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6D trace anomalies from quantum mechanical path integrals
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We use the recently developed dimensional regularization~DR! scheme for quantum mechanical path
integrals in curved space and with a finite time interval to compute the trace anomalies for a scalar field in six
dimensions. This application provides a further test of the DR method applied to quantum mechanics. It shows
the efficiency in higher loop computations of having to deal with covariant counterterms only, as required by
the DR scheme.
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I. INTRODUCTION

Quantum mechanical~QM! path integrals have been us
fully applied to the computation of chiral@1,2# and trace
@3,4# anomalies. In these applications the anomalies are id
tified as certain quantum field theory~QFT! path integral
Jacobians@5#, first reinterpreted as quantum mechanic
traces and then given a path integral representation.

The topological character of chiral anomalies explains
relative easiness of computing the corresponding QM p
integrals: the interpretation of chiral anomalies as indices
certain differential operators shows how the leading se
classical approximation of the corresponding QM path in
grals will give directly the desired result. On the contra
the calculation of trace anomalies requires to control the
perturbative expansion of QM path integrals on curv
spaces. The latter has been a favorite topic of study over
years. Most of the early literature dealt with ways of derivi
discretized expressions, but the program of taking the c
tinuum limit till the end to identify the correct regularizatio
scheme to be used directly in the continuum was alm
never completed.1

Thus, starting from Refs.@3,4# a critical re-examination of
the correct definitions of QM path integrals was initiat
which lead to two well-defined and consistent schemes
regulating and computing: mode regularization~MR! @3,4,7#
and time slicing~TS! @8,7#. Recently, following the sugges
tion in Ref. @9# of using dimensional regularization a thir

*Email address: bastianelli@bo.infn.it
†Email address: olindo@insti.physics.sunysb.edu
1One exception is the description of the phase-space path inte

in the book of Sakita@6#: it contains noncovariant counterterms a
the Feynman rules given there can be used to compute to any
sired loop order since no ambiguous product of distributions is e
to be found in the loop expansion@7#. The same cannot be said fo
the configuration space version: ambiguities are present there
must be resolved with a consistent scheme for multiplying distri
tions, which is what a regularization scheme provides.
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way of properly defining the path integrals has been dev
oped in @10#: the dimensional regularization scheme~DR!.
While the counterterms required in MR and TS are non
variant, they happen to be covariant in the DR sche
@10,11,9#.

It is the purpose of this paper to describe in details t
new scheme, test further its consistency and show the t
nical advantage of having to deal with a manifestly covari
action in performing higher loop calculations for 011 non-
linear sigma models on a finite time interval~i.e., quantum
mechanics on curved spaces with a finite propagation tim!.
We apply the DR regulated path integral to compute
trace anomaly of a conformal scalar in six dimensions~for a
review on trace anomalies see@12#!. The correct full trace
anomaly for such a scalar~and also other six dimensiona
conformal free fields! has only recently been calculated
@13# by using the heat kernel results of Gilkey@14#. With a
DR path integral calculation we are going to reproduce
complete expression of this anomaly.

The paper is structured as follows. In Sec. II we revie
the DR scheme, in Sec. III we use it to calculate the tra
anomaly for a conformal scalar field in 6D and in Sec. IV w
present our conclusions. Finally, in Appendix A we repor
list of structures and integrals employed in the main te
since the complete calculation is somewhat lengthy, it is u
ful for comparison purposes and future reference to rec
intermediate results.

II. DIMENSIONAL REGULARIZATION
OF THE PATH INTEGRAL

First, we briefly review the quantization with path inte
grals of the motion of a~nonrelativistic and unit mass! par-
ticle on a curved space with metricgi j (x) and scalar poten-
tial V(x). The model is described by the Euclidean action2

ral
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-

2We perform a Wick rotation on the time variable and work co
©2001 The American Physical Society05-1
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S@xi #5E
t i

t f
dt F1

2
gi j ~x!ẋi ẋ j1V~x!G . ~1!

In canonical quantization one must choose an ordering c
sistent with reparametrization invariance to produce a qu
tum HamiltonianH52 1

2 ¹21aR1V ~our curvature con-
ventions are found in Appendix A!. The value of the
parametera depends on the particular order chosen@15# and
conventionally can be taken to vanish with the agreemen
reintroducing the coupling toR through the potentialV.

