̄ ȧ8
A5ar]rl̄ȧ8

A , ~4!
©2001 The American Physical Society12-1
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T. E. CLARK AND S. T. LOVE PHYSICAL REVIEW D63 065012
it is readily established that the above extended SUSY a
bra is indeed satisfied by the associated variations.

Using these Goldstino field extended SUSY transform
tions, it is straightforward to generalize the Akulov-Volko
N51 SUSY construction to form the extended SUSY inva
ant action,GAV5*d4xLAV , where

LAV52
f 2

2
detA ~5!

where f is a scale with dimension mass2. The Akulov-
Volkov vierbeinAm

n is the 434 matrix defined as

Am
n 5dm

n 1
i

f A
2 ~lA8]Jmsnl̄A8 !. ~6!

Expanding the determinant, a canonically normalized kine
term for each of the Goldstino fields is secured after
rescalings

lA85
f A

f
lA . ~7!

Since all self-interactions of the Goldstinos have t
functional form ~in a short hand notation!
f 2F(lA8]l̄A8 / f A

2 ,]lA8 l̄A8 / f A
2)5 f 2F(lA]l̄A / f 2,]lAl̄A / f 2), it

follows that there is really only one scale in the action a
the Akulov-Volkov Lagrangian can be written as

LAV52
f 2

2
detA ~8!

where

Am
n 5dm

n 1
i

f 2
~lA]Jmsnl̄A!. ~9!

Since this Akulov-Volkov action is the unique extend
SUSY invariant structure containing the lowest mass dim
sion Goldstino self-interactions, it follows that the extend
SUSY algebra is completely broken at this single scale,Af ,
which can be identified as the common Goldstino decay c
stant@8#. That is, one cannot sequentially break the vario
supersymmetries at different scales and still realize the a
bra of Eq.~1!. This conclusion is in accord with a heurist
argument@15# which follows from the form of the extende
SUSY algebra, Eq.~1!. If one demands that the Hilbert spac
of states be positive definite, then the algebra dictates th
cannot be that some of the supersymmetry charges annih
the vacuum while others do not. As was previously poin
out @1#, however, this argument is purely formal since f
spontaneously broken symmetries, the associated symm
charges really do not exist. In our approach, we reach
identical conclusion using very concrete effective Lagra
ian techniques which explicitly encapsulate the relevant
namics. The result is certainly a very strong constraint an
very different from the situation often encountered involvi
multiple global symmetries which can generally be broken
06501
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different scales. Thus we encounter yet another example@16#
of how supersymmetry very tightly constrains the allow
dynamics of a model.

Further note that in terms of the rescaled~unprimed!
fields, the extended nonlinear SUSY transformations take
form

dQ~j,j̄ !lA
a5 f jA

a1Lr~j,j̄ !]rlA
a

dQ~j,j̄ !l̄ ȧ
A
5 f j̄ ȧ

A
1Lr~j,j̄ !]rl̄ ȧ

A , ~10!

with

Lr~j,j̄ !5
1

i f
@lAsrj̄A2jAsl̄A#. ~11!

Clearly, the supersymmetry algebra

@dQ~j,j̄ !,dQ~h,h̄ !#lA
a522idP~jBsh̄B2hBsj̄B!lA

a

@dQ~j,j̄ !,dQ~h,h̄ !#l̄ ȧ
A
522idP~jBsh̄B2hBsj̄B!l̄ ȧ

A

~12!

continues to be satisfied. Here the space-time variatio
dP(a), of the unprimed fields are of the same form as for t
primed fields@cf. Eq. ~4!#.

