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Radion dynamics and electroweak physics
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The dynamics of a stabilized radion in the Randall-Sundrum model with two branes is investigated, and the
effects of the radion on electroweak precision observables are evaluated. The radius is assumed to be stabilized
using a bulk scalar field as suggested by Goldberger and Wise. First the mass and the wave function of the
radion is determined including the back reaction of the bulk stabilization field on the metric, giving a typical
radion mass of the order of the weak scale. This is demonstrated by a perturbative computation of the radion
wave function. A consequence of the background configuration for the scalar field is that after including the
back reaction the Kaluza-Klein states of the bulk scalars couple directly to the standard model fields on the
TeV brane. Some cosmological implications are discussed, and in particular it is found that the shift in the
radion at late times is in agreement with the four-dimensional effective theory result. The effect of the radion
on the oblique parameters is evaluated using an effective theory approach. In the absence of a curvature-scalar
Higgs mixing operator, these corrections are small and give a negative contribution toS. In the presence of
such a mixing operator, however, the corrections can be sizable due to the modified Higgs and radion cou-
plings.
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I. INTRODUCTION

Extra dimensional theories where standard model fie
are localized on a brane@1–8# have recently attracted a lot o
attention, since such models have several distinct feat
from ordinary Kaluza-Klein~KK ! theories. In particular,
Randall and Sundrum@4# presented a simple model based
two branes and a single extra dimension, where the hiera
problem could be solved due to the exponentially chang
metric along the extra dimension. In order to obtain a p
nomenologically acceptable model, the radion field~which
corresponds to fluctuations in the distance of the two bran!
has to get a mass, otherwise it would violate the equivale
principle @9#, and also result in unconventional cosmologic
expansion equations@10,11#. The simplest mechanism fo
radius stabilization has been suggested by Goldberger
Wise @12#, who employed an additional bulk scalar whic
has a bulk mass term and also couples to both branes~for
another issues related to the radion potential, see Ref.@13#!.
Both the cosmology and collider phenomenology crucia
depend on the mass and couplings of the radion. In part
lar, there is no radion moduli problem if the radion mass isO
~TeV! and its couplings to standard model~SM! fields isO
~TeV21!. This is also the most favorable scenario for disco
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ering the radion at a future collider.
In fact it was shown in Refs.@14# and@15#, that the radion

will have the above properties for the Goldberger-Wise s
nario. However, the calculation of Refs.@14# and @15# were
using a naı¨ve ansatz for the radion field which ignores bo
the radion wave function and the back reaction of the sta
lizing scalar field on the metric. The validity of this approx
mation has recently been questioned@16#.

Therefore in this paper we analyze the coupled radi
scalar system in detail from the 5D point of view. We deri
the coupled differential equations governing the dynamics
the system, and find the mass eigenvalues for some limi
cases. Because of the coupling between the radion and
bulk scalar, we find that there will be a single KK towe
describing the system, with the metric perturbations non
nishing for every KK mode. This implies that the standa
model fields localized on the TeV brane will couple to eve
KK mode from the bulk scalar, and this could provide
means to directly probe the stabilizing physics.

Using the coupled equations for the radion-scalar syst
we analyze the late-time behavior of the radion in an expa
ing universe, and find that the troubling 55 component
Einstein’s equation just determines the shift of the radi
This shift completely agrees with the shift obtained in R
@14# using the 4D effective theory.

Given that we have established that the radion massO
~TeV! and that its couplings to SM particles isO ~TeV21!, it
is reasonable to consider its effects on SM phenomenolo
Some direct collider signatures for the radion and loop c
rections have been discussed in Refs.@17–23#. In the second
half of this paper the effects of the radion on the obliq
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parameters1 are calculated using an effective theory approa
similar to Ref.@25#. Since in the RS model the radion is th
only new state well below the TeV scale, a low-energy
fective theory including only the radion and SM fields
used. The effects of other heavy modes are accounted fo
including nonrenormalizable operators at the cutoff scale
the absence of a curvature-scalar Higgs mixing operator,
corrections from the radion are small, but give a negat
contribution toS. In the presence of such a mixing operat
the corrections could be sizable due to the modified rad
and Higgs couplings.

This paper is organized as follows: in Sec. II we revie
the Randall-Sundrum model and radius stabilization by b
scalar fields. We also summarize the explicit example of R
@26# which we will be using for our explicit computation o
the radion mass and couplings to SM fields. In Sec. III
present our ansatz for the coupled metric and scalar fluc
tions based on the analysis of Refs.@27# and @28# of the
radion without a stabilizing potential. We will derive a sing
ordinary differential equation, whose eigenmodes will yie
the KK modes for the radion-scalar system. In Sec. IV
analyze the generic properties of this equation. In the gen
case we find that the system is not described by a Herm
Schrödinger operator. However, we identify a convenie
limit, in which the differential operator is in fact Hermitian
and the eigenfunctions are manifestly orthogonal. In Sec
we analyze the eigenfunctions in this limit, and find the a
proximate masses for the KK tower. In this analysis, the b
reaction of the metric is neglected, which results in the lig
est mode still being massless. The effect of the back reac
on the lightest mode is taken into account in Sec. VI, wh
we find the mass of the radion to be of the order~but slightly
lighter! than the weak scale. In Sec. VII we discuss the c
plings of the radion and the KK tower to SM fields on th
brane. We find that the radion couplingexactlyagrees with
the results in Refs.@14# and@15#, while the couplings of the
other KK modes of the scalar field are suppressed by
mass of the given mode, and is proportional to the backre
tion of the metric due to the scalar background. In Sec. V
we demonstrate that in an expanding universe the shift in
radion at late times agrees with the 4D effective theory re
obtained in Ref.@14#. Having established the mass and co
pling of the radion, we write an effective Lagrangian in Se
IX without any specific mechanism of radius stabilizati
and neglecting the contributions of the KK modes. In Sec
we add a curvature-scalar Higgs coupling to the effect
Lagrangian, and discuss how the couplings are modifi
Then, in Sec. XI we calculate the Feynman rules in a gen
gauge. These allow us to compute the oblique parameter
one-loop vacuum polarization diagrams with radions in
loop in Sec. XII. The radion correction is log divergent~un-
like the Higgs boson!, and so we also write the nonrenorma
izable operators at the cutoff scale that provide the neces
counterterms. The size of the new contributions are sho
for various cases in several figures in the numerical res

1Loop effects for theories with large extra dimensions have b
analyzed in Ref.@24#.
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part of Sec. XII. We also estimate limits on the radion ma
as a function of the cutoff scale in Sec. XIII. Finally, w
conclude in Sec. XIV.

II. REVIEW OF THE RANDALL-SUNDRUM MODEL AND
THE GOLDBERGER-WISE MECHANISM

Randall and Sundrum presented a very interesting p
posal for solving the hierarchy problem@4#. By introducing a
fifth dimension where the bulk geometry is anti–de Sitter
large hierarchy between the Planck scale and the TeV s
is obtained with only a mild fine-tuning. Two branes a
introduced, located at the boundaries of the anti–de S
space. By tuning the bulk cosmological constantL
[26k2/k2, the tensionsVP andVT on the Planck and TeV
branes, respectively, such thatVP52VT56k/k2 ~wherek2

is the 5D Newton constant related to the 5D Planck mass
k251/2M3! one obtains a 4D Poincare´ invariant solution.
The metric is then

ds25e22kyhmndxmdxn2dy2, ~2.1!

where the Planck brane and TeV branes are locatedy
50 and y5r 0 . For a moderate choice ofkr0;O(50), a
large hierarchy between the Planck scale and the weak s
is generated.

Since this solution is obtained for any value ofr 0 , some
mechanism is required to fixr 0;50/k as opposed to som
other value ofr 0 . This must also be done without introduc
ing any large fine-tuning. Further, small shifts in the sepa
tion between the two branes do not change the energy,
so are described in an effective theory by the fluctuations
a massless particle, the ‘‘radion.’’ This particle couples like
Brans-Dicke scalar and must be massive to recover ordin
4D Einstein gravity@9,14#.

One way to achieve these requirements is to introduc
bulk scalar fieldf that has a bulk potentialV(f) @12#. To
stabilize the brane distance, potentialslP,T(f) on the Planck
and TeV branes, respectively, are also included. The com
tition between the brane and bulk Lagrangians generate
vacuum expectation value~VEV! for f, which results in a
4D vacuum energy that depends onr 0 . For a simple choice
of polynomial potentials a large hierarchy is then easily o
tained with a mild fine-tuning@12#, and the resulting mas
for the radion isO ~TeV! @14,15#.

The phenomenology of the radion depends on the stren
of its coupling to the brane fields. Using the following naı¨ve
ansatz to describe the radionb(x),

ds25e22kuyub~x!ds4
22b~x!2dy2, ~2.2!

Refs.@14# and@15# computed the normalization of the radio
kinetic term to be

3

4
e22kr0

kr0
2

k2 ~]b!2. ~2.3!

Fields living on the TeV brane couple to the radion throu
the induced metric, with an interaction
n

2-2
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kr0

2
b~x!TrTmn5

r ~x!

A6LW

TrTmn , ~2.4!

where r is the canonically normalized radion
LW5M Ple

2kr0;O (TeV),

M Pl
2 5~12e22kr0!/~kk2!;1/~kk2!,

andTmn is the physical energy-momentum tensor of the T
brane fields. It is then clear that the radion couples as;1/
TeV to the standard model fields. Obtaining an accepta
phenomenology then requires that the radion mass iO
~TeV!, which is easily satisfied by the Goldberger-Wi
mechanism.

The phenomenology of the radion is then crucially dep
dent on the normalization of the kinetic term. In fact, in t
computation leading to theO (TeV2) prefactor in Eq.~2.3!
there is a cancellation between two terms ofO(M Pl

2 ). The
origin of this cancellation remains somewhat mysterious,
the absence of this cancellation would clearly lead to diff
ent predictions. In Ref.@16# it was pointed out that there ar
additional contributions to the radion kinetic term not i
cluded in Refs.@14# and@15#. In particular, the profile of the
stabilizing field depends onr 0 , and so a small change i
r 0→b(x) distorts the background field. It was found that th
results in anO(M Pl

2 ) correction to the radion kinetic term
thereby drastically changing the phenomenology of the
dion.

We review the resolution of this issue in the first part
this paper. Some of the results presented in Secs. III–VI
already contained in the work by Tanaka and Montes@29#,
even though the results of this paper were obtained inde
dently of Ref.@29#. We explicitly determine the wave func
tion of the radion when there is a stabilizing mechanism.
find that the radion mass is typicallyO ~TeV!. In the limit
that the backreaction of the stabilizing fields on the metric
small, we find that the correction of the stabilizing field
the radion kinetic term is subdominant to the gravitatio
contribution. We also find that once the stabilizing field ha
nonzero VEV, the Kaluza-Klein~KK ! tower couples directly
to the brane world fields, with 1/TeV normalization, and a
plitude depending on the size of the backreaction.

