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Exact relativistic treatment of stationary counterrotating dust disks:
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This is the first in a series of papers on the construction of explicit solutions to the stationary axisymmetric
Einstein equations which describe counterrotating disks of dust. These disks can serve as models for certain
galaxies and accretion disks in astrophysics. We review the Newtonian theory for disks using Riemann-Hilbert
methods which can be extended to some extent to the relativistic case, where they lead to modular functions on
Riemann surfaces. In the case of compact surfaces these are Korotkin's finite gap solutions, which we will
discuss in this paper. On the axis we establish for general genus relations between the metric functions, and
hence the multipoles which are enforced by the underlying hyperelliptic Riemann surface. Generalizing these
results to the whole spacetime, we are able in principle to study the classes of boundary value problems which
can be solved on a given Riemann surface. We investigate the cases of genus 1 and 2 of the Riemann surface
in detail, and construct an explicit solution for a family of disks with constant angular velocity and constant
relative energy density which was announced in a previous Letter.

DOI: 10.1103/PhysRevD.63.064033 PACS nunffer04.20.Jb, 02.16-v, 02.30.Jr

[. INTRODUCTION discuss relativistic effects for models whose Newtonian limit

The importance of stationary axisymmetric spacetimess of astrophysical importance. We will investigate disks
arises from the fact that they can describe stars and galaxiegth counterrotating dust streams which are discussed as
in thermodynamical equilibrium(see, e.g., Refs[1,2)]). models for certainSO and Sa galaxies(see Ref.[9] and
However the complicated structure of Einstein equations ireferences given therein, and Ref$0,11]). These galaxies
the matter region which are apparently not completely inteshow counterrotating matter components and are believed to
grable has made a general treatment of these equations ifbe the consequence of the merger of galaxies. Recent inves-
possible up to now. Thus only special, possibly unphysicaltigations have shown that there is a large number of galaxies
solutions such as that of Wahlquig] were found(in Ref.  (see Ref[9], the first was NGC 4550 in Virgovhich show
[4] it was shown that the Wahlquist solution cannot be thecounterrotating streams in the disk with up to 50% counter-
interior solution for a slowly rotating starSince vacuum rotation.
equations in the form of those of Erf&] are known to be Exact solutions describing relativistic disks are also of
completely integrablg¢6—8], the study of two-dimensional interest in the context of numerics. They can be used to test
matter models can lead to global solutions of the Einsteirexisting codes for stationary axisymmetric stars as in Refs.
equations which hold both in the matter and vacuum regiong:12,13. Since Newtonian dust disks are known to be un-
the equations in matter, which is in general approximated astable against fragmentation and since numerical investiga-
an ideal fluid, reduce to ordinary nonlinear differential equa-tions (see, e.g., Ref14]) indicate that the same holds in the
tions because one of the spatial dimensions is suppresse@lativistic case, such solutions could be taken as exact initial
Matter thus leads to boundary values for the vacuum equadata for numerical collapse calculations: due to the inevitable
tions. numerical error, such an unstable object will collapse if used

Disks of pressureless matter, so-called dust, are studied &s initial data.
astrophysics as models for certain galaxies and for accretion In the Newtonian case, dust disks can be treated in full
disks. We will therefore discuss dust disks in more detail, bugenerality(see, e.g., Ref15]) since the disks lead to bound-
the techniques used can in principle be extended to morary value problems for the Laplace equations which can be
general cases. In the context of galaxy models, relativisticolved explicitly. The fact that the complex Ernst equation
effects only play an important role in the presence of blackwhich takes the role of the Laplace equation in the relativis-
holes, since the latter are genuinely relativistic objects. Atic case is completely integrable gives rise to the hope that
complete understanding of a black-hole disk system even iboundary value problems might be solvable here at least in
nonactive galaxies is therefore merely possible in a relativselected cases. The unifying framework for both the Laplace
istic setting. The precondition to construct exact solutions forand Ernst equations is provided by methods from soliton
stationary black-hole disk systems is the ability to treat relatheory, so-called Riemann-Hilbert problems: the scalar prob-
tivistic disks explicitly. In this paper we will focus on disks lem for the Laplace equation can always be solved with the
of pressureless matter. By constructing explicit solutions, weénelp of a generalization of the Cauchy integisge Ref[16],
hope to obtain a better understanding of the mathematicalnd references given thergim procedure which leads to the
structure of the field equations and the physics of rapidlyPoisson integral for distributional densities. Choosing the
rotating relativistic bodies, since dust disks can be viewed asontour of the Riemann-Hilbert problem appropriately, one
a limiting case for extended matter sources. Hence we wiltan construct solutions to the Laplace equation which are
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everywhere regular except at a disk where the function is naonian limit of disks of genus 2. As a first application of this
differentiable. Similarly, one can treat the relativistic caseconstructive approach we derive the class of counterrotating
where the matrix Riemann-Hilbert problem can be related talust disks with constant angular velocity and constant rela-
a linear integral equation. It was shown in Riif7] that the  tive density of Ref.[19]. We prove the regularity of the
matrix problem for the Ernst equation can always be gaugéolution up to the ultrarelativistic limit in the whole space-
transformed to a scalar problem on a Riemann surface whichme except the disk, and conclude in Sec. VIII.

can be solved explicitly in terms of Korotkin's finite gap

solutions [18] for_ rational Riemann-HiIbert data: In_ this Il NEWTONIAN DUST DISKS
sense these solutions can be viewed as a generalization of the
Poisson integral to the relativistic case. To illustrate the basic concepts used in the following sec-

Whereas a Poisson integral contains one free functiotions, we will briefly recall some facts on Newtonian dust
which is sufficient to solve boundary value problems for thedisks. In Newtonian theory, gravitation is described by a
scalar gravitational potential, finite gap solutions contain onescalar potentiall which is a solution to the Laplace equation
free function and a set of complex parameters: the branch the vacuum region. We use cylindrical coordinagest,
points of the Riemann surface. Thus one cannot hope tand ¢ and place a disk, made up of a pressureless two-
solve general boundary value problems for the compleximensional ideal fluid with radiugg, in the equatorial
Ernst potential within this class, because this would implyplane{=0. In Newtonian theory stationary perfect fluid so-
the choice to specify two free functions in the solution ac-lutions, and thus also the here considered disks, are known to
cording to the boundary data. This means that one can onlge equatorially symmetric.
solve certain classes of boundary value problems on a given Since we concentrate on dust disks, i.e., pressureless mat-
compact Riemann surface. In the first paper we investigatter, the only force to compensate for gravitational attraction
the implications of the underlying Riemann surface on thein the disk is the centrifugal force. In the disk this leads to
multipole moments and the boundary values taken at a givethere and in the followind ,= 9f/x)
boundary. Relations will be given for the general genus of
the surface, and will be discussed in detail in the case of U,=0%p)p (1)
genus 1(elliptic surface and genus 2, which is the simplest P '
case with generic equatorial symmetry. It is shown that the
solution of boundary value problems leads, in general, tovhere((p) is the angular velocity of the dust at radips
nonlinear integral equations. However, we can identifySince all terms in Eq(1) are quadratic ir(), there are no
classes of boundary data where only one linear integral equ#ffects due to the sign of the angular velocity. The absence of
tion has to be solved. Special attention will be paid to counthese so-called gravitomagnetic effects in Newtonian theory
terrotating dust disks, which will lead us to the constructionimplies that disks with counterrotating components will be-
of the solution for constant angular velocity and constanhave with respect to gravity exactly as disks which are made
relative density which was presented in Hé8]. It contains, up of only one component. We will therefore only consider
as limiting cases, the static solutions of Morgan and Morgarihe case of one component in this section. Integrating Bq.
[20] and the disk with only one matter stream by Neugebauewe obtain the boundary dat#(p,0) with an integration con-
and Meinel[21]. The potentials of the resulting spacetime atstantU,=U(0,0), which is related to the central redshift in
the axis and the disk are presented in the second papghe relativistic case.
physical features such as the ultrarelativistic limit, the forma- To find the Newtonian solution for a given rotation law
tion of ergospheres, multipole moments, and the energyt)(p), we thus have to construct a solution to the Laplace
momentum tensor are discussed in the third paper. equation which is regular everywhere except at the disk