The Akulov-Volkov Lagrangian is invariant while th
Goldstino SUSY transformations are covariant under a g
bal SU(N) symmetry which has the properties of anR sym-
metry. Under thisSU(N)R symmetry, the Goldstino fields
transform as

dR~v!lA
a52 ilB

ava~Ta!A
B

dR~v!l̄ȧ
A
5 iva~Ta!B

Al̄ ȧ
B , ~13!

whereva , a51,2, . . . ,N221, are theSU(N)R transforma-
tion parameters andTa denote the fundamental represen
tion matrices ofSU(N). It follows that

@dR~v!,dQ~j,j̄ !#lA
a5dQ~jR ,j̄R!lA

a

@dR~v!,dQ~j,j̄ !#l̄ ȧ
A
5dQ~jR ,j̄R!l̄ ȧ

A , ~14!

which is precisely what is required of anR-symmetry. Here

jRA
a [ i jB

ava~Ta!A
B

j̄Rȧ
A

[2 iva~Ta!B
Aj̄ ȧ

B . ~15!

This symmetry is also reflected in the extended SU
algebra, Eq.~1!, which remains invariant under anSU(N)
rotation of the supersymmetry charges. TheQA and Q̄A

transform as theN andN̄ fundamental representations of th
SU(N)R symmetry, so that

@Ra,QB#5 i ~Ta!C
BQC

@Ra,Q̄B#52 iQ̄C~Ta!B
C , ~16!
2-2
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while the energy-momentum operator isR invariant:

@Ra,Pm#50. ~17!

It should be noted that Eq.~16! requires the Akulov-Volkov
realization of the SUSY transformations to form fundamen
representations ofSU(N)R which, along with Eq.~13!, im-
plies that the Goldstino decay constants must all be the sa

Combining these various results, it follows that t
Akulov-Volkov Lagrangian@8,9# of Eq. ~8! is invariant un-
der SU(N)R transformations while transforming as a tot
divergence under SUSY and space-time translations:

dR~v!LAV50

dQ~j,j̄ !LAV5]r@Lr~j,j̄ !LAV#

dP~a!LAV5]r@arLAV#. ~18!

Hence the action constructed from this Lagrangian is inv
ant under these transformations.

II. SYMMETRY CURRENTS

Noether’s theorem can be used to construct the conse
currents associated with the above symmetries of the ac
First introduce the local variation by means of the functio
differential operator

d~x!5zA
a~x!

d

dlA
a~x!

1 z̄Aȧ~x!
d

dl̄Aȧ~x!
, ~19!

which allows for space-time and field dependent Weyl spi
variation parameters,z(x) and z̄(x). When applied to the
Akulov-Volkov Lagrangian, Eq.~8!, this yields

d~y!LAV~x!5
f

2
detA~x!~A21!n

m~x!]m
x

3@d4~x2y!Ln
„z~x!,z̄~x!…#2 id4~x2y!

3@detA~x!~A21!n
m~x!„zA~x!sn]ml̄A~x!

2]mlA~x!snz̄A~x!…#. ~20!

Further defining the variation operator,

d5E d4xd~x!, ~21!

it follows that

dLAV~x!52
i

2
detA~x!~A21!n

m~x!

3@zA~x!]Jmsnl̄A~x!1lA~x!]Jmsnz̄A~x!#, ~22!

while the local variation of the Akulov-Volkov action,GAV
5*d4xLAV , is secured as
06501
l
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n.
l

r

d~x!GAV5dLAV~x!2]mF f

2
detA~x!~A21!n

m~x!

3Ln
„z~x!,z̄~x!…G ~23!

which constitutes Noether’s theorem.
To extract the various currents and their conservat

laws, one allows the local transformation parameterszA
a and

z̄ ȧ
A to assume the various forms of the associated Golds

transformation laws. For example, taking the explicit form
be that of a space-time translation of the Goldstino field

zA
a~x!5ar]rlA

a~x!

z̄ ȧ
A
~x!5ar]rl̄ȧ

A
~x! ~24!

and substituting into Noether’s theorem, Eq.~23!, leads to
the conserved Noether energy-momentum tensor

Tn
m~x!52

f 2

2
„detA~x!…~A21!n

m~x! ~25!

and its conservation law

an]mTmn~x!5dP~x;a!GAV ~26!

with

dP~x;a!5amF ]mlA
a~x!

d

dlA
a~x!

