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Schwarzschild black hole in the dilatonic domain wall
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Department of Physics, Inje University, Kimhae 621-749, Korea

~Received 12 October 2000; published 26 February 2001!

In the dilatonic domain wall model, we study the Schwarzschild black hole as a solution to the Kaluza-Klein
zero mode effective action which is equivalent to the Brans-Dicke~BD! model with a potential. This can
describe the large Randall-Sundrum~RS! black hole whose horizon is to be the intersection of the black cigar
with the brane. The black cigar located far from the five-dimensional anti–de Sitter (AdS5) horizon is known
to be stable, but any explicit calculation for stability of the RS black hole atz50 has not yet been performed.
Here its stability is investigated against thez-independent perturbations composed of odd-even parities of
graviton (hmn) and BD scalar (h4452w). It seems that the RS black hole is classically unstable because it has
a potential instability at a wavelengthl.1/(2k). However, this is not allowed inside an AdS5 box of the size
1/(2k). Thus the RS black hole becomes stable. The RS black hole can be considered as a stable remnant at
z50 of the black cigar.
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I. INTRODUCTION

Recently there has been much interest in the Rand
Sundrum brane world@1–3#. A key idea of this model is tha
our universe may be a brane embedded in the higher dim
sional space. A concrete model is a single three brane
bedded in the five-dimensional anti–de Sitter space (AdS5),
which acts like a box of the size;1/k. Randall and Sundrum
~RS! have shown that a longitudinal part (hmn) of the metric
fluctuations satisfies the Schro¨dinger-like equation with an
attractive delta function. As a result, the massless Kalu
Klein ~KK ! modes which describe the localized gravity
the brane were found. Furthermore, the massive KK mo
lead to corrections to the Newtonian potential such asV(r )
5GN(m1m2)/r @11(1/k2r 2)#.

However, we would like to point out that this has be
done in the four-dimensional~4D! Minkowski space with the
RS gauge.1 It seems that this gauge is so restrictive. In ord
to have a well-defined theory on the brane, one has to
clude nonzero transverse parts ofh4m and h44 at the begin-
ning. Ivanov and Volovich discussed along this direction
choosing the 5D de Donder gauge2 @4,5#. Also authors in
Ref. @6# studied the propagation of the metric including no
zero transverse parts. It turned out that there are no mas
scalar and vector propagations in the RS background. T
implies that the RS gauge is a good choice for describing
brane world. Furthermore, it is shown that the R
Minkowski spacetime is stable only under the RS gauge

If the Minkowski metric on the brane is replaced by a
4D Ricci-flat one, for example the Schwarzschild metric,
5D metric still satisfies the Einstein equation with a negat
cosmological constant. In this process we obtain a bl

1In fact, this gauge forhMN is composed of Gaussian-norm
~GN! gauge (h445h4m50) and 4D transverse, trace-free~TTF!
gauge (]mhmn50, h m

m 50).
2This corresponds to the 5D TTF gauge (]MhMN50,h M

M 50).
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string solution in an AdS5 @7#.3 This is given by ḠMN
BS

5H22(z)@ ḡmn
S ,1# with the Schwarzschild metricḡmn

S

5diag@2(122M /r ),(122M /r )21,r 2,r 2 sin2 u#. It is
shown that this black string is unstable near the AdS5 hori-
zon of z5` but it is stable far from the horizon. This is
result of the Gregory-Laflamme instability@8#, which states
that the black string has a tendency to fragment near
AdS5 horizon@9#. A stable object left behind would resemb
a black cigar, although we do not know its explicit metr
Hence we have the RS black hole picture on the brane
cated atz50. The horizon of the black hole on the bran
will be determined from the intersection of the black cig
with the brane. Here we assume that this is large asr EH
52M.1/k. In this case an observer on the brane percei
exactly the Schwarzschild solution, without any correcti
arising from the extra dimension@10#. In other words, any
massive KK modes are not excited in these circumstan
Then the zero modes of the bulk graviton can describe
situation very well. Hence the zero mode approach beco
a powerful technique in the study of black holes on t
brane.

On the other hand, Youm showed that the RS solution
be found in the dilatonic domain wall@11,12#. In order to
study physics on the brane, we need its effective action.
known that zero mode effective action takes a form of
Brans-Dicke model with a potential.

In this paper, we study stability of the large RS black ho
with z-independent perturbations such ashmn(x),h44(x). We
find that these are massless graviton and scalar modes p
gating in the RS black hole background. Here we do
require the 4D TTF gauge which is useful for the R
Minkowski space. Instead we choose the Regge-Whe
~RW! gauge for our study of spherically symmetric bac
ground.