Using path integrals the canonical ordering ambiguit
re-emerge as the need of specifying a regularization sche
The 1D sigma model in Eq.~1! contains double derivative
interactions which make Feynman graphs superficially div
gent at one and two loops. However, the nontrivial path
tegral measure can be exponentiated using ghost fields:
effect is to make finite the sum of the Feynman graphs b
regularization scheme is still necessary to render finite e
individual divergent graph. Different regularization schem
require different counterterms to reproduce a quant
Hamiltonian with a50. In mode regularization and tim
slicing such counterterms are noncovariant. In the
scheme the counterterm is covariant and equal toVDR
5R/8, as demonstrated in@10,11#.

Now, let us describe the DR scheme which we are go
to apply in the next section. First of all, we find it convenie
to use a rescaled time parametert by definingt5bt1t f and
b5t f2t i , so thatt will take values on the finite intervalI
[@21,0#. Then, we introduce bosonicai and fermionic
bi ,ci ghosts to exponentiate the nontrivial part of the p
integral measure: integrating them back will formally repr
duce the)Adetgi j factor of the measure. Finally, we intro
duceD extra infinite regulating dimensionst5(t1, . . . ,tD)
with the prescription that one will take the limitD→0 at the
very end of all calculations. Denotingtm[(t,t) with m
50,1, . . . ,D anddD11t5dtdDt, the action inD11 dimen-
sions reads

S@x,a,b,c#5
1

bEV
dD11tF1

2
gi j ~x!~]mxi]mxj1aiaj1bicj !

1b2V~x!1b2VDR~x!G ~2!

whereVDR5R/8 is the counterterm in dimensional regula
ization andV5I 3RD is the region of integration containin
the finite intervalI.

The perturbative expansion can be generated by first
composing the pathsxi(t) into a classical partxcl

i (t) satis-
fying the boundary conditions and quantum fluctuatio
qi(t) which vanish at the boundary~the ghost fields are
taken to vanish at the boundary as well! and then decompos
ing the Lagrangian into a free part plus interactions. T
latter step is achieved by Taylor expanding the metric a

sistently in the Euclidean framework. We also set\51.
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the potential around a fixed point, which we choose to be
final point xf . Thus, the propagators are recognized to be

^xi~ t !xj~s!&52b gi j ~xf ! D~ t,s!

^ai~ t !aj~s!&5b gi j ~xf ! Dgh~ t,s!,

^bi~ t !cj~s!&522b gi j ~xf ! Dgh~ t,s! ~3!

with

D~ t,s!5E dDk

~2p!D

3 (
n51

`
22

~pn!21k2
sin~pnt!sin~pns!eik•(t2s)

~4!

Dgh~ t,s!5E dDk

~2p!D (
n51

`

2 sin~pnt!sin~pns!eik•(t2s)

5dD11~ t,s!5d~t,s!dD~ t2s! ~5!

where

d~t,s!5 (
n51

`

2 sin ~pnt!sin ~pns! ~6!

is the Dirac delta on the space of functions vanishing
t,s521,0. Of course, the functionD(t,s) satisfies the
Green equation

]m
2 D~ t,s!5Dgh~ t,s!5dD11~s,t !. ~7!

The D→0 limits of these propagators are the usual ones

D~t,s!5t~s11!u~t2s!1s~t11!u~s2t! ~8!

Dgh~t,s!5 ••D~t,s!5d~t,s! ~9!

where dots on the left or right side denote derivatives w
respect to the first or second variable, respectively. Howe
such limits can be used only after one has cast the integra
corresponding to the various Feynman diagrams in an un
biguous from by making use of the manipulations allowed
the regularization scheme. In particular, in DR one can
partial integration: it is always allowed in the extraD dimen-
sion because of momentum conservation, while it can
performed along the finite time interval whenever there is
explicit function which vanishes at the boundary@for ex-
ample the propagator of the coordinatesD(t,s)]. Along the
way one may find terms of the form]m

2 D(t,s) which accord-
ing to Eq.~7! gives Dirac delta functions. The latter can b
safely used at the regulated level, i.e., inD11 dimensions.
By performing such partial integrations one tries to arrive
an unambiguous form of the integrals which can be saf
and easily calculated even after the limitD→0 is taken.

An explicit example will suffice to describe how th
above rules are concretely used:
5-2
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E
21

0

dtE
21

0

ds ~ •D! ~D •! ~ •D •!

→E dD11tE dD11s ~mD! ~Dn! ~mDn!

