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Nonvanishing magnetic flux through the slightly charged Kerr black hole
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In association with the Blandford-Znajek mechanism for rotational energy extraction from Kerr black holes,
it is of some interest to explore how much magnetic flux can actually penetrate the horizon at least in idealized
situations. For the completely uncharged Kerr hole case, it has been known for some time that the magnetic
flux gets entirely expelled when the hole is maximally rotating. In the mean time, it is also known that when
the rotating hole is immersed in an originally uniform magnetic field surrounded by an ionized interstellar
medium~plasma!, which is a more realistic situation, the hole accretes a certain amount of electric charge. In
the present work, it is demonstrated that, as a result of this accretion charge small enough not to disturb the
geometry, the magnetic flux through this slightly charged Kerr hole depends not only on the hole’s angular
momentum but on the hole’s charge as well, such that it never vanishes for any value of the hole’s angular
momentum.
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I. INTRODUCTION

Among various models attempting to provide a consist
account for the spectrum of quasars, radio galaxies or
gamma ray bursters in which strong magnetic field is
lieved to be anchored in the central black hole, perhaps
mechanism proposed by Blandford and Znajek@1# might be
the most attractive and natural one to theoretical physic
Despite the skepticism generally held by astronomers and
majority of astrophysicists, the Blandford-Znajek mechani
for the extraction of rotational energy from rotating bla
holes has remained an issue of great interest in the theore
astrophysics community due to its concreteness in the for
lation and plausibility in operational nature. Being so, the
have been continuous research activities to ask and an
questions relevant to the environment set by the Blandfo
Znajek mechanism such as the stationary, axisymme
magnetosphere in which the rotating hole is surrounded b
strong magnetic field and plasma. Among such questio
one of the most interesting thought experiments that can
explored in an analytic manner at least in idealized situati
is the issue of how much of the magnetic field can actua
penetrate the rotating hole’s horizon. Or more precise
through one-half of the surface of the horizon as the to
flux across the whole horizon should be zero. The right
swer to this question can indeed be crucial in order for
Blandford-Znajek mechanism and its generalized versi
@2# to work at all as they all rely on the picture in whic
magnetic fields~particularly, their poloidal components! pen-
etrating the hole’s horizon and the surrounding accret
disk, transmit the rotational energy of the hole to dista
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relativistic particles and fields. Interestingly but rather to o
dismay, it has been found@3,10# that this magnetic flux in-
tersecting the horizon decreases as the angular momentu
the hole increases and reaches zero when the hole is m
mally rotating. Considering that larger amount of rotation
energy can be extracted from more rapidly rotating bla
holes, this result, even if we take into account the idealiz
setup employed, is quite adverse to the operational aspe
the Blandford-Znajek mechanism. Because of this nega
implication of the result, there have also been some ot
works employing more careful treatments to turn the conc
sion around and hence save the mechanism. The work
formed by Dokuchaev@4# employing the Ernst-Wild solution
@5# to the coupled Einstein-Maxwell equations belongs
this category. Starting from the exact Ernst-Wild solution,
showed that the magnetic flux through the hole becomes
dependent of the hole’s angular momentum when the h
builds up equilibrium~Wald! charge. In the present work, w
choose to deal with the issue more directly and demonst
in a transparent manner that in a more realistic situat
when there are charges around~but small enough not to dis
turb the background vacuum geometry!, the magnetic flux
penetrating the horizon depends not only on the angular
mentum but on the amount of charge accreted on the hol
well and can never vanish no matter how fast the hole sp
In order to find the electromagnetic field around a rotat
black hole and hence eventually the magnetic flux throu
one-half of the horizon, we look for the solution to th
source-free Maxwell equations in the background of the s
tionary, axisymmetric vacuum spacetime, the Kerr geome
And perhaps the most concise and elegant way to obtain
solution which occurs when a stationary, axisymmetric bla
hole is placed in an asymptotically uniform magnetic fie
would be the simple algorithm suggested long ago by W
@6# which is based upon the realization@7# that the Killing
vectors owned by a given vacuum space time generate s
tions of source-free Maxwell equations in the background
that space time. Here, although ‘‘vacuum’’ situation rep
©2001 The American Physical Society37-1
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sents the case when both the Einstein and Maxwell equat
have no source terms, the solution-generating method g
by Wald actually allows us to construct the solution for t
electromagnetic test field that occurs when the hole is
mersed in an originally uniform magnetic field surround
by plasma~i.e., ionized particles! and hence eventually get
slightly charged via accretion. We already announced
we shall consider the case when the charge accreted on
hole is small enough not to distort the background Kerr
ometry. Certainly, it needs to be justified that this is inde
what can actually happen. This will be done at the end
Sec. II. Since we shall basically employ this algorithm p
posed by Wald, the present work can be thought of as ha
its basis on the ‘‘first’’ approximation of the Einstein
Maxwell system in which only the Maxwell equation is b
ing solved in the background of Kerr space time assum
that neither the field nor the amount of charge is stro
enough to distort the background geometry. In this sen
any attempt to deal with the problem by directly solving t
coupled Einstein-Maxwell equations, such as the work
Dokuchaev employing the Ernst-Wild solution to th
coupled system, can be regarded as being more fundam
though less practical in many respects. Later, we shall no
that our result for the expression for the magnetic fl
through the hole can indeed be deduced as a leading app
mation to that appeared in the work by Dokuchaev althou
it has not been realized there.

II. SOLUTION GENERATING METHOD BY WALD

A. Wald field

From the general properties of Killing fields@7#—a Kill-
ing vector in a vacuum space time generates a solution
Maxwell’s equations in the background of that vacuum sp
time—long ago, Wald@6# constructed a stationary, axisym
metric solution of Maxwell’s equations in Kerr black ho
space time. To be a little more concrete, Wald’s construc
is based on the following two statements.

~A! The axial Killing vectorcm5(]/]f)m generates a
stationary, axisymmetric test electromagnetic field which
ymptotically approaches a uniform magnetic field, has
magnetic monopole moment and has charge54J,Fc5dc,
whered denotes the exterior derivative andJ is the angular
momentum of a Kerr black hole;

~B! the time translational Killing vectorjm5(]/]t)m gen-
erates a stationary, axisymmetric test electromagnetic fi
which vanishes asymptotically, has no magnetic monop
moment and has charge522m,Fj5dj , wherem is the
mass of the Kerr hole.

Equipped with this preparation, we are now interested
obtaining the solution for the electromagnetic test fieldF that
occurs when a stationary, axisymmetric black hole~i.e., Kerr
hole! is placed in an originally uniform magnetic field o
strengthB0 aligned along the symmetry axis of the bla
hole. And for now we consider the case when the elec
charge is absent. Obviously, then the solution can be rea
written down by referring to the statements~A! and ~B!
above as follows:
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F5
1

2
B0FFc2S 4J

22mDFjG5
1

2
B0Fdc1

2J

m
djG . ~1!

Then usingF5 1
2 Fmndxm`dxn,c5cmdxm,j5jndxn, with

jm5gmnjn5gmnd t
n5gmt , ~2!

cm5gmncn5gmndf
n 5gmf

and for the Kerr metric given in Boyer-Lindquist coordinat
@6,14# @or see Eq.~A12! in Appendix A#, the solution above
can be written in a concrete form as

F5
1

2
B0F2

2ma

S2
~r 22a2cos2u!~11cos2u!~dr`dt!

