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Asymptotic power-law tails of massive scalar fields in a Reissner-Nordstra background
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We investigate the dominant late-time tail behavior of massive scalar fields in a nearly extreme Reissner-
Nordstran background. It is shown that the oscillatory tail of the scalar fields has the decay nat&at
asymptotically late times. The physical mechanism by which the asymptotit tail is generated and the
relation between the field mass and the time scale when the tail begins to dominate are discussed in terms of
resonance backscattering due to space-time curvature.
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[. INTRODUCTION dominates as the intermediate late-time tails. Note that mass-
less fields decay more rapidly without any oscillation, as was
Various interactions of black holes with scalar fields havestudied by Pricd6]. The analytical approximatiofil) was

been extensively studied for a long time. Though previousierived from the flat-space-time approximation, where the
works have been mainly concerned with the evolution of aeffects of space-time curvature are neglected. Though the
massless scalar field, the analysis of massive ones will bgehavior (1) was numerically verified at intermediate late
also physically important. For example, in higher- times, Hod and Piraf4] also suggested that another wave
dimensional theories, the Fourier modes of a massless scalggttern dominates at very late times, namely the intermediate
field behave like massive fields known as Kaluza-Kleinjis (1) are not final asymptotic behaviors, and they men-
modes, and the recent development of the Kaluza-Klein idegoneq that “fields decay at late times slower than any power
(e.g., the RandaII-Sundrum modgl] in strmg theory law.” Though similar numerical results in the Schwarzschild
strongly motivates us to understand the evolutional featureéaSe were reported by Bur&], the evolution of massive

due to the field mass In Qeta|l. . scalar fields at asymptotic late times has been claimed to be
Massive scalar fields in black-hole space times can cause

interesting phenomena which are qualitatively different from' Vorse power-law behavior.

the massless case. A remarkable example is the vacuum po- The purpose of this paper IS to clarify what_ kind Of_ mass_-
Iarization((,bZ) of a quantum massive scalar figld which is induced behaviors dominates in the asymptotic late-time tails

in thermal equilibrium with a nearly extreme Reissner- s a result of interaction of massive scalar fields with a black

Nordstran black hole[2]. Because the black-hole tempera- ho_Ie. In Sec. Il we introduce the.t.)Iack—hoIe Green'’s function

ture is very low, the mass-induced excitatior(gf) results ~ USing the spectral decomposition meth¢d]. (Another

in the resonant amplification ahM=0(1) for the field method to treat late-time tails which is called “late time

massm and the black-hole masgd. expansions” was also proposed receri8y.) In Sec. Ill we
Such a resonance behavior due to the mass of a fielgonsider a nearly extreme Reissner-Nordstrioackground,

interacting with a black hole may appear in various processe®iotivated by the fact that the resonance phenomena in the

as a basic feature of black-hole geometry. For a step to supacuum polarization of quantum scalar fields become clear.

port this conjecture, in this paper, we turn our attention to thelhen, based on the procedure of asymptotic matching, we

problem of time evolution of classical fields. construct approximate solutions in the nearly extreme limit.
The evolution of a massive scalar field in Schwarzschildin Sec. IV we study the intermediate tail which appears in

background was analyzed by Starobinskii and Novikov, usthe case of a small mass field, confirming our result in com-

ing the complex plane approadB], and they found that parison with Eq.(1). In Sec. V we derive the asymptotic

because of the mass term, there are poles in the compldate-time tail which is the main result in this paper. Section

plane closer to the real axis than in the massless case, whisf is devoted to a summary and discussion.

leads to inverse power-law behavior with smaller indices

than the massless case. Recently, it was pointed out that the

late-time tails of massive scalar fields in Reissner-Nordstro II. GREEN’S-FUNCTION ANALYSIS

space time are quite different from massless fields in the

existence of the intermediate late-time tdid. If the field

massm is small, namelymM<1, the oscillatory inverse We consider time evolution of a massive scalar field in

power-law behavior the Reissner-Nordstno background with madsl and charge

Q. The metric is

A. Massive scalar fields in Reissner-Nordstrm geometry

y~17'~CPsin(mt) (1) .
2M 2 2M  Q?
d?=—|1- —+ —|dt?+|1- —+ —| dr?
r r2 r r2
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and the scalar field> with massm satisfies the wave equa-

tion 1 Iﬂ

(O-m?)¢=0. )