1]ml̄Aȧ~x!
d

dl̄Aȧ~x!
G . ~27!

Similarly, the parameters can be chosen as

zA
a~x!52 ilBa~x!va~Ta!A

B

z̄Aȧ~x!5 iva~Ta!B
Al̄Bȧ~x! ~28!

which correspond to the form of a GoldstinoSU(N)R trans-
formation. This time substitution into Noether’s theore
produces the conservedR current

Rm~v![vaRam~x!5
2

f 2
Tn

m~x!@lA~x!va~Ta!B
Asnl̄B~x!#

~29!

and its conservation law

]mRm~v!5dR~x;v!GAV , ~30!

where the Ward identity functional differential operator d
scribingR transformations is given by

dR~x;v!5vaF2 i ~Ta!B
ClC

a~x!
d

dlB
a~x!

1 i ~Ta!C
Bl̄Cȧ~x!

d

dl̄Bȧ~x!
G . ~31!

Finally, the parameters can be chosen to have the form o
2-3



he
. S

te
SY

is
ur
s:

ed

e

to
im

io
m

or
o a
n-

d by
n

the
ex-

on-

al-

iral

SY

-

in-
eir
ly
e
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Goldstino nonlinear SUSY transformations

zA
a~x!5 f jA

a1Lr~j,j̄ !]rlA
a~x!

z̄Aȧ~x!5 f j̄Aȧ1Lr~j,j̄ !]rl̄Aȧ~x!, ~32!

with the j and j̄ appearing on the right hand side being t
usual constant spinor SUSY transformation parameters
doing, the supersymmetry currentsQAa

m and Q̄Aȧ
m are ob-

tained from Noether’s theorem as

Qm~j,j̄ !52Tn
m~x!Ln~j,j̄ !, ~33!

whereQm(j,j̄)5jA
aQAa

m (x)1Q̄Aȧ
m (x) j̄ ȧA. The current con-

servation equation takes the form

]mQm~j,j̄ !5dQ~x;j,j̄ !GAV , ~34!

with

dQ~x;j,j̄ !5„f jA
a1Lr~j,j̄ !]rlA

a~x!…
d

dlA
a~x!

1„f j̄Aȧ1Lr~j,j̄ !]rl̄Aȧ~x!…
d

dl̄Aȧ~x!
.

~35!

The conserved currents in the effective theory are rela
through their SUSY transformation properties. The SU
transformation,dQ(j,j̄)5*d4xdQ(x;j,j̄), of the R current
produces the supersymmetry current plus a term that
Belinfante improvement term for the supersymmetry c
rents as well as additional Euler-Lagrange equation term

dQ~j,j̄ !Rm~v!52Qm~jR ,j̄R!1]rqrm~v,j,j̄ !

1Lm~j,j̄ !]rRr~v!. ~36!

Here therm antisymmetric improvement terms are defin
as

qrm~v,j,j̄ !5Lr~j,j̄ !Rm~v!2Lm~j,j̄ !Rr~v!. ~37!

Note that on-shell, the divergence of theR current vanishes
as a consequence of theR-current conservation law and th
field equations.

Analogously, the Noether SUSY currents transform in
the Noether energy-momentum tensor, its Belinfante
provements, other trivially conserved~without need of field
equations! antisymmetric terms and Euler-Lagrange equat
terms that enter through the divergence of the supersym
try currents which again vanish on-shell:

dQ~h,h̄ !Qm~j,j̄ !52i ~jsnh̄2hsnj̄ !Tmn

1]rGrm~h,h̄,j,j̄ !