2
4mra

S2
~r 22a2!sinu cosu~du`dt!

1H 2r sin2u1
2ma2sin2u

S2
~r 22a2cos2u!~11cos2u!J

3~dr`df!1H 2~r 21a2!1
4mra2

S2
@S sin2u2~r 21a2!

3~11cos2u!#sinu cosuJ ~du`df!G . ~3!

B. Wald charge

We now turn to the issue ofcharge accretiononto the
Kerr black hole immersed in a magnetic field surrounded
an ionized interstellar medium~‘‘plasma’’!. We shall essen-
tially follow the argument given in@6# and to do so, we first
need to know the physical components of electric and m
netic fields. This can be achieved by projecting the Maxw
field tensor given above in Eq.~3! onto a tetrad frame. An
appropriate tetrad frame here is that suggested by Ca
@6,8# whose physical properties are discussed in detai
Appendix A. Now using the~dual of! Carter’s orthonormal
tetradeA5$e0 ,e1 ,e2 ,e3% @8#,

e05
~r 21a2!

~SD!1/2

]

]t
1

a

~SD!1/2

]

]f
5e0

t ] t1e0
f]f ,

e15S D

S D 1/2 ]

]r
5e1

r ] r , ~4!

e25
1

S1/2

]

]u
5e2

u]u ,

e35
a sinu

S1/2

]

]t
1

1

S1/2sinu

]

]f
5e3

t ] t1e3
f]f ,

whereS5r 21a2cos2u and D5r 21a222mr with a5J/m
being the angular momentum per unit mass and the Ca
tetrad components of the Maxwell field strength can be co
puted as
7-2
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F5B0Far sin2u

S
2

ma

S2
~r 22a2cos2u!~11cos2u!G ~e1`e0!

1B0

aD1/2

S
sinu cosu~e2`e0!1B0

rD1/2

S
sinu~e1`e3!

1B0

cosu

S F ~r 21a2!2
2mra2

S
~11cos2u!G~e2`e3!.

~5!

Here, consider particularly the radial component of the el
tric field ~as observed by a local observer in this Carter tet
frame!,

Er̂5E15F105B0Far sin2u

S
2

ma

S2
~r 22a2cos2u!

3~11cos2u!G ,

which, along the symmetry axis (u50,p) of the Kerr hole,
becomes

Er̂~u50,p!52B0

2ma~r 22a2!

S2
.

Note thatEr̂(u50,p),0 for B0.0 andEr̂(u50,p).0 for
B0,0 meaning that it is radiallyinward/outward if the
hole’s axis of rotation and the external magnetic field
parallel/antiparallel. Put differently, this implies that if the
spin of the hole and the magnetic field areparallel, then
positively chargedparticles on the symmetry axis of the ho
will be pulled into the hole, whereas if the spin of the ho
and the magnetic field areantiparallel, negatively charged
particles on the symmetry axis of the hole will be pulled in
the hole. In this manner a rotating black hole will ‘‘sele
tively’’ accrete charged particles until it builds up ‘‘equilib
rium’’ net charge. Then the next natural question to a
would be, how the equilibrium net charge can be determin
To answer this question, we resort to the ‘‘injection energ
argument originally due to Carter@8#. Recall first that the
energy of a charged particle in a stationary space time w
the time translational isometry generated by the Killing fie
jm5(]/]t)m in the presence of a stationary electromagne
field is given by

«52paja52gabpajb

with pm5m̃um2eAm being the four-momentum of th
charged particle with mass and chargem̃ ande, respectively.
Now if we lower the charged particle down the symme
axis into the Kerr hole, the change in electrostatic energy
the particle will be

d«5« f inal2« init ial 5eAajauhorizon2eAajau` . ~6!

Now, if d«,0→ it will be energetically favorable for the
hole to accrete particles with this charge, whereas ifd«.0
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→ the black hole will accrete particles with opposite charg
In either case, the Kerr hole will selectively accrete charg
until Am is changed sufficiently that the electrostatic ‘‘inje
tion energy’’ d« is reduced to zero. We are then ready
determine, by this injection-energy argument due to Car
what the equilibrium net charge accreted onto the hole wo
be. In the discussion of Wald field given above, we restric
ourselves only to the case of solutions to Maxwell equat
in the background ofunchargedstationary, axisymmetric
black hole space time and it was given by Eq.~1!. Now we
need the solution when the stationary, axisymmetric bla
hole is slightly charged via charge accretion process
scribed above. Then according to the statement~B! in the
discussion of Wald field given earlier, there can be at
most one more perturbation of a stationary, axisymme
vacuum black hole that corresponds to adding a chargeQ to
the hole and it is nothing but to linearly superpose the so
tion (2Q/2m)Fj5(2Q/2m)dj to the solution given in Eq.
~1! to get

F5
1

2
B0Fdc1

2J

m
djG2

Q

2m
dj, ~7!

which, in terms of the gauge potental, amounts to

Am5
1

2
B0S cm1

2J

m
jmD2

Q

2m
jm . ~8!

Then the electrostatic-injection energy can be computed

d«5eAajauhorizon2eAajau` ~9!

5eS B0J

m
2

Q

2mD .

Thus one may conclude that a rotating hole in a unifo
magnetic field will accrete charge until the gauge poten
evolves to a value at whichd«50 yielding the equilibrium
net charge asQ52B0J. This amount of charge is calle
‘‘Wald charge.’’

Note that we announced from the beginning that we sh
consider the case when the charge accreted on the ho
small enough not to distort the background Kerr geome
Now we provide the rationale that this is indeed what c
actually happen. To do so, we first assume that the typ
value of the charge on the hole is the equilibrium Wa
chargeQ52B0J just described. Then using the fact thatJ
5ma<m2, the charge-to-mass ratio of a hole has an up
bound

Q

m
52B0S J

mD<2B0m52S B0

1015D S m

m(
D1025

where in the last equality we have convertedB0 andm from
geometrized units to solar-mass units and Gauss@17#. Thus
for the two typical examples:~i! the binary system in our
galaxy with mass;5;10 m( in the surrounding magnetic
7-3
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field of strength;1014 G, Q/m;1025!1, and~ii ! the ac-
tive galactic nuclei with mass;106– 109 m( in the mag-
netic field of strength;104 G, Q/m;1027!1. As we can
see in these two cases, the charge-to-mass ratios of the
ing black hole in examples~i! and ~ii ! are small enough no
to disturb the geometry itself. Thus we can safely employ
solution-generating method suggested by Wald to const
the solution to the Maxwell equations when some amount
charges are around to which we now turn.

III. STATIONARY, AXISYMMETRIC MAXWELL FIELD
AROUND A ‘‘SLIGHTLY CHARGED’’ KERR HOLE

As discussed in the previous Sec. II B, the stationary, a
symmetric solution to the Maxwell equation in the bac
ground of a Kerr hole with chargeQ accreted in an originally
uniform magnetic field can be constructed as

F5
1

2
B0FFc2S 4J

22mDFjG1S Q

22mDFj

5
1

2
B0Fdc1

2J

m S 12
Q

2B0JDdj G . ~10!