Resolving the field into spherical harmonics

t,
o= M0 ymp o, @)

Im r

we obtain a wave equation for each multiple moment,

‘/’,tt_‘/’,r*r*"'\/'p:oa (5)
) ) ) ] FIG. 1. Integration contours in the complex frequency plane.
wherer, is the tortoise coordinate defined by The original integration contour for the Green’s function lies above
the real frequency axis. We choose the valuemobn the dashed
dr line to be w=|w| and that on the dotted lines to be
ar.= 2M QZ’ (6) =e"'"|w|. The poles inG(r, ,r. ;o) are also shown, which give
1-—— 4+ = the quasinormal modes.
r r2
i d? -
and the potentiaV/ is 7+ w?=V|%=0, i=1.2. (11
*
2M  Q?\|I(1+1) 2M 2Q?
V=|1-—+—||—+———]. (7) . . ~
r r2 r2 r3 ré4 The boundary condition for the basic solutign is to de-

scribe purely ingoing waves crossing the event horizon, i.e.,

B. The black-hole Green'’s function

T o~ p—ior,
The time evolution ofy is given by f1=e ' (12)
P(r, ’t):j [G(r, I ) g(r',0 :;;aglgfﬁlt;w:”ee ¥, is required to damp exponentially at
FGy(ry .1 D Y(r, ,0)]dr 8 ~
Yp=e "', (13

for t>0, whereG(r, ,r, ;t) is the(retarded Green’s func-
tion satisfying asr, —, wherew= Jm?—w?. Because the complex con-

, , jugate®} is also a solution for Eq(11), ¥, can be written
o (9—+V by the linear superposition

2 a2 G(ry ry;)=381)8(r,—ry) (9

. L » U= an+ B, (14)
with the initial conditionG(r, ,r; ;t)=0 for t<0. We cal-

culate the Green’s function through the Fourier transform and the Wronskian is estimated to be

1 w+ic _

G(r, 1, ;w)e “do, W(w)=4niha;, — Y1y =21 0p. (15
(10

G(ry ,ry;t)=

27 ) —wtic

Using these two solutions, the Green’s function can be writ-

wherec is some positive constant. The usual procedure is teen by
close the contour of integration into the lower half of the
complex frequency plane shown in Fig. 1. Then, the late- Tn(r! )Tt e
time tail behaviors which are our main concern should be Bro 1 w)=— 1 ] hln o) da(r, o),
given by the integral along the branch cut placed along the *ox 2iwB P(r, ,w)Tlfz(f; ), r'<r.
interval —-m=w=m. (16)

The Fourier componen®(r, I, ;@) in the range—m
<w=m can be expressed in terms of two linearly indepen-The contributionG® from the branch cut to the Green’s
dent solutionsj;, and s, for the homogeneous equation  function is reduced to
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GE(r, ,ri;t) —m?r?{(z—1)kr, +1}?

1 1 Kr+{2;<r++z(r++r )~

=—— —n(rl @) i(r, w)e “do.
4i Jeuw B ' r2{(z— Lyt +1)2

J=0. (19
17

Then the main task to evalua@® is to derive the coeffi- For the nearly extreme case such that
cientsa and .

lIl. NEARLY EXTREME LIMIT kM <1, (20)

