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Exact relativistic treatment of stationary counterrotating dust disks:
Boundary value problems and solutions
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This is the first in a series of papers on the construction of explicit solutions to the stationary axisymmetric
Einstein equations which describe counterrotating disks of dust. These disks can serve as models for certain
galaxies and accretion disks in astrophysics. We review the Newtonian theory for disks using Riemann-Hilbert
methods which can be extended to some extent to the relativistic case, where they lead to modular functions on
Riemann surfaces. In the case of compact surfaces these are Korotkin’s finite gap solutions, which we will
discuss in this paper. On the axis we establish for general genus relations between the metric functions, and
hence the multipoles which are enforced by the underlying hyperelliptic Riemann surface. Generalizing these
results to the whole spacetime, we are able in principle to study the classes of boundary value problems which
can be solved on a given Riemann surface. We investigate the cases of genus 1 and 2 of the Riemann surface
in detail, and construct an explicit solution for a family of disks with constant angular velocity and constant
relative energy density which was announced in a previous Letter.
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I. INTRODUCTION
The importance of stationary axisymmetric spacetim

arises from the fact that they can describe stars and gala
in thermodynamical equilibrium~see, e.g., Refs.@1,2#!.
However the complicated structure of Einstein equations
the matter region which are apparently not completely in
grable has made a general treatment of these equations
possible up to now. Thus only special, possibly unphysic
solutions such as that of Wahlquist@3# were found~in Ref.
@4# it was shown that the Wahlquist solution cannot be
interior solution for a slowly rotating star!. Since vacuum
equations in the form of those of Ernst@5# are known to be
completely integrable@6–8#, the study of two-dimensiona
matter models can lead to global solutions of the Einst
equations which hold both in the matter and vacuum regio
the equations in matter, which is in general approximated
an ideal fluid, reduce to ordinary nonlinear differential equ
tions because one of the spatial dimensions is suppres
Matter thus leads to boundary values for the vacuum eq
tions.

Disks of pressureless matter, so-called dust, are studie
astrophysics as models for certain galaxies and for accre
disks. We will therefore discuss dust disks in more detail,
the techniques used can in principle be extended to m
general cases. In the context of galaxy models, relativi
effects only play an important role in the presence of bla
holes, since the latter are genuinely relativistic objects
complete understanding of a black-hole disk system eve
nonactive galaxies is therefore merely possible in a rela
istic setting. The precondition to construct exact solutions
stationary black-hole disk systems is the ability to treat re
tivistic disks explicitly. In this paper we will focus on disk
of pressureless matter. By constructing explicit solutions,
hope to obtain a better understanding of the mathema
structure of the field equations and the physics of rapi
rotating relativistic bodies, since dust disks can be viewed
a limiting case for extended matter sources. Hence we
0556-2821/2001/63~6!/064033~17!/$15.00 63 0640
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discuss relativistic effects for models whose Newtonian lim
is of astrophysical importance. We will investigate dis
with counterrotating dust streams which are discussed
models for certainS0 and Sa galaxies~see Ref.@9# and
references given therein, and Refs.@10,11#!. These galaxies
show counterrotating matter components and are believe
be the consequence of the merger of galaxies. Recent in
tigations have shown that there is a large number of gala
~see Ref.@9#, the first was NGC 4550 in Virgo! which show
counterrotating streams in the disk with up to 50% count
rotation.

Exact solutions describing relativistic disks are also
interest in the context of numerics. They can be used to
existing codes for stationary axisymmetric stars as in R
@12,13#. Since Newtonian dust disks are known to be u
stable against fragmentation and since numerical invest
tions ~see, e.g., Ref.@14#! indicate that the same holds in th
relativistic case, such solutions could be taken as exact in
data for numerical collapse calculations: due to the inevita
numerical error, such an unstable object will collapse if us
as initial data.

In the Newtonian case, dust disks can be treated in
generality~see, e.g., Ref.@15#! since the disks lead to bound
ary value problems for the Laplace equations which can
solved explicitly. The fact that the complex Ernst equati
which takes the role of the Laplace equation in the relativ
tic case is completely integrable gives rise to the hope
boundary value problems might be solvable here at leas
selected cases. The unifying framework for both the Lapl
and Ernst equations is provided by methods from soli
theory, so-called Riemann-Hilbert problems: the scalar pr
lem for the Laplace equation can always be solved with
help of a generalization of the Cauchy integral~see Ref.@16#,
and references given therein!, a procedure which leads to th
Poisson integral for distributional densities. Choosing
contour of the Riemann-Hilbert problem appropriately, o
can construct solutions to the Laplace equation which
©2001 The American Physical Society33-1
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C. KLEIN PHYSICAL REVIEW D 63 064033
everywhere regular except at a disk where the function is
differentiable. Similarly, one can treat the relativistic ca
where the matrix Riemann-Hilbert problem can be related
a linear integral equation. It was shown in Ref.@17# that the
matrix problem for the Ernst equation can always be ga
transformed to a scalar problem on a Riemann surface w
can be solved explicitly in terms of Korotkin’s finite ga
solutions @18# for rational Riemann-Hilbert data. In thi
sense these solutions can be viewed as a generalization o
Poisson integral to the relativistic case.

Whereas a Poisson integral contains one free func
which is sufficient to solve boundary value problems for t
scalar gravitational potential, finite gap solutions contain o
free function and a set of complex parameters: the bra
points of the Riemann surface. Thus one cannot hope
solve general boundary value problems for the comp
Ernst potential within this class, because this would im
the choice to specify two free functions in the solution a
cording to the boundary data. This means that one can
solve certain classes of boundary value problems on a g
compact Riemann surface. In the first paper we investig
the implications of the underlying Riemann surface on
multipole moments and the boundary values taken at a g
boundary. Relations will be given for the general genus
the surface, and will be discussed in detail in the case
genus 1~elliptic surface! and genus 2, which is the simple
case with generic equatorial symmetry. It is shown that
solution of boundary value problems leads, in general,
nonlinear integral equations. However, we can iden
classes of boundary data where only one linear integral e
tion has to be solved. Special attention will be paid to co
terrotating dust disks, which will lead us to the constructi
of the solution for constant angular velocity and const
relative density which was presented in Ref.@19#. It contains,
as limiting cases, the static solutions of Morgan and Morg
@20# and the disk with only one matter stream by Neugeba
and Meinel@21#. The potentials of the resulting spacetime
the axis and the disk are presented in the second pa
physical features such as the ultrarelativistic limit, the form
tion of ergospheres, multipole moments, and the ene
momentum tensor are discussed in the third paper.

The present paper is organized as follows. In Sec. II
discuss Newtonian dust disks with Riemann-Hilbert me
ods, and relate the corresponding boundary value probl
to an Abelian integral equation. The relativistic field equ
tions and the boundary conditions for counterrotating d
disks are summarized in Sec. III. Important facts on hyp
elliptic Riemann surfaces, which will be used to discuss K
rotkin’s class of solutions to the Ernst equation, are collec
in Sec. IV. In Sec. V, we establish relations for the cor
sponding Ernst potentials on the axis on a given Riem
surface of arbitrary genus. The found relation limits the p
sible choice of the multipole moments. We discuss in de
the elliptic case and the genus 2 case with equatorial s
metry. This analysis is extended to the whole spacetime
Sec. VI which leads to a set of differential and algebr
equations which is again discussed in detail for genus 1
2. The equations for genus 2 are used to study differenti
counterrotating dust disks in Sec. VII. We discuss the Ne
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tonian limit of disks of genus 2. As a first application of th
constructive approach we derive the class of counterrota
dust disks with constant angular velocity and constant re
tive density of Ref.@19#. We prove the regularity of the
solution up to the ultrarelativistic limit in the whole spac
time except the disk, and conclude in Sec. VIII.

II. NEWTONIAN DUST DISKS

To illustrate the basic concepts used in the following s
tions, we will briefly recall some facts on Newtonian du
disks. In Newtonian theory, gravitation is described by
scalar potentialU which is a solution to the Laplace equatio
in the vacuum region. We use cylindrical coordinatesr, z,
and f and place a disk, made up of a pressureless t
dimensional ideal fluid with radiusr0, in the equatorial
planez50. In Newtonian theory stationary perfect fluid s
lutions, and thus also the here considered disks, are know
be equatorially symmetric.

Since we concentrate on dust disks, i.e., pressureless
ter, the only force to compensate for gravitational attract
in the disk is the centrifugal force. In the disk this leads
~here and in the followingf x5] f /]x)

Ur5V2~r!r, ~1!

whereV(r) is the angular velocity of the dust at radiusr.
Since all terms in Eq.~1! are quadratic inV, there are no
effects due to the sign of the angular velocity. The absenc
these so-called gravitomagnetic effects in Newtonian the
implies that disks with counterrotating components will b
have with respect to gravity exactly as disks which are m
up of only one component. We will therefore only consid
the case of one component in this section. Integrating Eq.~1!
we obtain the boundary dataU(r,0) with an integration con-
stantU05U(0,0), which is related to the central redshift
the relativistic case.

To find the Newtonian solution for a given rotation la
V(r), we thus have to construct a solution to the Lapla
equation which is regular everywhere except at the d
where it has to take on the boundary data@Eq. ~1!#. At the
disk the normal derivatives of the potential will have a jum
since the disk is a surface layer. Note that one only has
solve the vacuum equations, since the two-dimensional m
ter distribution merely leads to boundary conditions for t
Laplace equation. In the Newtonian setting one thus ha
determine the density for a given rotation law or, converse
a well known problem~see, e.g., Ref.@15# and references
therein! for Newtonian dust disks.