Again for the Kerr metric given in Boyer-Lindquist coord
nates, the solution above can be written as

F5
1

2
B0F2 2ma

S2
~r 22a2cos2u!H S 12

Q

B0JD1cos2uJ
3~dr`dt!2

4mra

S2 H r 22a2S 12
Q

B0JD J
3sinu cosu~du`dt!1H 2r sin2u1

2ma2sin2u

S2

3~r 22a2cos2u!S 12
Q

B0J
1cos2u D J ~dr`df!

1H 2~r 21a2!1
4mra2

S2 FS sin2u2~r 21a2!

3S 12
Q

B0J
1cos2u D Gsinu cosuJ ~du`df!G. ~11!

Obviously, in order to have some insight into the nature
this solution to the Maxwell equations, one may wish
obtain physical components of electric field and magne
induction. And this can only be achieved by projecting t
Maxwell field tensor above onto an appropriate tetrad fra
as mentioned earlier. To be a little more concrete, in Boy
Lindquist coordinates, one can think of two orthonormal t
rads, first, the familiar zero-angular-momentum-obser
~ZAMO! tetrad frame@9# and next, rather unfamiliar Carte
tetrad frame@8#. The ZAMO tetrad is well known and widely
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employed in various anayses in the literature. ZAMO is
fiducial observer following timelike geodesic orthogonal
spacelike hypersurfaces. And this implies that its fo
velocity is just the timelike ZAMO tetradum5e0

m given be-
low in Eq. ~12!. The Carter tetrad, however, seems le
known than ZAMO despite its physical and technical adva
tages over ZAMO. Thus we provide some of the basics
Carter tetrad in Appendix A. In the following, we just giv
the components of Maxwell fields projected on these t
tetrad frames without getting into the details of the nature
the tetrad frames themselves. Upon projecting the Maxw
field tensor components on a given tetrad frame, the phys
components of electric and magnetic fields can be read o
Ei5Fi05Fmn(ei

me0
n) and Bi5e i jkF jk/25e i jkFmn(ej

mek
n)/2,

respectively.
a. Computation of the ZAMO tetrad components of t

Maxwell fields. From the dual to the ZAMO tetrad,eA

5(e05e(t) ,e15e(r ) ,e25e(u) ,e35e(f)),

e05S A

SD D 1/2S ] t1
2mra

A
]fD5e0

t ] t1e0
f]f ,

e15S D

S D 1/2

] r5e1
r ] r , ~12!

e25S21/2]u5e2
u]u ,

e35S S

AD 1/2 1

sinu
]f5e3

f]f

where A5(r 21a2)22a2D sin2u, we can now read off the
ZAMO tetrad components ofFmn

F105Fmne1
me0

n

5
B0ma

~ASD!1/2S2 F2r 2S2sin2u1~r 22a2cos2u!

3S 12
Q

B0J
1cos2u D H 2mra2sin2u2S D

S D 1/2

AJ G ,
F205Fmne2

me0
n

5
B0mra

~ASD!1/2S2 F2~r 21a2!S214mra2

3H S sin2u2~r 21a2!S 12
Q

B0J
1cos2u D J

22
A

S1/2H r 22a2S 12
Q

B0JD J Gsinu cosu,

F305Fmne3
me0

n50, ~13!

F125Fmne1
me2

n50,
7-4
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F135Fmne1
me3

n

5B0S D

AD 1/2sinu

S2 F ~r 21a2!rS1a2

3H 2r ~r 22a2!cos2u2~r 2m!~r 22a2cos2u!

3~11cos2u!2
Qm

B0J
~r 22a2cos2u!J G ,

F235Fmne2
me3

n

5B0

1

A1/2

cosu

S2 F ~r 21a2!H ~r 22a2!~r 22a2cos2u!

12a2r ~r 2m!~11cos2u!12a2r
Qm

B0JJ 2a2DS sin2uG .
b. Computation of the Carter tetrad components of

Maxwell fields. From the dual to the Carter tetrad,eA
5(e0 ,e1 ,e2 ,e3), given earlier in Eq.~4!,

F105Fmne1
me0

n5B0Far sin2u

S
2

ma

S2
~r 22a2cos2u!

3S 12
Q

B0J
1cos2u D G ,

F205Fmne2
me0

n5B0

aD1/2

S
sinu cosu,

F305Fmne3
me0

n50, ~14!

F125Fmne1
me2

n50,

F135Fmne1
me3

n5B0

rD1/2

S
sinu,

F235Fmne2
me3

n5B0

cosu

S F ~r 21a2!2
2mra2

S

3S 12
Q

B0J
1cos2u D G .

Therefore, in the Carter tetrad frame,
06403
e

F5B0Far sin2u

S
2

ma

S2
~r 22a2cos2u!S 12

Q

B0J
1cos2u D G

3~e1`e0!1B0

aD1/2

S
sinu cosu~e2`e0!

1B0

rD1/2

S
sinu~e1`e3!1B0

cosu

S F ~r 21a2!

2
2mra2

S S 12
Q

B0J
1cos2u D G~e2`e3!. ~15!

As is pointed out in Appendix A, these Carter tetrad comp
nents of the Maxwell field tensor take much simpler form
than the ZAMO tetrad components given in Eq.~13! and
hence are easier to deal with.

IV. THE MAGNETIC FLUX ACROSS ONE-HALF
OF EVENT HORIZON

With the asymptotically uniform stationary, axisymmetr
magnetic field, which is aligned with the spin axis of
‘‘slightly charged’’ Kerr hole given above, we now woul
like to compute the flux of the magnetic field across one-h
of the surface of the event horizon that occurs at poi
where

D~r 1!5r 1
2 1a222mr150 or r 15m1Am22a2

~16!

The physical motivation that underlies this study is to ha
some insight into the question of how much of the elect
magnetic field can actually penetrate into the hol
horizon—at least in idealized situations. We now begin
considering two vectors lying on the horizon that, for i
stance in the Boyer-Lindquist coordinates, are given by

dx1
a5~0,0,du,0!, dx2

a5~0,0,0,df!. ~17!

Then in terms of the second rank tensor constructed fr
these two vectors@10#,

dsab5
1

2
~dx1

adx2
b2dx1

bdx2
a!. ~18!

Now one can define the invariant-surface element of the
rizon as

ds5~2dsabsab!1/2ur 1
~19!

5~guugff!1/2ur 1
dudf

5~r 1
2 1a2!sinududf.

Next, since the tensordsab is associated with the invariant
surface element of any~not necessarily closed! two-surface,
the flux of electric field and magnetic field across any tw
surfaces can be given, respectively, by
7-5
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FE5E F̃abdsab5E 1

2
eab

gd Fgddsab,

FB5E Fabdsab. ~20!

In particular, the flux of magnetic field across one-half of t
horizon of the Kerr hole is

FB5E
r 5r 1

Fabdsab5E
0

2p

dfE
0

p/2

duFufur 1
. ~21!