The present paper is organized as follows. In Sec. Il wevhere it has to take on the boundary dfi. (1)]. At the
discuss Newtonian dust disks with Riemann-Hilbert meth-disk the normal derivatives of the potential will have a jump,
ods, and relate the corresponding boundary value problensince the disk is a surface layer. Note that one only has to
to an Abelian integral equation. The relativistic field equa-solve the vacuum equations, since the two-dimensional mat-
tions and the boundary conditions for counterrotating duster distribution merely leads to boundary conditions for the
disks are summarized in Sec. Ill. Important facts on hyperliaplace equation. In the Newtonian setting one thus has to
elliptic Riemann surfaces, which will be used to discuss Ko-determine the density for a given rotation law or, conversely,
rotkin’s class of solutions to the Ernst equation, are collecte@ well known problem(see, e.g., Ref{15] and references
in Sec. IV. In Sec. V, we establish relations for the corre-thereir) for Newtonian dust disks.
sponding Ernst potentials on the axis on a given Riemann The method we outline here has the advantage that it can
surface of arbitrary genus. The found relation limits the posbe generalized to some extent to the relativistic case. We put
sible choice of the multipole moments. We discuss in detaipo=1 without loss of generalitfwe are only considering
the elliptic case and the genus 2 case with equatorial syndisks of finite nonzero radijisind obtainJ as the solution of
metry. This analysis is extended to the whole spacetime i@ Riemann-Hilbert problentsee, e.g., Refl16] and refer-
Sec. VI which leads to a set of differential and algebraicences given therejn
equations which is again discussed in detail for genus 1 and Theorem 2.1Let InGe C**(T") andTI" be the covering of
2. The equations for genus 2 are used to study differentiallghe imaginary axis in the upper sheetXf between—i and
counterrotating dust disks in Sec. VII. We discuss the Newi, whereX is the Riemann surface of genus 0 given by the
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algebraic relationu(7)=(7— {)?+ p?. The functionG has

to be subject to the condition&(7)=G(r) and G(— 7)
=G(7). Then

1 InG(7)dr

R Nee

U(p,)=

is a real, equatorially symmetric solution to the Laplace

equation which is regular everywhere except at the disk,
=0 andp=1. The function I is determined by the bound-
ary dataU(p,0) or the energy density of the dust (Zro
=U, in units where the velocity of light and the Newtonian
gravitational constant are equal tp ia

tU,(p)dp
ING(t)=4| Ug+t | — 3
( ) ( 0 o m ( )
or
1 pU
InG(t)=4J Pt 5. @
t\Vp°—
respectively, wheré= —ir.

The occurrence of the logarithm in E) is due to the
Riemann-Hilbert problem with the help of which the solution
to the Laplace equation was constructed. We briefly outlin
the proof.

Proof. It may be checked by direct calculation tHatin
Eqg. (2) is a solution to the Laplace equation except at the
disk. The reality condition orG leads to a real potential,

whereas the symmetry condition with respect to the involu-

tion 7— — 7 leads to equatorial symmetry. At the disk the

potential, due to equatorial symmetry, takes the boundary

values
pINnG(t)
(“)__2w0¢;?F ©)
and
U= [ BEDg
o NP=p?

Both equations constitute integral equations for the “jump 05°=—€°(dt+ad¢)?+e 2 [e? (dp®+d¢?) +p?d¢?],

data” InG of the Riemann-Hilbert problem if the respective
left-hand side is known. EquatiotS) and(6) are both Abe-
lian integral equations, and can be solved in terms of quadra
tures, i.e., Eqs(3) and (4). To show the regularity of the
potential U, we prove that integra(2) is identical to the

Poisson integral for a distributional density which reads, a

the disk,
- 1 , ) , 2m dd)
Uip)= =2 tovrr V(p+p')7=4pp cosd
1 K[k(p.p'
:‘4f U(p,)p,dp,LP,)], (7)
0 ptp
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wherek(p,p’)=2+pp'l(p+p'), and whereK is the com-
plete elliptic integral of the first kind. Eliminating [@ in Eq.
(5) via Eq. (4), after interchange of the order of integration

we obtain
p ’ ’ 1
[F0k(Z o | ugK(ﬁ
0 P P p p’'
(8

which is identical to Eq.(7) since K[2'k/(1+k)]=(1
+k)K(k). Thus integral2) has properties known from the
Poisson integral: it is a solution to the Laplace equation
which is everywhere regular except at the disk where the
normal derivatives are discontinuous. This completes the
proof.

Remark:We note that it is possible in the Newtonian case
to solve the boundary value problem purely locally at the
disk. The regularity properties of the Poisson integral then
ensure global regularity of the solution except at the disk.
Such a purely local treatment will not be possible in the
relativistic case.

The above considerations make it clear that one cannot
prescribeU both at the diskand thus the rotation lamand
the density independently. This just reflects the fact that the
Laplace equation is an elliptic equation for which Cauchy

roblems are ill posed. If I® is determined by either E¢3)

r (4) for given rotation law or density, expressi@®) gives
the analytic continuation of the boundary data to the whole
spacetime. When we prescribe the angular velocity, the con-
stantUo is determined by the condition @&(i)=0, which
excludes a ring singularity at the rim of the disk. For rigid
rotation (2 =const), we obtain, e.g.,

2

m

dp’ |,

InG(7)=4Q%(?+1), 9

which leads, with Eq(2), to the well-known Maclaurin disk.

Ill. RELATIVISTIC EQUATIONS AND BOUNDARY
CONDITIONS

It is well known (see Ref[22]) that the metric of station-
ary axisymmetric vacuum spacetimes can be written in the
Weyl-Lewis-Papapetrou form

(10

Wherep and ¢ are Weyl's canonical coordinates, afndand
d, are the two commuting asymptotically timelike and
spacelike Killing vectors, respectively. In this case the
acuum field equations are equivalent to the Ernst equation
or the complex potentidlwheref =e?V +ib, and where the
real functionb is related to the metric functions via
i

b,=— ;e““az. (11)

Here the complex variablestands forz=p+i{. With these
settings, the Ernst equation reads
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1 2 an algebraic definition of the tensor components. Since the
f+ —=(f+f,)=—=f, 1, (12  vectorsu. are not normalized, the quantities. have no

2(z+2) f+f direct physical significance, they are just used to parametrize
S*¥. The energy-momentum tensor was chosen in a way to
interpolate continuously between the static case and the one-
component case with constant angular velocity. An energy-
momentum tensa®*” of the form of Eq.(15) can always be
written as

where a bar denotes complex conjugatiorCinVith a solu-
tion f, the metric functionJ follows directly from the defi-
nition of the Ernst potential, whereascan be obtained from
Eq. (11) via quadratures. The metric functidncan be cal-
culated from the relation
1 '=aputu”+pywhw?, (16)
— 2 4U 2
ke=2p(Uo)"~ Ze (8,)" (13 wherev andw are the unit timelike and spacelike vectors
) - - ) (v#)=N1(1,0wy4), respectively, and where w)
The integrability condition of Eqg11) and(13) is the Emst  =N,(«,0,1). This corresponds to the introduction of observ-
equation. For realf, the Ernst equation reduces to the grs[called ¢-isotropic observersFIO’s) in Ref. [11]] for

Laplace equation for the potentidl The corresponding so- which the energy-momentum tensor is diagonal. The condi-
lutions are static, and belong to the Weyl class. Hence statigon w »#=0 determines¢ in terms ofw, and the metric:
disks like the counterrotating disks of Morgan and Morgan #

[20] can be treated in the same way as the Newtonian disks Jo3t @ 4033

in Sec. Il. K== 17)

+w '
Since the Ernst equation is an elliptic partial differential Joo™ @¢Jos

equation, one has to pose boundary value problems. The |f p¥/g% <1 the matter in the disk can be interpreted as
bOUndary data arise from a solution of the Einstein equationﬁ] Ref. [20] either as having a pure|y azimuthal pressure or
in the matter region. In our case this will be an infinitesi- as being made up of two Counterrotating streams of pressure-
mally thin disk made up of two components of pressurelesgess matter with proper surface energy densify/2 which

matter which are counterrotating. These models are simplg ; ; *
L . re counterrotating with the same angular velogity; /o7,
enough that explicit solutions can be constructed, and they g g L

show typical features of general boundary value problems SFr=30*(UXUY +U*UY), (18
one might consider in the context of the Ernst equation. It is

also possible to study explicitly the transition from a station-yhere (U#)=U* (v#= /p;/azwu) is a unit timelike vec-

ary to a static spacetime with a matter source of finite extentor, We will always adopt the latter interpretation if the con-
sion for these models. Counterrotating disks of infinite ex-yjtion p*/o* <1 is satisfied, which is the case in the ex-
P =P ’

tensiop but finite mass were treateq in R¢f0] and [23]’ _ample we will discuss in more detail in Sec. VII. The energy-
and disks producing the Kerr metric and other metrics iNyomentum tensofEq. (18)] is just the sum of two energy-

[11]. To obtain the boundary conditions at a relativistic dustomentum tensors for dust. Furthermore it can be shown
disk, it seems best to use Israel's invariant junction condiyp 4t the vectord) . are geodesic vectors with respect to the

tions for matching spacetimes across non-null hypersurfaces,ar geometry of the disk: this is a consequence of the equa-
[24]. Again we place the disk in the equatorial plane andtion St’=0, together with the fact thad .. is a linear com-

match the regions’™ (+{>0) at the equatorial plane. This bination of the Killing vectors. In the discussion of the physi-

IS p055|bl_e W'.th the coprdmate_s O.f quo)’. SINCE We are. . properties of the disk we will refer only to the measurable
only considering dust, i.e., vanishing radial stresses in the

