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6D trace anomalies from quantum mechanical path integrals
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We use the recently developed dimensional regularizati®R) scheme for quantum mechanical path
integrals in curved space and with a finite time interval to compute the trace anomalies for a scalar field in six
dimensions. This application provides a further test of the DR method applied to quantum mechanics. It shows
the efficiency in higher loop computations of having to deal with covariant counterterms only, as required by
the DR scheme.
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I. INTRODUCTION way of properly defining the path integrals has been devel-
oped in[10]: the dimensional regularization scher2R).
Quantum mechanicdQM) path integrals have been use- While the counterterms required in MR and TS are nonco-
fully applied to the computation of chirdll,2] and trace variant, they happen to be covariant in the DR scheme
[3,4] anomalies. In these applications the anomalies are iderj10,11,9.

tified as certain quantum field theofQFT) path integral It is the purpose of this paper to describe in details this
Jacobians[5], first reinterpreted as quantum mechanicalnew scheme, test further its consistency and show the tech-
traces and then given a path integral representation. nical advantage of having to deal with a manifestly covariant

The topological character of chiral anomalies explains theaction in performing higher loop calculations fo#-Q non-
relative easiness of computing the corresponding QM pathinear sigma models on a finite time interv@le., quantum
integrals: the interpretation of chiral anomalies as indices omechanics on curved spaces with a finite propagation)time
certain differential operators shows how the leading semiWe apply the DR regulated path integral to compute the
classical approximation of the corresponding QM path intetrace anomaly of a conformal scalar in six dimensitfos a
grals will give directly the desired result. On the contrary,review on trace anomalies s¢&2]). The correct full trace
the calculation of trace anomalies requires to control the fulanomaly for such a scaldand also other six dimensional
perturbative expansion of QM path integrals on curvedconformal free fieldshas only recently been calculated in
spaces. The latter has been a favorite topic of study over tha 3] by using the heat kernel results of Gilkgl4]. With a
yeaI’S. Most Of the early |itel’ature dealt W|th Ways Of deriVing DR path integra| Calculation we are going to reproduce the
discretized expressions, but the program of taking the concomplete expression of this anomaly.
tinuum limit till the end .to idenfcify the corrt_'-:ct regularization  pe paper is structured as follows. In Sec. Il we review
scheme to be used directly in the continuum was almosfye pR scheme, in Sec. IIl we use it to calculate the trace
never comple_tea. - o anomaly for a conformal scalar field in 6D and in Sec. IV we
e o o O e o hogpresen our concusons Fnal, n Appr A e repor

Pst of structures and integrals employed in the main text:

which lead to two well-defined and consistent schemes 0since the complete calculation is somewhat lengthy, it is use-
regulating and computing: mode regularizatidfR) [3,4,7] P gthy,
ful for comparison purposes and future reference to record

and time slicing(TS) [8,7]. Recently, following the sugges- . .
tion in Ref.[9] of using dimensional regularization a third intermediate results.

II. DIMENSIONAL REGULARIZATION

*Email address: bastianelli@bo.infn.it
OF THE PATH INTEGRAL

TEmail address: olindo@insti.physics.sunysb.edu
_ One exception is the description of the phase-space path integral First, we briefly review the quantization with path inte-
in the book of Sakit46]: it contains noncovariant counterterms and grals of the motion of @nonrelativistic and unit masgpar-
the Feynman rules given there can be used to compute to any dﬁble on a curved space with met@j(x) and scalar poten-

sired loop order since no ambiguous product of distributions is evel V(x). The model is described by the Euclidean ackion
to be found in the loop expansidid]. The same cannot be said for '

the configuration space version: ambiguities are present there and
must be resolved with a consistent scheme for multiplying distribu-
tions, which is what a regularization scheme provides. 2We perform a Wick rotation on the time variable and work con-
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) t 1 L the potential around a fixed point, which we choose to be the
SIx']= Jt_ dt | 59;0OXX +V(x) |. (1) final pointx;. Thus, the propagators are recognized to be

(X(txI(s)y=—B8 g(x;) A(t,s)