Then usingFuf evaluated on the horizon

Fufur 1
5B0

sinu cosu

~r 1
2 1a2cos2u!2

~r 1
2 1a2!2F r 1

2 2a2S 12
Q

B0JD G
~22!

and the result of integration

E
0

2p

dfE
0

p/2

du
sinu cosu

~r 1
2 1a2cos2u!2

5
p

r 1
2 ~r 1

2 1a2!
, ~23!

we finally get

FB5B0pr 1
2 S 11

a2

r 1
2 D F12

a2

r 1
2 S 12

Q

B0JD G . ~24!

Note that thus far we assumed the case when the spin o
hole and the magnetic field are parallel~i.e., B0.0 for J
.0) and hence the positively charged particles (Q.0) are
being accreted on the hole via Carter’s injection energy
gument discussed in Sec. II, i.e., in calculating the magn
flux we started with the expression for the solutionF
5(B0/2)@dc1(2J/m)dj#2(Q/2m)dj given earlier. If, in-
stead, we consider the other case when the hole’s rota
axis and the magnetic field are antiparallel~i.e., B0,0 for
J.0), the negatively charged particles (Q,0) would be
accreted on the hole and thus this time we should start w
the solutionF5(2B0/2)@dc1(2J/m)dj#1(Q/2m)dj that
has overall sign justopposite to that in parallel/positive
chargecase. In other words,B0 andQ always have the sam
sign. This indicates that if we started out with th
antiparallel/negative chargecase, we would end up with th
expression for the magnetic flux havingopposite overallsign
to that in Eq.~24! above. Therefore, the general express
for themagnitudeof the magnetic field should take the for

FB5uB0upr 1
2 S 11

a2

r 1
2 D F12

a2

r 1
2 S 12

uQu
uB0uJD G ~25!

where nowFB is to be understood as denoting theabsolute
value of the flux. Indeed this expression for the magnetic fl
through the slightly charged Kerr hole is a new result t
has never been realized in the literature and as such n
close analysis in more detail.
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~i! In the absence of the accretion charge, i.e.,Q50, the
magnetic flux above correctly reduces to that obtained lo
ago by King, Lasota, and Kundt@3#,

FB
KLK5uB0upr 1

2 S 12
a4

r 1
4 D . ~26!

~ii ! With the nonvanishing accretion charge having va
in the range 0,uQu,2uB0uJ, the total magnetic flux through
the hole canneverbecome zero. And this property holds tru
even when the hole is maximally rotating, i.e.,a→m,r 1

→m in which case the total flux becomes

FB52uB0upr 1
2 S uQu

uB0uJD52pr 1
2 S uQu

m2 D 52puQu, ~27!

which, interestingly, is independent ofm, J, andB0 and has
dependence only on the hole’s chargeQ. Actually, this is the
point of central importance we would like to make in th
present work. The physical interpretation of this characte
tic can be briefly stated as follows. When the spin of the h
and the asymptotically uniform magnetic field are para
~antiparallel!, the hole selectively accretes positive~negative!
charges as we have discussed in the earlier section follow
the injection energy argument proposed by Carter and th
in turn, generate magnetic fields additive to the existing on
Thus unlike the uncharged Kerr hole case, the magnetic
through a slightly charged Kerr hole can never become z
This effect manifests itself in a particularly interesting ma
ner when the accreted charge reaches its maximum value
Wald charge.

~iii ! For the Wald charge value,uQu52uB0uJ,

FB5uB0upr 1
2 S 11

a2

r 1
2 D 2

5uB0u4pm2, ~28!

which is exactly the standard flux across a Schwarzsc
black hole. This point is particularly interesting since t
Wald charge, i.e., the amount of equilibrium net charge
creted on a Kerr hole restores the magnetic flux to the va
precisely the same as that of an uncharged, nonrota
Schwarzschild hole. This point also has been noticed in
work by Dokuchaev@4# and more recently by van Putte
@11#. Particularly in Dokuchaev’s work, it is just this poin
that led him to conclude that the magnetic flux through
hole becomes independent of the hole’s angular momen
when the hole has the equilibrium Wald charge.

~iv! It is also interesting to note that our result for th
magnetic flux through the slightly charged Kerr hole given
Eq. ~24! above can indeed be derived as the leading appr
mation to the result obtained from the analysis@4# based on
the exact Ernst-Wild solution@5# to the coupled Einstein-
Maxwell equations, although it was not realized there in
work by Dokuchaev.
7-6
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V. THE MAGNETIC FLUX THROUGH A KERR HOLE
IN AN OBLIQUE CONFIGURATION CASE

Thus far we have considered the case with symme
geometry in which the stationary, axisymmetric magne
field is precisely aligned with Kerr hole’s axis of rotation.
would, however, be of some interest to explore more gen
case when the asymptotically uniform, stationary magn
field happens to be ‘‘oblique,’’ i.e., aligned at some angle
the hole’s axis of rotation. Then, of course, the natural qu
tion to be addressed is to see how much of such fields a
ally can penetrate the horizon, and we now turn to this iss

Indeed the case of uncharged Kerr hole has been stu
long ago by Bicak and Janis and hence in this section,
would like to explore what happens when the Kerr hole
again ‘‘slightly charged,’’ i.e.,QÞ0, along the same line o
analysis as employed in the previous section. We now s
with the solution given by Bicak and Janis@10#. The electro-
magnetic field that is generated when an uncharged Kerr
is placed in an originally uniform magnetic field, the dire
tion of which does not coincide with the hole’s axis of rot
tion has been given by Bicak and Janis and will here
denoted byFBJ andABJ for the Maxwell field strength and
the associated gauge potential, respectively. They are g
in Appendix B. And in their solution, it is assumed th
asymptotically, the field is decomposed into two comp
nents,B0 andB1 . B0 being in the direction of thez axis~i.e.,
the hole’s rotation axis! andB1 being chosen to lie, withou
loss of generality, along thex axis. Next, since the source
free Maxwell equation is a linear differential equation,
would admit any linear combination of particular solutio
as another solution. Once again, therefore, we invoke
solution generating method due to Wald. In particular,
order to construct the solution in the presence of so
charge, we recall that, according to the statement~B! in the
discussion of Wald field given earlier, there can be one m
perturbation of a stationary, axisymmetric vacuum bla
hole that corresponds to adding a chargeQ to the hole and it
is nothing but to linearly superpose the soluti
(2Q/2m)Fj5(2Q/2m)dj to the existing solution. Evi-
dently, therefore,

F5FBJ1
2Q

2m
dj or Am5Am

BJ1
2Q

2m
jm ~29!

constitutes a legitimate solution of Maxwell equations rep
senting the electromagnetic field around a slightly char
Kerr hole with chargeQ that is asymptotically uniform but is
not aligned with the hole’s axis of rotation. In fact, th
seems to be the only way available to construct the solu
in the presence of some charge and it is worthy to note
since the particular solution being added, (2Q/2m)Fj

5(2Q/2m)dj represents an axisymmetric test electrom
netic field thatvanishes asymptotically, this new solution
given in Eq. ~28! above would not change the asympto
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behavior of the Bicak and Janis solution at all. In Boye
Lindquist coordinates, the solution we are after can thus
explicitly written down as

At5At
BJ1

Q

2m FD2a2sin2u

S G ,
Ar5Ar

BJ , ~30!

