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Nonvanishing magnetic flux through the slightly charged Kerr black hole
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In association with the Blandford-Znajek mechanism for rotational energy extraction from Kerr black holes,
it is of some interest to explore how much magnetic flux can actually penetrate the horizon at least in idealized
situations. For the completely uncharged Kerr hole case, it has been known for some time that the magnetic
flux gets entirely expelled when the hole is maximally rotating. In the mean time, it is also known that when
the rotating hole is immersed in an originally uniform magnetic field surrounded by an ionized interstellar
medium(plasma, which is a more realistic situation, the hole accretes a certain amount of electric charge. In
the present work, it is demonstrated that, as a result of this accretion charge small enough not to disturb the
geometry, the magnetic flux through this slightly charged Kerr hole depends not only on the hole’s angular
momentum but on the hole’s charge as well, such that it never vanishes for any value of the hole’s angular

momentum.
DOI: 10.1103/PhysRevD.63.064037 PACS nuni®er04.70—s, 04.40.Nr, 97.60.Lf
[. INTRODUCTION relativistic particles and fields. Interestingly but rather to our

dismay, it has been found,10] that this magnetic flux in-
Among various models attempting to provide a consistentersecting the horizon decreases as the angular momentum of

account for the spectrum of quasars, radio galaxies or th&€ hole increases and reaches zero when the hole is maxi-
mally rotating. Considering that larger amount of rotational

i which i field i T

T e e e Do s ETEIOY Can o oxiacid fom mote rapdy rotaing black
. P oles, this result, even if we take into account the idealized

mechanism proposed by Blandford and Zngjekmight be setup employed, is quite adverse to the operational aspect of

the most attractive and natural one to theoretical physicist%e Blandford-Znajek mechanism. Because of this negative
Despite the skepticism generally held by astronomers and the, jicasion of the result, there have also been some other

majority of astrophysicists, the Blandford-Znajek mechanismy,q s employing more careful treatments to turn the conclu-
for the extraction of ro_tatlonal energy from rotating blacl_< sion around and hence save the mechanism. The work per-
holes has remained an issue of great interest in the theoreticg}ymed by Dokuchaef] employing the Ernst-Wild solution
astrophysics community due to its concreteness in the formys) to the coupled Einstein-Maxwell equations belongs to
lation and plausibility in operational nature. Being so, therethjs category. Starting from the exact Ernst-Wild solution, he
have been continuous research activities to ask and answefiowed that the magnetic flux through the hole becomes in-
questions relevant to the environment set by the Blandforddependent of the hole’s angular momentum when the hole
Znajek mechanism such as the stationary, axisymmetribuilds up equilibrium/Wald) charge. In the present work, we
magnetosphere in which the rotating hole is surrounded by ahoose to deal with the issue more directly and demonstrate
strong magnetic field and plasma. Among such questionsp a transparent manner that in a more realistic situation
one of the most interesting thought experiments that can behen there are charges arouit small enough not to dis-
explored in an analytic manner at least in idealized situationgurb the background vacuum geometrshe magnetic flux

is the issue of how much of the magnetic field can actuallypenetrating the horizon depends not only on the angular mo-
penetrate the rotating hole’s horizon. Or more preciselymentum but on the amount of charge accreted on the hole as
through one-half of the surface of the horizon as the totalvell and can never vanish no matter how fast the hole spins.
flux across the whole horizon should be zero. The right anln order to find the electromagnetic field arognd a rotating
swer to this question can indeed be crucial in order for the?l2ck hole and hence eventually the magnetic flux through

Blandford-Znajek mechanism and its generalized versiongne'halIf of the horizon, we |°.0k for the solution to the
[2] to work at all as they all rely on the picture in which source-free Maxwell equations in the background of the sta-

magnetic fieldgparticularly, their poloidal componentsen- tionary, axisymmetric vacuum spacetime, the Kerr geometry.

etrating the hole’s horizon and the surrounding accretio And perhaps the most concise and elegant way to obtain this
trating . 12 urrounding TeUONL o1 ution which occurs when a stationary, axisymmetric black
disk, transmit the rotational energy of the hole to distan

thole is placed in an asymptotically uniform magnetic field
would be the simple algorithm suggested long ago by Wald
[6] which is based upon the realizati¢pn] that the Killing

:Ema_il address: hongsu@hepth.hanyang.ac.kr vectors owned by a given vacuum space time generate solu-
Emalll address: chlee@hepth.hanyang.ac.kr tions of source-free Maxwell equations in the background of
*Email address: hklee@hepth.hanyang.ac.kr that space time. Here, although “vacuum” situation repre
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sents the case when both the Einstein and Maxwell equations 1 4] 1
have no source terms, the solution-generating method given  F= EBo{Fw— (—_Zm) Fg} =5Bo
by Wald actually allows us to construct the solution for the

electromagnetic test field that occurs when the hole is imThen usinngéFMde“Adx”,zp: P dxt, E=E,dx”, with
mersed in an originally uniform magnetic field surrounded

2J
dyt+ —deg). (D

by plasma(i.e., ionized particlesand hence eventually gets £0= 98" =90 = Gt @
slightly charged via accretion. We already announced that _ . 57—
we shall consider the case when the charge accreted on the Vu=09u¥V"=0u05=0ue

hole is small enough not to distort the background Kerr gexng for the Kerr metric given in Boyer-Lindquist coordinates

ometry. Certainly, it needs to be justified that this is indeedg 14] [or see Eq(A12) in Appendix A], the solution above
what can actually happen. This will be done at the end otan pe written in a concrete form as

Sec. Il. Since we shall basically employ this algorithm pro-

posed by Wald, the present work can be thought of as having 1

its basis on the “first” approximation of the Einstein- ©= EBo

Maxwell system in which only the Maxwell equation is be-

ing solved in the background of Kerr space time assuming

that neither the field nor the amount of charge is strong —

enough to distort the background geometry. In this sense,

any attempt to deal with the problem by directly solving the 26ir?

coupled Einstein-Maxwell equations, such as the work by +[2r Sir2o+ 2ma’si 0(r2—azco§0)(1+co§0)]
2

- %(rz—azcoge)(l+co§6)(dr/\dt)

4mra

52 (r’—a?)sind coso(d6/\dt)

Dokuchaev employing the Ernst-Wild solution to the
coupled system, can be regarded as being more fundamental
though less practical in many respects. Later, we shall notice 5 5 Amra? ) _
that our result for the expression for the magnetic flux  X(dr/Adg)+j2(r°+a%)+ 52 [S siPo—(r?+a?)
through the hole can indeed be deduced as a leading approxi-

mation to that appeared in the work by Dokuchaev although

it has not been realized there. ><(1+cos’-0)]sin0cosﬁ] (doNd o)

. ()

