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Asymptotic power-law tails of massive scalar fields in a Reissner-Nordstro¨m background
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We investigate the dominant late-time tail behavior of massive scalar fields in a nearly extreme Reissner-
Nordström background. It is shown that the oscillatory tail of the scalar fields has the decay rate oft25/6 at
asymptotically late times. The physical mechanism by which the asymptotict25/6 tail is generated and the
relation between the field mass and the time scale when the tail begins to dominate are discussed in terms of
resonance backscattering due to space-time curvature.
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I. INTRODUCTION

Various interactions of black holes with scalar fields ha
been extensively studied for a long time. Though previo
works have been mainly concerned with the evolution o
massless scalar field, the analysis of massive ones wil
also physically important. For example, in highe
dimensional theories, the Fourier modes of a massless s
field behave like massive fields known as Kaluza-Kle
modes, and the recent development of the Kaluza-Klein i
~e.g., the Randall-Sundrum model@1# in string theory!
strongly motivates us to understand the evolutional featu
due to the field mass in detail.

Massive scalar fields in black-hole space times can ca
interesting phenomena which are qualitatively different fro
the massless case. A remarkable example is the vacuum
larization^f2& of a quantum massive scalar fieldf, which is
in thermal equilibrium with a nearly extreme Reissne
Nordström black hole@2#. Because the black-hole temper
ture is very low, the mass-induced excitation of^f2& results
in the resonant amplification atmM.O(1) for the field
massm and the black-hole massM.

Such a resonance behavior due to the mass of a
interacting with a black hole may appear in various proces
as a basic feature of black-hole geometry. For a step to
port this conjecture, in this paper, we turn our attention to
problem of time evolution of classical fields.

The evolution of a massive scalar field in Schwarzsch
background was analyzed by Starobinskii and Novikov,
ing the complex plane approach@3#, and they found that
because of the mass term, there are poles in the com
plane closer to the real axis than in the massless case, w
leads to inverse power-law behavior with smaller indic
than the massless case. Recently, it was pointed out tha
late-time tails of massive scalar fields in Reissner-Nordstr¨m
space time are quite different from massless fields in
existence of the intermediate late-time tails@4#. If the field
massm is small, namelymM!1, the oscillatory inverse
power-law behavior

c;t2 l 2(3/2)sin~mt! ~1!
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dominates as the intermediate late-time tails. Note that m
less fields decay more rapidly without any oscillation, as w
studied by Price@6#. The analytical approximation~1! was
derived from the flat-space-time approximation, where
effects of space-time curvature are neglected. Though
behavior ~1! was numerically verified at intermediate la
times, Hod and Piran@4# also suggested that another wa
pattern dominates at very late times, namely the intermed
tails ~1! are not final asymptotic behaviors, and they me
tioned that ‘‘fields decay at late times slower than any pow
law.’’ Though similar numerical results in the Schwarzsch
case were reported by Burko@5#, the evolution of massive
scalar fields at asymptotic late times has been claimed to
inverse power-law behavior.

The purpose of this paper is to clarify what kind of mas
induced behaviors dominates in the asymptotic late-time t
as a result of interaction of massive scalar fields with a bl
hole. In Sec. II we introduce the black-hole Green’s functi
using the spectral decomposition method@7#. ~Another
method to treat late-time tails which is called ‘‘late tim
expansions’’ was also proposed recently@8#.! In Sec. III we
consider a nearly extreme Reissner-Nordstro¨m background,
motivated by the fact that the resonance phenomena in
vacuum polarization of quantum scalar fields become cle
Then, based on the procedure of asymptotic matching,
construct approximate solutions in the nearly extreme lim
In Sec. IV we study the intermediate tail which appears
the case of a small mass field, confirming our result in co
parison with Eq.~1!. In Sec. V we derive the asymptoti
late-time tail which is the main result in this paper. Secti
VI is devoted to a summary and discussion.

II. GREEN’S-FUNCTION ANALYSIS

A. Massive scalar fields in Reissner-Nordstro¨m geometry

We consider time evolution of a massive scalar field
the Reissner-Nordstro¨m background with massM and charge
Q. The metric is

ds252S 12
2M

r
1

Q2

r 2 D dt21S 12
2M

r
1

Q2

r 2 D 21

dr2

1r 2dV2, ~2!
©2001 The American Physical Society32-1
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and the scalar fieldf with massm satisfies the wave equa
tion

~h2m2!f50. ~3!

