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Maxwell Chern-Simons theory in a geometric representation
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We quantize the Maxwell Chern-Simons theory in a geometric representation that generalizes the Abelian
loop representation of Maxwell theory. We find that in the physical sector the model can be seen as the theory
of a massles scalar field with a topological interaction that enforces the wave functional to be multivalued. This
feature allows us to relate the Maxwell Chern-Simons theory with the quantum mechanics of particles inter-
acting through a Chern-Simons field.
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[. INTRODUCTION The organization of the paper is as follows. In Sec. Il we
recall some basic results about the MCST and its canonical
The Maxwell Chern-Simons theo§ICST) [1] presents  quantization. In Sec. Il we review the Abelian path space,
the interesting property of being a massive theory, while als@nd study the path representation of the quantum MCST,
being gauge invariant. The mass is provided by the topologiPaying special interest to the geometric resolution of the
cal Chern-SimongCS) term, which, in turn, has been widely Gauss constraint. Section IV is devoted to explore the rela-
considered both in the Abelian and non-Abelian cases as #on between the MCST, the massles scalar field theory, and
pure gauge theorjyl-5]. the quantum mechanics of nonrelativistic particles with CS
The purpose of this paper is to study the geometric repreinteraction. A short discussion is presented in Sec. V.
sentation appropriate for the Abelian MCST, within the spirit
of the loop representation of Maxwell thedi§—8]. Our mo- Il. MODEL
tivation is mainly to obtain further insight into the loop and
path representations that could be useful for later develop-
ments in more realistic theories, such as quantum gravity in 1 K
the Ashthekar formulatiofil9—21. Within this program, the L=—2F gFP+-—eF79,AsA,, (1)
path representation of the Proca-Stueckelberg theory was 4 am 7
studied recently9]. Also, the Maxwell field coupled to point i
particles has been quantized in a geometric representatidf{’e€ Fap=JdaPs— A, We takeg,,=diag(1-1,—1).
[10]. A common feature of these models, which is also!N€ €guation of motion
shared by the free Maxwell theory, is that the introduction of K
loops or open path&epending on the casautomatically 9, F*r+ —e“ﬁ“/ﬁaAB=O 2)
solves the Gauss constraint. As we shall see, this is not the 2w
case for the MCST. Instead, the Gauss constraint further re-
stricts the path space, leaving the boundary of the paths 482ds t0
the relevant geometric structures, except by the fact that the
theory is sensible to the number of times hat the paths wind
around their own boundaries. This feature lead us to deal
with multivalued wave functionals. A similar result was ob- S
tained for the Chern-Simons field coupled to a scalar fieldvhich shows that the MCS gauge field is massikehas
several years agid.1]. units pf mass, as can be readily seen from &y. More— _
The multivaluedness of wave functions due to topologicaloVer. it can be shown that the theory posseses a single exci-
interactions is the hallmark of anyonic behavior within thetation with massk|/2 and spin 1 k>0) or =1 (k<0)
context of quantum mechani¢d2-18. Hence one could [1]- . o o
interpret the MCST as one of point particles, lying at the The canonical quantization in the manner of Dirac yields
boundaries of the paths, and obeying fractional statistics. Thie following results. In the Weyl gaugé\¢=0) there is a
statistical parameter results to be related to the mass of tH&St class constraint generating the time independent gauge
model. Indeed, the mass term can be gauged away by tHEansformations
singular gauge transformation that maps the ordinary wave
function into the muI_tivaIued one. At Iast, the geometric ap- a1 (x) + LB(X)ZO (4)
proach allows to display the following equivalence: the 4
MCST may be mapped into a massles scalar field theory N )
with fractional statistics. with B= € 9;A;, andIl' being the canonical momentum sat-

isfying

The MCS Lagrangian density is given by]

k 2
D+(E) }Faﬁzo 3)