IIl. SOLUTION GENERATING METHOD BY WALD B. Wald charge

We now turn to the issue afharge accretiononto the
Kerr black hole immersed in a magnetic field surrounded by
From the general properties of Killing fieldg]—a Kill-  an ionized interstellar mediurtfplasma”). We shall essen-

ing vector in a vacuum space time generates a solution ofially follow the argument given ifi6] and to do so, we first

Maxwell's equations in the background of that vacuum spaceeed to know the physical components of electric and mag-

time—long ago, Wald 6] constructed a stationary, axisym- netic fields. This can be achieved by projecting the Maxwell

metric solution of Maxwell's equations in Kerr black hole field tensor given above in E¢3) onto a tetrad frame. An

space time. To be a little more concrete, Wald’s constructiorappropriate tetrad frame here is that suggested by Carter

is based on the following two statements. [6,8] whose physical properties are discussed in detail in
(A) The axial Killing vector *=(dld¢)* generates a Appendix A. Now using thédual o) Carter's orthonormal

stationary, axisymmetric test electromagnetic field which astetrade,={eg,e;,e,,e;} [8],

ymptotically approaches a uniform magnetic field, has no

magnetic monopole moment and has chargel,F ,=dy, (r’+a?) o a

A. Wald field

whered denotes the exterior derivative adds the angular €= (SA)72 EJF(EA)l,z@:etoaﬁ‘eg%v
momentum of a Kerr black hole;

(B) the time translational Killing vectag* = (d/dt)* gen- INRLE
erates a stationary, axisymmetric test electromagnetic field el_(f) Ezerlar, 4
which vanishes asymptotically, has no magnetic monopole
moment and has charge —2m,F,=d¢ , wherem is the 1 g

mass of the Kerr hole. e,=—— —=ejd,,
Equipped with this preparation, we are now interested in Y2490

obtaining the solution for the electromagnetic test fieldhat

occurs when a stationary, axisymmetric black hake., Kerr asing o 1 d . $

hole) is placed in an originally uniform magnetic field of €= S 12 ﬁ+21/2sin0£:e3‘9t+e3"7¢*

strengthB, aligned along the symmetry axis of the black

hole. And for now we consider the case when the electrisvhere> =r?+a%cosd and A=r2+a?—2mr with a=J/m

charge is absent. Obviously, then the solution can be readilgeing the angular momentum per unit mass and the Carter

written down by referring to the statementd) and (B) tetrad components of the Maxwell field strength can be com-

above as follows: puted as
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arsirtd ma — the black hole will accrete particles with opposite charge.

=Bo —5 —5 (r’—a’cos6)(1+cos0) | (e'/\e°) In either case, the Kerr hole will selectively accrete charges
p> until A* is changed sulfficiently that the electrostatic “injec-
aAl? rAL2 tion energy” e is reduced to zero. We are then ready to
+By—<—sind cosd(e?/\e’) + B, sing(et/\e®) determine, by this injection-energy argument due to Carter,
p b what the equilibrium net charge accreted onto the hole would
cosé 2mra be. In the discussion of Wald field given above, we restricted
+B, (r’+a%— (1+cog0) |(e?/\e?). ourselves only to the case of solutions to Maxwell equation
> 2 in the background ofunchargedstationary, axisymmetric

(5  black hole space time and it was given by Et). Now we

) _ _ need the solution when the stationary, axisymmetric black

Here, consider particularly the radial component of the elechole is slightly charged via charge accretion process de-
tric field (as observed by a local observer in this Carter tetradcribed above. Then according to the stateni@tin the

frame), discussion of Wald field given earlier, there can be at the
26 most one more perturbation of a stationary, axisymmetric
ar si ma .
flE_E - _ % 2 2 vacuum black hole that corresponds to adding a ch@rge
Ei=E1=F10=Bo —3 32 (r*-a*coss) the hole and it is nothing but to linearly superpose the solu-
tion (—Q/2m)F = (—Q/2m)d¢ to the solution given in Eq.
1) to get
X (1+cog6) |, Wtog
F= ! Bo| dy+ 2Jd Q d 7
which, along the symmetry axi®E0,7) of the Kerr hole, =5 Bo Ayt 1 dé|— 5 ds, ™
becomes
which, in terms of the gauge potental, amounts to
o B 2ma(r2—a?)
Er(a_ovﬂ')__BoT' 1 2J Q
Au=75Bo| hut 8] = 50 8u- (8

Note thatE;(#=0,7)<0 for B,>0 andE;(#=0,7)>0 for

Bo<<0 meaning that it is radiallinward/outward if the  Then the electrostatic-injection energy can be computed as
hole’s axis of rotation and the external magnetic field are

parallel/antiparallel Put differently, this implies that if the 86 =A% horizon— €AwE®| (9)
spin of the hole and the magnetic field garallel, then

positively chargegbarticles on the symmetry axis of the hole B O

will be pulled into the hole, whereas if the spin of the hole :e(i_ =~ .

and the magnetic field arentiparallel, negatively charged m 2m

particles on the symmetry axis of the hole will be pulled into

the hole. In this manner a rotating black hole will “selec- Thus one may conclude that a rotating hole in a uniform
tively” accrete charged particles until it builds up “equilib- magnetic field will accrete charge until the gauge potential
rium” net charge. Then the next natural question to askevolves to a value at whiche =0 yielding the equilibrium
would be, how the equilibrium net charge can be determinedlet charge af)Q=2B,J. This amount of charge is called

To answer this question, we resort to the “injection energy” “Wald charge.”

argument originally due to CartdB]. Recall first that the Note that we announced from the beginning that we shall
energy of a charged particle in a stationary space time witl§onsider the case when the charge accreted on the hole is
the time translational isometry generated by the Killing fieldsmall enough not to distort the background Kerr geometry.

gl‘v:((y/élt)ﬂ« in the presence of a Stationary e|ectromagnetid\|OW we prOVide the rationale that this is indeed what can
field is given by actually happen. To do so, we first assume that the typical

value of the charge on the hole is the equilibrium Wald
e=—pyE&t= —gaﬁpagﬁ chargeQ=2B,J just described. Then using the fact thiat

