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Maxwell Chern-Simons theory in a geometric representation

Lorenzo Leal* and Oswaldo Zapata
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We quantize the Maxwell Chern-Simons theory in a geometric representation that generalizes the Abelian
loop representation of Maxwell theory. We find that in the physical sector the model can be seen as the theory
of a massles scalar field with a topological interaction that enforces the wave functional to be multivalued. This
feature allows us to relate the Maxwell Chern-Simons theory with the quantum mechanics of particles inter-
acting through a Chern-Simons field.
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I. INTRODUCTION

The Maxwell Chern-Simons theory~MCST! @1# presents
the interesting property of being a massive theory, while a
being gauge invariant. The mass is provided by the topolo
cal Chern-Simons~CS! term, which, in turn, has been widel
considered both in the Abelian and non-Abelian cases a
pure gauge theory@1–5#.

The purpose of this paper is to study the geometric rep
sentation appropriate for the Abelian MCST, within the sp
of the loop representation of Maxwell theory@6–8#. Our mo-
tivation is mainly to obtain further insight into the loop an
path representations that could be useful for later deve
ments in more realistic theories, such as quantum gravit
the Ashthekar formulation@19–21#. Within this program, the
path representation of the Proca-Stueckelberg theory
studied recently@9#. Also, the Maxwell field coupled to poin
particles has been quantized in a geometric representa
@10#. A common feature of these models, which is a
shared by the free Maxwell theory, is that the introduction
loops or open paths~depending on the case! automatically
solves the Gauss constraint. As we shall see, this is not
case for the MCST. Instead, the Gauss constraint furthe
stricts the path space, leaving the boundary of the path
the relevant geometric structures, except by the fact that
theory is sensible to the number of times hat the paths w
around their own boundaries. This feature lead us to d
with multivalued wave functionals. A similar result was o
tained for the Chern-Simons field coupled to a scalar fi
several years ago@11#.

The multivaluedness of wave functions due to topologi
interactions is the hallmark of anyonic behavior within t
context of quantum mechanics@12–18#. Hence one could
interpret the MCST as one of point particles, lying at t
boundaries of the paths, and obeying fractional statistics.
statistical parameter results to be related to the mass o
model. Indeed, the mass term can be gauged away by
singular gauge transformation that maps the ordinary w
function into the multivalued one. At last, the geometric a
proach allows to display the following equivalence: t
MCST may be mapped into a massles scalar field the
with fractional statistics.
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The organization of the paper is as follows. In Sec. II w
recall some basic results about the MCST and its canon
quantization. In Sec. III we review the Abelian path spa
and study the path representation of the quantum MC
paying special interest to the geometric resolution of
Gauss constraint. Section IV is devoted to explore the re
tion between the MCST, the massles scalar field theory,
the quantum mechanics of nonrelativistic particles with
interaction. A short discussion is presented in Sec. V.

II. MODEL

The MCS Lagrangian density is given by@1#

L52
1

4
FabFab1

k

4p
eabg]aAbAg , ~1!

whereFab5]aAb2]bAa . We takegmn5diag(1,21,21).
The equation of motion

]aFag1
k

2p
eabg]aAb50 ~2!

leads to

Fh1S k

2p D 2GFab50 ~3!

which shows that the MCS gauge field is massive@k has
units of mass, as can be readily seen from Eq.~2!#. More-
over, it can be shown that the theory posseses a single e
tation with massuku/2p and spin 1 (k.0) or 21 (k,0)
@1#.

The canonical quantization in the manner of Dirac yie
the following results. In the Weyl gauge (A050) there is a
first class constraint generating the time independent ga
transformations

] iP
i~x!1

k

4p
B~x!50 ~4!

with B5e i j ] iAj , andP i being the canonical momentum sa
isfying

@Ai~x!,P j~y!#5 id i
jd2~x2y!. ~5!
©2001 The American Physical Society10-1



t

i

pr
c

s,

io

ee

up

t
eir
nce

nts
be

th-

n

s to
s

ors

-

h.