The action we consider is2

2M3E d5xAgR1E d5xAgS 1

2
¹f¹f2V~f! D

2E d4xAg4lP~f!2E d4xAg4lT~f!, ~2.5!

where g4 is the induced metric on the branes. The ba
ground VEV forf and background metric that preserve 4
Lorentz invariance is

2The action is integrated over the circle rather than the line s
ment.
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f~x,y!5f0~y!, ~2.6!

ds25e22Ahmndxmdxn2dy2. ~2.7!

The Einstein equations are then

Rab5k2T̃ab5k2S Tab2
1

3
gabg

cdTcdD , ~2.8!

with k251/(2M3). For this background the scalar and me
ric field equations are

4A822A952
2k2

3
V~f0!2

k2

3 (
i

l i~f0!d~y2yi !,

~2.9!

A825
k2f08

2

12
2

k2

6
V~f0!, ~2.10!

f0954A8f081
]V~f0!

]f
1(

i

]l i~f0!

]f
d~y2yi !.

~2.11!

Here primes denote]/]y, and we reserve]m to denote de-
rivative with respect to the comoving 4D space-time coor
natesxm. The boundary equations forA andf0 are obtained
by matching the singular terms in the above equations. T
gives

@A8#u i5
k2

3
l i~f0!, ~2.12!

@f08#u i5
]l i~f0!

]f
. ~2.13!

For analytical solutions we use an approach presente
Refs. @26# and @30#. A particular class of potentialsV is
considered which can be written in the form

V~f!5
1

8 S ]W~f!

]f D 2

2
k2

6
W~f!2. ~2.14!

Then a solution to the following first order equations,

f085
1

2

]W

]f
, A85

k2

6
W~f0!, ~2.15!

automatically solves both the Einstein and scalar field eq
tions, once the appropriate boundary conditions are solv
The virtue of this method is that for simple choices ofW it is
possible to also solve for the back reaction off0 on the
metric. This will be important for us, since we find that on
after including the back reaction of the stabilizing field do
one find that the radion acquires a mass.

In particular, to obtain some analytic results the followin
superpotential@26# will be used:

W~f!5
6k

k22uf2 ~2.16!g-
2-3
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with brane potentials

l~f!656W~f6!6W8~f6!~f2f6!1g6
2 ~f2f6!2.

~2.17!

Here1/2 refer to Planck/TeV brane. The solution is@26#

f0~y!5fPe2uy, ~2.18!

A~y!5ky1
k2fP

2

12
e22uy. ~2.19!

The separation distancer 0 is then fixed by matchingf0 at 0
and r 0 to fP and fT which givesur05 ln fP /fT . So the
quantity

e2ur05
fT

fP
~2.20!

is not a~hierarchically! small number, since bothfP andfT

are O(M Pl
3/2). This combination will appear later in the ex

pression for the radion mass. Also for future reference, si
the back reaction corresponds to the second term inA, the
limit of a small back reaction isk2fP

2 , k2fT
2!1, and u

.0, but withfP /fT5const, so thatu is kept constant.

III. COUPLED FIELD EQUATIONS

Whenf050 there is always a static solution independe
of the value ofr 0 .3 The small fluctuations in the relativ
position between the two branes then describe a mas
particle ~‘‘the radion’’!, and its wave function is@27#
G(x,y)52F(x,y)52ke2kyR(x) and wherehR50. Since
the coupling of the radion to the standard model fields
;1/TeV @14,15#, obtaining an acceptable phenomenology
quires that this radion acquires a mass.

We therefore consider the spectrum of perturbations ab
the above background which stabilizes the interbrane s
ration. A general ansatz to describe the spin-0 fluctuation

f~x,y!5f0~y!1w~x,y!, ~3.1!

ds25e22A22F~x,y!hmndxmdxn2@11G~x,y!#2dy2.
~3.2!

In order to describe all gravitational excitations of the mod
one would need to add also the degrees of freedom in
graviton, by replacinghmn→hmn1hmn

TT . One can show tha
the Einstein equations with this replacement will have
radion and the graviton decoupled. This metric ansatz~3.2!
@together with the two Eqs.~3.12! andG52F which we will
shortly derive# fixes our gauge choice. One can show, th
the effect of the remaining gauge transformations that p
serve the form of Eqs.~3.2! and ~3.12! just amount to a 4D
gauge transformation on the graviton fieldhmn and can be
used to impose a convenient 4D gauge for the graviton

3After two fine-tunings which are independent ofr 0 . But only one
fine-tune remains after radius stabilization@12,14#.
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the following we will only concentrate on the radion field
Using this ansatz the Einstein and scalar field equations
linearized to obtain some coupled equations forF, G, andw.
The linearized Einstein equations are

dRab5k2dT̃ab . ~3.3!

Inspecting thedRmn equation one immediately conclude
that G52F. For

dRmn5¯12]m]nF2]m]nG1..., ~3.4!

where the ellipses all contain terms;hmn . Since to linear
order in the perturbations the sourcesdT̃mn are also all
;hmn , the]m]n term indRmn term must vanish. This gives
G52F1c. However, in the limitF→0, orG→0 we should
recover the background solution, soc50. In what follows
we setG52F. Then the coupled field equations are

dRmn5hmnhF1e22Ahmn

3~2F9110A8F816A9F224A82F !, ~3.5!

dRm553]mF826A8]mF, ~3.6!

dR5552e2AhF14F9216A8F8. ~3.7!

The source terms are

dT̃mn52
2

3
e22Ahmn@V8~f0!w22V~f0!F#

2
1

3
e22Ahmn(

i
S ]l i~f0!

]f
w24l i~f0!F D d~y2yi !,

~3.8!

dT̃m55f08]mw, ~3.9!

dT̃5552f08w81
2

3
V8~f0!w1

8

3
V~f0!F

1
4

3 (
i

S ]l i~f0!

]f
w12l i~f0!F D d~y2yi !.

~3.10!

The linearized scalar field equation is

e2Ahw2w914A8w81
]2V

]f2 ~f0!w

52(
i

S ]2l i~f0!

]f2 w12
]l i~f0!

]f
F D d~y2yi !

26f08F824
]V

]f
F. ~3.11!

Notice that theRm5 may be integrated immediately to obta

f08w5
3

k2 ~F822A8F !. ~3.12!
2-4
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An integration constantk(y) has been sent to zero since w
require that the fluctuationsF andw are also localized inx.
This Eq.~3.12! together with the metric ansatz~3.2! fixes our
gauge choice. One can show that the effect of the remain
gauge transformations that preserve the form of Eqs.~3.2!
and ~3.12! just amount to a 4D gauge transformation on t
graviton fieldhmn and can be used to impose a conveni
4D gauge for the graviton.

These equations must be supplemented by the boun
conditions forF andw on the two branes. These are obtain
by identifying the singular terms in above equations.A priori
the Einstein equations give two boundary conditions for e
wall. It is, however, straightforward to show that one of the
is trivially satisfied onceA satisfies the jump Eq.~2.12!. The
two remaining boundary equations are

@F8#5
2k2

3
l i~f0!F1

k2

3

]l i

]f
~f0!w, ~3.13!

@w8#u i5
]2l i

]f2 ~f0!w12
]l i

]f
F. ~3.14!

Upon using the jump equations for the background the fi
equation is seen to be equivalent to Eq.~3.12! and so pro-
vides no new constraints. Then only the second bound
condition must be implemented. A convenient limit will
times be considered in this paper. The second boundary
dition simplifies in the limit of a stiff boundary potentia
Namely, if]2l i /]f2@1 then the second boundary conditio
is just wu i50. Then in this limit the first boundary conditio
is just

~F822A8F !u i50. ~3.15!

A single equation forF is obtained as follows. One con
siders the combinatione2AdRmn1dR55 in the bulk. The
point of this combination is to eliminate terms of the for
V(f0)w. This leaves a bulk equation forF andw8 only:

e2AhF1F922A8F85
2k2

3
f08w8. ~3.16!

One then eliminatesw8 in favor of F using Eq.~3.12!. This
gives

F922A8F824A9F22
f09

f08
F814A8

f09

f08
F5e2AhF,

~3.17!

to be solved in the bulk. This is the principle equation th
will be studied and solved below. We note in passing t
each eigenmodehFn52mn

2Fn to this equation has two in
tegration constants and one mass eigenvalue. One con
corresponds to the overall normalization. The remaining
tegration constant is fixed by the boundary condition at
Planck brane, and the mass is determined by the boun
condition on the TeV brane. In the stiff potential approxim
tion we use the boundary condition given by Eq.~3.15!.

It is then possible to show that a solutionF to the above
equation automatically implies that thew equation and the
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remaining Einstein equation are satisfied. In particular, st
ing with Eq. ~3.16!, one uses the derivative of Eq.~3.12! to
eliminateF9. The resulting equation, call itE, is then differ-
entiated and the combination 05E822A8E is constructed.
Using the background field equations and Eq.~3.12! one
arrives at thew equation. Finally, thedRmn equation is ob-
tained from thedR55 equation after substituting forw8.

IV. GENERAL PROPERTIES OF THE EQUATION

First we show that the single ordinary differential equ
tion for F(y) given in Eq.~3.17! can always be brought into
the Schro¨dinger form. For this we first transform the equ
tions into the coordinate system where the background m
ric is conformally flat. This is achieved by the change
variablesdze2A(z)5dy, whereA(z)5A@y(z)#. In these co-
ordinates the equation simplifies to

F923A8F824A9F22
f09

f08
F814

f09

f08
A8F52m2F.

~4.1!

After the rescaling of the fieldF by F5e3/2Af08F̃ we obtain
the Schro¨dinger-like equation

2F̃91F9

4
A821

5

2
A92A8

f09

f08
12S f09

f08
D 2

2
f0-

f08
G F̃5m2F̃.

~4.2!

However, this by itself does not guarantee Hermiticity
the differential operator in Eq.~4.2!. The reason is that this
operator is defined only on a finite strip, and therefore
addition to writing the equation in a Schro¨dinger form one
also has to ensure that one has Hermitian boundary co
tions for F. For the differential operator in Eq.~4.2! to actu-
ally be Hermitian on the finite strip between the two bran
one also has to require that for any two functionsF1 , F2 on
the strip F18(0)F2(0)2F1(0)F28(0)2F18(zb)F2(zb)
1F1(zb)F28(zb)50, where 0 andzb denote the positions o
the branes in the conformally flatz coordinates. Once this
condition is satisfied, it is automatically guaranteed by
usual theorems that all eigenvaluesmn

2 are real, that the
eigenfunctions are orthogonal to each other and that t
form a complete set. The actual boundary conditions thaF
has to satisfy can be derived from the general boundary c
dition given in Eq.~3.14!. In the particular model considere
in this paper the boundary condition in they coordinates is
given by

6w85g6
2 w62uf6F. ~4.3!