The method we outline here has the advantage that it
be generalized to some extent to the relativistic case. We
r051 without loss of generality~we are only considering
disks of finite nonzero radius! and obtainU as the solution of
a Riemann-Hilbert problem~see, e.g., Ref.@16# and refer-
ences given therein!.

Theorem 2.1.Let lnGPC1,a(G) andG be the covering of
the imaginary axis in the upper sheet ofS0 between2 i and
i, whereS0 is the Riemann surface of genus 0 given by t
3-2
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EXACT RELATIVISTIC TREATMENT OF STATIONARY . . . PHYSICAL REVIEW D 63 064033
algebraic relationm0
2(t)5(t2z)21r2. The functionG has

to be subject to the conditionsG( t̄)5Ḡ(t) and G(2t)
5G(t). Then

U~r,z!52
1

4p i EG

ln G~t!dt

A~t2z!21r2
~2!

is a real, equatorially symmetric solution to the Lapla
equation which is regular everywhere except at the diskz
50 andr<1. The function lnG is determined by the bound
ary dataU(r,0) or the energy densitys of the dust (2ps
5Uz in units where the velocity of light and the Newtonia
gravitational constant are equal to 1! via

ln G~ t !54S U01tE
0

tUr~r!dr

At22r2 D ~3!

or

ln G~ t !54E
t

1 rUz

Ar22t2
dr, ~4!

respectively, wheret52 i t.
The occurrence of the logarithm in Eq.~2! is due to the

Riemann-Hilbert problem with the help of which the solutio
to the Laplace equation was constructed. We briefly out
the proof.

Proof. It may be checked by direct calculation thatU in
Eq. ~2! is a solution to the Laplace equation except at
disk. The reality condition onG leads to a real potential
whereas the symmetry condition with respect to the invo
tion t→2t leads to equatorial symmetry. At the disk th
potential, due to equatorial symmetry, takes the bound
values

U~r,0!52
1

2pE0

r ln G~ t !

Ar22t2
dt ~5!

and

Uz~r,0!52
1

2pEr

1] t@ ln G~ t !#

At22r2
dt. ~6!

Both equations constitute integral equations for the ‘‘jum
data’’ lnG of the Riemann-Hilbert problem if the respectiv
left-hand side is known. Equations~5! and~6! are both Abe-
lian integral equations, and can be solved in terms of qua
tures, i.e., Eqs.~3! and ~4!. To show the regularity of the
potential U, we prove that integral~2! is identical to the
Poisson integral for a distributional density which reads,
the disk,

U~r!522E
0

1

s~r8!r8dr8E
0

2p df

A~r1r8!224rr8cosf

524E
0

1

s~r8!r8dr8
K@k~r,r8!#

r1r8
, ~7!
06403
e

e

-

ry

a-

t

wherek(r,r8)52Arr8/(r1r8), and whereK is the com-
plete elliptic integral of the first kind. Eliminating lnG in Eq.
~5! via Eq. ~4!, after interchange of the order of integratio
we obtain

U52
2

p F E
0

r

Uz

r8

r
KS r8

r Ddr81E
r

1

UzKS r

r8
D dr8G ,

~8!

which is identical to Eq.~7! since K@2Ak/(11k)#5(1
1k)K(k). Thus integral~2! has properties known from th
Poisson integral: it is a solution to the Laplace equat
which is everywhere regular except at the disk where
normal derivatives are discontinuous. This completes
proof.

Remark:We note that it is possible in the Newtonian ca
to solve the boundary value problem purely locally at t
disk. The regularity properties of the Poisson integral th
ensure global regularity of the solution except at the di
Such a purely local treatment will not be possible in t
relativistic case.

The above considerations make it clear that one can
prescribeU both at the disk~and thus the rotation law! and
the density independently. This just reflects the fact that
Laplace equation is an elliptic equation for which Cauc
problems are ill posed. If lnG is determined by either Eq.~3!
or ~4! for given rotation law or density, expression~2! gives
the analytic continuation of the boundary data to the wh
spacetime. When we prescribe the angular velocity, the c
stant U0 is determined by the condition lnG(i)50, which
excludes a ring singularity at the rim of the disk. For rig
rotation (V5const), we obtain, e.g.,

ln G~t!54V2~t211!, ~9!

which leads, with Eq.~2!, to the well-known Maclaurin disk.

III. RELATIVISTIC EQUATIONS AND BOUNDARY
CONDITIONS

It is well known ~see Ref.@22#! that the metric of station-
ary axisymmetric vacuum spacetimes can be written in
Weyl-Lewis-Papapetrou form

ds252e2U~dt1adf!21e22U@e2k~dr21dz2!1r2df2#,
~10!

wherer andz are Weyl’s canonical coordinates, and] t and
]f are the two commuting asymptotically timelike an
spacelike Killing vectors, respectively. In this case t
vacuum field equations are equivalent to the Ernst equa
for the complex potentialf wheref 5e2U1 ib, and where the
real functionb is related to the metric functions via

bz52
i

r
e4Uaz . ~11!

Here the complex variablez stands forz5r1 iz. With these
settings, the Ernst equation reads
3-3
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C. KLEIN PHYSICAL REVIEW D 63 064033
f zz̄1
1

2~z1 z̄!
~ f z̄1 f z!5

2

f 1 f̄
f zf z̄ , ~12!

where a bar denotes complex conjugation inC. With a solu-
tion f, the metric functionU follows directly from the defi-
nition of the Ernst potential, whereasa can be obtained from
Eq. ~11! via quadratures. The metric functionk can be cal-
culated from the relation

kz52r~Uz!
22

1

2r
e4U~az!

2. ~13!

The integrability condition of Eqs.~11! and~13! is the Ernst
equation. For realf, the Ernst equation reduces to th
Laplace equation for the potentialU. The corresponding so
lutions are static, and belong to the Weyl class. Hence s
disks like the counterrotating disks of Morgan and Morg
@20# can be treated in the same way as the Newtonian d
in Sec. II.

Since the Ernst equation is an elliptic partial different
equation, one has to pose boundary value problems.
boundary data arise from a solution of the Einstein equati
in the matter region. In our case this will be an infinite
mally thin disk made up of two components of pressurel
matter which are counterrotating. These models are sim
enough that explicit solutions can be constructed, and t
show typical features of general boundary value proble
one might consider in the context of the Ernst equation. I
also possible to study explicitly the transition from a statio
ary to a static spacetime with a matter source of finite ext
sion for these models. Counterrotating disks of infinite e
tension but finite mass were treated in Refs.@10# and @23#,
and disks producing the Kerr metric and other metrics
@11#. To obtain the boundary conditions at a relativistic du
disk, it seems best to use Israel’s invariant junction con
tions for matching spacetimes across non-null hypersurfa
@24#. Again we place the disk in the equatorial plane a
match the regionsV6 (6z.0) at the equatorial plane. Thi
is possible with the coordinates of Eq.~10!, since we are
only considering dust, i.e., vanishing radial stresses in
disk. The jumpgab5Kab

1 2Kab
2 in the extrinsic curvature

Kab of the hypersurfacez50 with respect to its embedding
into V65$6z.0% is due to the energy momentum tens
Sab of the disk via

28pSab5gab2habge
e , ~14!

whereh is the metric on the hypersurface~greek indices take
the values 0, 1, and 3 corresponding to the coordinatest, r,
andf). As a consequence of the field equations the ene
momentum tensor is divergence free,S;b

ab50, where the
semicolon denotes the covariant derivative with respect th.

The energy-momentum tensor of the disk is written in
form

Smn5s1u1
m u1

n 1s2u2
m u2

n , ~15!

where the vectorsu6
a are a linear combination of the Killing

vectors, (u6
a )5@1,0,6V(r)#. This has to be considered a
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an algebraic definition of the tensor components. Since
vectorsu6 are not normalized, the quantitiess6 have no
direct physical significance, they are just used to paramet
Smn. The energy-momentum tensor was chosen in a wa
interpolate continuously between the static case and the
component case with constant angular velocity. An ener
momentum tensorSmn of the form of Eq.~15! can always be
written as

Smn5sp* vmvn1pp* wmwn, ~16!

wherev and w are the unit timelike and spacelike vecto
(vm)5N1(1,0,vf), respectively, and where (wm)
5N2(k,0,1). This corresponds to the introduction of obse
ers @called f-isotropic observers~FIO’s! in Ref. @11## for
which the energy-momentum tensor is diagonal. The con
tion wmvm50 determinesk in terms ofvf and the metric:

k52
g031vfg33

g001vfg03
. ~17!

