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Quasiequilibrium sequences of synchronized and irrotational binary neutron stars
in general relativity: Method and tests
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We present a numerical method to compute quasiequilibrium configurations of close binary neutron stars in
the precoalescing stage. A hydrodynamical treatment is performed under the assumption that the flow is either
rigidly rotating or irrotational. The latter state is technically more complicated to treat than the former one
~synchronized binary!, but is expected to represent fairly well the late evolutionary stages of a binary neutron
star system. As regards the gravitational field, an approximation of general relativity is used, which amounts to
solving five of the ten Einstein equations~conformally flat spatial metric!. The obtained system of partial
differential equations is solved by means of a multidomain spectral method. Two spherical coordinate systems
are introduced, one centered on each star; this results in a precise description of the stellar interiors. Thanks to
the multidomain approach, this high precision is extended to the strong field regions. The computational
domain covers the whole space so that exact boundary conditions are set to infinity. Extensive tests of the
numerical code are performed, including comparisons with recent analytical solutions. Finally a constant
baryon number sequence~evolutionary sequence! is presented in detail for a polytropic equation of state with
g52.
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I. INTRODUCTION
Inspiraling neutron star binaries are expected to be am

the strongest sources of gravitational radiation that could
detected by the interferometric detectors currently under c
struction @GEO600, Laser Interferometric Gravitation
Wave Observatory~LIGO!, and VIRGO# or in operation
~TAMA300!. Such binary systems are therefore subject
numerous theoretical studies~see, e.g., Ref.@1# for a review!.
Among them there are~i! post-Newtonian~PN! analytical
treatments~e.g., Refs.@2–4#! and~ii ! fully relativistic hydro-
dynamical treatments, pioneered by the works of Oohara
Nakamura~see, e.g., Ref.@5#!, Wilson et al. @6,7# and re-
cently developed by Shibata@8–11#, the Neutron Star Grand
Challenge group@12,13# and Oohara and Nakamura@14#.
These last three groups integrate forward in time the ev
tion equations resulting from the 311 formulation of general
relativity @15,16#. In parallel with these dynamical calcula
tions, some quasiequilibrium formulation of the problem h
been developed@17–20# and successfully implemented@21–
24#. The basic assumption underlying the quasiequilibri
calculations is that the time scale of the orbit shrinking
larger than that of the orbital revolution in the precoalesc
state. Consequently the evolution of the binary system ca
approximated by a succession of exactly circular orb
hence the namequasiequilibrium. The study of these quas
equilibrium configurations is justified in the view that th
fully dynamical computations mentioned above are only
their infancy. In particular, they cannot follow more than
few orbits. Also they involve a rather coarse resolution of
stars, being performed in a single box with Cartesian co
dinates. Another motivation for computing quasiequilibriu
configurations is to provide valuable initial conditions for t
dynamical evolutions@11,12,14#.

The first quasiequilibrium configurations of binary ne
tron stars in general relativity were obtained three years
0556-2821/2001/63~6!/064029~27!/$15.00 63 0640
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by Baumgarteet al. @25,26#, followed by Marronettiet al.
@27#. However, these computations considered synchron
binaries. This rotation state does not correspond to phys
situations, since it has been shown that the gravitation
radiation driven evolution is too rapid for the viscous forc
to synchronize the spin of each neutron star with the o
@28,29# as they do for ordinary stellar binaries. Rather, t
viscosity is negligible and the fluid velocity circulation~with
respect to some inertial frame! is conserved in these system
Provided that the initial spins are not in the millisecond
gime, this means that close binary configurations are w
approximated by zero vorticity~i.e., irrotational! states. Ir-
rotational configurations are more complicated to obtain
cause the fluid velocity does not vanish in the co-orbiti
frame ~as it does for synchronized binaries!. We have suc-
cessfully developed a numerical method to tackle this pr
lem and presented the first quasiequilibrium configuratio
of irrotational binary neutron stars elsewhere@21#. The nu-
merical technique relies on a multi-domain spectral meth
@30# within spherical coordinates. Since then, two oth
groups have obtained relativistic irrotational configuratio
~i! Marronetti, Mathews, and Wilson@22,31# by means of
single-domain finite difference method within Cartesian c
ordinates and~ii ! Uryu, Eriguchi, and Shibata@23,24# by
means of a multidomain finite difference method with
spherical coordinates.

The present article is devoted to the detailed presenta
of our method, along with numerous tests of the numeri
code, while the previous paper@21# gave only a sketch of the
equations and some results about an evolutionary sequ
built on a polytropic equation of state. In particular, th
letter focuses on the evolution of the central density alo
the sequence in order to investigate the stability of each
against gravitational collapse. That study was motivated
the 1995 finding of Wilsonet al. @6,7# that the neutron stars
©2001 The American Physical Society29-1
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ERIC GOURGOULHONet al. PHYSICAL REVIEW D 63 064029
may individually collapse into a black hole prior to merge
This unexpected result has been called into question b
number of authors~see Ref.@32# for a summary of all the
criticisms and some answers!. Recently Flanagan@33# has
found an error in the analytical formulation used by Wils
et al. @6,7#. New numerical computations by Mathews a
Wilson @34#, using a corrected code, show a significan
reduced compression effect.

The plan of the article is as follows. We start by prese
ing the equations governing binary stars in general relati
in Sec. II ~hydrodynamics! and Sec. III~gravitational field!.
The numerical method developed to integrate these equa
is presented in Sec. IV. Section V is then devoted to the t
passed by the numerical code. Astrophysical results are
presented in Sec. VI for an evolutionary sequence of irro
tional binary stars constructed on polytropic equation of s
of adiabatic indexg52. Section VII contains the final dis
cussion~comparison of our method with that used by oth
groups, conclusions about the tests! and future prospects
Throughout the present article, we use units ofG5c51
whereG andc denote the gravitational constant and speed
light.

II. RELATIVISTIC EQUATIONS GOVERNING BINARIES
IN CIRCULAR ORBITS

Our treatment of binary neutron stars relies on the
sumptions of~i! quasiequilibrium state~i.e., steady state in
the co-orbiting frame!, ~ii ! a specific velocity state for the
fluid: either rigid or irrotational flow,~iii ! the spatial 3-metric
is almost conformally flat. In this section, we examine t
assumptions~i! and ~ii !, without invoking assumption~iii !,
which will be introduced only in Sec. III.

A. Quasiequilibrium assumption

In the late inspiral phase, before any orbital instability
merging of the two stars, the evolution of binary neutr
stars can be approximated by a succession of circular or
Indeed when the separation between the centers of the
neutron stars is about 50 km~in harmonic coordinates! the
time variation of the orbital periodṖorb computed at the sec
ond post-Newtonian~PN! order by means of the formula
established by Blanchetet al. @35# is about 2%. The evolu-
tion at this stage can thus be still considered as a sequen
equilibrium configurations. Moreover the orbits are expec
to be circular~vanishing eccentricity!, as a consequence o
the gravitational radiation reaction@36#. In terms of the
spacetime geometry, we translate these assumptions by
manding that there exists a Killing vector fieldl which is
expressible as@17#

l5k1Vm, ~1!

whereV is a constant, to be identified with the orbital ang
lar velocity with respect to a distant inertial observer, andk
andm are two vector fields with the following properties:k
is timelike at least far from the binary and is normalized
that far from the star it coincides with the 4-velocity of in
ertial observers with respect to which the total Arnowi
06402
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Deser-Misner~ADM ! 3-momentum of the system vanishe
On the other handm is a spacelike vector field which ha
closed orbits and is zero on a two-dimensional timelike s
face, called therotation axis. m is normalized so that
“(m•m)•“(m•m)/(4m•m) tends to 1 on the rotation axi
@this latter condition ensures that the parameterw associated
with m along its trajectories bym5]/]w has the standard
2p periodicity#. Let us call l the helicoidal Killing vector.
We assume thatl is a symmetry generator not only for th
spacetime metricg but also for all the matter fields. In par
ticular, l is tangent to the world tubes representing the s
face of each star, hence its qualification ofhelicoidal ~see
Fig. 1 of Ref.@17#!.

The approximation suggested above amounts to neg
ing outgoing gravitational radiation. For nonaxisymmet
systems — as binaries are — imposingl as an exact Killing
vector leads to a spacetime which is not asymptotically
@37#. Thus, in solving for the gravitational field equations,
certain approximation has to be devised in order to avoid
divergence of some metric coefficients at infinity. For i
stance such an approximation could be the Wilson a
Mathews scheme@38# that amounts to solving only for the
Hamiltonian and momentum constraint equations, as wel
the trace of the spatial part of the ‘‘dynamical’’ Einste
equations~see Sec. III A!. This approximation has been use
in all the relativistic quasiequilibrium studies to date and
consistent with the existence of the helicoidal Killing vect
field ~1!. Note also that since the gravitational radiation r
action shows up only at the 2.5-PN order, the helicoidal sy
metry is exact up to the 2-PN order.

Following the standard 311 formalism@15#, we introduce
a foliation of spacetime by a family of spacelike hypersu
facesS t such that at spatial infinity, the vectork introduced
in Eq. ~1! is normal toS t and the ADM 3-momentum inS t
vanishes~i.e., the timet is the proper time of an asymptoti
inertial observer at rest with respect to the binary syste!.
Asymptotically,k5]/]t andm5]/]w, wherew is the azi-
muthal coordinate associated with the above asymptotic
ertial observer, so that Eq.~1! can be rewritten as

l5
]

]t
1V

]

]w
. ~2!

One can then introduce the shift vectorB of co-orbiting
coordinates by means of the orthogonal decompositionl
with respect to theS t foliation

l5Nn2B, ~3!

wheren is the unit future directed vector normal toS t , N is
called the lapse function andn•B50.

B. Fluid motion

We consider a perfect fluid, which constitutes an excell
approximation for neutron star matter. The matter stre
energy tensor is then

T5~e1p!u^ u1pg, ~4!
9-2
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QUASIEQUILIBRIUM SEQUENCES OF SYNCHRONIZED . . . PHYSICAL REVIEW D63 064029
e being the fluid proper energy density,p the fluid pressure,
u the fluid 4-velocity, andg the spacetime metric. A zero
temperature equation of state~EOS! is a very good approxi-
mation for neutron star matter. For such an EOS, the first
of thermodynamics gives rise to the following identi
~Gibbs-Duhem relation!:

“p

e1p
5

1

h
“h, ~5!

whereh is the fluid specific enthalpy:

hª
e1p

mBn
, ~6!

n being the fluid baryon number density andmB the mean
baryon mass:mB51.66310227 kg. Note that for our zero-
temperature EOS,mBh is equal to the fluid chemical poten
tial.

By means of the identity~5!, it is straightforward to show
that the classical momentum-energy conservation equa
“•T50 is equivalent to the set of two equations@39,40#

u•~“`w!50, ~7!

“•~nu!50. ~8!

In Eq. ~7!, w is the comomentum 1-form

wªhu ~9!

and“`w denotes the exterior derivative ofw, i.e., the vor-
ticity 2-form @39#. In terms of components, one has

~“`w!ab5“awb2“bwa5]awb2]bwa . ~10!