. ) - o uantitiesw 4, o* andp?* which are obtained by the intro-
disk. The ]umpyaﬁzK;B—Kaﬁ in the extrinsic curvature | Wy, 0p ANAP, ch are ed by the intro

K of the h facé—0 with tto it beddi duction of the FIO’s, whereas. and () are just used to
M qp O tNE Nypersur acé=0 with respect to its embeddings generate a sufficiently general energy-momentum tensor. To
into V= ={= >0} is due to the energy momentum tensor

. ; establish the boundary conditions implied by the energy-

Sap Of the disk via momentum tensor, we use Israel’'s formalif2d]. Equation
—87S, 5= Yag— Ny, (14) S?/=0 leads to the condition
whereh is the metric on the hypersurfa¢greek indices take Up(1+2yQa+ 0%a%)+ Qa,(y+0a)
the values 0, 1, and 3 corresponding to the coordinates +02p(pU,—1)e *V=0, (19)
and ¢). As a consequence of the field equations the energy
momentum tensor is divergence freﬁﬁ“ﬁﬁzo, where the where
semicolon denotes the covariant derivative with respebt to

The energy-momentum tensor of the disk is written in the _oi(p)— o_(p) 20
form Mo = (o (o) (20

=g uful +o_utu”, (15  The functiony(p) is a measure for the relative energy den-
sity of the counter-rotating matter streams. ket 1, there is
where the vectors? are a linear combination of the Killing only one component of matter; for=0, the matter streams
vectors, (15)=[1,0Q(p)]. This has to be considered as have identical densities, which leads to a static spacetime of
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the Morgan and Morgan class. As in the Newtonian case, on&ith the found solution of the Ernst equation. It is straight
cannot prescribe both the proper energy densitieand the  forward to check the consistency of this approach with the
rotation law () at the disk, since the Ernst equation is anhelp of Eq.(13).

elliptic equation. For the matter modetq. (15)], we obtain If O andy (and thusd) are given, one has to eliminate
the following theorem. from Egs.(26) and (27). This can be combined with Egs.
Theorem 3.1Let o(p)=0.(p)+o_(p) and letR(p) (19 and(11) to give Eq.(23).
and &(p) be given by If the functionsy and o are prescribedthis makes it
possible to treat the problem completely on the level of the
R=|a+ kd o2U 21) Ernst equatiop one has to eliminat@ from Egs.(19), (26),
QO and (27) which leads to Egs(24) and (25). This completes
the proof.
and Remark.For givenQ(p) and &(p), Eq. (19 is an ordi-
, nary nonlinear differential equation fef:
1_
op)= 27 2 ' (22 2_ 2y a2V aul Y 2_ 2 AUy [ a2U
Q%(p) (R*—p?),e*Y—2R¢e 5) =(R?—p?—se*)(e?),.
Then for prescribed)(p) and§(p), the boundary data at the ’ (28

disk take the form .
For constanf) andy, we obtain

(o Rptrae i, . ,
TRy TR 29 RE—p?+ set="e?, (29

Let o be given byo=ge* V. Then for given density- and

— 2,—2U
v, the boundary data read whereh =2()"e .

For given boundary values as in Theorem 3.1, the task is

(p2+ 6e4U)[(e2U)p(e2U)§+bpbg]z to to find a solution to the Ernst equation which is regular in
the whole spacetime except at the disk, where it has to satisfy
—2pe??(e?) [(e?),(e?V) +b,b,]+b%e* =0, two real boundary conditions. In the following we will con-
(24) centrate on the case where the angular velo@itand the
relative densityy are prescribed.
and
IV. SOLUTIONS ON HYPERELLIPTIC RIEMANN
[b,—a((e?),(e?Y)+b,b,)]? SURFACES
+8mpoe? Y (e?Y) (e?) +Db,b,]=0. (25) The remarkable feature of the Ernst equation is that it is
completely integrable, which means that the Riemann-
Proof. The Relationg14) lead to Hilbert techniques used in the Newtonian case can be applied
k-U)e _ U here too. This time, however, one has to solve a matrix prob-
—4me Soo=(k;—2U )e”, lem (see, e.g., Ref17], and references given thergivhich
(k-U) T cannot be solved generally in closed form. In R&f7] it was
—4me’" V(Spz—maS = — 287, (260 shown that the problem can be gauge transformed to a scalar
problem on a four-sheeted Riemann surface. In the case of
—4melY)(Sy3—2aS5+a’Sye) = —kypPe” Y, rational “jump data” of the Riemann-Hilbert problem, this
where surface is compact, and the corresponding solutions to the

Ernst equation are Korotkin’s finite gap solutidds]. In the
C~ - following we will concentrate on this class of solutions, and
Seo=0€""(1+0Q%a"+20ay), investigate its properties with respect to the solution of
5 boundary value problems.
Sos—aSpe=—0p?Q(Na+y), (27)

A. Theta functions on hyperelliptic Riemann surfaces

_ 2 — 2 4 4U o . . o
Sga~ 283t a"Seo= old7pTe . We will first summarize some basic facts on hyperelliptic
Riemann surfaces which we will need in the following. We

One can substitute one of the above equations with(E), &pn&der surfacel of genusg which are given by the rela-

in the same way as one replaces one of the field equations
the covariant conservation of the energy-momentum tensdfon x?(K)= (K+iz)(K=iz)TI_ (K~ E;)(K—E;), where

in the case of three-dimensional ideal fluids. This makes i€; do not depend on the physical coordinateand z. We
possible to eliminatek, from Egs. (26) and to treat the mtroduce the standard quantities associated with a Riemann
boundary value problem purely on the level of the Ernstsurface(see Ref[25]), with respect to the cut system of Fig.
equation. The functiok will then be determined via Eq13) 1 (we order the branch points with IBj<<0 in a way that
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Each 1 inT denotes the X g identity matrix.

For a proof see, e.g., R4R6]. Let us recall that a divisor
XonZ% is a formal symbolX=n;P;+---+nP,, with P,
€3 andn;eZ. The degree of a divisor i€ ;n;. The
Riemann vectorKg is defined by the condition that
O(w(W)+Kg)=0 if Wis a divisor of degreg—1 or less.
Here and in the following we use the notatian(W)
=f‘F’,Vodw=E?;11w(wi). We note that the Riemann vector

can be expressed through half-periods in the case of a hyper-
elliptic surface.

The quotient of two theta functions with the same argu-
ment but different characteristic is a so-called root function

FIG. 1. Homology basis oF.. which means that its square is a function Bn One can
prove (see Ref[26] and references thergithe following.
ReE;<ReE,<---<ReEy, and assume for simplicity that Theorem 4.2. Root functionket Q;, i=1,...,Q+2,

the real parts of th&; are all different; we writeE; = «; be the branch points of a hyperelliptic Riemann surfage
—iBi); the g normalized differentials of the first kindw; of genusg andA;= w(Q;) with ©(Q;)=0. Furthermore let
are defined by$,dw;=2mi4;; and, with Po=—iz, the {i;, ... ig} and{j;,... s} be two sets of numbers in

Abel mapw;(P)=JP dw;, which is defined uniquely up to {1,2,...,3+2}. Then the following equality holds for an
0

periods. Furthermore, we define the Riemann mdtriwith arbitrary pointP e %

the elementsr;; zgﬁbidwj , and the theta function

g
O[ml(2)= > expHII[N+(mY2)],[N+(mY2)]) 6| Ket 2, A (w(P) ~ J(K=E)-(K-E
Nez9 g =Cy (K_Ejl)(K_E] )1
+{(z+ mim?), [N+ (a/2)])} 0| Kpt 2 A (w(P)) ’

. . .. mit 1 2 (32)
with half integer character|st|[:m]=[m2] andm;,m{=0,1
((N,2)==f_,N;z). A characteristic is called odd if wherec; is a constant independent &f Let X=P;+ - -
(m!,m?)#0 mod 2. The normalize¢all a periods are zejo  + Py, with P;=[K;,«(K;)] be a divisor of degree g aig;
differential of the third kind with poles aP, and P, and  then

residue +1 and —1, respectively, will be denoted by

iwp(llzz).] ' KEOI(TPE PEEt WII!II Ee dd:'\noge'd tﬁy P':'[f' f OKet AllalX)] =C ﬁ (Ki— ) (33
tu or K= (the sheets will be defined in the vicinity o Kot A )1 G2l Ki—0.)’

a given point or®, e.g., the covering of). OKrTAILGO] 1 ¥ (K Q))

The theta functions are subject to a number of addition ) )
theorems. We will need the ternary addition theorem whicHvherec is a constant independent on tkg.

can be cast in the following form. The notion of divisors makes it possible to state Jacobi’s
Theorem 4.1. Ternary addition theoreniet [m,]  inversion theorem in a very compact form. See the following
=[m!,m?] (i=1,...,4) bearbitrary real -dimensional theorem.