Resolving the field into spherical harmonics

f5(
l ,m

c l~ t,r !

r
Yl

m~u,w!, ~4!

we obtain a wave equation for each multiple moment,

c ,tt2c ,r
*

r
*
1Vc50, ~5!

wherer * is the tortoise coordinate defined by

dr* 5
dr

12
2M

r
1

Q2

r 2

, ~6!

and the potentialV is

V5S 12
2M

r
1

Q2

r 2 D F l ~ l 11!

r 2
1

2M

r 3
2

2Q2

r 4 G . ~7!

B. The black-hole Green’s function

The time evolution ofc is given by

c~r * ,t !5E @G~r * ,r
*
8 ;t !c t~r 8,0!

1Gt~r * ,r
*
8 ;t !c~r

*
8 ,0!#dr

*
8 ~8!

for t.0, whereG(r * ,r
*
8 ;t) is the ~retarded! Green’s func-

tion satisfying

F ]2

]t2
2

]2

]r
*
2

1VGG~r * ,r
*
8 ;t !5d~ t !d~r * 2r

*
8 ! ~9!

with the initial conditionG(r * ,r
*
8 ;t)50 for t<0. We cal-

culate the Green’s function through the Fourier transform

G~r * ,r
*
8 ;t !52

1

2pE2`1 ic

`1 ic

G̃~r * ,r
*
8 ;v!e2 ivtdv,

~10!

wherec is some positive constant. The usual procedure i
close the contour of integration into the lower half of t
complex frequency plane shown in Fig. 1. Then, the la
time tail behaviors which are our main concern should
given by the integral along the branch cut placed along
interval 2m<v<m.

The Fourier componentG̃(r * ,r
*
8 ;v) in the range2m

<v<m can be expressed in terms of two linearly indepe
dent solutionsc̃1 and c̃2 for the homogeneous equation
06403
to

-
e
e

-

S d2

dr
*
2

1v22VD c̃ i50, i 51,2. ~11!

The boundary condition for the basic solutionc̃1 is to de-
scribe purely ingoing waves crossing the event horizon,

c̃1.e2 ivr
* , ~12!

as r * →2`, while c̃2 is required to damp exponentially a
spatial infinity, i.e.,

c̃2.e2Ãr
* , ~13!

asr * →`, whereÃ[Am22v2. Because the complex con
jugatec̃1* is also a solution for Eq.~11!, c̃2 can be written
by the linear superposition

c̃25ac̃11bc̃1* , ~14!

and the Wronskian is estimated to be

W~v!5c̃1c̃2,r
*
2c̃1,r

*
c̃252ivb. ~15!

Using these two solutions, the Green’s function can be w
ten by

G̃~r * ,r
*
8 ;v!52

1

2ivb H c̃1~r
*
8 ,v!c̃2~r * ,v!, r 8.r

c̃1~r * ,v!c̃2~r
*
8 ,v!, r 8,r .

~16!

The contributionGC from the branch cut to the Green’
function is reduced to

FIG. 1. Integration contours in the complex frequency pla
The original integration contour for the Green’s function lies abo
the real frequency axis. We choose the value ofÃ on the dashed
line to be Ã5uÃu and that on the dotted lines to beÃ

5e6 ipuÃu. The poles inG̃(r * ,r
*
8 ;v) are also shown, which give

the quasinormal modes.
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GC~r * ,r
*
8 ;t !

52
1

4p i Ecut

1

v

a

b
c̃1~r

*
8 ,v!c̃1~r * ,v!e2 ivtdv.

~17!

Then the main task to evaluateGC is to derive the coeffi-
cientsa andb.

III. NEARLY EXTREME LIMIT

It is difficult in general to obtain the coefficientsa andb,
since exact solutions for the wave equation~11! cannot be
expressed by any elementary function or any trancede
function already known. Fortunately, in nearly extrem
Reissner-Nordstro¨m geometry, the procedure of asympto
matching turn out to be very useful. Let us change the v
able r to z defined as

z21

2
5

r 2r 1

2kr 1
2

, ~18!

where r 1 and r 2 are the outer and inner horizon radii, r
spectively, andk is the surface gravity defined ask[(r 1

2r 2)/2r 1
2 . Then we can rewrite the wave equation~11! into

~z221!
d2c̃

dz2
1

$2kr 1
2 1z~r 11r 2!%

r 1$~z21!kr 111%

dc̃

dz

1Fv2

k2

$~z21!kr 111%4

z221
2 l ~ l 11!
06403
tal

i-

2m2r 1
2 $~z21!kr 111%2

2
kr 1

2 $2kr 1
2 1z~r 11r 2!%

r 1
2 $~z21!kr 111%2 G c̃50. ~19!