In canonical quantization one must choose an ordering con-

sistent with reparametrization invariance to produce a quan- (@(tal(s))=8 g'(x;) Agyt,s),
tum HamiltonianH=—3V2+aR+V (our curvature con- i : .
ventions are found in Appendix )A The value of the (b'(H)cl(s))=—2B g"(x;) Agn(t,s) )

parametew depends on the particular order cho§&8| and .
conventionally can be taken to vanish with the agreement o‘f‘”th
reintroducing the coupling t& through the potentiaV/. D
Using path integrals the canonical ordering ambiguities :J d”k
o o < A(t,s)
re-emerge as the need of specifying a regularization scheme. (2m)P
The 1D sigma model in Egql) contains double derivative .
interactions which make Feynman graphs superficially diver- -2
- . NG —
gent at one and two loops. However, the nontrivial path in- i1 (mn)2+ K2
tegral measure can be exponentiated using ghost fields: their
effect is to make finite the sum of the Feynman graphs but a 4
regularization scheme is still necessary to render finite each Pr
individual divergent graph. Different regularization schemes . . (1
require different counterterms to reproduce a quantum Agh(t's):f (2m)P nzl 2 sin(mn7)sin( ) (9
Hamiltonian with «=0. In mode regularization and time
slicing such counterterms are noncovariant. In the DR =8P Y(t,5)=68(7,0)8°(t—9) (5)
scheme the counterterm is covariant and equalVig
=R/8, as demonstrated {110,11. where
Now, let us describe the DR scheme which we are going
to apply in the next section. First of all, we find it convenient
to use a rescaled time parametdoy definingt=87+t; and
B=t;—t;, so thatr will take values on the finite interval
=[—-1,0]. Then, we introduce bosonia' and fermionic is the Dirac delta on the space of functions vanishing at
b',c' ghosts to exponentiate the nontrivial part of the pathr,oc=—1,0. Of course, the functiom\(t,s) satisfies the
integral measure: integrating them back will formally repro-Green equation
duce thellydeiw;; factor of the measure. Finally, we intro-
duceD extra infinite regulating dimensiorts=(t*, . . . t°) ILA(1,8)=Agp(t,5)= 6" (s,1). (7)
with the prescription that one will take the linit— 0 at the
very end of all calculations. Denotint*=(r,t) with u
=0,1,... D andd®**t=drd"t, the action inD+1 dimen- Aro)=1(o+1)0(r— ) +o(r+1)0(c—7) (8)
sions reads

sin(rn7)sin(wno)ek (-9

a(m)=n§1 2 sin(@n7)sin (mno) (6)

The D—0 limits of these propagators are the usual ones

Agn(7,0)=""A(1,0)=8(7,0) 9

%gij(x)(ﬁﬂx'ﬁﬂxJ +a'a'+b'c!) where dots on the left or right side denote derivatives with
respect to the first or second variable, respectively. However,
such limits can be used only after one has cast the integrands
(2 corresponding to the various Feynman diagrams in an unam-
biguous from by making use of the manipulations allowed by
the regularization scheme. In particular, in DR one can use
whereVpr=R/8 is the counterterm in dimensional regular- partial integration: it is always allowed in the exfdadimen-
ization and() =1 X RP is the region of integration containing sion because of momentum conservation, while it can be
the finite intervall. performed along the finite time interval whenever there is an
The perturbative expansion can be generated by first deexplicit function which vanishes at the bounddifpr ex-
composing the paths'(7) into a classical parky,(7) satis- ample the propagator of the coordinateg,s)]. Along the
fying the boundary conditions and quantum fluctuationsway one may find terms of the forﬂﬁA(t,s) which accord-
g'(7) which vanish at the boundarfthe ghost fields are ing to Eq.(7) gives Dirac delta functions. The latter can be
taken to vanish at the boundary as welhd then decompos- safely used at the regulated level, i.e.,.0n- 1 dimensions.
ing the Lagrangian into a free part plus interactions. TheBy performing such partial integrations one tries to arrive at
latter step is achieved by Taylor expanding the metric anchn unambiguous form of the integrals which can be safely
and easily calculated even after the lirbit-0 is taken.
An explicit example will suffice to describe how the
sistently in the Euclidean framework. We also &et 1. above rules are concretely used:

1
S[x,a,b,c]=—f dPt1t
BJla

+ B2V(x) + BV pr(X)
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0 0
f dTJ do ('A) (A%) ("A%) J % Vg o(x)(T200)=lmTHo e A"
-1 -1 B—PO
~ [ apis (o) a0 (A “im [ Dx a0 &,
B—0Y PBC
1
:f dD+1tf dD+IS (MA) M(E(Av)z) (10)
1
=—§J dD”tJ d®*1s (,,A) (A,)? where on the left hand side?, denotes the trace of the stress

tensor for a 6D conformal scalar ang(x) is an arbitrary

1 function describing an infinitesimal Weyl variation. In the
:__f dD+ltf dD+lS 5D+1(t,S) (AV)Z g9 Yy

