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Radion dynamics and electroweak physics
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The dynamics of a stabilized radion in the Randall-Sundrum model with two branes is investigated, and the
effects of the radion on electroweak precision observables are evaluated. The radius is assumed to be stabilized
using a bulk scalar field as suggested by Goldberger and Wise. First the mass and the wave function of the
radion is determined including the back reaction of the bulk stabilization field on the metric, giving a typical
radion mass of the order of the weak scale. This is demonstrated by a perturbative computation of the radion
wave function. A consequence of the background configuration for the scalar field is that after including the
back reaction the Kaluza-Klein states of the bulk scalars couple directly to the standard model fields on the
TeV brane. Some cosmological implications are discussed, and in particular it is found that the shift in the
radion at late times is in agreement with the four-dimensional effective theory result. The effect of the radion
on the oblique parameters is evaluated using an effective theory approach. In the absence of a curvature-scalar
Higgs mixing operator, these corrections are small and give a negative contribut®rntdhe presence of
such a mixing operator, however, the corrections can be sizable due to the modified Higgs and radion cou-

plings.
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I. INTRODUCTION ering the radion at a future collider.
In fact it was shown in Ref§14] and[15], that the radion

Extra dimensional theories where standard model fieldsvill have the above properties for the Goldberger-Wise sce-
are localized on a brarj@—8| have recently attracted a lot of nario. However, the calculation of Refd4] and[15] were
attention, since such models have several distinct featurassing a nare ansatz for the radion field which ignores both
from ordinary Kaluza-Klein(KK) theories. In particular, the radion wave function and the back reaction of the stabi-
Randall and Sundruif#] presented a simple model based onlizing scalar field on the metric. The validity of this approxi-
two branes and a single extra dimension, where the hierarchyation has recently been questioriéé|.
problem could be solved due to the exponentially changing Therefore in this paper we analyze the coupled radion-
metric along the extra dimension. In order to obtain a phescalar system in detail from the 5D point of view. We derive
nomenologically acceptable model, the radion fiéihich  the coupled differential equations governing the dynamics of
corresponds to fluctuations in the distance of the two bjaneshe system, and find the mass eigenvalues for some limiting
has to get a mass, otherwise it would violate the equivalenceases. Because of the coupling between the radion and the
principle[9], and also result in unconventional cosmologicalbulk scalar, we find that there will be a single KK tower
expansion equationgl0,11. The simplest mechanism for describing the system, with the metric perturbations nonva-
radius stabilization has been suggested by Goldberger amishing for every KK mode. This implies that the standard
Wise [12], who employed an additional bulk scalar which model fields localized on the TeV brane will couple to every
has a bulk mass term and also couples to both bréfioes KK mode from the bulk scalar, and this could provide a
another issues related to the radion potential, see[R&}. means to directly probe the stabilizing physics.
Both the cosmology and collider phenomenology crucially  Using the coupled equations for the radion-scalar system,
depend on the mass and couplings of the radion. In particuve analyze the late-time behavior of the radion in an expand-
lar, there is no radion moduli problem if the radion mas®is ing universe, and find that the troubling 55 component of
(TeV) and its couplings to standard mod&M) fields isO Einstein’s equation just determines the shift of the radion.
(Tev 1. This is also the most favorable scenario for discov-This shift completely agrees with the shift obtained in Ref.

[14] using the 4D effective theory.
Given that we have established that the radion mass is
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parametersare calculated using an effective theory approactpart of Sec. XII. We also estimate limits on the radion mass

similar to Ref.[25]. Since in the RS model the radion is the as a function of the cutoff scale in Sec. XIIl. Finally, we

only new state well below the TeV scale, a low-energy ef-conclude in Sec. XIV.

fective theory including only the radion and SM fields is

_used. _The effects of ot_her heavy modes are accounted for by reviEw OF THE RANDALL-SUNDRUM MODEL AND

including nonrenormalizable operators at the cutoff scale. In THE GOLDBERGER-WISE MECHANISM

the absence of a curvature-scalar Higgs mixing operator, the

corrections from the radion are small, but give a negative Randall and Sundrum presented a very interesting pro-

contribution toS. In the presence of such a mixing operator posal for solving the hierarchy proble#]. By introducing a

the corrections could be sizable due to the modified radiofifth dimension where the bulk geometry is anti—de Sitter, a

and Higgs couplings. large hierarchy between the Planck scale and the TeV scale
This paper is organized as follows: in Sec. Il we reviewis obtained with only a mild fine-tuning. Two branes are

the Randall-Sundrum model and radius stabilization by bulkntroduced, located at the boundaries of the anti—de Sitter

scalar fields. We also summarize the explicit example of Refspace. By tuning the bulk cosmological constant

[26] which we will be using for our explicit computation of =—6k?/x?, the tension&/p andVy on the Planck and TeV

the radion mass and couplings to SM fields. In Sec. Ill webranes, respectively, such thés= — V= 6k/x? (where x?

present our ansatz for the coupled metric and scalar fluctuas the 5D Newton constant related to the 5D Planck mass by

tions based on the analysis of Ref&7] and[28] of the =~ «*=1/2M3) one obtains a 4D Poincaievariant solution.

radion without a stabilizing potential. We will derive a single The metric is then

ordinary differential equation, whose eigenmodes will yield

the KK modes for the radion-scalar system. In Sec. IV we ds’=e 2y, dx“dx’—dy?, 2.1

analyze the generic properties of this equation. In the general

case we find that the system is not described by a Hermitiawhere the Planck brane and TeV branes are locateyl at

Schralinger operator. However, we identify a convenient=0 andy=r,. For a moderate choice dr,~0O(50), a

limit, in which the differential operator is in fact Hermitian, large hierarchy between the Planck scale and the weak scale

and the eigenfunctions are manifestly orthogonal. In Sec. /s generated.

we analyze the eigenfunctions in this limit, and find the ap- Since this solution is obtained for any valuergf, some

proximate masses for the KK tower. In this analysis, the backnechanism is required to fix;~50k as opposed to some

reaction of the metric is neglected, which results in the light-other value ofry. This must also be done without introduc-

est mode still being massless. The effect of the back reactioing any large fine-tuning. Further, small shifts in the separa-

on the lightest mode is taken into account in Sec. VI, wherdion between the two branes do not change the energy, and

we find the mass of the radion to be of the orfimrt slightly  so are described in an effective theory by the fluctuations of

lighter) than the weak scale. In Sec. VII we discuss the coua massless particle, the “radion.” This particle couples like a

plings of the radion and the KK tower to SM fields on the Brans-Dicke scalar and must be massive to recover ordinary

brane. We find that the radion coupliegactlyagrees with 4D Einstein gravity[9,14].

the results in Refd.14] and[15], while the couplings of the One way to achieve these requirements is to introduce a

other KK modes of the scalar field are suppressed by thbulk scalar fielde that has a bulk potential (¢) [12]. To

mass of the given mode, and is proportional to the backreacstabilize the brane distance, potentig}sr(¢) on the Planck

tion of the metric due to the scalar background. In Sec. Vllland TeV branes, respectively, are also included. The compe-

we demonstrate that in an expanding universe the shift in théition between the brane and bulk Lagrangians generates a

radion at late times agrees with the 4D effective theory resulvacuum expectation valu@/EV) for ¢, which results in a

obtained in Ref[14]. Having established the mass and cou-4D vacuum energy that depends ign For a simple choice

pling of the radion, we write an effective Lagrangian in Sec.of polynomial potentials a large hierarchy is then easily ob-

IX without any specific mechanism of radius stabilization tained with a mild fine-tuning12], and the resulting mass

and neglecting the contributions of the KK modes. In Sec. Xfor the radion isO (TeV) [14,15.

we add a curvature-scalar Higgs coupling to the effective The phenomenology of the radion depends on the strength

Lagrangian, and discuss how the couplings are modifiedof its coupling to the brane fields. Using the following v

Then, in Sec. XI we calculate the Feynman rules in a generainsatz to describe the radidifx),

gauge. These allow us to compute the oblique parameters via

one-loop vacuum polarization diagrams with radions in the ds?=e 2KVIbXds2— p(x)%dy?, (2.2

loop in Sec. XIl. The radion correction is log divergénh-

like the Higgs bosop and so we also write the nonrenormal- Refs.[14] and[15] computed the normalization of the radion

izable operators at the cutoff scale that provide the necessakynetic term to be

counterterms. The size of the new contributions are shown

for various cases in several figures in the numerical results 2

*Zkfoﬁ(ab)z. (2.3

3
2% 2

!Loop effects for theories with large extra dimensions have beerfrields living on the TeV brane couple to the radion through
analyzed in Ref[24]. the induced metric, with an interaction
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r(x) d(X,y)=do(y), (2.6)
T (2.4

v
VBAW ds?=e 2"y, dx*dx’—dy> 2.7

krg
T b(x)TrTwz

where r is the canonically normalized radion, The Einstein equations are then
Aw=Mpe Xo~0 (TeV),

~ 1
_ 2 _ .2 _ = d
M%lz(1_672kr0)/(kK2)~1/(kK2) Rab=k“Tap=«"| Tap 3gabgc Tedls (2.8

o 3 :
andT,, is the physical energy-momentum tensor of the Tev\r,;/cl:t?iéid_eéﬁgt'\iﬂ)rzs; groer this background the scalar and met
brane fields. It is then clear that the radion couples-d$
TeV to the standard model fields. Obtaining an acceptable 22 K2

phenomenology then requires that the radion mas® is 4A’2_A":_TV(¢0)_§E Ni(bo) 8(Y—Vi),
(TeV), which is easily satisfied by the Goldberger-Wise :

mechanism. 2.9
The phenomenology of the radion is then crucially depen- 2,2 o

dent on the normalization of the kinetic term. In fact, in the A2= o K—V(¢0) (2.10

computation leading to th® (TeV?) prefactor in Eq.(2.3) 12 6 ’

there is a cancellation between two termsQ@fM3). The

origin of this cancellation remains somewhat mysterious, and Sl AN i+ IV (o) Y INi( o) Sy—y)

the absence of this cancellation would clearly lead to differ- 0 0 d¢ i d .

ent predictions. In Ref.16] it was pointed out that there are (2.1)

additional contributions to the radion kinetic term not in- )

cluded in Refs[14] and[15]. In particular, the profile of the Here primes denoté/dy, and we reserve,, to denote de-
stabilizing field depends on,, and so a small change in Mvative with respect to the comoving 4D space-time coordi-
ro—b(x) distorts the background field. It was found that this Natesx”. The boundary equations férand ¢, are obtained
results in anO(Mf,|) correction to the radion kinetic term, by matching the singular terms in the above equations. This

thereby drastically changing the phenomenology of the ra9'Ves

dion. 2
We review the resolution of this issue in the first part of [A,]|i:K_)\i(¢O)i (2.12

this paper. Some of the results presented in Secs. llI-VI are 3

already contained in the work by Tanaka and Mo,

even though the results of this paper were obtained indepen- [¢,]|:‘”‘i(¢0) 2.13

dently of Ref.[29]. We explicitly determine the wave func- o i - '

tion of the radion when there is a stabilizing mechanism. We ) . .

find that the radion mass is typicalp (TeV). In the limit For analytical solutions we use an approach p_rese_nted in

that the backreaction of the stabilizing fields on the metric isRefs. [26] and [30]. A particular class of potentialy/ is

small, we find that the correction of the stabilizing field to considered which can be written in the form

the radion kinetic term is subdominant to the gravitational 1(0W()

contribution. We also find that once the stabilizing field has a V(p)= 8\ a5

nonzero VEV, the Kaluza-KleifKK) tower couples directly
Then a solution to the following first order equations,

2

2
)—%M@? (2.14

to the brane world fields, with 1/TeV normalization, and am-
plitude depending on the size of the backreaction.