1Lm~h,h̄ !]rQr~j,j̄ !. ~38!
06501
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The rm antisymmetric improvement termsGrm are defined
as

Grm~h,h̄,j,j̄ !5Lr~h,h̄ !Qm~j,j̄ !2Lm~h,h̄ !Qr~j,j̄ !.
~39!

Finally the SUSY variation of the energy-momentum tens
does not lead to another conserved current but only t
trivially conserved antisymmetric term and the on-shell va
ishing Euler-Lagrange equation terms so that

dQ~j,j̄ !Tmn5]r@Lr~j,j̄ !Tmn2Lm~j,j̄ !Trn#

1Lm~j,j̄ !]rTrn. ~40!

Hence, the currentsRm, Qm, and Tmn form the component
currents of a supercurrent. Given theR current, the SUSY
currents and the energy-momentum tensor can be define
SUSY variations ofRm(v) through the above transformatio
equations. Due to theR invariance of theN extended SUSY
algebra, all of the lower componentR and SUSY currents
transform into the energy-momentum tensor. The form of
currents, their conservation laws and multiplet structure
hibit an entirely similar structure to that found for theN
51 nonlinear SUSY theory@12#.

III. MATTER AND GAUGE FIELDS

The N extended supersymmetry algebra can also be n
linearly realized on matter~non-Goldstino, non-gauge!
fields, generically denoted byf i , wherei can represent any
Lorentz or internal symmetry labels, using the standard re
ization @13,14,17#

dQ~j,j̄ !f i5Lr~j,j̄ !]rf i . ~41!

The matter fields also carry a representation of the ch
SU(N)R symmetry so that

dR~v!f i5 iva~Ra! j
i f j , ~42!

with (Ra) j
i constituting a set ofSU(N) representation matri-

ces. It is straightforward to check that the extended SU
algebra is obeyed by these transformations:

@dQ~j,j̄ !,dQ~h,h̄ !#522idP~jsh̄2hsj̄!

@dQ~j,j̄ !,dP~a!#505@dR~v!,dP~a!#

@dR~v!,dQ~j,j̄ !#52dQ~jR ,j̄R!

@dR~v!,dR~u!#5dR~vW 3uW !, ~43!

wherejR and j̄R are defined in Eq.~15! and the cross prod
uct is given in terms of theSU(N) structure constants,f a

bc ,

so that (vW 3uW )a5 f a
bcvbuc .

The formalism required to construct extended SUSY
variant actions involving matter fields, gauge fields and th
interactions with Goldstinos is very similar to that previous
deduced for the case ofN51 supersymmetry. As such, w
2-4
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shall only outline the necessary steps and refer the read
the literature@13,14# to fill in the details.

The SUSY covariant derivative of the matter field,Dmf,
is defined as

Dmf5~A21!m
n ]nf, ~44!

where (A21)m
n is the inverse Akulov-Volkov vierbein

Am
r (A21)r

n5dm
n . So doing, it transforms under SUSY as t

standard realization so that

dQ~j,j̄ !~Dmf!5Lr~j,j̄ !]r~Dmf!. ~45!

If the matter field belongs to a representation of an inter
local symmetry groupG

dG~u!f i5 iu I~LI ! j
i f j , ~46!

whereu I5u I(x) are the space-time dependent gauge tra
formation parameters and (LI) j

i are a set ofG representation
matrices, then the gauge covariant derivative is given by

~Dmf! i5]mf i1~LI ! j
i AImf j . ~47!

Here AIm , I 51,2, . . . ,dimG, are theG gauge fields having
gauge transformation properties

dG~u!AIm5~Dmu! I5]mu I1g fI
JKAJmuK ~48!

with g the gauge coupling constant andf I
JK are the groupG

structure constants. TheseAIm carry the non-standard SUS
realization

dQ~j,j̄ !AIm5Lr~j,j̄ !]rAIm1]mLr~j,j̄ !AIr . ~49!