*Email address: lleal@tierra.ciens.ucv.ve [A(x),IT(y)]=i8 6% (x—y). (5
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The remaining canonical commutators vanish.
Unlike the pure Maxwell case, the momentdii does
not coincide with the electric field. Indeed,

Ei_FiO_Hi_ k IJA 6
SR A ©
It is easily verified that botr_Ei and B are gauge invariant
guantities, in contrast witdl' and A;. The algebra of the

fundamental observables results to be

[E'(x),B(y)]= —i€1d,6%(x~y), (7)
E'(x),El(y)]= | X 52 8
[ (X)1 (y)]__lze (X_y)v ( )

[B(x),B(y)]=0. 9)
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The usual composition of curves can be lifted to a group
product among paths as follows. Given two curvas y,,
the form factor of their compositiom'(y; - y,) does not de-
pend on the representatives, i.&\(y;-y5) =T (y1-v2),
whenevery; ~ v, and y,~ v,. Hence we define the product
of two paths as the class to which the composition of their
representative curves belong. Furthermore, the equivalence
class of the opposite curve vy plays the role of the inverse
path, while the equivalence class of the null curve amounts
to the identity. The group so defined is Abelian, as may be
readily seen.

As in the study of the Proca fie[®], we shall use the path
derivative A;(x), which measures the change of a path-
dependent functiona¥ (y) when a small open patﬁyﬁ*h
starting atx and ending ak+h (h—0) is attached toy:

W(8y. 1) =[1+h'A()]¥ (7). (15

The Hamiltonian of the theory, on the physical sector, is

given by
H:f dzx;[(E‘)2+Bz] (10)

which, together with the conserved momentum

pi= —f d?x €/ EIB, (11)
the angular momentum
J:f d’x XE'B, (12)
and the generator of Lorentz boosts
1 . .
M'°=§f d?x[ (E')?+B?]—tP', (13

provide a representation of the Poincalgebra in 2-1 di-
mensiong 1].

Ill. PATH SPACE REPRESENTATION

Now we focus on the geometric representation appropr
ate to the MCST. To this end, we recall some basic fact

about the path representatif®]. Given a curvey in R", we
define its form factor

Ti(x,y)= f S(x—y)dy (14
Y

Equation(15), definingA;(x), must be thought to hold up to
first order inh'. The path derivative is related to the Abelian
loop derivativeA;;(x) of Gambini-Trias[ 7] by

J 1%
Aij(X): _AJ(X)__
J ax!

i Ai(X).
X

(16)

This last object, also known as the area derivative, serves to
compute how a patkor loop) dependent functional changes
when a small plaguette is attached to it at the paint

Using definition(15) it is a trivial matter to show thaive
return to 21 dimensions

A)THX,y)= 8] 6%(x—X") (17)
hence the canonical algeb(®d) is satisfied if we set
i
Ai(X) = gAi(x), (18)
IT'(x)—eT(x,y), (19

which constitutes a realization of the canonical operators

jonto path dependent wave functional{y). In Egs. (18)

and (19) the constane with units of [masg*? was intro-

duced to properly adjust the dimensions.
To write down the constraint E@4) in the path represen-
tation, we need to calculate

J .
ﬁm,w:—g [ 8%(x— Bs) — 8%(x— ay)]

which is independent of the parametrization chosen. It

should be said thay could consist of several disjoint pieces,

some of which could be closed. Expressid#d) allows us to
group the curves in equivalence classes: two cuwvasady’
are said to be equivalent if'(y)=T'(y’). It is a simple

=—p(X,7), (20)

where B (as) is the ending(starting point of the piece
s-th which contributes to the whole path(remember thay

matter to show that this is indeed an equivalence relationmay consist of several disjoint pie¢gehusp(x,y) can be

The equivalence classes of curvpg] are denominated

thought as the “form factor” of the boundary of the path.

paths. From now on, we shall not make a distinction betweefhe first class constraint of the theory Ed) demands that

a path and any of its representatives.

the physical(i.e., gauge invariamtwave functionals obey
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2

ik B _ . 28 .
\I’(')’a)Physical_ex _|TA® ®(as;Bs) (29

—p(Xy)+ - €lA;(x) | ¥(y)=0.