The action we considerds 1 oW 2

. $0=5 5 A= W0, (2.15
VRN o J 5 (_ _ )
M j d x\/ﬁR d x\/§ 2 Veve-V(4) automatically solves both the Einstein and scalar field equa-
tions, once the appropriate boundary conditions are solved.
—J dAX@AP(@—J d*x\gun1( ), (2.5 The virtue of this method is that for simple choices/it is
possible to also solve for the back reaction ¢f on the
] ] . metric. This will be important for us, since we find that only
where g, is the induced metric on the branes. The back-after including the back reaction of the stabilizing field does
ground VEV for ¢ and background metric that preserve 4D gne find that the radion acquires a mass.
Lorentz invariance is In particular, to obtain some analytic results the following
superpotential26] will be used:

2The action is integrated over the circle rather than the line seg- W( )= 6_k_ u¢2 (2.16
ment. K? :
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with brane potentials the following we will only concentrate on the radion field.
) ) 5 Using this ansatz the Einstein and scalar field equations are
M@)o =EW(d.) EW (o) (P~ )t yi(dp— )™ linearized to obtain some coupled equationsFpf5, and .
(217 The linearized Einstein equations are
Here +/— refer to Planck/TeV brane. The solution[35] SRy = Kzﬁ-ab_ (3.3
= —uy
boly) = dpe ™, (2.18 Inspecting thesR,, equation one immediately concludes
2,2 thatG=2F. For
A(y)=ky+ 2P g-zuy (2.19
(y)=ky+ —>-e 7. : SR, =" +20,0,F—3,9,G+..., (3.4)

The separation distaneg is then fixed by matchings, at 0 where the ellipses all contain termsy,,, . Since to linear
andrg to ¢p and ¢r which givesury=In ¢p/¢r. So the order in the perturbations the sourcés,, are also all

guantity ~ Ny, thed,d, term in 6R ,, term must vanish. This gives
G=2F +c. However, in the limit-—0, orG— 0 we should
e~ Uro— LAl (2.20  fecover the background solution, se=0. In what follows
bp ' we setG=2F. Then the coupled field equations are

is not a(hierarchically small number, since bot#tp and ¢ oR,,=n,0F+e g,
are O(M2?). This combination will appear later in the ex- , L , '
pression for the radion mass. Also for future reference, since X(=F'+10AF'+6A'F —24ATF), (3.9

the back reaction corresponds to the second term, ithe / /
’ oR, s=30,F'—6A'd,F, 3.6
limit of a small back reaction isc?¢3, «k’¢p2<1, andu >k " 38
>0, but with ¢p /= const, so thatl is kept constant. SRgs=2e? F +4F"— 16A’F . (3.7
Ill. COUPLED FIELD EQUATIONS The source terms are
When ¢,=0 there is always a static solution independent _ o )
of the value ofry.® The small fluctuations in the relative 9T.= " 3€ “ 7.V (¢0)9=2V(do)F]
position between the two branes then describe a massless
particle (“the radion”), and its wave function ig27] 1 .. INi( o)
G(x,y)=2F(x,y)=2ke?®R(x) and where[JR=0. Since —3® ”ﬂvzi i ¢—4Ni(Po)F | S(y—Vi),
the coupling of the radion to the standard model fields is
~1/TeV[14,15, obtaining an acceptable phenomenology re- (3.8
quires that this radion acquires a mass. - )
We therefore consider the spectrum of perturbations abow T u5= $07,.®, (3.9

the above background which stabilizes the interbrane sepa- 5 g
ration. A general ansatz to describe the spin-0 fluctuations is= r /
? g 5Tss= 2040 + 5 V' (do) o+ 5 V(bo)F

d(X.Y)= do(Y) + @(X,y), (3.1

4o (0N
"‘52 (¢0)<P+2)\i(¢o)|: o(y—Yyi).

ds?=e 2A72F0Yy dxtdx”—[1+G(x,y)]%dy?. i
3
( (3.10
In order to describe all gravitational excitations of the model, ] ] ] o
one would need to add also the degrees of freedom in th&he linearized scalar field equation is
graviton, by replacingy,,,— 7,,+ . One can show that pr
the Einstein equations with this replacement will have the e’ A0ep—@"+4A" @' + F(qﬁo)(p
radion and the graviton decoupled. This metric an$at2) ¢
[together with the two Eqg3.12 andG = 2F which we will 9°\i( o) (o)
shortly derivd fixes our gauge choice. One can show, that =—> o2 — Flsoy—y;)
the effect of the remaining gauge transformations that pre- ! I 4
serve the form of Eq93.2) and(3.12 just amount to a 4D oV
gauge transformation on the graviton fiédg, and can be —6¢(’,F’—4%F. (3.11

used to impose a convenient 4D gauge for the graviton. In
Notice that theR 5 may be integrated immediately to obtain

3 ' . . . 3
After two fine-tunings which are independentrgf But only one 'o= —(F'—2A'F 1
fine-tune remains after radius stabilizatid®?,14). dop K2( )- (312
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An integration constarit(y) has been sent to zero since we remaining Einstein equation are satisfied. In particular, start-
require that the fluctuations and ¢ are also localized irx. ing with Eqg. (3.16), one uses the derivative of E@.12) to
This Eq.(3.12 together with the metric ansaf.2) fixes our  eliminateF”. The resulting equation, call &, is then differ-
gauge choice. One can show that the effect of the remainingntiated and the combination=E’' —2A’E is constructed.
gauge transformations that preserve the form of E§<) Using the background field equations and KE8.12 one
and(3.12) just amount to a 4D gauge transformation on thearrives at thep equation. Finally, theSR,,, equation is ob-
graviton fieldh,, and can be used to impose a convenienttained from thesRss equation after substituting fap’.
4D gauge for the graviton.

These equations must be supplemented by the boundary |v. GENERAL PROPERTIES OF THE EQUATION
conditions forF and¢ on the two branes. These are obtained ] . ] )
by identifying the singular terms in above equatioAgriori First we show that the single ordinary differential equa-
the Einstein equations give two boundary conditions for eacfion for F(y) given in Eq.(3.17) can always be brought into
wall. Itis, however, straightforward to show that one of themthe Schrdinger form. For this we first transform the equa-

is trivially satisfied onceA satisfies the jump Eq2.12. The  tions into the coordinate system where the background met-
two remaining boundary equations are ric is Conforma”y flat. This is achieved by the Change of

variablesdze A®=dy, whereA(z)=A[y(z)]. In these co-
2kP K2 O\ ordinates the equation simplifies to
[F ]=T7\i(¢o)F+§£(¢o)¢, (3.13
2 N F”—3A'F’—4A”F—2%F’+4%A’F=—m2F.
’ i i 0 0
[e'1li= 54z (bo)e+2 55 F. (3.14 4.

Upon using the jump equations for the background the firsfter the rescaling of the fielé by F=e¥*¢F we obtain
equation is seen to be equivalent to E8.12 and so pro- the Schrainger-like equation
vides no new constraints. Then only the second boundary

- 5
—F"+| A2+ A" —A'—+2

” "\ 2 "
condition must be implemented. A convenient limit will at ¢o Po| ¢_0 E—miF
times be considered in this paper. The second boundary con- 4 2 b4 b6 b '
dition simplifies in the limit of a stiff boundary potential. (4.2

Namely, if 9°\; /942> 1 then the second boundary condition _ _ o
is just ¢|;=0. Then in this limit the first boundary conditon  However, this by itself does not guarantee Hermiticity of
is just the differential operator in Eq4.2). The reason is that this

operator is defined only on a finite strip, and therefore in
(F'—2A'F)|;=0. (3.15  addition to writing the equation in a Schiinger form one
also has to ensure that one has Hermitian boundary condi-
A single equation foiF is obtained as follows. One con- tjons for F. For the differential operator in E¢4.2) to actu-
siders the combinatiore®*sR,,,+ 6Rss in the bulk The  ally be Hermitian on the finite strip between the two branes,
point of this combination is to eliminate terms of the form one also has to require that for any two functiﬁls F2 on

V(o) @. This leaves a bulk equation férand ¢’ only: the strip  F;(0)F,(0)—F(0)F4(0)—F}(zp)F ()
2,2 +F1(zp)F5(z,) =0, where 0 andz, denote the positions of
e?AOF+E"—2A'E' = qu(’)(p', (3.1  the branes in the conformally flat coordinates. Once this

condition is satisfied, it is automatically guaranteed by the
usual theorems that all eigenvalues are real, that the

One then eliminateg’ in favor of F using Eq.(3.12). This ) .
¥ 9 Ea.3.12 eigenfunctions are orthogonal to each other and that they

ives "
g form a complete set. The actual boundary conditions fhat
3 h has to satisfy can be derived from the general boundary con-
F'—2A'F'—4A"F—2—F'+4A'— F=e?AJF, dition given in Eq.(3.14). In the particular model considered
%o %o (3.17) in this paper the boundary condition in tlyecoordinates is
' given by

to be solved in the bulk. This is the principle equation that
will be studied and solved below. We note in passing that

. _ 2 . . .
each eigenmodelF, = —myF, to this equation has o in- 1, yhe special limit wheny. —c this boundary condition

tegration constants and one mass eigenvalue. One_ constahyces tap=0 on the two boundaries, which together with
corresponds to the overall normalization. The remaining iNthe constraint Eq(3.12 betweene andF just implies
tegration constant is fixed by the boundary condition at the '

i(p’Z'}/i(piZUd)iF. 4.3

Planck brane, and the mass is determined by the boundary (F'—2A’F)|;=0 (4.4)
condition on the TeV brane. In the stiff potential approxima-
tion we use the boundary condition given by Eg§.15. at the two branes. Upon transforming to the Sdlimger ba-