LORENZO LEAL AND OSWALDO ZAPATA PHYSICAL REVIEW D 63 065010
The remaining canonical commutators vanish.
Unlike the pure Maxwell case, the momentumP i does

not coincide with the electric field. Indeed,

Ei5Fi05P i2
k

4p
e i j Aj . ~6!

It is easily verified that bothEi and B are gauge invarian
quantities, in contrast withP i and Ai . The algebra of the
fundamental observables results to be

@Ei~x!,B~y!#52 i e i j ] jd
2~x2y!, ~7!

@Ei~x!,Ej~y!#52 i
k

2p
e i j d2~x2y!, ~8!

@B~x!,B~y!#50. ~9!

The Hamiltonian of the theory, on the physical sector,
given by

H5E d2x
1

2
@~Ei !21B2# ~10!

which, together with the conserved momentum

Pi52E d2x e i j EjB, ~11!

the angular momentum

J5E d2x xiEiB, ~12!

and the generator of Lorentz boosts

Mi05
1

2E d2x@~Ei !21B2#2tPi , ~13!

provide a representation of the Poincare´ algebra in 211 di-
mensions@1#.

III. PATH SPACE REPRESENTATION

Now we focus on the geometric representation appro
ate to the MCST. To this end, we recall some basic fa
about the path representation@9#. Given a curveg in Rn, we
define its form factor

Ti~x,g!5E
g
dn~x2y!dyi ~14!

which is independent of the parametrization chosen.
should be said thatg could consist of several disjoint piece
some of which could be closed. Expression~14! allows us to
group the curves in equivalence classes: two curvesg andg8
are said to be equivalent ifTi(g)5Ti(g8). It is a simple
matter to show that this is indeed an equivalence relat
The equivalence classes of curves@g# are denominated
paths. From now on, we shall not make a distinction betw
a path and any of its representatives.
06501
s

i-
ts
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n.

n

The usual composition of curves can be lifted to a gro
product among paths as follows. Given two curvesg1 ,g2,
the form factor of their compositionTi(g1•g2) does not de-
pend on the representatives, i.e.,Ti(g18•g28)5Ti(g1•g2),
wheneverg18;g1 andg28;g2. Hence we define the produc
of two paths as the class to which the composition of th
representative curves belong. Furthermore, the equivale
class of the opposite curve2g plays the role of the inverse
path, while the equivalence class of the null curve amou
to the identity. The group so defined is Abelian, as may
readily seen.

As in the study of the Proca field@9#, we shall use the path
derivative D i(x), which measures the change of a pa
dependent functionalC(g) when a small open pathdgx

x1h

starting atx and ending atx1h (h→0) is attached tog:

C~dg.g![@11hiD i~x!#C~g!. ~15!

Equation~15!, definingD i(x), must be thought to hold up to
first order inhi . The path derivative is related to the Abelia
loop derivativeD i j (x) of Gambini-Trias@7# by

D i j ~x!5
]

]xi
D j~x!2

]

]xj
D i~x!. ~16!

This last object, also known as the area derivative, serve
compute how a path~or loop! dependent functional change
when a small plaquette is attached to it at the pointx.

Using definition~15! it is a trivial matter to show that~we
return to 211 dimensions!

D i~x!Tj~x8,g!5d i
jd2~x2x8! ~17!

hence the canonical algebra~5! is satisfied if we set

Ai~x!→ i

e
D i~x!, ~18!

P i~x!→eTi~x,g!, ~19!

which constitutes a realization of the canonical operat
onto path dependent wave functionalsC(g). In Eqs. ~18!
and ~19! the constante with units of @mass#1/2 was intro-
duced to properly adjust the dimensions.

To write down the constraint Eq.~4! in the path represen
tation, we need to calculate

]

]xi
Ti~x,g!52(

s
@d2~x2bs!2d2~x2as!#

[2r~x,g!, ~20!

where bs (as) is the ending~starting! point of the piece
s-th which contributes to the whole pathg ~remember thatg
may consist of several disjoint pieces!. Thusr(x,g) can be
thought as the ‘‘form factor’’ of the boundary of the pat
The first class constraint of the theory Eq.~4! demands that
the physical~i.e., gauge invariant! wave functionals obey
0-2
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S 2r~x,g!1
ik

8pe2
e i j D i j ~x!D C~g!50. ~21!