3Precisely, this is not a 5D black hole solution to the RS model.
present, nobody knows that.
©2001 The American Physical Society34-1



al

-

th

he

is

b

r
b

th

in

es

d it
e

uce

-

Y. S. MYUNG AND H. W. LEE PHYSICAL REVIEW D63 064034
II. RANDALL-SUNDRUM SOLUTION AND
BRANS-DICKE-TYPE MODEL

We start with the 5D bulk action and the 4D domain w
action as@12#

S5Sbulk1SDW ~1!

with

Sbulk5
1

2k5
2E d5xA2GFR52

4

3
]MD]MD2e22aDLG ,

~2!

SDW52sDWE d4xA2ge2aD, ~3!

wheresDW is the tension of the domain wall andg is the
determinant of the induced metricgmn5]mXM]nXNGMN for
the domain wall. HereM ,N50,1,2,3,4(x45z) and m,n
50,1,2,3(xm5x). ‘‘ D ’’ denotes the dilaton. We are inter
ested in the second RS solution with4

ḠMN5H22~z!hMN , D̄50, L5212k2,

sDW56k/k5
2 , a50 ~4!

with H5kuzu11 andhMN5diag@21111#. Here overbar
(2) means the background value. In this paper we follow
Misner-Thorne-Wheeler~MTW! conventions@13#.

In order to obtain a 4D effective action, we introduce t
metric ĜMN in GMN5H22(z)ĜMN which satisfies]zĜMN
50. Explicitly, the line element is given by

dS5
25GMNdxMdxN5H22ĜMNdxMdxN

5H22@gmn~x!dxmdxn1F2~x!dz2#. ~5!

Off-diagonal elements are not allowed because if they ex
they violate theZ2-symmetry argument.5 At this stage we
wish to remind the reader thatF(x) has nothing to do with
the radion which is necessary for stabilizing the distance
tween two branes in the first RS model@1#. This is because
here we consider the second RS model@2#. Substituting Eq.
~5! with D50 into Eq. ~1! and integrating it overz lead to
the Brans-Dicke~BD!-type model with a potential@12#

SRS5
1

2k4
2E d4xA2gFFR16k2S F1

1

F
22D G ~6!

with k4
25kk5

2. This is our key action which is suitable fo
the study of physics defined on the brane. Also it can
derived from the RS model directly. It is emphasized that

4With this ansatz, the dilatonic action Eq.~1! reduces to the sec
ond RS model exactly@2#.

5One may introduce off-diagonal term of 2Am(x)dxmdz. But this
is not invariant under the reflection ofz→2z @1#. Thus we must
haveAm(x)50.
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first term (FR) is the BD term withv50 @14#. The BD
model withv50 corresponds to the massless Kaluza-Kle
model with gmn , g44(;F2), and gm4(;Am)50.6 In this
sense, we wish to callF the BD scalar. The second term
arises from the fact that the 5D spacetime is an AdS5 with a
negative cosmological constantL and a domain wall located
at z50. Equivalently, this means that the RS solution giv
us a nonfactorizable geometry withH5kuzu11. Hence this
term accounts for the feature of the RS-type solution an
plays the role of an effective potential. From now on w
wish to separate the pure BD model@LBD5FR# from the
RS model@LRS5FR16k2(F11/F22)# for comparison.

From Eq.~6! we derive the equations of motion (dFSRS
50, dgmn

SRS50)

R16k2S 12
1

F2D50, ~7!

Rmn2
1

2
gmnR5

1

F H ¹m¹nF2gmnhF

13k2S F1
1

F
22DgmnJ . ~8!

Contracting Eq.~8! with gmn and using Eq.~7! leads to the
RS scalar equation

hF12k2S 2F2
3

F
14D50. ~9!

Also from Eq.~8!, its contraction form, and Eq.~9! one finds
the other Einstein equation,

Rmn5
1

F
$¹m¹nF12k2~2F11!gmn%. ~10!

Here one finds a solution which satisfies all of Eqs.~7!–~10!
simultaneously as

F̄51, R̄50, R̄mn50. ~11!

This means that the Ricci-flat condition ofR̄mn50 with F̄
51 describes the 4D vacuum configuration correctly.

As an example, we choose the Minkowski spacetime

ḡmn5hmn , F̄51. ~12!

To study the propagations on this background, we introd
the perturbation around the background~12! as

gmn5hmn1hmn , F5F̄1w ~g445ḡ441h44!. ~13!

Then the linearized equations to Eqs.~9! and~10! are found
to be

6This model is based on the action ofSKK5(1/k5
2)*d5xA2GR5

with a factorizable geometry ofH51.
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]2w14k2w50, ~14!

dRmn~h!2]m]nw12k2whmn50 ~15!

with

dRmn52
1

2
@]2hmn1]n]mh r

r 2]r]mhnr2]r]nhmr#.

~16!

Under the 4D TTF gauge, one finds thatdRmn52 1
2 ]2hmn

andhmndRmn52 1
2 ]2h m

m 50. Contracting Eq.~15! with hmn

leads to the other equation forw

]2w28k2w50. ~17!