The vorticity 2-form enters Cartan’s identity which stat
that the Lie derivative of the 1-formw along the vector field
l is

£lw5 l•~“`w!1“~ l•w!. ~11!

Because of the assumed helicoidal symmetry, £lw50, so
that Cartan’s identity reduces to

l•~“`w!1“~ l•w!50. ~12!

This equation reveals to be very useful in the following; th
justifies the introduction of the vorticity 2-form.

In particular, performing the scalar product of Eq.~12! by
the fluid 4-velocityu leads to

l•~“`w!•u1u•“~ lw!50. ~13!

The first term in the left-hand side vanishes by virtue of
equation of motion~7!, so that we obtain

u•“~ l•w!50, ~14!

which means that the quantityl•w5hl•u is constant along
each streamline. This is the relativistic generalization of
classical Bernoulli theorem. At this stage, it must be notic
06402
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that, in order for the constant to be uniform over the strea
lines, i.e., to be a constant over spacetime, so that one g
first integral for the fluid motion, some additional property
the flow must be required. In the following two sections, w
explore two such additional properties: rigidity and irrot
tionality.

C. Rigid rotation

A rigid motion corresponds tosynchronizedstars ~also
calledcorotatingstars!. It is defined in relativity by the van-
ishing of the expansion tensoruabª(ga

m1uaum)(gb
n

1ubun)“ (num) of the 4-velocityu. In the presence of a Kill-
ing vectorl, this can be realized by requiring the colineari
of u and l :

u5l l, ~15!

where l is a scalar field related to the norm ofl by the
normalization of the 4-velocityl5(2 l• l)21/2. Inserting re-
lation ~15! into the equation of fluid motion~7! shows that
the first term in Eq.~12! vanishes identically, so that one ge
the well known first integral of motion@41#

l•w5const. ~16!

The second part of the equations of fluid motion, Eq.~8!
~baryon number conservation!, is trivially satisfied by the
form ~15! becausel is a Killing vector.

D. Irrotational flow

As recalled in Sec. I, realistic binary neutron stars are
expected to be in synchronized rotation, but rather to have
irrotational motion. A relativistic irrotational flow is define
by the vanishing of the vorticity 2-form@39#

“`w50. ~17!

This is equivalent to the existence of a scalar fieldC such
that

w5“C. ~18!

This is the relativistic definition of apotential flow@42#. Note
that the advantage of writing the equation for the fluid m
tion in the form ~7!, ~8! rather than in the traditional form
¹•T50 is that one can see immediately that a flow of t
form ~18! is a solution of Eq.~7!.

The second part of the equation of motion, Eq.~8!, is
satisfied by the potential flow~18! provided thatC obeys to
the equation

n

h
“•“C1“C•“S n

hD50. ~19!

Inserting the irrotationality condition~17! into Eq. ~12!
results in an equation showing the constancy of the sc
productl•w:

l•w5const. ~20!
9-3
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We therefore obtain the same first integral as in the rigid c
@Eq. ~16! above#. However note that the way to get it i
different: no use of the equation of motion~7! has been made
to obtain Eq.~20!, contrary to the derivation of Eq.~16!. The
first integral~16! for rigid motion has been known for a lon
time, at least since Boyer’s work@41#. To our knowledge, the
version~20! for an irrotational flow in presence of a Killing
vector is due to Carter@40#.

E. 3¿1 decomposition

The first integral~16!,~20!, common to both the rigid and
irrotational motion, is expressed in terms of the contract
of a spacetime vector (l) with a spacetime 1-form (w). Go-
ing back to the 311 formalism mentioned in Sec. II A, let u
reexpress it in terms of quantities relative to the hypers
facesS t . Following Ref.@17#, we introduce theco-orbiting
observer, whose 4-velocityv is the normalized symmetry
generator:

v5~N22B•B!21/2l, ~21!

where the normalization factor has been deduced from
~3!. Note that in the rigid motion case, the co-orbiting o
server and the fluid comoving observer coincide:u5v @see
Eq. ~15!#. The 311 split of the 4-velocityv with respect to
the Eulerian observer is

v5G0~n1U0!, ~22!

where

G052n•v5~12U0•U0!21/2 ~23!

is the Lorentz factor between the two observers andU0 is
the orbital 3-velocity with respect to the Eulerian observ
(n•U050). According to Eqs.~21! and ~3!, U0 is linked to
the shift vector of co-orbiting coordinates by

U052
B

N
. ~24!

Thanks to the second part of Eq.~23!, Eq. ~21! can be re-
written as

v5
G0

N
l. ~25!

The fluid motion can be described by the following orthog
nal decompositions ofu:

u5G~v1V!5Gn~n1U!, ~26!

whereG52v•u (Gn52n•u) is the Lorentz factor betwee
the fluid and the co-orbiting~Eulerian! observer, andV (U)
is the fluid 3-velocity with respect to the co-orbiting~Eule-
rian! observer. In particular,v•V50, n•U50 and

U5
1

Gn
h•u, ~27!

where
06402
e
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hªg1n^ n ~28!

is the orthogonal projector onto the spatial hypersurfacesS t ;
h can also be viewed as the metric induced byg onto the
hypersurfacesS t . Performing the scalar product of Eq.~22!
with the second part of Eq.~26! leads to an expression of th
Lorentz factorG in terms of quantities relative to the Eule
rian observer only:

G5GnG0~12U•U0!. ~29!

Similarly, performing the projection of the second part of E
~26! onto the hyperplane orthogonal tov results in the ex-
pression of the fluid 3-velocityV with respect to the co-
orbiting observer in terms of the 3-velocitiesU andU0, both
defined with respect to the Eulerian observer:

V5
G0

12U•U0
@U0•~U2U0!n1U2U0

1~U•U0!U02~U0•U0!U#. ~30!

Note that in the case whereU and U0 are aligned (U5Ue
andU05U0e, e being some unit vector inS t) relation ~30!
reduces to the classical velocity-addition law of special re
tivity: V5(U2U0)/(12UU0)e8, wheree85G0(e1U0n) is
the unit vector deduced frome by a boost of velocityU0. In
particular forU5U0, which corresponds to synchronized b
naries,V vanishes identically.

For irrotational binaries,U is related to the potentialC by
combining Eqs.~9!, ~18!, and~27! :

U5
1

Gnh
DC, ~31!

whereD is the covariant derivative associated with the m
ric h of spatial hypersurfacesS t . Combined with the relation
Gn5(12U•U)21/2, this relation results in

Gn5S 11
1

h2 DC•DC D 1/2

. ~32!

We are now in position to write the 311 form of the first
integral ~16!,~20!, common to both the rigid and irrotationa
motion. Substituting relation~9! for w and relation~25! for l
into Eq. ~16! results in

hN
G

G0
5const. ~33!

We shall use actually the logarithm of this relation

H1n2 ln G01 ln G5const, ~34!

with the following definitions:

Hª ln h ~35!

and

nª ln N. ~36!
9-4
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These two quantities have immediate meaning at the N
tonian limit: H is the~nonrelativistic! specific enthalpy andn
is the Newtonian gravitational potential. The first integral
motion written as Eq.~34! coincides with Eq.~66! of Ref.
@17#. The link with the alternative expressions derived
Teukolsky@19# and by Shibata@20# for the irrotational case
is performed in Appendix A. Note that lnG50 for synchro-
nized binaries, so that Eq.~34! simplifies somewhat. Note
also that substituting Eq.~29! for G in Eq. ~34! leads to an
alternative expression of the first integral of motion whi
contains only quantities relative to the Eulerian observer

H1n1 ln Gn1 ln~12U•U0!5const. ~37!

However, in the following, we shall use only the form~34!.
Let us now turn to the 311 form the differential equation

~19! for the velocity potentialC of irrotational flows. Taking
into account the helicoidal symmetry, Eq.~19! becomes

nD•DC1Dn•DC5hGnU0•Dn

1nS DC•D ln
h

N
1U0•DGnD1nhKGn ,

~38!

whereK is the trace of the extrinsic curvature tensor of t
S t hypersurfaces. This equation has been obtained by T
kolsky @19# and independently by Shibata@20#. We refer to
these authors for the details of the derivation of Eq.~38!
from Eq. ~19!.

F. Newtonian limit

At the Newtonian limit, the Eulerian observer is an ine
tial observer. Equations~2! and ~3! show that B
52V(]/]w), so that Eq.~24! for the velocity of the co-
orbiting observer with respect to the inertial observer
comes

U05V3r , ~39!

wherer denotes the position vector with respect to the cen
of mass of the system. The logarithm of the correspond
Lorentz factor tends to~minus! the centrifugal potential@see
Eq. ~23!#

ln G05
1

2
~V3r !2. ~40!

The Newtonian limit of the first integral of motion~34! for
synchronized binaries (lnG50) gives the classical expres
sion

H1n2
1

2
~V3r !25const, ~41!

where, as recalled above,H is the fluid specific enthalpy an
n the Newtonian gravitational potential.

In the irrotational case, the Newtonian limit results in t
following fluid velocity with respect to the inertial frame@set
h51 andGn51 in Eq. ~31!#
06402
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U5¹W C, ~42!

where¹W denotes the standard 3-dimensional gradient op
tor, i.e., the Newtonian limit of the operatorD introduced
above. The first integral of motion~37! reduces then to

H1n1
1

2
~¹W C!22~V3r !•¹W C5const. ~43!

We recognize the classical expression@compare, e.g., with
Eq. ~12! of Ref. @19# or Eq. ~11! of Ref. @43##. The Newton-
ian limit of the continuity equation~38! reads

nDC1¹W n•¹W C5~V3r !•¹W n. ~44!

Here again, we recognize the classical expression@compare,
e.g., with Eq.~13! of Ref. @19##.

III. GRAVITATIONAL FIELD EQUATIONS

A. A simplifying assumption: the conformally flat 3-metric

As a first step in the treatment of binary configurations
general relativity, a simplifying assumption can be intr
duced, in order to reduce the computational task, namely
take the 3-metric induced in the hypersurfacesS t to be con-
formally flat:

h5A2f, ~45!

where A is some scalar field andf is a flat 3-metric. This
assumption has been first introduced by Wilson a
Mathews@38# and has been employed in all the studies
quasiequilibrium relativistic binaries to date@21–26#. It has
been also used in binary black hole initial data computati
~see, e.g., Refs.@44–47#!. It is physically less justified than
the assumption of quasiequilibrium discussed above. H
ever, some possible justifications of Eq.~45! are,

~1! it is exact for spherically symmetric configuration
~2! it is very accurate for axisymmetric rotating neutron sta
@48#, ~3! the 1-PN metric fits it, and~4! the 2.5-PN metric
@49# deviates from it by only 2% for two 1.4M ( neutron
stars as close as 30 km~in harmonic coordinates! @50#.