In the special limit wheng6→` this boundary condition
reduces tow50 on the two boundaries, which together wi
the constraint Eq.~3.12! betweenw andF just implies

~F822A8F !u i50 ~4.4!

at the two branes. Upon transforming to the Schro¨dinger ba-
sis andz coordinates the boundary condition will be replac
by
2-5
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F̃85F̃S 1

2
A82

f09

f08
D ~4.5!

at the branes. This boundary condition clearly satisfies
Hermiticity properties and thus will ensure the appearanc
only real mass eigenvalues of the coupled system. This
also be the case that we will analyze in full detail in t
following sections. As for the general case, wheng i is finite,
the boundary condition will not be Hermitian. This can
easily seen from the fact that the general boundary condi
involves w8 at the branes, which should be expressed fr
Eq. ~3.12! in terms ofF9, F8, andF at the brane. The ap
pearance ofF9 in the boundary condition will generically
ruin the Hermiticity of the operator. Nevertheless, one m
eliminateF9 in favor of the eigenvalue, and one can in pri
ciple solve forF. The non-Hermiticity by itself, however
does not mean that the eigenvalues are not real. In fact, s
f is a real scalar andF a component of the metric tenso
both of these functions have to be real to start with, wh
guarantees at least the appearance of only real eigenva
While for the model studied here~see Sec. VI! the radion is
not tachyonic, it is unclear whether for a general poten
this remains true. However, the orthogonality of the so
tions is not guaranteed by anything, and will likely be vi
lated in general for the non-Hermitian boundary conditio
It would be interesting to understand the physics behind
nonorthogonality of these solutions in more detail.

V. APPROXIMATE SOLUTION FOR THE KK TOWER

We have seen that the coupled radion-scalar system l
to a single ordinary second order differential equation. Fr
now on we will always assume that we can use the limitg i
→`, and be able to use the Hermitian boundary conditio
~4.4!. In the following we will present an approximate sol
tion to these equations. For this, we will first neglect the ba
reaction of the nonvanishing scalar background on the m
ric. This will lead us to a simple Bessel-type equation, wh
will give a very good approximation for the masses of t
KK tower of the fields. However, surprisingly, in this ap
proximation the radion@which we identify as the lowest ly
ing solution of Eq.~3.17!# remains massless. Therefore, af
presenting this approximation, we will give a perturbati
analysis for the effect of the back reaction of the metric
the radion mass. We will find that as expected, the rad
mass will be of order TeV, but somewhat lighter just
predicted in Refs.@14# and @15#.

To find the actual wave functions and masses for
radion-scalar system, we will use the particular model
forward by de Wolfeet al. @26# and summarized in Sec. II
First we neglect the back reaction of the scalar field ba
ground on the metric, which seems to be a good approxi
tion as long askfP,T!1. In this case the equation for th
radion fieldF reduces in the Schro¨dinger frame to

2F91
a~a11!k2

~kz11!2 F5m2F, ~5.1!

wherea is given by
06500
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a52
3

2
2

u

k
. ~5.2!

In these coordinates the boundary conditions at the br
simplify to

F81
ak

kz11
F50 ~5.3!

at the locations of the branes atz50 and zb[(1/k)(ekr0

21). The solutions of these equations are given by lin
combinations of the Bessel functionsJa11/2 and Neumann
functionsNa11/2:

Fn~z!5anS z1
1

kD 1/2

Na11/2FmnS z1
1

kD G
1bnS z1

1

kD 1/2

Ja11/2FmnS z1
1

kD G . ~5.4!

The mass eigenvaluesmn can be determined from the bound
ary condition~5.3!. Using the relation for Bessel functions

Zn8~x!5Zn21~x!2
n

x
Zn~x! ~5.5!

the boundary conditions at the two branes simply reduce

anNa21/2S mn

k D1bnJa21/2S mn

k D50,

anNa21/2S mnekr0

k D1bnJa21/2S mnekr0

k D50, ~5.6!

which yields the simple equation

b~mn!5Ja21/2S mn

k D Na21/2S mnekr0

k D
Na21/2S mn

k D 2Ja21/2S mnekr0

k D50,

~5.7!

which can be used to determine the mass eigenvaluesmn .
This can be done numerically. In Fig. 1 we show the low
mass eigenvalues fora522.5, which corresponds to th
somewhat unrealistic valueu/k51. In Fig. 2 we show the
dependence of the first nonvanishing mass eigenvalue on
value ofa523/22u/k. One can easily see from Eq.~5.7!,
that m50 is always a solution to Eq.~5.7!, therefore in the
approximation we are using the radion is still massless.
the higher states of the KK tower it is a good approximati
to use the mass eigenvalues obtained from Eq.~5.7!, because
the masses are of the order~and even larger! than the TeV
scale, thus in the limit of small back reaction that we a
considering throughout the paper these masses will be
slightly modified. The radion~which appeared as the zer
mode above!, however, needs special treatment, since
shift in the mass~which is usually negligible for the highe
KK modes! coming from the back reaction of the metr
2-6
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RADION DYNAMICS AND ELECTROWEAK PHYSICS PHYSICAL REVIEW D63 065002
background due to the scalar field is the leading order c
tribution to the mass for the radion. Below we will estima
the size of the radion mass in perturbation theory.

VI. RADION MASS

In the previous section we have seen what the appr
mate wave functions and masses are for the KK tower of
coupled radion-scalar system. In this approximation of
glecting the back reaction, however, we have still found
vanishing radion mass. This is in fact easy to show fo
general stabilizing potential. From Eq.~3.17!, F5e2A is al-
ways a solution with zero mass ifA9 is neglected in the bulk
Thus the radion mass is always proportional to the back
action of the metric independently of the details of the p
tential of the stabilizing scalar field. In the following, we wi
show how the back reaction generates a nonvanishing m
for the radion field. For this, we start with the equation d

FIG. 1. The lowest mass eigenvalues for the coupled rad
scalar system foru/k51 are given by the zeroes of the functio
b(m) defined in Eq.~5.7!. On this plotm is given in unitske2kr0,
therefore the mass spacings are given by the TeV scale. Note th
the approximation leading to this equation the lowest lying stat
still massless.

FIG. 2. The dependence of the mass of the first KK mode ona.
Herem1 is again given in unitske2kr0 and is therefore of the orde
of the TeV scale.
06500
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scribing the radion wave function in they coordinates:

F922A8F824A9F12uF824uA8F1m2e2AF50,
~6.1!

whereA(y) is given in Eq.~2.19!. The appropriate boundar
condition isF822A8F50 at the branes. In the special lim
g6→` the other boundary condition isw50. Thus we will
treat the back reaction as a perturbation, and look for
solution in terms of a perturbative series inl[kfP /&.
Then we write the solution as

F05e2kuyu@11 l 2f 0~y!#, mr
25 l 2m̃2,

A~y!5kuyu1
l 2

6
e22uuyu. ~6.2!

Expanding the solution as above and keeping only the le
ing terms inl 2 we obtain the equation

f 0912~k1u! f 0852m̃2e2kuyu2
4

3
~k2u!ue22uuyu ~6.3!

along with the boundary conditions

f 081
2

3
ue22uuyu50 ~6.4!

at the location of the branes. One can easily find the m
general solution forf from the equation in the bulk, which is
given by

f 08~y!5Ce22~k1u!uyu2
m̃2

2~2k1u!
e2kuyu2

2~k2u!u

3k
e22uuyu,

~6.5!

where the integration constantC along with the radion mass
m̃ is determined by the boundary conditions at the bra
This way we obtain the radion mass to be

mradion
2 5

4l 2~2k1u!u2

3k
e22~u1k!r 0, ~6.6!

where r 0 denotes the location of the brane. Note that t
result is very similar to the answer obtained from the effe
tive theory computation using the naı¨ve ansatz@14,15#, ex-
cept for the important difference in the power ofu/k. The
exact result obtained here scales as (u/k)2, whereas the ef-
fective theory result would scale as4 (u/k)3/2. It would be
very interesting to understand the origin of this differe
scaling. For this model to give the correct value of the we
scale without reintroducing a large fine-tuning again o
needsu/k' 1

37 , thus the radion mass turns out to be som
what lighter than the TeV scale. It is suppressed by the fa
l (u/k)e2ur0 compared to the TeV scale. Thus in this a
proximationmradion; l /40 TeV, which could be at least in th
range of a few GeV’s. Of course, we need to emphasize

4We thank Jim Cline for these observations.
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l is not necessarily small for the stabilization mechanism
work, we took this limit only for calculational convenienc

VII. COUPLING TO SM FIELDS

In this section the coupling of the radion and KK tower
f to the TeV brane are obtained. In particular we dem
strate that the bulk scalar field gives a small correction to
radion kinetic term, and thus the kinetic terms obtained fr
the Einstein-Hilbert part of the action dominate, justifyin
the results obtained using the naı¨ve ansatz@14,15#.

In the previous section it was seen that by including
backreaction anO ~TeV! mass for the radion is obtained
The wave function is then

F0~x,y!5e2kuyu@11 l 2f 0~y!#R~x!, ~7.1!

where f 0(y) is given by the integral of Eq.~6.5!. Since the
radion mass isO ~TeV!, and by assumptionl 2!1, we see by
inspection that the back reaction induces a small correc
to the unperturbed wave function. So for the purposes
determining the coupling of the radion to the TeV brane i
sufficient to include only the unperturbed wave functio
namelyF(x,y)5e2kuyuR(x). Then a straightforward calcula
tion gives

2M3E dyAgR.6M3~]R!2E e22Ae4kuyu

5
6M3

k
~e2kr021!~]R!2. ~7.2!

So the normalized radionr (x) is R(x)5r (x)e2kr0/A6M Pl ,
since M3/k5M Pl

2 /2. This implies a coupling to the TeV
brane fields which is

R~x!e2kr0@11O~ l 2!#TrTmn

5
r ~x!

A6M Ple
2kr0

TrTmn@11O~ l 2!#, ~7.3!

where the left-hand side of this equation is a consequenc
the fact that the induced metric on the TeV brane
e22A(r 0)@12e2kr0R(x)hmn#. The coupling obtained this wa
agrees precisely with Eq.~2.4!. This is perhaps surprising
since the latter computation used an ansatz which did
satisfy the equations of motion. This makes us suspect
results which depend only on the leading unperturbed fo
of the radion wave function will be correctly captured by t
naı̈ve ansatz.

Now we address the issue that was originally raised
Ref. @16#. Is the radion kinetic term dominated by the kine
term of the bulk scalar field or the bulk gravity action, and
particular is the former hierarchically larger? To answer th
we need the change inw caused by a fluctuation in the ra
dion. Sincew50 when the back reaction is not included, w
must include the leading back reaction correction to the
dion wave function, given by the integral of Eq.~6.5!. From
Eq. ~3.12! we compute that the change inw to O( l 2) due to
the radion is
06500
o
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e

e

n
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-

w5
3

k2f08
~F822A8F !5

3l 2

k2f08
S F081

2u

3
e22uuyu D

5
3l 2R~x!

k2f08
e2kuyu f 3~y!, ~7.4!

where

f 3~y![ f 08~y!1
2

3
ue22uuyu

5Ce22~k1u!uyu2
m̃2

2~2k1u!
e2kuyu1

2u2

3k
e22uuyu.