(21)

It is worth mentioning a major difference between the geoWith ®(as;Bs) an arbitrary functional of the boundary of the

metric representation of the MCS and the pure Maxwell oath- _ , .

Proca theories. In the Maxwell café], the introduction of Expression(29) is then the solution to the gauge con-
loop-dependent functionals automatically solves the gaugg@int in path space E¢21). We see that although the in-
constraint. Similarly, the use of path-dependent wave funciroduction of paths does not solve automatically the con-
tionals fulfills gauge invariance in the Proca-StueckelbercStraint, it does allow to characterize the physical sector in a

theory [9]. However, this is not the case with the MCST. 9eometrically appealing form. To write down the physical

Further restrictions on the path dependencelgfy) which observables of the theory in the path space representation,
are to be dictated by the constraint E&1) remain to be

considered. To this end, we set, without loss of generality,

V(y)=exdix(y)]P(y) (22
and asky(y) to obey
00X =~ 2 pix ) (23)
then Eq.(21) reduces to
€lA;(x)P(y)=0. (24)

Equation(23) is solved hy
2e? .
x(v)= TJ dZXJ dx'2g;0,In|x—x'| €T (x", y) TK(x, y)

(X_ﬁs)l _(X_ a’s)l
|X_,83|2

as a careful application of the area derivative shows.
Since

2e?
=— T E f kaélk (25)
s Jy

|X_as|2

1wl
LS
y [x" —x|?

is the angle subtended by the patlfirom the pointx, we see
that Eq.(25) yields

(26)

2

2e
X()’):—TAQ (27

whereA® is equal to the sum of the angles subtended by the

pieces of the path from their final poin{8s, minus the

one needs to know how the gauge invariant operasoasd
E' act onto the physical sector of the Hilbert space. One has,
after some calculations,

E'()exdix(7)]P(as;Bs)

. e [(x=BY) (x—ay)
=exfix(y)] p ES: ((X—,35|2 |X_as|2)
ik ij .
T ane€ Aj(x) | P(as;Bs) (30)
and
B(x)exdix(y)]P(as;Bs)
4e )
=TeXF{lX(V)JP[X,(a:B)FD(as;Bs),
(31)

where we have sep(X,y)=p[X,(a;B)] to stress the fact
that p depends ony just through its boundary, the set of
starting pointseg, and ending pointgs.

We thus see that the physical sector is invariant under the
action of bothB andE', as expected. It should be remarked
that the path derivativd;(x) acting on®(as;Bs) is a well
defined object, since a boundary dependent funciigny)
is a special kind of a path-dependent one. From E28—

(31) we also see that there is a simple unitary transformation
which allows to eliminate the path dependent phase: namely,

\P(')’)Physical_)q'('y):exq_ ix( 7)]‘1}(7)Physical
=®(a,p),

angles subtended by the same pieces measured from their Aphysicaﬁ’A:eX[{_iX(’)’)]AphySicaEXin(’y)],

starting pointsas. Hence we see thagg(y) depends ony

(32

through their boundary, and through the way that the diverse

pieces of y wind around these boundary pointg’s and
Bs’S.

Equation(24), on the other hand, states thh{vy) is in-
sensitive to the addition of closed paths, i.@(C-y)
=®d(vy), whereC is a loop. Thusb(vy) only depends on the
boundary of the path:

O (y)=P(as;Bs).