B. Partial differential equations for the metric

To benefit from the helicoidal symmetry, we use c
orbiting coordinates (t,x1,x2,x3), i.e., coordinates adapted t
the Killing vector l: ]/]t5 l. Assuming the conformally flat
form ~45! for h, the full spacetime metric takes then th
form1

ds252~N22BiB
i !dt222Bidtdxi1A2f i j dxidxj . ~46!

We thus have five metric functions to determine: the lapseN,
the conformal factorA, and the three componentsBi of the
shift vectorB @see Eq.~3!#. Let us define auxiliary metric

1Latin indicesi , j , . . . , runfrom 1 to 3.
9-5
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ERIC GOURGOULHONet al. PHYSICAL REVIEW D 63 064029
quantities: we have already introduced the logarithm ofN, n,
via Eq. ~36!; we introduce now the shift vector of nonrota
ing coordinates:

N5B1V
]

]w
~47!

and the quantity

bª ln~AN!. ~48!

At the Newtonian limitN50 andb50. In the following, we
choose the slicing of spacetime by the hypersurfacesS t to be
maximal. This results inK50.

The Killing equation“al b1“bl a50, gives rise to a re-
lation between theS t extrinsic curvature tensorK and the
shift vector N @via Eq. ~3! and the relation¹n52K2n
^ D ln N#

Ki j 52
1

2N
~DiBj1D jBi !

52
1

2A2NH ¹̄ iNj1¹̄ jNi2
2

3
f i j ¹̄kN

kJ , ~49!

where¹̄ stands for the covariant derivative associated w
the flat 3-metricf. Here and in the following, the indexi of
¹̄ i is supposed to be raised with the metricf. Note that since
]/]f is a Killing vector of the flat metricf, the second par
of this equation stands also withNi replaced byBi .

The trace of the spatial part of the Einstein equation, co
bined with the Hamiltonian constraint equation, result in t
following two equations:

Dn54pA2~E1S!1A2Ki j K
i j 2¹̄ in¹̄ ib, ~50!

Db54pA2S1
3

4
A2Ki j K

i j 2
1

2
~¹̄ in¹̄ in1¹̄ ib¹̄ ib!,

~51!

whereas the momentum constraint equation yields, by me
of Eq. ~49!,

DNi1
1

3
¹̄ i~¹̄ jN

j !5216pNA2~E1p!

3Ui12NA2Ki j ¹̄ j~3b24n!.

~52!

In these equations,Dª¹̄ i¹̄ i is the Laplacian operator asso
ciated with the flat metricf, andE andSare, respectively, the
matter energy density and trace of the stress tensor, bo
measured by the Eulerian observer

Eªn•T•n5Gn
2~e1p!2p, ~53!

Sªh•T53p1~E1p!U•U. ~54!

The equations to be solved to get the metric coefficie
are the elliptic equations~50!–~52!. Note that they represen
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only five of the ten Einstein equations. The remaining fi
Einstein equations are not used in this procedure. Moreo
some of these remaining equations are certainly violated
flecting the fact that the conformally flat 3-metric~45! is an
approximation to the exact metric generated by a binary s
tem.

At the Newtonian limit, Eqs.~51! and ~52! reduce to 0
50. There remains only Eq.~50!, which gives the usua
Poisson equation for the gravitational potentialn.

C. Equations for the fluid with a conformally flat 3-metric

In this section we explicitly write some equations for flu
quantities when the 3-metric takes the form~45!. First the
Lorentz factor~23! between the co-orbiting and Eulerian o
servers is written as

G05~12A2f i j U0
i U0

j !21/2. ~55!

For irrotational motion, the expression~32! for the Lor-
entz factorGn between the fluid and Eulerian observers b
comes

Gn5S 11
1

A2h2 f i j ¹̄ iC¹̄ jC D 1/2

. ~56!

The corresponding fluid 3-velocity~31! is

Ui5
1

A2Gnh
¹̄ iC. ~57!

The Lorentz factorG between the fluid and co-orbiting ob
server, which enters in the first integral of motion~34!, is
deduced from the above quantities via Eq.~29! :

G5GnG0~12A2f i j U
iU0

j !. ~58!

Let us now consider the continuity equation~38!. For a
zero-temperature EOS,H can be considered as a function
the baryon densityn solely, so that one can introduce th
thermodynamical coefficient

zª
d ln H

d ln n
. ~59!

The gradient ofn which appears in Eq.~38! can be then
replaced by a gradient ofH so that, using the metric~45!,
one obtains

zHDC1¹̄ iH¹̄ iC

5A2hGnU0
i ¹̄ iH1zH

3@¹̄ iC¹̄ i~H2b!1A2hU0
i ¹̄ iGn#. ~60!

The potentialC is in fact dominated by a pure translation
part. Therefore, we write, in each star,

C5:C01 f i j W0
i xj , ~61!
9-6
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whereW0
i is the constant~translational! velocity field defined

as the central2 value of

Wi
ªA2hGnU0

i . ~62!

Then ¹̄ iC5¹̄ iC01W0
i and DC5DC0, so that Eq.~60!

becomes

zHDC01@~12zH !¹̄ iH1zH¹̄ ib#¹̄ iC0

5~Wi2W0
i !¹̄ iH1zHS W0

i ¹̄ i~H2b!1
Wi

Gn
¹̄ iGnD .

~63!

The advantage to solve Eq.~63! instead of Eq.~60! is that
the right-hand side of the former is much smaller than
right-hand side of the latter, due to the factorWi2W0

i , in-
stead ofWi , in front of ¹̄ iH.

D. Global quantities

The total mass-energy content in aS t hypersurface is
given by the Arnowitt-Deser-Misner~ADM ! massM, which
is expressed by means of the surface integral at spatial in
ity

M5
1

16p R̀ f ik f j l ~¹̄ jhkl2¹̄khjl !dSi ~64!

@see, e.g., Eq.~20.9! of Ref. @51##. In the case of the confor
mally flat 3-metrichi j 5A2f i j , this integral can be written

M52
1

2p R̀ ¹̄ iA1/2dSi . ~65!

By means of the Gauss-Ostragradsky formula, this exp
sion can be converted into the volume integral ofDA1/2. This
last quantity can be expressed by subtracting Eq.~50! from
Eq. ~51! @recall thatA5exp(b2n)#, so that Eq.~65! becomes
an integral containing the matter energy density and the
trinsic curvature ofS t :

M5E
S t

A5/2S E1
1

16p
Ki j K

i j Dd3x. ~66!

Following Bowen and York@52# we define the total angula
momentum in aS t hypersurface as the surface integral
spatial infinity3

2The centers of the stars are defined in Sec. IV A.
3Note that contrary to the ADM mass, the total angular mom

tum hence defined is not asymptotically gauge invariant: it is
fined merely as the 1/r 3 part of Ki j within our coordinates; see
York @53# for a discussion.
06402
e

n-

s-

x-

t

Ji5
1

16p
e i jk R̀ ~xjKkl2xkK jl !dSl

5
1

16p
e i jk R̀ ~xjA5Kkl2xkA5K jl !dSl , ~67!

wheree i jk is the 3-dimensional alternating tensor,xi are Car-
tesian coordinates, and the second equality follows from
fact thatA51 at spatial infinity. As forM, this integral can
be converted to a volume integral onS t . Using the momen-
tum constraint equationDlK

kl58p(E1p)Uk and the fact
that DlK

kl5A25](A5Kkl)/]xl for the conformally flat
3-metric ~45!, one obtains the expression

Ji5e i jkE
S t

A5~E1p!xjUkd3x. ~68!

The baryon mass of each star is given by the integral onS t
of the baryon number density as measured by the Eule
observer:2nu•n5Gnn. In the case of the conformally fla
3-metric ~45!, this integral becomes

MB
^a&5mBE

stara
A3Gnnd3x, a51,2. ~69!

IV. NUMERICAL METHOD

The equations to be solved to get a relativistic bina
system in quasiequilibrium are the elliptic equations~50!–
~52! for the gravitational field, supplemented by the ellipt
equation~63! for the velocity potentialC0 in the irrotational
case. A cold matter equation of state, of the form

n5n~H !, e5e~H !, p5p~H !, ~70!

must be supplied to close the system of equations. The t
modynamical quantityH has been privileged in the EO
setting~70! because it is that quantity which is involved
the first integral of motion~34!. Altogether, these equation
constitute a system of coupled nonlinear partial differen
equations. We solve this system by means of an itera
procedure.

A. Coordinate systems and computational domains

We use co-orbiting coordinates (t,X,Y,Z) of Cartesian
type ~i.e., f i j 5d i j ), so that the line element~46! can be writ-
ten

ds252N2dt21A2@~dX2BXdt!2

1~dY2BYdt!21~dZ2BZdt!2#. ~71!

In these coordinates, the two stars have fixed locations
figures. Let us define thecenterof star No.a (a51,2) as the
location of the maximum enthalpyH ~or equivalently maxi-
mum densitye) in star a. Note that thiscenter does not
coincide with the center of mass of stara. We choose the
coordinates (X,Y,Z) such that~i! the orbital plane is defined
by Z50, ~ii ! the two stellar centers are located along theX

-
-
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axis, and~iii ! the rotation axis~see Sec. II A! is located at
X50, Y50. Let us then denote byX^1& and X^2& the X
coordinates of the two stellar centers.4

In order to describe properly the stellar interiors, we
troduce two systems of Cartesian coordina
(x^a& ,y^a& ,z^a&) centered on the two stars by~see Fig. 1!

H x^1& 5 X2X^1&

y^1& 5 Y

z^1& 5 Z
and H x^2& 5 2~X2X^2&!

y^2& 5 2Y

z^2& 5 Z
.

~72!

Note that the system (x^1& ,y^1& ,z^1&) is aligned with
(X,Y,Z), whereas (x^2& ,y^2& ,z^2&) is anti-aligned@rotation of
anglep in the (X,Y) plane# with (X,Y,Z). This choice en-
sures that the companion of star No.a is located atx^a&.0
for both stars. In particular, for equal mass stars, the desc
tions of each star in terms of (x^a& ,y^a& ,z^a&) are identical.
Furthermore we introduce spherical coordina
(r ^a& ,u^a& ,w^a&) (a51,2) associated with each of the Cart
sian coordinate systems (x^a& ,y^a& ,z^a&) by means of the
usual formulas.

Since some of the equations to be solved are elliptic eq
tions with non-compactly supported sources, the comp
tional domain must extend up to spatial infinity, i.e., mu
cover the full hypersurfaceS t , in order to put correct bound
ary conditions~flat spacetime!. Any truncated computationa
domain~‘‘box’’ ! would result in approximate boundary co
ditions, which inevitably would induce some error in th
numerical solution. The technique to cover the fullS t is to
divide it in various domains, the outermost of it being co
pactified in order to deal with finite computational doma
only @30#. Following the introduction of the two coordinat
systems (r ^a& ,u^a& ,w^a&) ~one centered on each star!, we will
actually use two sets of such domains: one centered on

4In all this article, indices or superscripts in angle brackets w
label the two stars.