If pp* /sp* ,1 the matter in the disk can be interpreted
in Ref. @20# either as having a purely azimuthal pressure
as being made up of two counterrotating streams of press
less matter with proper surface energy densitysp* /2 which
are counterrotating with the same angular velocityApp* /sp* ,

Smn5 1
2 s* ~U1

m U1
n 1U2

m U2
n !, ~18!

where (U6
m )5U* (vm6App* /sp* wm) is a unit timelike vec-

tor. We will always adopt the latter interpretation if the co
dition pp* /sp* ,1 is satisfied, which is the case in the e
ample we will discuss in more detail in Sec. VII. The energ
momentum tensor@Eq. ~18!# is just the sum of two energy
momentum tensors for dust. Furthermore it can be sho
that the vectorsU6 are geodesic vectors with respect to t
inner geometry of the disk: this is a consequence of the eq
tion S;n

mn50, together with the fact thatU6 is a linear com-
bination of the Killing vectors. In the discussion of the phys
cal properties of the disk we will refer only to the measura
quantitiesvf , sp* and pp* which are obtained by the intro
duction of the FIO’s, whereass6 and V are just used to
generate a sufficiently general energy-momentum tensor
establish the boundary conditions implied by the ener
momentum tensor, we use Israel’s formalism@24#. Equation
S;b

ab50 leads to the condition

Ur~112gVa1V2a2!1Var~g1Va!

1V2r~rUr21!e24U50, ~19!

where

g~r!5
s1~r!2s2~r!

s1~r!1s2~r!
. ~20!

The functiong(r) is a measure for the relative energy de
sity of the counter-rotating matter streams. Forg[1, there is
only one component of matter; forg[0, the matter streams
have identical densities, which leads to a static spacetim
3-4
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EXACT RELATIVISTIC TREATMENT OF STATIONARY . . . PHYSICAL REVIEW D 63 064033
the Morgan and Morgan class. As in the Newtonian case,
cannot prescribe both the proper energy densitiess6 and the
rotation law V at the disk, since the Ernst equation is
elliptic equation. For the matter model@Eq. ~15!#, we obtain
the following theorem.

Theorem 3.1.Let s̃(r)5s1(r)1s2(r) and let R(r)
andd(r) be given by

R5S a1
g

V De2U ~21!

and

d~r!5
12g2~r!

V2~r!
. ~22!

Then for prescribedV(r) andd(r), the boundary data at th
disk take the form

f z52 i
R21r21de4U

2Rr
f r1

i

R
e2U. ~23!

Let s be given bys5s̃ek2U. Then for given densitys and
g, the boundary data read

~r21de4U!@~e2U!r~e2U!z1brbz#
2

22re2U~e2U!z@~e2U!r~e2U!z1brbz#1br
2e4U50,

~24!

and

@br2a~~e2U!r~e2U!z1brbz!#
2

18prse2Ug2@~e2U!r~e2U!z1brbz#50. ~25!

Proof. The Relations~14! lead to

24pe(k2U)S005~kz22Uz!e
2U,

24pe(k2U)~S032aS00!52 1
2 aze

2U, ~26!

24pe(k2U)~S3322aS031a2S00!52kzr
2e22U,

where

S005s̃e4U~11V2a212Vag!,

S032aS0052s̃r2V~Va1g!, ~27!

S3322aS031a2S005s̃V2r4e24U.

One can substitute one of the above equations with Eq.~19!
in the same way as one replaces one of the field equation
the covariant conservation of the energy-momentum ten
in the case of three-dimensional ideal fluids. This make
possible to eliminatekz from Eqs. ~26! and to treat the
boundary value problem purely on the level of the Er
equation. The functionk will then be determined via Eq.~13!
06403
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with the found solution of the Ernst equation. It is straig
forward to check the consistency of this approach with
help of Eq.~13!.

If V andg ~and thusd) are given, one has to eliminates̃
from Eqs. ~26! and ~27!. This can be combined with Eqs
~19! and ~11! to give Eq.~23!.

If the functionsg and s are prescribed~this makes it
possible to treat the problem completely on the level of
Ernst equation!, one has to eliminateV from Eqs.~19!, ~26!,
and ~27! which leads to Eqs.~24! and ~25!. This completes
the proof.

Remark.For givenV(r) and d(r), Eq. ~19! is an ordi-
nary nonlinear differential equation fore2U:

~R22r2!re2U22Re4US g

V D
r

5~R22r22de4U!~e2U!r .

~28!

For constantV andg, we obtain

R22r21de4U5
2

l
e2U, ~29!

wherel52V2e22U0.
For given boundary values as in Theorem 3.1, the tas

to to find a solution to the Ernst equation which is regular
the whole spacetime except at the disk, where it has to sa
two real boundary conditions. In the following we will con
centrate on the case where the angular velocityV and the
relative densityg are prescribed.

IV. SOLUTIONS ON HYPERELLIPTIC RIEMANN
SURFACES

The remarkable feature of the Ernst equation is that i
completely integrable, which means that the Riema
Hilbert techniques used in the Newtonian case can be app
here too. This time, however, one has to solve a matrix pr
lem ~see, e.g., Ref.@17#, and references given therein! which
cannot be solved generally in closed form. In Ref.@17# it was
shown that the problem can be gauge transformed to a sc
problem on a four-sheeted Riemann surface. In the cas
rational ‘‘jump data’’ of the Riemann-Hilbert problem, thi
surface is compact, and the corresponding solutions to
Ernst equation are Korotkin’s finite gap solutions@18#. In the
following we will concentrate on this class of solutions, a
investigate its properties with respect to the solution
boundary value problems.

A. Theta functions on hyperelliptic Riemann surfaces

We will first summarize some basic facts on hyperellip
Riemann surfaces which we will need in the following. W
consider surfacesS of genusg which are given by the rela
tion m2(K)5(K1 iz)(K2 i z̄)) i 51

g (K2Ei)(K2Ēi), where

Ei do not depend on the physical coordinatesz and z̄. We
introduce the standard quantities associated with a Riem
surface~see Ref.@25#!, with respect to the cut system of Fig
1 ~we order the branch points with ImEi,0 in a way that
3-5
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ReE1,ReE2,•••,ReEg , and assume for simplicity tha
the real parts of theEi are all different; we writeEi5a i
2 ib i); the g normalized differentials of the first kinddv i
are defined byrai

dv j52p id i j ; and, with P052 iz, the

Abel mapv i(P)5*P0

P dv i , which is defined uniquely up to

periods. Furthermore, we define the Riemann matrixP with
the elementsp i j 5rbi

dv j , and the theta function

Q@m#~z!5 (
NPZg

exp$ 1
2 ^P@N1~m1/2!#,@N1~m1/2!#&

1^~z1p im2!,@N1~a/2!#&%

with half integer characteristic@m#5@m2

m1
# and mi

1 ,mi
250,1

(^N,z&5( i 51
g Nizi). A characteristic is called odd i

^m1,m2&Þ0 mod 2. The normalized~all a periods are zero!
differential of the third kind with poles atP1 and P2 and
residue 11 and 21, respectively, will be denoted b
dvP1P2

. A point PPS will be denoted by P5@K,

6m(K)# or K6 ~the sheets will be defined in the vicinity o
a given point onS, e.g., the covering of̀ ).

The theta functions are subject to a number of addit
theorems. We will need the ternary addition theorem wh
can be cast in the following form.

Theorem 4.1. Ternary addition theorem.Let @mi #
5@mi

1 ,mi
2# ( i 51, . . . ,4) bearbitrary real 2g-dimensional

vectors. Then

Q@m1#~u1v !Q@m2#~u2v !Q@m3#~0!Q@m4#~0!

5
1

2g (
2aP(Z2)2g

exp~24p i ^m1
1 ,a2&!Q@n11a#~u!

3Q@n21a#~u!Q@n31a#~v !Q@n41a#~v !,

~30!

wherea5(a1,a2), and (m1 , . . . ,m4)5(n1 , . . . ,n4)T with

T5
1

2 S 1 1 1 1

1 21 21 21

1 21 1 21

1 21 21 1

D . ~31!

FIG. 1. Homology basis ofS.
06403
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Each 1 inT denotes theg3g identity matrix.
For a proof see, e.g., Ref.@26#. Let us recall that a divisor

X on S is a formal symbolX5n1P11•••1nkPk , with Pi

PS and niPZ. The degree of a divisor is( i 51
k ni . The

Riemann vector KR is defined by the condition tha
Q(v(W)1KR)50 if W is a divisor of degreeg21 or less.
Here and in the following we use the notationv(W)
5*P0

W dv5( i 51
g21v(wi). We note that the Riemann vecto

can be expressed through half-periods in the case of a hy
elliptic surface.

The quotient of two theta functions with the same arg
ment but different characteristic is a so-called root funct
which means that its square is a function onS. One can
prove ~see Ref.@26# and references therein! the following.

Theorem 4.2. Root functions. Let Qi , i 51, . . . ,2g12,
be the branch points of a hyperelliptic Riemann surfaceSg
of genusg andAj5v(Qj ) with v(Q1)50. Furthermore let
$ i 1 , . . . ,i g% and $ j 1 , . . . ,j g% be two sets of numbers in
$1,2, . . . ,2g12%. Then the following equality holds for an
arbitrary pointPPSg :

QFKR1 (
k51

g

Ai kG ~v~P!!

QFKR1 (
k51

g

Aj kG ~v~P!!

5c1A~K2Ei 1
!•••~K2Ei g

!

~K2Ej 1
!•••~K2Ej g

!
,

~32!

wherec1 is a constant independent ofK. Let X5P11•••

1Pg , with Pj5@K j ,m(K j )# be a divisor of degree g onSg ;
then

Q@KR1Ai #@v~X!#

Q@KR1Aj #@v~X!#
5c2)

k51

g A~Kk2Qi !

~Kk2Qj !
, ~33!

wherec2 is a constant independent on theKk .
The notion of divisors makes it possible to state Jacob

inversion theorem in a very compact form. See the followi
theorem.