Au5Au
BJ ,

Af5Af
BJ1

Q

2m Fa sin2u~r 21a22D!

S G
for the gauge potential and

Frt52B0

ma

S2
~r 22a2cos2u!S 12

Q

B0J
1cos2u D

2B1

mar

S2D
sinu cosu@$r 322mr21ra2~11sin2u!

12ma2cos2u%cosc2a$r 224mr1a2

3~11sin2u!%sinc#,

Fut52B0

2mar

S2
sinu cosuH r 22a2S 12

Q

B0JD J
2B1

ma

S2
~r 2cos 2u1a2cos2u!~a sinc2r cosc!,

Fft5Fft
BJ ,

Fru5Fru
BJ , ~31!

Frf5B0

sin2u

S2 F rS21ma2~r 22a2cos2u!

3S 12
Q

B0J
1cos2u D G2B1

sinu cosu

D

3@~rD2ma2!cosc2a~D1mr!sinc#

1B1

ma2r

S2D
sin3u cosu@$r 322mr21ra2~11sin2u!

12ma2cos2u%cosc2a$r 224mr1a2

3~11sin2u!%sinc#,
7-7
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Fuf5B0

sinu cosu

S2 F ~r 21a2!H ~r 22a2!~r 22a2cos2u!

12a2r ~r 2m!~11cos2u!12a2r
Qm

B0JJ
2a2DS sin2uG1B1r sin2u@~r 2m!cosc2asinc#

1B1

msin2u

S2

3@~r 21a2!~r 22a2cos2u!2Sa2cos2u#

3~r cosc2a sinc!

for the Maxwell field strength and herec has been defined in
terms of the azimuthal angle coordinatef as

c5f1
a

r 12r 2
lnS r 2r 1

r 2r 2
D . ~32!

This solution in the presence of the accretion chargeQ on the
Kerr hole reduces to the Bicak-Janis solution in the abse
of the charge given in Appendix B forQ50 as it should.
Then in order to calculate the flux of this magnetic fie
strength through the horizon of a Kerr hole, we, as usu
need the componentFuf evaluated on the horizon that is

Fufur 5r 1
5B0

sinu cosu

~r 1
2 1a2cos2u!2

~r 1
2 1a2!2

3H r 1
2 2a2S 12

Q

B0JD J 1B1r 1sin2u

3$~r 12m!cosf2asinf%

1B1

m sin2u

~r 1
2 1a2cos2u!2

$~r 1
2 1a2!

3~r 1
2 22a2cos2u!1a4sin2u cos2u%

3~r 1cosf2a sinf!, ~33!

where we used

c~r 1!5f1
a

r 12r 2
lnS r 12r 1

r 12r 2
D5f2`5f. ~34!

Now we would like to compute the flux of magnetic fie
across a generally oriented one-half portion of Kerr hol
horizon, which shall henceforth be called, ‘‘generally locat
hemisphere.’’ Basically, our goal is the same as before an
is the evaluation of the magnetic flux across any two-surf
as given by Eq.~19! with the invariant-surface element of
Kerr hole’s horizondsab given in Eqs.~17! and~18!. How-
ever, since we now have to deal with the invariant-magn
flux across thegenerally located hemisphere, we need a
more careful following analysis that is similar to the o
encountered when determining principal axis of spinn
06403
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rigid body in classical mechanics. As depicted in Fig. 1,
set a coordinate system in which the hole’s axis of rotat
coincides with thez axis and the equatorial plane is repr
sented byx-y plane. In addition, since we are considering t
general case when the asymptotically uniform, station
magnetic field is ‘‘oblique,’’ i.e., not aligned with the hole’
rotation axis, we assume asymptotically and without any l
of generality that the field can be decomposed into thz
componentB0 and thex componentB1. Now, in order to
characterize the position of the generally located hemisph
we consider rotating the (x,y,z) axes by an angleb around
thez axis and then next rotating the resulting (v8,y8,z) axes
by an anglea around they8 axis, to get (x8,y8,z8) axes with
now thez8 axis representing a kind of ‘‘principal axis’’ for
the generally located hemisphere. Then the series of coo
nate transformations (x,y,z)→(v8,y8,z)→(x8,y8,z8) obvi-
ously involves two stages ofSO(3) rotations and if we de-
note the spherical polar angle coordinates for (x,y,z) system
and (x8,y8,z8) system by (u,f) and (u8,f8), respectively,
they are related by equations

sinu8cosf85sinu cosa cos~f2b!2cosu sina,

sinu8sinf85sinu sin~f2b!,

cosu85sinu sina cos~f2b!1cosu cosa.
~35!

In the final ‘‘principal axes’’ coordinate system, the integr
tion over the polar angle coordinateu8 should be done from
0 top/2. Thus we need to determine the value of the origi

FIG. 1. A generally located hemisphere on some part of
rotating hole’s horizon across which the magnetic flux of an asym
totically uniform magnetic field is to be evaluated. Two angl
(a,b) completely specify the location of the hemisphere and
hole rotates around thez axis. Asymptotically, the magnetic field i
decomposed into two components:B0 along thez axis, the hole’s
axis of rotation, andB1 along thex axis that is perpendicular to th
hole’s rotation axis.
7-8
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polar angleu that corresponds tou85p/2. This can easily
be achieved by pluggingu85p/2 in the last equation abov
that yields

u5Q~f;a,b![
p

2
1tan21@ tana cos~f2b!#. ~36!

Thus the integration over the generally located hemispher
the new angle coordinates 0<f8<2p,0<u8<p/2 can be
translated into that in the original angle coordinates as

0<f<2p, 0<u<Q~f;a,b!, ~37!

and hence finally the magnetic flux across a generally
ented one-half portion of Kerr hole’s horizon reads

FB5E
0

2p

dfE
0

Q(f;a,b)

duFufur 5r 1
. ~38!

Therefore, the magnetic flux across the ‘‘generally loca
hemisphere’’ on slightly charged Kerr hole’s horizon
given by

FB5E
0

2p

dfE
0

Q(f;a,b)

du@Fuf~B150!ur 5r 1

1Fuf~B050!ur 5r 1
#

5F~B150!1F~B050!, ~39!

where as given earlier

Fuf~B150!ur 1
5B0

sinu cosu

~r 1
2 1a2cos2u!2

~r 1
2 1a2!2

3H r 1
2 2a2S 12

Q

B0JD J ,

Fuf~B050!ur 1
5B1

sin2u

~r 1
2 1a2cos2u!2

3@r 1~r 1
2 1a2cos2u!2$~r 12m!

3cosf2asinf%1m$~r 1
2 1a2!

3~r 1
2 22a2cos2u!1a4sin2u cos2u%

3~r 1cosf2a sinf!#.

Just as the case we considered in the preceding se
when the asymptotically uniform magnetic field is align
with Kerr hole’s rotation axis, the effect of adding to th
Kerr hole some charge small enough not to disturb its ge
etry or equivalently adding a particular solution represen
by the Wald fieldF5(2Q/2m)dj changes the value o
F(B150) above via the shift inFuf(B150)ur 1

as given.