FIG. 1. Coordinate systems used in the calculation.
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No. 1, the other on star No. 2. The numberN^a& of domains
in each set is arbitrary, being simply equal or larger than
The list of theN^1&1N^2& computational domains is

D 0
^1&
•••DM ^1&21

^1&
•••DN^1&21

^1& ,

D 0
^2&
•••DM ^2&21

^2&
•••DN^2&21

^2& ,

where we note the following.
domainD 0

^a& (a51,2) has the topology of a ball and con
tains the center of stara; it is designed thereafter as th
nucleus.

M ^a& (a51,2) is the number of domains which cover th
interior of star a. It obeys M ^a&>1 and M ^a&<N^a&22.
The outer boundary of domainDM ^a&21

^a& coincides exactly

with the surface of stara. The topology of domains
D 1

^a& , . . . ,DM ^a&21
^a& is that of a spherical shell; these domai

are designed thereafter as theshells.
domainsDM ^a&

^a& , . . . ,DN^a&22
^a& cover the noncompactified

part of the space outside stara; they are also calledshells.
The inner boundary of domainDM ^a&

^a& coincides exactly with

the surface of stara.
domainDN^a&21

^a& is the most external one; it extends up

r 51`. We call this domain the compactified external d
main ~CED! since thanks to some compactification it will b
mapped to a finite computational domain.

Of course the two sets of domains overlap sin
D 0

^1&ø . . . øDN^1&21
^1& 5D 0

^2&ø . . . øDN^2&21
^2& 5S t . The vari-

ous domains are represented in Fig. 2 forN^1&5N^2&53.
Following the technique introduced previously@30#, we

define in each domain thecomputational coordinates
(j,u8,w8) according to5

u85u, w85w ~73!

and in the nucleus,

l 5For the sake of clarity we omit here the star indices^a& on the
spherical coordinates (r ^a& ,u^a& ,w^a&) centered on stara.

FIG. 2. Domains used in the numerical computations, wh
N^1&5N^2&53. The boundaries of domainsD 0

^1& , D 1
^1& , D 0

^2& , and
D 1

^2& are represented. The outer boundaries of domainsD 2
^1& and

D 2
^2& are located at infinity and are therefore not plotted.
9-8
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r 5a0Fj1~3j422j6!F0~u,w!

1
1

2
~5j323j5!G0~u,w!G , jP@0,1#; ~74!

in the shells (1< l<N^a&22),

r 5a lFj1
1

4
~j323j12!Fl~u,w!

1
1

4
~2j313j12!Gl~u,w!G1b l , jP@21,1#;

~75!

in the CED,

r 5
2RCED

12j
, jP@21,1#. ~76!

In the above relations,a l and b l are some constants, th
functionsFl(u,w) andGl(u,w) define the boundary of eac
domain: the outer boundary of the nucleus correspondsj
51 and is given by the equation

r 5a0@11F0~u,w!1G0~u,w!#, ~77!

where F0(u,w) contains only odd Fourier harmonics inw
andG0(u,w) only even harmonics, the inner boundary of t
shell No. l (1< l<N^a&22) corresponds toj521 and is
given by the equation

r 5a l@211Fl~u,w!#1b l , ~78!

whereas its outer boundary corresponds toj51 and is given
by the equation

r 5a l@11Gl~u,w!#1b l . ~79!

Finally RCED is the radius of the inner boundary of the CE
which is assumed to be spherical.

B. Multidomain spectral method

In each domain, we expand the various physical fields
a series of basis functions ofj, u8 andw8. We use Cheby-
shev polynomials inj, trigonometrical polynomials or asso
ciated Legendre functions inu8, and Fourier series inw8.
The interested reader is referred to Sec. III A of Ref.@30# for
more details about these spectral expansions. Let us de
by Nr

^a&( l ) the number of coefficient in thej expansion used
in domainD l

^a& , by Nu
^a&( l ) the number of coefficients in th

u8 expansion and byNw
^a&( l ) the number of coefficients in

thew8 expansion. We employ acollocation spectral method,
which means that in each domain, a function can be
scribed either by the coefficients of its spectral expansion
by its value at some particular grid points, called thecollo-
cation points@54#. The grids plotted in Fig. 2 show actuall
these collocation points.
06402
n

ote

e-
r

The spectral method amounts to reducing linear par
differential equations into a system of algebraic equations
the coefficients of the spectral expansions. We refer to R
@55,56# for the details of this multidomain spectral metho
and here simply recall some basic features.

As explained above, spherical-type coordinates (j,u8,w8)
centered on each star are used: this ensures a much b
description of the stars than by means of Cartesian coo
nates.

These spherical-type coordinates are surface-fitted coo
nates: i.e., the surface of each star lies at a constant valu
the coordinatej thanks to the mapping (j,u8,w8)°(r ,u,w)
defined by Eqs.~74!,~75!. This ensures that the spectr
method applied in each domain is free from any Gibbs p
nomenon~spurious oscillations generated by discontinuitie!.

The outermost domain extends up to spatial infini
thanks to the mapping~76!. This enables us to put exac
boundary conditions on the elliptic equations~50!–~52! for
the metric coefficients: spatial infinity is the only locatio
where the metric is known in advance~Minkowski metric!.

Thanks to the use of a spectral method in each dom
the numerical error isevanescentfor analytical fields~e.g.,
density fields for ag52 equation of state!, i.e., it decreases
exponentially with the number of coefficients~or equiva-
lently collocation grid points! used in the spectral expansion
@55,56#.

C. Splitting of the metric quantities

Having introduced two sets of computational doma
~grids!, we linearly split the metric potentialsn, b, andNi

into

n5n^1&1n^2&5n^1&1n^2→1&5n^1→2&1n^2& , ~80!

b5b^1&1b^2&5b^1&1b^2→1&5b^1→2&1b^2& ,
~81!

Ni5N^1&
i 1N^2&

i 5N^1&
i 1N^2→1&

i 5N^1→2&
i 1N^2&

i ,
~82!

where the quantities labeled by ‘‘^a& ’’ or ‘‘ ^b→a& ’’ ( a
51,2, b532a) are defined at the collocation points of th
domainsD l

^a& centered on stara, and the quantities labele
by ‘‘ ^a& ’’ and ‘‘ ^a→b& ’’ represents the same physical fie
but described at different collocation points~those of domain
sets D l

^a& and D l
^b& , respectively!, i.e., n^1→2&5n^1& ,

n^2→1&5n^2& , etc.
The basic idea underlying the splittings~80!–~82! is that

for each metric potential, there are two primary quantiti
those labeled by ‘‘̂1& ’’ and ‘‘ ^2&,’’ which are ‘‘mostly gen-
erated’’ by, respectively, star 1 and star 2 and which
called theautopotentials@the precise definitions are given b
Eqs. ~83!–~85! below#. The autopotentials are obtained b
solving the gravitational field equations, on domainsD l

^1& for
the ‘‘^1& ’’ potentials, and onD l

^2& for the ‘‘^2& ’’ ones. The
quantities labeled by ‘‘^1→2& ’’ @‘‘ ^2→1& ’’ # are then
merely representations of the ‘‘^1& ’’ @‘‘ ^2& ’’ # autopotentials
at the collocation points associated with the companion s
For this reason, we shall call them the comp-potentials.
9-9
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Following the splittings~80!–~82!, the gravitational field
equations~50!–~52! are themselves split in two parts.n^1&
and n^2& are thus defined as the solutions of the two eq
tions

Dn^a&54pA2~E^a&1S^a&!1Q^a&1Q^b→a&2¹̄ in^a&

3@¹̄ ib^a&1~¹̄ ib!^b→a&#, a51,2 ~b532a!,

~83!

whereasb^1& andb^2& are defined as the solutions of the tw
equations

Db^a&54pA2S^a&1
3

4
~Q^a&1Q^b→a&!2

1

2
¹̄ in^a&

3@¹̄ in^a&1~¹̄ in!^b→a&#2
1

2
¹̄ ib^a&

3@¹̄ ib^a&1~¹̄ ib!^b→a&#, a51,2 ~b532a!,

~84!

and N^1&
i and N^2&

i are defined as the solutions of the tw
equations

DN^a&
i 1

1

3
¹̄ i~¹̄ jN^a&

j !

5216pNA2~E^a&1p^a&!U ^a&
i 1NK̃^a&

i j

3~6@¹̄ jb^a&1~¹̄ jb!^b→a&#28@¹̄ jn^a&

1~¹̄ jn!^b→a&# !, a51,2 ~b532a!.

~85!

In these equations,E^a& , S^a& , p^a& , U ^a&
i are the quantities

relative to the fluid of stara only and defined, respectively
by Eqs.~53!, ~54!, ~4!, and ~27!. K̃ ^a&

i j is defined fromN^a&
i

according to

K̃ ^a&
i j
ª2

1

2NH ¹̄ iN^a&
j 1¹̄ jN^a&

i 2
2

3
f i j ¹̄kN^a&

k J , a51,2,

~86!

so that the total extrinsic curvature is given byKi j 5(K̃ ^1&
i j

1K̃ ^2&
i j )/A2. Finally Q^a& andQ^b→a& are defined by

Q^a&ªA2f ik f j l K̃ ^a&
kl K̃ ^a&

i j , a51,2, ~87!

Q^b→a&ªA2f ik f j l K̃ ^a&
kl K̃ ^b→a&

i j , a51,2 ~b532a!,
~88!

where K̃ ^b→a&
i j is the same physical field thanK̃ ^b&

i j but
numerically described at the collocation points of the d
mainsD l

^a& , K̃ ^b&
i j being given at the collocation points of th

domainsD l
^b& .

It is straightforward to check that adding the two equ
tions ~83! results in Eq.~50!, adding the two equations~84!
results in Eq.~51! and adding the two equations~85! results
06402
-
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in Eq. ~52!. Therefore, having obtained solutionsn^a& , b^a&
andN^a&

i of the Eqs.~83!–~85!, we can form the solution of
the gravitational field equations~50!, ~51!, and~52! via Eqs.
~80!–~82!.

The advantage of solving the system of 235510 partial
differential equations~PDEs! ~83!–~85!, instead of solving
the system of 5 PDEs~50!–~52!, is that the source term
~right-hand-side! of the former are mostly concentrated o
one of the two stars and therefore well described by one
the two domain sets introduced in Sec. IV A. This is not tr
for the source terms involving the comp-potentials ‘‘^b
→a&.’’ However, these terms enter only via quadratic co
binations in which each of them is multiplied by the gradie
of an autopotential term, which is small where the com
potential is large, so that the product of the two is sma
than the other sources terms, such as the scalar produ
gradients of autopotentials. The same considerations hold
Q^b→a& which appears to be much smaller thanQ^a& . Ac-
cording to these remarks, Eq.~83! for n^1& is naturally solved
on domainsD l

^1& , Eq. ~83! for n^2& is solved on domains
D l

^2& , and more generally, each equation for an autopoten
is solved onto the domains set centered on the correspon
star.