Theorem 4.3. Jacobi inversion theorem.Let A,BPS be
divisors of degree g anduPCg. Then, for a givenB andu,
the equationv(A)2v(B)5u for the divisor A is always
solvable.

For a proof we refer the reader to the standard literatu
see, e.g., Ref.@25#. We remark that the divisor may not b
uniquely defined in the general case which means that on
morePiPA can be freely chosen. We will not consider su
special cases in the following, and for so-called special d
sors refer the reader to literature such as Ref.@26#. For divi-
sorsA2B of degree zero, one can formulate Abel’s theore

Theorem 4.4. Abel’s theorem. Let A,BPS be divisors of
degreen subject to the relationv(A)2v(B)50. Then A
andB are the set of zeros respectively poles of a merom
phic functionF.

For a proof, see Ref.@25#. We remark that this function is
a rational function on the surface cut along the homolo
basis. We have the following corollary.
3-6
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Corollary 4.5.Let the condition of Abel’s theorem hold
Then the following identity holds for the integral of the thir
kind:

E
B

A

dvPQ5 ln
F~P!

F~Q!
. ~34!

B. Solutions to the Ernst equation

We are now able to write down a class of solutions to
Ernst equation on the surfaceS.

Theorem 4.5.Let the Riemann surfaceS be given by the
relationm2(K)5(K1 iz)(K2 iz)) i 51

g (K2Ei)(K2Ēi). Let
u be a vector with componentsui5(1/2p i )*G ln Gdvi ,
whereG is as in theorem 2.1. LetG be subject to the condi
tion G(t)5Ḡ( t̄), and let@m#5@m1,m2#, with mi

150 and
mi

2 arbitrary for i 51, . . . ,g, be a theta characteristic. The
the functionf, given by

f ~r,z!5
Q@m#~v~`1!1u!

Q@m#~v~`2!1u!

3expH 1

2p i EG
ln G~t!dv`1`2~t!J , ~35!

is a solution to the Ernst equation.
This class of solutions was first given by Korotkin@18#. A

straightforward continuous limit leading to the above fo
can be found in Ref.@27,28#. For the relation to Riemann
Hilbert problems, see Ref.@17#. In the case of genus 0, th
Ernst potential is real, and we obtain a solution of the W
class in the form of Eq.~2!. For higher genus, these solution
are in general nonstatic and thus we generalize Eq.~2! to the
stationary case. In Refs.@29,30# it was possible to identify a
physically interesting subclass.

Theorem 4.6.Let the conditions of Theorem 4.5 hold, an
in addition letS be a hyperelliptic Riemann surface of eve
genus g52n given by m2(K)5(K1 iz)(K2 iz)) i 51

n (K2

2Ei
2)(K22Ēi

2). Let the functionG be subject to the condi
tion G(2t)5G(t), and let @n# be the characteristic with
ni

150 andni
251. Then the functionf, given by

f ~r,z!5
Q@n#~v~`1!1u!

Q@n#~v~`2!1u!

3expH 1

2p i EG
ln G~t!dv`1`2~t!J , ~36!

is an equatorially symmetric solution to the Ernst equat

@ f (2z)5 f̄ (z)#, which is regular everywhere except at th
disk if Q@v(`2)1u#Þ0.

For a proof, see Refs.@29,30# where one can also find
how the characteristic can be generalized. In the follow
we will only use the characteristic of the above theorem.
06403
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A quantity of special interest is the metric functiona. In
Ref. @18# it was shown that one can relate this directly
theta functions without having to perform an integration
Eq. ~11!,

Zª~a2a0!e2U5D`2 ln
Q@v~`2!1u#

Q@n#@v~`2!1u#
, ~37!

whereDPF@v(P)# denotes the coefficient of the linear ter
in the expansion of the functionF@v(P)# in the local param-
eter in the neighborhood ofP, whereQ is the Riemann theta
function with the characteristic@m# and mi

15mi
250, and

where the constanta0 is defined by the condition thata van-
ishes on the regular part of the axis.

It is possible to give an algebraic representation of so
tions ~36! ~see Refs.@31# and @32#!. We define the divisor
X5( i 51

g Ki as the solution of the Jacobi inversion proble
( i 51, . . . ,g)

v i~X!2v i~D !5
1

2p i EG
ln G

t i 21dt

m~t!
5:ũi , ~38!

where the divisorD5( i 51
g Ei . With the help of these divi-

sors, we can write Eq.~36! in the form

ln f 5E
D

X tgdt

m~t!
2

1

2p i EG
ln G

tgdt

m~t!
. ~39!

Sinceũi in Eq. ~38! are just periods of the second integr
in Eq. ~39!, they are subject to a system of differential equ
tions: the so-called Picard-Fuchs system~see Ref.@30#, and
references given therein!. In our case this leads to

(
n51

g
~Kn2P0!Kn

j

m~Kn!
Kn,z50, j 50, . . . ,g22 ~40!

and

~ ln f !z5 (
n51

g
~Kn2P0!Kn

g21

m~Kn!
Kn,z . ~41!

Solving for Kn,z , n51, . . . ,g, we obtain

Kn,z5~ ln f !z

m~Kn!

Kn2P0

1

)
m51,mÞn

g

~Kn2Km!

. ~42!

Additional information follows from the reality ofũi ,
which implies v(X)2v(D)5v(X̄)2v(D̄). Using Abel’s
theorem on this condition, we obtain a relation for an ar
trary KPC,
3-7
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~12x2!)
i 51

g

~K2Ki !~K2K̄ i !

5)
i 51

g

~K2Ei !~K2Ēi !2~K2P0!~K2 P̄0!Q2
2~K !,

~43!

where, with purely imaginaryxi andx,

Q2~K !5x01x1K1•••1xg22Kg221xKg21. ~44!

Since Eq.~43! has to hold for allKPC, it is equivalent to 2g
real algebraic equations for theKi if xi are given. Using Eqs
~34! and ~39!, we find

f

f̄
5

11x

12x
, ~45!

which impliesx5 ibe22U.
Remark:To solve boundary value problems with the cla

of solutions~36!, one has two kinds of freedom: the functio
G as before, and the branch pointsEi of the Riemann surface
as a discrete degree of freedom. Since one would nee
specify two free functions to solve a general boundary va
problem for the Ernst equation, it is obvious that one c
only solve a restricted class of problems on a given surfa
and that one cannot expect to solve general problems
surface of finite genus. However, once one has construct
solution which takes the imposed boundary data at the d
one has to check the conditionQ@v(`2)1u#Þ0 in the
whole spacetime to actually prove that one has found
desired solution: a solution that is everywhere regular exc
at the disk, where it has to take the imposed boundary c
ditions.

There are in principle two ways of generalizing the a
proach used for the Newtonian case: One can eliminateV
from the two real equations~23! and enter the resulting equa
tion with a solution@Eq. ~36!# on a chosen Riemann surfac
This will lead, for a giveng, to a nonlinear integral equatio
for ln G. In general there is little hope of obtaining explic
solutions to this equation~for a numerical treatment of dif
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to
e
n
e,
a
a

k,

e
pt
n-

-

ferentially rotating disks along this line in the genus 2 ca
see Ref.@33#!. Once a functionG is found, one can read of
the rotation lawV on a given Riemann surface from Eq
~36!. Another approach is to establish the relations betw
the real and the imaginary part of the Ernst potential wh
exist on a given Riemann surface for arbitraryG. The sim-
plest example of such a relation is provided by the funct
w5eic, which is a function on a Riemann surface of gen
0, where we have obviouslyuwu51. As we will point out in
the following, similar relations also exist for an Ernst pote
tial of the form of Eq.~36!, but they will lead to a system o
differential equations. Once one has established these
tions for a given Riemann surface, one can determine
principle which boundary value problems can be solv
there ~in our example, which classes of functionsV and g
can occur! by the condition that one of the boundary cond
tions must be identically satisfied. The second equation
then be used to determineG as the solution of an integra
equation which is possibly nonlinear. Following the seco
approach, we want to study the implications of the hyper
liptic Riemann surface for the physical properties of the
lutions.

V. AXIS RELATIONS

In order to establish relations between the real and ima
nary parts of the Ernst potential, we will first consider t
axis of symmetry (r50) where the situation simplifies de
cisively. In addition the axis is of interest since the asym
totically defined multipole moments@34,35# can be read off
there@36#.

On the axis the Ernst potential can be expressed thro
functions defined on the Riemann surfaceS8 given bym8 2

5) i 51
g (K2Ei)(K2Ēi), i.e., the Riemann surface obtaine

from S by removing the cut@P0 ,P̄0# which just collapses on
the axis. We use the notation of Sec. IV, and let a pri
denote that the corresponding quantity is defined on the
face S8. The cut system is as in the previous section w

@E1 ,Ē1# taking the role of @P0 ,P̄0# ~all b cuts cross

@E1 ,Ē1#). We choose the Abel map in a way thatv8(E1)
50. It was shown in Ref.@30# that for genusg.1 the Ernst
potential takes the form~for z.0)
f ~0,z!5

qS E
z1

`1

dv81u8D 2exp$2@vg8~`1!1ug#%qS E
z2

`1

dv81u8D
qS E

z1

`1

dv82u8D 2exp$2@vg8~`1!2ug#%qS E
z2

`1

dv82u8D eI 1ug, ~46!
arts

.

whereq is the theta function onS8 with the characteristic
a i850 and b i851 for i 51, . . . ,g21, where I
5(1/2p i )*G ln G(t)dv`1`28 (t), dvg5dvz2z1, and where
ug5(1/2p i )*G ln G(t)dvg(t).