It is then possible to show that a solutiénto the above sis andz coordinates the boundary condition will be replaced
equation automatically implies that the equation and the by
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F'=F EA’—% (4.5 a==5= (5.2

at the branes. This boundary condition clearly satisfies th& these coordinates the boundary conditions at the brane
Hermiticity properties and thus will ensure the appearance o$implify to

only real mass eigenvalues of the coupled system. This will

also be the case that we will analyze in full detail in the E+ ak -0 (5.3
following sections. As for the general case, wherns finite, kz+1

the boundary condition will not be Hermitian. This can be )

easily seen from the fact that the general boundary conditiofit the locations of the branes at=0 and z,=(1/k)(e"™
involves ¢’ at the branes, which should be expressed from ). The solutions of these equations are given by linear
Eq. (3.12 in terms ofF”, F’, andF at the brane. The ap- compmatlons of the Bessel functiods, 1, and Neumann
pearance oF” in the boundary condition will generically fUNCioNSNe 1!
ruin the Hermiticity of the operator. Nevertheless, one may

eliminateF” in favor of the eigenvalue, and one can in prin- Fo(2)=a,
ciple solve forF. The non-Hermiticity by itself, however,

does not mean that the eigenvalues are not real. In fact, since

¢ is a real scalar an a component of the metric tensor, +b,
both of these functions have to be real to start with, which

guarantees at least the appearance of only real eigenvalu
While for the model studied hersee Sec. Vjithe radion is
not tachyonic, it is unclear whether for a general potentia
this remains true. However, the orthogonality of the solu- n

tions is not guaranteed by anything, and will likely be vio- Z/(X)=Z, 1(X)— ;Zn(x) (5.5
lated in general for the non-Hermitian boundary conditions.

It would be interesting to understand the physics behind thg, boundary conditions at the two branes simply reduce to
nonorthogonality of these solutions in more detail.

~(1 ¢g) 3 u

kro

( 1
mal z+ =

1/2
z+ _) Na+1/2 k

k
1 1/2
‘]a+ 1/2[ mp

1
z++

z++ .

K (5.9

“he mass eigenvalues, can be determined from the bound-
ary condition(5.3). Using the relation for Bessel functions

my, n
V. APPROXIMATE SOLUTION FOR THE KK TOWER anNa—uz( | TPnda-12 77| =0,
We have seen that the coupled radion-scalar system leads K K
. . . . . m,.e<fo m..exro
to a single ordinary second order differential equation. From N 2 | +b.J — |=o0 (5.6
. A anNy—172 k nYa—1/2 Kk ' .
now on we will always assume that we can use the linit

—o0, and be able to use the Hermitian boundary conditions ) i i
(4.4). In the following we will present an approximate solu- Which yields the simple equation
tion to these equations. For this, we will first neglect the back
reaction of the nonvanishing scalar background on the met- a_m( ) K
ric. This will lead us to a simple Bessel-type equation, which b(m,)= %) k m,e™'o
will give a very good approximation for the masses of the ™~ “a~12 K my e
KK tower of the fields. However, surprisingly, in this ap- Na—l/Z(T)
proximation the radiofwhich we identify as the lowest ly- (5.7)
ing solution of Eq(3.17] remains massless. Therefore, after
presenting this approximation, we will give a perturbativewhich can be used to determine the mass eigenvatyes
analysis for the effect of the back reaction of the metric onThis can be done numerically. In Fig. 1 we show the lowest
the radion mass. We will find that as expected, the radionmass eigenvalues fat=—2.5, which corresponds to the
mass will be of order TeV, but somewhat lighter just assomewhat unrealistic value/k=1. In Fig. 2 we show the
predicted in Refs[14] and[15]. dependence of the first nonvanishing mass eigenvalue on the
To find the actual wave functions and masses for thevalue of a= —3/2—u/k. One can easily see from E(p.7),
radion-scalar system, we will use the particular model puthatm=0 is always a solution to Ed5.7), therefore in the
forward by de Wolfeet al. [26] and summarized in Sec. Il. approximation we are using the radion is still massless. For
First we neglect the back reaction of the scalar field backihe higher states of the KK tower it is a good approximation
ground on the metric, which seems to be a good approximao use the mass eigenvalues obtained from(E(), because
tion as long asc¢p 1<<1. In this case the equation for the the masses are of the ord@nd even largerthan the TeV

m,ek’o

radion fieldF reduces in the Schdinger frame to scale, thus in the limit of small back reaction that we are
considering throughout the paper these masses will be only
" a(a+ 1)k2F_ 2r - slightly modified. The radior(which appeared as the zero
; (kz+1)2 -mr GD mode abovg however, needs special treatment, since the
shift in the masgwhich is usually negligible for the higher
where« is given by KK modes coming from the back reaction of the metric
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b(m) scribing the radion wave function in thecoordinates:
0.4} F"—2A'F'—4A"F+2uF’ —4uA'F+ m?e* F =0,

(6.9
0.3

whereA(y) is given in Eq.(2.19. The appropriate boundary
0.2¢ condition isF’ —2A’F=0 at the branes. In the special limit
v+ — the other boundary condition is=0. Thus we will

0.1 treat the back reaction as a perturbation, and look for the

. . —m solution in terms of a perturbative series lige kpp /V2.

5 0 15 \<0 Then we write the solution as
-0.1}

Fo=e®V[1+12fy(y)], m?=1%m?,
-0.2
|2

-0.3F A(y)=kl|y|+ ge—ZUM. (6.2

FIG. 1. The lowest mass eigenvalues for the coupled radion- ) ) )
scalar system fou/k=1 are given by the zeroes of the function Expanding the solution as above and keeping only the lead-
b(m) defined in Eq(5.7). On this plotm is given in unitske ", ing terms inl? we obtain the equation
therefore the mass spacings are given by the TeV scale. Note that in
the approximation leading to this equation the lowest lying state is ” =2 okly| 4 —2ulyl
still massless. fot+2(k+u)fi=—me —§(k—u)ue (6.3
background due to the scalar field is the leading order conalong with the boundary conditions
tribution to the mass for the radion. Below we will estimate

the size of the radion mass in perturbation theory. 7 Eue—zum_o (6.4)
0 = .
3

VI- RADION MASS at the location of the branes. One can easily find the most

In the previous section we have seen what the approxigeneral solution fof from the equation in the bulk, which is
mate wave functions and masses are for the KK tower of th@iven by
coupled radion-scalar system. In this approximation of ne-

~ 2 .
glecting the back reaction, however, we have still found a;(y)_ cg-2(ktulyl M auyl 2(k u)ue—Zu\y\

vanishing radion mass. This is in fact easy to show for a 0 2(2k+u) '
general stabilizing potential. From E.17), F=e? is al- (6.9

ways a solution with zero massAf’ is neglected in the bulk. . . . .
Thus the radion mass is always proportional to the back re\ivhere the integration constaftalong with the radion mass

action of the metric independently of the details of the po-fl_nh.iS determin%d .by :]he bo?undary condbitions at the brane.
tential of the stabilizing scalar field. In the following, we will Is way we obtain the radion mass to be

show how the back reaction generates a nonvanishing mass 412(2k+ u)u?
for the radion field. For this, we start with the equation de- mrzadionzTeﬂ(Wk)ro, (6.6)
my wherer, denotes the location of the brane. Note that this
6 4l result is very similar to the answer obtained from the effec-
’ tive theory computation using the naiansat414,15, ex-
6.0l cept for the important difference in the power wk. The
exact result obtained here scales a&kj?, whereas the ef-
N R e— 5 & fective theory result would scale 4a(5u/I.<)'3’2. It would be
' : \ : : very interesting to understand the origin of this different
5 scaling. For this model to give the correct value of the weak
scale without reintroducing a large fine-tuning again one
5.6y needsu/k~ 35, thus the radion mass turns out to be some-
e 4l what lighter than the TeV scale. It is suppressed by the factor
' I(u/k)e "o compared to the TeV scale. Thus in this ap-
5 ol proximationm,qior~ /40 TeV, which could be at least in the
range of a few GeV’s. Of course, we need to emphasize that

FIG. 2. The dependence of the mass of the first KK moder.on
Herem, is again given in unitke™ " and is therefore of the order
of the TeV scale. “We thank Jim Cline for these observations.
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| is not necessarily small for the stabilization mechanism to 3 3|2 2u
work, we took this limit only for calculational convenience. o= 7 7 (F —2A'F)= 57| Fot 5 € Hly!
K o K bo
VIl. COUPLING TO SM FIELDS 3|2R(X
=—7 & Vfa(y) (7.4
. . . . 2 4! 3 y ’ .
In this section the coupling of the radion and KK tower of k"o

¢ to the TeV brane are obtained. In particular we demon-
strate that the bulk scalar field gives a small correction to thed" here
radion kinetic term, and thus the kinetic terms obtained from 2
the Einstein-Hilbert part of the action dominate, justifying fa(y)=fo(y)+ —ue2ulyl
the results obtained using the maiansat414,15. 3
In the previous section it was seen that by including the 2 2

m 2u
backreaction ar® (TeV) mass for the radion is obtained. =Ce 2k+ulyl_ k—e2kM+ _ke—Zuly\_
The wave function is then 2(2k+u) 3

7.
Fo(x,y)=e*M[1+12fo(y)IR(X), (7.9 (79

o ] ) This fluctuation in¢ then contributes to the radion kinetic
wherefy(y) is given by the integral of Eq6.5). Since the  term atO(12) an amount

radion mass i€ (TeV), and by assumptiolf<1, we see by
inspection that the back reaction induces a small correction A s
to the unperturbed wave function. So for the purposes of f dye "'9""d,¢d,¢

determining the coupling of the radion to the TeV brane it is )

sufficient to include only the unperturbed wave function, _ 9 2 (k=wly| 2
namelyF(x,y) =e?¥IR(x). Then a straightforward calcula- = 2.22R) dye fay)™ (7.9
tion gives
From Eg. (7.2 the unnormalized contribution from bulk
3 3 2 —2A 4Ky gravity to the kinetic term is-e?¢0. So we only need to
M fdy\/aR:)GM (R) fe € consider those contributions frogawhich are comparable or
M3 larger to this. Recalling than?~e~? "o it is seen that the
=~ (e?0—1)(dR)2. (7.2 largest terms in Eq(7.6) are at bese® . Explicitly per-
k forming the integral one finds that it is
So the normalized radion(x) is R(x)=r(x)e 7o/ \6Mp,, u? 1 1 1

since M3/k=M2,/2. This implies a coupling to the TeV 55:2|2W(aR)292kr0_6m° 3k—u T kT30 k=u
brane fields which is
X[1+0(1?)]. (7.7
R(x)€?Ko[ 1+ O(1%)]TrT,,,

r(x)