Summarizing, we have that on the physical sector

(28)

whereApy,ysicaliS any gauge invariant operator of the theory.
After the unitary transformation is performed, what is left is
a dependence on the set of “signed” poinig and B,
corresponding to the boundary of the missed path. It can be
shown that these sets of signed points inherit a group struc-
ture due to the paths where they come from. In fact, when a
starting and ending point meet at the same place, they anni-
hilate each other. Therefore we shall refer to them as
“points” and “antipoints,” respectively. It is worth saying
that there is a non-Abelian version of this group of points,
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which encodes the kinematics of the principal chiral fields, 2e?

and that will be discussed elsewhere. Ala;B)=— TJ dZXJ d?y p[x,(a; B)16(x~Y)
From Egs.(10), (30), and (31), and taking into account

the unitary transformation Eq32), we can write down the Xply.(a;B)]

Schralinger equation in the geometric representation 5
2e

== K 2 E [0(Bs— Bs') — 0(Bs— asr)

. s ¢

| Pl(asiBo) ]

+0(as—ag)— 0(as— Bys)], (37)
5 e (x— B (x—ay)' 0(x) being the angle that the vectgrmakes with the posi-
= dx = P ES: Ix— B2 B IX—ard? tive x axis. With the aid of the expressions
S| S|
K i ool (D plx (@i B)] = 5z-x) (39)
T g€ A AP RIS
4me) 2 and
+ T) pAx (i p)] | Pl(asiBt]. (33
0= en (39)
ax! " Ix[2

In a similar way, the conserved momentLFPh, angular
momentumJ, and the boosts generatds”’ can be realized it can be seen that
in the geometric representation. It may be seen that the op- o
eratorsP' andJ act by translating and rotating the argument  —iD;(X)®(a;8)=—i exdiA(a; B)]A;(X)P(a;B).
4

of the wave functionadb(«;B); for instance, (40
: Thus, in the covariant derivative and in the Sdainger
(1+u'P)P(a; B)=P(at+u;B+u) (349 equation, the interaction may be removed at the expense of

dealing with redefined wave functionads, which result to
with u being an infinitesimal constant spatial vector. It mustbe multivalued. In fact, the Schdinger equation for that
be said that botiP' andJ, inasmuchH should be properly multivalued wave functional may be written as
regularized, since they involve ill defined products of distri-
butions(needless to say that this feature is not a consequenc i— . _ J 2
of the geometric representatjon ﬁe&tq)[(as”BS)’t]_ dx

k 2
m) [A(x)]?

47e\? 2 —
T) p2Ix,(a:)1| DT (ag: B ]

(41)

IV. RELATION WITH THE MASSLES SCALAR FIELD +
AND NONRELATIVISTIC ANYONS

The Schrdinger Eq.(33) resembles the wave equation of
a collection of point particles interacting through a Chern-which corresponds to the Schiiager equation for the
Simons term[15,17,18 in the sense that there appears amassles scalar field theory, with Lagrangian density
“‘covariant derivative”

1
Ly=50,$"¢ (42

. . 4¢€? 2 (X_Bs)i (X_as)i
~IDi(x)=—14y(x) = K < € Ix— B2 B Ix—ag? in a geometric representation, as we briefly discuss. The as-

sociated Hamiltonian is
(35

1
- 2y _(TI%+ 9. b
which comprises, besides the path derivatvgx), a term Hy f d XZ(H b9 4) 43
of statistical interaction among the poinrtsand antipointss, ) _ )
which should play the role of the particles. This observationwith I1 being the canonical momentum
can be made more precise as follows. Let us consider the 0
singular gauge transformation [¢(x).11(y)]=16%(x=y). (44)
If we prescribe the realization

(i)~ B(a; p)=exiliA (@i B)P(aif)  (36) 00— 1A s

with I(X)— p[x,(a;B)] (46)
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onto wave functionalsd 4(«;B), the commutator(44) is
verified, as well as

[6i (), d;¢(y) ]=[T1(x),11(y)]=0 (47)

while the corresponding Schiimger equation reads

k |2 5
'«ZE)M“)

4e\? )
T) p [X,(a;ﬁ)]}q)d(as;ﬂs),t]
(48

. d
il (agiB9 0= | dPx

+

which coincides with Eq(41), as claimed, except by the fact
that here the wave functiond},, is single valued. It should
be observed that there is no need to realhzesince only its
derivatived; ¢ appears in the expressions for the observable
of the theory. This reflects the invariance of the model unde
the shift ¢— ¢+ const.