SinceFuf(B050)ur 1
and hence its contribution to the tot

flux F(B050) remains unchanged upon adding the W
field, the actual value ofF(B050) is precisely as given
06403
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originally by Bicak and Janis@10#. Thus our task here simply
reduces to the calculation ofF(B150), namely,

F~B150!5B0~r 1
2 1a2!2H r 1

2 2a2S 12
Q

B0JD J I 0 ~40!

with

I 0[E
0

2p

dfEQ

du
sinu cosu

~r 1
2 1a2cos2u!2

. ~41!

Note, however, this contribution to the total flux across t
generally located hemisphere is invariant under the rota
about the hole’s spin axis~which is chosen to be thez axis!.
Thus in order to go to the principal axis for the genera
located hemisphere, one only needs to perform a single
of SO(3) rotation (x,y,z)→(x8,y8,z8) that yields the rela-
tions between polar angles

sinu8cosf85sinu cosa cosf2cosu sina,

sinu8sinf85sinu sinf, ~42!

cosu85sinu sina cosf1cosu cosa.

This, in turn, implies that the integration over the genera
located hemisphere actually amounts to the ranges

0<f<2p, 0<u<Q~f;a! ~43!

with

Q~f;a![
p

2
1tan21~ tana cosf!. ~44!

Then the result of actual computation reads

I 05
1

2r 1
2 ~r 1

2 1a2!
E

0

2p

df
1

~11r1
2 tan2a cos2f!

5
p

r 1
2 ~r 1

2 1a2!
~11r1

2 tan2a!21/2 ~45!

and hence

F~B150!5B0pr 1
2 S 11

a2

r 1
2 D H 12

a2

r 1
2 S 12

Q

B0JD J
3~11r1

2 tan2a!21/2, ~46!

wherer1
2 [(11a2/r 1

2 ). Finally, putting this result of ours
F(B150) together with the contribution coming from th
B1 component of the asymptotically uniform magnetic fie
F(B050), we arrive at the total magnetic flux across t
generally located hemisphere on slightly charged Kerr ho
horizon
7-9
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FB5F~B150!1F~B050! ~47!

5B0pr 1
2 S 11

a2

r 1
2 D H 12

a2

r 1
2 S 12

Q

B0JD J
3~11r1

2 tan2a!21/212B1@r 1$~r 12m!

3cosb2a sinb%I 11m~r 1cosb2a sinb!

3~2r1 Ī 12I 12a2I 2!#

where

I 15
p

2
tana~11tan2a!21/2,

Ī 15
p

2
r1tana~11r1

2 tan2a!21/2,

~48!

I 25
p

a2tana
$~11r1

2 tan2a!1/2

2~11tan2a!1/2%.

Finally, some discussions on interesting observations ar
order.

~i! In the absence of the accretion charge, i.e.,Q50, the
total magnetic flux above correctly reduces to that obtai
by Bicak and Janis as it should.

~ii ! For a50, namely, over the hemisphere that is sy
metrically located around the hole’s rotation axis, we hav

FB5uB0upr 1
2 S 11

a2

r 1
2 D F12

a2

r 1
2 S 12

uQu
uB0uJD G ,

i.e., one recovers the result in Eq.~25! for the case where the
asymptotically uniform magnetic field is aligned with th
hole’s spin axis we studied earlier. Obviously this was e
pected since with this orientation of the hemisphere, the c
tribution to the total flux coming from theB1 component
~which is perpendicular to the hole’s spin axis! is zero. Here,
the points worthy to note are essentially the same as be
First, with the nonvanishing accretion chargeQÞ0, the total
magnetic flux through the hole cannevergo to zero. In par-
ticular, when the hole is maximally rotating, the total flu
becomesFB52puQu that is independent ofm, J, andB0 and
depends only on the hole’s charge. Lastly, when the accr
charge takes the particular valueuQu52uB0uJ, the total flux
gets maximized and it is precisely the standard flux acro
Schwarzschild black hole,FB5uB0u4pm2 as pointed out
earlier.

~iii ! For a5p/2, i.e., when the principal axis for th
hemisphere is perpendicular to the hole’s rotation axis,
have

FB5B1p@r 1
2 cosb2~r 11m!a sinb#. ~49!
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The fact that the total flux depends only on theB1 compo-
nent is also expected since with this orientation of the he
sphere, theB0 component contribution to the total flux i
obviously zero. Next, the angleb determines, asymptoti
cally, the angle between the principal axis for the hemisph
and the axisx which is along theB1 component of the field.
As such, the total flux gets maximum forb50 when FB

5B1pr 1
2 and gets minimum forb5b0, with tanb0

5@r 1
2 /a(r 11m)#, whenFB50. For extreme Kerr hole,a

5m5r 1 and hence tanb051/2 or b0527°. Moreover,
since we may assume2p/2<b<p/2, cosb0 is always
positive and henceFB50 occurs only ifa sinb0.0. Thus if
a.0, then b0.0 and this confirms our intuition that th
field lines are bent near the hole in the same direction
which the hole rotates since the rotating hole drags field li
along.

~iv! Now in this case when the rotating hole takes sm
amount of accretion charge, one might wonder how co
only the part of the magnetic fluxF(B150) coming from
the B0 component of the field gets affected with the oth
part F(B050) coming from theB1 component of the field
remaining unchanged. In fact, it has been anticipated fr
the way we constructed the solution to the Maxwell equ
tions in the presence of some charge. Notice that we
ployed the solution generating scheme by Wald in which
particular solution (2Q/2m)Fj5(2Q/2m)dj has been su-
perposed to another particular solution, i.e., the Bicak-Ja
solutionFBJ. And this solution,F5(2Q/2m)dj represents
axisymmetric electromagnetic test field aligned precis
with the hole’s rotation axis. Besides, this particular soluti
vanishes asymptotically without affecting the asymptotic b
havior of the Bicak-Janis solution. Therefore, only theB0
component of the Bicak-Janis solution has been modi
locally and thus theF(B150) part of the magnetic flux get
affected as a consequence.

~v! Lastly, we point out that in this generally oblique g
ometry case, the charge on the holeQ has been regarded a
being arbitrary. Indeed, the application of Carter’s injecti
energy argument to the determination of equilibrium cha
Q52B0J we discussed earlier was quite straightforward
the case when the field and the hole’s spin are exa
aligned. Of course, it can be attributed to the simple struct
of the solution to the Maxwell equations given in terms
the exterior derivatives of Killing fields as can be seen
Eqs.~7! and ~8!. This kind of advantage, however, does n
seem to be available in the present oblique geometry cas
the solution given in Eq.~30! or ~31! no longer possesse
such a privileged structure. As a result, the determination
the equilibrium charge value is unlikely to be successful h
although such equilibrium charge is still expected to exist
principle.