5E dD11tE dD11s ~mD! mS 1

2
~Dn!2D

52
1

2E dD11tE dD11s ~mmD! ~Dn!2

52
1

2E dD11tE dD11s dD11~ t,s! ~Dn!2

52
1

2E dD11t ~Dn!2u t→2
1

2E21

0

dt ~D •!2ut

52
1

24

where the symbolut means that one should sets5t.
Thus, we see that the rules of computing in DR are qu

similar to those used in MR, the only diversity being in t
different options allowed in partial integrations. In DR th
rule for contracting which indices with which indices follow
directly from the regulated action in Eq.~2! and only certain
partial integrations are allowed inD11 dimensions. In MR
one regulates by cutting off all mode sums at a large modN
and then performs partial integrations: all derivatives
now of the same nature and different options of partial in
grations arise. This explains the origin of different count
terms for these two regularizations.

III. TRACE ANOMALIES FOR A CONFORMAL
SCALAR IN 6D

As described in@3,4#, one-loop trace anomalies can b
obtained by computing a certain Fujikawa Jacobian suita
regulated and represented as a quantum mechanical pa
tegral with periodic boundary conditions
06500
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E d6x Ag s~x!^Ta
a~x!&5 lim

b→0
Tr@s e2bH#

5 lim
b→0

E
PBC

Dx s~x! e2S[x] ,

~10!

where on the left hand sideTa
a denotes the trace of the stre

tensor for a 6D conformal scalar ands(x) is an arbitrary
function describing an infinitesimal Weyl variation. In th
first equality the infinitesimal part of the Fujikawa Jacobi
has been regulated with the conformal scalar field kine
operatorH52 1

2 ¹22 1
10 R. The limit b→0 should be taken

after removing divergent terms inb ~which is what the
renormalization of the scalar field QFT will do!, and so it
picks up just theb independent term. Finally on the righ
hand side the trace is given a representation as a path int
corresponding to a model with HamiltonianH and with pe-
riodic boundary conditions. The latter can be obtained us
the quantum mechanics described in the previous sec
with a scalar potentialV52 1

10 R.
Thus we start computing the terms in the loop expans

of the path integral described in Sec. II. It will soon be cle
that it is enough to compute up to orderb3, i.e., up to 4
loops @b can be taken as the loop counting parameter,
evident form Eq.~2!#. We use reparametrization invarianc
and choose Riemann normal coordinates centered at
point x0

i representing the boundary conditions att521,0,
and which will be integrated over to recreate the full period
boundary conditions on the right hand side of Eq.~10!.

The expansion of the metric in Riemann normal coor
nates is well known. For our case, since the action includ
the counterterm is manifestly covariant, that expansion
be easily generated by the method described for this con
in @3#. One obtains the following terms needed in our a
proximation:
gmn~x!dxmdxn5Fgmn1
1

3
Rmabnx

axb1
1

3!
¹ iRmabnx

axbxi1
6

5! S ¹ i¹ jRmabn1
8

9
Rmab

aRa i jn D xaxbxixj

1
1

5!

4

3
~¹ i¹ j¹kRmabn14Rmab

a¹ iRa jkn!xaxbxixjxk1
10

7! S ¹ i¹ j¹k¹ lRmabn1
34

5
Rmi j

a¹k¹ lRaabn

1
11

2
¹ iRmab

a¹ jRakln1
8

5
Rmab

aRa i j
bRbklnD xaxbxixjxkxl1•••Gdxmdxn

V~x!5V1~¹ iV!xi1
1

2
~¹ i¹ jV!xixj1

1

3!
~¹ i¹ j¹kV!xixjxk1

1

4!
~¹ i¹ j¹k¹ lV!xixjxkxl1••• ~11!
5-3
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where all tensorial quantities on the right hand sides are evaluated at the origin of the coordinate system. Notice tha
MR and TS regularization schemes the counterterms are noncovariant and their expansions cannot be generated
obtaining the vertices from those counterterms would require a tedious computation.

Plugging the above expansions in the action~2! and noticing that the factorb2 raises by two the loop order for each verte
coming from the potential or the counterterm, we compute3

^x0 ,bux0,0&5E Dxe2S5A ^e2Sint&

5A expF2^S4&2^S6&2^S8&1
1

2
^S4

2&c1
1

2
^S5

2&c1^S4S6&c2
1

6
^S4

3&c1O~b4!G ~12!

where the subscript ‘‘c’’ stands for connected diagrams only and whereA5(2pb)2D/2 gives the correct normalization of th
path integral measure. Because of this normalization we see that forD56 theb-independent term is obtained by picking u
the b3 contributions from the expansion of the exponential on the right hand side of Eq.~12!.