Theorem 4.3. Jacobi inversion theorehet A,Be >, be

vectors. Then o ;
divisors of degree g ande C®. Then, for a giverB andu,

O[m](u+v)O[my](u—v)O[M3](0)O[M,](0) gz)elzvsglléationw(A)—w(B)=u for the divisorA is always
1 4 For a proof we refer the reader to the standard literature;

= > , exp(—4mi(mg,a%))O[n,+aj(u) see, e.g., Ref25]. We remark that the divisor may not be
2ac (29 uniquely defined in the general case which means that one or

X @[n,+a](u)®[ns+al(v)®[n,+al(v), moreP; € A can be freely chosen. We will not consider such

special cases in the following, and for so-called special divi-
(30 sors refer the reader to literature such as R&8). For divi-
sorsA— B of degree zero, one can formulate Abel's theorem.

wherea=(a',a%), and (0, ... ,m)=(ng,...,n,)T with Theorem 4.4. Abel’s theorerhet A,B e 3 be divisors of
degreen subject to the relatiorw(A) — w(B)=0. ThenA
11 1 1 andB are the set of zeros respectively poles of a meromor-
111 -1 -1 -1 phic functionF.
T== (31 For a proof, see Ref25]. We remark that this function is
1 -1 1 -1 a rational function on the surface cut along the homology
1 -1 -1 1 basis. We have the following corollary.
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Corollary 4.5.Let the condition of Abel’'s theorem hold. A quantity of special interest is the metric functianin
Then the following identity holds for the integral of the third Ref. [18] it was shown that one can relate this directly to
kind: theta functions without having to perform an integration of

Eq. (11),

AL FP) ]
| dong=in fio- (34 o age i Pl Ul
OnJlw(=")+u]

(37

B. Solutions to the Ernst equation .. .
a whereD pF[ w(P)] denotes the coefficient of the linear term

We are now able to write down a class of solutions to thejn the expansion of the functidf w(P)] in the local param-
Ernst equation on the surfade _ eter in the neighborhood &, where® is the Riemann theta
Theorem 4.5Let the Riemann surface be given by the  fynction with the characteristigm] and m'=m?=0, and

relation u?(K)=(K+iz)(K—iz)IT1%_,(K— Ei)(K—E). Let  where the constard is defined by the condition thatvan-

u be a vector with components;=(1/27i) [ In Gdw;, ishes on the regular part of the axis.
wherel is a_si_ntheorem 2.1. L& be subject to the condi- It is possible to give an algebraic representation of solu-
tion G(7)=G(7), and letfm]=[m!,m?], with m'=0 and  tions (36) (see Refs[BlJ and[32]). We Q¢fine t_he divisor
m? arbitrary fori=1, ... g, be a theta characteristic. Then X=2_;K; as the solution of the Jacobi inversion problem
the functionf, given by (i=1,...9)
.0y QM@ +u) oo L f T
P eml(w(= ) +u) R T RAE I L

1
><exp[—2 f ING(7)dwe+.-(7)(, (35  where the divisoD=3_,E;. With the help of these divi-
Tl Jr . .
sors, we can write Eq.36) in the form

This class of solutions was first given by KorotKit8]. A (39
straightforward continuous limit leading to the above form

can be found in Ref[27,2§. For the relation to Riemann-

Hilbert problems, see Ref17]. In the case of genus O, the  Sinceu; in Eq. (38) are just periods of the second integral
Ernst potential is real, and we obtain a solution of the Weylin Eq. (39), they are subject to a system of differential equa-
class in the form of Eq(2). For higher genus, these solutions tions: the so-called Picard-Fuchs systésee Ref[30], and

are in general nonstatic and thus we generalize(Bdo the  references given thereinin our case this leads to
stationary case. In Reff29,3Q it was possible to identify a

physically interesting subclass.

is a solution to the Ernst equation. X 79dr 1 9dr
Inf= f

o w(r) 2m e u(n)

: B .
Theorem 4.6Let the conditions of Theorem 4.5 hold, and > m - j=0 g—2 (40
in addition letS be a hyperelliptic Riemann surface of even s p(Ky) M o
genus g=2n given by u?(K)=(K+iz)(K—iz)IIl_(K?
—E?)(K2—E?). Let the functionG be subject to the condi- and
tion G(—7)=G(7), and let[n] be the characteristic with
n'=0 andn?=1. Then the functior, given by . i (K~ Po)KI L "
nf),=2, ——— )
( )Z = ,U«(Kn) n,z
o Blnl(e(=)+u)
(p.d)= O[n](w(*=")+u) Solving forK, ,, n=1,... g, we obtain
1
X — | ot oo— , K 1
exp[ZWI anG(T)dw (7) (36) Kn,z=(lnf)z|f( E)) i 42
n— o
II  (K\=Kmp)
m=1m#n

is an equatorially symmetric solution to the Ernst equation

[f(—=0 =f_(§)], which is regular everywhere except at the -
disk if @[ w(e™)+u]#0. Additional information follows from the reality oty

For a proof, see Ref§29,30] where one can also find which implies w(X)—w(D)=w(Y)—w(5). Using Abel’s
how the characteristic can be generalized. In the followingheorem on this condition, we obtain a relation for an arbi-
we will only use the characteristic of the above theorem. traryKeC,
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9 . ferentially rotating disks along this line in the genus 2 case,
1] (K=K)(K=K)) see Ref[33]). Once a functiorG is found, one can read off
i=1 the rotation law() on a given Riemann surface from Eqg.
g (36). Another approach is to establish the relations between
_ CEVWK_E (K _BA2 the real and the imaginary part of the Ernst potential which
iHl (K=E)(K=E)=(K=Po)(K=Po)Q2(K), o ricton a given Riemann surface for arbitrady The sim-
plest example of such a relation is provided by the function
(43) w=e'?, which is a function on a Riemann surface of genus
0, where we have obvious|y|=1. As we will point out in
the following, similar relations also exist for an Ernst poten-
Qu(K)=Xg+X K+ - - - +xg,2K9‘2+xK9‘1. (44)  tial of the form of Eq.(36), but they will lead to a system of
differential equations. Once one has established these rela-
Since Eq(43) has to hold for alK e C, itis equivalenttod  tions for a given Riemann surface, one can determine in
real algebraic equations for tig if x; are given. Using Egs. principle which boundary value problems can be solved
(34) and (39), we find there (in our example, which classes of functiofisand y
can occuy by the condition that one of the boundary condi-
f1+x tions must be identically satisfied. The second equation will
T 1-x’ (45 then be used to determir@ as the solution of an integral
equation which is possibly nonlinear. Following the second
which impliesx=ibe 2V, approach, we want to study the implications of the hyperel-

Remark:To solve boundary value problems with the classliPtic Riemann surface for the physical properties of the so-
of solutions(36), one has two kinds of freedom: the function !utions.
G as before, and the branch poitsof the Riemann surface
as a discrete degree of freedom. Since one would need to
specify two free functions to solve a general boundary value |n order to establish relations between the real and imagi-
problem for the Ernst equation, it is obvious that one camary parts of the Ernst potential, we will first consider the
only solve a restricted class of problems on a given surfacexis of symmetry p=0) where the situation simplifies de-
and that one cannot expect to solve general problems on @sjvely. In addition the axis is of interest since the asymp-
surface of finite genus. However, once one has constructedt@tica”y defined multipole momeni{84,35 can be read off
solution which takes the imposed boundary data at the diskhere[36].
one has to check the conditio®[w(~~)+u]#0 in the On the axis the Ernst potential can be expressed through

whole spacetime to actually prove that one has found th@unctions defined on the Riemann surfate given by u’ 2
desired solution: a solution that is everywhere regular except g

_(K—E;))(K—E,), i.e., the Riemann surface obtained
at the disk, where it has to take the imposed boundary con. =1 ) _ ) ° riemann st I
ditions. rom %, by removing the cufPg,P,] which just collapses on

There are in principle two ways of generalizing the ap-fjhe aX|s.hWehuse the notgpon of S?C'.Ivé ?nd (}et ahpnme
proach used for the Newtonian case: One can elimifihte enote that the corresponding quantity Is defined on the sur-

from the two real equationt@3) and enter the resulting equa- [aC€>". The cut system is as in the previous section with
tion with a solutionEq. (36)] on a chosen Riemann surface. [E1,E1] taking the role of[Pg,Po] (all b cuts cross
This will lead, for a giveny, to a nonlinear integral equation [E;,E;]). We choose the Abel map in a way that(E;)

for InG. In general there is little hope of obtaining explicit =0. It was shown in Ref.30] that for genugy>1 the Ernst
solutions to this equatioffor a numerical treatment of dif- potential takes the fornffor 7>0)

where, with purely imaginary; andx,

V. AXIS RELATIONS

o[ Tawr

_exp{—[wé(ooJr)—i—ug]}ﬁ( Lwdw’—i—u,

f(0.0)= CR (46)

+

19( Jf dw’—u’)—exp{—[wé(ooJr)—ug]}ﬁ( L dw’—u’)

where ¢ is the theta function oix.’ with the characteristic term dependent both o and on{ is uy. To establish

a/=0 and B/=1 for i=1,...9—1, where | a relation on the axis between the real and imaginary parts

=(1/27i) f1 InG(n)dw. ., (1), dwg=dw, .+, and where of the Ernst potential independent Gf the first step must

Ug=(1/27i) [ In G(7)dwy(7). be thus to eliminately . We can state the following theorem.
Note thatu; andl are constant with respect fo The only Theorem 4.1The Ernst potentialEq. (46)] satisfies, for
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g>1, the relation Proof. The first step is to establish the relation

P1(O)ff+P,(H)b+P5({)=0, (47)

whereP; are real polynomials i with coefficients depend-
ing on the branch pointE; and the g real constants
frInG72ddu/(7), with i=0, ..., g—1. The degree of the
polynomialsP; andP; is 2g— 3 or less, and the degree of
P, is 2g—2 or less.