~7.5!

This fluctuation inf then contributes to the radion kineti
term atO( l 2) an amount

E dye24Agmn]mw]nw

5
9l 2

2k2u2 ~]R!2E dye2~k2u!uyu f 3~y!2. ~7.6!

From Eq. ~7.2! the unnormalized contribution from bul
gravity to the kinetic term is;e2kr0. So we only need to
consider those contributions fromf which are comparable o
larger to this. Recalling thatm2;e22kr0, it is seen that the
largest terms in Eq.~7.6! are at beste2kr0. Explicitly per-
forming the integral one finds that it is

dL52l 2
u2

k2k2 ~]R!2e2kr026ur0S 1

3k2u
1

1

k23u
2

1

k2uD
3@11O~ l 2!#. ~7.7!

This is typically ; l 2u2e2kr0M3/k3, which is smaller than
Eq. ~7.2! since we assuming that the back reaction is sm
l !1, and also thatu!k to obtain a realistic hierarchy. So th
radion kinetic term is dominated by the contribution from t
bulk gravity, and receives a small correction from the sta
lizing bulk scalar field.

In Sec. IV it was found that for the simple boundary co
ditions w50 ~corresponding to the limit]2l6 /]f2@1! a
self-adjoint equation forF was obtained. The general solu
tion to this is

F~x,y!5(
n

anFn~x,y!, ~7.8!

whereFn is a mass eigenstate, and thean8s are some num-
bers. We expect thatF includes the massive radion, bu
where did all the other states come from? It is helpful
reconsider what happens when the back reaction is
glected. In this limit the KK tower inF completely disap-
pears and only the~massless! radion remains. This may be
observed from Eq.~3.12!, since neglecting the back reactio
corresponds tok2f0!1, and this amounts to settingF8
22A8F50. The only solution forF in this case is the radion
2-8
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RADION DYNAMICS AND ELECTROWEAK PHYSICS PHYSICAL REVIEW D63 065002
zero modeF5e2kuyu. Once the back reaction is include
however, the fluctuating modes inf and F are correlated
through Eq.~3.12!. In particular, a general fluctuationw in-
duces a change inF. The sum over KK states appearin
above is then just the decomposition ofF into these KK
eigenstates. It is then expected that the coefficientsan for the
nonradion states to be suppressed by the back reaction.

The preceding remarks imply that the TeV brane fiel
which couple to the induced metricF, also directly couple to
the KK tower, by an amount suppressed by the ba
reaction.5 SinceF;f08w is already suppressed by the ba
reaction, therefore in order to compute the induced metri
lowest order in the back reaction we can use the zeroth o
wave functions forw. The normalized KK fields are given b

wn~x,z!5
cn~x!

Nn
~kz11!2J21u/k~mnz11/k!@11 l 2f n~y!#.

~7.9!

Here cn(x) are the normalized 4D fields satisfyinghcn

52mn
2cn . The orthogonality of these solutions when t

back reaction vanishes (l 50) follows from the boundary
condition wn50 and the properties of the Bessel function
Also cn(x) are the normalized 4D fields satisfyinghcn

52mn
2cn . The normalization constant is

Nn5
1

Ak
ekr0J31u/kS mn

k
ekr0D . ~7.10!

As discussed previously, the lowest order massesmn are
determined byJ21u/k(e

2kr0mn /k)50 and are real since th
operator equation with these boundary conditions is s
adjoint. The coupling of these fields to the TeV brane
given by

F~x,y5r 0!TrTmn , ~7.11!

where F is the solution of Eq.~3.12! for the solutionswn
given above. One finds the coupling

l

mn
lsxn

ucn~x!TrTmn . ~7.12!

The model-dependent couplings that appear are

lS5
&

3
ukAke2ur0;OS u

kD ~7.13!

and

5The KK modes of the scalar field do not mix with the KK mod
of the graviton. The reason is that the only way they could mix is
a coupling of the 5D trace of the metric to the scalar KK mod
However, the graviton is traceless, and the trace is basically ide
fied with the radion, therefore no additional graviton-scalar mix
could be introduced.
06500
,

k

to
er

.

f-
s

xn
u5

J11u/kS mn

k
ekr0D

J31u/kS mn

k
ekr0D ~7.14!

is a numerical constant ofO(1). While the inclusion of the
back reaction leads to a TeV suppressed coupling for the
modes, the size decreases rather rapidly due to the 1mn
;1/TeV suppression, as may be observed from inspec
Fig. 1.

The coupling discussed here implies that the KK mod
of f can be directly produced at future colliders, and th
also decay directly to standard model fields. This may
puzzling at first, since the stabilizing potential may have
global discrete symmetry, such asZ2 , which would naı¨vely
imply that some of these KK modes are stable. The ba
ground VEV forf explicitly breaks this symmetry, howeve
and this allows for all the KK modes to decay into the bra
world fields.

The direct coupling of the KK modes from the stabilizin
fields may have interesting implications for search strateg
and current limits on the Randall-Sundrum framework.
particular, it may be important tonot neglect the stabilizing
potential when discussing these issues. However, when
back reaction is small, the size of their couplings is su
pressed byu/k; 1

40 compared to the that of the radion
Therefore, in what follows, we neglect these states in
loop computations.

VIII. COSMOLOGICAL IMPLICATIONS

The subject of brane cosmology has recently attrac
much interest@10,11,14,31–37#. Most of this was due to the
realization that the expansion of a brane universe could
significantly different from the ordinary Friedmann
Robertson-Walker~FRW! cosmology@10,11#. However, it
did not take very long to realize that this is simply due to t
fact that a generic brane model~like the one presented in
Ref. @10#! cannot give the ordinary cosmological evolutio
since gravity is in general manifestly higher dimension
This means that in these models the 4D effective theor
usually not described by ordinary Einstein gravity, but g
nerically a complicated scalar-tensor theory of gravity. Ho
ever, observations show that our Universe is described
Einstein’s theory of relativity to a high precision, therefo
one has to require from the outset that a brane model re
duces ordinary Einstein gravity, at least at long enough d
tances. Once this is achieved, the cosmological expan
will be automatically described by the ordinary Friedman
Robertson-Walker~FRW! Universe, which simply follows
from the fact that the effective theory is ordinary Einste
gravity. Thus one can see that the issue of unconventio
cosmologies is nothing else but the issue of whether
recovers 4D gravity. This issue manifests itself in the case
the Randall-Sundrum two-brane model due to the prese
of the radion field. Without a stabilizing potential, the radio
field will be massless, and yield additional long range forc
and also contribute to the expansion of the Universe, yie

y
.
ti-
2-9



ex
es
t
ty
ra
in

a
h
a

tia
l

io
is
t

po
u
to
na
o

a
or
he
u
th

u
ea

er
ng

es-
W

is
gli-

the

und
and

ob-

CSÁKI, GRAESSER, AND KRIBS PHYSICAL REVIEW D63 065002
ing an unconventional cosmology, which is presumably
cluded by the requirement for a successful nucleosynth
@11#. Thus the radion field has to obtain a mass. Once i
massive, gravity on both branes will be ordinary 4D gravi
and thus the cosmology will be conventional below tempe
tures comparable to the radion mass. This has been expla
in great detail in Ref.@14#, and also in Ref.@31#. In Ref. @14#
a simplified calculation for the cosmological expansion h
been presented, where the wave function of the radion
been neglected, and also the effects of the stabilizing sc
field were included by adding a five dimensional poten
for the radion fieldV(b). Assuming that that the potentia
V(b) is very steep, it was shown from a perturbative solut
of the bulk equations that the ordinary FRW Universe
recovered. It was also argued that the 55 component of
Einstein equation, which in the absence of a stabilizing
tential usually leads to the unconventional expansion eq
tions, will only determine the shift in the radion field due
matter on the wall, and does not result in unconventio
cosmologies once the radius is stabilized. Below we dem
strate, that the results of Ref.@14# which were neglecting the
radion wave function, and also did not include the fluctu
tions of the scalar field at the brane remain valid in the m
precise framework of radion stabilization explained in t
previous sections. In particular, we will show that the res
obtained for the shift in the radion field due to matter on
walls in Eq.~4.15! of Ref. @14# is exactly reproduced in the
full calculation.

To computeG55 we use the ansatz

ds25n~ t,y!2dt22a~ t,y!2d2x2b~ t,y!2dy2 ~8.1!

for which

G5553H a8

a S a8

a
1

n8

n D2
b2

n2 F ȧ

a S ȧ

a
2

ṅ

nD2
ä

aG J . ~8.2!

The jump equations fora andn on the TeV brane imply@10#

@a8#

a
52

k2

3
@l2~f!1r#b,

@n8#

n
5

k2

3
@2l2~f!13p12r#b. ~8.3!

Herer andp are the bare energy matter density and press
on the TeV brane, which are related to the physically m
sured quantities on the TeV brane byr05re24A0, etc.,
wheree2A0 is the scale factor on the TeV brane. Then av
aging theG55 equation about the TeV brane and linearizi
to O(r,F,w) gives

^G55&5k4
l2

2 ~f0!

6
23e2AF S ȧ

aD 2

1
ä

aG2
k4l2~f0!

12
~3p2r!

1
k4l2~f0!

3

]l2~f0!

]f
w1

2k4l2
2 ~f0!

3
F. ~8.4!
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Terms withṅ are higher order inr and are dropped, andb
5112F has been used. For late-time cosmology in the pr
ence of radion stabilization it is reasonable to use the FR
equation

S ȧ0

a0
D 2

1
ä0

a0
52

1

6M Pl
2 ~3p* 2r* 13p02r0!. ~8.5!

Note that this includes a contribution from matter (p* ) on
the Planck brane. Also implicit in the use of this equation
the assumption that the time variation of the radion is ne
gible, which is justifieda posteriori. Then using the relation
k4l2(f0)526(12e22A0)/M Pl

2 gives

^G55&5
k4l2

2 ~f0!

6
1

e4A0

2M Pl
2 @3p02r01e22A0~3p* 2r* !#

1
k4l2~f0!

3

]l2~f0!

]f
w1

2k4l2
2 ~f0!

3
F. ~8.6!

The G55 equation is

G555k2T555k2F1

2
f822g55S 1

2
~¹f!22V~f! D G .

~8.7!