The terms up to 3 loops are easily computed in DR by using the detailed expressions reported in@16#: one just needs to
compute the integrals reported there using the DR rules. Including for simplicity the counterterm inside the potentiaV, we
obtain

^S4&52bF 1

24
R2VG ~13!

^S6&52
b2

12F 1

40
¹2R1

1

90
Rmn

2 1
1

60
Rmnab

2 2¹2VG ~14!

^S4
2&c52

b2

72F1

3
Rmn

2 G . ~15!

To achieve notational simplicity in the remaining 4-loop terms we use the basis of curvature invariants given in Appe
and compute the terms reported there. We obtain

^S8&52
b3

7! F17

15
K42

16

15
K51

8

5
K61

5

12
K72

8

3
K8

1
11

10
K101

3

2
K112

19

20
K121

149

48
K132

25

8
K141

11

16
K152

5

24
K161

3

8
K17G

2
b3

6!
@2Rmn¹m¹nV1¹mR¹mV23¹4V# ~16!

^S5
2&c52

b3

6! F23

24
K132

3

4
K142

1

8
K152

5

48
K1615¹mR¹mV260~¹mV!2G ~17!

^S4S6&c52
b3

6! F13

45
K42

1

5
K51

2

15
K61

3

10
K102

1

10
K12G

~18!

^S4
3&c52

b3

6! F2

3
K41

1

6
K71

4

3
K8G . ~19!

Inserting all these values into Eq.~12! we get

3Since xi(21)5xi(0)[x0 the classical field isxcl(t)50; hence all diagrams with external fields vanish. We indicate withSn the
interaction terms containingn fields when originating from the expansion of the metric andn24 fields when originating from the scala
potential.
065005-4
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^x0 ,bux0,0&5
1

~2pb!3 expFbS 1

24
R2VD1b2S 1

720
~Rmnab

2 2Rmn
2 !1

1

480
¹2R2

1

12
¹2VD

1
b3

8! S 2
8

9
K41

8

3
K51

16

3
K61

44

9
K72

80

9
K828K10112K1122K12

22K1324K1419K151
5

4
K1613K17D

1
b3

6! S 2Rmn¹m¹nV2
3

2
¹mR¹mV130~¹mV!223¹4VD1O~b4!G . ~20!
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Now, using the valueV5 1
8 R2 1

10 R5 1
40 R to take into ac-

count the countertermVDR and the conformal coupling of th
scalar field, we compare with Eq.~10! and obtain the corre
sponding trace anomaly

^Ta
a&5

1

~2p!3

1

8! F 7

225
K12

14

15
K21

14

15
K32

8

9
K41

8

3
K5

1
16

3
K61

44

9
K72

80

9
K828K10112K111

4

5
K12

22K1324K1419K151
1

5
K162

6

5
K17G . ~21!

It agrees with the one given in@13#, where it was shown tha
it can be cast also as

^Ta
a&5

1

~2p!3

1

8! F2
5

72
E62

28

3
I 11

5

3
I 212I 3

1trivial anomaliesG ~22!

with the topological Euler density given by

E652em1n1m2n2m3n3
ea1b1a2b2a3b3Rm1n1

a1b1

3Rm2n2
a2b2

Rm3n3
a3b3

~23!

and the three Weyl invariants

I 15CamnbC
mi jnCi

ab
j , ~24!

I 25Cab
mnCmn

i j Ci j
ab, ~25!

I 35CmabcS ¹2dn
m14Rn

m2
6

5
Rdn

mDCnabc1trivial anomalies,

~26!

whereas the coefficients of the trivial anomalies are unimp
tant since they can be changed by the variation of local co
terterms. The structure of trivial anomalies has been fu
analyzed in@17#. It is interesting to note, after inspecting th
results in@17#, that the coefficients ofK1 , K2 andK3 never
06500
r-
n-
y

appear in the trivial anomalies. At the same time they
produced in the previous calculation by disconnected d
grams. Thus one may fix three of the four true anomalies
a simpler lower loop calculation, while the remaining ind
pendent fourth nontrivial anomaly, which can be taken as
one corresponding toE6, could be fixed by an independen
calculation on the simplified geometry of a maximally sym
metric space.