Note thatui8 andI are constant with respect toz. The only
term dependent both onG and on z is ug . To establish
a relation on the axis between the real and imaginary p
of the Ernst potential independent ofG, the first step must
be thus to eliminateug . We can state the following theorem

Theorem 4.1.The Ernst potential@Eq. ~46!# satisfies, for
3-8
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g.1, the relation

P1~z! f f̄ 1P2~z!b1P3~z!50, ~47!

wherePi are real polynomials inz with coefficients depend
ing on the branch pointsEi and the g real constants
*G ln Gtidt/m8(t), with i 50, . . . ,g21. The degree of the
polynomialsP1 and P3 is 2g23 or less, and the degree o
P2 is 2g22 or less.

To prove this theorem we need the fact that one can
press integrals of the third kind via theta functions with o
characteristic denoted byqo :

exp@2vg~`1!#52
qo@v8~`1!2v8~z1!#

qo@v8~`1!2v8~z2!#
. ~48!
n
e
th
-
o

06403
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Proof. The first step is to establish the relation

A f f̄1Bib1150, ~49!

where

Ae2I52

qS u81E
z2

`2

dv8DqS u81E
z1

`2

dv8D
qS u81E

z2

`1

dv8DqS u81E
z1

`1

dv8D ~50!

and
d

BeI5

e2vg(`1)qS u81E
z2

`1

dv8DqS u81E
z1

`2

dv8D 1evg(`1)qS u81E
z1

`1

dv8DqS u81E
z2

`2

dv8D
qS u81E

z2

`1

dv8DqS u81E
z1

`1

dv8D , ~51!

which may be checked with Eq.~46! by direct calculation. The reality properties of the Riemann surfaceS8 and the function
G imply thatA is real and thatB is purely imaginary. We use the addition theorem@Eq. ~30!# with @m1#5•••5@m4# equal to
the characteristic ofq for Eq. ~50!, to obtain

Ae2I52

(
2aP(Z2)2g

exp~24p i ^m1
1 ,a2&!q2@a#@u81v8~`2!#q2@a#@v8~z1!#

(
2aP(Z2)2g

exp~24p i ^m1
1 ,a2&!q2@a#@u81v8~`1!#q2@a#@v8~z1!#

. ~52!

This term is already in the desired form. Using the relation for root functions@Eq. ~32!#, one can directly see that the right-han
side is a quotient of polynomials of orderg21 or lower inz. For Eq.~51!, we use Eq.~48! with @m̃1#5@m̃2#5@KR# as the
characteristic of the odd theta functionqo , and let@m̃3#5@m̃4# be equal to the characteristic ofq. The addition theorem@Eq.
~30!# then leads to

BeI52

(
2aP(Z2)2g

exp~24p i ^m̃1
1 ,a2&!Q82@n1a#@u81v8~`2!#q2@a#@v8~z1!#

(
2aP(Z2)2g

exp~24p i ^m1
1 ,a2&!q2@a#@u81v8~`1!#q2@a#@v8~z1!#

3 (
2aP(Z2)2g

exp~24p i ^m1
1 ,a2&!

q2@a#~u8!

q2~0!
3S q2@a#@v8~`1!2v8~z1!#

qo
2@v8~`1!2v8~z1!#

1
q2@a#@v8~`1!2v8~z2!#

qo
2@v8~`1!2v8~z2!#

D , ~53!
r-
wheren follows from m̃ as in Theorem 4.1. The first fractio
in Eq. ~53! is again the quotient of polynomials of degre
g21 in z for the same reasons as above. But, since
quotient must vanish forz→`, the leading terms in the nu
merator just cancel. It is thus a quotient of polynomials
degreeg22 or less in the numerator andg21 or less in the
e

f

denominator. To deal with the quotientsq2@a#@v8(`1)
2v8(z6)#/qo

2@v8(`1)2v8(z6)#, we define the divisors
T65T1

61 . . . 1Tg21
6 as the solutions of the Jacobi inve

sion problemsv8(T6)2v8(Y)5v8(`1)1v8(z6) whereY
is the divisorY5E11•••1Eg21. Abel’s theorem then im-
plies, for arbitraryKPC,
3-9
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)
i 51

g21

~K2Ti
6!~K2z!

5~K2A6!2)
i 51

g21

~K2Ei !2~K2Eg!)
i 51

g

~K2Ēi !,

~54!

where

z2A656
m8~z!

)
i 51

g21

~z2Ei !

. ~55!

Let Qj be given by the condition@Qj1KR#5@a#, i.e.,Qj is
a branch point ofS8. Then for the quotient we obtain

q2@a#@v8~`1!2v8~z6!#

qo
2@v8~`1!2v8~z6!#

5const)
i 51

g21 Ti
62Qj

Ti
62E1

, ~56!

where const is az-independent constant. With the help
Eq. ~54!, it is straightforward to see that forQjPY, the theta
quotient is just proportional to (z2E1)/(z2Qj ), whereas
for Qj¹Y the term is proportional to (z2E1)
3(Qj2A6)2/(z2Qj ). Using Eq.~55! one recognizes tha
the terms containing roots just cancel in Eq.~53!. The re-
maining terms are just quotients of polynomials inz with
maximal degreeg in the numerator andg22 in the denomi-
nator. This completes the proof.

Remark.The remaining dependence onG throughu8 and
I can only be eliminated by differentiating relation~46! g
times. If we prescribe, e.g., the functionb on a given Rie-
mann surface@this just reflects the fact that the functionG
can be freely chosen in Eq.~46!#, we can read offe2U from
Eq. ~47!. To fix the constants related toG in Eq. ~47!, one
needs to know the Ernst potential andg21 derivatives at
some point on the axis where the Ernst potential is regu
e.g., at the origin or at infinity, where one has to prescr
the multipole moments. If the Ernst potential were known
some regular part of the axis, one could use Eq.~47! to read
off the Riemann surface~genus and branch points!. Equation
~46! is then an integral equation forG for known sources.
This just reflects a result of Ref.@37# that the Ernst potentia
for known sources can be constructed via Riemann-Hilb
techniques if it is known on some regular part of the axis

In practice it is difficult to express the coefficients in th
polynomials Pi via the constantsui8 and I, and it will be
difficult to obtain explicit expressions. We will therefor
concentrate on the general structure of relation~47!, its im-
plications on the multipoles, and some instructive examp
Let us first consider the case genus 1, which is not gen
cally equatorially symmetric. In this case the Riemann s
faceS8 is of genus 0. One can use formula~46! for the axis
potential if one replaces the theta functions by 1. We th
end up with

f f̄ 22b
z2a1

b1
eI5e2I . ~57!
06403
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Here the only remainingG dependence is inI. If f 0

5 f (0,0) is given,eI follows from f 0 f̄ 012b0a1eI /b15e2I .
If the ~in general! nonreal massM is known, the constanteI

follows from 114 ImMeI /b15e2I . In the latter case the
imaginary part of the Arnowitt-Deser-Misner mass@this cor-
responds to a Newman-Unti-Tamborino~NUT! parameter#
will be sufficient. Differentiating Eq.~57! once will lead to a
differential relation between the real and the imaginary p
of the Ernst potential which holds for allG, which means it
reflects only the impact of the underlying Riemann surfa
on the structure of the solution.

Remark. For equatorially symmetric solutions, on th
positive axis one has the relationf (2z) f̄ (z)51 ~see Refs.
@38,39#. This is to be understood in the following way: th
function uzu is even inz, but restricted to positivez it seems
to be an odd function, and it is exactly this behavior which
addressed by the above formula!. This leads to the conditions

P1~2z!52P3~z!, P2~2z!5P2~z!. ~58!

The coefficients in the polynomials depend on theg/2 inte-
grals*Gdt ln Gt2i/m8(t) ( i 50, . . . ,g/221), and the branch
points.

The simplest interesting example is genus 2, where, w
E1

25a1 ib, we obtain

f f̄ ~z2C1!1
A2

C2
~z22a2C2

2!b5z1C1 , ~59!

i.e., a relation which contains two real constantsC1 andC2
related toG. If the Ernst potential at the origin is known, on
can express these constants viaf 0. A relation of this type,
which is as shown typical for the whole class of solution
was observed in the first paper of Ref.@21# for the rigidly
rotating dust disk.

VI. DIFFERENTIAL RELATIONS IN THE WHOLE
SPACE-TIME

Considerations on the axis have shown that it is poss
there to obtain relations between the real and imaginary
of the Ernst potential which are independent of the funct
G and thus reflect only properties of the underlying Riema
surface. The found algebraic relations contain, howeveg
real constants related to the functionG, which means that
one has to differentiateg times to obtain a differential rela
tion which is completely free of the functionG. These con-
stants were just the integralsu8 and I, which are only con-
stant with respect to the physical coordinates on the a
where the Riemann surfaceS degenerates. Thus one cann
hope to obtain an algebraic relation in the whole spacet
as on the axis. Instead one has to deal with integral equat
or to look directly for a differential relation. To avoid th
differentiation of theta functions with respect to a bran
point of the Riemann surface, we use an algebraic formu
tion of the hyperelliptic solutions~38! and ~39!. From the
latter it can also be seen how one might obtain a relat
independent ofG without differentiation: one can conside
Eqs. ~38! and ~39! as integral equations forG. In principle
3-10
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one could try to eliminateG andX from these equations an
Eq. ~43!. We will not investigate this approach, but try
establish a differential relation. To this end it proves help
to define the symmetric~in the Kn) functionsSi via

)
i 51

g

~K2Ki !5..Kg2Sg21Kg211•••1S0 , ~60!

i.e., S05K1K2 . . . Kg , . . . , Sg215K11•••1Kg . Equa-
tions ~43! are bilinear in the real and imaginary parts of t
Si which are denoted byRi and I i respectively. With this
notation we obtain the following theorem.