This is typically ~12ue®™oM3/k®, which is smaller than

B 2 Eqg. (7.2) since we assuming that the back reaction is small,
- J6M pje Ko TrTu[1+009] (7.3 <1, and also thai<k to obtain a realistic hierarchy. So the

radion kinetic term is dominated by the contribution from the

where the left-hand side of this equation is a consequence &ulk gravity, and receives a small correction from the stabi-

the fact that the induced metric on the TeV brane islizing bulk scalar field.

e~ 2Alro)[ 1 — e2KToR(x) 7,.,)- The coupling obtained this way In Sec. IV it was found that for the simple boundary con-

agrees precisely with Eq2.4). This is perhaps surprising, ditions =0 (corresponding to the limit*\. /9¢*>1) a

since the latter computation used an ansatz which did ndtelf-adjoint equation foF was obtained. The general solu-

satisfy the equations of motion. This makes us suspect thaion to this is

results which depend only on the leading unperturbed form

of the radion wave function will be correctly captured by the FOX,y)= > anFa(X,y), (7.9

nave ansatz. n

Now we address the issue that was originally raised by

Ref.[16]. Is the radion kinetic term dominated by the kinetic whereF, is a mass eigenstate, and thfs are some num-

term of the bulk scalar field or the bulk gravity action, and inbers. We expect thaf includes the massive radion, but

particular is the former hierarchically larger? To answer thiswhere did all the other states come from? It is helpful to

we need the change i@ caused by a fluctuation in the ra- reconsider what happens when the back reaction is ne-

dion. Sincep=0 when the back reaction is not included, we glected. In this limit the KK tower inF completely disap-

must include the leading back reaction correction to the rapears and only thémasslessradion remains. This may be

dion wave function, given by the integral of E@.5. From  observed from Eq(3.12), since neglecting the back reaction

Eq. (3.12 we compute that the change ¢nto O(1%) due to  corresponds tox?¢p,<1, and this amounts to setting’

the radion is —2A’F=0. The only solution foF in this case is the radion

065002-8



RADION DYNAMICS AND ELECTROWEAK PHYSICS PHYSICAL REVIEW D63 065002

zero modeF =e?!, Once the back reaction is included, m,

however, the fluctuating modes i and F are correlated ‘]l+u/k(Tekro)

through Eq.(3.12. In particular, a general fluctuatiap in- Xp=———r (7.14
duces a change if. The sum over KK states appearing J (ﬂekr())

above is then just the decomposition Bfinto these KK Stulkl T

eigenstates. It is then expected that the coefficiept®or the
nonradion states to be suppressed by the back reaction. s a numerical constant @(1). While the inclusion of the
The preceding remarks imply that the TeV brane fieldspack reaction leads to a TeV suppressed coupling for the KK
which couple to the induced metrig also directly couple to  modes, the size decreases rather rapidly due to theg 1/
the KK tower, by an amount suppressed by the back-1/TeV suppression, as may be observed from inspecting
reaction® Since F ~ ¢oe is already suppressed by the back Fig. 1.
reaction, therefore in order to compute the induced metric to  The coupling discussed here implies that the KK modes
lowest order in the back reaction we can use the zeroth ordef ¢ can be directly produced at future colliders, and they
wave functions fokp. The normalized KK fields are given by also decay directly to standard model fields. This may be
puzzling at first, since the stabilizing potential may have a
lobal discrete symmetry, such Zs, which would navel
(Kz+1)232 ypd Mnz-+ LK) L1+ 12 (). i?nply that someyof thes)é KK mo%les are stable. The >E)ack-
(7.9 ground VEV for ¢ explicitly breaks this symmetry, however,
and this allows for all the KK modes to decay into the brane
Here ¢,(x) are the normalized 4D fields satisfyirigy, ~ world fields.
= _mﬁ%_ The orthogonality of these solutions when the  The direct coupling of the KK modes from the stabilizing
back reaction vanished £0) follows from the boundary fields may have interesting implications for search strategies
Condmon On= 0 and the propert|es of the Besse' func“ons and current limits on the Randall-Sundrum framework. In

Also y,(x) are the normalized 4D fields satisfyirigy, ~ Particular, it may be important toot neglect the stabilizing
= —mZy,. The normalization constant is potential when discussing these issues. However, when the
back reaction is small, the size of their couplings is sup-
pressed byu/k~ s compared to the that of the radion.
1 m, . .
Nn:_ekroJBM/k(?ekro)_ (7.10  Therefore, in what follows, we neglect these states in the

Jk loop computations.

As discussed previously, the lowest order massgsare
determined byd,, ,(e?om,/k)=0 and are real since the
operator equation with these boundary conditions is self- The subject of brane cosmology has recently attracted
adjoint. The coupling of these fields to the TeV brane ismuch interesf10,11,14,31-3]¢ Most of this was due to the
given by realization that the expansion of a brane universe could be
significantly different from the ordinary Friedmann-
F(X,y=ro)TrT,,, (7.11 Robertson-Walke{FRW) cosmology[10,11]. However, it
did not take very long to realize that this is simply due to the
where F is the solution of Eq(3.12 for the solutionsp,  fact that a generic brane modéike the one presented in
given above. One finds the coupling Ref.[10]) cannot give the ordinary cosmological evolution,
since gravity is in general manifestly higher dimensional.
| This means that in these models the 4D effective theory is
AX YO TIT .. (7.12  ysually not described by ordinary Einstein gravity, but ge-
" nerically a complicated scalar-tensor theory of gravity. How-
ever, observations show that our Universe is described by
Einstein’s theory of relativity to a high precision, therefore
V3 one has to require from the outset that a brane model repro-
2 u . . - . .
As=—= UK ke‘”r0~0<—) (7.13  duces ordinary Einstein gravity, at least at long enough dis-
3 k tances. Once this is achieved, the cosmological expansion
will be automatically described by the ordinary Friedmann-
and Robertson-Walke(FRW) Universe, which simply follows
from the fact that the effective theory is ordinary Einstein
gravity. Thus one can see that the issue of unconventional
5The KK modes of the scalar field do not mix with the KK modes COSmologies is nothing else but the issue of whether one
of the graviton. The reason is that the only way they could mix is byrécovers 4D gravity. This issue manifests itself in the case of
a coupling of the 5D trace of the metric to the scalar KK modes.the Randall-Sundrum two-brane model due to the presence
However, the graviton is traceless, and the trace is basically identiof the radion field. Without a stabilizing potential, the radion
fied with the radion, therefore no additional graviton-scalar mixingfield will be massless, and yield additional long range forces,
could be introduced. and also contribute to the expansion of the Universe, yield-

‘/’n( )

en(X,2)=

VIIl. COSMOLOGICAL IMPLICATIONS

The model-dependent couplings that appear are
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ing an unconventional cosmology, which is presumably ex-Terms withn are higher order ip and are dropped, arl
cluded by the requirement for a successful nucleosynthesis 1+ 2F has been used. For late-time cosmology in the pres-
[11]. Thus the radion field has to obtain a mass. Once it i'nce of radion stabilization it is reasonable to use the FRW
massive, gravity on both branes will be ordinary 4D gravity,equation

and thus the cosmology will be conventional below tempera-
tures comparable to the radion mass. This has been explained
in great detail in Refl14], and also in Ref(31]. In Ref.[14]

a simplified calculation for the cosmological expansion has
been presented, where the wave function of the radion ha¥ote that this includes a contribution from matter, { on
been neglected, and also the effects of the stabilizing scaldhe Planck brane. Also implicit in the use of this equation is
field were included by adding a five dimensional potentialthe assumption that the time variation of the radion is negli-
for the radion fieldV(b). Assuming that that the potential gible, which is justifieda posterlorl Then using the relation
V(b) is very steep, it was shown from a perturbative solutionk™\ _(¢pg) = —6(1— e’ZAO)/M b gives

of the bulk equations that the ordinary FRW Universe is

ag\ 2
)

4, 1
P

recovered. It was also argued that the 55 component of the K*\NZ (o ) etho o
<GS5> 2 [3p0 p0+e 0(3p* P*)]
Einstein equation, which in the absence of a stabilizing po- 6 2|v|
tential usually leads to the unconventional expansion equa- .
tions, will only determine the shift in the radion field due to K*N_(¢o) IN_(o)  2k*NZ (o)
matter on the wall, and does not result in unconventional + 3 d et 3 F. (89

cosmologies once the radius is stabilized. Below we demon-
strate, that the results of RéfL4] which were neglecting the The Gs5 equation is
radion wave function, and also did not include the fluctua-
tions of the scalar field at the brane remain valid in the more }(ﬁ,z_ (E(VqS)Z—V(qS)”
precise framework of radion stabilization explained in the 2 9ss| 2
previous sections. In particular, we will show that the result (8.7
obtained for the shift in the radion field due to matter on the
walls in Eq.(4.15 of Ref.[14] is exactly reproduced in the T_hen the averaging oTss and linearizing using Eq(3.2
full calculation. gives

To computeGgs we use the ansatz

_ 2 _ 2
655—K T55—K

+ K?