To prove this theorem we need the fact that one can ex-

Aff+Bib+1=0, (49

where

press integrals of the third kind via theta functions with odd Ae?' =— - - (50)
characteristic denoted b#, : 9 u’+jw dw’)i} u’Jrfoc dw’)
" e
1(} "ootY— (' +
Yol (27)—w'({7)] and
|
+ ot 0 + ot o
e 2= )y u'+f dw')ﬂ u’+f do' | +e%* )y u’+j dw’)l‘) u’+f dw’)
I 3 e e &
Be_ oc+ :x)+ 1 (51)
du + dw')ﬂ u’+J dw’)
" e

which may be checked with E¢46) by direct calculation. The reality properties of the Riemann surfacand the function
G imply thatA is real and thaB is purely imaginary. We use the addition theorfg. (30)] with [m;]=---=[m,] equal to
the characteristic ofy for Eq. (50), to obtain

> . exp( —4mi(m;,a%)) 9a][u’+ o' ()]0 allw’({)]
2ae(Z,)?

A =

. (52
> exp(—4mi(mi,a?)97al[u’ +o' (= )]0 al[w’ (§7)]
2ae(2,)%9
This term is already in the desired form. Using the relation for root funcfigs(32)], one can directly see that the right-hand
side is a quotient of polynomials of ordgr1 or lower in¢. For Eq.(51), we use Eq(48) with [m;]=[m,]=[Kg] as the

characteristic of the odd theta functigy, and letf mg]=[m,] be equal to the characteristic 6f The addition theorerfEq.
(30)] then leads to

(2) . exp —4mi(mi,a?))0 ' n+al[u’+ o' () ]9 al[w'({)]
2ae(Z,)2
Be'=— 2

> exp—4mi(mi,a?)9qallu’ +w' (» )]0 al[w ({M)]

2ae(Z,)%9

2 ’ 2 "ooTY— /(7T 2 oot Y— (7~
C S exp ity P[0 (6] 9 Al =) =0’ ()]

, (53
280 (2,)29 92(0) Yo' ()= ()] Yo' () —w'({7)]

wheren follows from m as in Theorem 4.1. The first fraction denominator. To deal with the quotient’[al[w’ (")

in Eq. (53 is again the quotient of polynomials of degree — ' (™) 1/95 o' (")~ w'(£*)], we define the divisors
g—1 in ¢ for the same reasons as above. But, since thd =Ty + ...+Ty_; as the solutions of the Jacobi inver-
quotient must vanish fof—, the leading terms in the nu- sion problemsy’ (T*) — o' (Y)=w'(*")+ w'({") whereY
merator just cancel. It is thus a quotient of polynomials ofis the divisorY=E;+---+Ey_;. Abel's theorem then im-
degreeg—2 or less in the numerator argd-1 or less in the  plies, for arbitraryK € C,
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g-1

lL(K—TFMK—Q

g-1

g
=(K—Aifll(K—EO—(K—Eyll(K—E%

(59

where

m' (&)

g-1

I1 (t—E)

i=1

[—A*==* (55)

Let Q; be given by the conditiopQ;+Kg]=[a], i.e.,Qj is
a branch point o&’. Then for the quotient we obtain

9 a][w'(*")—w'({7)] _
delo(2F)=w'(¢)]

T -Q

T —E;

g-1
cons | (56)
i=1

where const is &-independent constant. With the help of
Eq. (54), itis straightforward to see that f@; Y, the theta
quotient is just proportional to{(-E,;)/({—Q;), whereas
for Qj¢Y the term is proportional to {—E,)
><(QJ-—A¢)2/(§—QJ-). Using Eq.(55) one recognizes that
the terms containing roots just cancel in E§3). The re-
maining terms are just quotients of polynomials gdrwith
maximal degreq in the numerator and—2 in the denomi-
nator. This completes the proof.

Remark.The remaining dependence éthroughu’ and
| can only be eliminated by differentiating relati¢a6) g
times. If we prescribe, e.g., the functitmon a given Rie-
mann surfacéthis just reflects the fact that the functi@
can be freely chosen in E¢6)], we can read ofe?V from
Eq. (47). To fix the constants related @ in Eq. (47), one
needs to know the Ernst potential agd-1 derivatives at

PHYSICAL REVIEW D 63 064033

Here the only remainingG dependence is in. If fg
=£(0,0) is given,e' follows from f,fy+2bya;€'/ B, =€?".

If the (in general nonreal mas is known, the constare'
follows from 1+4 ImMe'/B;=€?'. In the latter case the
imaginary part of the Arnowitt-Deser-Misner mdssis cor-
responds to a Newman-Unti-TamborifdUT) parametey
will be sufficient. Differentiating Eq(57) once will lead to a
differential relation between the real and the imaginary part
of the Ernst potential which holds for &B, which means it
reflects only the impact of the underlying Riemann surface
on the structure of the solution.

Remark. For equatorially symmetric solutions, on the
positive axis one has the relatidf— {)f({)=1 (see Refs.
[38,39. This is to be understood in the following way: the
function || is even ing, but restricted to positivé it seems
to be an odd function, and it is exactly this behavior which is
addressed by the above formul@his leads to the conditions

Pi(—0)=—P3(0), PoA—=0)=Py({).

The coefficients in the polynomials depend on gi2 inte-
grals [rd7InG72/u/(7) (i=0,... g/2—1), and the branch
points.

The simplest interesting example is genus 2, where, with
E2=a+iB, we obtain

(58)

— 2
H@—co+%;8—a—C@m1+ch (59)
2

i.e., a relation which contains two real consta@tsandC,
related toG. If the Ernst potential at the origin is known, one
can express these constants i@ A relation of this type,
which is as shown typical for the whole class of solutions,
was observed in the first paper of RE21] for the rigidly
rotating dust disk.

VI. DIFFERENTIAL RELATIONS IN THE WHOLE

some point on the axis where the Ernst potential is regular,
e.g., at the origin or at infinity, where one has to prescribe
the multipole moments. If the Ernst potential were known on
some regular part of the axis, one could use #4@) to read
off the Riemann surfac@enus and branch pointEquation

SPACE-TIME

Considerations on the axis have shown that it is possible
there to obtain relations between the real and imaginary part
! ) ) of the Ernst potential which are independent of the function
(46) is then an integral equation fdg for known sources. G gnd thus reflect only properties of the underlying Riemann
This just reflects a result of Rdf37] that the Ernst potential g,face. The found algebraic relations contain, howeger,
for known sources can be constructed via Riemann-Hilberte o constants related to the functi®) which means that

techniques if it is known on some regular part of the axis. gne has to differentiatg times to obtain a differential rela-

In practice it is difficult to express the coefficients in the jon which is completely free of the functio. These con-
polynomials P; via the constantsi; and |, and it will be  gtants were just the integralg and!, which are only con-
difficult to obtain explicit expressions. We will therefore siant with respect to the physical coordinates on the axis
concentrate on the general structure of relatin, its im-  \yhere the Riemann surfad degenerates. Thus one cannot
plications on the multipoles, and some instructive exampleshope to obtain an algebraic relation in the whole spacetime
Let us first consider the case genus 1, which is not generias on the axis. Instead one has to deal with integral equations
cally equatorially symmetric. In this case the Riemann suryyr to |ook directly for a differential relation. To avoid the
faceX " is of genus 0. One can use formuks) for the axis  gifferentiation of theta functions with respect to a branch
potential if one replaces the theta functions by 1. We thugyoint of the Riemann surface, we use an algebraic formula-

end up with tion of the hyperelliptic solution$38) and (39). From the
latter it can also be seen how one might obtain a relation
ff__Zbﬂelzezl_ (57)  independent ofs without differentiation: one can consider
B1 Egs. (38) and (39) as integral equations fds. In principle

064033-10



EXACT RELATIVISTIC TREATMENT OF STATIONARY . .. PHYSICAL REVIEW D 63 064033

one could try to eliminat& and X from these equations and parameter near~ are needed Using the formula for root
Eq. (43). We will not investigate this approach, but try to functions[Eqg. (33)], for the quantityZ in Eq. (37) we obtain
establish a differential relation. To this end it proves helpful

to define the symmetri@in the K,)) functionsS; via i S T,—P,

Po
Z==D_-1In .
2 i];[l Ti_PO

(65)

g
IT (K-K)=K9=S, ;K9 1+...+S;,  (60)
=1 Applying Abel's theorem to the definition of and expand-

ing in the local parameter near , we end up with Eq(63)

for generalg>1, and with Eq.64) for g=1.