_ =ma=m?, the charge-to-mass ratio of a hole has an upper
with p#=mu#—eA* being the four-momentum of the bound
charged particle with mass and chargeinde, respectively.
Now if we lower the charged particle down the symmetry Q J 0
axis into the Kerr hole, the change in electrostatic energy of EZZBO(E) <2Bym=2 105
the particle will be

m

Mo

—5

8¢ = &final— Einitial = €A horizon— €ALL% ... (6)  Where in the last equality we have conver@&gdandm from
geometrized units to solar-mass units and G4wgs Thus
Now, if se<0— it will be energetically favorable for the for the two typical examples(i) the binary system in our
hole to accrete particles with this charge, whereaseif-0 galaxy with mass-5~10 mg in the surrounding magnetic
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field of strength~10'* G, Q/m~10 °<1, and(ii) the ac- employed in various anayses in the literature. ZAMO is a
tive galactic nuclei with mass-10°—1F mg, in the mag- fiducial observer following timelike geodesic orthogonal to
netic field of strength-10* G, Q/m~10 "<1. As we can Spacelike hypersurfaces. And this implies that its four-
see in these two cases, the charge-to-mass ratios of the rotaglocity is just the timelike ZAMO tetrad”=eg given be-

ing black hole in example§) and (i) are small enough not low in Eq. (12). The Carter tetrad, however, seems less
to disturb the geometry itself. Thus we can safely employ th&known than ZAMO despite its physical and technical advan-
solution-generating method suggested by Wald to construdages over ZAMO. Thus we provide some of the basics of
the solution to the Maxwell equations when some amounts ofarter tetrad in Appendix A. In the following, we just give
charges are around to which we now turn. the components of Maxwell fields projected on these two
tetrad frames without getting into the details of the nature of
the tetrad frames themselves. Upon projecting the Maxwell
field tensor components on a given tetrad frame, the physical
components of electric and magnetic fields can be read off as
. . i . _Ei=Fi0=FM,,(e{“eg) and Bi:é'iijJk/ZZ Eiij”’V(ejﬂe;(})/Z,

As discussed in the previous Sec. Il B, the stationary, itegpectively.

symmetric solution to the Maxwell equation in the back- 5 "computation of the ZAMO tetrad components of the
ground of a Kerr hole with charg®@ accreted in an originally Maxwell fields. From the dual to the ZAMO tetrag®
uniform magnetic field can be constructed as = (e0=E() ,e1=€(r) €2=€(1) ,€3=E())

i) r)» ) il

IIl. STATIONARY, AXISYMMETRIC MAXWELL FIELD
AROUND A “SLIGHTLY CHARGED” KERR HOLE

1 J Q A\Y2 2mra . s
P72 " Tam) e mam) e ©7\3a) (M TAT 00 TNt ey,
1 Q 112
_= el P A
5B dut | 15 J)df}. (10) elz<§> g=eld,, (12)

Again for the Kerr metric given in Boyer-Lindquist coordi-

. . e,=3Y29,=e%9,,
nates, the solution above can be written as 2 0 =2n0

E 1/2 1
1 2ma Q eg=(— .—(?¢=e‘3”(?¢
= _Bnsl— —(r2—2a2 = A/ siné
F=5Bo 52 (r’—a co§¢9)((l BOJ)+CO§6]
where A=(r?+a?)?—a’A sirf6, we can now read off the
><(dr/\dt)—4mra 2 g2 1_& ZAMO tetrad components df ,,,
32 BoJ

I:ZI.OZ F,uveé.LeS
2ma’sirt 9
32 Boma

X sin@ cosf(de/\dt) + | 2r sirf6+
T (ASA)2y2

2r23%sirt 0+ (r’—a’cos6)

X (r?—a?cos6)

Q
1—B—O‘J+co§0)}(dr/\d¢) y

1/2
1- B%‘]Jrcos’-ﬁ) { 2mra’sirf6— (%) A”

mra?

4
+{2(r2+a2)+ S siff—(r’+a?)

22 F20: Fwefz‘eg
Q 2 ; Bomra
X 1—ﬁ+co 0| |sinfcosd; (do/N\de)|. (11 _ 2(r?+a?)32+ 4mra?

0 (ASA)Y252
Obviously, in order to have some insight into the nature of c 20 20 2[4 &
this solution to the Maxwell equations, one may wish to x| Zsit—(r*+a%)| 1 BOJ+C0520)]
obtain physical components of electric field and magnetic
induction. And this can only be achieved by projecting the —Zi{rz—az 1- &)} sing cosé
Maxwell field tensor above onto an appropriate tetrad frame 3112 BoJ '
as mentioned earlier. To be a little more concrete, in Boyer-
Lindquist coordinates, one can think of two orthonormal e £ arer—o (13)
rads, first, the familiar zero-angular-momentum-observer 30~ #»=3~07 %

(ZAMO) tetrad frame 9] and next, rather unfamiliar Carter ,
tetrad framd8]. The ZAMO tetrad is well known and widely F12=F,.e7€;=0,
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F 137 Fﬂveffeg

A\ Y2sing
“Plal s

X[Zr(rz—az)coszﬁ—(r —m)(r?—a’cos0)

(r’+a®)rx+a?

X (1+cos ) — g—r?(rz—azcosza)H,
0

F 23~ F,uvegeg

_ 1 cosé
“Bow2 52

(r’+a?){ (r’—a®)(r’—a%cos6)

+2a%r(r—m)(1+cos0)+ ZaZrS—T] —a?AY sirte
0

b. Computation of the Carter tetrad components of th
Maxwell fields. From the dual to the Carter tetragl,
=(ep,e1,65,€3), given earlier in Eq(4),

arsirfd ma

Fio=F,.eie}=By —;(rz—azcosza)

3
Q
X l_B_o.J+C0526> s
aAl/Z

Fao=F ,.€5€0=By Tsin 6 cosd,

F30= Fﬂyegeg= 0, (14)

F12: F;Lvei’ll.te;: 0’

rA”Z .
Fis=F,.efes=Bg Tsm 0,

e cosd| , 2mra?
Fas=F,.e5e3=Bg S (re+ac)— S
Q
x| 1- ——+ .
1 B.J cos 6

Therefore, in the Carter tetrad frame,

€
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arsirfd ma
=Bg — —;(rz—azco&% l—B%JJrcosze)
1/2
x(e'A\e%+B, 5 sin g cosé(e?/\e®)
12 cosé

+BOTsin 6(et/\e®)+B, (r’+a?)

2mra? Q
— = 2 3

5 BoJ +C0520) (e2/\ed). (15)

As is pointed out in Appendix A, these Carter tetrad compo-
nents of the Maxwell field tensor take much simpler forms
than the ZAMO tetrad components given in Ed3) and
hence are easier to deal with.

IV. THE MAGNETIC FLUX ACROSS ONE-HALF
OF EVENT HORIZON

With the asymptotically uniform stationary, axisymmetric
magnetic field, which is aligned with the spin axis of a
“slightly charged” Kerr hole given above, we now would
like to compute the flux of the magnetic field across one-half
of the surface of the event horizon that occurs at points
where

A(ry)=r2+a?-2mr,=0

or ro=m+ym‘—a

(16)

The physical motivation that underlies this study is to have
some insight into the question of how much of the electro-
magnetic field can actually penetrate into the hole’'s
horizon—at least in idealized situations. We now begin by
considering two vectors lying on the horizon that, for in-
stance in the Boyer-Lindquist coordinates, are given by

dx;=(0,046,0), dx3=(0,0,0d¢). (17)
Then in terms of the second rank tensor constructed from
these two vectorg10],

do®P=_ (dx¢dxt — dxfdxg). (18)

N -

Now one can define the invariant-surface element of the ho-
rizon as

ds=(2do z0°%)", (19

:(9099¢¢)1/2|r+d9d¢

=(r2 +a®)sinAdod¢.