Theorem 6.1. xi and the Ernst potentialf are subject to the
system of differential equations

05@R02P0R11•••1P0
g~21!g#xz2

i

2
Q2~P0!2

i

2
~12x2!

3~ ln f f̄ !z@ I 02P0I 11•••1~21!g21I g21P0
g21#, ~61!

and, forg.1,

xj ,z5xz@~21! j 11Rj 111 . . . 1P0
g2 j 21#2 i ~xj 111•••

1xP0
g2 j 22!2

i

2
~12x2!~ ln f f̄ !z~~21! j 11I j 111•••

2P0
g2 j 22I g21!. ~62!

Proof.Differentiating Eq.~43! with respect toz and elimi-
nating derivatives of theKi ,z via the Picard-Fuchs relation
@Eqs.~42!#, we end up with a linear system of equations f
the derivatives ofxi andx which can be solved in a standa
manner. The Vandemonde-type determinants can be
pressed via the symmetric functions. Forxz one obtains Eq.
~61!. The equations for thexj ,z are bilinear in the symmetric
functions. They can be combined with Eq.~61! and ~62!.

Remark.If one can solve Eq.~43! for the Ki , Eqs.~61!

and ~62! will be a nonlinear differential system inz ~and z̄
which follows from the reality properties! for xi , x, and f
which only contains the branch points of the Riemann s
face as parameters. For the metric functiona, with Eq. ~37!
we obtain the following theorem.

Theorem 6.2.The metric functiona is related to the func-
tions xi andSi via

Z5
ixg22

12x2
2I g212

ixz

12x2
~63!

for g.1, and

Z52I 01
ix~a12z!

12x2
~64!

for g51.
Proof. To express the functionZ via the divisorX, we

define the divisorT5T11•••1Tg as the solution of the
Jacobi inversion problemv(T)5v(X)1v(P), whereP is
in the vicinity of `2 ~only terms of first order in the loca
06403
l

r

x-

r-

parameter near̀ 2 are needed!. Using the formula for root
functions@Eq. ~33!#, for the quantityZ in Eq. ~37! we obtain

Z5
i

2
D`2 ln)

i 51

g
Ti2 P̄0

Ti2P0
. ~65!

Applying Abel’s theorem to the definition ofT and expand-
ing in the local parameter near̀2, we end up with Eq.~63!
for generalg.1, and with Eq.~64! for g51.

Remark.
~1! For g.1, Eq.~63! can be used to replace the relatio

for xg22,z in Eq. ~62! since the latter is identically fulfilled
with Eqs.~63! and ~11!.

~2! An interesting limiting case isG'1, wheref '1, i.e.,
the limit where the solution is close to Minkowski spacetim
By definition~38!, the divisorX is in this case approximately
equal toD. Thus the symmetric functions in Eqs.~62! and
~61! can be considered as being constant and given by
branch pointsEi . Relation~63! implies that the quantityZ is
approximately equal toI g22 in this limit, i.e., it is mainly
equal to the constanta0 in lowest order. Since the differen
tial system of equations~62! and~61! is linear in this limit, it
is straightforward to establish two real differential equatio
of order g for the real and the imaginary part of the Ern
potential. In principle this works also in the nonlinear ca
where sign ambiguities in the solution of Eq.~38! can be
fixed by the Minkowskian limit.

To illustrate the above equations, we will first consid
the elliptic case. This is the only case where one can es
lish an algebraic relation betweenZ andb independent ofG.
Equations~43! lead to

~12x2!R05a12zx2

~12x2!S0S̄05E1Ē12P0P̄0x2. ~66!

Formula~64! takes, with Eq.~66! ~the sign ofI 0 is fixed by
the condition thatI 052b1 for x50), the form

~12x2!Z5 ix~a12z!

1A~12x2!~b1
22r2x2!2x2~a12z!2.

~67!

This relation holds in the whole spacetime for all ellipt
potentials, i.e., for all possible choices ofG in Eq. ~36!. This
implies that one can only solve boundary value problems
elliptic surfaces where the boundary data at some given c
tour Gz satisfy condition~67!.

In the case of genus 2, for Eq.~43! we obtain

~12x2!R15a11a22zx21xx0 ,

~12x2!~R1
21I 1

212R0!5~a11a2!212a1a21b1
21b2

2

2x0
22x2~r21z2!14zxx0 ,

~68!
3-11
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~12x2!~R1R01I 1I 0!5a1a2~a11a2!1a1b2
21a2b1

2

2zx0
21~r21z2!xx0 ,

~12x2!~R0
21I 0

2!5~a1
21b1

2!~a2
21b2

2!2~r21z2!x0
2 .

The aim is to determineSi andx0 from Eq. ~68! and

~12x2!~Z1I 1!5 ix02z ix, ~69!

and to eliminate these quantities in

~R02P0R11P0
2!xz5

i

2
~x01P0x!1

i

2
~12x2!~ ln f f̄ !z

3~ I 02P0I 1!, ~70!

which follows from Eq.~61!.
Remark. Boundary value problems.Since the above rela

tions will hold in the whole spacetime, it is possible to e
tend them to an arbitrarily smooth boundaryGz , where the
Ernst potential may be singular~a jump discontinuity!, and
where one wants to prescribe boundary data~combinations
of f and f z). If these data are of sufficient differentiability@at
leastCg,a(Gz)], we can check the solvability of the problem
on a given surface with the above formulas. The conditio
on the differentiability of the boundary data can be relax
by working directly with Eqs.~38! and ~39!, which can be
considered as integral equations for lnG. The latter is not
very convenient if one wants to construct explicit solution
but it makes it possible to treat boundary value proble
where the boundary data are Ho¨lder continuous. We will
only work with the differential relations, and consider mere
the derivatives tangential toGz in Eq. ~62! to establish the
desired differential relations betweena, b, andU. One ends
up with two differential equations which involve onlyU, b,
and derivatives. The aim is to construct a spacetime wh
corresponds to the prescribed boundary data from these
tions. To this end one has to integrate the differential re
tions using the boundary conditions. Integrating one of th
equations, one obtainsg real integration constants whic
cannot be freely chosen since they arise from applying
tangential derivatives in Eq.~62!. Thus they have to be fixed
in a way that the integrals on the right-hand side of Eq.~38!
are in factb periods of the second integral on the right-ha
side of Eq.~38!, and that Eq.~39! holds. The second differ
ential equation arises from the use of normal derivatives
the Ernst potential in Eq.~61!. To satisfy theb-period con-
dition @Eq. ~38!#, one has to fix a free function in the inte
grated form of the corresponding differential equation. Th
one has to complement the two differential equations follo
ing from Eq.~61! with an integral equation which is obtaine
by eliminatingG from, e.g.,ũ1 andũ2 in Eq. ~38!. For given
boundary data, the system following from Eq.~38! may in
principle be integrated to givee2U and b in dependence on
the boundary data. Then the~in general! nonlinear integral
equation will establish whether the boundary data are c
patible with the considered Riemann surface. This is ty
cally a rather tedious procedure. There is, however, a clas
problems where it is unnecessary to use this integral eq
06403
s
d

,
s

h
la-
-
e

e

f

s
-

-
i-
of
a-

tion. In case that the differential equations hold for an ar
trary functione2U, the integral equation will only be used t
determine this metric function, but the boundary value pro
lem will be always solvable~locally!. This offers a construc-
tive approach to solve boundary value problems without h
ing to consider nonlinear integral equations.

VII. COUNTERROTATING DISKS OF GENUS 2

Since it is not very instructive to establish the different
relations for genus 2 in the general case, in this section
will concentrate on the form these equations take in
equatorially symmetric case for counterrotating dust disks
this case, the solutions are parametrized byE1

25a1 ib. We
will always assume in the following that the boundary da
are at leastC2(Gz) ~the normal derivatives of the metri
functions have a jump at the disk, but the tangential deri
tives are supposed to exist up to at least second order!. Put-
ting s5be22U and y5e2U, for Eq. ~70!, for z50 and r
<1, we obtain

ix05~R02r22sI0!
bz

y
2r~R12sI1!

br

y

2@s~R02r2!1I 0#
yz

y
1r~sR11I 1!

yr

y
,

~71!

rs5~R02r22sI0!
br

y
1r~R12sI1!

bz

y

2@s~R02r2!1I 0#
yr

y
2r~sR11I 1!

yz

y
,

whereSi and ix0 are taken from Eqs.~68! and ~69!. Since
counterrotating dust disks are subject to boundary conditi
~23!, we can replace the normal derivatives in Eq.~71! via
Eq. ~23!, which leads to a differential system where on
tangential derivatives at the disk occur. With Eqs.~68! and
~69!, we obtain

ix01~Z2 ix0!
R02r2

I 1R
5S r2

R21r21dy2

2Rr

R02r2

I 1
D

3S ~2Z1 ix0!
yr

y
2sZ

br

y D ,

~72!

rsS 12
Z

RD5S R02r2

I 1
2

R21r21dy2

2R D
3S sZ

yr

y
1~2Z1 ix0!

br

y D . ~73!

