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Schwarzschild black hole in the dilatonic domain wall
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In the dilatonic domain wall model, we study the Schwarzschild black hole as a solution to the Kaluza-Klein
zero mode effective action which is equivalent to the Brans-Di@®) model with a potential. This can
describe the large Randall-SundrdRS) black hole whose horizon is to be the intersection of the black cigar
with the brane. The black cigar located far from the five-dimensional anti—de Sitter Ad&zon is known
to be stable, but any explicit calculation for stability of the RS black hole=a@d has not yet been performed.

Here its stability is investigated against tiiéndependent perturbations composed of odd-even parities of
graviton (,,) and BD scalarli,,=2¢). It seems that the RS black hole is classically unstable because it has

a potential instability at a wavelengitr>1/(2k). However, this is not allowed inside an AgBox of the size

1/(2k). Thus the RS black hole becomes stable. The RS black hole can be considered as a stable remnant at
z=0 of the black cigar.
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. INTRODUCTION string solution in an AdS [7].3 This is given bya,?,,sN
_ -3 . . )
=H ?(z 1] with th hwarzschild metri
Recently there has been much interest in the Randall- . (219,11 th the Sgl ? ZSC. d et cg/{,,
. ) . =diad —(1—2M/r),(1—-2M/r) "1 r2r?sirf6]. It is
Sundrum brane worlfiLl—3]. A key idea of this model is that . S ;
; . . . shown that this black string is unstable near the At8ri-
our universe may be a brane embedded in the higher dimen-

. ; . zon of z=« but it is stable far from the horizon. This is a
sional space. A concrete model is a single three brane en)-

bedded in the five-dimensional anti—de Sitter space gA\dS {Ezglzhc;f g;:c(ksr;?i?]ry_h:gaz]?;?1ér:\t?blr?#awm(gnsfetij the
which acts like a box of the size 1/k. Randall and Sundrum 9 y 9

- ) AdS; hori 9]. A stable object left behind Id bl
(RS have shown that a longitudinal patt,(,) of the metric Ss horizon[9]. A stable object left behind would resemble

. L L ) ) , a black cigar, although we do not know its explicit metric.
fluctuations satisfies the Sclinger-like equation with an  |once we have the RS black hole picture on the brane lo-

attrgctive delta functiqn. As a result, the massless *_(aluza(:ated atz=0. The horizon of the black hole on the brane
Klein (KK) modes which describe the localized gravity on || pe determined from the intersection of the black cigar
the brane were found. Furthermore, the massive KK modegith the brane. Here we assume that this is larger @s
lead to corrections to the Newtonian potential such/@s) ~ =2M>1/k. In this case an observer on the brane perceives
=Gn(mimy)/r[1+(1k?r?)]. exactly the Schwarzschild solution, without any correction

However, we would like to point out that this has beenarising from the extra dimensiori0]. In other words, any
done in the four-dimension&D) Minkowski space with the massive KK modes are not excited in these circumstances.
RS gaugé. It seems that this gauge is so restrictive. In orderThen the zero modes of the bulk graviton can describe this
to have a well-defined theory on the brane, one has to insituation very well. Hence the zero mode approach becomes
clude nonzero transverse partstof, andh,, at the begin- a powerful technique in the study of black holes on the
ning. Ivanov and Volovich discussed along this direction bybrane.
choosing the 5D de Donder gaddet,5]. Also authors in On the other hand, Youm showed that the RS solution can
Ref.[6] studied the propagation of the metric including non-be found in the dilatonic domain wallL1,12. In order to
zero transverse parts. It turned out that there are no masslesisidy physics on the brane, we need its effective action. It is
scalar and vector propagations in the RS background. Thiknown that zero mode effective action takes a form of the
implies that the RS gauge is a good choice for describing th8rans-Dicke model with a potential.
brane world. Furthermore, it is shown that the RS Inthis paper, we study stability of the large RS black hole
Minkowski spacetime is stable only under the RS gauge. with zindependent perturbations suchhgg(x),hs4(x). We

If the Minkowski metric on the brane is replaced by any find that these are massless graviton and scalar modes propa-
4D Ricci-flat one, for example the Schwarzschild metric, thegating in the RS black hole background. Here we do not
5D metric still satisfies the Einstein equation with a negativerequire the 4D TTF gauge which is useful for the RS
cosmological constant. In this process we obtain a blaciMinkowski space. Instead we choose the Regge-Wheeler