Next, since the tensato®? is associated with the invariant-
surface element of angnot necessarily clos¢dwo-surface,
the flux of electric field and magnetic field across any two-
surfaces can be given, respectively, by
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~ 1 s (i) In the absence of the accretion charge, =0, the
‘PEZJ Fopdo*’= J EGZBFyadU“ﬁ, magnetic flux above correctly reduces to that obtained long
ago by King, Lasota, and Kund8],

dg= f Fpdot. (20) 4
KLK 2 a
@B =|BO|7TI‘+(1——4). (26)
In particular, the flux of magnetic field across one-half of the M+

horizon of the Kerr hole is
/ (i) With the nonvanishing accretion charge having value
27 w2 H :
_ aB_ in the range &|Q|<2|By|J, the total magnetic flux through
Pe f,_uF“ﬁdU fo d(bfo doF gylr. - (21 the hole cameverbecome zero. And this property holds true
even when the hole is maximally rotating, i.@—~m,r

Then usingF ,, evaluated on the horizon —m in which case the total flux becomes
sin @ cosé Q
F =By—————(r2 +a?»?r2 -a? 1——” Q| 1Ql
ool 0(r2++a2co§6)2( Prar BoJ ®g=2|Bo| 72 TBold =2mr? vy =27(Q|, (27)
(22)
and the result of integration which, interestingly, is independent of, J, andB, and has
. dependence only on the hole’s cha@eActually, this is the
Zﬂd ’T’Zda singcost ™ 23 point of central importance we would like to make in the
0 ¢ 0 (r2 +a2co26)? - r2(r2+a2)’ 23 present work. The physical interpretation of this characteris-

tic can be briefly stated as follows. When the spin of the hole
we finally get and the asymptotically uniform magnetic field are parallel
(antiparalle], the hole selectively accretes positivegative

22 22 0 charges as we have discussed in the earlier section following
$g=Bgmr2| 1+ —||1-—|1- _> . (24 theinjection energy argument proposed by Carter and they,
re re BoJ in turn, generate magnetic fields additive to the existing ones.

Thus unlike the uncharged Kerr hole case, the magnetic flux
Note that thus far we assumed the case when the spin of thbBrough a slightly charged Kerr hole can never become zero.
hole and the magnetic field are parallgk., B,>0 for J  This effect manifests itself in a particularly interesting man-
>0) and hence the positively charged particl&>0) are  ner when the accreted charge reaches its maximum value, the
being accreted on the hole via Carter’s injection energy arWald charge.
gument discussed in Sec. I, i.e., in calculating the magnetic (iii) For the Wald charge valu¢Q|=2|B,|J,
flux we started with the expression for the solutién
=(Bo/2)[d¢p+ (23/m)d&]— (Q/2m)dé given earlier. If, in- a2\ 2
stead, we consider the other case when the hole’s rotation _ 2 2 _ 2
axis and the magnetic field are antiparalieé., B,<0 for ®B_|B°|Wr+( 1+ 2) = |Bol 4mmm®, 28)
J>0), the negatively charged particle®€0) would be
accreted on the hole and thus this time we should start with =~ )
the solutionF = (—Bo/2)[dy+ (23/m)d&]+ (Q/2m)d¢ that which is exactl_y the_ stgndard_ flux across a _Schwarzschlld
has overall sign jusoppositeto that in parallel/positive black hole. Thls point is partlcularly_l_nt_erestmg since the
chargecase. In other word®, andQ always have the same Wald charge, i.e., the amount of equmbrlu_m net charge ac-
sign. This indicates that if we started out with the creted on a Kerr hole restores the magnetic flux to the value

antiparallel/inegative chargease, we would end up with the Precisely the same as that of an uncharged, nonrotating
expression for the magnetic flux haviogposite overalsign Schwarzschild hole. This point also has been noticed in the
to that in Eq.(24) above. Therefore, the general expression’Ork by Dokuchaev4] and more recently by van Putten

for the magnitudeof the magnetic field should take the form [11l- Particularly in Dokuchaev's work, it is just this point
that led him to conclude that the magnetic flux through the

+

2 2 hole becomes independent of the hole’s angular momentum
_ 2 af\l,_atf  1Ql when the hole has the equilibrium Wald charge.
®g=|Bo|mrs| 1+ s 1-=|1 (25 > ) _ q g
re re |Bo|J (iv) It is also interesting to note that our result for the

magnetic flux through the slightly charged Kerr hole given in
where now®g is to be understood as denoting thlesolute  Eq. (24) above can indeed be derived as the leading approxi-
value of the flux. Indeed this expression for the magnetic fluxmation to the result obtained from the analy{gi$ based on
through the slightly charged Kerr hole is a new result thatthe exact Ernst-Wild solutiof5] to the coupled Einstein-
has never been realized in the literature and as such neebitaxwell equations, although it was not realized there in the
close analysis in more detail. work by Dokuchaev.
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V. THE MAGNETIC FLUX THROUGH A KERR HOLE
IN AN OBLIQUE CONFIGURATION CASE

PHYSICAL REVIEW D 63 064037

behavior of the Bicak and Janis solution at all. In Boyer-
Lindquist coordinates, the solution we are after can thus be

explicitly written down as

Thus far we have considered the case with symmetric
geometry in which the stationary, axisymmetric magnetic
field is precisely aligned with Kerr hole’s axis of rotation. It
would, however, be of some interest to explore more general
case when the asymptotically uniform, stationary magnetic
field happens to be “oblique,” i.e., aligned at some angle to
the hole’s axis of rotation. Then, of course, the natural ques-
tion to be addressed is to see how much of such fields actu-
ally can penetrate the horizon, and we now turn to this issue.

Indeed the case of uncharged Kerr hole has been studied
long ago by Bicak and Janis and hence in this section, we
would like to explore what happens when the Kerr hole is
again “slightly charged,” i.e.Q#0, along the same line of
analysis as employed in the previous section. We now start
with the solution given by Bicak and Janik0]. The electro-
magnetic field that is generated when an uncharged Kerr hole
is placed in an originally uniform magnetic field, the direc-
tion of which does not coincide with the hole’s axis of rota-

tion has been given by Bicak and Janis and will here be Fi=—

denoted byFB’ and AB’ for the Maxwell field strength and
the associated gauge potential, respectively. They are given
in Appendix B. And in their solution, it is assumed that
asymptotically, the field is decomposed into two compo-
nents,By andB; . By being in the direction of the axis(i.e.,

the hole’s rotation axjsandB; being chosen to lie, without
loss of generality, along the axis. Next, since the source-
free Maxwell equation is a linear differential equation, it
would admit any linear combination of particular solutions
as another solution. Once again, therefore, we invoke the
solution generating method due to Wald. In particular, in
order to construct the solution in the presence of some
charge, we recall that, according to the stateniBntin the
discussion of Wald field given earlier, there can be one more
perturbation of a stationary, axisymmetric vacuum black
hole that corresponds to adding a cha@ the hole and it

0=

A=AP+

Q [A—a?sirte
2m|

A =AB, (30)
A,=AB,

L9

2m

¢ )

asirfo(r?+ az—A)}

for the gauge potential and

ma 2.2 _Q
Bozz(r ac0§9)(1 OJ+CO§G)

mar
—B;——sin@cosd[{r®—2mr?+ra?(1+sirfe)
32A
+2ma’cos }cosy—air?—4amr+a?