It is difficult in general to obtain the coefficientssand 3,
since exact solutions for the wave equatidrd) cannot be we can derive the approximate solutions valid in the region
expressed by any elementary function or any trancedentat>1 or z<1/kM.
function already known. Fortunately, in nearly extreme
Reissner-Nordsfra geometry, the procedure of asymptotic

matching turn out to be very useful. Let us change the vari- A. Solutions for z€1/xkM
abler to z defined as Expanding the wave equatiofl9) as a power series in
kMz and truncating terms of ordeeMz and higher, we
obtain
z—=1 r—r,
- 5 2 (18 B B
2K|'Jr ( )d2¢,+2 dlﬂ_}_ 1 w2
22—1)—+2z—
dz? dz | z2-1 K2
wherer, andr_ are the outer and inner horizon radii, re- 1 [ 4w?M
spectively, andk is the surface gravity defined as=(r |2 —12w2M2)
—r_)/2r% . Then we can rewrite the wave equatidd) into z+1\ «
2¢ {2kr2+2z(r . +r_)} dyr +{6w®M?=I(I+1)—m?M?} |%=0. (21)
(2 _1) r.{(z—1)xr +1} dz
2 (5 4 -
© {(z=Dxr, +1} —1(1+1) Then the solution/; satisfying the boundary conditiofi2)
K2 22-1 can be written using the hypergeometric functien
~ : . ‘ o) 1 1 iw -1
Pr(w,r,)=¢giel- oM@ ue_1)~(020p| — — 4 2j0M—u+ =, —2ioM—u+ =, - —+1;§— (22
K 2 2 K ¢
[
—+1|T'(-2u)
_ sliol)—2ioM—u+(12) £ 1\~ (i0/2)
¢ (6-1) XN 1
N —-2ioM—pu+z|T'| 2ioM—pu+ =
2 2
1i 1 1 . . .
XF| 2ioM+ p+ E,Tw—zin +u+ 5’2’”1;5 + gl —2ioM+ut (U2)( g 1)~ (10/20)
r[™ 1)
‘ o Fl 2ioM =gt = dioM =t = —2p+ 1 23
X o - 1 . lw _,LL+§,7_ Il w _,U,+§,— /_L+ ,E s ( )
r 7—2|wM+,u+§ r 2|wM+,u,+§
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where the new variablé is defined as

z+1
and u is
1 2
ME\/ '+§ +m?’M?—6w?’M?2. (25)

We have used the linear transformation formulss.3.6 of
[9] in the second equality of Eq22). Using asymptotic ex-
pansions(15.7.2 and(15.7.3 of [9] for |iw/x|>1, we can
reduce Eq(23) to

- M
e 7|l ,

2ilw|M
| .

~ . 2
l/,,l(w,r*)zel|w/Kz(E

which is valid in the region &z<1/kM, and will be used
for asymptotic matching with the solutions givenzi 1.

B. Solutions for z>1

Expanding the wave equatighl) as a power series in4/
and truncating terms of orderzZland higher, we obtain

d’u  2du 1
— + — —+| w’M?—m’M?+ = (4w’M?—2m?’M?)
dx? xdx X
1,0 oo A0MZ 0?M?
+—2{6wM _|(|+1)_mM}+ 3 i
X X X
P 0 (27
— u: ,
X(x+1)2
introducing the new variable defined as
X=xkMz (28
and the functioru defined as
Y=(x+1)u. (29

We can give the approximate solutions for Eg7) using
trancedental functions in the regiors1 andx>1, respec-

tively, although it is difficult to find the exact solutions valid

in the whole range ok.

1. Solutions for x<1

Our strategy to find the approximate solutions for Exy)
is to truncate terms of order ! and higher in the coeffi-

PHYSICAL REVIEW D 63064032

d2u

a2

2 du

X dx

1 1
+| = 0*M?+ —40®M?
X x3

1
+ —2{6w2M2—I(I +1)—-m?M?}|{u=0, (31
X

and we can describe the solution of E§1) using the Whit-
taker’s functions

2ioM 2ioM
u:ale.l'M —_— +a2W,a.11M - y (32)
where
o1=—2iwM. (33)
The asymptotic expansions f2i oM/x|>1 lead to
2ioM) 2| TN a4
Y e e L

which is necessary for asymptotic matching in the overlap
region with the solutions in the region<1/kM. On the
other hand, using Eq€13.1.3, (13.1.4, and (13.1.33 of

[9], we can reduce Eq32) to

2iwM T(—2u)

S

Tq. M

2ioM w+(1/2)
e

T'(2u) (2in)#+<1’2)
) X

(39

if the asymptotic expansions are applied in the region
|2ioM/x|<1 as an analytic extension.