(RW) gauge for our study of spherically symmetric back-

ground.
Yn fact, this gauge fothyy is composed of Gaussian-normal
(GN) gauge fiu4=h,,=0) and 4D transverse, trace-fré&TF)
gauge ¢*h,,=0, h*,=0). 3precisely, this is not a 5D black hole solution to the RS model. At
2This corresponds to the 5D TTF gaugﬁAhMN=O,hMM=0). present, nobody knows that.
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Il. RANDALL-SUNDRUM SOLUTION AND first term (@R) is the BD term withw=0 [14]. The BD
BRANS-DICKE-TYPE MODEL model withw=0 correspoznds to the massless Iéaluza-KIein
We start with the 5D bulk action and the 4D domain wall model with Yy Gag ~ %), and g,q(~A,)=0." In this
action ag{12] sense, we wish to calb the BD scalar. The second term
arises from the fact that the 5D spacetime is an Adgh a
S=Suu+ Sow (1) negative cosmological constafitand a domain wall located
at z=0. Equivalently, this means that the RS solution gives
with us a nonfactorizable geometry with=k|z|+ 1. Hence this
term accounts for the feature of the RS-type solution and it
plays the role of an effective potential. From now on we
wish to separate the pure BD modelgp=PR] from the
2 RS model[ Lrs= PR+ 6k?(® +1/D — 2)] for comparison.
From Eq.(6) we derive the equations of motiod4Sgs
=0, 59;WSRS= 0)

1 4
Spuk= ﬁJ’ d5X\/—G{R5—§aMD3MD_e2aDA ,
5

Spw=— O'DWJ’ d*xy/— ye 3P, ©)

1
where oy is the tension of the domain wall and is the R+6k? 1— @) =0, (7)
determinant of the induced metrig,,= 3,X"3,XNGy for
the domain wall. HereM,N=0,1,2,3,4k*=2) and u,v 1 1
=0,1,2,3k#=x). “D” denotes the dilaton. We are inter- R.,— 59 R:—(V vV,o—g,, 00
- A i v 3wt T | et uv
ested in the second RS solution with

Gun=H %2)7un, D=0, A=-122 + 3Kk2

1

®+$_2)gw]' (8)
—Ak/? A

oow=6klw5, a=0 4) Contracting Eq(8) with g*” and using Eq(7) leads to the

with H=K|z| + 1 andyyy=diad — + + + + ]. Here overbar RS scalar equation

(7) means the background value. In this paper we follow the
Misner-Thorne-WheelefMTW) conventiong 13]. Od +2k?
In order to obtain a 4D effective action, we introduce the

metric Gy in GMN.=H_2(Z)GMN which satisfiess,Gun  Also from Eq.(8), its contraction form, and Eq9) one finds

=0. 9

) 3+4
)

dSL=GyndxMdxN=H"2Gy,dxMdx"
=H"?[g,(x)dx“dx"+ D?(x)dZ]. (5)

Off-diagonal elements are not allowed because if they exisll,"ere one finds a solution which satisfies all of EG$~(10)

they violate theZ,-symmetry argumertt.At this stage we Simultaneously as

wish to remind the reader thdi(x) has nothing to do with — _ _

the radion which is necessary for stabilizing the distance be- =1, R=0, R,,=0. 11
tween two branes in the first RS modél. This is because _ _
here we consider the second RS mdda! Substituting Eq.  This means that the Ricci-flat condition B,,=0 with ®

1
Ru=g V.V, @+2K(—®+1)g,,}. (10

(5) with D=0 into Eq.(1) and integrating it over lead to =1 describes the 4D vacuum configuration correctly.
the Brans-DickgBD)-type model with a potentidl12] As an example, we choose the Minkowski spacetime
1 1 q. . = O =
SRS=2—ZJ d4x\/—g[<bR+6k2 O+ 5—2) ©®) 9ur= s P=1. (12
Kq

To study the propagations on this background, we introduce
with k3=kxZ. This is our key action which is suitable for the perturbation around the backgroui@) as
the study of physics defined on the brane. Also it can be _ .
derived from the RS model directly. It is emphasized that the ="t Ny, P=P+¢ (gaa=0asthsy). (13

Then the linearized equations to E¢8) and(10) are found

“With this ansatz, the dilatonic action E(.) reduces to the sec- to be

ond RS model exactlj2].

5One may introduce off-diagonal term oA2(x)dx*dz. But this
is not invariant under the reflection af-—z [1]. Thus we must ®This model is based on the action $fx = (1/«Z) [ d°x\/— GRs
haveA ,(x)=0. with a factorizable geometry dfi=1.
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Po+4k?e=0, (14) introduced for reference. To study these black holes specifi-
cally, we introduce the perturbation

oR,,(h)—d,d,0+2k*¢n,,=0 (15)

with 0=0uth,,, P=0+e. (2D)

1 . . .
_ 2 Then the linearized equations to E¢8) and(10) are found
OR,y= = 5[0+ 9,0,0° = 3,0, = 9P ,0,,,]. o q ¢8) and(10)

(16)