By once again using the inverse Akulov-Volkov vierbein, t
gauge covariant derivative off can also be made SUSY
covariant via

~Dmf! i5~A21!m
n ~Dnf! i , ~50!

so that it transforms as the standard realization un
the extended nonlinear SUSY, dQ(j,j̄)(Dmf) i

5Lr(j,j̄)]r(Dmf) i . The gauge field is chosen to be a si
glet underR transformations,dR(v)AIm50, so the gauge
andR transformations commute.

Alternatively, a redefined gauge field can be introduced

VIm[~A21!m
n AIn , ~51!

so that it transforms as the standard realization

dQ~j,j̄ !VIm5Lr~j,j̄ !]rVIm ~52!

and the gauge covariant derivative takes the form

~Dmf! i[~A21!m
n ]nf i1~LI ! j

i VImf j . ~53!

Moreover, the redefined gauge fieldVm
I transforms under

gauge transformations as
06501
to

l

s-

er

s

dG~u!VIm5~A21!m
n ~Dnu! I . ~54!

For all realizations, the gauge transformation and SU
transformation commutator yields a gauge variation with
SUSY transformed value of the gauge transformation par
eter:

@dG~u!,dQ~j,j̄ !#5dG
„Lr~j,j̄ !]ru2dQ~j,j̄ !u…. ~55!

Alternately, by requiring the local gauge transformation p
rameter to also transform under the standard realization,

dQ~j,j̄ !u I5Lr~j,j̄ !]ru I , ~56!

then the gauge and SUSY transformations commute.
To construct an invariant kinetic energy term for th

gauge fields it is convenient for the anti-symmetric ten
field strength to be brought into the standard realization. T
is achieved by defining

FImn5~A21!m
a~A21!n

bFIab , ~57!

whereFIab the usual field strength

FIab5]aAIb2]bAIa1 i f I
JKAJaAKb . ~58!

Under SUSY transformations,FImn varies as

dQ~j,j̄ !FImn5Lr]rFImn1]mLrFIrn1]nLrFImr ~59!

while

dQ~j,j̄ !FImn5Lr]rFImn . ~60!

These standard realization building blocks, the Akulo
Volkov vierbeine,Am

n , (A21)m
n , the covariant derivatives

D mf i ,DmlA ,D ml̄A and the field strength tensor,FImn , and
higher covariant derivatives thereof, can be combined
make SUSY and gauge invariant actions.

IV. INVARIANT ACTIONS

SUSY and gauge invariant actions can be constructed
ing the fact that the matter fields and their covariant deri
tives transform according to the standard realization. T
final ingredient needed is the Goldstino SUSY covariant
rivatives which can be analogously defined as

DmlA
a5~A21!m

n ]nlA
a

Dml̄ȧ
A
5~A21!m

n ]nl̄ȧ
A , ~61!

so that their SUSY transformation is also that of the stand
realization

dQ~j,j̄ !~D mlA
a!5Lr]r~D mlA

a!

dQ~j,j̄ !~Dml̄ȧ
A
!5Lr]r~Dml̄ȧ

A
!. ~62!

Since they are singlets under any internal symmetry, all p
Goldstino terms are manifestly gauge invariant. On the ot
2-5



-

o
es
-

m
i

lds
s

on

n-
a

un

a
iva
n
in
in
e
h
th

so
y
e
e-
el
e

s
tte
liz
ex
in
to
m

by

to
with
co-
an-
a-
the
me-
ing

all
xt

ld-
gh

con-

uc-
g

ent

T. E. CLARK AND S. T. LOVE PHYSICAL REVIEW D63 065012
hand, recall thatlA and l̄A transform as fundamental repre
sentations of theSU(N)R symmetry while the Akulov-
Volkov action isR-symmetric.