2. Solutions for x>1

Contrary to the regiorx<<1, truncating terms of order
x~3 and higher in the coefficients af in Eq. (27), since
these can be smaller than other termsxXarl, we can ap-
proximate Eq.27) by

cients ofu, since these can be smaller than other terms for

x<1, and to change the variabteto

2ioM
S= .

” (30

Then, Eq.(27) can be approximated by

d?u 2du 1
—+ = —+| 0*M?=m’M?+ —(40°M?-2m*M?)
dx2 X dx X
1
+ —{60w’M?=1(I1+1)—m*M?} |lu=0. (36)
X
Introducing the functiorZ defined as
u=<o (37)

we can reduce Eq36) into

064032-4



ASYMPTOTIC POWER-LAW TAILS OF MASSI\E . ..

d’z 1
— +| @’M?—m?’M?+ = (4w’M?—2m?’M?)
dx? X

1
+ —2{6w2M2—I(I +1)-m?M?}{Z=0. (39
X
Then we can write solutions for E¢38) using Whittaker’s
functions:
M, ,(2wMX) M, - u(2wMX)

U:bl » +b2 X s

(39

where
m2M
Oy= _ZWM+ .
w

(40)

if estimated in the extended regid2wMx| <1, we obtain

M 2wMx)~ (2w Mx)#+(1/2), (41)

-

(o], @)=B(e" 0| w)

PHYSICAL REVIEW D 63 064032

using Egs.(13.1.4 and (13.1.32 of [9]. The solutionyr,
satisfying the boundary conditiofi3) is

szzwgzvﬂ(zmmx)~e—mMX(2me)“z (42)

for [2mM x| — .

C. Matching

We can match both asymptotic behaviof@6) at z
<1/kM and (34) at x<1 in the overlap region %z
<1/(kM) in order to determine the coefficiends anda,.

On the other hand, we find that both asymptotic expressions
(35 and (41), which are the results due to analytic exten-
sions from one region into the other, have similar forms. So
we can match these smoothly in order to determine the co-
efficientsb, andb,. In addition, considering the boundary
conditions (22) and (42) imposed ony, and ¥, respec-
tively, we can determine the coefficientsandg in Eq. (14)

as follows:

F(ZM)F(2M+ 1)(2mM)—,u,+(1/2)ei(7r/2)[—p,—(1/2)]

TG+ 0220 M)# AT (L + it 2i 0] M)

1"( _ ZM)F( _ 2/*L+ 1)(2‘&)"\/' )M+(1/2)ei(7r/2)[,u,7(1/2)]
+

L(3 == 09)(2|o|M) # 3B0( — p+2ilw|M)

and

B(lo|,w)=a(e"|o

, )

F(Z/.L)F(Z,u,"‘ 1)(2mM)7,u+(l/2)ei(77/2)[,u,+(1/2)]

2

F(_ZM)F(_2M+ 1)(2mM);/,+(l/Z)ei(ﬂ'/Z)[—,u,+(l/2)]

1 1
r(—+,,L—az)(2|w||v|)ﬂ+(1’2>r(§+M—2i|w||v|)

1 1
F(E—,LL—O'Z)(2|w|M)_”+(1/2)F<E—,u,—2i|w|M)

IV. INTERMEDIATE LATE-TIME TAILS

We consider the late-time behaviors G at the time
scale
mt>1, (45)

when the decaying tails will dominate. Hod and Pifdn

2i|w|M
(@) e~ lelM (43)
—2ilw|M
(M) e oM, (44)
|
mM<mt<(mM)2. (46)

In this section we check the validity of Eq#.3) and(44), by
deriving the intermediate-tail behaviors. Following Hod and
Piran[4], the effective contribution to the integral in E3.7)
is claimed to be limited to the rangew—m|=0(1t) or

pointed out that for the scalar field with small mass, namelyequivalentlyw = O(ym/t). This is due to the rapidly oscil-

mM<1, the dominant behavior is given by E@.) at the
intermediate late times in the range

lating terme ™' which leads to a mutual cancellation be-
tween the positive and the negative parts of the integrand.