N
Bop’ —AFV— d))
8.9

1
k*(Tsg) = K2(§ 02— V(o)
ds?=n(t,y)%dt>—a(t,y)?d®x—b(t,y)?dy? (8.1

for which with all quantities are evaluated on the TeV brane. Using the
background bulk E¢2.10 and the jump Eq(2.12) the lead-

a’'{fa’ n'\ b?[ala n| a ing terms are seen to cancel. Then after using the background
Gss=3 a §+ Tl nZlala nl all” (8.2) equations, the jump equations for the background fields, and
some algebra gives
The jump equations fa andn on the TeV brane imply10] e*o
W[3po—Po+e_2A°(3p*_P*)]
') _ < N +plb "
o~ 3 [A-(#)*plb, Ao Y .
= boe’' —2¢y F——¢<p—4A doe|. (8.9
[n'] «?
T~ 3T (#)+3p+2p]b. (8.3 Using Eq.(3.16 to eliminatee’, Eq.(3.17) to eliminateF”
in favor of the mass eigenvalue, and Eg.11) to eliminate
Herep andp are the bare energy matter density and pressurgSO finally gives
on the TeV brane, which are related to the physically mea-  j4a,
sured quantities on the TeV brane = pe~ M, etc., Mz, [3po—po+e 24(3p, — p,)]=—3e?om?F.
wheree %0 is the scale factor on the TeV brane. Then aver-
aging theGss equation about the TeV brane and linearizing (8.10
to O(p,F,p) gives But the shift in the distance between the two branes is ob-
5 o . tained by integrating the line element, which givés,
JAN(Po) L (al” al kN _(¢o) =R(e*"0—1)/k. Then sinceF =Re* "0, one obtains
(Gsg) =k —3e™| | t o= ——5—(3p—p)
6 a a 12 Zon
oo 1 (1—e 7o) 2a,
KN (do) Ao 2NE(do) Ty Bkig mpMBe 2 PO SPoT e TP T3]
3 ap 7 3 ' ' (8.11)
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which is preciselythe result found in Refl14] obtained by One finds that the “gaugeh andr are related to the mass
using a 4D effective theor§/This is perhaps not surprising, eigenstate$,,, andr,, by

since for constant radion field the maiansatz and the full

metric including the wave function of the radion are equiva- 6y . i 6&y

lent up to a coordinate transformation. So in an adiabatic N~ | 0S¢~ ——sind|hy+ sm9+7cose)rm,
approximation the leading order result using theveansatz (9.2
should agree with that obtained from using the correct radion

wave function, if the fluctuations in the scalar field are ig- rm "

nored. It is less clear why the full answer including the con- r=0056’f— SIHH?, 9.9
tribution from the scalar field turns out to be exactly equal to

the calculation using the na ansatz. Note that matter on where

the Planck brane causes a smaller shift in the radion com-

pared to an equal amount of matter on the TeV brane. This is m2
because the radion wave function is peaked at the TeV brane, tan 20=126yZ —— " 5 . (9.9
and it couples more weakly to the Planck brane relative to my —my—6£y7(1—12¢)

the TeV brane by precisely the amoust?*0. Thus one

finds the very general result that in the presence of matter on v 5

the branes and a stabilizing mechanism, € equation Vzm’ Z°=1+6&y(1-64), 9.9
determines the shift in the radion.

wherev~246 GeV is the electroweak VEV. Requiring that
IX. EFFECTIVE 4D LAGRANGIAN the quantityZ? be positive(in order to avoid ghostlike states
glaces an upper bound on the value &ffor a given v.
hysically this requirement comes from maintaining positive
definite kinetic terms foh and ¢.
In this basis, the couplings of the physical radion and
Higgs appropriate for tree-level studies are

In the previous sections we have argued that in the pre
ence of a stabilizing potential the linear couplings of the
radion and bulk scalars is given by

1 1 1
S (9r)%= §m2r2+; > [(9)*~m7y7]+DHDH

ysinég
) () (cose—(Gg—l)T>hm
RS W) tyo
+ @A+; a3 T, + EHTHR—V(H). | Jcosd
sinf+(6&6—1) Z T | TIT s (9.6

J’_

9.9

The masses appearing here @¢TeV), and their particular In the £—0 limit one recovers
value depends on the details of the stabilizing mechanism.
The scaleA =e oM, in the Randall-Sundrum model, but —(h=yr)TrT,,, 9.7)
here we have left it general. The other scales /&ge-m,,, ) ) )
and thea, are also model dependent, and vanish in the limitoPtained in Refg.14] and[15]. Note that TT,, includes SM
of small back reaction. In the remaining sections we restrict1199s contributions.
ourselves to the above Lagrangian, and do not commit our-
selves to any specific mechanism of radius stabilization. For X. CURVATURE-SCALAR MIXING
the electroweak analysis we neglect the contributions of the
KK modes frome.

Note that in the above Lagrangian we have also include
a curvature Higgs scalar operatdfHR. The presence of

this operator leads to interesting signals for discovering th We begin with the couplings of the radion and Higgs to

Higgs gnd rad|'on at future.colhde{Ql]. 'In partlcuE\r, the the SM fields before electroweak symmetry breaking. The
branching fractions of the Higgs and radionggandbb can  j,quced metric on the TeV wall is

be substantial different from that of the SM Higgs.
As discussed in Ref21], the presence of the conformal ind/y\ — a—2A(rg)—262K0R(x)

term HTHR leads to both kinetic and mass mixing between Guv(X)=e€ ° 9ps(X), (10.3

the neutral Higgs and radion. Below we summarize the rel-

evant formulas for mixing and couplings. The intereste yvhere the warp factor includes the back reaction, although its

) . . inclusion is not necessary for our purposes. The canonicall
reader is referred to the next section for details. . o y purp y
normalized radiomn is

In this section the effects of introducing a curvature-scalar
interaction are reviewed. The discussion parallels R,

owever, some of the resulting formulas are slightly different
because here terms 6K ¥?) and O(y?£?) are kept.

r(x)
8A translation dictionary between two different notations is re- R(X)=e_k'0

—. (10.2
quired:kro=mgb/2. J6Mm Pl
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So we express the induced metric expanded about where a total derivative has been dropped. Théerms
Minkowski metric as clearly introduce kinetic mixing. The full radion-Higgs La-

ind grangian to be diagonalized is
gibr:v(x) — e*2A(I’O)72r(X)y/U,’]MVEe*ZA(rO)QZ(r) Nuv

103 £=— ShOh— Zmin?— 1 (1468200 — 2 mr?
with =3 5 Mih”= 5 (1+6&y7)rir — S mir
+6&yhOr. (10.12
=——, A=Mpe ¥, (10.49
Y JBA " The mass parameters,, m,, are the masses of the radion
_ _ _ _ o and Higgs, respectively, in the limi=0. The kinetic terms
The four dimensional effective action we consider is are diagonalized by the shifth=h’+6¢&yr’/Z, and r
=r'/Z. Here
Srev= | 4Gl 0D, H'DH-V(H)]
e et Sind = p 72=1+6£y%(1— 6¢) (10.13
4 1 2_ 22 . - . N .
+|d X@i[(Vr) —myre] is the coefficient of the radion kinetic term after undoing the

kinetic mixing, and is therefore required to be positive in
order to keep the radion kinetic term positive definite. For a

+f d*XV0ingéR(Gina)HTH+Ssw.  (10.5  fixed cutoff A this restricts the size of the mixing parameter
& It must lie in the range

To canonically normalize the Higgs and other SM fields, we
sés | 1+\/1+—

perform the field-independent redefinition 1 (1 /1 4
2
HoeAloH, g e3A0/2y, (10.6 4 14 (10.14

1 4

In this basis the Higgs-radion potential is . .
99 P for nonzero values ofy. Otherwise one has a ghostlike ra-

V(H,r)=Q4r)V(H). (10.p  dion field, which presumably signals an instability of the
theory.
Note thatV also includes the effective 4D cosmological con-  This rescaling diagonalizes the kinetic terms, but intro-
stant, which we assume to vanish. Clearly this potential has guces mixing in the mass matrix. A final rotation’

minimum at the same location a4H), so that the elec- =coséh,+sinér, andr’=cosér,—sinohy, brings the La-
troweak symmetry breakingEWSB) vacuum isr=0 and grangian to canonical form. With the above definition of the
HO= u/v2. sign of the rotation, the rotation angle is

We consider the presence of the curvature mixing term ,
m,
- T =12¢yZ . 10.1
L= GinaéR(Gina)H 'H. (10.8 tan26=12¢y mZ—m2(Z2— 3662y7) (10.13

A

Our choice of signs fog is such that the Higgs potential .
receives a positive mass-squared correction in a de Sitth/® ”20“29 that for moderate values gfand y (i.e., z*
phase wher is positive. Since this is a renormalizable in- — 36 ") the mixing angle tan is negative whenmy,
teraction, there is no reason for it not to be present, or to be M - For smally we can expand

suppressed. What makes this operator important in this case
is that R contains the induced metric, rather than just the
ordinary 4D metric. In particular,

m2 ,
tan 26= 12§7W+O(’y ). (10.16

r h

2 — -2 2
RLQAN) 7,,]= =60 L InQ+(VInQ)7]. Putting everything together, the relation between the gauge

(109 and mass eigenstates is
So the curvature-scalar interaction is
he 6y h . 6y
£§=—6§QZ[D InQ+(VInQ)2]HTH. (10.10 = COSQ—TSII’IQ mt|sSing+ TCOSB Mm,
. . (10.19
To see the effect of the curvature scalar interaction we ex-
pandH®= (v+h)/v2 andQ(r)=1—yr/v+.... We need to
g . S e
only expand() to linear order since the derivative terms are I =cosf ——sinfh —. (10.18
already ofO(r). This gives at quadratic order z 7
£§=6§yh|:lr+3§72((?r)2, (10.1) The mass eigenvalues are easily obtained
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1 y _
m?2 =552 (MZ+ (1+6£y*)m2+{[m?—mZ(1+6£9?) ] Li=— ;r(ZM\ZNWZWM +M3%z,z4).  (11.3
+ 1442 £2m?miL 1), (10.19

In addition, to ensure gauge invariance of the results, one
also has to examine the gauge fixing terms carefully. The

The heavi +) is i ifi ith th ith th
e heavier staté+) is identified with the state with the gauge fixing Lagrangian for the/ and theZ are given by

larger of (mZ,m?).