It is worth mentioning a major difference between the ge
metric representation of the MCS and the pure Maxwell
Proca theories. In the Maxwell case@6#, the introduction of
loop-dependent functionals automatically solves the ga
constraint. Similarly, the use of path-dependent wave fu
tionals fulfills gauge invariance in the Proca-Stueckelb
theory @9#. However, this is not the case with the MCS
Further restrictions on the path dependence ofC(g) which
are to be dictated by the constraint Eq.~21! remain to be
considered. To this end, we set, without loss of generalit

C~g!5exp@ ix~g!#F~g! ~22!

and askx(g) to obey

e i j D i j ~x!x~g!52
8pe2

k
r~x,g! ~23!

then Eq.~21! reduces to

e i j D i j ~x!F~g!50. ~24!

Equation~23! is solved by

x~g!5
2e2

k E d2xE dx82] i] l lnux2x8ue lkTi~x8,g!Tk~x,g!

52
2e2

k (
s
E

g
dxke lkF ~x2bs!

l

ux2bsu2
2

~x2as!
l

ux2asu2G ~25!

as a careful application of the area derivative shows.
Since

u5E
g
dx8ke lk

~x82x! l

ux82xu2
~26!

is the angle subtended by the pathg from the pointx, we see
that Eq.~25! yields

x~g!52
2e2

k
DQ, ~27!

whereDQ is equal to the sum of the angles subtended by
pieces of the path from their final pointsbs , minus the
angles subtended by the same pieces measured from
starting pointsas . Hence we see thatx(g) depends ong
through their boundary, and through the way that the dive
pieces ofg wind around these boundary pointsas’s and
bs’s.

Equation~24!, on the other hand, states thatF(g) is in-
sensitive to the addition of closed paths, i.e.,F(C•g)
5F(g), whereC is a loop. ThusF(g) only depends on the
boundary of the path:

F~g!5F~as ;bs!. ~28!

Summarizing, we have that on the physical sector
06501
-
r

e
-
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e

C~ga
b!Physical5expS 2 i

2e2

k
DQ DF~as ;bs! ~29!

with F(as ;bs) an arbitrary functional of the boundary of th
path.

Expression~29! is then the solution to the gauge co
straint in path space Eq.~21!. We see that although the in
troduction of paths does not solve automatically the c
straint, it does allow to characterize the physical sector i
geometrically appealing form. To write down the physic
observables of the theory in the path space representa
one needs to know how the gauge invariant operatorsB and
Ei act onto the physical sector of the Hilbert space. One h
after some calculations,

Ei~x!exp@ ix~g!#F~as ;bs!

5exp@ ix~g!#F2
e

p (
s

S ~x2bs!
i

(x2bsu2
2

~x2as!
i

ux2asu2
D

2
ik

4pe
e i j D j~x!GF~as ;bs! ~30!

and

B~x!exp@ ix~g!#F~as ;bs!

5
4pe

k
exp@ ix~g!#r@x,~a;b!#F~as;bs!,

~31!

where we have setr(x,g)5r@x,(a;b)# to stress the fact
that r depends ong just through its boundary, the set o
starting pointsas , and ending pointsbs .