X (1+sirf6)}siny],

2mar
_BO

|

ma ,
Blg(rzcos 20+ a’cos6)(asiny—r cosy),

sin @ cose[ r2—a?

is nothing but to linearly superpose the solution F = F¢t,
(—Q/2m)F,=(—Q/2m)d¢ to the existing solution. Evi-
dently, therefore,
Fro=Fro. (3D
_esy, 9 BJ, -Q .
F=FP omde or ASATH 56 9 6= Bozn2 [r22+ma2(r2—a200§0)

constitutes a legitimate solution of Maxwell equations repre-
senting the electromagnetic field around a slightly charged
Kerr hole with charge) that is asymptotically uniform but is
not aligned with the hole’s axis of rotation. In fact, this
seems to be the only way available to construct the solution
in the presence of some charge and it is worthy to note that
since the particular solution being added;- @/2m)F,
=(—Q/2m)d¢ represents an axisymmetric test electromag-
netic field thatvanishes asymptoticallythis new solution
given in Eqg.(28) above would not change the asymptotic
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in 6 coso ’
FM:BO% (r’+a?){ (r’—a®)(r’—a%cos6) ,
+2a2r(r—m)(1+c0520)+2a2rQ—m]
BoJ
—a?AY sirfg|+Byr sirf[ (r —m)cosy— asin ]
msir? 6 /
Bl? “%Bl

X[(r?+a?)(r’—a%cos6)—>a’cos 0]
X (r cosgy—asiny)

for the Maxwell field strength and hegehas been defined in
terms of the azimuthal angle coordinateas

FIG. 1. A generally located hemisphere on some part of the
In( r—r +) rotating hole’s horizon across which the magnetic flux of an asymp-

p=¢+ (32 totically uniform magnetic field is to be evaluated. Two angles
(a,B) completely specify the location of the hemisphere and the

This solution in the presence of the accretion ch&gm the hole rotates around theaxis. Asymptotically, the magnetic field is

Kerr hole reduces to the Bicak-Janis solution in the absenc@ecomposed into two component along thez axis, the hole’s

of the charge given in Appendix B fo=0 as it should. axis of rotaFion, a_ncB1 along thex axis that is perpendicular to the

Then in order to calculate the flux of this magnetic field nOle’s rotation axis.

strength through the horizon of a Kerr hole, we, as usual,

need the componerﬂ6¢ evaluated on the horizon that is rigid body in classical mechanics. As depicted in Fig. 1, we

set a coordinate system in which the hole’s axis of rotation

ro—r_ \r—r_)J)’

sin 6 cosé 2 o coincides with thez axis and the equatorial plane is repre-
Fogli=r,= om(& +a“) sented by-y plane. In addition, since we are considering the
+ general case when the asymptotically uniform, stationary
Q magnetic field is “oblique,” i.e., not aligned with the hole’s
X [ r’—a? 1- B3 +Byrsirfe rotation axis, we assume asymptotically and without any loss
0 of generality that the field can be decomposed into zhe
X{(r , —m)cosp—asing} componentB, and thex componentB;. Now, in order to
characterize the position of the generally located hemisphere,
msir’e 2, .2 we consider rotating thex(y,z) axes by an angl@ around
+ Blm{(” +a’) thez axis and then next rotating the resulting’(y’,z) axes
* by an anglex around they’ axis, to getk’,y’,z’) axes with
X(rﬁ—2a200§0)+a4sin2000§0} now thez' axis representing a kind of “principal axis” for
the generally located hemisphere. Then the series of coordi-
X (r cos¢—asing), (33 nate transformationsx(y,z)—(w’,y’,2)—(x’,y’,z') obvi-

ously involves two stages &Q(3) rotations and if we de-
note the spherical polar angle coordinates fqy(z) system
and x',y’,z") system by @,¢) and (¢',¢’), respectively,
) =¢p—o=¢. (34) they are related by equations

where we used

r+_r+
—I_

a
‘W+>:‘/’+r+_r'”<r+

Now we would like to compute the flux of magnetic field sin@’cos¢’ =sind cosa cog ¢— B) —cosd sina,

across a generally oriented one-half portion of Kerr hole’s

horizon, which shall henceforth be called, “generally located sing’sing’ =sindsin(¢— ),

hemisphere.” Basically, our goal is the same as before and it

is the evaluation of the magnetic flux across any two-surface ) ]

as given by Eq(19) with the invariant-surface element of a cos¢’ =sin@ sina cog ¢— )+ cosh cosa.

Kerr hole’s horizordo®? given in Eqs.(17) and(18). How- (35
ever, since we now have to deal with the invariant-magnetic

flux across thegenerally located hemispherave need a In the final “principal axes” coordinate system, the integra-
more careful following analysis that is similar to the one tion over the polar angle coordina# should be done from
encountered when determining principal axis of spinning0 to #/2. Thus we need to determine the value of the original
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polar angle# that corresponds t@’ = #/2. This can easily originally by Bicak and Janigl0]. Thus our task here simply
be achieved by plugging’ = 7/2 in the last equation above reduces to the calculation df(B;=0), namely,
that yields

Q

1—B—OJ)]|O (40)

®(B;=0)=By(r2 +a%?{r2 —a’

0=®(¢>;a,,8)zg+tan‘1[tana cosd—p)]. (36)

with
Thus the integration over the generally located hemisphere in
the new angle coordinates<Qp’<2,0<6’'</2 can be o 0 sin cosé
translated into that in the original angle coordinates as |OEJ d¢f dg———. (42)

0 (r2 +a%cog6)?
0=s¢p<2m, 0<60<0(¢;a,B), (37)

Note, however, this contribution to the total flux across the

and hence finally the magnetic flux across a generally origenerally located hemisphere is invariant under the rotation

ented one-half portion of Kerr hole’s horizon reads about the hole’s spin axisvhich is chosen to be theaxis).
. Thus in order to go to the principal axis for the generally
m o [O0eR) located hemisph ly needs to perf ingle st
q)B:j dd’f dOF gyl -y . (38) ocated hemisphere, one only needs to perform a single step
0 0 * of SO(3) rotation &,y,z)—(x’',y’,z’) that yields the rela-

tions between polar angles
Therefore, the magnetic flux across the “generally located
hemisphere” on slightly charged Kerr hole’s horizon is sin#’ cos¢’ =sin § cosa cos¢—cosh sina,
given by
sin@'sing’ =sinésin ¢, (42

2m 0(d;a,B)
@ [ Tag [ aorF 8- 0. .
0 0 cos@’ =sinf sina cos¢+ cosé cosa.