Then the averaging ofT55 and linearizing using Eq.~3.2!
gives

k2^T55&5k2S 1

2
f08

22V~f0! D1k2S f08w824FV2
]V

]f
w D
~8.8!

with all quantities are evaluated on the TeV brane. Using
background bulk Eq.~2.10! and the jump Eq.~2.12! the lead-
ing terms are seen to cancel. Then after using the backgro
equations, the jump equations for the background fields,
some algebra gives

e4A0

2M Pl
2 @3p02r01e22A0~3p* 2r* !#

5k2S f08w822f08
2F2

]V

]f
w24A8f08w D . ~8.9!

Using Eq.~3.16! to eliminatew8, Eq. ~3.17! to eliminateF9
in favor of the mass eigenvalue, and Eq.~2.11! to eliminate
f09 finally gives

e4A0

2M Pl
2 @3p02r01e22A0~3p* 2r* !#523e2A0mr

2F.

~8.10!

But the shift in the distance between the two branes is
tained by integrating the line element, which givesdr 0
5R(e2kr021)/k. Then sinceF5Re2kr0, one obtains

dr 0

r 0
5

1

6kr0

~12e22A0!

mr
2M Pl

2 e22A0
@r023p01e22A0~r* 23r* !#

~8.11!
2-10
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RADION DYNAMICS AND ELECTROWEAK PHYSICS PHYSICAL REVIEW D63 065002
which is preciselythe result found in Ref.@14# obtained by
using a 4D effective theory.6 This is perhaps not surprising
since for constant radion field the naı¨ve ansatz and the ful
metric including the wave function of the radion are equiv
lent up to a coordinate transformation. So in an adiab
approximation the leading order result using the naı¨ve ansatz
should agree with that obtained from using the correct rad
wave function, if the fluctuations in the scalar field are
nored. It is less clear why the full answer including the co
tribution from the scalar field turns out to be exactly equa
the calculation using the naı¨ve ansatz. Note that matter o
the Planck brane causes a smaller shift in the radion c
pared to an equal amount of matter on the TeV brane. Th
because the radion wave function is peaked at the TeV br
and it couples more weakly to the Planck brane relative
the TeV brane by precisely the amounte22A0. Thus one
finds the very general result that in the presence of matte
the branes and a stabilizing mechanism, theG55 equation
determines the shift in the radion.

IX. EFFECTIVE 4D LAGRANGIAN

In the previous sections we have argued that in the p
ence of a stabilizing potential the linear couplings of t
radion and bulk scalars is given by

1

2
~]r !22

1

2
m2r 21(

n

1

2
@~]cn!22mn

2cn
2#1DH†DH

1S r ~x!

A6L
1(

n
an

cn~x!

Ln
D TrTmn1jH†HR2V~H !.

~9.1!

The masses appearing here areO ~TeV!, and their particular
value depends on the details of the stabilizing mechani
The scaleL5e2kr0M Pl in the Randall-Sundrum model, bu
here we have left it general. The other scales areLn;mn ,
and thean are also model dependent, and vanish in the li
of small back reaction. In the remaining sections we rest
ourselves to the above Lagrangian, and do not commit o
selves to any specific mechanism of radius stabilization.
the electroweak analysis we neglect the contributions of
KK modes fromf.

Note that in the above Lagrangian we have also inclu
a curvature Higgs scalar operatorH†HR. The presence o
this operator leads to interesting signals for discovering
Higgs and radion at future colliders@21#. In particular, the
branching fractions of the Higgs and radion togg andb̄b can
be substantial different from that of the SM Higgs.

As discussed in Ref.@21#, the presence of the conforma
term H†HR leads to both kinetic and mass mixing betwe
the neutral Higgs and radion. Below we summarize the
evant formulas for mixing and couplings. The interest
reader is referred to the next section for details.

6A translation dictionary between two different notations is
quired:kr05m0b0/2.
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One finds that the ‘‘gauge’’h andr are related to the mas
eigenstateshm and r m by

h5S cosu2
6jg

Z
sinu Dhm1S sinu1

6jg

Z
cosu D r m ,

~9.2!

r 5cosu
r m

Z
2sinu

hm

Z
, ~9.3!

where

tan 2u512jgZ
mh

2

mr
22mh

226jg2~1212j!
, ~9.4!

g5
y

A6L
, Z25116jg~126j!, ~9.5!

wherey'246 GeV is the electroweak VEV. Requiring th
the quantityZ2 be positive~in order to avoid ghostlike states!
places an upper bound on the value ofj, for a given g.
Physically this requirement comes from maintaining posit
definite kinetic terms forh andf.

In this basis, the couplings of the physical radion a
Higgs appropriate for tree-level studies are

2F S cosu2~6j21!
g sinu

Z Dhm

1S sinu1~6j21!
g cosu

Z D r mGTrTmn . ~9.6!

In the j→0 limit one recovers

2~h2gr !TrTmn , ~9.7!

obtained in Refs.@14# and@15#. Note that TrTmn includes SM
Higgs contributions.

X. CURVATURE-SCALAR MIXING

In this section the effects of introducing a curvature-sca
interaction are reviewed. The discussion parallels Ref.@21#,
however, some of the resulting formulas are slightly differe
because here terms ofO(g2) andO(g2j2) are kept.

We begin with the couplings of the radion and Higgs
the SM fields before electroweak symmetry breaking. T
induced metric on the TeV wall is

gmn
ind~x!5e22A~r 0!22e2kr0R~x!gmn~x!, ~10.1!

where the warp factor includes the back reaction, although
inclusion is not necessary for our purposes. The canonic
normalized radionr is

R~x!5e2kr0
r ~x!

A6M Pl

. ~10.2!-
2-11
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So we express the induced metric expanded abou
Minkowski metric as

gmn
ind~x!5e22A~r 0!22r ~x!g/yhmn[e22A~r 0!V2~r !hmn

~10.3!

with

g5
y

A6L
, L5M Ple

2kr0. ~10.4!

The four dimensional effective action we consider is

STeV5E d4xAgind@gind
mn DmH†DnH2V~H !#

1E d4xAg
1

2
@~¹r !22mr

2r 2#

1E d4xAgindjR~gind!H†H1SSM. ~10.5!

To canonically normalize the Higgs and other SM fields,
perform the field-independent redefinition

H→eA~r 0!H, c→e3A~r 0!/2c. ~10.6!

In this basis the Higgs-radion potential is

V~H,r !5V4~r !V~H !. ~10.7!

Note thatV also includes the effective 4D cosmological co
stant, which we assume to vanish. Clearly this potential h
minimum at the same location asV(H), so that the elec-
troweak symmetry breaking~EWSB! vacuum isr 50 and
H05y/&.

We consider the presence of the curvature mixing term

Lj5AgindjR~gind!H†H. ~10.8!

Our choice of signs forj is such that the Higgs potentia
receives a positive mass-squared correction in a de S
phase whenj is positive. Since this is a renormalizable i
teraction, there is no reason for it not to be present, or to
suppressed. What makes this operator important in this
is that R contains the induced metric, rather than just t
ordinary 4D metric. In particular,

R@V2~r !hmn#526V22@h ln V1~¹ ln V!2#.
~10.9!

So the curvature-scalar interaction is

Lj526jV2@h ln V1~¹ ln V!2#H†H. ~10.10!

To see the effect of the curvature scalar interaction we
pandH05(y1h)/& andV(r )512gr /y1... . We need to
only expandV to linear order since the derivative terms a
already ofO(r ). This gives at quadratic order

Lj56jghhr 13jg2~]r !2, ~10.11!
06500
a

e

a

er
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where a total derivative has been dropped. Thej terms
clearly introduce kinetic mixing. The full radion-Higgs La
grangian to be diagonalized is

L52
1

2
hhh2

1

2
mh

2h22
1

2
~116jg2!r hr 2

1

2
mr

2r 2

16jghhr . ~10.12!

The mass parametersmr , mh are the masses of the radio
and Higgs, respectively, in the limitj50. The kinetic terms
are diagonalized by the shifth5h816jgr 8/Z, and r
5r 8/Z. Here

Z25116jg2~126j! ~10.13!

is the coefficient of the radion kinetic term after undoing t
kinetic mixing, and is therefore required to be positive
order to keep the radion kinetic term positive definite. Fo
fixed cutoff L this restricts the size of the mixing paramet
j. It must lie in the range

1

12S 12A11
4

g2D<j<
1

12S 11A11
4

g2D
~10.14!

for nonzero values ofg. Otherwise one has a ghostlike ra
dion field, which presumably signals an instability of th
theory.

This rescaling diagonalizes the kinetic terms, but int
duces mixing in the mass matrix. A final rotationh8
5cosuhm1sinurm and r 85cosurm2sinuhm brings the La-
grangian to canonical form. With the above definition of t
sign of the rotation, the rotation angle is

tan 2u512jgZ
mh

2

mr
22mh

2~Z2236j2g2!
. ~10.15!

We note that for moderate values ofj and g ~i.e., Z2

.36j2g2! the mixing angle tan 2u is negative whenmh

.mr . For smallg we can expand

tan 2u512jg
mh

2

mr
22mh

2 1O~g2!. ~10.16!

Putting everything together, the relation between the ga
and mass eigenstates is

h5S cosu2
6jg

Z
sinu Dhm1S sinu1

6jg

Z
cosu D r m ,

~10.17!

r 5cosu
r m

Z
2sinu

hm

Z
. ~10.18!

The mass eigenvalues are easily obtained
2-12



th

rd

r
y
to
or
nc

um
o

r-
on
o
l-

ju

one
he

ed
ck-

he

ee-

ree-

RADION DYNAMICS AND ELECTROWEAK PHYSICS PHYSICAL REVIEW D63 065002
m6
2 5

1

2Z2 „mr
21~116jg2!mh

26$@mr
22mh

2~116jg2!#2

1144g2j2mr
2mh

2%1/2
…. ~10.19!

The heavier state~1! is identified with the state with the
larger of (mh

2,mr
2).

XI. RADION COUPLINGS AND FEYNMAN RULES

In this section we derive the Feynman rules relevant to
computation of the oblique parametersS, T, U.

Before proceeding, we pause to ask whether higher-o
couplings such as

f2TrTmn ~11.1!

also affect in particular the electroweak precision measu
mentsS, T, and U. This operator could either be directl
present, or generated from the above linear coupling due
nontrivial kinetic term for the radion. Although this operat
contributes at one loop to the gauge boson two point fu
tions, it is easy to see that they do not contribute toT, since
themV

2 contained in TrTmn is canceled by the 1/mV
2 appearing

in the expression forT, nor toS or U since the contribution
of this operator to the vacuum polarizations is moment
independent. Thus we need to only consider the linear c
pling

gr

y
TrT. ~11.2!

This operator will have a contribution to the oblique co
rections similar to that of the standard model Higgs bos
First we discuss the Feynman rules for the interactions fr
the (gr /y)TrT operator. The interaction Lagrangian term re
evant for the gauge-boson propagator corrections is
given by
a
n
a
a
la
n

in
In

y

06500
e

er

e-

a

-

u-

.
m

st

Lint52
g

y
r ~2MW

2 Wm
1Wm21MZ

2ZmZm!. ~11.3!