1
— + + -
XI. RADION COUPLINGS AND FEYNMAN RULES Lyi= Vo| - ;(—DMW“ +iaMy¥ ™) (=D, W

In this section we derive the Feynman rules relevant to the 1
computation of the oblique paramet&sT, U —iaMyV¥ ™) — 2—(— D, Z"+ aM;¥)?|, (11.4
Before proceeding, we pause to ask whether higher-order @

couplings such as )
where theW’s are the would-be-Goldstone bosons, ants

¢>2TrTW (11.)  the gauge fixing parameter in tii®e, gauge. Note that since

) ) o the gravitational background is nontrivial, we have replaced
also affect in particular the electroweak precision measuree ordinary derivatives by covariant derivatives. The back-
mentsS, T, and U. This operator could either be directly ground metric is given 0Yg,.,=02(r) 7,,=€ 2"y,
present, or generated from the above linear coupling due to ferefore the covariant derivative of a vector will take the
nontrivial kinetic term for the radion. Although this operator 5y,
contributes at one loop to the gauge boson two point func-
tions, it is easy to see that they do not contributd tsince 2y
them, contained in TT ,, is canceled by the @, appearing D, VF=Q"2 9,VF——3a,V*|. (11.5
in the expression foll, nor to S or U since the contribution v
of this operator to the vacuum polarizations is momentum

independent. Thus we need to only consider the linear coulhus from the gauge fixing terms one also obtains three-
pling point interaction vertices of the form

2y

va

r
%TrT- (11.2 cgfzi—;y(aﬂz#)(&vrsz (9, WH)(9,rW>™)
This operator will have a contribution to the oblique cor- y B N
rections similar to that of the standard model Higgs boson. + a(%wﬂ )(3,rW”T). (118
First we discuss the Feynman rules for the interactions from
the (yr/v)TrT operator. The interaction Lagrangian term rel-
evant for the gauge-boson propagator corrections is justVith these operators added, the Feynman rule for the three-

given by point function is given by
v, "z\
—p
—ee-- 0 —i2M2~ 12y
% T “O'[;(pmzplu + PauPiy) (1179

In addition to the cubic vertices evaluated above, there argareful expansion of the interaction termtDHH |2
also four-point couplings of the radion and the gauge bosonsy (1/,/6A)gr (H'DH + H.c.). Either way one finds the addi-
These terms will not contribute to the oblique electroweakjonal operators
corrections, however, they will be important to obtain a

gauge invariant answer for the gauge boson vacuum polar- 2 (M2
ization diagrams_. These terms arise from two differ_ent 7_2r2 _WW;;WIL—+M§ZMZM ) (11.9
sources. The first source is the conformal coupling v 2

—e "VTrT to the trace of the energy momentum tensor. In
the formalism of Ref[14] this can be obtained by a very The other source of quartic interaction terms are again the
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gauge fixing terms. One simply expands these to higher orfhe interaction terms involving the would-be Goldstone

der to obtain the interaction terms bosons just contribute a total derivative, and thus they can be
242 omitted. The above operators give rise to the following
— 20N (ZF 2+ 2WHTWPT). (11.9  Feynman rule for the four-point function:
v PL o
® /,/'
. 12MZy? idy?
Q\ Tnuu a"v'é"(pl;zPZU + plup2u) (11.10
A
v, p,

The presence of the terms proportional tax 1h Egs.  We point out that it is the original “gauge” radionthat has
(11.7) and (11.10 are in fact crucially important to obtain the conformal coupling to the metric, and consequently it is
gauge invariant amplitudes, however, for calculations in thehis field which appears in the above interactions. But a re-
unitary gaugex—co their effect vanishes. sult of the curvature-scalar term interaction is to introduce

This is, however, not the complete story for the Feynmarmixing between the radion and Higgs, which implies that
rules. The reason is that the radion couples conformally tafter transforming to the mass basis the physical Higgs boson
the metric and so is not the same as the Higgs. Thus, fdn,, will have couplings similar to those above.
example, one finds that at one loop the radion has the anoma- The radion will thus have the interaction termb €4

lous coupling —g)
r ag wy _ r
XbGGG’qu (11.1]) L= y;TrDTMV
r er Y er 2 b
in addition to the usual momentum-dependent coupling ob- =y Tal—ygz PR+ y5 — (MWW
tained from one-loop diagrams with internal fermions. Here
b is the beta function. This may be understood as due to the + M%ZZ), (11.13

scaling anomaly together withas a generator of scale trans-
form_atlons. D|agrammat|cal!y this result is obtalngd by PT€-\vhere the first term is the one we have already discussed
serving the conformal coupling ofwhen the theory is regu-

lated. For dimensional regularization this means that théibove' We will later add in the Higgs and mixing coeffi-

radion must couple conformally to tlizdimensional metric. Cients. The terms relevant to the gauge boson propagators

Since the linear coupling of the radion is obtained from vary-frorn the last two terms are

ing the induced metric, for loop computations the radion
should couple instead to gT,,,, but where now the trace is
evaluated irD dimensions. This differs from the above cou-
pling by some operators whose coefficient vanishes when
D—4. Since thiss=4—D dependence can be offset by +2(0,W, ) (3*W"™) = 2(d,W, ) (9" WH™)
poles appearing in the loops, the appearance of these addi- 2 n b psp— 2 )

tional operators can result in finite nonzero results inBhe —2MYW, W —MZZ,Z7). (11.19
—4 limit. These operators will indeed have a nonvanishing

contribution to theSandU parameter. Next we calculate the In D dimensions, one also has to modify the gauge fixing
Feynman rules for these “anomalous” couplings. The inter-terms. The covariant derivative of a vector field will be
actions we should therefore study are modified to

ey
Lomem= = =1 [(0,2,)2—(3,2)(9,2,)

_ h yr i (-2 " (D-2)y u
L== =TT+ —TpT. (11.12 D V#=0Q7% 9,V# = ———=3,rv#|. (1115

065002-14



RADION DYNAMICS AND ELECTROWEAK PHYSICS PHYSICAL REVIEW D63 065002

In addition, the\/g factor in front of the gauge fixing terms conformally to the SM metric but with a typical coupling of

have to be modified td2P. Thus these interaction terms O (TeV ™ ?).

modify the Feynman rules for the interaction vertex given in  Our approach is to use an effective theory with cutoff

Eqg.(11.7) to O(A), similar to the approach taken in Rg25]. Below this
scale the only light fields are the radion and Higgs boson

—2iM\2,y e ve whose contributions we are going to calculate explicitly. In
T( - 5) Nuvt =, (P2 P37~ P2,P3,,) our approach the effect of any modes heavier than the cutoff
are included by introducing higher dimension operators that

i(2—g)y i ye directly contribute to the oblique parameters. This in prin-

T ap (P2uP1,HP3P1) T P2uPsy ciple includes the effects of the heavy spin-2 KK states, for

example, which are typically heavier than the radion. A di-
(11.16 rect computation of the effect of the heavy spin-2 states us-
ing a momentum-dependent regulator has been presented in

In addition, the four-point vertex in E¢11.10 is also modi- Ref. [18].

fied by terms proportional te, which, however, do not con- In the previous section the radion coupling to the gauge

tribute 1o a Ca|9U|at'0n in the unitary gauge. . bosons was obtained and found to be similar to that of the
. We close this section by d|scussmg how to take the m.'X'Higgs boson. The contribution of the Higgs boson to the
ing between the Higgs and the radpn due to the poss'blgblique parameters is by itself divergent, but these diver-
presence O.f the c_urva_lture-scalar mixing operator into acgences are canceled by the contribution from the pseudo-
count. The interaction in the gauge basis is Goldstone bosonéor the longitudinal states of the massive
h ; gauge bosons Thus for the radion one expects a divergent
L=——Tr, T+ y—TrDT. (11.17) con';r_ibution, but in contrast to the Higgs boson there is no
v v additional source to cancel this. This is perhaps not surpris-
ing since the radion interactions are nonrenormalizable.
A set of operators that provide the necessary counterterms
for the wave-function renormalization is

Using

h=ah,+br, (11.18
gzzx T wv 1 nZ T v
r=chy,+drp,, (11.19 (’)x=72— H'HTIW,, W +§ta 6wH'HB,,B
where the coefficients, b, g andd can be read off from Egs. . )
(10.17 and(10.18, then +tanfywH'W, ,B“"H |, (12.1
c=| —(a- c)%ﬂ d—b)r—m - - where W,,=W?72, with the generators normalized tb
B Yo Y v 4 Note that the last operator is gauge invariant, since for a
gauge transformatiob, WW—>UWWUT. Setting the Higgs
Y| ¢ v, & boson to its VEV in the above operator gives
+ (Chy+dry) = | = 2 F, P+ EM\Z,VZ). P 9
(11.20 o _2_92va2 WEW A 7w
' X7 TN pv 2 cod Gy, '
Thus the Feynman rules for the radidand also for the (12.2

Higgs bosomhave to be modified such that the above mixingIn this model the radion does not contribute y¢ and yZ

Svave-function renormalization, and the absence of these
counterterms uniquely fixes the coefficients in Efj2.1).
The explicit computation of th&Z and WW wave-function

mass eigenstate radion the Feynman rule will be

_ZIM\’(),d_b_ﬂ) 7 +ﬂ(p P37, — P2,P3,) renormalizations demonstrates that the above operator has
v 2 )Tty P2y F2rEau the correct relative factor between the two gauge bosons.
i(2—&)yd This is perhaps.non'grivial, §ince there is no additional degree
— (P2,P1,+ Pa,P1,) of freedom to fix this relative factor. We also note that an
av identical operator to Eq12.2) is also required in technicolor
iyed theories in order to cancel the diyergent contribution of
— szﬂph, (11.21) pseudo-Goldstone bosons to the oblique paramgdés

The operator which provides the counterterms for the
mass renormalization is

Xll. ELECTROWEAK PRECISION MEASUREMENTS

Zy
In this section we consider the corrections of the Randall- Owm :W[g ?(D,H™H)(H'D*H)
Sundrum model to the oblique parameters. Our analysis also
applies more generally to a model with a light scalar coupled +g?H'H(D ,H'D*H)]. (12.3
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The first operator that appears here violates the custodial Y?A? Y?A?

symmetry, and in particular contributes to tAebut not the = TonZp2 M Lx= 152252 3 (12.9
W mass. After electroweak symmetry breaking they together

reduce to

where we expect that the dimensionless parametgrand

ay are at most of order 1. Note that singé~ A ~2, in this
parameterization the dimension-six operators are still sup-
pressed by\2.

These coefficients parameterize the unknown physics in-
tegrated out at the scale~ A. Since, however, the radion at
one loop contributes to the anomalous dimension of these
operators, when comparing to the experimental results evalu-
ated at theZ mass large logarithms dd(In A/My) appear
from this anomalous scaling and this effect should be in-

Note that it ism(‘, which appears, so we explicitly see that pluded. Following Wilson, a one-loop Wilsonian renormal-

. . : ... ization group equation is obtained for the operator coeffi-
this operator contributes to theparameter. In this case it is cients. In the leading logarithm approximation the value of

trivial to obtain the correct mass renormalization from Eq.these coefficients at the weak scale is determined to be
(12.3, since here there are two coefficients to be determined

from only two constraints. So in addition to the usual stan- B A2

dard model renormalizations, these wave function and mass ZiMy)=Zi(A)+ ﬁlnw, (12.6
counter terms are also required to renormalize the model. z

The model with the radion represents an effective theory h th q ined f h ici f th
valid for E<A. The dimension-six operators discussedw't the ; determined from the coefficient of the dnterm

: . . r equivalently, from the Z/poleg in an explicit one-loop
above are obtained by integrating some unknown degrees é%mputation. To compute the oblique parameters, one then

freedom in the full theory, and in the effective theory they 54ds the contribution of these renormalized operators to the
appear with some unknown coefficierds(A). These for finite parts of the one-loop diagrams. In the leading loga-
example could include the effects of integrating out therithm approximation this amounts to simply replacing the 1/
heavy spin-2 KK modes. Since the divergences for which th@oles in the gauge-boson self-energies witA /N .
two above operators act as counter terms arise at one loop 0 compute the oblique parameters one uses the Feynman
order, they are proportional tg?/(16m2). Thus it is reason- 'Ul€s in the previous section to compute the two Feynman
ble to expect that the finite part of the operator is also of th diagrams that contribute to the vacuum polarizations. Both
a P ) P P -~ diagrams have one internal radion, and one uses the three
same order, and in order to match the form of the explicitlyyoint function and the other uses the four-point function. Our
calculated one-loop corrections we will write ttfénite) co-  convention for the sign of the vacuum polarizatidiis, is
efficients as that

Zy Mg
Ow— 72 MW, W -+ - 242,). (124

A /V\M/\I@\IWW\ vy e e g
M — "/H!C"/(p?) — 277# H‘/,‘/,(pQ) + ,lpl"p H‘_r‘,,(pz) (12D

and only the first term is computed. The generic form of the+#0, the results given below can also be used to compute the

radion contribution is oblique parameter after an appropriate redefinition of the
couplings and masses. The modification to the expression for
yv(p?) = 5(p?) + 1I{\(p?). (12.8  the oblique parameters is summarized in B@.21).