+F"¢(B°:O)|r:’+] This, in turn, implies that the integration over the generally

located hemisphere actually amounts to the ranges

=®(B,;=0)+d(By=0), (39
, , Os¢=2m, 0=0=0(da) (43
where as given earlier
. with
Fu(B1—0)| B sin 6 cos# (12 +a2)?
o P1= D) ZBo 5 5 5 e Ta u
(rf +a’cog) ®(¢;a)55+tan‘1(tana cOSh). (44)
2 2 Q )
xXqre—as|1—s—|, .
BoJ Then the result of actual computation reads
Fos(Bo=0)|, =B Sirt o lo= ! Frd¢> !
0BT I TR 12 1 g2c020)2 P art(ii+ad))o T (1+pltarfa coge)
X[r,(r2 +a%cog6)?{(r,—m) _
- 2 -172
Xcos¢—asin¢}+m{(r2++a2) = ri(r1+a2)(l+P+tar?a) (45
(12 — 232 1 alsi
(r —2a%cog ) +a’sirf 6 cos 6} and hence

X (r,cosp—asing)].

2 a2

Just as the case we considered in the preceding section ‘D(BFO):BOW&( 1+ —2) [ 1-—{1- %)]
when the asymptotically uniform magnetic field is aligned s s 0
with Kerr hole’s rotation axis, the effect of adding to the X (1+ p2tarfa) Y2 (46)
Kerr hole some charge small enough not to disturb its geom-
etry or equivalently adding a particular solution representeql,vherepiz(lJra2/r2+). Finally, putting this result of ours,
by thi Wald fleldl_:=(—Q/2_m)_d§ chan_ges the vaI_ue of ®(B,=0) together with the contribution coming from the
CD_(Bl_O) above via the shift 'rF"‘f’(Bl__ON_H as given. B, component of the asymptotically uniform magnetic field
SinceF ,(Bo=0)|;, and hence its contribution to the total ¢ (B,=0), we arrive at the total magnetic flux across the
flux ®(By=0) remains unchanged upon adding the Waldgenerally located hemisphere on slightly charged Kerr hole’s
field, the actual value ofP(By=0) is precisely as given horizon

064037-9
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2 2
a a Q)
1+—={1—-—|1- =
){ B BoJ]

X (1+ p>tarfa) = Y2+ 2By [r {(r,—m)

:Bo’ﬂ'ri(

X cosB—asinB},+m(r . cosB—asing)
X(2p411—11—a%,)]

where

aa
l,= Etana(1+tanza)’1’2,

—-1/2
I :

pitana(1+ p?tarfa)

NE

(48)

l,=

5 {(1+ p?tarfa)??
a‘tana

—(1+tarfa)Y3.
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The fact that the total flux depends only on tBe compo-
nent is also expected since with this orientation of the hemi-
sphere, theBy component contribution to the total flux is
obviously zero. Next, the angl@ determines, asymptoti-
cally, the angle between the principal axis for the hemisphere
and the axisx which is along theB; component of the field.

As such, the total flux gets maximum f@=0 when®dg
=B;#r2 and gets minimum forB=pB, with tang,
=[r2/a(r.+m)], when®gz=0. For extreme Kerr holea
=m=r, and hence taB,=1/2 or By=27°. Moreover,
since we may assume- w/2<pB<m/2, c0osB, is always
positive and hencég=0 occurs only ifasin8,>0. Thus if
a>0, thenBy,>0 and this confirms our intuition that the
field lines are bent near the hole in the same direction in
which the hole rotates since the rotating hole drags field lines
along.

(iv) Now in this case when the rotating hole takes small
amount of accretion charge, one might wonder how come
only the part of the magnetic flusb(B;=0) coming from
the By component of the field gets affected with the other
part ®(By=0) coming from theB; component of the field
remaining unchanged. In fact, it has been anticipated from
the way we constructed the solution to the Maxwell equa-
tions in the presence of some charge. Notice that we em-
ployed the solution generating scheme by Wald in which the
particular solution - Q/2m)F.=(—Q/2m)d¢ has been su-

Finally, some discussions on interesting observations are igerposed to another particular solution, i.e., the Bicak-Janis

order.
(i) In the absence of the accretion charge, &= 0, the

solutionFBY. And this solutionF = (—Q/2m)d¢ represents
axisymmetric electromagnetic test field aligned precisely

total magnetic flux above correctly reduces to that obtainegyith the hole’s rotation axis. Besides, this particular solution

by Bicak and Janis as it should.

(ii) For =0, namely, over the hemisphere that is sym-

vanishes asymptotically without affecting the asymptotic be-
havior of the Bicak-Janis solution. Therefore, only tBg

metrically located around the hole’s rotation axis, we have component of the Bicak-Janis solution has been modified

1
+_
re

2
ré

dg=|By|mr? 1-

Q| )
|BolJ

i.e., one recovers the result in E5) for the case where the
asymptotically uniform magnetic field is aligned with the

hole’s spin axis we studied earlier. Obviously this was ex

pected since with this orientation of the hemisphere, the co
tribution to the total flux coming from th&; component
(which is perpendicular to the hole’s spin axis zero. Here,

the points worthy to note are essentially the same as befor

First, with the nonvanishing accretion chai@e: 0, the total
magnetic flux through the hole carevergo to zero. In par-
ticular, when the hole is maximally rotating, the total flux
becomesbg=2|Q| that is independent af, J, andB, and

charge takes the particular vall®|=2|B|J, the total flux

gets maximized and it is precisely the standard flux across

Schwarzschild black holepg=|Bo|47m? as pointed out
earlier.
(i) For a=m/2, i.e., when the principal axis for the

n_

locally and thus theb(B,=0) part of the magnetic flux gets
affected as a consequence.

(v) Lastly, we point out that in this generally oblique ge-
ometry case, the charge on the h@eéas been regarded as
being arbitrary. Indeed, the application of Carter’s injection
energy argument to the determination of equilibrium charge
Q=2B,J we discussed earlier was quite straightforward for

the case when the field and the hole’s spin are exactly
aligned. Of course, it can be attributed to the simple structure
of the solution to the Maxwell equations given in terms of
the exterior derivatives of Killing fields as can be seen in

%qs.(?) and (8). This kind of advantage, however, does not

seem to be available in the present oblique geometry case as
the solution given in Eq(30) or (31) no longer possesses
such a privileged structure. As a result, the determination of

the equilibrium charge value is unlikely to be successful here
depends only on the hole’s charge. Lastly, when the accreteg d g y

though such equilibrium charge is still expected to exist in
grinciple.