Once the autopotentials are known~at a given step of the
iterative procedure described in the next section!, there re-
mains to compute the corresponding comp-potentials. T
means that given, e.g.,n^1& at the collocation points of do
mains D l

^1& , one has to compute its valuesn^1→2& at the
collocation points of domainsD l

^2& . One may think first to
use some interpolation technique since the two sets of
mains overlap. But this will necessarily introduce some ‘‘n
merical noise.’’ We will proceed differently, taking advan
tage of the use of a spectral method. Indeed, the values o
field n^1& at the collocation points of domainsD l

^1& is not the
only numerical representation ofn^1& we have at our dis-
posal. We can use the alternative representation by the s
coefficients of its spectral expansion in each domainD l

^1&

(0< l<N^1&21) ~see Sec. IV B!. By means of this spectra
expansion, we can compute the value ofn^1& at any point in
the domainD l

^1& , not necessarily a collocation point. Henc
given a collocation point (j i ,u j8 ,wk8) of domain Dl 0

^2& , we

first compute the corresponding physical spherical coo
nates (r ^2& ,u^2& ,w^2&) via Eqs. ~74!–~76!, then the corre-
sponding Cartesian coordinates (x^2& ,y^2& ,z^2&); these latter
are translated into Cartesian coordinates (x^1& ,y^1& ,z^1&) via
Eq. ~72!. We finally obtain the corresponding spherical c
ordinates (r ^1& ,u^1& ,w^1&) centered on star 1. We then dete
mine in which domainD l

^1& this point is localized and to
which value of the coordinatej it corresponds by inverting
the relations~74!–~76!. Then we may use the spectral expa
sion of n^1& to get the searched value

n^1→2&~ l 0 ,j i ,u j8 ,wk8!

5 (
k50

Nw
^1&( l )21 F (

j 50

Nu
^1&( l )21 S (

i 50

Nr
^1&( l )21

n̂ lk j i Xk ji~j!D Qk j~u^1&!G
3Fk~w^1&!, ~89!
9-10
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where then̂ lk j i are the coefficients ofn^1& in domainD l
^1& ,

Xk ji denotes the basis functions inj ~typically Chebyshev
polynomials!, Qk j the basis functions inu ~typically cosnu
or sinnu) and Fk the basis functions inw ~Fourier series!.
These functions depend on the type of domain~nucleus, shell
or CED! and are described in details in Sec. III A of Re
@30#.

D. Iterative procedure

Within our procedure, a quasiequilibrium binary neutr
star configuration is obtained by specifying~1! the equation
of state~70! for each star,~2! the rotation state: either rigidly
rotating ~synchronized binaries, Sec. II C! or irrotational
flow ~Sec. II D!, ~3! the coordinate distancedªuX^2&
2X^1&u between the two stellar centers, and~4! the central
enthalpiesH ^1&

c andH ^2&
c in each star, or equivalently, via Eq

~70!, the central density in each star~with our definition of
the stellar center, this coincides with the maximum densi!.
As we discuss below, item~4! can be replaced by the spec
fication of the baryon mass of each star.

1. Initial conditions

The above parameters being set, we start by compu
initial conditions for the iterative procedure. These init
conditions are constituted by two numerical solutions
spherically symmetric static isolated neutron stars, of resp
tive central enthalpyH ^1&

c andH ^2&
c . M ^1& andM ^2& being the

gravitational masses of these spherical symmetric mod
we set theX coordinates of the two stellar centers accord
to the Newtonian-like formulas

X^1&52
M ^2&

M ^1&1M ^2&
d and X^2&5

M ^1&

M ^1&1M ^2&
d. ~90!
06402
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These coordinates will remain fixed during the iteratio
Only the location of the rotation axisXrot , initially set to 0,
will change~see Fig. 1!. Accordingly the formulas~90! have
no physical meaning whatsoever. They can be viewed as
setting of the origin of the coordinate system (X,Y,Z). The
location of this origin isa priori arbitrary, only the distance
d between the two stellar centers having a physical mean
the setting~90! simply insures that this origin is not too fa
from the rotation axis.

The angular velocityV is initialized according to a for-
mula for second order post-Newtonian spherical stars@35,57#

V ini
2 5

M ini

d3 H 12
M ini

d F11

4
1

2R2

d2 g2
12

25

R4

d4 g2G
1S M ini

d D 2F69

8
1

11

4

R2

d2g1
17

25

R4

d4 g2G J , ~91!

whereM iniªM ^1&1M ^2& , R is the coordinate radius of on

of the two stars6 ~which is spherical initially! and g5g irrot
ª0 for irrotational binaries, whereas g5gcorot
ª5I ^a& /(2M ^a&R^a&

2 ) for corotating binaries,I ^a& being the
moment of inertia of stara. For this last quantity, we use a
an ansatz the exact value for a Newtoniann51 polytrope,
which results ingcorot55/3(126/p2), independent ofa.

The metric autopotentials are initialized as follows:n^a&
andb^a& are set to the values ofn andb for the static spheri-
cal models. The shiftN^a&

i is initialized to the first-order post
Newtonian value for spherical incompressible binaries~this
value can be obtained by taking the limit for a spherical s
of the equations presented in Ref.@4#!

N^a&
i 5

7

8
W^a&

i 2
1

8
~¹̄ ix^a&1¹̄ iW^a&

j xj !, a51,2, ~92!

with
asses.
W^a&
X 50, W^a&

Y 55 e^a&

6M ^a&V inid

~11M ^a& /M ^b&!R^a&
S 12

r ^a&
2

3R^a&
2 D for r ^a&<R^a& ,

e^a&

4M ^a&V inid

~11M ^a& /M ^b&!r ^a&
for r ^a&.R^a& ,

W^a&
Z 50, ~93!

(e^1&ª21, e^2&ª1, b532a) and

x^a&55
2M ^a&V inid

~11M ^a& /M ^b&!R^a&
y^a&S 12

3r ^a&
2

5R^a&
2 D , for r ^a&<R^a& ,

4M ^a&V inidR^a&
2

5~11M ^a& /M ^b&!

y^a&

r ^a&
3

, for r ^a&.R^a& .

~94!

6Equation~91! is valid only for equal-mass stars binaries. There also exists a more complicated formula for stars with different m
9-11
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We refer to Sec. IV A for the definition of the coordinatesX,
Y, Z, r ^a& , andy^a& involved in these formulas. It appeare
that the initial shift vector given above results in a too lar
angular velocity in the first steps. Therefore, we artificia
lower it by multiplying it by 0.6. From this initial value o
the shift, we get initial values ofK̃ ^a&

i j via Eq.~86!, and initial
values ofB andU0 via Eqs.~47! and ~24!.

Regarding the fluid quantities, the 3-velocityU is initial-
ized to U0 in the synchronized case, whereas in the irro
tional case,C0 is initialized to zero andC is initialized
accordingly via Eq.~61!; the Lorentz factorGn is then ini-
tialized via Eq.~56! and the 3-velocityU is initialized ac-
cording to Eq.~57!. We get then initial values of the Euleria
energy densityE and the trace of stress tensorSvia Eqs.~53!
and ~54!. In these equations, we use for the proper ene
densitye and pressurep the values of the spherically sym
metric initial stellar models.

2. Description of one step

At a given step, we start by determining the value of t
orbital angular velocityV and the value of theX coordinate
of the rotation axis,Xrot ~see Fig. 1!, by taking the gradient
alongX of the first integral of motion~34!. Demanding that
the enthalpyH be maximal at the center of each star~our
definition of center!, this results in the two equations

]

]X
ln G0U

(X^a&,0,0)

5
]

]X
~n1 ln G!U

(X^a&,0,0)

a51,2,

~95!

where lnG0 can be expressed in terms ofV andXrot thanks
to Eqs.~23!, ~24!, ~45!, and~47!:

ln G052
1

2
lnH 12

A2

N2 @~VY1NX!2

1@V~X2Xrot!2NY#21~NZ!2#J . ~96!

Inserting this relation into Eq.~95! and settingY5Z50, X
5X^1& or X^2& results in a system of two equations for th
two unknownsV andXrot . This system is solved by standa
methods. Having determinedV and Xrot , we can compute
the components of the orbiting velocityU0, via Eqs.~24! and
~47!:

U0
X52

1

N
~VY1NX!; U0

Y5
1

N
@V~X2Xrot!2NY#;

U0
Z52

NZ

N
, ~97!

whereN, NX, NY andNZ are the values of the lapse functio
and the components of the nonrotating-coordinates shift v
tor taken from the previous step. FromU0, we of course
compute the Lorentz factorG0 by Eq. ~23!. The fluid
3-velocity with respect to the Eulerian observer,U is set to
U0 in the synchronized case, where in the irrotational ca
06402
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e
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C is deduced fromU0 and the previous step value ofC0 via
Eq. ~61!; the Lorentz factorGn is then computed via Eq.~56!
and the 3-velocityU follows from Eq. ~57!. The Lorentz
factor G between the fluid and the co-orbiting observer
deduced from the above quantities via Eq.~58!.

The elliptic equation~63! for C0 is then solved by the
numerical method described in Appendix B. We then ad
the computational domains to the stars as follows. The fi
integral of motion~34! is written, following the splitting~80!

H5H ^a&
c 1n^a&

c 1F^a&,ext
c 2n^a&2F^a&,ext, ~98!

where we have introduced the ‘‘external’’ potential

F^a&,extªn^b→a&2 ln G01 ln G ~99!

and the superscript ‘‘c’’ stands for values at the center of th
star. First, we rescale the auto-potentialn^a& by a factora2 to
make sure that the enthalpy vanishes at the pointu^a&
5p/2, w^a&50 on the external boundary of doma
DM ^a&21

^a& :

a25
H ^a&

c 1F^a&,ext
c 2F^a&,ext

s

n^a&
s 2n^a&

c
, ~100!

where the superscript ‘‘s’’ stands for values at the pointj
51, u^a&5p/2, w^a&50 of domainDM ^a&21

^a& . When the it-

eration converges,a tends to 1. We then replacen^a& by
a2n^a& in Eq. ~98! to get the enthalpy field in all space
Following the technique described in Ref.@30#, we then
compute new functionsFl(u,w) and Gl(u,w) in the map-
pings ~74! and ~75! in order to make the outer boundary o
domainDM ^a&21

^a& coincide exactly with the surface of the sta

Since the collocation points of the new mapping do not
incide @in the physical space, described by the coordina
(r ^a& ,u^a& ,w^a&)# with that of the previous mapping, the va
ues of the enthalpy field at the new collocation points have
be computed. The details of these computations are
plained in Sec. V A of Ref.@30#.

From this new value ofH, we compute the fluid prope
baryon densityn, proper energy densitye and pressurep via
the EOS~70!. We then get the Eulerian energy densityE and
the trace of stress tensorSvia Eqs.~53! and~54!. These last
quantities are subsequently used to evaluate the source t
of the elliptic equations~83!–~85! for the gravitational po-
tentials. These equations are solved by means of the m
domain scalar and vector Poisson solvers for noncomp
sources described in details in Refs.@30,56#. In particular the
vector Poisson equation~85! for the auto shiftN^a&

i is re-
duced to a set of 4 scalar Poisson equations according to
scheme used by Shibata and Oohara@58,10#.