For the nearly extreme case such that

kM!1, ~20!

we can derive the approximate solutions valid in the reg
z@1 or z!1/kM .

A. Solutions for z™1ÕkM

Expanding the wave equation~19! as a power series in
kMz and truncating terms of orderkMz and higher, we
obtain

~z221!
d2c̃

dz2
12z

dc̃

dz
1F 1

z221

v2

k2

1
1

z11 S 4v2M

k
212v2M2D

1$6v2M22 l ~ l 11!2m2M2%G c̃50. ~21!

Then the solutionc̃1 satisfying the boundary condition~12!
can be written using the hypergeometric functionF,
c̃1~v,r * !5j ( iv/k)22ivM1(1/2)1m~j21!2( iv/2k)FS 2
iv

k
12ivM2m1

1

2
,22ivM2m1

1

2
,2

iv

k
11;

j21

j D ~22!

5j ( iv/k)22ivM2m1(1/2)~j21!2( iv/2k)

GS iv

k
11DG~22m!

GS iv

k
22ivM2m1

1

2DGS 2ivM2m1
1

2D
3FS 2ivM1m1

1

2
,
iv

k
22ivM1m1

1

2
,2m11;

1

j D1j ( iv/k)22ivM1m1(1/2)~j21!2( iv/2k)

3

GS iv

k
11DG~2m!

GS iv

k
22ivM1m1

1

2DGS 2ivM1m1
1

2D FS 2ivM2m1
1

2
,
iv

k
22ivM2m1

1

2
,22m11;

1

j D , ~23!
2-3



d

fo

lap

ion

r

HIROKO KOYAMA AND AKIRA TOMIMATSU PHYSICAL REVIEW D 63 064032
where the new variablej is defined as

j[
z11

2
~24!

andm is

m[AS l 1
1

2D 2

1m2M226v2M2. ~25!

We have used the linear transformation formulas~15.3.6! of
@9# in the second equality of Eq.~22!. Using asymptotic ex-
pansions~15.7.2! and ~15.7.3! of @9# for u iv/ku@1, we can
reduce Eq.~23! to

c̃1~v,r * !.ei uvu/kzS 2

zD 2i uvuM

e2puvuM, ~26!

which is valid in the region 1!z!1/kM , and will be used
for asymptotic matching with the solutions given inz@1.

B. Solutions for zš1

Expanding the wave equation~11! as a power series in 1/z
and truncating terms of order 1/z and higher, we obtain

d2u

dx2
1

2

x

du

dx
1Fv2M22m2M21

1

x
~4v2M222m2M2!

1
1

x2
$6v2M22 l ~ l 11!2m2M2%1

4v2M2

x3
1

v2M2

x4

1
2

x~x11!2Gu50, ~27!

introducing the new variablex defined as

x[kMz ~28!

and the functionu defined as

c̃[~x11!u. ~29!

We can give the approximate solutions for Eq.~27! using
trancedental functions in the regionsx!1 andx@1, respec-
tively, although it is difficult to find the exact solutions vali
in the whole range ofx.

1. Solutions for x™1

Our strategy to find the approximate solutions for Eq.~27!
is to truncate terms of orderx21 and higher in the coeffi-
cients ofu, since these can be smaller than other terms
x!1, and to change the variablex to

s5
2ivM

x
. ~30!

Then, Eq.~27! can be approximated by
06403
r

d2u

dx2
1

2

x

du

dx
1F 1

x4
v2M21

1

x3
4v2M2

1
1

x2
$6v2M22 l ~ l 11!2m2M2%Gu50, ~31!

and we can describe the solution of Eq.~31! using the Whit-
taker’s functions

u5a1Ws1 ,mS 2ivM

x D1a2W2s1 ,mS 2
2ivM

x D , ~32!

where

s1522ivM . ~33!