The fact that the path dependence is only manifeste
through the boundaryd(;8) of the pathy evidences that,

&

PHYSICAL REVIEW D63 065010

The multivalued functionV,, which converts the the multi-
particle Schrdinger equation into a “free” equation, pre-
sents remarkable coincidences with the functiobgly; )
[Egs. (36) and (37)]. In fact, since 68(Bs— Bs)= 0(Bs
—Bs) =2, EQ.(37) can be written as

e2

AMeiB)=— 10 2 [0(Bs=By) = 0(Bs— ary)

s'<s

+ 0(as— ag)— 0(as— Bs) ] +const. (53

In writing Eq. (53) we have omited the undetermined “self-
interaction” terms of the typed(Bs—Bs)=6(0). If the
charges of the particles in the CS point-particles theory are
restricted byle,| =e, we see that the phase in E§2) coin-
gides with A(a;B). In both cases, exchange of two “par-
pcles” makes the wave function to pick up a phase factor
which is a multiple of expri(e?w/k)], depending on the
ute followed to exchange the “points” and “antipoints”

r the particles and on their relative sign.

indeed, there is a simpler geometry underlying both the MCS
and the massles scalar field theories: the appropriate geomet-

ric representation is one of sets of “points” and “anti-
points” [see comment after Eq36)]. This signed point

V. DISCUSSION

We have studied the canonical quantization of the MCST

group is the first member in a list of geometric structures;, 5 hath representation. The physical sector of the theory,

related to gauge theories @f forms, to which paths and
loops (for the casgp=1) belong.
We are ready to compare the MCS Sdinger equation

in path space, Eq41), and its multivalued wave functioi,
Eq. (36), with what results from the quantization of a collec-
tion of N nonrelativistic particles interacting through a CS
term [15,17,18. The corresponding Schiimger equation
may be written as

N
. 1
W (ry, ... ,rN,t):pgl - z_mp(vp
—iepa)®W(ry, ... ry.t) (49
with
1 N
%:Evp;q eqﬂpq (50)

while 6, is the angle that the vectoy, — x, makes with the
X axis.
Equation(49) may be written in the form

N
. 1
Io-'t’\I,O(rl! CEE 1rN1t): Z]_ - z_n]p(vp)zqfo(rla e eryt)
(51
with

€p€q
k

>

p<q

(52

‘P0=eXL< _|

®pq)w.

the basic gauge invariant operators, and the Hamiltonian
were explicitly calculated in this geometric representation.
The resolution Eq. (29)] of the Gauss constrairi21), pro-
vides a nontrivial example of path-space calculation. Also, it
shows the advantages of employing this formulation to deal
with the geometrical content of the theory, which allows us
to relate it with the quantum mechanics of point particles
with anyonic behavior.

More precisely, it was shown that the MCST is equivalent
to the theory of a massles scalar field whose wave functional
obeys anyonic boundary conditions. This anyonic behavior is
manifested in a simple form within the path-representation
framework, since the ends of the paiftpoints” and “an-
tipoints™) just play the role of the particles whose exchanges
give rise to the nonconventional statistical phase factor that
reveals the anyonic content of the theory. In other words, it is
due to the fact that we are working in a path representation,
instead of a “shape representatiof4;), that we can make
an easy contact with the model of anyonic particles.

It would be interesting to explore the non-Abelian coun-
terpart of the present theory in the corresponding geometric
representation. One can suspect that a non-Abelian “signed-
points” representation, which arises when dealing with the
principal chiral field, could be the key to carrying out this
program[see comment after E432)]. It would also be in-
teresting to study the self-duéle., massive Chern-Simons
theory [22] in the path representation. This model is dual
(and henceforth equivalento the MCST[23], and probably
there exists an underlying geometry supporting this duality
that could be made explicit with the aid of an appropriate
geometric representation.
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