Before the beginning of a new step, some relaxation
performed onto the enthalpy field and the autopotentials,
cording to

QJ←lQJ1~12l!QJ21, ~101!
9-12
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whereQ stands for any of the fieldsH, n^a& , b^a& andN^a&
i

(a51,2), J (J21) labels the current step~previous step!,
andl is the relaxation factor, typically chosen to be 0.5 f
H and 0.65 for the autopotentials.

For appreciably relativistic configurations, it appear
that the above relaxation is not sufficient to ensure the c
vergence. In this case, we update the comp-potentials
every step but everym steps, with typicallym58. This
slows the convergence but enforces it.

3. Convergence to a given baryon mass

In order to compute evolutionary sequences of bin
neutron stars, one should be able to compute configurat
for a given baryon mass, since this quantity is conser
during the gravitational-radiation driven evolution of the sy
tem. The baryon mass, given by Eq.~69!, is not a natural
parameter we can set in our procedure. As stated above
freely specifiable parameters which fix one configuration
the coordinate distanced between the two stellar centers an
the central enthalpiesH ^1&

c and H ^2&
c in each star. However

we can use the iteration procedure itself to make the fi
configuration have a specified baryon mass. Indeed, since
baryon mass is an increasing function of the central entha
~at least for the stable stars we are studying!, we multiply at
each step, the central enthalpyH ^1&

c by the factor

hªS 21z

212z D 1/4

, ~102!

wherez is the relative discrepancy between the actual bar
mass at the considered step,MB

^1&J and the wanted baryon
massMB

^1& : zªMB
^1&J/MB

^1&21. When the iterative proce
dure converge, the factorh tends to one. The same treatme
is performed on star 2.

4. End of the iteration

To control the convergence of the iterative procedure,
introduce the relative difference between the enthalpy fie
of two successive steps

dHª

( i uHJ~xi !2HJ21~xi !u

( i uHJ21~xi !u
, ~103!

where the summation is extended to all the collocation po
xi inside the star andJ is the step label.

We use typicallydH51027 as a criterion to end the it
eration. For very high precision calculations~check with ana-
lytical solutions, see below!, we use insteaddH510212.

E. Treatment of cusps

For very close configurations, an angular point~cusp!
may appear at the surface of the stars, similar to that in
Roche lobe at the Lagrange pointL1 in the Roche problem
At this point the enthalpy gradient]H/]r vanishes in the
direction of the companion. The surface of the star is then
longer smooth and surface cannot be described by the di
entiable mapping~74!, ~75!, because the functionsFl(u,w)
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and Gl(u,w) are assumed to be expandable in cos(ku) or
sin(ku) series and in Fourier series inw, which implies that
they are smooth functions of (u,w).

The solution to this problem consists in freezing the a
aptation of the mapping to the stellar surface when the
thalpy gradient becomes too small at the surface point wh
faces the companion star. More precisely, we define the r

xª
~]H/]r !eq,comp

~]H/]r !pole
, ~104!

where the index ‘‘eq,comp’’ stands for the value at the po
(u^a&5p/2, w^a&50) on the stellar surface, whereas th
‘‘index’’ pole stands for the value at the point (u^a&
50, w^a&50) on the stellar surface. Whenx passes below a
certain thresholdx fr during the iteration process, we stop th
adaptation of the mapping to the surface of the star.x fr is
chosen typically chosen between 0.3 and 0.55.

In this case, a Gibbs phenomenon is present. The a
racy of the calculation is then lower than when the mapp
is adapted to the surface of the star. However, since the
ference between the stellar surface at the domain bounda
pretty small, the Gibbs phenomenon is rather limited.

For irrotational configurations, the noncoincidence of t
stellar surface with a domain boundary introduces a sm
error in the resolution of Eq.~63! for the velocity potential
C0 by means of the technique explained in Appendix B.

F. Numerical implementation

The numerical code implementing the method describ
above is written in theLORENE ~LANGAGE OBJET POUR LA

RELATIVITÉ NUMÉRIQUE) language@59#, which is a C11
based language for numerical relativity. A typical run mak
use of 6 domains (N^1&5N^2&53 andM ^1&5M ^2&51), with
Nr3Nu3Nw533321320 coefficients in each domain. Th
corresponding memory requirement is 232 MB for an irro
tional configuration. A computation involves;250 steps,
which takes 14 h on one CPU of a SGI Origin200 compu
~MIPS R10000 processor at 180 MHz!. If the number of
coefficients is lowered toNr3Nu3Nw525317316, the
memory requirement and CPU times becomes respecti
100 MB and 6 h 30min.

Note that due to the rather small memory requireme
runs can be performed in parallel on a multiprocessor p
form. This is especially useful to compute sequences of c
figurations.

Both Newtonian and relativistic configurations, eith
corotating or irrotational, are calculated by the same co
Only the parts of the computation specific to one of the
four cases are treated by different branches of the code.

V. TESTS OF THE NUMERICAL CODE

After constructing a numerical code for calculation of b
nary neutron stars, we must assert its validity by perform
self-consistency checks and comparing the results with th
of analytic solutions or those of previous numerical work
The plan of the tests of the numerical code is as follows.
9-13
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the irrotational configurations,~1! check the convergence o
the iterative procedure,~2! check the convergence of the glo
bal quantities when increasing the number of coefficients
the spectral method,~3! check the decay of the relative erro
in the virial theorem for Newtonian binary systems wh
increasing the number of coefficients of the spectral meth
~4! check the agreement with some analytic solutions
Newtonian binary systems,~5! check the agreement wit
previous numerical solutions for Newtonian binary system
~6! check the coincidence of the results of the purely Ne
tonian calculation with those of general relativistic one w
small compactness; and, for the corotating configurations~1!
check the agreement with previous numerical solutions
relativistic binary systems.

For the purpose of the test computations, we cons
identical star binary systems with the polytropic equation
state

n~H !5Fg21

g

mB

k
@exp~H !21#G1/(g21)

, ~105!

p~H !5kn~H !g, ~106!

e~H !5
k

g21
n~H !g1mBn~H !, ~107!

whereg, k, andmB are some constants. FormB we will use
mB51.66310227 kg ~mean baryon mass!.

A. Self-consistency checks

First of all, we show in Fig. 3 the convergence of t
iterative procedure described in Sec. IV D. This converge

FIG. 3. Convergence~measured by the relative differencedH in
the enthalpy field between two successive steps! of the iterative
procedure for one of the irrotational models withNr3Nu3Nw

533321320 collocation points. The bump around the 70th s
corresponds to the switch on of the procedure of convergence
wards a given baryon mass.
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is measured by means of the relative differencedH between
two successive steps values of the enthalpy field, as give
Eq. ~103!. The bump around the 70th step corresponds to
switch on the procedure of convergence towards a gi
baryon mass, as described in Sec. IV D 3. One can no
systematic oscillations in the convergence curve ever
steps. They result from the fact that the comp-potentials
updated only every 8 steps, as discussed in Sec. IV D 2.
stop the iterations when the convergence has reached
dH51027 level ~dashed horizontal line in Fig. 3!.

Next, we show the convergences of the global quanti
~i.e., ADM mass and total angular momentum! for one con-
figuration when the number of spectral coefficients~or
equivalently the number of collocation points, see Sec. IV!
is increased. Furthermore, we present the convergence o
relative change in central energy density along a seque
when we increase the number of spectral coefficients.
calculations are performed for the case ofg52, k
50.0332rnuc

21c2 (rnucª1.6631017 kg m23); the baryon
mass isMB51.625M ( , which corresponds to the compac
nessM /R50.14 for isolated spherical stars. The coordina
separationd is taken to be 60 km. Six domains are used, w
the following parameters~using the notations of Sec. IV A!:
N^1&5N^2&53, M ^1&5M ^2&51, with the same
number of coefficients in each domains:Nr

^1&(0)5Nr
^1&(1)

5•••5:Nr , Nu
^1&(0)5Nu

^1&(1)5•••5:Nu and Nw
^1&(0)

5Nw
^1&(1)5•••5:Nw .

The ADM mass and total angular momentum are sho
in Figs. 4 and 5 as functions ofNr . We used the following
numbers of spectral coefficients:Nr3Nu3Nw593736,
133938, 17313312, 25317316, 33321320 and 41
325324. In Fig. 6, we give the relative change in centr
energy density along a quasiequilibrium sequence for vari
numbers of spectral coefficients: (Nr ,Nu ,Nw)5(9,7,6),

o-

FIG. 4. Convergence of the ADM mass for one of the irro
tional relativistic models, as the number of collocation points~or
equivalently of spectral coefficients! is increased.
9-14
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QUASIEQUILIBRIUM SEQUENCES OF SYNCHRONIZED . . . PHYSICAL REVIEW D63 064029
(13,9,8), (17,13,12), (25,17,16), (33,21,20), a
(33,25,24). We find that these global quantities settle t
constant value~variations below;1025) for Nr>25.

B. Tests in the Newtonian regime

In order to test Newtonian calculations, we compute
MB51023M ( Newtonian sequence based on a polytro
equation of state withg52 and k50.0332rnuc

21c2. In this
case, the central baryon density and the radius of infini
separated stars becomes 1.08131023rnuc and 20.57 km, re-

FIG. 5. Same as Fig. 4 but for the total angular momentum

FIG. 6. Convergence of the evolution of the central energy d
sity along a quasiequilibrium sequence, as the numberNr3Nu

3Nw of collocation points~or equivalently of spectral coefficients!
is increased.
06402
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spectively. Note that the Newtonian limit of the polytrop
equation of state~105!–~107! is obtained forH!1 and reads

n~H !5Fg21

g

mB

k
HG1/(g21)

, ~108!

p~H !5kn~H !g, ~109!

e~H !5mBn~H !. ~110!

1. Virial theorem

A useful method to estimate the global numerical error
Newtonian computations is to calculate the relative error
the virial theorem. This latter states that 2T1W13P50,
whereT, W, andP denote, respectively, the kinetic energy
the binary system, its gravitational potential energy and
volume integral of the fluid pressure. We therefore define
virial error as

error5
u2T1W13Pu

uWu
. ~111!

This error estimator is shown along a constant bary
number sequence in Fig. 7. In order to check the conv
gence of the numerical method, we present various case
increasing number of spectral coefficientsNr3Nu3Nw59
3736, 133938, 17313312, 25317316, 33321320,
and 33325324. We useddH510212 as the criterion to end
the iteration. It is found from Fig. 7 that for large separatio
the relative error converges to 10212 when the number of
spectral coefficients is increased, which is of the order
dH. Anyway, one cannot go much further, even ifdH is
lowered significantly, because of the use of 15 digits nu
bers ~double precision! and the resulting accumulation o
round-off errors in the arithmetical operations. In additio

-

FIG. 7. Relative error in the virial theorem along an evolutio
ary sequence, for various numbersNr3Nu3Nw of collocation
points ~or equivalently of spectral coefficients!.
9-15
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ERIC GOURGOULHONet al. PHYSICAL REVIEW D 63 064029
we notice in Fig. 7 the appearance of a rapidly increas
error for closer separations. Note, however, that at the p
of closest approach~cusp point! this error is below 1024

~except for the low numbers of spectral coefficients!, which
is very satisfactory. Finally, we see on Fig. 7 that when
increase the number of polar and azimuthal collocat
points fixing the number of radial ones, the relative error
the virial theorem becomes better around intermediate s
rations.