Under the 4D TTF gauge, one finds théR,,=—33°h,,, Oe+4k29=0, (22

and7*"6R,,,= —3°h* =0. Contracting Eq(15) with 7"
leads to the other equation for - _
6R,,(N) =V, V ,0+2k%pg,,=0 (23
#?p—8k2p=0. (17

Equation(14) allows a tachyonic solution because it has aWith the Lichnerowicz operatoéR,,,(h) [15,18),
negative potential term of 4k?. Fortunately we resolve this
problem. We have two different Eqé&l4) and (17) for the 1 — _ _ _
same field ofp. Hence we requirgp=0 for consistency. 6R,,(h)=— E[Dh,wﬂLVVV,Lh”p—VPV,Lth—VpVVhMp]-
This observation agrees with Ref6,12]. Then Eq.(15) (24)
reduces to an equation for the massless graviton without a
matter source on the brane
We note that Eq(23) is not a diagonalized form to obtain
#h,,,=0. (18 eigenmodes. If one introducds,,=h,,+ ¢g,,, then this
leads to
I1l. SCHWARZSCHILD BLACK HOLE SOLUTIONS

Introducing a spherically symmetric spacetime, one ob- 5RM(F1)=O. (25

tains the Schwarzschild black hole widh=1 in the domain

wall approact{7] as This is the perturbed equation of pure 4D gravity figy, .” A

- Y2 o way to analyze Eqs(22) and (23) is known [19,20. For
g,.,=diad —e”.e”",r? r?sirfd], (19 instance, it is possible if one uses the RW gauge instead of
the 4D TTF gauge. The perturbatid?r,]w falls into two dis-
tinct classes — odd and even parities with 1)' "' and
(—1)', respectively! denotes an angular quantum number

B B on S%: L2Y,(6,¢)=—1(1+1)Y,(6,¢). Among ten com-
Rt¢t¢=sin20Rt0t9, ponents in the axisymmetric perturbation, one can always

choose six components by taking into account the general
_ M _ L coordinate transformationg®’ =x*+ e&* [21,22. This is a
Reoro=r 50 Rrgrp=SIPOR 414, choice of the RW gauge. And this is obvious here because
we consider the propagation of gravitons on the brane. In the
RW gauge we assign two componeritg (h,) for odd parity

M (r—2M)M
Rtﬂt(}:_—

Ry =2-3,
trir r r2

E@(ﬁﬁ(ﬁ: - 2|\/|I’ S|r]20,

R,,=0, ) 0 0 0 ho(r)
. R 0 0 0 hy(r) _ dP,(0)
Wlth Odd: —lot of
hs 0 0 0 0 e “sing de
2M ho(r) hy(r) 0 0
V: —_— — O 1
e'=1 e (20 (26)

Here M =GyM = k3M,/87=GskM, with Gy (4D New-
tonian constantandG; (5D Newtonian constantM, is the - — .
mass of a large black hole withl,>1/(2k?Gz). The BD  Nur =My + 9.y, Wherehi"is composed of four com-
and RS black hole solutions are permitted because thBONeNts Ho,Hi,Hz,K) as

Schwarzschild solution comes from the Ricci-flat condition.

The BD (RS black holes denote the Schwarzschild black

hole with Lgp (Lg9), respectively. The BD black hole is  Its stability analysis was performed 30 years 4ijo,18.

with Legendre polynomiaP,(6). For even parity, we have
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2M
Ho( - T) Hy 0 0
2m\ ! :

hzvven: H, Hol 1— - 0 0 e "'P(h). (27

0 0 r2K(r) 0

0 0 0 r2sirf oK (r)
|

These two cases are never mixed and thus they provide two SRy3= 6R;3= 6R,3=0. (30)

degrees of freedom which is necessary for describing a mass-

less spin-two particle. Here we obtain the Regge-Wheeler equation usi@g

=(hy/r)[1—-(2M/r)]
A. RS scalar perturbation

Let us first analyze the RS scalar perturbation using Eq. d’Q

(22). Considering ¢ (r)/r]Y,,(6,¢)e "t and the back- dr*2 +[0?=Vru(r)1Q=0, 3D
ground(19), one finds the Schrbinger-type equation

d2y where the Regge-Wheeler potential is given by

gz T (7= Vi9y=0, (28)

2M\ [ 1(I1+1) 6M
where the RS scalar potential is given by Vel =|1-— 2 (32
rs 2M\ [I(1+1) 2M , : . ,
Vy(r)={1- - >+ R —4k (29 Furtherh, is not an independent mode, it can be expressed in
r terms ofQ ashy=(i/w)(d/dr*)(rQ). We note that the BD

. . . . _ _ black hole[19] takes the same potential as in E8_2) for the
with the tortoise - coordinater™ =r + 2M In[(r/2M) —1]. odd parity perturbation. This case has already been analyzed