2 first equality the infinitesimal part of the Fujikawa Jacobian
has been regulated with the conformal scalar field kinetic
_ }J' dP* 1t (A,)%],—— Efo dr (A2 operatorH = — 3V2— %R. The limit 8—0 should be taken
2 v 2)-1 7 after removing divergent terms i (which is what the
1 renormalization of the scalar field QFT will goand so it

E— picks up just theB independent term. Finally on the right
24 hand side the trace is given a representation as a path integral
where the symba|, means that one should set= 7. c_orrgsponding toa ”?‘.’de' with Hamiltonidh and Wi.th pe-
Thus, we see trqat the rules of computing in DR are quitéIOdIC boundary condlt!ons. Thellatter_ can be obt_auned using
similar to those used in MR, the only diversity being in the € duantum mechanics dtlascrlbed in the previous section
different options allowed in partial integrations. In DR the With & scalar potentia¥/= — 15R. _ _
rule for contracting which indices with which indices follows ~ Thus we start computing the terms in the loop expansion
directly from the regulated action in E(®) and only certain  Of the path integral described in Sec. II. It will soon be clear
partial integrations are allowed B+ 1 dimensions. In MR  that it is enough to compute up to ordgF, i.e., up to 4
one regulates by cutting off all mode sums at a large mde loops[B can be taken as the loop counting parameter, as
and then performs partial integrations: all derivatives areevident form Eq.(2)]. We use reparametrization invariance
now of the same nature and different options of partial inteand choose Riemann normal coordinates centered at the

grations arise. This explains the origin of different counter-point x, representing the boundary conditionsat — 1,0,

terms for these two regularizations. and which will be integrated over to recreate the full periodic
boundary conditions on the right hand side of EL).

lll. TRACE ANOMALIES FOR A CONFORMAL The expansion of the metric in Riemann normal coordi-

SCALAR IN 6D nates is well known. For our case, since the action including

As described in3,4], one-loop trace anomalies can be the counterterm is manifestly covariant, that expansion can
obtained by computing a certain Fujikawa Jacobian suitabl{P® €2Sily generated by the method described for this context
regulated and represented as a quantum mechanical path -L3]- One .obtams the following terms needed in our ap-
tegral with periodic boundary conditions proximation:

1 1 .6 8 o
gmn(X)deanZ Omnt §Rmabrxaxb+ aViRmabr?(abeI + a( Viijmabn+ §RmabaRaijn> XaXbXIXJ

14 4,
+a§ ViViViViRnabnt = Rmij“ViViRaabn

o 10
(ViVJVkRmabn+4RmabaviRajkn)XaXbXIXJXk+ 71 5

11 a 8 a B aybyivivkyl mA N
+?ViRmab VjRak|n+_Rmab Raij R/_;km XA XX X+ - - - |dxMd X

5

1 | . 1 .
V) =V+(ViV)X + 2 (ViVV)x'x + a(vivjVKV)x'xekJr E(VivijV.V)x'xekx'Jr e (12)
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where all tensorial quantities on the right hand sides are evaluated at the origin of the coordinate system. Notice that for the
MR and TS regularization schemes the counterterms are noncovariant and their expansions cannot be generated so easily
obtaining the vertices from those counterterms would require a tedious computation.

Plugging the above expansions in the acii®hand noticing that the factqs? raises by two the loop order for each vertex
coming from the potential or the counterterm, we compute

<X01ﬁ|xo,0>:f Dxe S=A <e*5int>

— 1 2 1 2 1 4
= A exn —(S)—(S9)—(So) + 5 (et 5 (et (SiSs)e— 5 (et O(BY 12

where the subscript “c” stands for connected diagrams only and wheré23) ~ P2 gives the correct normalization of the

path integral measure. Because of this normalization we see thBt=f@ the 8-independent term is obtained by picking up
the 82 contributions from the expansion of the exponential on the right hand side aflBq.