2. Comparison with analytic solutions

Until recently the only analytic solutions for binary sta
were constructed with incompressible fluid and belong to
so-called families of Roche-Riemann or Darwin-Riema
ellipsoids7 @60,61# ~see Ref.@62# for a good introduction to
these ellipsoidal solutions!. We have presented elsewhe
@30# the comparison with Roche ellipsoids~the subclass of
Roche-Riemann ellipsoids constituted by synchronized s
tems!, as a validation of our multidomain spectral approa
with surface-fitted coordinates. As can be seen from Fig. 6
Ref. @30# the numerical error is decreasing exponentia
with the number of spectral coefficients~the so-called
evanescenterror typical of spectral methods!, reaching 1029

for a Roche ellipsoid with axis ratiosa2 /a150.75 and
a3 /a150.68.

The case of compressible fluid bodies has been inve
gated recently by Taniguchi and Nakamura@63,64#, who
have obtained semianalytic solutions for equilibrium s
quences of irrotational binary polytropic stars in Newtoni
gravity. For an equal-mass star binary system withg52,
they have produced the following simple equations for
total energyE, the total angular momentumJ, the orbital
angular velocityV and the relative change in central bary
density

E5
GM2

R0
F212

1

2 S R0

d D12S 15

p2 21D S R0

d D 6G , ~112!

J5
1

2
Md2VH 11higher term thanOF S R0

d D 6G J ,

~113!

V25
2GM

d3 F116S 15

p2 21D S R0

d D 5G , ~114!

drc5
rc2rc0

rc0
52

45

2p2 S R0

d D 6

, ~115!

whered is the separation,rc the central density,R0 the ra-
dius of the spherical star of massM ~i.e., the radius at infinite
separation! andrc0 the central density of this spherical sta
These equations are exact up toO@(R0 /d)6# and are very
valuable to check the validity of the Newtonian limit of ou

7Note, however, that these solutions are not exact for the gra
tional potential of the companion must be truncated to the sec
order to get perfectelly ellipsoidal shapes.
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code, in particular the solution of Eq.~63! for the velocity
potential. Indeed the Darwin-Riemann solutions could n
have been used for testing this important part of the c
because Eq.~63! is degenerate for an incompressible flu
(z5`).

First, we compare our numerical results with Taniguc
and Nakamura’s analytic solutions for global quantities~such
that total energy, total angular momentum, orbital angu
velocity, and relative change in the central baryon dens!
along an evolutionary sequence in Figs. 8–11. For the
merical computation, we useNr3Nu3Nw533325324
spectral coefficients in each domain and the criteriondH
510212 to end the iterations. It is found from these figur
that the numerical results agree very well with the analy

a-
d

FIG. 8. Total energy compared with Taniguchi and Nakamur
analytic solution@63,64# along an evolutionary sequence. Solid a
dashed lines denote the results of numerical and analytic calc
tions, respectively.

FIG. 9. Same as Fig. 8 but the total angular momentum.
9-16



ta

t

u
a

er
in
a

s

he

for

t
too

g in

hat
be
an

yo

n

ally
and
ick
s of

QUASIEQUILIBRIUM SEQUENCES OF SYNCHRONIZED . . . PHYSICAL REVIEW D63 064029
ones. Note that the analytic solution ends at the con
point, whereas the numerical one ends before~when a cusp
appears at the stellar surface, see Sec. IV E!. However, the
analytic solution, based on an expansion up toO@(R0 /d)6#,
loses its accuracy for very close separations and canno
used to test the code in this regime.

In order to investigate the discrepancy between the res
from the numerical code and those from Taniguchi and N
kamura’s analytic solution, we present the relative diff
ences on global quantities as functions of the separation
log-log plot in Fig. 12. The relative differences are defined
follows:

Enum2Eana

GM2/R0

, ~116!

FIG. 10. Same as Fig. 8 but the orbital angular velocity.

FIG. 11. Same as Fig. 8 but the relative change in central bar
density.
06402
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s Jnum2Jana

Md2VKep/2
, ~117!

Vnum2Vana

VKep
, ~118!

udrc:num2drc:anau, ~119!

whereVKep is the Keplerian velocity for point mass particle

VKepªS 2GM

d3 D 1/2

. ~120!

Two reference lines, proportional to (d/R0)29 and
(d/R0)27.5, have been drawn in Fig. 12 in order to check t
slope of the results easily.

It is found that for separations closer thand/R0510, the
discrepancies between numerical and analytic solutions
the energyE and the relative change in central densitydrc
are both proportional to ;(d/R0)29, and become
;(d/R0)213 aroundd/R0;3. At first glance, this agreemen
between the numerical and analytical solutions seems
good, because we know that the next order term missin
Eqs. ~112! and ~115! is O@;(d/R0)28#. We interpret the
fact that this term does not show up in Fig. 12 by the fact t
it is produced by the octupole deformation, which should
very small. Of course, for separations much larger th
n

FIG. 12. Relative differences in total energyE, total angular
momentumJ, orbital angular velocityV, and relative change in
central baryon densitydrc when comparing the numerical solutio
with Taniguchi and Nakamura’s analytic solution@63,64# along an
equilibrium sequence. The horizontal axis denotes logarithmic
d/R0, whered is the separation between the two stellar centers,
R0 the stellar radius at infinite separation. The thick solid and th
dashed lines are reference ones in order to check the inclination
the results easily.
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d/R0510, the term proportional to;(d/R0)28 would domi-
nate the inclination of the lines.

For the residual terms of the angular momentumJ and the
orbital angular velocityV, we can see that while they ar
proportional to;(d/R0)27 aroundd/R0;10, the term pro-
portional to ;(d/R0)28 dominates for separations clos
than d/R0;6, and finally goes up to;(d/R0)212. We can
explain this dependence as follows. First, the high order
pansion ofV can be written as

V5VKepH 11OF S d

R0
D 25G1OF S d

R0
D 27G

1OF S d

R0
D 28G1•••J . ~121!

Note here that the second term inside the brackets co
from the quadrupole deformation of the star and is includ
in the analytic solution@Eq. ~114!#. After subtracting the
analytic solution~114! from expression~121!, there remains
the termO@(d/R0)27# as a leading one. Therefore it dom
nates the behavior of the curve of the relative difference inV
aroundd/R0;10.

On the other hand, the angular momentum is expand
as

J5
M

2
d2VH 11OF S d

R0
D 28G1•••J . ~122!

This means that after subtracting the analytic solution~113!
and normalizing byMd2VKep/2, the leading term ofJ comes
from V, because this latter has a term proportional
(d/R0)27. This explains why the discrepancy curves forJ
andV have almost the same behavior.

From the above discussion about the slopes of Fig.
curves, we can conclude that the numerical solution ag
with the semianalytical one within the accuracy of this latt
i.e., the increase of the discrepancy when the separation
creases is due to missing~high order! terms in the analytic
solution~112!–~115!. Finally, we see from Fig. 12 that eve
if the baryon mass is changed by a factor larger than 103, the
numerical and analytical solutions agree in the very sa
manner.

Next, we compare the internal velocity field in the c
orbiting frame with that of Taniguchi and Nakamura’s an
lytic solution. We focus on the velocity component along t
orbital axis (z axis!, because it is three orders of magnitu
smaller than thex- andy-axis components even for the ca
of closer separation, and is therefore a very valuable quan
to check whether the equation of continuity~63! is well
solved or not. In Figs. 13–15, we show the veloc
z-component as a function of the radial distancer ^1& from the
center of star 1 along three directions (u^1& ,w^1&)
5(p/4,p/4), (p/4,p/2), and (p/4,3p/4) and for the orbital
separationsd5200, 140, 100, and 70 km. It is found that th
numerical results agree nicely with those of analytic calcu
tions. Once again, note that the discrepancy at small sep
tion comes from the fact that the analytic solution devia
substantially from the exact solution.
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3. Comparison with previous numerical solutions

As a final test for Newtonian computations, we compa
our results with those of Uryu and Eriguchi@43# for poly-
tropic equation of state withg55/3, 2, and 3, correspondin
to polytropic indicesn51.5, 1, and 0.5, respectively (g
5111/n). The comparison is presented in Table I, whe
the upper lines for each configuration are the results of U
and Eriguchi and the lower ones are ours. We have cho
the configurationsd̃53.6 in Tables 2, 4, and 5 of Uryu an

FIG. 13. Thez-axis component of the internal velocity field i
the co-orbiting frame compared with the Taniguchi and Nakam
analytic solution@63,64#. The horizontal line denotes the radial di
tance from the center to the surface of star 1, in the direct
(u^1& ,w^1&)5(p/4,p/4). The four panels are snapshots at differe
separations: 200, 140, 100, and 70 km. Solid and dashed lines
note the results of numerical and analytic calculations, respectiv

FIG. 14. Same as Fig. 13 but for the direction (u^1& ,w^1&)
5(p/4,p/2).
9-18
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QUASIEQUILIBRIUM SEQUENCES OF SYNCHRONIZED . . . PHYSICAL REVIEW D63 064029
Eriguchi @43#. Here, our results are calculated by usingNr
3Nu3Nw533325324 spectral coefficients in each of the
domains and we adopted the same definitions as in Uryu
Eriguchi’s article@43#, namely,

d̄G :5
dG

R0
, ~123!

V̄:5
V

~pGr̄0!1/2
, ~124!

J̄:5
J

~GM3R0!1/2
, ~125!

Ē:5
E

GM2/R0
, ~126!

wheredG is the distance between the two stellar centers
mass andr̄0ªM /(4pR0

3/3).

FIG. 15. Same as Fig. 13 but for the direction (u^1& ,w^1&)
5(p/4,3p/4).

TABLE I. Comparison with the results of Uryu and Eriguchi

Separation V̄ J̄ Ē

g53 (n50.5)

d̄G53.804 0.2219 1.385 -1.241

d̄53.804 0.2211 1.385 -1.242

g52 (n51)

d̄G53.753 0.2259 1.371 -1.133

d̄53.753 0.2252 1.373 -1.133

g55/3 (n51.5)

d̄G53.726 0.2279 1.364 -0.9921

d̄53.726 0.2274 1.367 -0.9911
06402
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One can see from Table I that our results coincide w
those of Uryu and Eriguchi within 0.3% for physical value
such as the total energy, the total angular momentum and
orbital angular velocity. Note that the labeld̃ of Uryu and
Eriguchi@43# configurations is the orbital separation betwe
the geometrical centers of two stars normalized by the g
metrical radius of the star along thex axis. In our computa-
tion, since the geometrical separation is obtained after ca
lation, we cannot fix d̃ initially. Therefore we use the
corresponding separation between the centers of mass o
stars which Uryu and Eriguchi gave in their paper@43# as the
orbital separation between thecentersof two starsd̄5d/R0.
Although our definition of the center of the star, which is t
location of the maximum enthalpy~Sec. IV A!, is different
from the center of mass, the relative difference between th
centers is only about 0.01% aroundd̃53.6.