IV. CONCLUSIONS

We have used the recently developed dimensional re
larization scheme for quantum mechanical path integrals@10#
to compute the trace anomaly for a scalar field in six dim
sions. The identification of the full anomaly required a co
plete 4-loop quantum mechanical computation. Technica
the covariance of the countertermVDR allows a more effi-
cient identification of the corresponding vertices than in
MR and TS regularization schemes.

We noticed that the coefficients of three of the four no
trivial anomalies could as well be obtained by a simp
3-loop calculation. One may speculate that such a fact m
happen also forD58 trace anomalies: there one would ne
to compute the quantum mechanics up to 5-loops, bu
could happen that all nontrivial anomalies but one could
fixed by a simpler 4-loop calculation~presented in this pa
per! and the remaining one by a calculation on a simplifi
geometry. To concretely check this conjecture, one wo
need a cohomological analysis to identify the structure of
trivial and nontrivial anomalies, as the one given in Ref.@17#
for the six dimensional case. However, such an analysi
not available in the literature yet.

One could couple the nonlinear sigma model to no
Abelian gauge potentials to obtain the trace anomalies
other six dimensional conformal fields@13#. In such an ex-
tension the main new complication is related to the tim
ordering prescription to be used for achieving gauge cov
ance, as employed in@4#, which forces to compute differen
DR integrals for different ordering of the vertices. An a
proach which could guarantee non-Abelian covariance i
more straightforward manner would clearly be welcome
may be related to the extra ghost fields used in@8#.

While we have justified our anomaly computation b
5-5
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viewing it as the calculation of a certain Fujikawa Jacobian, conceptually it can be thought of as performed in t
quantized approach of the scalar particle theory~see the discussion in@19#!. Given that interpretation, it would be interestin
to investigate if such worldline path integrals in curved space could be useful to simplify computations of scattering am
and effective actions of perturbative QFT coupled to gravity, as it happens in the flat space case@20#.

APPENDIX A

We use the convention@¹a ,¹b#Vc5Rab
c
dVd, Rab5Rac

c
b . It is useful for notational purposes to introduce a basis

curvature invariants cubic in the curvature

K15R3 K25RRab
2 K35RRabmn

2

K45Ra
mRm

iRi
a K55RabRmnR

mabn K65RabR
amnlRb

mnl

K75Rab
mnRmn

i j Ri j
ab K85RamnbR

mi jnRi
ab

j K95R¹2R

K105Rab¹
2Rab K115Rabmn¹

2Rabmn K125Rab¹a¹bR

K135~¹aRmn!
2 K145¹aRbm¹bRam K155~¹ iRabmn!

2

K165~¹aR!2 K175¹4R. ~A1!

It differs from the basis used in@17,18# only in the definition ofK16: the one used above enters more naturally in
calculations.

In the main text contributions of orderb3 to the effective action come from the terms listed below. In the list of integ
we use the following conventions. The limits of integration are@21,0# for all variables. For 3-dimensional integrals the fir
group of propagator in round brackets depends on (t,s), the second on (s,r) and the third on (r,t), with this precise order,
while terms at coinciding points are explicitly indicated. For 2-dimensional integrals the propagators at non-coinciding
depend on (t,s), while for 1-dimensional integrals all terms are obviously taken at coinciding points. We use the sho
notation •D •5 •D •1 ••D. The DR regularization is immediate and we quote the DR values.

^S4
3&c

^S4
3&c5A01A11A21A3 ~A2!

A05
b3

9 F S 1

4
K712K8D S I 1

A02I 2
A02I 3

A012I 4
A012I 5

A022I 6
A01

1

3
I 11

A0D
2S 7

2
K71K8D S 1

3
I 7

A01I 9
A0D1S 13

4
K72K8D S I 8

A01
1

3
I 10

A0D G ~A3!

A15
b3

6
K6~ I 1

A12I 2
A122I 3

A112I 4
A11I 5

A12I 6
A11I 7

A12I 8
A122I 9

A112I 10
A1

1I 11
A12I 12

A122I 13
A112I 14

A112I 15
A122I 16

A112I 17
A122I 18

A122I 19
A112I 20

A1! ~A4!