These standard realization building blocks consisting
the gauge singlet Goldstino SUSY covariant derivativ
DmlA ,Dml̄A, the matter fields,f i , their SUSY-gauge cova
riant derivatives,D mf i , and the field strength tensor,FImn ,
along with their higher covariant derivatives can be co
bined to make SUSY and gauge invariant actions. These
variant action terms then dictate the couplings of the Go
tino which, in general, carries the residual consequence
the spontaneously broken extended supersymmetry.

A generic SUSY and gauge invariant action is thus c
structed as

Geff5E d4x detALeff~DmlA ,D ml̄A,f i ,D mf i ,FImn!

~63!

where Leff is any gauge invariant function of the sta
dard realization basic building blocks. Using the nonline
SUSY transformations dQ(j,j̄)detA5]r(Lr detA) and
dQ(j,j̄)Leff5Lr]rLeff , it follows thatdQ(j,j̄)Geff50. This
structure is once again completely analogous to that fo
for the case ofN51 supersymmetry@13,14#.

It proves convenient to expandLeff in this effective action
in powers of the number of Goldstino fields which appe
when covariant derivatives are replaced by ordinary der
tives and the Akulov-Volkov vierbein appearing in the sta
dard realization field strengths are set to unity. The lead
term in this expansion consists of all gauge and SUSY
variant operators made only from matter fields and th
SUSY covariant derivatives. Any Goldstino field whic
then appears arises only from higher dimension terms in
matter covariant derivatives and/or the field strength ten
Denoting the non-Goldstino fields’ Lagrangian b
LM(f,Dmf,Fmn), then this leading term is given by th
Lagrangian with the same functional form, but with all d
rivatives replaced by SUSY covariant ones and the fi
strength tensor replaced by the standard realization fi
strength:LM(f,Dmf,Fmn). Note that the coefficients of thi
term are fixed by the normalization of the gauge and ma
fields, their masses and self-couplings; that is, the norma
tion of the Goldstino independent Lagrangian. The n
term in this expansion of the effective Lagrangian beg
with direct coupling of one Goldstino covariant derivative
the non-Goldstino fields. The general form of these ter
B
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retaining operators through mass dimension 6, is given
(1/f )@D mlA

a(QM)a
Am1(Q̄M)Aȧ

m Dml̄Aȧ#, where (QM)a
Am and

(Q̄M)Aȧ
m contain the pure non-Goldstino field contributions

the conserved gauge invariant supersymmetry currents
once again all field derivatives being replaced by SUSY
variant derivatives and the vector field strengths in the st
dard realization. That is, it is this term in the effective L
grangian which, using the Noether construction, produces
Goldstino independent piece of the conserved supersym
try current. This Lagrangian describes processes involv
the emission or absorption of a single helicity61

2 Goldstino.
Finally the remaining terms in the effective Lagrangian
contain two or more Goldstino fields. In particular, the ne
term in the expansion begins with the coupling of two Go
stino fields to matter or gauge fields. Retaining terms throu
mass dimension 8 and focusing only on thel2l̄ terms, we
can write this term as

~1/f 2!D mlA
aDnl̄Bȧ~M1!Baȧ

Amn

1~1/f 2!D mlA
aDJrDnl̄Bȧ~M2!Baȧ

Amnr

1~1/f 2!Dr@D mlA
aDnl̄Bȧ#~M3!Baȧ

Amnr ,

where the standard realization composite operators that
tain matter and gauge fields are denoted by theMi . They can
be enumerated by their operator dimension, Lorentz str
ture, field content andR-transformation behavior. Combinin
the various contributions gives

Le f f5LM~f,Dmf,Fmn!1
1

f
@D mlA

a~QM !a
Am

1~Q̄M !Aȧ
m Dml̄Aȧ#1

1

f 2
D mlA

aDnl̄Bȧ~M1!Baȧ
Amn

1
1

f 2
D mlA

aDJrDnl̄Bȧ~M2!Baȧ
Amnr

1
1

f 2
Dr@D mlA

aDnl̄Bȧ#~M3!Baȧ
Amnr

1••• . ~64!
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