Inspecting the Feynman diagrams for the vacuum polar-
Here “A” denotes the anomalous contribution due to theizations one finds that the quadratic divergences cancel be-
conformal coupling of the radion, andS' denotes the stan- tween the two diagrams, leaving only a logarithmic diver-
dard contribution which is also similar to the Higgs contri- gence. Therefore this justifies the use of dimensional
bution (when £=0). The anomalous couplings are discussedregularization. An explicit computation of the Feynman dia-
in the previous section. By an appropriate rescaling of thgrams in unitary gauge and for vanishing curvature scalar
coupling we can also usi® for the Higgs boson. Whes  parametet gives
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2t 2
S . Y My(6 5 m TZE Mww(0)  Mz7(0) 121
0=~ 162 75+ 2 mg o\ M T mE ) (1213
2 2 2 2
my Inmg/ u? —my Inm7/ u? 4 Sir? 0, CoZ Oy [ T172(M2)  T1,5(0)
7 , (129 S= 5 |,
m, —my a M2 M2
(12.19
1S ()= Y2 my[ 20 2mf+1mf+1o . ,
M e e s s e iy 4T Tl w0l
Ile MW
y? m@( 4 m; mf) (12.15
2 2|42 7
167" v smy  my More generally one must also include the, andll,, self-
1 5 ) energies. They have been dropped here since they do not
X fo dx In[x®mg+ (1 —x)m?]/ u? receive contributions from either the Higgs boson or the ra-
dion.
2 mé[ mZ( m? m?2 Using the above expressions one can evaluate the contri-
+ 52 7| —;(3—2—1) In— bution of the radion t& andT in the limit of a large radion
v my |\ smy mass. One obtains, f@r=0,
1 |'T]r2 ) m\2, 2 2
+2|—=%—2|In— (12.10 _Y 1 A" 5
3\ m2 2] S=—|ax— sIh—=— =/, (12.16
v K 7\ 12" m? 72
where to avoid confusion with defining too manmss, the 32 ay A2
renormalization scal@ appearing includes the usual factors T= W( — ?+In—2+ 5"
of 47 and Euler's constanyz. An analytic expression for ™ COS Ow m; (12.17

the Feynman parameter integral may be obtained, but it is

not very illuminating. A powerful check on these expressionsinsnacting the above expressions for fiis one finds that
is gauge invariance. We have explicitly checked that in thgnere s no divergent contribution to, and this is consistent

generalR, gauge, the gauge parametercancels from the i the fact thatdy and®,, provide no counterterms fdy.
expression and reproduces the above results. We note that |; ig interesting that the radion contribution ®is nega-

the divergences appearing here have the form as4given by e and toT is positive. This is easy to understand by com-
operators in Eqs(12.1) and(12.3. For [1(0)yy~ My 85 € paring this result to the contribution of the Higgs in the SM.
quired by Eq.(12.3. The difference betweeti(my) and  |nfact, fory=1, m,=m,, andZ,(A)=0, the radion result is
[1(0) gives the divergence proportional fi¥, but in the identical to the(logarithmid contribution of the SM physical
above equationp? has already been set if. With this in  Higgs. But there the total correction ®and T is finite, so
mind, by inspection the coefficient pf is ~mZ, as required that for the Higgs the\ dependence in the above expression
by Eq. (12.1). So the set of operators given by E¢$2.1) is canceled by loops diVs and Z, leaving a Imm,/M; de-
and (12.3 provide an appropriate set of counterterms. Wependence. Then one obtains the usual positiegative cor-
renormalize using the modified numerical subtractionrection toS(T). For the radion though the large logarithms
scheme(MS). Then using the Wilsonian approach outlined are present, and sin¢e>m,, the radion contribution t&is
above, in the leading logarithm approximation we just re-negative, and toT it is positive. Recalling thaty?
place 1£ with In A/M, that is, =v2/6A2, the size of the above correction is only significant
for small values ofA.

2 We conclude with a comment on the decoupling behavior
5 vetindm—Inzs, (1213 of the radion. Inspecting the above expressions we see that
‘ for largem, the radion contribution scales as
and setu=M;. 1 A
The anomalous contribution is finite and is A7Inﬁc. (12.18
r
2 4 2 2
A (p?) = Y Myl 1_0p_+6_2ﬂ For the purposes of this paragraph we distinguish the cutoff
W 1672 v 3 mg mg)” of the effective theory Ac from the mass scaleA
(12.12 =Mp e Ko appearing in the radion coupling. In our analysis

we have approximated -~ A. If the radion mass is much
We note that then? term does not contribute to the oblique larger thenA, then the cutoff of the effective theory is the

parameters since it ig?-independent and alse m\Z/_ much higher scal&~m, or larger. Then it is more natural to
The Particle Data GroupPDG) convention for the ob- express all higher dimension operators as suppressertfﬂ)y
lique parameters that we use here is or Agl. But then the coupling of the radion to the gauge
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bosons contains the very large coefficiemt/A. It is then  Here X” is the anomalous contribution, obtained from the
inappropriate to use the one-loop approximation. So to revacuum polarizatioi12.12, but dropping then? term since
main within the validity of the approximations used here onethis does not contribute to any of the oblique parameters. The
must also increasa for largem,. Then the radion contri- otherX's are obtained from using the vacuum polarizations
bution decouples. (12.9 and(12.10, and inserting the physical mass of the
For large radion mass it is conceivable that the couplingappropriate state.
of the radion to TT decreases. This cannot be seen in our We note that, for example, the full anomalous contribu-
computations here because we have made the approximatigion to S from the above formula is
of using only the zero mode wave function to determine the
coupling, but have included the back reaction perturbatively A Sy
to compute the radion mass. For very large radion mass these Stew™ 62%7 (66-1)
approximations are invalid, and then one must exactly solve
the equations. It is then conceivable that for large radiorand is negligible for reasonable values gfand & The
mass the radion wave function on the TeV brane decreases anomalous contribution t® is even smaller.
such a manner that the coupling toTTiremains natural, i.e.,
O(m[l). Numerical results
Following standard practice we define a reference model The “

2

(12.22

new” contribution X is constrained to lie within the

in which one computes the oblique parameters within th%easured valuegextracted assumingnﬁ"" e~ 100 GeV)
standard model, which means for some specific value for th 8]

Higgs mass. Since the curvature scalar operator mixes t

radion and Higgs, the two physical scalars are some mixture Smeas= —0.070.11, (12.23
of the gauge Higgs boson and radion. This mixture is not a

unitary rotation due to the kinetic mixing between the states. Tieas= —0.10+0.14, (12.24
The couplings of the “Higgs boson” in this case is some-

what different than in the standard model, and for the pur- U neas= 0.11+0.15 (12.25

poses of computing the oblique parameters it is easiest to
think of this as a new model, rather than as a perturbation t¢the errors are for one sigmaX can be easily calculated
the standard model. So in computing the oblique parametesncem;,, m,, A, and ¢ are specified. Notice that since the
the standard model Higgs contributiqfor the reference current best-fit values for the electroweak parameters are
Higgs mas} should be subtracted out, and the contributionnonzero, the new contributions can be more weakly or more
of the physical states in this model added back in. That is, strongly constrained depending on whether they add destruc-
tively or constructively with the Higgs boson, respectively.
X = XE0= Xnewl My, My, AL €) = XS (mp=mp). As a first example, we show the contribution$@nd T in
(1219 Fig. 3 as a function ofn,=m, (the “gauge” masses fixing
. ot oh o A=1TeV. Each contour corresponds to a different value of
As mentioned Xy (m,=my") is the contribution from only ¢ and the contours end when a physical mass exceeds the
the Higgs, with massn[®' and with standard model cou- cutoff. The unshaded region corresponds to theallowed
plings, and it is independent of, m,, and the curvature- region. Notice thaf is a strong constraint on smatiauge
mixing parameteg. The quantityxrse,\f,I is the full SM contri-  masses, whil&is a strong constraint for large masses. Also,

bution, with the Higgs set at the reference mm{,%f. The the the case witl§=0 is nearly identical to the ordinary SM

new physics contribution contains two pieces, Higgs contribution, since the radion contribution that can be
separated out is strongly suppressed by the coupifngn
Xnew=Xr+ Xy, (12.20 Fig. 4 we show the contribution t8 andT as a function of

m, with m,=300GeV. Notice that the contributions are
which describe the contribution of the physical radiotg), nearly independent af, for small curvature scalar mixing.
and the physical HiggsXy). In the limit of no curvature- The above results illustrate a general trend that with small
scalar mixing, this last contribution is just that of a standardor absent curvature-scalar mixing, the bound on the Higgs
model Higgs with massn,. For a general curvature scalar boson mass is not significantly affected by the presence of
mixing one just needs to include the effect of the mixingthe radion. This is not true, however, if we allo§mo take
coefficientsa, b, ¢ andd given in the previous section. Then larger values. It is easiest to first illustrate that radion physics

with large curvature scalar mixing can significantly relax the

Y )2 bound on the Higgs mass, by scanning through the parameter
Xnew= | COS0— = (65— 1)sm0> X(mR™, y=1) space(choosingm,=m, for simplicity) for values that sat-
) isfy one or two sigma limits on the electroweak parameters.
+(sing+ Z(6§—1)cosa> X(mPs, y—1) We find sets of parameters that are not minor perturbations
Z r on the SM limit allow the physical masses of the Higgs and