A25
b3

9
K5@ I 1

A22I 2
A21I 3

A22I 4
A214I 5

A22I 6
A222I 7

A22I 8
A21I 9

A21I 10
A212~2I 11

A22I 12
A22I 13

A2

1I 14
A21I 15

A22I 16
A22I 17

A21I 18
A21I 19

A2!# ~A5!
065005-6
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A35
b3

27
K4~ I 1

A326I 2
A313I 3

A313I 4
A326I 5

A326I 6
A313I 7

A313I 8
A316I 9

A3

1I 10
A326I 11

A313I 12
A313I 13

A316I 14
A322I 15

A326I 16
A3!. ~A6!

Integrals inA0:

I 1
A05E E E ~D • 2!~D2!~ •D • 22 ••D 2!52

13

3780
I 2

A05E E E ~D D •!~ •D D!~ •D • 22 ••D 2!52
1

15120

I 3
A05E E E ~ •D • D •!~D2!~ •D • •D!5

13

7560
I 4

A05E E E ~ •D • D!~ •D D!~ •D • •D!52
13

15120

I 5
A05E E E ~ •D D •!~ •D D!~ •D • •D!52

1

3780
I 6

A05E E E ~ •D D!~ •D 2!~ •D • •D!5
1

1890

I 7
A05E E E @~D •D •!~D •D •!~D •D •!1~D ••D!~D ••D!~D ••D!#52

43

15120

I 8
A05E E E ~ •D D •!~D •D •!~D •D •!5

11

15120
I 9

A05E E E ~ •D D •!~ •D D •!~D •D •!5
1

756

I 10
A05E E E ~ •D D •!~ •D D •!~ •D D •!52

1

945
I 11

A05E E E ~ •D2!~ •D2!~ •D2!5
1

756
.

~A7!

Integrals inA1:

I 1
A15E E E ~ •D •!ut~D •!~ •D • D2!~ •D!52

13

3780
I 2

A15E E E ~ •D •!ut~D •!~ •D D D •!~ •D!5
1

1890

I 3
A15E E E ~ •D •!ut~D •!~ •D • D D •!~D!52

1

945
I 4

A15E E E ~ •D •!ut~D •!~ •D D • 2!~D!52
1

3780

I 5
A15E E E ~ •D •!ut~D!~D@ •D • 22 ••D2# !~D!5

1

432
I 6

A15E E E ~ •D •!ut~D!~ •D • D • •D!~D!52
1

15120

I 7
A15E E E ~D!ut@~ •D •!~D2 •D •!~ •D •!1~ ••D!~D2 ••D!~ ••D!#52

1

216

I 8
A15E E E ~D!ut~ •D •!~ •D D D •!~ •D •!52

1

15120

I 9
A15E E E ~D!ut~ •D •!~ •D • D D •!~D •!52

1

2160
I 10

A15E E E ~D!ut~ •D •!~ •D D • 2!~D •!5
2

945

I 11
A15E E E ~D!ut~ •D!~D@ •D • 22 ••D2# !~D •!52

19

15120
I 12

A15E E E ~D!ut~ •D!~ •D • •D D •!~D •!52
1

1512

I 13
A15E E E ~ •D!ut~ •D •!~ •D • D2!~ •D!5

13

7560
I 14

A15E E E ~ •D!ut~ •D •!~ •D D D •!~ •D!52
1

3780

I 15
A15E E E ~ •D!ut~ •D •!~ •D • D • D!~D!5

17

15120
I 16

A15E E E ~ •D!ut~ •D •!~ •D D • 2!~D!5
1

7560

I 17
A15E E E ~ •D!ut~ •D!~ •D • •D D!~ •D!52

1

15120
I 18

A15E E E ~ •D!ut~ •D!~ •D2 D •!~ •D!5
1

7560

I 19
A15E E E ~ •D!ut~ •D!~D@ •D • 22 ••D2# !~D!52

1

864
I 20

A15E E E ~ •D!ut~ •D!~ •D • •D D •!~D!5
1

30240
.