VI. CONCLUDING REMARKS

In the present work, based on the solution-generat
method given by Wald, it has been demonstrated in a tra
parent manner that in a more realistic situation when th
are charges around~but small enough not to disturb the bac
ground vacuum geometry!, the magnetic flux penetrating th
7-10



t o
c
in
ta
ti
c
th

t

e

is

e
s
-
rz
.
b

th

th
,
e
flu
ro

om
is

d,
a
ld

th
io
a
u
’’
th

et
t

u
in
te
u

an
u
ti
n
rd
t o

1
h
o

ck-
sys-
to

e
-
ace
hat
or-
the
rad
n,
al
the
i-

-
in

rre-
be

em,
d
les

n,
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horizon depends not only on the angular momentum bu
the amount of charge accreted on the hole as well and
never vanish no matter how fast the hole spins. The po
worthy of note can be summarized as follows. First we s
with the case when the asymptotically uniform magne
field and the hole’s spin are precisely aligned with ea
other. Then by the argument given by Wald concerning
charge accretion process, the hole gradually accretes
charge until it reaches the equilibrium valueuQu52uB0uJ.
Thus with the nonvanishing accretion charge having valu
the range 0,uQu,2uB0uJ, the total magnetic flux through
the hole cannevergo to zero. In particular, when the hole
maximally rotating, the total flux becomesFB52puQu that
is independent ofm, J, and B0 and depends only on th
hole’s charge. Lastly, when the accreted charge reache
maximum valueuQu52uB0uJ, the total flux also gets maxi
mized and it is precisely the standard flux across a Schwa
child black hole, FB5uB0u4pm2 as pointed out earlier
Next, the physical interpretation of this characteristic can
briefly stated as follows. When the spin of the hole and
asymtotically uniform magnetic field are parallel~antiparal-
lel!, the hole selectively accretes positive~negative! charge
as we have discussed in the earlier section following
injection energy argument proposed by Carter, and they
turn, generate magnetic fields additive to the existing on
Thus, unlike the uncharged Kerr hole case, the magnetic
through a slightly charged Kerr hole can never go to ze
We have mainly considered the case with symmetric ge
etry in which the stationary, axisymmetric magnetic field
precisely aligned with Kerr hole’s axis of rotation. It woul
however, be of some interest to explore more general c
when the asymptotically uniform, stationary magnetic fie
happens to be ‘‘oblique,’’ i.e., aligned at some angle to
hole’s axis of rotation. Then, of course, the natural quest
to be addressed is to see how much of such fields actu
can penetrate the horizon. Thus we also explored what wo
happen when the Kerr hole is again ‘‘slightly charged
along the same line of analysis as the one employed in
previous symmetric geometry case. In this oblique geom
case, however, although we could write down the solution
the Maxwell equations and evaluate the magnetic fl
through the hole in a quite straightforward manner us
basically the solution generating scheme by Wald, the de
mination of equilibrium charge value was not attempted d
to technical barriers. This issue might be worth persuing
we hope we can come back to it in a future work. It is o
belief that the result of this work, obtained in a more realis
situation when some amount of charges are around, eve
ally lends support to the operational nature of the Blandfo
Znajek mechanism and puts it on a firmer ground at leas
the theoretical side.
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APPENDIX A: THE CARTER TETRAD

Generally speaking, in order to represent a given ba
ground geometry, one needs to first choose a coordinate
tem in which the metric is to be given and next, in order
obtain physical components of a tensor~such as the electric
and magnetic field values!, one has to select a tetrad fram
~in a given coordinate system! to which the tensor compo
nents are to be projected. For the Kerr background sp
time, here we choose the Boyer-Lindquist coordinates t
can be viewed as the generalization of Schwarzschild co
dinates to the stationary, axisymmetric case. Turning to
choice of tetrad frame, there are largely two types of tet
frames: orthonormal tetrad and null tetrad. As is well know
the orthonormal tetrad is a set of four mutually orthogon
unit vectors at each point in a given space time that give
directions of the four axes of locally Minkowskian coord
nate system

ds25gmndxmdxn5hABeAeB

52~e0!21~e1!21~e2!21~e3!2

~A1!

where eA5em
Adxm. Every physical observer with four

velocity um has associated with him an orthonormal frame
which the basis vectors are the~reciprocal of! orthonormal
tetradeA5$e05u,e1 ,e2 ,e3%. And corresponding to this is a
null tetradZA5$ l ,n,m,m̄% defined by

e05
1

A2
~ l 1n!, e15

1

A2
~ l 2n!, ~A2!

e25
1

A2
~m1m̄!, e25

1

A2i
~m2m̄!

satisfying the orthogonality relation

2 l mnm515mmm̄m ~A3!

with all other contractions being zero and

gmn52 l mnn2nml n1mmm̄n1m̄mmn. ~A4!

Conversely, given a nonsingular null tetrad, there is a co
sponding physical observer. The tetrad vectors then can
used to obtain, from tensors in arbitrary coordinate syst
their physical~i.e., finite and nonzero! components measure
by an observer in this locally flat tetrad frame. And the ru
for calculating the physical components of a tensor, say,Tmn

in the orthonormal frame and in the null frame are give
respectively, by

TAB5Tmn~eA
meB

n !, Tlm5Tmn~ l mmn!, etc. ~A5!

where eA
m is the inverse of the tetrad vectorsem

A in that
7-11
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eA
men

A5dn
m andeA

mem
B5dA

B . As just stated, all that is require
of the ‘‘correct’’ boundary conditions for electric and ma
netic fields at the horizon is that the physical field’s comp
nents in the neighborhood of an event horizon should h
‘‘nonspecial’’ values. Or put another way, a physically we
behaved observer at the horizon should see the fields as
ing finite and nonzero values. One such choice of w
behaved tetrad frame has been suggested long ago by C
@8#. The construction of Carter’s orthonormal tetrad sta
from Kinnersley’s null tetrad@12#. In Boyer-Lindquist coor-
dinatesxm5(t,r ,u,f̃), its contravariant and covariant com
ponents are given by

l m5S ~r 21a2!

D
, 1, 0,

a

D D ,

nm5S ~r 21a2!

2S
,

2D

2S
, 0,

a

2S D ,

~A6!

mm5
1

A2~r 1 ia cosu!

3S ia sinu, 0, 1,
i

sinu D
and

l m5gmnl n5S 1,
2S

D
, 0, a sin2u D ,

nm5gmnnn5S D

2S
,

1

2
, 0,

2aD

2S
sin2u D , ~A7!

mm5gmnmn5
1

A2~r 1 ia cosu!

3@ ia sinu, 0, 2S, 2 i ~r 21a2!sinu#.

where, as before,S5r 21a2cos2u and D5r 21a222mr
with m anda being the ADM mass and the angular mome
tum per unit mass of the hole respectively. This Kinnersle
null tetrad has been chosen so thatl m and nm lie along the
two principal repeated null directions of the Weyl tens
Kinnersley’s null tetrad has proved very useful for separat
and solving the equations governing scalar, electromagn
and gravitational perturbations of Kerr geometry@13#. How-
ever, the associated orthonormal tetrad suffers from two
advantages. It is singular on the horizon and an observe
rest in it has nonzero radial velocity. This last point is caus
by the asymmetric normalization ofl m and nm, and means
that the corresponding orthonormal tetrad is unnatural in
it frequently hides interesting features of the fields. For th
reasons and others, one obtains another null tetrad and
associated orthonormal tetrad~Carter tetrad! by ‘‘null rotat-
ing’’ the Kinnersley’s null tetrad. Thus at this point, it seem
relevant to recall some of the basics of null rotation. Not
that the orthogonality relations for null tetrad given in E
06403
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~A4! remain invariant under the six-parameter group of h
mogeneous Lorentz transformations at each point of sp
time. And this Lorentz group can be decomposed into th
Abelian subgroups:

~ I! l→ l , m→m1al, n→n1am̄1ām1aāl ,

~ II ! n→n, m→m1bn, l→ l 1bm̄1b̄m1bb̄n,
~A8!