The terms up to 3 loops are easily computed in DR by using the detailed expressions reppt&dane just needs to
compute the integrals reported there using the DR rules. Including for simplicity the counterterm inside the pateveial
obtain

1
<S4):—,8[ﬂR—V} (13
B 1 1 1
(Sg)=— 12[40V R+ %RZ +60R§mab vav (14)
2
(Sh)e= /732 3Rm } (15)

To achieve notational simplicity in the remaining 4-loop terms we use the basis of curvature invariants given in Appendix A
and compute the terms reported there. We obtain

= ,3317K 1t Bkt k- 2k
(Se)= 15 15°° 5767 1277 378
11 3 19 149 25 11 5 3
+ 7oKt 5K~ 55Kt 75 Kis™ 5Kt 75Kis= 57 Kiet Kz
:83
[2Rm”V V.V+ VTRV, V—-3V4V] (16)
5 B3 23 3 1 5 "
<55>c:_a§1K13_ZK14_§K 15~ 48K16+5V RV ,V—60(VV)? 17
S '83-13K 1K+2K+3K 1K
(S4S6)c= 61|25~ 5Kst 5Ke+ 75K 7gKae
(18)
B3 2 1 4
<S?1>c__a_§K4+ gK7+ §K8 : (19

Inserting all these values into E(L2) we get

3Since x'(—1)=x/(0)=x, the classical field ist;(7)=0; hence all diagrams with external fields vanish. We indicate Bjttthe
interaction terms containing fields when originating from the expansion of the metric and4 fields when originating from the scalar
potential.
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1 1
<X0,ﬂ|X0,0>:Wg6X[{ﬁ(ﬂR—V

ﬁ3
Tar

9 3 3

8 8 16
— —Ky+ =Kg+ = Kg+
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1 1

1
2 2 _p2 2p_ T v2

44 80
5 K7~ g Ke—8Kiot 12K31~ 2Ky,

5
- 2K13_4Kl4+ 9K15+ ZK16+ 3K17)

,33
T

Now, using the valueV=3;R— %5R= %R to take into ac-

count the counterteripg and the conformal coupling of the

scalar field, we compare with ELO) and obtain the corre-
sponding trace anomaly

Ta )= ! 7K 14K+14K Ka+ =K
{ a>_(277)§8! 225t 1527158 94 3%

16 44 80 4
+ §K6+ §K7— §K8_8K10+ 12K+ §K12
1 6
g _K17 .

_2K13_4K14+ 9K15+ Kl6_ 5 (21)

It agrees with the one given [13], where it was shown that

it can be cast also as

T2) = t ! > E | 5I 2l
( a>_%§a ~ e g lat glatals
+ trivial anomalie% (22

with the topological Euler density given by

a1b1a2b2a3b3Rm1n1a b

Ee= €mynimyn,mgng € 1Py

X Rmznzazbsz3n3a3b3 (23
and the three Weyl invariants
Iy = Camnbcmijnciabj ) (24
I= Cabmncmnij Cijaba (25

6
l3= Cmabﬂ( V260 + 4RM— 5 R4 | C"3PC+ trivial anomalies,
(26)

3
2RV V.V-— EVmRva+ 30V, V)2—3V4V

(20

+O(,84)}.

appear in the trivial anomalies. At the same time they are
produced in the previous calculation by disconnected dia-
grams. Thus one may fix three of the four true anomalies by
a simpler lower loop calculation, while the remaining inde-
pendent fourth nontrivial anomaly, which can be taken as the
one corresponding t&g, could be fixed by an independent
calculation on the simplified geometry of a maximally sym-
metric space.

IV. CONCLUSIONS

We have used the recently developed dimensional regu-
larization scheme for quantum mechanical path intedd#ls
to compute the trace anomaly for a scalar field in six dimen-
sions. The identification of the full anomaly required a com-
plete 4-loop quantum mechanical computation. Technically,
the covariance of the counterterfyr allows a more effi-
cient identification of the corresponding vertices than in the
MR and TS regularization schemes.

We noticed that the coefficients of three of the four non-
trivial anomalies could as well be obtained by a simpler
3-loop calculation. One may speculate that such a fact may
happen also foD =8 trace anomalies: there one would need
to compute the quantum mechanics up to 5-loops, but it
could happen that all nontrivial anomalies but one could be
fixed by a simpler 4-loop calculatiofpresented in this pa-
pen and the remaining one by a calculation on a simplified
geometry. To concretely check this conjecture, one would
need a cohomological analysis to identify the structure of all
trivial and nontrivial anomalies, as the one given in R&¥]
for the six dimensional case. However, such an analysis is
not available in the literature yet.