In addition, to ensure gauge invariance of the results,
also has to examine the gauge fixing terms carefully. T
gauge fixing Lagrangian for theW and theZ are given by

Lg f5AgF2
1

a
~2DmWm11 iaMWC1!~2DmWm2

2 iaMWC2!2
1

2a
~2DmZm1aMZC!2G , ~11.4!

where theC’s are the would-be-Goldstone bosons, anda is
the gauge fixing parameter in theRa gauge. Note that since
the gravitational background is nontrivial, we have replac
the ordinary derivatives by covariant derivatives. The ba
ground metric is given bygmn5V2(r )hmn5e22gr /yhmn ,
therefore the covariant derivative of a vector will take t
form

DmVm5V22S ]mVm2
2g

y
]mrVmD . ~11.5!

Thus from the gauge fixing terms one also obtains thr
point interaction vertices of the form

Lg f5
2g

ya
~]mZm!~]nrZn!1

2g

ya
~]mWm1!~]nrWn2!

1
2g

ya
~]mWm2!~]nrWn1!. ~11.6!

With these operators added, the Feynman rule for the th
point function is given by
~11.7!
i-

the
In addition to the cubic vertices evaluated above, there
also four-point couplings of the radion and the gauge boso
These terms will not contribute to the oblique electrowe
corrections, however, they will be important to obtain
gauge invariant answer for the gauge boson vacuum po
ization diagrams. These terms arise from two differe
sources. The first source is the conformal coupl
2e2gr /yTrT to the trace of the energy momentum tensor.
the formalism of Ref.@14# this can be obtained by a ver
re
s.
k

r-
t

g

careful expansion of the interaction termsuDmHu2

1(1/A6L)]r (H†DH1H.c.). Either way one finds the add
tional operators

g2

y2 r 2S MW
2

2
Wm

1Wm21MZ
2ZmZmD . ~11.8!

The other source of quartic interaction terms are again
2-13
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gauge fixing terms. One simply expands these to higher
der to obtain the interaction terms

2
2g2

ay2 ]mr ]nr ~ZmZn12Wm1Wn2!. ~11.9!
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06500
r-The interaction terms involving the would-be Goldsto
bosons just contribute a total derivative, and thus they can
omitted. The above operators give rise to the followi
Feynman rule for the four-point function:
~11.10!
t is
re-
ce
at
son

sed
fi-
tors

ing
e

The presence of the terms proportional to 1/a in Eqs.
~11.7! and ~11.10! are in fact crucially important to obtain
gauge invariant amplitudes, however, for calculations in
unitary gaugea→` their effect vanishes.

This is, however, not the complete story for the Feynm
rules. The reason is that the radion couples conformally
the metric and so is not the same as the Higgs. Thus,
example, one finds that at one loop the radion has the ano
lous coupling

r

L
bG

aG

8p
GmnGmn ~11.11!

in addition to the usual momentum-dependent coupling
tained from one-loop diagrams with internal fermions. He
bG is the beta function. This may be understood as due to
scaling anomaly together withr as a generator of scale tran
formations. Diagrammatically this result is obtained by p
serving the conformal coupling ofr when the theory is regu
lated. For dimensional regularization this means that
radion must couple conformally to theD-dimensional metric.
Since the linear coupling of the radion is obtained from va
ing the induced metric, for loop computations the radi
should couple instead to TrDTmn , but where now the trace i
evaluated inD dimensions. This differs from the above co
pling by some operators whose coefficient vanishes w
D→4. Since this«542D dependence can be offset b
poles appearing in the loops, the appearance of these a
tional operators can result in finite nonzero results in theD
→4 limit. These operators will indeed have a nonvanish
contribution to theSandU parameter. Next we calculate th
Feynman rules for these ‘‘anomalous’’ couplings. The int
actions we should therefore study are

L52
h

y
Tr4T1

gr

y
TrDT. ~11.12!
e

n
to
or
a-

-
e
e

-

e

-

n

di-

g

-

We point out that it is the original ‘‘gauge’’ radionr that has
the conformal coupling to the metric, and consequently i
this field which appears in the above interactions. But a
sult of the curvature-scalar term interaction is to introdu
mixing between the radion and Higgs, which implies th
after transforming to the mass basis the physical Higgs bo
hm will have couplings similar to those above.

The radion will thus have the interaction terms (D54
2«)

L5g
r

y
TrDTmn

5g
r

y
Tr4T2g

«

4

r

y
FmnFmn1g

«

2

r

y
~2MW

2 W1W2

1MZ
2Z2!, ~11.13!

where the first term is the one we have already discus
above. We will later add in the Higgs and mixing coef
cients. The terms relevant to the gauge boson propaga
from the last two terms are

Lint
anom52

«g

2v
r @~]mZn!22~]mZn!~]nZm!

12~]mWn
1!~]mWn2!22~]mWn

1!~]nWm2!

22MW
2 Wm

1Wn22MZ
2ZmZn#. ~11.14!

In D dimensions, one also has to modify the gauge fix
terms. The covariant derivative of a vector field will b
modified to

DmVm5V22S ]mVm2
~D22!g

y
]mrVmD . ~11.15!
2-14
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In addition, theAg factor in front of the gauge fixing term
have to be modified toVD. Thus these interaction term
modify the Feynman rules for the interaction vertex given
Eq. ~11.7! to

22iM V
2g

y S 12
«

2Dhmn1
ig«

y
~p2•p3hmn2p2np3m!

2
i ~22«!g

av
~p2mp1n1p3np1m!2

ig«

av
p2mp3n .

~11.16!

In addition, the four-point vertex in Eq.~11.10! is also modi-
fied by terms proportional to«, which, however, do not con
tribute to a calculation in the unitary gauge.

We close this section by discussing how to take the m
ing between the Higgs and the radion due to the poss
presence of the curvature-scalar mixing operator into
count. The interaction in the gauge basis is

L52
h

y
Tr4T1

gr

y
TrDT. ~11.17!

Using

h5ahm1brm , ~11.18!

r 5chm1drm , ~11.19!

where the coefficientsa, b, c, andd can be read off from Eqs
~10.17! and ~10.18!, then

L5S 2~a2gc!
hm

y
1~gd2b!

r m

y DTr4T

1~chm1drm!
g

y S 2
«

4
FmnFmn1

«

2
MV

2V2D .

~11.20!

Thus the Feynman rules for the radion~and also for the
Higgs boson! have to be modified such that the above mixi
terms are taken properly into account, for example, for
mass eigenstate radion the Feynman rule will be

22iM V
2

y S gd2b2
gd«

2 Dhmn1
igd«

y
~p2•p3hmn2p2np3m!

2
i ~22«!gd

av
~p2mp1n1p3np1m!

2
ig«d

av
p2mp3n . ~11.21!

XII. ELECTROWEAK PRECISION MEASUREMENTS

In this section we consider the corrections of the Rand
Sundrum model to the oblique parameters. Our analysis
applies more generally to a model with a light scalar coup
06500
-
le
c-

e

l-
so
d

conformally to the SM metric but with a typical coupling o
O ~TeV21!.

Our approach is to use an effective theory with cut
O(L), similar to the approach taken in Ref.@25#. Below this
scale the only light fields are the radion and Higgs bos
whose contributions we are going to calculate explicitly.
our approach the effect of any modes heavier than the cu
are included by introducing higher dimension operators t
directly contribute to the oblique parameters. This in pr
ciple includes the effects of the heavy spin-2 KK states,
example, which are typically heavier than the radion. A
rect computation of the effect of the heavy spin-2 states
ing a momentum-dependent regulator has been present
Ref. @18#.

In the previous section the radion coupling to the gau
bosons was obtained and found to be similar to that of
Higgs boson. The contribution of the Higgs boson to t
oblique parameters is by itself divergent, but these div
gences are canceled by the contribution from the pseu
Goldstone bosons~or the longitudinal states of the massiv
gauge bosons!. Thus for the radion one expects a diverge
contribution, but in contrast to the Higgs boson there is
additional source to cancel this. This is perhaps not surp
ing since the radion interactions are nonrenormalizable.

A set of operators that provide the necessary counterte
for the wave-function renormalization is

OX5
g2ZX

L2 S H†HTrWmnWmn1
1

2
tan2 uWH†HBmnBmn

1tanuWH†WmnBmnH D , ~12.1!

where Wmn5Wata, with the generators normalized to12.
Note that the last operator is gauge invariant, since fo
gauge transformationU, Wmn→UWmnU†. Setting the Higgs
boson to its VEV in the above operator gives

OX→ g2ZXv2

2L2 S Wmn
1 W2mn1

1

2 cos2 uW
ZmnZmnD .

~12.2!

In this model the radion does not contribute togg and gZ
wave-function renormalization, and the absence of th
counterterms uniquely fixes the coefficients in Eq.~12.1!.
The explicit computation of theZZ and WW wave-function
renormalizations demonstrates that the above operator
the correct relative factor between the two gauge boso
This is perhaps nontrivial, since there is no additional deg
of freedom to fix this relative factor. We also note that
identical operator to Eq.~12.2! is also required in technicolo
theories in order to cancel the divergent contribution
pseudo-Goldstone bosons to the oblique parameters@40#.

The operator which provides the counterterms for
mass renormalization is

OM5
ZM

2L2 @g82~DmH†H !~H†DmH !

1g2H†H~DmH†DmH !#. ~12.3!
2-15
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CSÁKI, GRAESSER, AND KRIBS PHYSICAL REVIEW D63 065002
The first operator that appears here violates the custo
symmetry, and in particular contributes to theZ but not the
W mass. After electroweak symmetry breaking they toget
reduce to

OM→ ZM

L2 S MW
4 Wm

1W2m1
MZ

4

2
ZmZmD . ~12.4!

Note that it ismV
4 which appears, so we explicitly see th

this operator contributes to ther parameter. In this case it i
trivial to obtain the correct mass renormalization from E
~12.3!, since here there are two coefficients to be determi
from only two constraints. So in addition to the usual sta
dard model renormalizations, these wave function and m
counter terms are also required to renormalize the mode

The model with the radion represents an effective the
valid for E&L. The dimension-six operators discuss
above are obtained by integrating some unknown degree
freedom in the full theory, and in the effective theory th
appear with some unknown coefficientsZi(L). These for
example could include the effects of integrating out t
heavy spin-2 KK modes. Since the divergences for which
two above operators act as counter terms arise at one
order, they are proportional tog2/(16p2). Thus it is reason-
able to expect that the finite part of the operator is also of
same order, and in order to match the form of the explic
calculated one-loop corrections we will write the~finite! co-
efficients as
th

he

ri-
e
th

06500
ial
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.
d
-
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y
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e
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e
y

ZM5
g2L2

16p2v2 aM , ZX5
g2L2

16p2v2 aX , ~12.5!

where we expect that the dimensionless parametersaM and
aX are at most of order 1. Note that sinceg2;L22, in this
parameterization the dimension-six operators are still s
pressed byL2.