We thus see that the physical sector is invariant under
action of bothB andEi , as expected. It should be remarke
that the path derivativeD i(x) acting onF(as ;bs) is a well
defined object, since a boundary dependent functionF(]g)
is a special kind of a path-dependent one. From Eqs.~29!–
~31! we also see that there is a simple unitary transforma
which allows to eliminate the path dependent phase: nam

C~g!Physical→C̃~g!5exp@2 ix~g!#C~g!Physical

5F~a,b!,

APhysical→Ã5exp@2 ix~g!#APhysicalexp@ ix~g!#,
~32!

whereAPhysical is any gauge invariant operator of the theor
After the unitary transformation is performed, what is left
a dependence on the set of ‘‘signed’’ pointsas and bs ,
corresponding to the boundary of the missed path. It can
shown that these sets of signed points inherit a group st
ture due to the paths where they come from. In fact, whe
starting and ending point meet at the same place, they a
hilate each other. Therefore we shall refer to them
‘‘points’’ and ‘‘antipoints,’’ respectively. It is worth saying
that there is a non-Abelian version of this group of poin
0-3
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LORENZO LEAL AND OSWALDO ZAPATA PHYSICAL REVIEW D 63 065010
which encodes the kinematics of the principal chiral fiel
and that will be discussed elsewhere.

From Eqs.~10!, ~30!, and ~31!, and taking into accoun
the unitary transformation Eq.~32!, we can write down the
Schrödinger equation in the geometric representation

i
]

]t
F@~as ;bs!,t#

5E dx2H F2
e

p (
s

S ~x2bs!
i

ux2bsu2
2

~x2as!
i

ux2asu2 D
2

ik

4pe
e i j D j~x!G 2

1S 4pe

k D 2

r2@x,~a;b!#J F@~as ;bs!,t#. ~33!

In a similar way, the conserved momentumPi , angular
momentumJ, and the boosts generatorsM0i can be realized
in the geometric representation. It may be seen that the
eratorsPi andJ act by translating and rotating the argume
of the wave functionalF(a;b); for instance,

~11ui Pi !F~a;b!5F~a1u;b1u! ~34!

with u being an infinitesimal constant spatial vector. It mu
be said that bothPi and J, inasmuchH should be properly
regularized, since they involve ill defined products of dist
butions~needless to say that this feature is not a conseque
of the geometric representation!.

IV. RELATION WITH THE MASSLES SCALAR FIELD
AND NONRELATIVISTIC ANYONS

The Schro¨dinger Eq.~33! resembles the wave equation
a collection of point particles interacting through a Che
Simons term@15,17,18# in the sense that there appears
‘‘covariant derivative’’

2 iD l~x![2 iD l~x!2
4e2

k (
s

e i l S ~x2bs!
i

ux2bsu2
2

~x2as!
i

ux2asu2
D

~35!

which comprises, besides the path derivativeD j (x), a term
of statistical interaction among the pointsa and antipointsb,
which should play the role of the particles. This observat
can be made more precise as follows. Let us consider
singular gauge transformation

F~a;b!→F̄~a;b![exp@ iL~a;b!#F~a;b! ~36!

with
06501
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L~a;b!52
2e2

k E d2xE d2y r@x,~a;b!#u~x2y!

3r@y,~a;b!#

52
2e2

k (
s

(
s8

@u~bs2bs8!2u~bs2as8!

1u~as2as8!2u~as2bs8!#, ~37!

u(x) being the angle that the vectorx makes with the posi-
tive x axis. With the aid of the expressions

D i~z!r@x,~a;b!#5
]

]zi
d2~z2x! ~38!

and

]

]xl
u~x!52e lk

xk

uxu2
~39!

it can be seen that

2 iD j~x!F~a;b!52 i exp@ iL~a;b!#D j~x!F̄~a;b!.
~40!

Thus, in the covariant derivative and in the Schro¨dinger
equation, the interaction may be removed at the expens
dealing with redefined wave functionalsF̄, which result to
be multivalued. In fact, the Schro¨dinger equation for that
multivalued wave functional may be written as

i
]

]t
F̄@~as ;bs!,t#5E dx2F2S k

4peD 2

@D j~x!#2

1S 4pe

k D 2

r2@x,~a;b!#GF̄@~as ;bs!,t#

~41!

which corresponds to the Schro¨dinger equation for the
massles scalar field theory, with Lagrangian density

Lf5
1

2
]mf]mf ~42!

in a geometric representation, as we briefly discuss. The
sociated Hamiltonian is

Hf5E d2x
1

2
~P21] if] if! ~43!

with P being the canonical momentum

@f~x!,P~y!#5 id2~x2y!. ~44!