The asymptotic expansions foru2ivM /xu@1 lead to

Ws1 ,mS 2ivM

x D;e2 i (v/kz)S i
2v

kz D 22ivM

, ~34!

which is necessary for asymptotic matching in the over
region with the solutions in the regionz!1/kM . On the
other hand, using Eqs.~13.1.3!, ~13.1.4!, and ~13.1.33! of
@9#, we can reduce Eq.~32! to

Ws1 ,mS 2ivM

x D;
G~22m!

GS 1

2
2m2s1D S 2ivM

x D m1(1/2)

1
G~2m!

GS 1

2
1m2s1D S 2ivM

x D 2m1(1/2)

,

~35!

if the asymptotic expansions are applied in the reg
u2ivM /xu!1 as an analytic extension.

2. Solutions for xš1

Contrary to the regionx!1, truncating terms of orde
x23 and higher in the coefficients ofu in Eq. ~27!, since
these can be smaller than other terms forx@1, we can ap-
proximate Eq.~27! by

d2u

dx2
1

2

x

du

dx
1Fv2M22m2M21

1

x
~4v2M222m2M2!

1
1

x2
$6v2M22 l ~ l 11!2m2M2%Gu50. ~36!

Introducing the functionZ defined as

u5
Z

x
, ~37!

we can reduce Eq.~36! into
2-4
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d2Z

dx2
1Fv2M22m2M21

1

x
~4v2M222m2M2!

1
1

x2
$6v2M22 l ~ l 11!2m2M2%GZ50. ~38!

Then we can write solutions for Eq.~38! using Whittaker’s
functions:

u5b1

Ms2 ,m~2ÃMx!

x
1b2

Ms2 ,2m~2ÃMx!

x
, ~39!

where

s2522ÃM1
m2M

Ã
. ~40!

if estimated in the extended regionu2ÃMxu!1, we obtain

Ms2 ,m~2ÃMx!;~2ÃMx!m1(1/2), ~41!
el

06403
using Eqs.~13.1.4! and ~13.1.32! of @9#. The solutionc̃2
satisfying the boundary condition~13! is

c̃25Ws2 ,m~2ÃMx!;e2ÃMx~2ÃMx!s2 ~42!

for u2ÃMxu→`.

C. Matching

We can match both asymptotic behaviors~26! at z
!1/kM and ~34! at x!1 in the overlap region 1!z
!1/(kM ) in order to determine the coefficientsa1 anda2.
On the other hand, we find that both asymptotic expressi
~35! and ~41!, which are the results due to analytic exte
sions from one region into the other, have similar forms.
we can match these smoothly in order to determine the
efficientsb1 and b2. In addition, considering the boundar
conditions ~22! and ~42! imposed onc̃1 and c̃2, respec-
tively, we can determine the coefficientsa andb in Eq. ~14!
as follows:
a~ uvu,Ã!5b~eipuvu,Ã!

5F G~2m!G~2m11!~2ÃM !2m1(1/2)ei (p/2)[2m2(1/2)]

G~ 1
2 1m2s2!~2uvuM !m1(1/2)G~ 1

2 1m12i uvuM !

1
G~22m!G~22m11!~2ÃM !m1(1/2)ei (p/2)[m2(1/2)]

G~ 1
2 2m2s2!~2uvuM !2m1(1/2)G~ 1

2 2m12i uvuM !
G S uvu

k D 2i uvuM

e2puvuM ~43!

and

b~ uvu,Ã!5a~eipuvu,Ã!

5F G~2m!G~2m11!~2ÃM !2m1(1/2)ei (p/2)[m1(1/2)]

GS 1

2
1m2s2D ~2uvuM !m1(1/2)GS 1

2
1m22i uvuM D

1
G~22m!G~22m11!~2ÃM !m1(1/2)ei (p/2)[2m1(1/2)]

GS 1

2
2m2s2D ~2uvuM !2m1(1/2)GS 1

2
2m22i uvuM D G S uvu

k D 22i uvuM

e2puvuM. ~44!
nd

e-
nd.
IV. INTERMEDIATE LATE-TIME TAILS

We consider the late-time behaviors ofGC at the time
scale

mt@1, ~45!

when the decaying tails will dominate. Hod and Piran@4#
pointed out that for the scalar field with small mass, nam
mM!1, the dominant behavior is given by Eq.~1! at the
intermediate late times in the range
y

mM!mt!
1

~mM!2
. ~46!