With I 15 ix0 /(12x2)2Z and

R05
ix0Z2a2~r2/2!

12x2
2

Z22r2

2
, ~74!
3-12
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the functionix0 follows from

R0
21

~R02r2!2

I 1
2

x2x0
2

~12x2!2
5

a21b22r2x0
2

12x2
, ~75!

i.e., an algebraic equation of fourth order forix0 which can
be uniquely solved by respecting the Minkowskian lim
Thus Eqs.~72! and ~73! are in fact a differential system
which determinesb andy in dependence of the angular v
locity V.

A. Newtonian limit

For illustration we will first study the Newtonian limit o
Eqs.~73! ~where counterrotation does not play a role!. This
means we are looking for dust disks with an angular veloc
of the form V5vq(r), where uq(r)u<1 for r<1, and
where the dimensionless constantv!1. Since we have se
the radiusr0 of the disk equal to 1,v5vr0 is the upper
limit for the velocity in the disk. The conditionv!1 just
means that the maximal velocity in the disk is much sma
than the velocity of light, which is equal to 1 in the uni
used. An expansion inv is thus equivalent to a standar
post-Newtonian expansion. Of course there may be d
disks of genus 2 which do not have such a limit, but in t
following we will study which constraints are imposed b
the Riemann surface on the Newtonian limit of the dis
where such a limit exists.

The invariance of the metric@Eq. ~10!# under the transfor-
mation t→2t andV→2V implies thatU is an even func-
tion in v, whereasb has to be odd. Since we have chosen
asymptotically nonrotating frame, we can make the ans
y511v2y21•••, b5v3b31•••, and a5v3a31•••.
Boundary conditions~23! imply, in lowest order, y2,r
52q2r, the well-known Newtonian limit. Since Eq.~12!
reduces to the Laplace equation fory2 in orderv2, we can
use the methods of Sec. II to construct the correspond
solution. In orderv3, boundary conditions~23! lead to

b3,r52rqy2,z , ~76!

whereas Eq.~12! leads to the Laplace equation forb3. Again
we can use the methods of Sec. II, but this time we hav
construct a solution which is odd inz because of the equa
torial symmetry. In principle one can extend this perturbat
approach to higher order, where field equations~12! lead to
Poisson equations with terms of lower order acting as sou
terms, and where the boundary conditions can also be
tained iteratively from Eq.~23!. With this notation we obtain
the following theorem.

Theorem 7.1.Dust disks of genus 2 which have a New
tonian limit, i.e., a limit in whichV5vq(r) where uq(r)u
<1 for r<1, are either rigidly rotating (q51) or q is a
solution to the integro-differential equation

b35@~R0
02r2!2q2k#y2,z , ~77!

where in the first caseI 1
0/R0

052v and in the second cas
I 15kv, with R0

0 andk beingv independent constants.
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Proof. Since the right-hand side of Eq.~38! vanishes, we
haveKi5Ei for v→0, and thusa05I 1 up to at least order
v3. Keeping only terms in lowest order and denoting t
corresponding terms of the symmetric functions bySi

0 , we
obtain, for Eq.~73!,

v3b35y2,z@2q~R0
02r2!v32v2I 1

0#. ~78!

The second equation@Eq. ~73!# involvesb3,z , and is thus of
higher order. If Eq.~78! holds, this equation will be auto
matically fulfilled.

Thev dependence in Eq.~78! implies thatR0
0 andI 1

0, and
thus the branch points, must depend onv. Sincey2,z is pro-
portional to the density in the Newtonian case, it must n
vanish identically. The possible cases following from E
~78! are constantV or Eq. ~77!. Using Eqs.~6! and~3!, one
can expressUz directly via V, which leads to

y2,z5
4

pE0

1 dr8

r1r8
]r8~q2r8 2!K~k!, ~79!

with k52Arr8/(r1r8). Thus Eq.~77! is in fact an inte-
grodifferential equation forq. This completes the proof.

B. Explicit solution for constant angular velocity and constant
relative density

The simplifications of the Newtonian equation~78! for
constantV give rise to the hope that a generalization of rig
rotation to the relativistic case might be possible which
will check in the following. Constantg/V in fact makes it
possible to avoid the solution of a differential equation, a
leads thus to the simplest example. We restrict ourselve
the case of constant relative density,g5const. The structure
of Eq. ~73! suggests that it is sensible to choose the cons
a0 asa052g/V, since in this caseZ5R. This is the only
freedom in the choice of parametersa andb on the Riemann
surface one has forg52, since one of the parameters will b
fixed as in the Newtonian case by the condition that the d
has to be regular at its rim. The second parameter will
determined as an integration constant of the Picard-Fu
system. We obtain the following theorem.

Theorem 7.2.Boundary conditions~23! and ~29! for the
counterrotating dust disk with constantV and constantg are
satisfied by an Ernst potential of the form of Eq.~36! on a
hyperelliptic Riemann surface of genus 2, with the bran
points specified by

a5211
d

2
, b5A 1

l2
1d2

d2

4
. ~80!

The parameterd varies betweend50 ~only one component!
andd5ds ,

ds52S 11A11
1

l2D , ~81!

the static limit. The functionG is given by
3-13
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G~t!5
A~t22a!21b21t211

A~t22a!21b22~t211!
. ~82!

This is the result which was announced in Ref.@19#.
Proof. The proof of the theorem is performed in seve

steps.
~1! Since the second factor on the right-hand side in

~73! must not vanish in the Newtonian limit, we find that, f
Z5R,

R02r2

I 1
5

Z21r21dy2

2Z
. ~83!

With this relation it is possible to solve Eqs.~74! and ~69!:

ix05
Z@r212a2dy2~12x2!#

Z22r22dy2
,

~84!

d2y2

2
~12x2!52

1

l S 1

l
2dyD1dS a1

r2

2 D
1

~1/l!2dy

A~1/l2!1dr2
AS 1

l2
2ad D 2

1d2b2.

One may easily check that Eq.~72! is identically fulfilled
with these settings. Thus the two differential equations~72!
and~73! are satisfied for an unspecifiedy, which implies that
the boundary value problem for the rigidly rotating dust d
can be solved on a Riemann surface of genus 2~the remain-
ing integral equation which we will discuss below then d
terminesy).

~2! To establish the integral equations which determ
the functionG and the metric potentiale2U, we use Eqs.
~38!. Since above we have expressedKi as a function ofe2U

alone, the left-hand sides of Eqs.~38! are known in depen-
dence ane2U. It proves helpful to make explicit use of th
equatorial symmetry at the disk. By construction the R
mann surfaceS is for z50 invariant under the involution
K→2K. This implies that the theta functions factorize a
can be expressed via theta functions on the covered su
S1 given bym1

2(t)5t(t1r2)@(t2a)21b2# and the Prym
variety S2 ~which here is also a Riemann surface! given by
m2

2(t)5(t1r2)@(t2a)21b2# ~see Refs.@26,30# for de-
tails!. On these surfaces we define the divisorsV and W,
respectively, via

uv5
1

ipE0

2r2 ln G~At!dt

m1~t!
5..E

0

Vdt

m1
,

uw5
1

ipE2r2

21 ln G~At!dt

m2~t!
5.. ÈWdt

m2
. ~85!

For the Ernst potential we obtain

ln f f̄ 52 lnS 12
2ix0

Z~12x2!
D 1E

0

Vtdt

m1
2I v , ~86!
06403
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where

I v5
1

2p i E0

2r2 ln G~At!tdt

m1~t!
.

~3! Using Abel’s theorem and Eq.~38!, we can expressV
andW by the divisorX, which leads to

V52
r2x0

2

Z2~12x2!22Zix0

~87!

and

W1r252
1

x2
@Z2~12x2!22Zix02x0

2#. ~88!

~4! SinceV and I v vanish forr50, we can use Eq.~86!
for r50 to determine the integration constant of the Pica
Fuchs system. With Eq.~84!, we obtain

b25
1

l2
2da1

d2

4
. ~89!

~5! SinceV in Eq. ~87! is, with Eq. ~84!, a rational func-
tion of r, a, and b and does not depend on the metr
function e2U, we can use the first equation in Eq.~85! to
determineG as the solution of an Abelian integral which
obviously linear. WithG determined in this way, the secon
equation in Eq.~85! can then be used to calculatee2U at the
disk which leads to elliptic theta functions~also see Ref.
@30#!. ~In the general case, one would have to eliminatee2U

in the relations foruv and uw to end up with a nonlinear
integral equation forG.! The integral equation following
from Eq. ~85!,

E
0

V dt

m1~t!
5

1

ipE0

2r2 ln G

m1~t!
dt, ~90!

is an Abelian equation and can be solved in standard ma
by integrating both sides of the equation with a fac
1/AK2r from 0 tor wherer 52r2. With Eq.~87!, for what
is essentially an integral over a rational function, we obta

G~K !5
A~K2a!21b21K2a1~d/2!

A~K2a!21b22@K2a1~d/2!#
. ~91!

~6! Condition G(21)51 excludes ring singularities a
the rim of the disk, and leads to a continuous potential a
density there. It determines the last degree of freedom in
~91! to

a5211
d

2
. ~92!

~7! The static limit of the counterrotating disks is reach
for b50, i.e., the valueds . This completes the proof.