These coefficients parameterize the unknown physics
tegrated out at the scaleE;L. Since, however, the radion a
one loop contributes to the anomalous dimension of th
operators, when comparing to the experimental results ev
ated at theZ mass large logarithms ofO(ln L/MZ) appear
from this anomalous scaling and this effect should be
cluded. Following Wilson, a one-loop Wilsonian renorma
ization group equation is obtained for the operator coe
cients. In the leading logarithm approximation the value
these coefficients at the weak scale is determined to be

Zi~MZ!5Zi~L!1
b i

16p2 ln
L2

MZ
2 , ~12.6!

with the b i determined from the coefficient of the lnm term
~or equivalently, from the 1/« poles! in an explicit one-loop
computation. To compute the oblique parameters, one t
adds the contribution of these renormalized operators to
finite parts of the one-loop diagrams. In the leading log
rithm approximation this amounts to simply replacing the 1«
poles in the gauge-boson self-energies with lnL/MZ .

To compute the oblique parameters one uses the Feyn
rules in the previous section to compute the two Feynm
diagrams that contribute to the vacuum polarizations. B
diagrams have one internal radion, and one uses the t
point function and the other uses the four-point function. O
convention for the sign of the vacuum polarizations)VV is
that
~12.7!
the
the

for

lar-
be-
r-

nal
ia-
lar
and only the first term is computed. The generic form of
radion contribution is

)VV~p2!5)VV
S ~p2!1)VV

A ~p2!. ~12.8!

Here ‘‘A’’ denotes the anomalous contribution due to t
conformal coupling of the radion, and ‘‘S’’ denotes the stan-
dard contribution which is also similar to the Higgs cont
bution ~whenj50!. The anomalous couplings are discuss
in the previous section. By an appropriate rescaling of
coupling we can also use)S for the Higgs boson. Whenj
e

d
e

Þ0, the results given below can also be used to compute
oblique parameter after an appropriate redefinition of
couplings and masses. The modification to the expression
the oblique parameters is summarized in Eq.~12.21!.

Inspecting the Feynman diagrams for the vacuum po
izations one finds that the quadratic divergences cancel
tween the two diagrams, leaving only a logarithmic dive
gence. Therefore this justifies the use of dimensio
regularization. An explicit computation of the Feynman d
grams in unitary gauge and for vanishing curvature sca
parameterj gives
2-16
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)VV
S ~0!52

g2

16p2

mV
4

y2 S 6

«
1

5

2
2

mr
2

2mV
2

13
mV

2 ln mV
2/m22mr

2 ln mr
2/m2

mr
22mV

2 D , ~12.9!

)VV
S ~mV

2 !5
g2

16p2

mV
4

y2 S 2
20

3«
2

2

3

mr
2

mV
2 1

1

3

mr
4

mV
4 1

10

9 D
1

g2

16p2

mV
4

y2 S 42
4

3

mr
2

mV
2 1

mr
4

mV
4 D

3E
0

1

dx ln@x2mV
21~12x!mr

2#/m2

1
g2

16p2

mV
4

y2 F2
mr

2

mV
2 S mr

2

3mV
221D ln

mr
2

m2

1
1

3 S mr
2

mV
222D ln

mV
2

m2G , ~12.10!

where to avoid confusion with defining too manyg’s, the
renormalization scalem appearing includes the usual facto
of 4p and Euler’s constantgE . An analytic expression for
the Feynman parameter integral may be obtained, but
not very illuminating. A powerful check on these expressio
is gauge invariance. We have explicitly checked that in
generalRa gauge, the gauge parametera cancels from the
expression and reproduces the above results. We note
the divergences appearing here have the form as given b
operators in Eqs.~12.1! and ~12.3!. For )(0)VV;mV

4 as re-
quired by Eq.~12.3!. The difference between)(mV

2) and
)(0) gives the divergence proportional top2, but in the
above equationsp2 has already been set tomV

2. With this in
mind, by inspection the coefficient ofp2 is ;mV

2, as required
by Eq. ~12.1!. So the set of operators given by Eqs.~12.1!
and ~12.3! provide an appropriate set of counterterms. W
renormalize using the modified numerical subtract
scheme~MS!. Then using the Wilsonian approach outline
above, in the leading logarithm approximation we just
place 1/« with ln L/MZ , that is,

2

«
2gE1 ln 4p→ ln

L2

MZ
2 , ~12.11!

and setm5MZ .
The anomalous contribution is finite and is

)VV
A ~p2!5

g2

16p2

mV
4

y2 S 2
10

3

p2

mV
2 1622

mr
2

mV
2 D .

~12.12!

We note that themr
2 term does not contribute to the obliqu

parameters since it isp2-independent and also;mV
2.

The Particle Data Group~PDG! convention for the ob-
lique parameters that we use here is
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T5
1

a S )WW~0!

MW
2 2

)ZZ~0!

MZ
2 D , ~12.13!

S5
4 sin2 uW cos2 uW

a S )ZZ~MZ
2!

MZ
2 2

)ZZ~0!

MZ
2 D ,

~12.14!

S1U5
4 sin2 uW

a S )WW~MW
2 !

MW
2 2

)WW~0!

MW
2 D .

~12.15!

More generally one must also include the)Zg and)gg self-
energies. They have been dropped here since they do
receive contributions from either the Higgs boson or the
dion.

Using the above expressions one can evaluate the co
bution of the radion toS andT in the limit of a large radion
mass. One obtains, forj50,

S5
g2

p S aX2
1

12
ln

L2

mr
22

5

72D , ~12.16!

T5
3g2

16p cos2 uW
S 2

aM

3
1 ln

L2

mr
2 1

5

6D .

~12.17!

Inspecting the above expressions for the)’s one finds that
there is no divergent contribution toU, and this is consisten
with the fact thatOX andOM provide no counterterms forU.

It is interesting that the radion contribution toS is nega-
tive and toT is positive. This is easy to understand by com
paring this result to the contribution of the Higgs in the SM
In fact, forg51, mr5mh , andZi(L)50, the radion result is
identical to the~logarithmic! contribution of the SM physica
Higgs. But there the total correction toS andT is finite, so
that for the Higgs theL dependence in the above expressi
is canceled by loops ofW’s and Z, leaving a lnmh /MZ de-
pendence. Then one obtains the usual positive~negative! cor-
rection toS(T). For the radion though the large logarithm
are present, and sinceL.mr , the radion contribution toS is
negative, and toT it is positive. Recalling thatg2

5v2/6L2, the size of the above correction is only significa
for small values ofL.

We conclude with a comment on the decoupling behav
of the radion. Inspecting the above expressions we see
for largemr the radion contribution scales as

1

L2 ln
LC

mr
. ~12.18!

For the purposes of this paragraph we distinguish the cu
of the effective theory LC from the mass scaleL
5M Ple

2kr0 appearing in the radion coupling. In our analys
we have approximatedLC;L. If the radion mass is much
larger thenL, then the cutoff of the effective theory is th
much higher scaleE;mr or larger. Then it is more natural to
express all higher dimension operators as suppressed bymr

21

or LC
21. But then the coupling of the radion to the gau
2-17
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bosons contains the very large coefficientmr /L. It is then
inappropriate to use the one-loop approximation. So to
main within the validity of the approximations used here o
must also increaseL for large mr . Then the radion contri-
bution decouples.

For large radion mass it is conceivable that the coupl
of the radion to TrT decreases. This cannot be seen in o
computations here because we have made the approxim
of using only the zero mode wave function to determine
coupling, but have included the back reaction perturbativ
to compute the radion mass. For very large radion mass t
approximations are invalid, and then one must exactly so
the equations. It is then conceivable that for large rad
mass the radion wave function on the TeV brane decreas
such a manner that the coupling to TrT remains natural, i.e.
O(mr

21).
Following standard practice we define a reference mo

in which one computes the oblique parameters within
standard model, which means for some specific value for
Higgs mass. Since the curvature scalar operator mixes
radion and Higgs, the two physical scalars are some mix
of the gauge Higgs boson and radion. This mixture is no
unitary rotation due to the kinetic mixing between the stat
The couplings of the ‘‘Higgs boson’’ in this case is som
what different than in the standard model, and for the p
poses of computing the oblique parameters it is easies
think of this as a new model, rather than as a perturbatio
the standard model. So in computing the oblique parame
the standard model Higgs contribution~for the reference
Higgs mass! should be subtracted out, and the contributi
of the physical states in this model added back in. That

X2XSM
ref 5Xnew~mh ,mr ,L,j!2XH

ref~mh5mh
ref!.

~12.19!

As mentioned,XH
ref(mh5mh

ref) is the contribution from only
the Higgs, with massmh

ref and with standard model cou
plings, and it is independent ofL, mr , and the curvature-
mixing parameterj. The quantityXSM

ref is the full SM contri-
bution, with the Higgs set at the reference massmh

ref . The
new physics contribution contains two pieces,

Xnew5XR1XH , ~12.20!

which describe the contribution of the physical radion (XR),
and the physical Higgs (XH). In the limit of no curvature-
scalar mixing, this last contribution is just that of a standa
model Higgs with massmh . For a general curvature scala
mixing one just needs to include the effect of the mixi
coefficientsa, b, c, andd given in the previous section. The

Xnew5S cosu2
g

Z
~6j21!sinu D 2

X~mh
phys,g51!

1S sinu1
g

Z
~6j21!cosu D 2

X~mr
phys,g51!

2
g2

Z2 ~6j21!XA. ~12.21!
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Here XA is the anomalous contribution, obtained from t
vacuum polarization~12.12!, but dropping themr

2 term since
this does not contribute to any of the oblique parameters.
otherX’s are obtained from using the vacuum polarizatio
~12.9! and ~12.10!, and inserting the physical mass of th
appropriate state.

We note that, for example, the full anomalous contrib
tion to S from the above formula is

Snew
A 5

5g2

6Z2p
~6j21! ~12.22!

and is negligible for reasonable values ofg and j. The
anomalous contribution toT is even smaller.

Numerical results

The ‘‘new’’ contributionX is constrained to lie within the
measured values~extracted assumingmh

SM ref5100 GeV!
@38#

Smeas520.0760.11, ~12.23!

Tmeas520.1060.14, ~12.24!

Umeas50.1160.15 ~12.25!