064032-5
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Then, in the time scale given by E(6) we note that the
frequency ranges = O(\/m/t) leads to the inequality

O'2<1

(47)

The factor o, including the field’s parametem coupled
with space-time parametd\, originates from the terms of
orderx~ ! in the coefficients ofi1 in Egs.(27) or (36). If the

PHYSICAL REVIEW D 63064032

ool w) a(o|e'"w)

,3(|w|am)_ﬂ(|w|,e_i”m)

[14

~ —(2|)|2(2| +1)I2(2M)4|+2|w|2l+1m2l+12i.

(51)

relation (47) is satisfied, the wave equation at the far regionSubstituting Eq(51) into Eq. (17), we obtain
can be approximated by that of flat space time, which means

that the effects of backscattering due to space-time curvature

has not dominated yet. In other words, the value-pfvhich
gives effective contributions to the integidl7) represents a
degree of the domination of the backscattering.

The relation(47) allows us to obtain the approximations
of « and B as follows:

T'(21+142€,)T(21+2+2¢,)
F(l+1+e,— o)l (I+1+€,+2i|wM)

X (2wM) ' u(2]w|M) 16

w el (m2)(-1-1-¢,)

a(|o|, @)~

I(—21—1—2€,)T(—21—2¢,)
TT(—1—e,— 0l (—1—e,+2i[w]M)

o

><(2mM)|+l+ell’(2|w|M)I+Eﬂ“ei(ﬂ-/2)(|+el“’)

|w| 2i|w|M -
e “"lM,

X (48)

and

I'(21+1+2€,)T(21+2+2€,)
F(l+1+e,— o)l (I+1+€,—2i|w|M)

X (2mM) 1 u(2lM) g

I(—21—1—2€,)T(—21-2¢,)
T T(—I—e,— 0l (—1—e,—2i[w]M)

Bl o], @)~

X(ZWM)I+1+EM(2|(0|M)|+eﬂei(77/2)(flfe#)
|w| —2i|lo|M

<[l
K

e loM (49)

where

1
I+ 5| =0(mM)<L. (50)

€u=H—

Expanding the ratiax/8 as a power series imM, we can
approximate it as follows:

14
C Iy — 41 +2
© (r*’r*’t)_(2|)12(2|+1)!2(2M)

m ~ ~
X fo 0 TN (1, 0) (), )

x e~ “'dw+ (complex conjugate  (52)

which is similar to Eq.29) in [4], giving the damping ex-
ponent in Eq(1).

Different from[4], our analytical calculation is not based
on the flat-space approximation. The intermediate tails domi-
nate in the rang€46), when the integrand can be approxi-
mated using the relatio@7). It is easy to find that the larger
the field’s mass is, the sooner it leaves the intermediate tails,
and the phase does not appear in the casaldiz 1.

V. ASYMPTOTIC LATE-TIME TAILS

It is obvious from our calculation that the intermediate tail
is not a final pattern of decay but should be replaced by
another one, because the dominant contribution to the inte-
gral (17) is out of the region(47) after the intermediate late
times (46). The change into another phase was also numeri-
cally suggested if4]. Physically the change of the tail be-
havior will be a result of dominant backscattering due to
space-time curvature, which is the effect beyond the flat-
space approximation. What kind of wave pattern dominates
at very late times? In addition, we must reveal late-time tails
in themM=1 case of large field mass, for which the inter-
mediate tails do not appear. In this section we study a tail
behavior dominant at asymptotic late times

mt>

m2m?2’ ®3

when the effective contribution to the integrél?7) arises
from the region

oy >1, (54)

different from the inequality(47) at intermediate late times.
The coefficientsx(w,w) and 8(w,w) are approximated for
the inequality(54) by