Equation~14! allows a tachyonic solution because it has
negative potential term of24k2. Fortunately we resolve this
problem. We have two different Eqs.~14! and ~17! for the
same field ofw. Hence we requirew50 for consistency.
This observation agrees with Refs.@6,12#. Then Eq. ~15!
reduces to an equation for the massless graviton witho
matter source on the brane

]2hmn50. ~18!

III. SCHWARZSCHILD BLACK HOLE SOLUTIONS

Introducing a spherically symmetric spacetime, one

tains the Schwarzschild black hole withF̄51 in the domain
wall approach@7# as

ḡmn5diag@2en,e2n,r 2,r 2 sin2u#, ~19!

R̄trtr 52
M

r 3 , R̄tutu52
~r 22M !M

r 2
,

R̄tftf5sin2uR̄tutu ,

R̄ruru5
M

r 22M
, R̄rfrf5sin2uR̄ruru ,

R̄ufuf522Mr sin2u,

R̄mn50, R̄50

with

en512
2M

r
. ~20!

Here M5GNM45k4
2M4 /8p5G5kM4 with GN ~4D New-

tonian constant! andG5 ~5D Newtonian constant!. M4 is the
mass of a large black hole withM4.1/(2k2G5). The BD
and RS black hole solutions are permitted because
Schwarzschild solution comes from the Ricci-flat conditio
The BD ~RS! black holes denote the Schwarzschild bla
hole with LBD (LRS), respectively. The BD black hole i
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introduced for reference. To study these black holes spe
cally, we introduce the perturbation

gmn5ḡmn1hmn , F5F̄1w. ~21!

Then the linearized equations to Eqs.~9! and~10! are found
as

h̄w14k2w50, ~22!

dRmn~h!2¹̄n¹̄mw12k2wḡmn50 ~23!

with the Lichnerowicz operatordRmn(h) @15,16#,

dRmn~h!52
1

2
@h̄hmn1¹̄n¹̄mh r

r 2¹̄r¹̄mhnr2¹̄r¹̄nhmr#.

~24!

We note that Eq.~23! is not a diagonalized form to obtai
eigenmodes. If one introducesĥrn5hrn1wḡrn , then this
leads to

dRmn~ ĥ!50. ~25!

This is the perturbed equation of pure 4D gravity forĥmn .7 A
way to analyze Eqs.~22! and ~23! is known @19,20#. For
instance, it is possible if one uses the RW gauge instea
the 4D TTF gauge. The perturbationĥmn falls into two dis-
tinct classes — odd and even parities with (21)l 11 and
(21)l , respectively.l denotes an angular quantum numb
on S2: L̄2Ylm(u,f)52 l ( l 11)Ylm(u,f). Among ten com-
ponents in the axisymmetric perturbation, one can alw
choose six components by taking into account the gen
coordinate transformations:xm85xm1ejm @21,22#. This is a
choice of the RW gauge. And this is obvious here beca
we consider the propagation of gravitons on the brane. In
RW gauge we assign two components (h0 ,h1) for odd parity

ĥmn
odd5S 0 0 0 h0~r !

0 0 0 h1~r !

0 0 0 0

h0~r ! h1~r ! 0 0

D e2 ivt sinu
dPl~u!

du

~26!

with Legendre polynomialPl(u). For even parity, we have
ĥmn

even5hmn
even1wḡmn , wherehmn

even is composed of four com-
ponents (H0 ,H1 ,H2 ,K) as

7Its stability analysis was performed 30 years ago@17,18#.
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hmn
even5S H0S 12

2M

r D H1 0 0

H1 H2S 12
2M

r D 21

0 0

0 0 r 2K~r ! 0

0 0 0 r 2 sin2uK~r !

D e2 ivtPl~u!. ~27!
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These two cases are never mixed and thus they provide
degrees of freedom which is necessary for describing a m
less spin-two particle.

A. RS scalar perturbation

Let us first analyze the RS scalar perturbation using
~22!. Considering@w}c(r )/r #Ylm(u,f)e2 ivt and the back-
ground~19!, one finds the Schro¨dinger-type equation

d2c

dr* 2 1~v22Vc
RS!c50, ~28!

where the RS scalar potential is given by

Vc
RS~r !5S 12

2M

r D H l ~ l 11!

r 2
1

2M

r 3 24k2J ~29!

with the tortoise coordinater * 5r 12M ln@(r/2M )21#.
From the analysis in Ref.@20#, we find that forv5 ia, 0
,a,2k, the scalar perturbation has an exponentially gro
ing mode ofeat. Therefore this system may be classica
unstable. In other words, ‘‘24k2’’ in the potential induces
an instability of the asymptotically flat space ofr→`. Thus
we call it a potential instability. This may imply that the R
black hole solution is classically unstable. However, it is n
true. Any exponentially growing mode is not allowed for th
RS spherically symmetric background. An important point
remember is that an AdS5 acts like a box of size8 ;(2k)21