~ III ! l→L l , n→L21n, m→eium,

wherea and b are complex numbers andL andu are real.
Each of these group transformations is called a ‘‘null ro
tion’’ @14# and here we particularly consider the null rotatio
~III !. Under this null rotation~III !, the corresponding ortho
normal tetradeA is boosted in thee15er̂ direction with
three-velocity (L221)/(L211) and spatially rotated abou
e15er̂ through the angleu. Indeed this action is precisel
what we need. In order to get a null tetrad well behaved
the horizon, we need to boost it by an amount that becom
suitably infinite on the horizon. Thus we perform the nu
rotation ~III ! on the Kinnersley’s null tetrad withL
5(D/2S)1/2 and eiu5S1/2/(r 2 ia cosu) to obtain the fol-
lowing nonsingular null tetrad on the horizon:

l 8m5S ~r 21a2!

~2SD!1/2
, S D

2S D 1/2

, 0,
a

~2SD!1/2D ,

n8m5S ~r 21a2!

~2SD!1/2
, 2S D

2S D 1/2

, 0,
a

~2SD!1/2D ,

~A9!

m8m5
1

A2S1/2S ia sinu, 0, 1,
i

sinu D .

Then the associated orthonormal tetrad is

e0
m5S ~r 21a2!

~SD!1/2
, 0, 0,

a

~SD!1/2D ,

e1
m5S 0, S D

S D 1/2

, 0, 0D , ~A10!

e2
m5S 0, 0,

1

S1/2
, 0D

e3
m5S a sinu

S1/2
, 0, 0,

1

S1/2sinu
D

and its dual is given by Carter as
7-12
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em
0 5F S D

S D 1/2

, 0, 0, 2S D

S D 1/2

a sin2uG ,
em

1 5F0, S S

D D 1/2

, 0, 0G , ~A11!

em
2 5~0, 0, S1/2, 0!

em
3 5S 2a sinu

S1/2
, 0, 0,

~r 21a2!

S1/2
sinu D .

Now, in order to have some insight into the nature of t
Carter’s orthonormal tetrad in Boyer-Lindquist coordinat
we first rewrite the metric of Kerr geometry as implied b
this Carter’s dual tetrad:

ds25hABeAeB ~A12!

52
D

S
@dt2a sin2udf#21

S

D
dr21Sdu2

1
sin2u

S
@~r 21a2!df2adt#2.

Then one can immediately realize that an observer at re
this Carter frame travels around the hole at (r 5const,u
5const) with the angular velocity,Vc5a/(r 21a2) which is
independent ofu. Certainly, this is in contrast to what hap
pens in ZAMO ~or LNRF! tetrad frame in which case
ZAMO observer travels around the hole with the angu
velocity, V5a@(r 21a2)2D#/@(r 21a2)22Da2sin2u# that
has dependence on the polar angleu. Indeed, the physica
significance of the Carter tetrad frame is that observers at
in it see principal null congruence photons moving w
purely radial velocities. This leads one to suppose that M
well equations and their solutions should take relativ
simple forms in this Carter tetrad frame as first pointed
by Znajek@16# and it is indeed the case@17#.

APPENDIX B: THE BICAK-JANIS SOLUTION

Here, we provide the electromagnetic field that is gen
ated when a Kerr black hole is placed in an originally u
form magnetic field with its direction not coinciding with th
rotation axis of the hole. This solution has been given
Bicak and Janis@10#. As is well known, in Newman-Penros
formalism @14#, the three independent complex null tetr
components of the Maxwell field strength tensor are given

f05Fmnl mmn,

f15
1

2
Fmn~ l mnn1m̄mmn!,

~B1!

f25Fmnm̄mnn.

The explicit form off0 , f1, andf2 as a solution of Max-
well equations is given in the earlier work of Bicak an
06403
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Dvorak @15# and it contains parametersB0
x , B0

y , andB0
z de-

noting the components of the oblique magnetic field in
ymptotically Minkowskian coordinatesx5r sinu cosf, y
5r sinu sinf, z5r cosu. Without any loss of generality
however, one can putB0

y50 and denote byB0
x[B1, the field

component perpendicular to the rotation axis and byB0
z

[B0, the field component aligned along the rotation ax
Now given the solutionsf0 ,f1 ,f2, we would like to have
the expression in terms of Maxwell field strengthFmn , say,
in Boyer-Lindquist coordinates. This can be achieved first
inverting the above expression

Fmn52~f11f̄1!n[ml n]12~f12f̄1!m[mm̄n]12f2l [mmn]

12f̄2l [mm̄n]12f0m̄[mnn]12f̄0m[mnn] ~B2!

and evaluating this with the standard Kinnersley’s null tetr
~i.e., the covariant components! given earlier in Appendix A.
The result is

Frt52B0

ma

S2
~r 22a2cos2u!~11cos2u!

2B1

mar

S2D
sinu cosu@$r 322mr21ra2~11sin2u!

12ma2cos2u%cosc2a$r 224mr1a2

3~11sin2u!%sinc#,

Fut52B0

2mar

S2
sinu cosu~r 22a2!

2B1

ma

S2
~r 2cos 2u1a2cos2u!~a sinc2r cosc!,

Fft52B1

ma

S
sinu cosu~r sinc1a cosc!,

~B3!

Fru52B1

1

D
@D~r sinc1a cosc!

1a$~mr2a2 sin2u!cosc

2a~r sin2u1m cos2u!sinc%#,

Frf5B0r sin2u2B1

sinu cosu

D

3@~rD2ma2!cosc2a~D1mr!sinc#

2a sin2uFrt ,

Fuf5B0D sinu cosu1B1@~r 2sin2u1mr cos 2u!cosc

2a~r sin2u1m cos2u!sinc#2
~r 21a2!

a
Fut

for the Maxwell field strength tensor and
7-13



s is
ich

he

HONGSU KIM, CHUL HOON LEE, AND HYUN KYU LEE PHYSICAL REVIEW D63 064037
At5B0

a

S
@2S1mr~11cos2u!#

1B1

ma

S
sinu cosu~r cosc2a sinc!,

Ar52B1~r 2m!sinu cosu sinc, ~B4!

Au52B1@a~r sin2u1m cos2u!cosc

1~r 2cos2u2mr cos 2u1a2cos 2u!sinc#,
c.
c-

ey

06403
Af5B0

sin2u

2S
@S~r 21a2!22a2mr~11cos2u!#

2B1

sinu cosu

S
@SD cosc1m~r 21a2!~r cosc

2a sinc!#

for the corresponding gauge potential. To summarize, thi
the solution in the absence of the charge on the hole, wh
is to be compared with the solution given in the text in t
presence of the accretion charge on the Kerr black holeQ.
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