From the analysis in Ref20], we find that foro=ica, 0 ) . o
<a<2k, the scalar perturbation has an exponentially grow-by Vishveshwara in Ref.17] and an allowed solution is a

. ) ; ttering stat
ing mode ofe*!. Therefore this system may be classically scatlering state
unstable. In other words, “4k?” in the potential induces

an instability of the asymptotically flat space . Thus Q.=e U +ATET (1* ),
we call it a potential instability. This may imply that the RS
black hole solution is classically unstable. However, it is not Quu=B e 1" (r* o). (33)

true. Any exponentially growing mode is not allowed for the

RS spherically symmetric background. An important point to

remember is that an AdSacts like a box of siZe~ (2k) ~* C. Even parity perturbation for by,
[7], so it may allow an unstable perturbation of wavelength
with A< (2k) ~* only [23]. However, for this case, we cannot
find any consistenfunstablg solution[20]. In the unstable
case of G<a=\"1<2k, one finds a condition of\ d2y,
> (2k) ! which is forbidden inside an AdS The instability ar*2
problem can be cured by considering the bulk spacetime.

Hence we can include the RS scalar mode, as a physical . o
field, which propagates in the RS black hole background. Where the Zerilli potential is given by

In this case, from the remaining seven equations, we have
the Zerilli equation in Ref[17]

+[0?=Vz(r)]9z=0, (34)

B. Odd parity perturbation for ﬁu,, V,(r)= ( 1— Z_M)
- r
Now we discuss the odd parity perturbation foy,,.
From Eq.(23), we have three equations: y 2NN+ 1)r3+6A2Mr2+ 18\ M?r +18M3
r3(Ar+3M)?

8Although a conventional length scale of an AdS determined (39

by [d°xy/— GRs in Eq.(2) asfdzH 3= 1/k, we here choose a size
of the AdS; box as 1/(X) for a definite calculation. This comes Wwith N=(1—1)(1+2)/2. Here yz(r) is a gauge invariant
from: — A [d®\—G— fdzH 5=1/(2k). combination ofHq,H,H,,K,¢/r [19,21,22. At this stage
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we would like to comment that the BD equatipdR,,(h)  allowed inside an AdSwhose size is (R) 1. Hence the
—V,V,e=0] in Ref.[19] takes the same equation as in Eq. instability problem is cured. Actually BD scalar as well as
(34). Also it is easily shown that an allowed solution is a gravitons can propagate in the black hole spacetime. Also
plane wave like Eq(33). This fact can be easily read off this implies that the large RS black hole is stable.
from the shape of potentialég,, andV,. Because these all For the metric perturbations, we do not worry about their
belong to positive potential barrier fb= 2, there exist scat- stability even for consideringp#0. Choosing the RW
tering states only. In other words, there are no bound statgauge, the graviton sector including leads to the well-
solutions. This means that one cannot find any exponentiallknown two classes of odd and even parities. Since this sector
growing mode in the graviton sector, everkff term is in-  always has positive potential barriers for ahith 1=2
volved in the RS EQq(23). [18], there are no exponentially growing modes. Also this
can be confirmed from the other side. If we introduce a new

IV. DISCUSSIONS tensorh,,,, Eq.(23) reduces to Eq(25). This is nothing but

We investigate the zero mode sector of the 5D diIatonic:the pgr:urgedtegluaggn for pure 4D gravity, which was
domain wall solution. This sector is very useful for describ-Proved to be stable 30 years ago.

ing the RS black hole on the brane. Assuming a sphericall IIP_CO?CE:S'O_?H_me large blacktholetlrglth? dllatontﬁlorgaln
symmetric spacetime, one has a large black hole on th all 1S stable. 1his can represent a stable form on the brane

brane. We perform the analysis of stability to see whether o or the RS black cigar whose metric is not known up to now.

not the RS black hole truly exists. It is well known that the inally we comment that the RS black hole can be described

BD black hole is stable. Here one finds an exponentiall)})y massless gra\{itons and a scalar mode with smaller wave-
growing mode for the RS black hole because of the negativéength than the size of an Ad3ox.

nature of its potential. If there is an exponentially growing

mode, its black hole is classically unstable. From the analysis
of ¢ in the RS Minkowski spacetime, we haye=0 under We thank J. Y. Kim and G. Kang for helpful discussions.
the 4D TTF gauge. On the other hand, we cannot have This work was supported in part by the Brain Korea 21 Pro-
=0 in the spherically symmetric black hole spacetime withgram of Ministry of Education, Project No. D-0025 and

the RW gauge. Fortunately, we find that this instability is notKOSEF, Project No. 2000-1-11200-001-3.
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