@7#, so it may allow an unstable perturbation of waveleng
with l<(2k)21 only @23#. However, for this case, we canno
find any consistent~unstable! solution @20#. In the unstable
case of 0,a5l21,2k, one finds a condition ofl
.(2k)21 which is forbidden inside an AdS5. The instability
problem can be cured by considering the bulk spaceti
Hence we can include the RS scalar mode, as a phys
field, which propagates in the RS black hole background

B. Odd parity perturbation for ĥµn

Now we discuss the odd parity perturbation forĥmn .
From Eq.~23!, we have three equations:

8Although a conventional length scale of an AdS5 is determined
by *d5xA2GR5 in Eq. ~2! as*dzH2351/k, we here choose a siz
of the AdS5 box as 1/(2k) for a definite calculation. This come
from: 2L*d5xA2G→*dzH2551/(2k).
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dR035dR135dR2350. ~30!

Here we obtain the Regge-Wheeler equation usingQ
[(h1 /r )@12(2M /r )#

d2Q

dr* 2 1@v22VRW~r !#Q50, ~31!

where the Regge-Wheeler potential is given by

VRW~r !5S 12
2M

r D S l ~ l 11!

r 2
2

6M

r 3 D . ~32!

Furtherh0 is not an independent mode, it can be expresse
terms ofQ ash05( i /v)(d/dr* )(rQ). We note that the BD
black hole@19# takes the same potential as in Eq.~32! for the
odd parity perturbation. This case has already been analy
by Vishveshwara in Ref.@17# and an allowed solution is a
scattering state

Q`5e2 ivr* 1A2eivr* ~r * →`!,

Q2M5B2e2 ivr* ~r * →2`!. ~33!

C. Even parity perturbation for ĥµn

In this case, from the remaining seven equations, we h
the Zerilli equation in Ref.@17#

d2cZ

dr* 2 1@v22VZ~r !#cZ50, ~34!

where the Zerilli potential is given by

VZ~r !5S 12
2M

r D
3H 2l2~l11!r 316l2Mr 2118lM2r 118M3

r 3~lr 13M !2 J
~35!

with l5( l 21)(l 12)/2. HerecZ(r ) is a gauge invariant
combination ofH0 ,H1 ,H2 ,K,c/r @19,21,22#. At this stage
4-4
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we would like to comment that the BD equation@dRmn(h)
2¹n¹mw50# in Ref. @19# takes the same equation as in E
~34!. Also it is easily shown that an allowed solution is
plane wave like Eq.~33!. This fact can be easily read o
from the shape of potentialsVRW andVZ . Because these a
belong to positive potential barrier forl>2, there exist scat-
tering states only. In other words, there are no bound s
solutions. This means that one cannot find any exponent
growing mode in the graviton sector, even ifk2 term is in-
volved in the RS Eq.~23!.

IV. DISCUSSIONS

We investigate the zero mode sector of the 5D dilato
domain wall solution. This sector is very useful for descr
ing the RS black hole on the brane. Assuming a spheric
symmetric spacetime, one has a large black hole on
brane. We perform the analysis of stability to see whethe
not the RS black hole truly exists. It is well known that th
BD black hole is stable. Here one finds an exponentia
growing mode for the RS black hole because of the nega
nature of its potential. If there is an exponentially growi
mode, its black hole is classically unstable. From the anal
of w in the RS Minkowski spacetime, we havew50 under
the 4D TTF gauge. On the other hand, we cannot havw
50 in the spherically symmetric black hole spacetime w
the RW gauge. Fortunately, we find that this instability is n
r,

.

s
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allowed inside an AdS5 whose size is (2k)21. Hence the
instability problem is cured. Actually BD scalar as well a
gravitons can propagate in the black hole spacetime. A
this implies that the large RS black hole is stable.

For the metric perturbations, we do not worry about th
stability even for consideringwÞ0. Choosing the RW
gauge, the graviton sector includingw leads to the well-
known two classes of odd and even parities. Since this se
always has positive potential barriers for anyl with l>2
@18#, there are no exponentially growing modes. Also th
can be confirmed from the other side. If we introduce a n
tensorĥmn , Eq. ~23! reduces to Eq.~25!. This is nothing but
the perturbed equation for pure 4D gravity, which w
proved to be stable 30 years ago.

In conclusion, the large black hole in the dilaton doma
wall is stable. This can represent a stable form on the br
for the RS black cigar whose metric is not known up to no
Finally we comment that the RS black hole can be descri
by massless gravitons and a scalar mode with smaller w
length than the size of an AdS5 box.
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