064032-6
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a(|o|,w)=B(e'"w|,»)

1
2w

PHYSICAL REVIEW D 63 064032

e(sz/m)(szM 2) —(mZM/m)+2mM(2,w M) —2wM+(M2M/w) +(1/2)

o T (2uw)T(2u+1)(2mPM?) " #(2|w|M) ~#~ (i)~ 1= (1/12)]

(3 +p+2i|lw/M)

T'(=2 )1" —2u+1 2m2M2 22l wlM ,u—(1/2)ei(77/2)[,u—(1/2)] ) 2ilw|M
T2 (=2p+1)( ) (2lelM) ol )M (55
I'(; —p+2ilolM) K
and
B(lolw)=a(e o], o)
- 1 e(sz/m)(ZmZM2)—(m2M/m)+2mM(2m_M)—2mM+(m2M/m)+(l/2)
2
T2 (2pu+1)(2m2M2) 42| w| M) ~#~ (Mgl (m2)ln+ (1/2)]
X
(34 p—2i|lw/M)
T(=2T (= 2w+ 1) 2m2M2)4( 2| | M) 4~ (Vi (7121 = nt (L2)]] [ [ gl | ~2il @M
L T2 (=2p+1)( 1 (2]olM) (Q) o lolM (56)
I'(; —p—2ilw|M) K

Thus the contribution from this part corresponding to the

dotted lines in Fig. 1 to the Green’s function given by

1 f 1l ao(w, @)~ ~ oty
m dotted Iine; ,B(w-m')wl(r* ,w)lpl(r* ,w)e ©
(57)

is O(t™1) at most, because(w,e™'"w) and B(w,e* "w)
converge in the limif w|—m. On the other handy(w,w)
and B(w,w) are reduced to

a(lo|, ) _B(e'w
B(|w|, =) a(ei77|w

,‘G)') ,y*e—i'n'az_l_ n*eiwaz

,’G.)') - ,yei7T0'2+ ne—iﬂ'a'z !
(58)

for the limit Eq. (54), where

L(=2u)T(—2p+1)(2m*M?)#(2|w|M)#~ (112
y: -
I(;—p—2ilo|M)
Xei(w/Z)[p.+(l/2)]
N F2u)T(2u+1)(2m?M?) 42| w|M) ~#~(112)
T(L+p—2i|o|M)

X gi(mD[- -+ (112)] (59

and

D=2 (—2u+1)(2m?M?)#(2|w|M)#~ (2)
7 F(%—M—2i|w|M)
X gl (T2)[—3p+(112)]
N F2u)l(2u+1)(2m*M?2) #(2|w|M) #~ 12
(3 +u—2ilw/M)

« @l (T/2)[3u-+ (1/2)] (60)

Therefore we find the contribution from this part correspond-
ing to the dashed line in Fig. 1 to the Green’s function to be
approximated by

1 (Ml a(w,w)

Zmi ) ;mef'wt%(r* @) (ry 0)do

+ (complex conjugate

1 ~ m i(2 t) o
= ! moT @ ¢
2 My (ry ,m)f0 e e'“dw

+ (complex conjugate (61)
where the phase is defined by

* * A= 2iTo

. n-+vy e 2

= (62
7]+ ,ye lmoyp

and it remains in the rangesO¢p=<21r, even if o, becomes
very large, since we have
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T It is found that the time, when the conditions for the ap-
| 7%= yI?= (oM e?mleM=q, (63)  plication of the saddle-point integration, namely, EG5),

(53), and (66) are all satisfied, must come sooner or later
independent of field mass, and the {&9) is the asymptotic
behavior at late times in the limiht— o,