If we prescribe the realization

] if~x!→2 iD i~x!, ~45!

P~x!→r@x,~a;b!# ~46!
0-4
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MAXWELL CHERN-SIMONS THEORY IN A GEOMETRIC . . . PHYSICAL REVIEW D63 065010
onto wave functionalsFf(a;b), the commutator~44! is
verified, as well as

@] if~x!,] jf~y!#5@P~x!,P~y!#50 ~47!

while the corresponding Schro¨dinger equation reads

i
]

]t
Ff@~as ;bs!,t#5E d2xF2S k

4peD 2

D j~x!2

1S 4pe

k D 2

r2@x,~a;b!#GFf@~as;bs!,t#

~48!

which coincides with Eq.~41!, as claimed, except by the fac
that here the wave functionalFf is single valued. It should
be observed that there is no need to realizef, since only its
derivative] if appears in the expressions for the observab
of the theory. This reflects the invariance of the model un
the shiftf→f1const.

The fact that the path dependence is only manifes
through the boundary (a;b) of the pathg evidences that,
indeed, there is a simpler geometry underlying both the M
and the massles scalar field theories: the appropriate geo
ric representation is one of sets of ‘‘points’’ and ‘‘ant
points’’ @see comment after Eq.~36!#. This signed point
group is the first member in a list of geometric structu
related to gauge theories ofp forms, to which paths and
loops ~for the casep51) belong.

We are ready to compare the MCS Schro¨dinger equation
in path space, Eq.~41!, and its multivalued wave functionF̄,
Eq. ~36!, with what results from the quantization of a colle
tion of N nonrelativistic particles interacting through a C
term @15,17,18#. The corresponding Schro¨dinger equation
may be written as

i ] tC~r1 , . . . ,rN ,t !5 (
p51

N

2
1

2mp
~,p

2 iepap!2C~r1 , . . . ,rN ,t ! ~49!

with

ap5
1

k
,p(

p5” q

N

equpq ~50!

while upq is the angle that the vectorxp2xq makes with the
x axis.

Equation~49! may be written in the form

i ] tC0~r1 , . . . ,rN ,t !5 (
p51

N

2
1

2mp
~,p!2C0~r1 , . . . ,rN ,t !

~51!

with

C05expS 2 i (
p,q

epeq

k
QpqDC. ~52!
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The multivalued functionC0, which converts the the multi-
particle Schro¨dinger equation into a ‘‘free’’ equation, pre
sents remarkable coincidences with the functionalF̄(a;b)
@Eqs. ~36! and ~37!#. In fact, since u(bs2bs8)5u(bs8
2bs)62p, Eq. ~37! can be written as

L~a;b!52
e2

k (
s8,s

@u~bs2bs8!2u~bs2as8!

1u~as2as8!2u~as2bs8!#1const. ~53!

In writing Eq. ~53! we have omited the undetermined ‘‘sel
interaction’’ terms of the typeu(bs2bs)5u(0). If the
charges of the particles in the CS point-particles theory
restricted byuepu5e, we see that the phase in Eq.~52! coin-
cides with L(a;b). In both cases, exchange of two ‘‘pa
ticles’’ makes the wave function to pick up a phase fac
which is a multiple of exp@6i(e2p/k)#, depending on the
route followed to exchange the ‘‘points’’ and ‘‘antipoints
~or the particles!, and on their relative sign.

V. DISCUSSION

We have studied the canonical quantization of the MC
in a path representation. The physical sector of the the
the basic gauge invariant operators, and the Hamilton
were explicitly calculated in this geometric representatio
The resolution@Eq. ~29!# of the Gauss constraint~21!, pro-
vides a nontrivial example of path-space calculation. Also
shows the advantages of employing this formulation to d
with the geometrical content of the theory, which allows
to relate it with the quantum mechanics of point partic
with anyonic behavior.