Remark.

(1) Forg>1, Eq.(63) can be used to replace the relation
for x4_,, in Eq. (62) since the latter is identically fulfilled
with Egs.(63) and(11).

(2) An interesting limiting case i§~1, wheref~1, i.e.,

i i the limit where the solution is close to Minkowski spacetime.
0=[Rg— PR+ - +PJ(— 1)9]XZ—EQ2( Po)— E(l—xz) By definition (38), the divisorX is in this case approximately
equal toD. Thus the symmetric functions in Eq&2) and
PN _ . a(_1y9-1 g-1 (61) can be considered as being constant and given by the
XN T Llo=Poly -+ (=17 Hg-1P5 7, (6 branch pointsE; . Relation(63) implies that the quantity is

i.e., S9=KiKy ... Ky, ... ,S-1=Ky+---+K,. Equa-
tions (43) are bilinear in the real and imaginary parts of the
S which are denoted by, and I; respectively. With this
notation we obtain the following theorem.

Theorem 6.1. xand the Ernst potentidlare subject to the
system of differential equations

and, forg>1, approximately equal tdy_, in this limit, i.e., it is mainly
A _ equal to the constard, in lowest order. Since the differen-
Xj =X (= DITR 1+ . AP T =Xyt tial system of equation&2) and(61) is linear in this limit, it

is straightforward to establish two real differential equations
of orderg for the real and the imaginary part of the Ernst
potential. In principle this works also in the nonlinear case,
o-j-2 where sign ambiguities in the solution of E(®8) can be
—Po lg-1)- 62 fixed by the Minkowskian limit.

. L . - To illustrate the above equations, we will first consider
Proof. Differentiating Eq.(43) with respect tz and elimi- the elliptic case. This is the only case where one can estab-

né\ting4dzerivatives dOf thdstihz Vi? the Pic?rd-FL::chs retl'ationfS lish an algebraic relation betwe@nandb independent 0.
[Egs.(42)], we end up with a linear system of equations for Equations(43) lead to

the derivatives ok; andx which can be solved in a standard

manner. The Vandemonde-type determinants can be ex-

pressed via the symmetric functions. Bgrone obtains Eg.

(61). The equations for thg, , are bilinear in the symmetric _ _ _

functions. They can be combined with E&1) and (62). (1—-x%)SpSp=E1E;1— PoPoXx?. (66)
Remark.If one can solve Eq(43) for the K;, Egs.(61)

and (62) will be a nonlinear differential system in(andz ~ Formula(64) takes, with Eq(66) (the sign ofl, is fixed by

which follows from the reality propertigsfor x;, x, andf  the condition thato=— B, for x=0), the form

which only contains the branch points of the Riemann sur-

+XPETI72) = S (1) (N FD((— 1)y

(1-x*)Ro=a;— {x*

face as parameters. For the metric funct&mmwith Eq. (37) (1-x*)Z=ix(a;~ )
we obtain the following theorem.
Theorem 6.2The mgtric functiora is related to the func- +V(L=x2) (BT p*X°) =X (1= )*.
tionsx; andS; via (67
iXg-2 ix{ This relation holds in the whole spacetime for all elliptic
Z= 1—x2 —lg-1— 1—x2 (63 potentials, i.e., for all possible choices®fin Eq. (36). This

implies that one can only solve boundary value problems on

for g>1, and elliptic surfaces where the boundary data at some given con-
tour I', satisfy condition(67).

iX(a;— ) In the case of genus 2, for EGt3) we obtain
Z=—ly+ W (64)

(1—x?)Ry=ay + ay— X2+ XXg,

for g=1. . . L. 2 2.2 2 2 2
Proof. To express the functio@ via the divisorX, we  (1=X)(R{+17+2Rg)=(a;+ @) +2aja,+ B1+ B3

define the divisorT=T;+---+T4 as the solution of the 2 U2 2, 42

Jacobi inversion problem(T) = w(X) + w(P), whereP is Xo= XA(p™H 5+ 48xx0,

in the vicinity of ™~ (only terms of first order in the local (68)
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(1—x2)(R1R0+I1IO)= alaz(a1+az)+alﬂ§+azﬁf tion. In case that the differential equations hold for an arbi-
) trary functione?", the integral equation will only be used to
— o+ (p%+ P)xxo, determine this metric function, but the boundary value prob-

lem will be always solvabl¢locally). This offers a construc-
(1-x3)(R3+13)=(ad+ B (a3+ B5)— (p>+{3)x5.  tive approach to solve boundary value problems without hav-
ing to consider nonlinear integral equations.
The aim is to determin&; andx, from Eq. (68) and

(1—x2)(Z+I1)=ix0— Zix, (69) VIl. COUNTERROTATING DISKS OF GENUS 2
Since it is not very instructive to establish the differential

relations for genus 2 in the general case, in this section we
will concentrate on the form these equations take in the

and to eliminate these quantities in

(Rp—PoR; + Pg)xz=|§(xo+ PoXx) + %(l—xz)(ln ff_)Z equatorially symmetric case for counterrotating dust disks. In
this case, the solutions are parametrizedBy- a+iB. We
X (lo—Poly), (7o)  will always assume in the following that the boundary data
are at leastC?(I',) (the normal derivatives of the metric
which follows from Eq.(61). functions have a jump at the disk, but the tangential deriva-

Remark. Boundary value problenSince the above rela- tives are supposed to exist up to at least second prBet-
tions will hold in the whole spacetime, it is possible to ex-ting s=be 2V andy=e?", for Eq. (70), for {=0 andp
tend them to an arbitrarily smooth bounddfy, where the <1, we obtain
Ernst potential may be singul@a jump discontinuity, and
where one wants to prescribe boundary da@mbinations o 2 b, p
of f andf,). If these data are of sufficient differentiabilitsit Xo=(Ro=p _SIO)V_p(Rl_Sll)V
leastC9*(T",)], we can check the solvability of the problem
on a given surface with the above formulas. The conditions
on the differentiability of the boundary data can be relaxed
by working directly with Eqs(38) and (39), which can be (71)
considered as integral equations forAnThe latter is not
very convenient if one wants to construct explicit solutions, 2 o ¢
but it makes it possible to treat boundary value problems ps=(Ro—p _S|0)7+9(R1_S|1)7
where the boundary data are lder continuous. We will
only work with the differential relations, and consider merely
the derivatives tangential tb, in Eq. (62) to establish the
desired differential relations betweanb, andU. One ends
up with two differential equations which involve only, b, whereS; andix, are taken from Eqs(68) and (69). Since
and derivatives. The aim is to construct a spacetime whicleounterrotating dust disks are subject to boundary conditions
corresponds to the prescribed boundary data from these relé23), we can replace the normal derivatives in Egl) via
tions. To this end one has to integrate the differential relaEq. (23), which leads to a differential system where only
tions using the boundary conditions. Integrating one of theséangential derivatives at the disk occur. With E(&8) and
equations, one obtaing real integration constants which (69), we obtain
cannot be freely chosen since they arise from applying the
tangential derivatives in E62). Thus they have to be fixed . _ Ry—p?
in a way that the integrals on the right-hand side of 88) IXo+(Z2=1Xo) IR -
are in factb periods of the second integral on the right-hand
side of Eq.(38), and that Eq(39) holds. The second differ-
ential equation arises from the use of normal derivatives of
the Ernst potential in Eq61). To satisfy theb-period con-
dition [Eq. (38)], one has to fix a free function in the inte-
grated form of the corresponding differential equation. Thus 7
one has to complement the two differential equations follow- ps< 1— _) :(
ing from Eq.(61) with an integral equation which is obtained R
by eliminatingG from, e.g.,u; andu, in Eq. (38). For given
boundary data, the system following from E&8) may in
principle be integrated to give?” andb in dependence on
the boundary data. Then tHa general nonlinear integral . . Wy
equation will establish whether the boundary data are com\-NIth 11=ixo/(1=x%) =2 and
patible with the considered Riemann surface. This is typi-
cally a rather tedious procedure. There is, however, a class of
problems where it is unnecessary to use this integral equa-

y y
—[s(Ro—p2)+lo]74+p<sR1+ll)v”,

y Yy
—[s(Ro—p2>+IOJV”—p<sR1+Il>7‘,

R?+p?+ 8y* Ry—p?
P™ " 2Rp I
Yo

(—Z+ixg) zbﬂ
—Z+iXg)— —sZ—|,
7y y

X

(72

Ry—p? R+p?+dy’
B 2R

Yp . bﬂ
X|sZ—+(—Z+ixg)—]. (73
y ( o)y (73

_iXOZ—a—(pz/Z) 72— p?
- 1—x2 2

0 (74
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the functionixg follows from Proof. Since the right-hand side of E@38) vanishes, we
haveK;=E; for o—0, and thusay=1, up to at least order
, (Ry—p?)? X2x5  a?+p2—px5 w>. Keeping only terms in lowest order and denoting the
Ro+ 12 1—x2)2 = 152 . (79 corresponding terms of the symmetric functions 3, we
1 (1=x7) X obtain, for Eq.(73),
i.e., an algebraic equation of fourth order fag which can w3b3=y2,§[2q(R8—p2)w3—wzlg]. (79)

be uniquely solved by respecting the Minkowskian limit.
Thus Egs.(72) and (73) are in fact a differential system
which determined andy in dependence of the angular ve-
locity Q.