At very late times when Eq$45) and(54) are satisfied, both
terms ofe'®! ande? "2 are rapidly oscillating. In a physical
meaning, scalar waves are mixed states with multiple phases VI. SUMMARY AND DISCUSSIONS
backscattered by space-time curvature, and most of these

waves cancel each other out by those of the inverse phase. If IN this paper we have investigated mass-induced behav-
the value of 2ro,— t in Eq. (61) is stationary aw=w, iors which appear in late-time tails of classical massive sca-

ie. lar fields in nearly extreme Reissner-Nordstrbackground.
' If the field mass is small, namelpM<1, the intermediate
d tails given by Eq.(1) have been shown to dominate at the
—(2mo,— wt)=0, (64) intermediate late-timemM<mt<1/(mM)?, consistently
do with [4] (see alsqd5]). Our main result is the asymptotic tall
. _ o with the decay rate of %, which is interestingly indepen-
particular waves with the frequeney, remain without can-  4ant of the field mase and the angular momentum param-
cellation, and contribute dominantly to the tail behaviors. Ingter|. This behaviors of inverse power-law decay supports
such a case we can evaluate the inte(#a) as the effective  the numerical results if5,10].
contribution from the immediate V|C|n|ty of the saddle pOint Late-time tail behaviors are genera”y caused by the domi-
wo. This method, which is called the saddle-point integra-nation of the backscattering from far regions. It is found the
tion, allows us to evaluate accurately the asymptotic behavasymptotic tail of massive scalar fiel(B9) appears when the
iors of Bessel functions as a well-known example. We careffective contribution to the integrél?7) arises from the re-

find a solution for Eq(64), gion (54), namely, when the backscattering due to space-
time curvature dominates. Further, the frequencies of waves
— 2mm3M | 13 which contribute to the backscattering are sharé)ly peaked

W= VM™— wg= | (65) aboutw,. These facts suggest that the asymptotit® tail is

caused by aesonancebackscattering due to spacetime cur-

in the limit wo=m. In order for the saddle poiri65) to exist ~ Vature. _ , _ ,
in the region(54), wheree? ™2 are rapidly oscillating as a We can also clarify the re_ss(/Jenar_\t picture from a viewpoint
function of w. we need the additional relation of the time scale when the *® tail dominates. The basic
' condition for the tail dominance is given by E@5). How-
mtsmM. (66)  ever, formM<1, thet %6 tail requires the additional con-
dition (54), which givesmt>1/m?M?2. On the other hand,
Approximating the integratiof61) by the contribution from ~ for large field massnM>1, the largemM is, the later the
the immediate vicinity ofw,, we obtain t tail beglns to dominate, because. the ta}l! requires the
further conditionw,/m<1 for Eq. (65 in addition to the

1 P , conditions(45) and (54), which givesmt>mM. Therefore
—f gl (d7/dw?)(2map=at)l,— o (@~ w0) gl e(@0)d the time scale when the % tail dominates will become
4arim minimum atmM=0(1), which means that the most effec-

i tive backscattering occurs for such massive scalar fields at
~——(2m)(mM)Y3mt)~Seimtgie(wo)  (g7)  late times. Here we note that the time scale whent &
4.3 tail dominates is determined by the black-hole radiudt is
conjectured that the slow decay ©f°® originates from the
through the formula existence of resonant enhancement of massive scalar waves
with the peculiar frequencw, near the horizon. In conclu-
o ) o, T sion, we claim that resonance behaviors in field-mass depen-
f _cosx )dX=f _sin(x9)dx= /5 (68)  dence are not peculiar to quantum scalar fields but manifest

also in classical scalar fields.

Taking the decay rate into account, we can neglect the Conriezlﬂl t@itrzfnpgnvnﬁ gae\ézucsaelcxffg mﬁtif/i:{ezega\{gs rIQ
tribution from Eq.(57) to G in comparison with that from y ' y P

Eq. (67). Therefore tails such as Eq67) dominate at vious work[2]. The extension of our calculation into nonex-

ic | ; all . h . tremal case remains in future works, to investigate whether
gstgr?iprﬁztlél”a;se times. Finally we arrive at the asymptotiCq,r resylt in this paper is a special feature of the extremal

case or not.
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