In this section we check the validity of Eqs.~43! and~44!, by
deriving the intermediate-tail behaviors. Following Hod a
Piran@4#, the effective contribution to the integral in Eq.~17!
is claimed to be limited to the rangeuv2mu5O(1/t) or
equivalentlyÃ5O(Am/t). This is due to the rapidly oscil-
lating terme2 ivt which leads to a mutual cancellation b
tween the positive and the negative parts of the integra
2-5
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Then, in the time scale given by Eq.~46! we note that the
frequency rangeÃ5O(Am/t) leads to the inequality

s2!1. ~47!

The factor s2, including the field’s parameterm coupled
with space-time parameterM, originates from the terms o
orderx21 in the coefficients ofu in Eqs.~27! or ~36!. If the
relation ~47! is satisfied, the wave equation at the far regi
can be approximated by that of flat space time, which me
that the effects of backscattering due to space-time curva
has not dominated yet. In other words, the value ofs2 which
gives effective contributions to the integral~17! represents a
degree of the domination of the backscattering.

The relation~47! allows us to obtain the approximation
of a andb as follows:

a~ uvu,Ã!;F G~2l 1112em!G~2l 1212em!

G~ l 111em2s2!G~ l 111em12i uvuM !

3~2ÃM !2 l 2em~2uvuM !2 l 212em

3ei (p/2)(2 l 212em)

1
G~22l 2122em!G~22l 22em!

G~2 l 2em2s2!G~2 l 2em12i uvuM !

3~2ÃM ! l 111em~2uvuM ! l 1emei (p/2)(l 1em)G
3S uvu

k D 2i uvuM

e2uvuM, ~48!

and

b~ uvu,Ã!;F G~2l 1112em!G~2l 1212em!

G~ l 111em2s2!G~ l 111em22i uvuM !

3~2ÃM !2 l 2em~2uvuM !2 l 212emei (p/2)(l 111em)

1
G~22l 2122em!G~22l 22em!

G~2 l 2em2s2!G~2 l 2em22i uvuM !

3~2ÃM ! l 111em~2uvuM ! l 1emei (p/2)(2 l 2em)G
3S uvu

k D 22i uvuM

e2uvuM, ~49!

where

em[m2S l 1
1

2D.O~mM!!1. ~50!

Expanding the ratioa/b as a power series inmM, we can
approximate it as follows:
06403
ns
re

a~ uvu,Ã!

b~ uvu,Ã!
2

a~ uvu,e2 ipÃ!

b~ uvu,e2 ipÃ!

;
l ! 4

~2l !! 2~2l 11!! 2
~2M !4l 12uvu2l 11Ã2l 112i .

~51!

Substituting Eq.~51! into Eq. ~17!, we obtain

GC~r * ,r
*
8 ;t !5

l ! 4

~2l !! 2~2l 11!! 2
~2M !4l 12

3E
0

m

v2l 11Ã2l 11c̃1~r * ,v!c̃1~r
*
8 ,v!

3e2 ivtdv1~complex conjugate!, ~52!

which is similar to Eq.~29! in @4#, giving the damping ex-
ponent in Eq.~1!.

Different from @4#, our analytical calculation is not base
on the flat-space approximation. The intermediate tails do
nate in the range~46!, when the integrand can be approx
mated using the relation~47!. It is easy to find that the large
the field’s mass is, the sooner it leaves the intermediate t
and the phase does not appear in the case ofmM*1.

V. ASYMPTOTIC LATE-TIME TAILS

It is obvious from our calculation that the intermediate t
is not a final pattern of decay but should be replaced
another one, because the dominant contribution to the i
gral ~17! is out of the region~47! after the intermediate late
times ~46!. The change into another phase was also num
cally suggested in@4#. Physically the change of the tail be
havior will be a result of dominant backscattering due
space-time curvature, which is the effect beyond the fl
space approximation. What kind of wave pattern domina
at very late times? In addition, we must reveal late-time ta
in the mM*1 case of large field mass, for which the inte
mediate tails do not appear. In this section we study a
behavior dominant at asymptotic late times

mt@
1

m2M2
, ~53!

when the effective contribution to the integral~17! arises
from the region

s2.
m2M

Ã
@1, ~54!

different from the inequality~47! at intermediate late times
The coefficientsa(v,Ã) andb(v,Ã) are approximated for
the inequality~54! by
2-6
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a~ uvu,Ã!5b~eipuvu,Ã!