The second equatidrEq. (73)] involvesb; ., and is thus of
higher order. If Eq.(78) holds, this equation will be auto-
matically fulfilled.
S The w dependence in E478) implies thatR] and!9, and
A. Newtonian limit thus the branch points, must depend@nSincey,, is pro-

For illustration we will first study the Newtonian limit of portional to the density in the Newtonian case, it must not
Egs.(73) (where counterrotation does not play a joféhis ~ vanish identically. The possible cases following from Eq.
means we are looking for dust disks with an angular velocity(78) are constanf) or Eq.(77). Using Egs.(6) and(3), one
of the form Q=wq(p), where|q(p)|<1 for p<1, and can express), directly via(), which leads to
where the dimensionless constas 1. Since we have set
the radiusp, of the disk equal to 1w=wp, is the upper 4 rtdp’ 5 2
limit for the velocity in the disk. The conditiom<1 just Yor=7 ], ot p’ Jp1(q°p" “)K(K),
means that the maximal velocity in the disk is much smaller
than the velocity of light, which is equal to 1 in the units ;i k=2pp'l(p+p'). Thus Eq.(77) is in fact an inte-

used. An ex_pansion irw. is thus equivalent to a standard %rodifferential equation fog. This completes the proof.
post-Newtonian expansion. Of course there may be dus

disks of genus 2 which do not have such a limit, but in the
following we will study which constraints are imposed by
the Riemann surface on the Newtonian limit of the disks
where such a limit exists. The simplifications of the Newtonian equati@r8) for

The invariance of the metri€q. (10)] under the transfor- constant) give rise to the hope that a generalization of rigid
mationt— —t andQ— —( implies thatU is an even func- rotation to the relativistic case might be possible which we
tion in w, whereas has to be odd. Since we have chosen arwill check in the following. Constany/() in fact makes it
asymptotically nonrotating frame, we can make the ansatpossible to avoid the solution of a differential equation, and
y=1+w?y,+---, b=w’bs+---, and a=w’az+---. leads thus to the simplest example. We restrict ourselves to
Boundary conditions(23) imply, in lowest order,y,, the case of constant relative densify= const. The structure
=2q°p, the well-known Newtonian limit. Since Eq12) of Eq. (73) suggests that it is sensible to choose the constant
reduces to the Laplace equation for in order w?, we can  @g asag=— /{2, since in this cas€=R. This is the only
use the methods of Sec. Il to construct the correspondinffeedom in the choice of parametersand 3 on the Riemann

(79

B. Explicit solution for constant angular velocity and constant
relative density

solution. In orderw?, boundary condition$23) lead to surface one has f@=2, since one of the parameters will be
fixed as in the Newtonian case by the condition that the disk
bs,=2pqYy;, (76)  has to be regular at its rim. The second parameter will be

) ) determined as an integration constant of the Picard-Fuchs
whereas Eq(12) leads to the Laplace equation fog. Again  system. We obtain the following theorem.
we can use the methods of Sec. II, but this time we have t0 Theorem 7.2Boundary conditiong23) and (29) for the
construct a solution which is odd inbecause of the equa- counterrotating dust disk with constadtand constany are
torial symmetry. In principle one can extend this perturbativesatisfied by an Ernst potential of the form of E§6) on a

approach to higher order, where field equatiét® lead to  hyperelliptic Riemann surface of genus 2, with the branch
Poisson equations with terms of lower order acting as sourcgoints specified by

terms, and where the boundary conditions can also be ob-

tained iteratively from Eq(23). With this notation we obtain S 1 52
the following theorem. a=—1+ X B= ﬁ +6— E (80)

Theorem 7.1Dust disks of genus 2 which have a New-
tonian limit, i.e., a limit in whichQQ=wq(p) where|q(p)|

<1 for p<1, are either rigidly rotatingdq=1) or q is a The paramete# varies betweed= 0 (only one componeit

solution to the integro-differential equation and 5= Js,
_ 0o_ 2 _ 1
bs=[(Ro=p*)20—«]yz,. 77 8=2| 1+ \/ 1+ F) (81
where in the first casé)/R}=2w and in the second case
l1=kw, with Rg and « beingw independent constants. the static limit. The functiorG is given by
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JZ=a+ F+ P+ 1
(7= )+ 2= (4 1)

This is the result which was announced in Rd].

G(7)=

(82

Proof. The proof of the theorem is performed in several

steps.

(2) Since the second factor on the right-hand side in Eq
(73) must not vanish in the Newtonian limit, we find that, for

Z=R,

Ro—p? _Z*+p*+dy°
2z

(83
1

With this relation it is possible to solve Eq&.4) and(69):

Z[p*+2a— sy} (1-x)]

iX0:

ZZ_p2_6y2
(84)
52y2 ) 1/1 p2
T(l—X )__X<X_5y + 0 a+7)
2
IN)—
IV RN
(1I\?)+ 6p? A2

One may easily check that E¢r2) is identically fulfilled
with these settings. Thus the two differential equaticr®d
and(73) are satisfied for an unspecifigdwhich implies that

the boundary value problem for the rigidly rotating dust disk

can be solved on a Riemann surface of gen(he remain-

ing integral equation which we will discuss below then de-

terminesy).

(2) To establish the integral equations which determin

the functionG and the metric potentiaé®’, we use Egs.
(38). Since above we have expressedas a function og?V
alone, the left-hand sides of Eq88) are known in depen-

dence are?V. It proves helpful to make explicit use of the
equatorial symmetry at the disk. By construction the Rie-

mann surface, is for /=0 invariant under the involution
K— —K. This implies that the theta functions factorize an

can be expressed via theta functions on the covered surfa

3, given by u3(7)=r(r+ p?)[(7— a)?+ B?] and the Prym
variety 3, (which here is also a Riemann surfaggven by
ws(7)=(7+pd)[(7— a)?+ B?] (see Refs[26,3( for de-

tails). On these surfaces we define the divisdrand W,

respectively, via

1 (-2 InG(Jyndr _ [vdr

u,=— =i s

i Jo ma(7) 0 M1

1 (-1InG(\r)dr [(wdr
L[ metindr_ e gy

i) _p2 pa(7) w M2

For the Ernst potential we obtain

— 2iXg vrdr
Inff=—=In|1-———|+ | ——1,, (86)

Z(1-x?) 0 M1

e
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where

1 (-2 InG(Y7)rdr
v 2@ o pa(r)

(3) Using Abel’s theorem and E@38), we can expres¥
andW by the divisorX, which leads to

2,2
P~Xo

V=-— 8
Z2(1—x2)—2Zix, ®7)

and

1
Wi pP= = [Z5(1-x}) - 2Zixo=xG]. (89

(4) SinceV andl, vanish forp=0, we can use Eq86)
for p=0 to determine the integration constant of the Picard-
Fuchs system. With Eq84), we obtain

52

7 (89

,82=%— Sa+

(5) SinceV in Eq. (87) is, with Eq.(84), a rational func-
tion of p, @, and B8 and does not depend on the metric
function eV, we can use the first equation in E@5) to
determineG as the solution of an Abelian integral which is
obviously linear. WithG determined in this way, the second
equation in Eq(85) can then be used to calculag’ at the
disk which leads to elliptic theta functionglso see Ref.
[30)). (In the general case, one would have to elimirefté
in the relations foru, andu,, to end up with a nonlinear
integral equation forG.) The integral equation following
from Eq. (85),

v dr 1 (-2InG
f S (90
omi(r) imlo (1)

dis an Abelian equation and can be solved in standard manner

Pé( integrating both sides of the equation with a factor
17K —r from 0 tor wherer = — p2. With Eq.(87), for what
is essentially an integral over a rational function, we obtain

VIK—a)?+ B2+ K—a+(58/2)
JK=a)Z+ B2—[K—a+(582)]

(6) Condition G(—1)=1 excludes ring singularities at
the rim of the disk, and leads to a continuous potential and
density there. It determines the last degree of freedom in Eq.
(91) to