) radion to be several hundred GeV, and perhaps even TeV
_r (6&—1)XA (12.21 scale. In Fig. 5 we show the range of physical masses and the
z? ' ' range of¢é as a function of the cutoff scale. In general there is
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FIG. 3. The contributions t8, Tas a function of the “gauge” masses,=m, . Each line is a contour for a fixed curvature scalar mixing
& The cutoff scale was chosen to be 1 Tey=0.1). The shaded regions are excluded by the PDG measurements to one sigma.

not a unique mapping between the figures, however the 1/1 m? ) Y A2 5
“shark fin” structure for the one sigma region in Fig(&h Snew:;(l—zm M2 7—2> —(6§—-1) ﬂ(l—szﬂL 7—2)
does correspond to the “inverse fin” in Fig(t§. Notice that z (12.26

at two sigma the physical Higgs boson mass can be much
larger than the SM bound throughout the parameter spacehe first contribution is just the usual correction from the
shown, and even at one sigma there exists a narrow range bliggs boson. But the second correction can be potentially
large, negative curvature-scalar mixing where the physicalarge and negative due to the dependence o ff@ameter.
Higgs mass could be of order a TeV. The latter result ariset should be emphasized that the large correction is due to the
from a cancellation between the physical Higgs and radiorfnonunitary kinetic mixing between the radion and Higgs
contributions with the SM reference contribution. This canboson, or equivalently, due to the nonstandard couplings of
be seen in the limit of a large radion and Higgs boson masshe radion and Higgs boson in the mass basis. Hence, while
Since the dependence on the masses is only logarithmic, whis region is provocative, it nonetheless requires fine-tuning.
can approximate the masses as being equal. Then, for ex- These results have assumed that the contribution from the

ample, nonrenormalizable counterterms is small, meanéggand
0.3
1.5 -1.4
0.1 5
-0.5 0.2
15
/:L”/ \\\\\\
0.0 0.1- b
o
\\ ~
@ 00 i
-0.1
14 s
—0.1 0 — ===
-0.2
-0.2
-0.3 . ; ; ; ; ; : . . -0.3 ‘ ‘ — ‘ o ‘ ‘
50 150 250 350 450 550 650 750 850 950 50 150 250 350 450 550 650 750 850 950
m, [GeV] m, [GeV]

FIG. 4. Same as Fig. 3 except thm} is fixed to 300 GeV. Notice that the contributionsS@andT are nearly independent of the radion
mass if the curvature mixing is small since the radion contribution is suppressed.by
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3000

m,™ [GeV]

Y

Y

FIG. 5. The allowed region dhﬁhysandgas a function of the inverse of the cutoff scale v/A by requiringS, T, Udo not exceed the
one sigma(dark region or two sigma(light region measurements from the PDG. The dashed lines correspond to the theoretical bound
requiring the kinetic term is non-negatiysee Eq.(9.14]. The black sliver corresponds to the region Wh&1ﬂ§y5~300 GeV.

ay are less than order 1. For larger coefficients the allowed39]. For the radion, an exactly analogous production process
regions of parameter space, albeit only at moderately large occursee™ —Z* —Zr, except that th&Zr coupling has a

In Fig. 6 we show the shift in the contours, for the two sigmafactor of v. To a good approximation, we can therefore esti-
region, resulting from takingy= *=10. (ay, was also taken mate the production cross section of radions at LEP by sim-

to be 10, but the effect on the contours was negligible. ply scaling the Higgs cross section by.
The decay of the radion is somewhat more complicated,

XIIl. LIMITS ON RADION MASS h_owever. As we discussed in Sec. Xl, the radion couples
directly to gauge bosons through the conformal anomaly.
As we found in Sec. VI, the mass of the radion is ex-Although this coupling is one-loop suppressed, it competes
pected to be significantly below the the cutoff scale, placingvith Yukawa suppressed interactions and, for the cgsg
it in a region that can be directly probed by experiments. Theean be comparable or even doming24,22. In the radion
previous section has shown that the radion couples much likghass range well below thg threshold, the ratio of the two
a Higgs boson, and in the limit— 0, the tree-level couplings |argest widths can be expressed as
of the radion are simply scaled by Let us first consider the
bounds in this case.

In the SM, the current bound on the Higgs boson mass 2.2 2
c
comes primarily from the CERN" e~ collider LEP pro- F(ngE) _ 4% (ﬂ) , (13.2
cessese’e”—Z* —Zh, with the value m>“'<108 GeV I'(r—bb) 127°8%\m,

2000

m,"™ [GeV]

5
0.05 0.1 0.5
v

Y

FIG. 6. The shift in the two sigma contours shown in Fig. 5 resulting from taking the coefficients of the nonrenormalizable operators to
be ay=10 (dark region anday= —10 (light region.
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where 82=1—4m2/m? andc;~% is roughly the one-loop 1
QCD p-function coefficient (approximately including the
smaller contribution from the one-loop triangle diagram with

top quarkg. Notice that the coupling? cancels in this ratio.

This can be written in the suggestive form

I'(r—gog)
I'(r—bb)

2
ﬂ/ﬂ’(i) . (13.2
12m,

Hencer—gg dominates for the region %, <=m,<2My.
The search strategy for the radion is therefore significantly 20
different from the Higgs in this mass window, namely 01
searching for a pair of gluon jets instead of a paibgéts.
Similarly, the radion has a different production cross section
at hadron colliders via gluon fusion, proportional to the con- ‘ . . .
formal anomaly enhanced width into gluons but suppressec 0 20 40 60 80 100
by the usuah/? [21]. m; [GeV]

Determining an accurate bound on the radion mass in the . L
region that can be probed by LEP requires a detailed analysis%oi\llﬁ' ;észrrfinbotuhr:ed scimn;Tec;i?(;ogeme?(strsagseda f]::)rr:tlt?zlgsround
of detecting a two gluon plug signal. We will not attempt ' 9 9 g

. . once the radion production cross section times integrated luminosity
this here. Instead, the expected bound on the radion mass Cafl..oqey= 20 or 100 events at LE@ummed over the four experi-
be roughly estimated as a function of the coupling if we

assume that some number of production evenitat LEP ments.
could not have escaped detectitor be lumped into SM  \ye have not attempted to estimate a boundyofor a
backgrounds Near the klrjemat|cal limit, the best bound will (,4ion mass less than about 10 GeV. We really do not expect
always come from the highest energy data. For lower masg,q radion to be several orders of magnitude below the cutoff
radions, a lower center-of-mass energy results in a slightlycae “and so at the outset it seems this mass region is un-
higher cross sectioh Since the bound for a given radion paral But, the presence of several low energy production
mass is limited only by luminosity, we can combine the mul-processe¢and rare decaysould be important, so a consid-
titude of LEP runs at various energies by weighting by th€g ap1y more careful analysis than what we have attempted
integrated luminosity accumulated. The bound is then simply,oe is needed.
When curvature scalar mixing is included, the coupling
2 N (13.3 ZZr is modified as shown in Eq11.20. The above analysis
Y Soglete"—=zZhmy=m)X[Lg’ ' can be translated into this more general case, but now the
coupling is not simplyy but a function of the curvature-
where the sum is over the various recent LEP runs wittscalar mixing as well. In addition, the SM Higgs couplings
center-of-mass energy/s. N encodes all of the detailed are also modified, and so its production and decay are also
analyses of backgrounds, signal efficiencies, etc., and is igffected. In particular, the production cross section could be
general not independent of energy or radion mass. In Fig. ®ither enhanced or suppress€This is similar to what hap-
we simply show the bound obtained Nf=20 or 100(the ~ Pens in two Higgs doublet models, such as the MSSAh
integrated luminosity for each energy was also summnsed mterestmg signal for RS with curvature_—scalar mixing could
responding to producing 20 or 100 events summed over ale opserv]ng a nonstandard cross section or decay rate for a
four LEP experiments. These numbers were chosen sinceM-like Higgs boson.
searches for Higgs bosons typically need a few to tens of
events(per detectorfor a statistically significant signal-to- XIV. CONCLUSIONS
background ratio. Notice that no bound on the radion mass is

expected from the recent LEP runs ongés less than about In this paper we have analyzed the coupled radion-scalar
01 system in detail, including the back reaction of the bulk sta-

bilizing scalar on the metric. We derived the coupled differ-
ential equations governing the dynamics of the system, and
found the mass eigenvalues for some limiting cases. We find
li*Pfat due to the coupling between the radion and the bulk
scalar, there will be a single KK tower describing the system,
with the metric perturbations nonvanishing for every KK
mode. This implies that the standard model fields localized
on the TeV brane will couple to every KK mode from the
"For instance, o g-1g0 ce €€ —1Z)/0 5= 200 ced €' € —12Z) bulk scalar, and this could provide a means to directly probe
~1.3 for smallm, . the stabilizing physics. We also found that in an expanding

One could also search for light radioms, <60 GeV, at
LEP | via the decaZ—ff+r, through the same coupling
discussed above. However, the expected bound obtained
using this procedure is no better than that found abovenfor
larger than about 10 GeV.

065002-21



CSAKI, GRAESSER, AND KRIBS PHYSICAL REVIEW D63 065002

universe the shift in the radion at late times completely Note addedAfter Secs. IlI-VI were completed, we were
agrees with the effective theory result of REf4]. informed that many of the results of these sections are also
We also calculated the contributions of the radion to thecontained in Ref{29]. We thank Riccardo Rattazzi for point-
oblique parameters using an effective theory approach. Sindag us to this reference.
the radion is the only new state well below the TeV scale, we
argued that a low-energy effective theory including only the ACKNOWLEDGMENTS
radion and SM fields is sufficient, as long as appropriate
nonrenormalizable counterterms at the cutoff scale are We thank Tanmony Bhattacharya, Kiwoon Choi, Jim
added. In the absence of a curvature-scalar Higgs mixin€line, Gaor Cynolter, Josh Erlich, Christophe Grojean,
operator, the size of the contribution to the oblique paramHowie Haber, Tao Han, Gygy Pasik, Lisa Randall, John
eters due to the radion is small. In the presence of such &erning, and James Wells for useful discussions, Jim Cline
mixing operator, the corrections can be much larger due téor reading an earlier version of the manuscript, as well as
the modified radion and Higgs couplings. In particular, in-Tao Han and John Terning for comments on the manuscript.
cluding only the mixed radion and Higgs fields as “new C. C. thanks the Oppenheimer Foundation for financial sup-
physics,” we calculated the range of curvature-scalar mixingport while at the Los Alamos National Laboratory. The re-
for a given cutoff scale that allows the physical Higgs bosornsearch of C.C. is supported by the Department of Energy
mass to be up to of order the cutoff scale, wiie,, and  under contract W-7405-ENG-36. The work of M.G. was sup-
Thew Were within the experimental limits. However, the pa- ported in part by the Department of Energy. The research of
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