.
1

A2p
e(m2M /Ã)~2m2M2!2(m2M /Ã)12ÃM~2ÃM !22ÃM1(m2M /Ã)1(1/2)

3FG~2m!G~2m11!~2m2M2!2m~2uvuM !2m2(1/2)ei (p/2)[2m2(1/2)]

G~ 1
2 1m12i uvuM !

1
G~22m!G~22m11!~2m2M2!m~2uvuM !m2(1/2)ei (p/2)[m2(1/2)]

G~ 1
2 2m12i uvuM !

G S uvu
k D 2i uvuM

e2puvuM ~55!

and

b~ uvu,Ã!5a~eipuvu,Ã!

.
1

A2p
e(m2M /Ã)~2m2M2!2(m2M /Ã)12ÃM~2ÃM !22ÃM1(m2M /Ã)1(1/2)

3FG~2m!G~2m11!~2m2M2!2m~2uvuM !2m2(1/2)ei (p/2)[m1(1/2)]

G~ 1
2 1m22i uvuM !

1
G~22m!G~22m11!~2m2M2!m~2uvuM !m2(1/2)ei (p/2)[2m1(1/2)]

G~ 1
2 2m22i uvuM !

G S uvu
k D 22i uvuM

e2puvuM. ~56!
he

d-
be
Thus the contribution from this part corresponding to t
dotted lines in Fig. 1 to the Green’s function given by

1

4p i Edotted lines

1

v

a~v,Ã!

b~v,Ã!
c̃1~r * ,v!c̃1~r

*
8 ,v!e2 ivtdv

~57!

is O(t21) at most, becausea(v,e6 ipÃ) andb(v,e6 ipÃ)
converge in the limituvu→m. On the other hand,a(v,Ã)
andb(v,Ã) are reduced to

a~ uvu,Ã!

b~ uvu,Ã!
5

b~eipuvu,Ã!

a~eipuvu,Ã!
.

g* e2 ips21h* eips2

geips21he2 ips2
,

~58!

for the limit Eq. ~54!, where

g5
G~22m!G~22m11!~2m2M2!m~2uvuM !m2(1/2)

G~ 1
2 2m22i uvuM !

3ei (p/2)[m1(1/2)]

1
G~2m!G~2m11!~2m2M2!2m~2uvuM !2m2(1/2)

G~ 1
2 1m22i uvuM !

3ei (p/2)[2m1(1/2)], ~59!

and
06403
h5
G~22m!G~22m11!~2m2M2!m~2uvuM !m2(1/2)

G~ 1
2 2m22i uvuM !

3ei (p/2)[23m1(1/2)]

1
G~2m!G~2m11!~2m2M2!2m~2uvuM !2m2(1/2)

G~ 1
2 1m22i uvuM !

3ei (p/2)[3m1(1/2)]. ~60!

Therefore we find the contribution from this part correspon
ing to the dashed line in Fig. 1 to the Green’s function to
approximated by

1

4p i E0

m1

v

a~v,Ã!

b~v,Ã!
e2 ivtc̃1~r * ,v!c̃1~r

*
8 ,v!dv

1~complex conjugate!

.
1

4pmi
c̃1~r * ,m!c̃1~r

*
8 ,m!E

0

m

ei (2ps22vt)eiwdv

1~complex conjugate!, ~61!

where the phasew is defined by

eiw5
h* 1g* e22ips2

h1ge2ips2
~62!

and it remains in the range 0<w<2p, even ifs2 becomes
very large, since we have
2-7
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uhu22ugu25
p

uvuM
e2puvuM.0. ~63!