~A8!
065005-7
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Integrals inA2:

I 1
A25E E E ~ •D •!ut~ •D •!us~1!~D2!~ •D2!5

1

756
I 2

A25E E E ~ •D •!ut~ •D •!us~1!~D D •!~ •D D!5
1

1890

I 3
A25E E E ~D!ut~D!us~1!~ •D2!~ •D • 22 ••D2!52

11

1890
I 4

A25E E E ~D!ut~D!us~1!~ •D •D •!~ •D • D •!5
2

945

I 5
A25E E E ~D •!ut~D •!us~1!~ •D D!~ •D • •D!5

1

3024
I 6

A25E E E ~D •!ut~D •!us~1!~ •D D •!~ •D D •!5
1

30240

I 7
A25E E E ~D •!ut~D •!us~1!~D •D •!~ •D D •!52

1

6048
I 8

A25E E E ~D •!ut~D •!us~1!~D •D •!~D •D •!5
5

6048

I 9
A25E E E ~ •D •!ut~D!us~1!~ •D2!~ •D2!52

1

378
I 10

A25E E E ~ •D •!ut~D!us~1!~ •D • 22 ••D2!~D2!5
11

3780

I 11
A25E E E ~ •D •!ut~D!us~1!~ •D •D •!~ •D D!52

1

945
I 12

A25E E E ~ •D •!ut~D •!us~1!~ •DD!~ •D2!52
1

1512

I 13
A25E E E ~ •D •!ut~D •!us~1!~ •D • D •!~D2!52

1

1512
I 14

A25E E E ~ •D •!ut~D •!us~1!~D •D •!~ •D D!52
1

1512

I 15
A25E E E ~ •D •!ut~D •!us~1!~ •D D •!~ •D D!5

1

7560
I 16

A25E E E ~D!ut~D •!us~1!~ •DD!~ •D • 22 ••D2!52
11

7560

I 17
A25E E E ~D!ut~D •!us~1!~ •D • D •!~D • 2!5

1

756
I 18

A25E E E ~D!ut~D •!us~1!~D •D •!~ •D • D •!5
1

756

I 19
A25E E E ~D!ut~D •!us~1!~ •D D •!~ •D • D •!52

1

3780
. ~A9!

Integrals inA3:

I 1
A35E E E ~ •D •!ut~ •D •!us~ •D •!ur~D!~D!~D!52

1

945
I 2

A35E E E ~ •D •!ut~ •D •!us~ •D!ur~D!~D •!~D!5
1

1890

I 3
A35E E E ~ •D •!ut~ •D •!us~D!ur~D!~D •!~ •D!5

1

756
I 4

A35E E E ~ •D •!ut~D!us~D!ur~D •!~ •D •!~ •D!52
29

7560

I 5
A35E E E ~ •D •!ut~D •!us~D!ur~D!~ •D •!~ •D!52

13

15120
I 6

A35E E E ~ •D •!ut~D •!us~D!ur~D •!~D •!~ •D!52
1

2160

I 7
A35E E E ~ •D •!ut~D •!us~D •!ur~D •!~D!~ •D!52

11

30240
I 8

A35E E E ~ •D •!ut~D •!us~D •!ur~D!~ •D •!~D!52
11

30240

I 9
A35E E E ~ •D •!ut~D •!us~D •!ur~D •!~D •!~D!52

1

6048

I 10
A35E E E ~D!ut~D!us~D!ur@~ •D •!~ •D •!~ •D •!1~ ••D!~ ••D!~ ••D!#52

71

7560

I 11
A35E E E ~D!ut~ •D!us~D!ur~ •D •!~D •!~ •D •!5

29

15120
I 12

A35E E E ~D!ut~ •D!us~ •D!ur~ •D!~ •D •!~D •!5
19

30240

I 13
A35E E E ~D!ut~ •D!us~ •D!ur~ •D •!~D!~ •D •!5

31

30240
I 14

A35E E E ~D!ut~ •D!us~ •D!ur~ •D!~ •D!~ •D •!52
1

6048

I 15
A35E E E ~ •D!ut~ •D!us~ •D!ur~ •D!~ •D!~ •D!52

1

60480
I 16

A35E E E ~ •D!ut~ •D!us~ •D!ur~D!~ •D!~ •D •!5
11

60480
.

~A10!
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^S5
2&c

^S5
2&c52

b3

144
@K15~6I 1

B0212I 2
B016I 3

B0!1K16~4I 1
B228I 2

B214I 3
B2!1K13~2I 1

B128I 2
B114I 3

B1122I 4
B1220I 5

B1248I 6
B1140I 7

B1

124I 8
B1216I 9

B1!1K14~4I 1
B1216I 2

B118I 3
B1220I 4

B1124I 5
B1132I 6

B1248I 7
B1216I 8

B1132I 9
B1!#

2
b3

3
@3~¹aV!2I 1

B31¹kR¹kV~ I 2
B32I 3

B3!#. ~A11!