One could couple the nonlinear sigma model to non-
Abelian gauge potentials to obtain the trace anomalies of
other six dimensional conformal field43]. In such an ex-
tension the main new complication is related to the time
ordering prescription to be used for achieving gauge covari-
ance, as employed @], which forces to compute different

whereas the coefficients of the trivial anomalies are unimporbR integrals for different ordering of the vertices. An ap-
tant since they can be changed by the variation of local courproach which could guarantee non-Abelian covariance in a
terterms. The structure of trivial anomalies has been fullymore straightforward manner would clearly be welcome. It
analyzed in17]. It is interesting to note, after inspecting the may be related to the extra ghost fields use{i8ih

results in[17], that the coefficients dk;, K, andK; never

While we have justified our anomaly computation by

065005-5



FIORENZO BASTIANELLI AND OLINDO CORRADINI PHYSICAL REVIEW D 63 065005

viewing it as the calculation of a certain Fujikawa Jacobian, conceptually it can be thought of as performed in the first
guantized approach of the scalar particle the@ge the discussion [i19]). Given that interpretation, it would be interesting

to investigate if such worldline path integrals in curved space could be useful to simplify computations of scattering amplitudes
and effective actions of perturbative QFT coupled to gravity, as it happens in the flat spa¢gQase

APPENDIX A

We use the conventiofiV,,V,]Ve=R,,54VY, Rp=R. . It is useful for notational purposes to introduce a basis of
curvature invariants cubic in the curvature

K1:R3 KZZRszlb K3:RR§bmn

Kyq= RamRmi R® Ks= Rameanabn Ke= RabRamanbmnI

K7=Rap™ R’ R;j*®  Kg=RamntR™"Ri®; Ko=RV’R

K1o= Rabszab K= RabmnV2Rabmn Kio= RabVaV bR

KlSZ(VaRmn)2 Kl4:VaRmebRam KlSZ(ViRabmn)2

Kie=(VaR)? K,7=V*R. (A1)

It differs from the basis used ifiLl7,18 only in the definition ofK,4: the one used above enters more naturally in our
calculations.

In the main text contributions of ordgd® to the effective action come from the terms listed below. In the list of integrals
we use the following conventions. The limits of integration jar€l,0] for all variables. For 3-dimensional integrals the first
group of propagator in round brackets depends®nm), the second ond,p) and the third on g, 7), with this precise order,
while terms at coinciding points are explicitly indicated. For 2-dimensional integrals the propagators at non-coinciding points
depend on £,0), while for 1-dimensional integrals all terms are obviously taken at coinciding points. We use the shorthand
notation"A*="A"+""A. The DR regularization is immediate and we quote the DR values.

(Si)e

<§4>C:A0+A1+A2+A3 (A2)