~the errors are for one sigma!. X can be easily calculated
oncemh , mr , L, andj are specified. Notice that since th
current best-fit values for the electroweak parameters
nonzero, the new contributions can be more weakly or m
strongly constrained depending on whether they add dest
tively or constructively with the Higgs boson, respective
As a first example, we show the contribution toS and T in
Fig. 3 as a function ofmh5mr ~the ‘‘gauge’’ masses!, fixing
L51 TeV. Each contour corresponds to a different value
j, and the contours end when a physical mass exceeds
cutoff. The unshaded region corresponds to the 1s allowed
region. Notice thatT is a strong constraint on small~gauge!
masses, whileS is a strong constraint for large masses. Als
the the case withj50 is nearly identical to the ordinary SM
Higgs contribution, since the radion contribution that can
separated out is strongly suppressed by the couplingg2. In
Fig. 4 we show the contribution toS andT as a function of
mr with mh5300 GeV. Notice that the contributions ar
nearly independent ofmr for small curvature scalar mixing

The above results illustrate a general trend that with sm
or absent curvature-scalar mixing, the bound on the Hi
boson mass is not significantly affected by the presence
the radion. This is not true, however, if we allowj to take
larger values. It is easiest to first illustrate that radion phys
with large curvature scalar mixing can significantly relax t
bound on the Higgs mass, by scanning through the param
space~choosingmh5mr for simplicity! for values that sat-
isfy one or two sigma limits on the electroweak paramete
We find sets of parameters that are not minor perturbati
on the SM limit allow the physical masses of the Higgs a
radion to be several hundred GeV, and perhaps even
scale. In Fig. 5 we show the range of physical masses and
range ofj as a function of the cutoff scale. In general there
2-18
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FIG. 3. The contributions toS, Tas a function of the ‘‘gauge’’ massesmh5mr . Each line is a contour for a fixed curvature scalar mixi
j. The cutoff scale was chosen to be 1 TeV (g50.1). The shaded regions are excluded by the PDG measurements to one sigma.
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not a unique mapping between the figures, however
‘‘shark fin’’ structure for the one sigma region in Fig. 5~a!
does correspond to the ‘‘inverse fin’’ in Fig. 5~b!. Notice that
at two sigma the physical Higgs boson mass can be m
larger than the SM bound throughout the parameter sp
shown, and even at one sigma there exists a narrow rang
large, negative curvature-scalar mixing where the phys
Higgs mass could be of order a TeV. The latter result ari
from a cancellation between the physical Higgs and rad
contributions with the SM reference contribution. This c
be seen in the limit of a large radion and Higgs boson ma
Since the dependence on the masses is only logarithmic
can approximate the masses as being equal. Then, for
ample,
06500
e

ch
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of

al
s
n

s.
we
x-

Snew5
1

p S 1

12
ln

m2

Mz
22

5

72D 2~6j21!2
g2

Z2p S 1

12
ln

L2

m2 1
5

72D .

~12.26!

The first contribution is just the usual correction from t
Higgs boson. But the second correction can be potenti
large and negative due to the dependence on thej parameter.
It should be emphasized that the large correction is due to
~nonunitary! kinetic mixing between the radion and Higg
boson, or equivalently, due to the nonstandard couplings
the radion and Higgs boson in the mass basis. Hence, w
this region is provocative, it nonetheless requires fine-tun

These results have assumed that the contribution from
nonrenormalizable counterterms is small, meaningaX and
n
FIG. 4. Same as Fig. 3 except thatmh is fixed to 300 GeV. Notice that the contributions toSandT are nearly independent of the radio
mass if the curvature mixing is small since the radion contribution is suppressed by;g.
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FIG. 5. The allowed region ofmh
phys andj as a function of the inverse of the cutoff scaleg5v/L by requiringS, T, Udo not exceed the

one sigma~dark region! or two sigma~light region! measurements from the PDG. The dashed lines correspond to the theoretical
requiring the kinetic term is non-negative@see Eq.~9.14!#. The black sliver corresponds to the region wheremh

phys'300 GeV.
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aM are less than order 1. For larger coefficients the allow
regions of parameter space, albeit only at moderately largg.
In Fig. 6 we show the shift in the contours, for the two sigm
region, resulting from takingaX5610. ~aM was also taken
to be 10, but the effect on the contours was negligible.!

XIII. LIMITS ON RADION MASS

As we found in Sec. VI, the mass of the radion is e
pected to be significantly below the the cutoff scale, plac
it in a region that can be directly probed by experiments. T
previous section has shown that the radion couples much
a Higgs boson, and in the limitj→0, the tree-level couplings
of the radion are simply scaled byg. Let us first consider the
bounds in this case.

In the SM, the current bound on the Higgs boson m
comes primarily from the CERNe1e2 collider LEP pro-
cessese1e2→Z* →Zh, with the value mh

SM&108 GeV
06500
d

-
g
e
ke

s

@39#. For the radion, an exactly analogous production proc
occurse1e2→Z* →Zr, except that theZZr coupling has a
factor of g. To a good approximation, we can therefore es
mate the production cross section of radions at LEP by s
ply scaling the Higgs cross section byg2.

The decay of the radion is somewhat more complicat
however. As we discussed in Sec. XI, the radion coup
directly to gauge bosons through the conformal anoma
Although this coupling is one-loop suppressed, it compe
with Yukawa suppressed interactions and, for the casergg,
can be comparable or even dominate@21,22#. In the radion
mass range well below thet t̄ threshold, the ratio of the two
largest widths can be expressed as

G~r→gg!

G~r→bb̄!
5

as
2c3

2

12p2b3 S mr

mb
D 2

, ~13.1!
ators to
FIG. 6. The shift in the two sigma contours shown in Fig. 5 resulting from taking the coefficients of the nonrenormalizable oper
be aX510 ~dark region! andaX5210 ~light region!.
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whereb25124mb
2/mr

2 andc3' 23
3 is roughly the one-loop

QCD b-function coefficient ~approximately including the
smaller contribution from the one-loop triangle diagram w
top quarks!. Notice that the couplingg2 cancels in this ratio.
This can be written in the suggestive form

G~r→gg!

G~r→bb̄!
'1/b3S mr

12mb
D 2

. ~13.2!

Hencer→gg dominates for the region 12mb&mr&2MW .
The search strategy for the radion is therefore significa
different from the Higgs in this mass window, name
searching for a pair of gluon jets instead of a pair ofb jets.
Similarly, the radion has a different production cross sect
at hadron colliders via gluon fusion, proportional to the co
formal anomaly enhanced width into gluons but suppres
by the usualg2 @21#.

Determining an accurate bound on the radion mass in
region that can be probed by LEP requires a detailed ana
of detecting a two gluon plusZ signal. We will not attempt
this here. Instead, the expected bound on the radion mas
be roughly estimated as a function of the coupling if w
assume that some number of production eventsN at LEP
could not have escaped detection~or be lumped into SM
backgrounds!. Near the kinematical limit, the best bound w
always come from the highest energy data. For lower m
radions, a lower center-of-mass energy results in a slig
higher cross section.7 Since the bound for a given radio
mass is limited only by luminosity, we can combine the m
titude of LEP runs at various energies by weighting by
integrated luminosity accumulated. The bound is then sim

g2,
N

SsAs~e1e2→Zh;mh5mr !3*LAs
, ~13.3!

where the sum is over the various recent LEP runs w
center-of-mass energyAs. N encodes all of the detaile
analyses of backgrounds, signal efficiencies, etc., and i
general not independent of energy or radion mass. In Fi
we simply show the bound obtained ifN520 or 100~the
integrated luminosity for each energy was also summed! cor-
responding to producing 20 or 100 events summed ove
four LEP experiments. These numbers were chosen s
searches for Higgs bosons typically need a few to tens
events~per detector! for a statistically significant signal-to
background ratio. Notice that no bound on the radion mas
expected from the recent LEP runs onceg is less than abou
0.1.

One could also search for light radions,mr&60 GeV, at
LEP I via the decayZ→ f f̄ 1r , through the same couplin
discussed above. However, the expected bound obtaine
using this procedure is no better than that found above formr
larger than about 10 GeV.

7For instance,sAs5189 GeV(e
1e2→rZ)/sAs5202 GeV(e

1e2→rZ)
;1.3 for smallmr .
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We have not attempted to estimate a bound ong for a
radion mass less than about 10 GeV. We really do not exp
the radion to be several orders of magnitude below the cu
scale, and so at the outset it seems this mass region is
natural. But, the presence of several low energy produc
processes~and rare decays! could be important, so a consid
erably more careful analysis than what we have attemp
here is needed.

When curvature scalar mixing is included, the coupli
ZZr is modified as shown in Eq.~11.20!. The above analysis
can be translated into this more general case, but now
coupling is not simplyg but a function of the curvature
scalar mixing as well. In addition, the SM Higgs couplin
are also modified, and so its production and decay are
affected. In particular, the production cross section could
either enhanced or suppressed.~This is similar to what hap-
pens in two Higgs doublet models, such as the MSSM.! An
interesting signal for RS with curvature-scalar mixing cou
be observing a nonstandard cross section or decay rate
SM-like Higgs boson.

XIV. CONCLUSIONS

In this paper we have analyzed the coupled radion-sc
system in detail, including the back reaction of the bulk s
bilizing scalar on the metric. We derived the coupled diffe
ential equations governing the dynamics of the system,
found the mass eigenvalues for some limiting cases. We
that due to the coupling between the radion and the b
scalar, there will be a single KK tower describing the syste
with the metric perturbations nonvanishing for every K
mode. This implies that the standard model fields localiz
on the TeV brane will couple to every KK mode from th
bulk scalar, and this could provide a means to directly pro
the stabilizing physics. We also found that in an expand

FIG. 7. The bound on the radion mass as a function ofg is
shown, assuming the signal could be extracted from backgro
once the radion production cross section times integrated lumino
exceedsN520 or 100 events at LEP~summed over the four experi
ments!.
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CSÁKI, GRAESSER, AND KRIBS PHYSICAL REVIEW D63 065002
universe the shift in the radion at late times complet
agrees with the effective theory result of Ref.@14#.

We also calculated the contributions of the radion to
oblique parameters using an effective theory approach. S
the radion is the only new state well below the TeV scale,
argued that a low-energy effective theory including only t
radion and SM fields is sufficient, as long as appropri
nonrenormalizable counterterms at the cutoff scale
added. In the absence of a curvature-scalar Higgs mix
operator, the size of the contribution to the oblique para
eters due to the radion is small. In the presence of suc
mixing operator, the corrections can be much larger due
the modified radion and Higgs couplings. In particular,
cluding only the mixed radion and Higgs fields as ‘‘ne
physics,’’ we calculated the range of curvature-scalar mix
for a given cutoff scale that allows the physical Higgs bos
mass to be up to of order the cutoff scale, whileSnew and
Tnew were within the experimental limits. However, the p
rameters must be increasingly fine-tuned to achieve a H
boson mass that exceeds a few hundred GeV.
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Note added. After Secs. III–VI were completed, we wer
informed that many of the results of these sections are
contained in Ref.@29#. We thank Riccardo Rattazzi for point
ing us to this reference.
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Cline, Gábor Cynolter, Josh Erlich, Christophe Grojea
Howie Haber, Tao Han, Gyo¨rgy Pócsik, Lisa Randall, John
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