At very late times when Eqs.~45! and~54! are satisfied, both
terms ofeivt ande2ips2 are rapidly oscillating. In a physica
meaning, scalar waves are mixed states with multiple pha
backscattered by space-time curvature, and most of th
waves cancel each other out by those of the inverse phas
the value of 2ps22vt in Eq. ~61! is stationary atv5v0,
i.e.,

d

dv
~2ps22vt !50, ~64!

particular waves with the frequencyv0 remain without can-
cellation, and contribute dominantly to the tail behaviors.
such a case we can evaluate the integral~61! as the effective
contribution from the immediate vicinity of the saddle poi
v0. This method, which is called the saddle-point integ
tion, allows us to evaluate accurately the asymptotic beh
iors of Bessel functions as a well-known example. We c
find a solution for Eq.~64!,

Ã0[Am22v0
2.S 2pm3M

t D 1/3

, ~65!

in the limit v0.m. In order for the saddle point~65! to exist
in the region~54!, wheree2ips2 are rapidly oscillating as a
function of v, we need the additional relation

mt@mM. ~66!

Approximating the integration~61! by the contribution from
the immediate vicinity ofv0, we obtain

1

4p imE ei (d2/dv2)(2ps22vt)uv5v0
(v2v0)2

eiw(v0)dv

;
i

4A3
~2p!5/6~mM!1/3~mt!25/6eimteiw(v0), ~67!

through the formula

E
2`

`

cos~x2!dx5E
2`

`

sin~x2!dx5Ap

2
. ~68!

Taking the decay rate into account, we can neglect the c
tribution from Eq.~57! to GC in comparison with that from
Eq. ~67!. Therefore tails such as Eq.~67! dominate at
asymptotic late times. Finally we arrive at the asympto
late-time tail as

GC~r * ,r
*
8 ;t !.

1

2A3
~2p!5/6~mM!1/3~mt!25/6

3sin~mt!c̃1~r * ,m!c̃1~r
*
8 ,m!, ~69!

of which the decay rate is independent of the locationr * .
06403
es
se
. If

-
v-
n

n-

c

It is found that the time, when the conditions for the a
plication of the saddle-point integration, namely, Eqs.~45!,
~53!, and ~66! are all satisfied, must come sooner or la
independent of field mass, and the tail~69! is the asymptotic
behavior at late times in the limitmt→`.

VI. SUMMARY AND DISCUSSIONS

In this paper we have investigated mass-induced beh
iors which appear in late-time tails of classical massive s
lar fields in nearly extreme Reissner-Nordstro¨m background.
If the field mass is small, namelymM!1, the intermediate
tails given by Eq.~1! have been shown to dominate at th
intermediate late-timemM!mt!1/(mM)2, consistently
with @4# ~see also@5#!. Our main result is the asymptotic ta
with the decay rate oft25/6, which is interestingly indepen
dent of the field massm and the angular momentum param
eter l. This behaviors of inverse power-law decay suppo
the numerical results in@5,10#.

Late-time tail behaviors are generally caused by the do
nation of the backscattering from far regions. It is found t
asymptotic tail of massive scalar fields~69! appears when the
effective contribution to the integral~17! arises from the re-
gion ~54!, namely, when the backscattering due to spa
time curvature dominates. Further, the frequencies of wa
which contribute to the backscattering are sharply pea
aboutv0. These facts suggest that the asymptotict25/6 tail is
caused by aresonancebackscattering due to spacetime cu
vature.

We can also clarify the resonant picture from a viewpo
of the time scale when thet25/6 tail dominates. The basic
condition for the tail dominance is given by Eq.~45!. How-
ever, formM!1, the t25/6 tail requires the additional con
dition ~54!, which givesmt@1/m2M2. On the other hand
for large field massmM@1, the largermM is, the later the
t25/6 tail begins to dominate, because the tail requires
further conditionÃ0 /m!1 for Eq. ~65! in addition to the
conditions~45! and ~54!, which givesmt@mM. Therefore
the time scale when thet25/6 tail dominates will become
minimum atmM.O(1), which means that the most effec
tive backscattering occurs for such massive scalar field
late times. Here we note that the time scale when thet25/6

tail dominates is determined by the black-hole radiusM. It is
conjectured that the slow decay oft25/6 originates from the
existence of resonant enhancement of massive scalar w
with the peculiar frequencyv0 near the horizon. In conclu
sion, we claim that resonance behaviors in field-mass dep
dence are not peculiar to quantum scalar fields but man
also in classical scalar fields.

In this paper we have calculated the tail behaviors
nearly extremal limit, because we are motivated by the p
vious work@2#. The extension of our calculation into none
tremal case remains in future works, to investigate whet
our result in this paper is a special feature of the extrem
case or not.
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