:83 1 A A A A A A 1 A
o= g || 7K+ 2K || 170150150+ 210+ 2190— 2130+ =1

7 1 Ao iAo 13 Ao LA,
| 5KetKa || 31704 16° | +| K7 =Ks || 152+ 317 (A3)
ﬁ3
A= K= 15— 2150+ 2130 1 i 1 f 1 1 15121 g+ 218
Al 1A oA Ay A1_o1A1 AL_ oA oA Ay
1115213+ 210 + 21 =21 5+ 217 7— 21 g — 21 5+ 2155 (A4)
3
Ao= D e 1Pe e B e g R gt Py Rey ey g P e e
27 9 sl = 1"+ 1551, 5 '6 7 8 9 wt2(=ly =113
Az (A2 A2 A2, A2y A2
It e— -1+ 2+ 1091 (A5)
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Ag= 5 Ky(193— 6152 +3153+ 31%°— 61 22— 6143+ 317+ 3152+ 6152
+|A3 613+ 3173+ 3123+ 6173 2113-6112). (AB)
Integrals inAg:
1
AO‘fff(A 2)(A2)("AT2— Az)——ﬁ) AO—fff A AHCA A)( A?)= - T5130
Ag__ eAe A 2..._3 Ag__ oA . CAC eAN_ 13
150= (A" ANAD(CAT "A)= oo 140= (A" M)A M)A A== 100
AO—JH(A AYCA A)CAT A= o A°=JH<°A AYCA(AT A=
3780 6 1890
Ay ehe ore ehe . . . _ 43
|70—fff[(A AD(A TAY(A TAYH(A TA)A M)A A= o
Ag_ . . he .._11 Ag_ . o e . .._1
150= ("A AT)(A CAT)(A A)—m I150= (A AHCA AT)A A)—7—56
|Po— T 2 2 2y _
0= fJJ(AA)(AA)(AA)— 945 N jfj AY)(CAT)(PAT) = 756 (A7)
Integrals inA;:
A 2 A o o /e o /o 1
1‘]]] AT AAYCAT A (A)=— 3780 |21:fff(A)|,(A)(AA A)(A):Fgo
'§1=fff<T>|T(A')<'A' A A= o Al—fff(Aﬂ AANCA AB(A)= - g
A TR eAe2 eep 2 _ 1 A oG oA o e _ 1
|51—JJJ(A)|T(A)(A[A - A])(A)—4—32 |Gl—fff(A)|T(A)(A A A)(A)——F120
1
'?‘1=J f f(A)IT[('A')(AZ ADCAYH(TANAZ A ("A)]= 55p
A ) N 1
181=HJ(A>|T(A>(A A AYCA)= - 15150
1
'31=fff<A>|,('A')('A' A AYA)=~ 5760 Alffffm JCANCA AD(A)= 52z
A1 c2_ep2 19 A1
—fff(A)HA)(A[A ])(A)——15120 —fff(AHA(A A A)(A)-—lm
A1_ 2 Al_ 1
fff WCANCAT AN = o fff(A)l(A)(AAA)(A) 780
A B eAON oA B 17 A . e Ao 2
l;:fffm)umw A" A)(8)= 15750 1g:fff<A>|T<A><A A ><A):ﬁ)
Al_ _ 1 Al_ 2
fff(An A)CATA A= 150 fff(A)MA)(A VA= 200
1
Al—Jff(An CA)A[AP="AT)(A) =~ g7 Al—fff(A)lM)(A "N A= 35500
(A8)
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Integrals inA,:

- 1
Ay AN (Ae . _ =
ll—fff(A>|T<A>|,,<1><A2>(A2>—756
Hf(m (A)] (1) (AP (A 2="A)=—
Ay . . . A SAN 1
ls—Jffm)l,(A)la(l)(A M)A A)=55
A 1
LHJ<A>|T<A>|U<1>A ANCA A== o
“Lfff(A ADADCAZC 2)——ﬁ
AZ—fffw ) AA)] (1A A")( AA)——
Az—fff(A AAADCAT A)(A%)= 72
A 1
2—fff<A IAAADCA AYCA A)=ep
AZ—fff(An (A)(DCAT A7) =

1
Az_ -
[ [ @nenmes aves an-- o

1890

Integrals inAgs:

AN (A (AT 1
AS_ *A° A oA _

|§3=Jff<T>|T<T>|U<A)IP<A><A'><'A>=7ise
|é‘3:f f f@n (A (D)) (A (D) == o
7 o 15120
A o . . : : =
Hs:fff(A)L(A)u(A)Ip(A J(ACR)= 35340

L 1
Ay oA . . * ° = T Ao
lgsffff(A)lf(Ml,,(A)lp(A VA=~ 5oz8

A ...... 71
3‘[ f f(A)l (D) [(A)LCACADCAT) + (A (TA)("A) ] = — 552

1A 29

3—fff<m| )] (8)],CAY AN CA) = T

A3_ _
Jffm)l W] CANA)CA)= g5

1
As_ —
[ [ ] esnesneaneacaca-- e
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N Y

|22_f f f< AR AYCA A)= o

|A2:f f J<A)l (AIADCA AYCA" )= oo

. - o 945
1

Ay . . . o\ /e Ne—

. _f f J‘A AAADCA A)CA A=z

5
Ay . . re A2
's—ffJ(A ) AAT)](1)(A "AT)(A A)_6048

Aszffm)m (DA "A%)(A2) = oo
AZ—fff(A)l(A)Hl(AA(A
A 1
2—fff<A>|<A>| ADA ANCA A=
11
AZ—fff(AHA o(DAA)(CA A%——Weo

AZ—fffm A1) "A)CAT A= 2

1512

(A9)
A A A . . 1
lfszf(A)lf(mla(Am(A)(A )(A)= 1550
A A N 29
lfzfff(A>|T<A>|U(A>|p(A><A)(A)z—ﬁ)

— 1
lé%fff<'A')|,<A'>|0<A>|p<A'><A'><'A>:—m
A A . . A 11
|83=fff<A>|T(A>|¢,<A>|p<A><A)(A)=—T240
7560