VI. CONCLUDING REMARKS

In the present work, based on the solution-generating

hemisphere is perpendicular to the hole’s rotation axis, Wenethod given by Wald, it has been demonstrated in a trans-

have

dg=B,7[r2cosp—(r,+m)asing]. (49)

parent manner that in a more realistic situation when there
are charges arour@ut small enough not to disturb the back-

ground vacuum geometrythe magnetic flux penetrating the
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horizon depends not only on the angular momentum but on APPENDIX A: THE CARTER TETRAD
the amount of charge accreted on the hole as well and can
never vanish no matter how fast the hole spins. The point
worthy of note can be summarized as follows. First we star em in which the metric is to be given and next, in order to

with the case when the asymptotically uniform magnetiCopyain physical components of a tengsuch as the electric
field and the hole’s spin are precisely aligned with eachynq magnetic field valugsone has to select a tetrad frame
other. Then by the argument given by Wald concerning th&jn 5 given coordinate systénto which the tensor compo-
charge accretion process, the hole gradually accretes thfants are to be projected. For the Kerr background space
charge until it reaches the equilibrium vali®|=2|Bo|J.  time, here we choose the Boyer-Lindquist coordinates that
Thus with the nonvanishing accretion charge having value itan be viewed as the generalization of Schwarzschild coor-
the range 6&|Q|<2|By|J, the total magnetic flux through dinates to the stationary, axisymmetric case. Turning to the
the hole camevergo to zero. In particular, when the hole is choice of tetrad frame, there are largely two types of tetrad
maximally rotating, the total flux becom@s;=27|Q| that  frames: orthonormal tetrad and null tetrad. As is well known,
is independent ofm, J, and B, and depends only on the the orthonormal tetrad is a set of four mutually orthogonal
hole’s charge. Lastly, when the accreted charge reaches itgit vectors at each point in a given space time that give the
maximum value Q| = 2|By|J, the total flux also gets maxi- directions of the four axes of locally Minkowskian coordi-
mized and it is precisely the standard flux across a Schwarzgate system

child black hole, ®gz=|By|4mm? as pointed out earlier.

Generally speaking, in order to represent a given back-
round geometry, one needs to first choose a coordinate sys-

Next, the physical interpretation of this characteristic can be ds?=g, dx“dx"= nape’e®

briefly stated as follows. When the spin of the hole and the

asymtotically uniform magnetic field are paralleintiparal- = — (€924 (e)2+ (e?)2+ (e%)2

lel), the hole selectively accretes positiugegative charge (A1)

as we have discussed in the earlier section following the

injection energy arg””?e”F proposed_ by Carter, 6.‘”‘?' they, iU\Ihere e*=eldx*. Every physical observer with four-
turn, gengrate magnetic fields additive to the existing .one%elocity us hgs associated with him an orthonormal frame in
Thus, unlike the uncharged Kerr hole case, the magnetic ﬂuffvhich the basis vectors are tieeciprocal of orthonormal

through a slightly charged Kerr hole can never go to zero A ; s
> ) ) . tetrade,={ey=u,e;,e,,e3}. And corresponding to this is a
We have mainly considered the case with symmetric geom- a={€ 162,83} P 9

etry in which the stationary, axisymmetric magnetic field is"U!l tetradZ,={l,n,m,m; defined by
precisely aligned with Kerr hole’s axis of rotation. It would,

however, be of some interest to explore more general case 1 1

when the asymptotically uniform, stationary magnetic field €= E(l +n), el:ﬁ(l —n), (A2)
happens to be “oblique,” i.e., aligned at some angle to the

hole’s axis of rotation. Then, of course, the natural question

to be addressed is to see how much of such fields actually 1 — 1 —

(m+m),  e=—=(m—-m)

can penetrate the horizon. Thus we also explored what would €= E
happen when the Kerr hole is again “slightly charged”
along the same line of analysis as the one employed in thgatisfying the orthogonality relation
previous symmetric geometry case. In this oblique geometry
case, however, although we could write down the solution to —
the Maxwell equations and evaluate the magnetic flux —I¥n,=1=m“m, (A3)
through the hole in a quite straightforward manner using
basically the solution generating scheme by Wald, the deteith all other contractions being zero and
mination of equilibrium charge value was not attempted due
to technical barriers. This issue might be worth persuing and gh’= —1#n"—n# "+ m*m’+ mém”. (A4)
we hope we can come back to it in a future work. It is our
belief that the result of this work, obtained in a more realisticconyersely, given a nonsingular null tetrad, there is a corre-
situation when some amount of charges are around, eventdnonding physical observer. The tetrad vectors then can be
ally lends support to the operational nature of the Blandfordyseq to obtain, from tensors in arbitrary coordinate system,
Znajek mechanism and puts it on a firmer ground at léast Oghejr physicali.e., finite and nonzejccomponents measured
the theoretical side. by an observer in this locally flat tetrad frame. And the rules
for calculating the physical components of a tensor, 33y,
in the orthonormal frame and in the null frame are given,

\2i
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ekel =% andefel =% . As just stated, all that is required (A4) remain invariant under the six-parameter group of ho-
of the ““correct” boundary conditions for electric and mag- mogeneous Lorentz transformations at each point of space
netic fields at the horizon is that the physical field’s compo-time. And this Lorentz group can be decomposed into three
nents in the neighborhood of an event horizon should havébelian subgroups:

“nonspecial” values. Or put another way, a physically well-
behaved observer at the horizon should see the fields as hav-

: VE i [—1, m—m-+al, n—n+am+am-+aal,
ing finite and nonzero values. One such choice of well-
behaved tetrad frame has been suggested long ago by Carter _ _
[8]. The construction of Carter’s orthonormal tetrad starts (II) n—n, m—m+bn, |—I+bm+bm+bbn,
from Kinnersley’s null tetrad12]. In Boyer-Lindquist coor- (A8)
dinatesx”=(t,r, 6, ), its contravariant and covariant com- ,
ponents are given by () 1—=Al, n=>A"'n, m—em,
i (r’+a’ 0 2 wherea andb are complex numbers antl and 6 are real.
AT T A) Each of these group transformations is called a “null rota-
tion” [14] and here we particularly consider the null rotation
(r’+a? -—-A a (Il1). Under this null rotatior(ll ), the corresponding ortho-
“\ T2y 2 0, 23| normal tetrade, is boosted in thee;=¢; direction with

(A6)  three-velocity (\?>—1)/(A%+1) and spatially rotated about
e;=¢; through the angle. Indeed this action is precisely
1 what we need. In order to get a null tetrad well behaved at
= the horizon, we need to boost it by an amount that becomes
V2(r +ia coso) suitably infinite on the horizon. Thus we perform the null
i ) rotation (Ill) on the Kinnersley's null tetrad withA

m*

x|iasing, 0, 1, =(A/23)Y2 and €'’=3?/(r—ia cos6) to obtain the fol-

sind lowing nonsingular null tetrad on the horizon:

and

IM=gWI”=(1, —E 0, asinze),

|,#:((r2+az) (A)”Z, 0 2 )
A

(ZEA)ZL/Z' i (ZEA)]'/Z

257 2’