Integrals:

I 1
B05E E D3~ •D • 22 ••D2!50 I 2

B05E E D2 •D •D • D •5
1

840

I 3
B05E E D~ •D!2~D •!252

1

560
I 1

B15E E D352
1

560

I 2
B15E E •DusD2D •5

1

1680
I 3

B15E E Dus D ~D •!25
1

336

I 4
B15E E Dut Dus D~ •D • 22 ••D2!5

17

2520
I 5

B15E E Dut Dus •D •D • D •52
1

2520

I 6
B15E E Dut •Dus •D •D • D52

1

720
I 7

B15E E Dut •Dus ~ •D!2D •52
1

5040

I 8
B15E E •Dut •Dus D2 •D •52

1

1008
I 9

B15E E •Dut •Dus •DDD •5
1

5040

I 1
B25E E Dut Dus D52

17

5040
I 2

B25E E Dut~ •Dus!2D5
1

1260

I 3
B25E E ~ •Dut!2~ •Dus!2D52

1

4032
I 1

B35E E D52
1

12

I 2
B35E E Dut D5

1

60
I 3

B35E E ~ •Dut!2D52
1

240
.

~A12!

^S4S6&c

^S4S6&c52
b3

5! H ~4K612K728K815K11!~ I 2
C11I 3

C122I 4
C1!1~22K412K51K1013K12!~ I 1

C21I 2
C222I 3

C2!

1~2K422K513K102K12!~ I 4
C21I 5

C222I 6
C2!1~24K414K526K1012K12!~ I 7

C21I 8
C22I 9

C22I 10
C2!

1~4K424K512K1024K12!~ I 11
C21I 12

C222I 13
C2!1

4

9
@~3K627K722K8!~ I 2

C11I 3
C122I 4

C1!

1~4K516K6!~ I 1
C21I 2

C222I 3
C2!1~2K413K6!~ I 4

C21I 5
C222I 6

C2!1~24K428K526K10!~ I 7
C21I 8

C22I 9
C22I 10

C2!

1~2K424K523K6!~ I 11
C21I 12

C222I 13
C2!#J 2

b3

6
Rmn¹n¹mV~ I 1

C31I 2
C322I 3

C3!. ~A13!
065005-9
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Integrals:

I 1
C15E E ~ •D •!ut D2~D •!25

1

420
I 2

C15E E Dut ~ •D!2~D •!252
1

420

I 3
C15E E Dut D2~ •D • 22 ••D2!5

1

280
I 4

C15E E Dut D •D •D • D •5
1

1680

I 5
C15E E •Dut D •D~D •!250 I 6

C15E E •Dut D2 •D • D •52
1

840

I 1
C25E E ~D •D •!ut ~ •D •!us D252

1

420
I 2

C25E E ~D •D •!ut Dus ~D •!25
1

210

I 3
C25E E ~D •D •!ut •Dus DD •5

1

840
I 4

C25E E ~D2!ut ~ •D •!us ~ •D!25
1

252

I 5
C25E E ~D2!ut Dus ~ •D • 22 ••D2!5

11

1260
I 6

C25E E ~D2!ut •Dus •D •D •52
1

504

I 7
C25E E ~D •D!ut ~ •D •!us

• DD5
1

1260
I 8

C25E E ~D •D!ut Dus D • •D •52
1

630

I 9
C25E E ~D •D!ut •Dus D •D •52

1

1008
I 10

C25E E ~D •D!ut •Dus •DD •5
1

5040

I 11
C25E E ~ •D2!ut ~ •D •!us D25

1

2520
I 12

C25E E ~ •D2!ut Dus ~D •!252
1

1260

I 13
C25E E ~ •D2!ut •Dus DD •52

1

5040
I 1

C35E E ~ •D •!ut D25
1

90

I 2
C35E E Dut •D252

1

45
I 3

C35E E •

Dut •D52
1

180
. ~A14!

^S8&

^S8&5
b3

7!
~ I 1

D2I 2
D!F4~2K419K627K722K8!1

55

2
~11K13210K1413K15!134~2K422K514K612K728K813K10

15K112K12!15~12K4212K514K612K728K816K1012K11216K12114K13220K14

25K1619K17!G2
b3

24
I 3

D~2Rmn¹m¹nV1¹mR¹mV23¹4V!. ~A15!

Integrals:

I 1
D5E D3~ •D •1D ••!52

1

140
; I 2

D5E D2D •25
1

840
; I 3

D5E D25
1

30
. ~A16!
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