" 19
3—fff<A>|T<A|<A>| (A)CANA)= 35520
As—fff(A)le (A, CAICA) (A=~ e
" 11
1g—fff(m|,<mlg< D A)CA)CAY) = goy

(A10)
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+ 241 21— 161 oY) + Ky (4151 — 16151+ 81 51— 201 51+ 241 214+ 321 21— 481 51— 161 01+ 32101 ]

(Sd)c
183
2\ __
3
—B—[s(v V)25V RVKV(153-129)],
Integrals:
|f°=f fA3('A°2—"A2)=o
BO_ _
| [acaray--
1
By__ . o=
5 —f f A|,APA" =
Bl_ A2y
ffM Aly ACAT- )_2520
B1_ _
ffA| ‘Al A AT A= o
B — [ —
B1_ ffAl ‘Al, A2 A=
B _
=] el Al a= g
1
IEZZJ' f(.Alr)z(.A|rr)2A:_m
|§3=f fA|T A
(S4Se)c
BS
<S436>c:_§

+(2K 4= 2K+ 3K 30— K1) (1524152 21 52) + (— 4K 4+ 4K s — 6K 15+ 2K 1) (15241572 152—152)

+ (4K 4— 4K g+ 2K 10— 4K ) (1 72+ 152—

+ (4K 5+ 6Kg) (152+152—2152) + (2K 4+ 3Kg) (15241 §2— 21 ¢2) + ( — 4K 4 — 8K — 6K 1) (1 52+ 1 52— 12— |

ﬁ3

+(2K 4~ 4K5—3Kg) (152+172-2172)] f — 5

4
C C C
2132)+ 5[(3Ke—7K7 = 2Kg) (152415

C C
R™V,\V V(1534153

1
BO: 2 e oA o
15 fJA A AT A=go

e[ [a=- g

1
Bi_ “2_
[ ffALT A (A7) 336

Bl B oA . 1
5= A|TA|UA A Az—ﬁ)

'Bl:ffAl Al (A)AT=— =
7 r 2o 5040
|Bl=ff'A| "Al AAA =
9 r Sle 5040

1
B2: . 2 _

o] o

|§3=f f ('AIT)2A=—2—iO.

(4K g+ 2K7—8Kg+5K 1) (15141512151 + ( — 2K+ 2Ks + Kyt 3Kpp) (1524 152—2152)

10

C
_2|41)

C
—2153).
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o [Kys(6159— 12120+ 6150) + Ky (41 52— 81 52+ 41 52) + K 1o 21 21— 8151+ 41 51+ 221 51— 201 21— 48] o1+ 401 o

(A11)

(A12)

Gy
10)

(A13)
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integrals:
o= [ [ w01, arani=
'?=ffALA%A*JA%:§E
= [ [ a8 Ay
o= [ [a w1, (B, 2= 4
CLIJU&AM A“AA—QO
'?=fJM'ML(KN%A=£§
|&:jJXA°ML-M0A°N:—ﬂ%é
%—ff %l(An0A22;0
GE][ALA%—E

(S9)

3

5
(Sg)= %u D—1D)| 4(2K 4+ 9K g— 7TK;— 2K g) + >

+ 5K]_]__ Klz) + 5( 12K4_ 12K5+ 4K6+ 2K7_

B3

— 5K+ 9K19) T 543

Integrals:

PHYSICAL REVIEW D 63 065005

C1—”A| AWAF——EE

|C1:f fA| A A AT A
4 g 1680

°1—ffA| AZ A A——%

Se= [ [ "m0, al, a2=g
— 1
'?=IJYA%L<Avn<AF:E§
1
Cy_ . oA eAe_
|6 _ff(A2)|’r A|o’ A A= 504

|C2:ff(A ‘A, Al, A T
8 r Sle 630

C2 1
=1 | a *a), "al, "AA° —5040

CZ_IJ(AZ)I Aly (A)?=— 55

l%=ff(KM,M:%

A_—m).

- f o

5
(11K 15— 10K 14+ 3K 15) + 342K ;— 2K 5+ 4K g+ 2K, —
8K8+ 6K10+ 2Kll_ 16K12+ 14K13_ 2(](14

I2(2R™V .V, V+ VTRV, .V—3V4V).

1 1 1
D_ BroAC LAY — . |D_ 2002~ D_ 2_
| fA(A+A) 5 12 JAA s s JA 30
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