More precisely, it was shown that the MCST is equivale
to the theory of a massles scalar field whose wave functio
obeys anyonic boundary conditions. This anyonic behavio
manifested in a simple form within the path-representat
framework, since the ends of the paths~‘‘points’’ and ‘‘an-
tipoints’’! just play the role of the particles whose exchang
give rise to the nonconventional statistical phase factor
reveals the anyonic content of the theory. In other words,
due to the fact that we are working in a path representat
instead of a ‘‘shape representation’’uAi&, that we can make
an easy contact with the model of anyonic particles.

It would be interesting to explore the non-Abelian cou
terpart of the present theory in the corresponding geome
representation. One can suspect that a non-Abelian ‘‘sign
points’’ representation, which arises when dealing with t
principal chiral field, could be the key to carrying out th
program@see comment after Eq.~32!#. It would also be in-
teresting to study the self-dual~i.e., massive Chern-Simons!
theory @22# in the path representation. This model is du
~and henceforth equivalent! to the MCST@23#, and probably
there exists an underlying geometry supporting this dua
that could be made explicit with the aid of an appropria
geometric representation.
0-5



’’

ar

d
e,

ve

, B

l.

ys.

LORENZO LEAL AND OSWALDO ZAPATA PHYSICAL REVIEW D 63 065010
@1# S. Deser, R. Jackiw, and S. Templeton, Ann. Phys.~N.Y.! 140,
372 ~1982!.

@2# C.R. Hagen, Ann. Phys.~N.Y.! 157, 342 ~1984!.
@3# E. Witten, Commun. Math. Phys.121, 351 ~1989!.
@4# G. Dunne, ‘‘Aspects of Chern-Simons Theory,

hep-th/9902115.
@5# J.M.F. Labastida, ‘‘Chern-Simons Gauge Theory: Ten Ye

After,’’ USC-FT-7/99, hep-th/9905057.
@6# C. di Bartolo, F. Nori, R. Gambini, and A. Trı´as, Lett. Nuovo

Cimento Soc. Ital. Fis.38, 497 ~1983!.
@7# R. Gambini and A. Trı´as, Phys. Rev. D27, 2935~1983!.
@8# R. Gambini and J. Pullin,Loops Knots, Gauge Theory an

Quantum Gravity~Cambridge University Press, Cambridg
England, 1996!.

@9# J. Camacaro, R. Gaita´n, and L. Leal, Mod. Phys. Lett. A12,
3081 ~1997!.

@10# R. Revoredo, Tesis de Licenciatura, Escuela de Fisica, Uni
sidad Central de Venezuela, 1997.
06501
s

r-

@11# L. Leal, Mod. Phys. Lett. A7, 3013~1992!.
@12# J. Leinaas and J. Myrheim, Nuovo Cimento Soc. Ital. Fis.

37, 1 ~1977!.
@13# F. Wilczek, Phys. Rev. Lett.48, 1144~1982!; 49, 957 ~1982!.
@14# Y.S. Wu, Phys. Rev. Lett.52, 2103~1984!; 53, 111 ~1984!.
@15# D.P. Arovas, R. Schrieffer, F. Wilczek, and A. Zee, Nuc

Phys.B251@FS13#, 117 ~1985!.
@16# R. Iengo and K. Lechner, Phys. Rep.213, 179 ~1992!.
@17# R. Jackiw, Ann. Phys.~N.Y.! 201, 83 ~1990!.
@18# R. Jackiw and S-Y. Pi, Phys. Rev. D42, 3500~1990!.
@19# A. Ashtekar, Phys. Rev. Lett.57, 2244 ~1986!; Phys. Rev. D

36, 1587~1987!.
@20# C. Rovelli and L. Smolin, Nucl. Phys.B331, 80 ~1990!.
@21# R. Gambini, Phys. Lett. B255, 180 ~1991!.
@22# P.K. Townsend, K. Pilch, and P. van Nieuwenhuizen, Ph

Lett. 136B, 38 ~1984!.
@23# J. Stephany, Phys. Lett. B390, 128 ~1997!.
0-6