G(K)=

=—1+_.
@ 1 >

(92
(7) The static limit of the counterrotating disks is reached
for =0, i.e., the valueS;. This completes the proof.
Remarks

064033-14
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() It is interesting to note that there are algebraic rela- This defines the range of the physical parameters where
tions betweers, b, ande? though they are expressed via the Ernst potential of Theorem 7.2 is regular in the whole
theta functions, i.e., transcendental functions, also at thepacetime except at the disk. Since it was shown in Refs.
disk. [29,3Q that®'(u’) =0 defines the limit in which the solu-

(2) It is an interesting question whether there exist diskgtion can be interpreted as the extreme Kerr solution, the disk
with nonconstanty/Q) or & for genus 2 in the vicinity of the solution is regular up to the black-hole limit if this limit is
above class of solutions. Whereas this is rather straightforeached.

ward for a nonconstant if y/{) are constant, it is less ob- Proof.
vious if the latter does not hold. This means that one looks (1) Using the divisorX of Eq. (38) and the vanishing
for given 6 for solutions with condition for the Riemann theta function, we find that

O(w(>")+u)=0 is equivalent to the condition that™ is
in X. The reality ofu; implies thatX=o"+(—iz). Equation
—=Co+ep(p), (93)  (38) thus leads to

Q=

—+
E, M

E, M 27 )r u

where C, is a constant|p|<1 is a function ofp, and e
<1 is a small dimensionless parameter. We can assume that
p is not identically constant, since this would only lead to a (94)
reparametrization of the above solution. To check if there are N »

foc rdr f izrdr 1 INnGrdr

jw+d7’ JiZdT 1 InGdr

E, M 2m)r u

solutions for small enough, one has to redo the steps in the -
proof of Theorem 7.2 in first order of by expanding all Ep M

quantities in the formy=y+ey+ - --. Doing this one rec-
ognizes that Eq(72) becomes a linear first-order differential
equation forp of the formp,+F(p)p=0, whereF is given
by the solution for constan#/(). For a solutionp to this
equation, the remaining steps can be performed as aboveg

where= denotes equality up to periods. The reality and the
symmetry with respect tg of the above expressions limits
the possible choices of the periods. It is straightforward to
pow that® (w (e~ )+u) =0 if and only if the functiong-,

seems possible to use the theorem on implicit functions t efined by
prove the existence of solutions for genus 2 in the vicinity of rdr —izd s
constanty/(), but this is beyond the scope of this paper. Fl::f —+J —-n,
E, M E, M
C. Global regularity dr dr dr dr
. ) ) X209 —+2 ¢ —+ —+ § —
In Theorem 7.2 it was shown that one can identify an by M b, M a; M a, M
Ernst potential on a genus 2 surface which takes the required
boundary data at the disk. However, one has to note that this _ i InGdr
is only a local statement which does not ensure that one has 2miJr w7
found the desired global solution which has to be regular in (95)
the whole spacetime except at the disk. It was shown in Refs.
[29,3Q that this is the case ®[w(* )+u]#0. In New- wtrdT —izrdr
tonian theory(see Sec. )| the boundary value problem could Fa:= fE u fE w nz
be treated at the disk alone because of the regularity proper- ' z
ties of the Poisson integral. Thus one knows that the above rdr rdr rdr rdr
condition will hold in the Newtonian limit of the hyperellip- X[2¢ —+2¢ —+ ¢ —+ % _)
. . . . . e b, M b, M a; M a, M
tic solutions if the latter exists. For physical reasons, it is,
however, clear that this will not be the case for arbitrary 1 (InGrdr
values of the physical parameters: if more and more energy T2y w

is concentrated in a region of spacetime, a black hole is

expected to form(see, e.g., the hoop conjecty0]). The ; ; ;

black-hole limit will be a stability limit for the above disk m';hsg'rﬁec\lj;ﬁ}ge; g’ff 9 ;nfh‘év?j'r'ﬁﬁsnzscya::i;%

solutions. Thus one expects that additional singularities will F, is even in§’ V\’/he'reast is odd. Thustlis identi-

occur in the spacetime if one goes beyond the bIack—hoI%alb’/ zero in the eq,uatorial plane outside the disk.

limit. The task is to find the range of the physical parameters, (2) In the Newtonian limit\ ~0, the above expressions

hereX andd, where the solution is regular except at the disk.; leading order of\, take the forrhs ’

We can state the following theorem. '
Theorem 7.3Let X’ be the Riemann surface given by Fo=A[(=8n,+1)ci(p.O)INN—di(p,O)N], (96

u'2=(K2—E)(K2—E), and let a prime denote that the M el Pt (99

primed quantity is defined oB’. Let A.(5) be the smallest and

positive value\ for which ®'(u’)=0. Then O[w(«")

+u]#0 for all p,  and <A<\ () and 0<6<6,. Fo=VA[(=8n,+1)Co(p,O)INN—dao(p,O)N3?], (97)
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where we have used the same approach as in the calculatioprges forn=c and®'(u’)# 0. This supports the intuitive
of the axis potential in Eq46) (see Ref[30], and references reasoning that counterrotation makes the solution more
given therein; the functionsc, and d; are non-negative, static, i.e., it behaves more like a solution of the Laplace
whereasc, /d, is positive in C{{=0}. ThusF; are zero for equation with the regularity properties of the Poisson inte-
A =0, which is Minkowski spacetimé=1, but they are not gral.
simultaneously zero for small enough i.e., f is regular in (2) SinceF,(p,0)=0 for p=1, the reasoning in ste(®)
the Newtonian regime in accordance with the regularityof the above proof shows that there will be a zero of
properties of the Poisson integral. HowevEr,may vanish @[ w(~)+u] and thus a pole of the Ernst potential in the
at some value ¢ for givenp, ¢, andé. Since we are looking equatorial plane fol>\.(6) if the theta function in the
for zeros ofF; in the vicinity of the Newtonian regime, we numerator does not vanish at the same point. In the equato-
may putn, ,=1 here. rial plane the Ernst potential can be expressed via elliptic
(3) Let G be the open domai€/{{=0,,<1\/p=0}. Itis  theta functiongsee Ref[30]) which have first-order zeros.
straightforward to check thd; are solutions to the Laplace ThusF; will be negative for\>\ in the vicinity of A,
equationAF;=0 with and consequently the same holds foy in the equatorial
plane at some value>1. It will be shown in the third paper
1 that the spacetime has a singular ring in the equatorial plane
A=4| o+ —(d,+ ) in this case. However, the disk is still regular, and the im-
+2) posed boundary conditions are still satisfied. This provides a
- striking example that one cannot treat boundary value prob-
for z,ze G. Thus by the maximum principlE; do not have lems locally at the disk alone in the relativistic case. Instead
an extremum irg. one has to identify the range of the physical parameters

(4) At the axis for{>0, U; are finite, whereab, diverge ~ Where the solution is regular except at the disk.
proportional to—In p for all N and §. Thusf is always regu-

lar at the axis. VIIl. CONCLUSION
(5) Relation(61) at the disk can be written in the form o )
(y+A)2+b2=B2, whereA andB are finite real quantities. We have shown in this paper how methods from algebraic

Thus the Ernst potential is always regular at the disk. Due t§€ometry can be successfully applied to construct explicit
ey o e o & ot i SIS o s s o Tt ion
of the disk. ForF4, at the disk one obtains g y 9

disks for genus 2 of the underlying Riemann surface in ad-
_ dition to the one we could identify explicitly. To prove ex-
_ f“* dr N JE dr N fE dr _u.. (98 istence theorems for solutions to boundary value problems,
1 —p2pa(7)  Jo () Jo ma(m) YT the methods of Ref§41,42 seem to be better suited, since
the hyperelliptic techniques are limited to finite genus of the
With Eq. (90) one can see thdt; is always positive at the Riemann surface. Moreover, the techniques used at the
disk. boundary have to be complemented by a proof of global
(6) SinceF is strictly positive on the axis and the disk regularity. The finite genus of the Riemann surface also re-
and a solution to the Laplace equatiorginit is positive in C  stricts the usefulness in the numerical treatment of boundary
if it is positive at infinity.F, is regular forjz|— and can be value problems. The methods of Reff$2] and[13] are not
expanded a$;=Fy,/|z| +0(1/z|), whereF,; can be ex- limited in a similar way and have proven to be highly effi-
pressed via quantities ah’. We obtain cient. Thus the real strength of the approach we have pre-
sented here is the possibility to construct explicit solutions
_ whose physical features can then be discussed in analytic
Fnzl 35 E B LJI In Gdr_ (99) dependence on the physical parameters up to the ultrarelativ-
2 Jopp 2mi)oi istic limit. Whether this approach can be generalized to more
sophisticated matter models or whether the equations can
The quantityF,;=0 iff ®'(u’)=0. The conditiorF;;>0is still be handled for higher genus will be the subject of further
thus equivalent to the condition that<A ;(5) where\ (5) research.
is the first positive zero ' (u’). This completes the proof.
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