B V_( A o 3 ) A7 o[ (rP+@%) (A )1’2 0 a
n#—gwn—— = , TSI 0, ( ) n —(ZE—A)UZ, —i y y (ZE—A)UZ’
(A9)
1
m,= m=————————— -
w= G J2(r +ia cosé) -

1
X[iasing, 0, -3, —i(r’+a?)sing]. 2zt

i
iasing, 0, 1, —)
siné@

where, as before =r?+a’cos’d and A=r?+a’-2mr  Then the associated orthonormal tetrad is

with m anda being the ADM mass and the angular momen-

tum per unit mass of the hole respectively. This Kinnersley’s

null tetrad has been chosen so titatandn* lie along the el=

two principal repeated null directions of the Weyl tensor.

Kinnersley’s null tetrad has proved very useful for separating

and solving the equations governing scalar, electromagnetic,

and gravitational perturbations of Kerr geomefttyg]. How- eff:(

ever, the associated orthonormal tetrad suffers from two dis-

advantages. It is singular on the horizon and an observer at

rest in it has nonzero radial velocity. This last point is caused ( 1 )
0

(r’+a?) a )

(EA)l/Z’ (EA)UZ

A 1/2
0, (f) .0 o), (A10)

by the asymmetric normalization &f and n#, and means ey=
that the corresponding orthonormal tetrad is unnatural in that

it frequently hides interesting features of the fields. For these

reasons and others, one obtains another null tetrad and the

associated orthonormal tetré@arter tetraglby “null rotat- es=
ing” the Kinnersley’s null tetrad. Thus at this point, it seems

relevant to recall some of the basics of null rotation. Notice

that the orthogonality relations for null tetrad given in Eq. and its dual is given by Carter as

1 0, 0, Y
3,12 3 Y2%sing
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A 1/2 A 1/2 .

= (f) , 0, O, _(E asirté|,
2 1/2

1_
el=|o, (X) .0, o}, (A11)
e,=(0, 0, 32 0
s [—asing (r’+a?
e = —~n o % 0 n sing|.

Now, in order to have some insight into the nature of this
Carter’s orthonormal tetrad in Boyer-Lindquist coordinates,
we first rewrite the metric of Kerr geometry as implied by
this Carter’'s dual tetrad:

ds?= page”e® (A12)

A 2
=— g[dt—asirlzedqb]2+ Kdr2+2d02

+ SITnZB[(rZwLaZ)d(ﬁ—adt]z.

Then one can immediately realize that an observer at rest i
this Carter frame travels around the hole at=Constg
=const) with the angular velocit§)®=a/(r?+ a?) which is
independent of). Certainly, this is in contrast to what hap-
pens in ZAMO (or LNRF) tetrad frame in which case a
ZAMO observer travels around the hole with the angular
velocity, Q=a[(r2+a%)—A]/[(r?+a??—AaZsir’d] that
has dependence on the polar angleindeed, the physical

PHYSICAL REVIEW D 63 064037

Dvorak[15] and it contains parameteBy, BY, andB de-
noting the components of the oblique magnetic field in as-
ymptotically Minkowskian coordinatex=r sinf#cos¢, y

=r sin#sin¢, z=r cosh. Without any loss of generality,
however, one can p&}=0 and denote bB;=B,, the field
component perpendicular to the rotation axis and Bfy
=B,, the field component aligned along the rotation axis.
Now given the solutionsbg, ¢1,¢,, we would like to have
the expression in terms of Maxwell field strendih),, say,

in Boyer-Lindquist coordinates. This can be achieved first by
inverting the above expression

Fw=2(p1+ N[l +2(hy— d1)Mp,m, + 25l M,

+2¢,l (M, + 2 oM N1+ 2 oM N, (B2)

and evaluating this with the standard Kinnersley’s null tetrad
(i.e., the covariant componeitgiven earlier in Appendix A.
The result is

Fre= —Bog(rz—azcosza)(brcos?e)

mar _ .
—B;——sinfcosf[{r3—2mr?+ra?(1+sir?6)

n 32A

+2ma’cog d}cosy—afr’—4mr+a?

X (1+sirf@)}siny],

2mar
22

—Byg sin @ cos(r?—a?)

significance of the Carter tetrad frame is that observers at rest

in it see principal null congruence photons moving with
purely radial velocities. This leads one to suppose that Max
well equations and their solutions should take relatively

simple forms in this Carter tetrad frame as first pointed out

by Znajek[16] and it is indeed the cag&7].

APPENDIX B: THE BICAK-JANIS SOLUTION

Here, we provide the electromagnetic field that is gener-

ated when a Kerr black hole is placed in an originally uni-
form magnetic field with its direction not coinciding with the

rotation axis of the hole. This solution has been given by

Bicak and Jani§l10]. As is well known, in Newman-Penrose
formalism [14], the three independent complex null tetrad

components of the Maxwell field strength tensor are given by

¢O=FWI"mV,
1 _
P1= EFMV(I"n”Jr m“mY),
(B1)
$,=F,,m“n".

The explicit form of¢q, ¢4, and ¢, as a solution of Max-

ma ,
i —Blg(rzcos 20+ a’cos6)(asiny—r cosy),
ma | .
=— Blysm 0 cosé(r sinyg+a cosy),
(B3)
1
= —BlK[A(r siny+a cosy)

+af(mr—a?sir’g)cosy
—a(r sirf8+mcogd)siny}],

sin @ cosé

Fr(/,:BOI’ SII’120—81 A
X[(rA—ma?)cosy—a(A+mr)sinyg]

—asirfoF,,

F 4= BoA sin @ cosd+ B[ (r2sin? 9+ mr cos 29)cosys

(r’+a?)

—a(r sifd+mcosf)siny]|— a

Fo

well equations is given in the earlier work of Bicak and for the Maxwell field strength tensor and

064037-13
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a Sirf g
At=80§[—2+mr(1+ cos6)] A¢,=BOT[E(rLFa2)—2a2mr(1+00520)]
ma ) sin @ cos6
+ Blysm 6 cosé(r cosy—asiny), - BlT[EA cosy+m(r?+a?)(r cosy
—asiny)]
A;=—B(r—m)siné cosé siny, (B4)
for the corresponding gauge potential. To summarize, this is
A,=—B,[a(r sir?6+mcog0)cosy the solution in the absence of the charge on the hole, which
is to be compared with the solution given in the text in the
+ (r?cos #—mr cos 29+ a’cos 29)sin ], presence of the accretion charge on the Kerr black Qole
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