Remarks
3-14
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~1! It is interesting to note that there are algebraic re
tions betweena, b, and e2U though they are expressed v
theta functions, i.e., transcendental functions, also at
disk.

~2! It is an interesting question whether there exist dis
with nonconstantg/V or d for genus 2 in the vicinity of the
above class of solutions. Whereas this is rather straight
ward for a nonconstantd if g/V are constant, it is less ob
vious if the latter does not hold. This means that one lo
for given d for solutions with

g

V
5C01ep~r!, ~93!

where C0 is a constant,upu<1 is a function ofr, and e
!1 is a small dimensionless parameter. We can assume
p is not identically constant, since this would only lead to
reparametrization of the above solution. To check if there
solutions for small enoughe, one has to redo the steps in th
proof of Theorem 7.2 in first order ofe by expanding all
quantities in the formy5 ȳ1e ŷ1•••. Doing this one rec-
ognizes that Eq.~72! becomes a linear first-order differenti
equation forp of the formpr1F(r)p50, whereF is given
by the solution for constantg/V. For a solutionp to this
equation, the remaining steps can be performed as abov
seems possible to use the theorem on implicit functions
prove the existence of solutions for genus 2 in the vicinity
constantg/V, but this is beyond the scope of this paper.

C. Global regularity

In Theorem 7.2 it was shown that one can identify
Ernst potential on a genus 2 surface which takes the requ
boundary data at the disk. However, one has to note that
is only a local statement which does not ensure that one
found the desired global solution which has to be regula
the whole spacetime except at the disk. It was shown in R
@29,30# that this is the case ifQ@v(`2)1u#Þ0. In New-
tonian theory~see Sec. II!, the boundary value problem coul
be treated at the disk alone because of the regularity pro
ties of the Poisson integral. Thus one knows that the ab
condition will hold in the Newtonian limit of the hyperellip
tic solutions if the latter exists. For physical reasons, it
however, clear that this will not be the case for arbitra
values of the physical parameters: if more and more ene
is concentrated in a region of spacetime, a black hole
expected to form~see, e.g., the hoop conjecture@40#!. The
black-hole limit will be a stability limit for the above disk
solutions. Thus one expects that additional singularities
occur in the spacetime if one goes beyond the black-h
limit. The task is to find the range of the physical paramete
herel andd, where the solution is regular except at the di
We can state the following theorem.

Theorem 7.3.Let S8 be the Riemann surface given b
m8 25(K22E)(K22Ē), and let a prime denote that th
primed quantity is defined onS8. Let lc(d) be the smallest
positive valuel for which Q8(u8)50. Then Q@v(`2)
1u#Þ0 for all r, z and 0,l,lc(d) and 0<d<ds .
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This defines the range of the physical parameters wh
the Ernst potential of Theorem 7.2 is regular in the who
spacetime except at the disk. Since it was shown in R
@29,30# that Q8(u8)50 defines the limit in which the solu
tion can be interpreted as the extreme Kerr solution, the d
solution is regular up to the black-hole limit if this limit i
reached.

Proof.
~1! Using the divisorX of Eq. ~38! and the vanishing

condition for the Riemann theta function, we find th
Q(v(`2)1u)50 is equivalent to the condition that̀1 is
in X. The reality ofũi implies thatX5`11(2 iz). Equation
~38! thus leads to

E
E1

`1dt

m
1E

E2

2 izdt

m
2

1

2p i EG

ln Gdt

m
[0,

~94!

E
E1

`1tdt

m
1E

E2

2 iztdt

m
2

1

2p i EG

ln Gtdt

m
[0,

where[ denotes equality up to periods. The reality and t
symmetry with respect toz of the above expressions limit
the possible choices of the periods. It is straightforward
show thatQ(v(`2)1u)50 if and only if the functionsFi
defined by

F1ªE
E1

`1dt

m
1E

E2

2 izdt

m
2n1

3S 2 R
b1

dt

m
12 R

b2

dt

m
1 R

a1

dt

m
1 R

a2

dt

m D
2

1

2p i EG

ln Gdt

m
,

~95!

F2ªE
E1

`1tdt

m
1E

E2

2 iztdt

m
2n2

3S 2 R
b1

tdt

m
12 R

b2

tdt

m
1 R

a1

tdt

m
1 R

a2

tdt

m D
2

1

2p i EG

ln Gtdt

m
,

with the cut system of Fig. 1, and wheren1,2PZ vanish for
the same values ofr, z, l, andd. The functionsFi are both
real, F1 is even inz, whereasF2 is odd. ThusF2 is identi-
cally zero in the equatorial plane outside the disk.

~2! In the Newtonian limitl'0, the above expressions
in leading order ofl, take the forms

F15l@~28n111!c1~r,z!ln l2d1~r,z!l#, ~96!

and

F25Al@~28n211!c2~r,z!ln l2d2~r,z!l3/2#, ~97!
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where we have used the same approach as in the calcul
of the axis potential in Eq.~46! ~see Ref.@30#, and references
given therein!; the functionsc1 and d1 are non-negative
whereasc2 /d2 is positive in C/$z50%. ThusFi are zero for
l50, which is Minkowski spacetimef 51, but they are not
simultaneously zero for small enoughl, i.e., f is regular in
the Newtonian regime in accordance with the regula
properties of the Poisson integral. However,Fi may vanish
at some valuels for givenr, z, andd. Since we are looking
for zeros ofFi in the vicinity of the Newtonian regime, we
may putn1,251 here.

~3! Let G be the open domainC/$z50,r<1~r50%. It is
straightforward to check thatFi are solutions to the Laplac
equationDFi50 with

D54S ]zz̄1
1

2~z1 z̄!
~]z1] z̄!D

for z,z̄PG. Thus by the maximum principleFi do not have
an extremum inG.

~4! At the axis forz.0, ũi are finite, whereasFi diverge
proportional to2 ln r for all l andd. Thusf is always regu-
lar at the axis.

~5! Relation ~61! at the disk can be written in the form
(y1A)21b25B2, whereA and B are finite real quantities
Thus the Ernst potential is always regular at the disk. Due
symmetry reasonsF2[ũ2 which is nonzero except at the rim
of the disk. ForF1, at the disk one obtains

F15E
2r2

`1 dt

m1~t!
1E

0

E dt

m1~t!
1E

0

Ē dt

m1~t!
2uv . ~98!

With Eq. ~90! one can see thatF1 is always positive at the
disk.

~6! SinceF1 is strictly positive on the axis and the dis
and a solution to the Laplace equation inG, it is positive in C̄
if it is positive at infinity.F1 is regular foruzu→` and can be
expanded asF15F11/uzu1o(1/uzu), whereF11 can be ex-
pressed via quantities onS8. We obtain

F115
1

2 R
b18

dt

m8
2

1

2p i E2 i

i ln Gdt

m8
. ~99!

The quantityF11[0 iff Q8(u8)50. The conditionF11.0 is
thus equivalent to the condition thatl,lc(d) wherelc(d)
is the first positive zero ofQ8(u8). This completes the proof

Remark.
~1! In the second part of the paper we will show that t

ultrarelativistic limit ~vanishing central redshift! in the case
of a disk with one component is given byQ8(u8)50 for a
finite value ofl. In the presence of counterrotating matt
however, this limit is not reached, the central redshift
06403
ion

y

to

,
-

verges forl5` andQ8(u8)Þ0. This supports the intuitive
reasoning that counterrotation makes the solution m
static, i.e., it behaves more like a solution of the Lapla
equation with the regularity properties of the Poisson in
gral.

~2! SinceF2(r,0)50 for r>1, the reasoning in step~6!
of the above proof shows that there will be a zero
Q@v(`2)1u# and thus a pole of the Ernst potential in th
equatorial plane forl.lc(d) if the theta function in the
numerator does not vanish at the same point. In the equ
rial plane the Ernst potential can be expressed via ellip
theta functions~see Ref.@30#! which have first-order zeros
Thus F11 will be negative forl.lc in the vicinity of lc ,
and consequently the same holds forF1 in the equatorial
plane at some valuer.1. It will be shown in the third paper
that the spacetime has a singular ring in the equatorial p
in this case. However, the disk is still regular, and the i
posed boundary conditions are still satisfied. This provide
striking example that one cannot treat boundary value pr
lems locally at the disk alone in the relativistic case. Inste
one has to identify the range of the physical parame
where the solution is regular except at the disk.

VIII. CONCLUSION

We have shown in this paper how methods from algebr
geometry can be successfully applied to construct exp
solutions for boundary value problems to the Ernst equat
We have argued that there will be differentially rotating du
disks for genus 2 of the underlying Riemann surface in
dition to the one we could identify explicitly. To prove ex
istence theorems for solutions to boundary value proble
the methods of Refs.@41,42# seem to be better suited, sinc
the hyperelliptic techniques are limited to finite genus of t
Riemann surface. Moreover, the techniques used at
boundary have to be complemented by a proof of glo
regularity. The finite genus of the Riemann surface also
stricts the usefulness in the numerical treatment of bound
value problems. The methods of Refs.@12# and @13# are not
limited in a similar way and have proven to be highly ef
cient. Thus the real strength of the approach we have
sented here is the possibility to construct explicit solutio
whose physical features can then be discussed in ana
dependence on the physical parameters up to the ultrarel
istic limit. Whether this approach can be generalized to m
sophisticated matter models or whether the equations
still be handled for higher genus will be the subject of furth
research.
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