C. Test of the Newtonian limit of relativistic calculations

We have made many tests of the code in the Newton
regime up to now, so that we are rather confident in
accuracy of the Newtonian part of the code. As a next s
we compare the results of relativistic calculations with sm
compactness (M /R57.1831025) with those of Newtonian
ones. In Figs. 16–18, the total energy, the total angular m
mentum and the orbital angular velocity are shown alon
sequence. We useNr3Nu3Nw525317316 spectral coef-
ficients in each domain. It appears clearly that the results
the small compactness relativistic computation coincide w
those of the Newtonian computation, as it should be.

D. Comparison with previous relativistic numerical solutions

1. Corotating case

As a check of for relativistic computations, we compa
our results for corotating configurations with those of Bau

FIG. 16. Total energy of a relativistic sequence of small co
pactness (M /R57.1831025) compared with that of that of a New
tonian sequence of the same mass. Solid line with filled circ
denotes the Newtonian computation and dashed line with squ
denotes the relativistic one.
9-19
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ERIC GOURGOULHONet al. PHYSICAL REVIEW D 63 064029
garteet al. @26#. We have chosen Tables III and VI of the
paper, and compare the results of two different separat
zA50.2 and 0.3 in each table. We useNr3Nu3Nw533
325324 spectral coefficients in each domain and the cr
rion dH51027 to end the computation of one configuratio
We adopt the same equation of state~polytropic with g
52), the same value of the separationr C5d/2 and the same
value of the baryon massM̄0. These results are shown i
Table II where the upper lines for each configuration den
the results of Baumgarteet al., and the lower ones corre
spond to our results. We find a relative discrepancy of 2%
V̄, 4.5% onqmax, 0.07% onM̄ , 0.6% onJ̄, 4.5% onr̄ A , and
1.5 % onr̄ B .

2. Irrotational case

For irrotational relativistic configurations, a detailed com
parison with Uryu and Eriguchi results@23,24# is underway
@65#. For the purpose of the present article, we have co
pared only the cusp point configuration of aM /R50.14 g
52 polytropic sequence as given in the next to last line
Table IV of Ref.@23# and the last line of our Table IV below

FIG. 17. Same as Fig. 16 but for the total angular momentum
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The agreement is very satisfactory: the relative discrepa
is below 0.1% onM, 0.4% onVMB , 2.1% onJ/M2, and
2.1% on the semidiametera0 of the stars@Eq. ~129! below#.

VI. RESULTS FOR gÄ2 POLYTROPES

The tests of the code being successfully passed, we
ploy the code to compute an irrotational relativistic seque
based on the polytropic equation of state~105!–~107! with
g52. We are usingk50.0332rnuc

21c2, and consider the com
pactness parameterM /R50.14 at infinite separation. Thi
results in the baryon massMB51.625M ( .

The computational parameters are as follows: six doma
are used, such that~using the notations of Sec. IV A!: N^1&
5N^2&53, M ^1&5M ^2&51, with the same number of coef
ficients in each domain:Nr3Nu3Nw533321320. The cri-
terion to end the computation of one configuration is set
dH51027. A special treatment has been performed for t
closest configuration, because of the existence of a cus
the stellar surface~Sec. IV E!: Nr3Nu3Nw525317316
coefficients have been used along with the enthalpy grad

FIG. 18. Same as Fig. 16 but for the orbital angular velocity
TABLE II. Comparison with the results of Baumgarteet al.

zA M̄0
qmax

M̄ J̄ V̄ r̄ A r̄ C r̄ B

TABLE III ( M /R50.05)
0.20 0.0595 0.0284 0.057815 0.01109 0.048 0.591 1.791 2.959

0.0280 0.057816 0.01113 0.048 0.582 2.923
0.30 0.0288 0.057836 0.01155 0.037 0.975 2.118 3.251

0.0285 0.057836 0.01161 0.038 0.968 3.217
TABLE VI ( M /R50.15)

0.20 0.1534 0.1303 0.140859 0.04174 0.116 0.413 1.244 2.067
0.1242 0.140774 0.04194 0.117 0.395 2.037

0.30 0.1341 0.140971 0.04268 0.092 0.682 1.477 2.273
0.1286 0.140874 0.04294 0.093 0.668 2.249
9-20
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QUASIEQUILIBRIUM SEQUENCES OF SYNCHRONIZED . . . PHYSICAL REVIEW D63 064029
thresholdx fr50.55, resulting in a frozen mapping.
In Figs. 19 and 20, the half of the ADM mass and the to

angular momentum of the binary system, as defined in S
III D, are shown along the evolutionary sequence. This
quence ends at aroundd537.5 km (f 5380 Hz) where a
cusp appears on the surface of the stars.

One can see from these figures that there is no turn
point for theg52 case. This result agrees with that of Ury
and Eriguchi@23#.

An important result of this computation has already be
presented in Ref.@21#, namely, the central energy densi
remains rather constant~with a slight increase below 0.01 %!
and finally decreases~see Fig. 6!. As discussed in the Intro
duction, this result makes the collapse of the individual n
tron stars to black hole very unlikely prior to the merger.

FIG. 19. Half of the ADM mass of the binary system as
function of the coordinate separation for an evolutionary seque
of relativistic irrotational stars.
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We summarize the results about the sequence in Table
listing the ADM mass, the total angular momentum, the
bital angular velocity, the axis ratios, and the relative chan
in central energy density along the quasiequilibrium
quence. Since this is the first table presented for a sequ
of relativistic irrotational binary neutron stars, we give
rather large number of digits in order to compare with t
results of other works from now on. Note that we are us
the following values of the fundamental constants:G
56.6726310211 m3 kg21 s22, c52.997924583108 m s21

andM (51.98931030 kg.
For comparison purposes with other works, we also g

Table IV in which the physical quantities are normalized
using the equation of state constantsk andg to set a length
scaleRpoly according to

FIG. 20. Same as Fig. 19 but for the total angular momentuce
TABLE III. Half of ADM mass M, total angular momentumJ, orbital angular velocityV, axis ratios, and
relative change in central energy density along aMB51.625M ( quasiequilibrium sequence constructed upon
a g52 polytropic EOS.a1 , a2, anda3 denote the coordinate lengths parallel to the semimajor axesx, y, and
z, respectively.a1,opp is the length in the direction opposite to the companion star.

d @km# 0.53M @M (# J@GM(
2 /c# V @rad/s# V/(2p) @Hz# a2 /a1 a3 /a1 a1,opp/a1 (ec2ec,`)/ec,`

100 1.50545 11.8370 597.24 95.054 0.99100 0.99367 0.99319 4.0606e-05
90 1.50457 11.3403 695.15 110.64 0.98839 0.99139 0.99234 6.0695e-05
80 1.50351 10.8243 823.17 131.01 0.98445 0.98788 0.99106 6.9369e-05
70 1.50223 10.2880 996.14 158.54 0.97811 0.98210 0.98903 8.4666e-05
60 1.50065 9.73115 1239.9 197.34 0.96687 0.97171 0.98466 3.2735e-05
50 1.49870 9.15576 1603.5 255.20 0.94402 0.95037 0.97369 -5.9816e-04
45 1.49758 8.86296 1858.8 295.84 0.92226 0.92999 0.96263 -2.0684e-03
42 1.49679 8.68172 2041.4 324.89 0.90315 0.91100 0.95408 -4.2246e-03
41 1.49655 8.62425 2111.0 335.98 0.89206 0.89940 0.95076 -5.4239e-03
37.5 1.49572 8.43623 2389.7 380.33 0.81445 0.82752 0.91949 -1.2238e-02
9-21
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TABLE IV. Dimensionless ADM massM̄ , total angular momentumJ̄, orbital angular velocityV̄, and

half of the coordinate length along theX axis ā0 along theM̄B50.146202 quasiequilibrium sequence pr
sented in Table III.

d̄ d̄G 0.53M̄ J̄ J/M2 V̄ VMB ā0

6.0927 6.0924 0.135446 9.58174e-02 1.30573 3.2698e-02 4.7805e-03 0.81
5.4835 5.4830 0.135367 9.17965e-02 1.25239 3.8058e-02 5.5642e-03 0.80
4.8742 4.8736 0.135272 8.76195e-02 1.19708 4.5067e-02 6.5889e-03 0.80
4.2649 4.2642 0.135156 8.32782e-02 1.13973 5.4536e-02 7.9733e-03 0.80
3.6556 3.6546 0.135014 7.87708e-02 1.08031 6.7883e-02 9.9246e-03 0.80
3.0464 3.0447 0.134839 7.41131e-02 1.01907 8.7788e-02 1.2835e-02 0.80
2.7417 2.7396 0.134738 7.17429e-02 0.98796 1.0177e-01 1.4879e-02 0.81
2.5589 2.5565 0.134667 7.02758e-02 0.96878 1.1176e-01 1.6339e-02 0.82
2.4980 2.4954 0.134645 6.98107e-02 0.96268 1.1557e-01 1.6897e-02 0.83
2.2848 2.2810 0.134571 6.82887e-02 0.94273 1.3083e-01 1.9127e-02 0.88
tit
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Rpolyªk1/2(g21). ~127!

We can therefore define the same dimensionless quan
as Baumgarteet al. @26# and Uryu and Eriguchi@23#: M̄B

5MB /Rpoly , M̄5M /Rpoly , J̄5J/Rpoly
2 , V̄5RpolyV, d̄

5d/Rpoly , d̄G5dG /Rpoly , ā05a0 /Rpoly , where dG is the
distance between the ‘‘centers of mass’’ of each stars
defined by Eq.~107! of Uryu and Eriguchi@23#

dGªU 1

MB
^1&Estar 1

A3GnnXd3x2
1

MB
^2&Estar 2

A3GnnXd3xU
~128!

anda0 is half of the coordinate length of a star along theX
axis

a05
1

2
uXmax2Xminu. ~129!

This latter quantity is denotedR0 by Uryu and Eriguchi@23#.
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Finally, let us show some figures about metric, dens
and internal velocity fields. The lapse functionN is repre-
sented in Fig. 21. The coordinate system is the (X,Y,Z) one
defined in Sec. IV A and the coordinate separation is 41
~next to last line in Tables III and IV!. At this separation, the
central value ofN of each star is 0.6416.

The shift vectorN of nonrotating coordinates@defined by
Eq. ~47!# is shown in Fig. 22. The plot is a cross section
the orbital plane.

TheKXX, KXY, andKYY components of the extrinsic cur
vature tensor of the hypersurfacest5const are shown in Fig
23. The values in the figures are multiplied by the squ
conformal factorA2, and the plots are cross section of th
orbital plane.

The baryon density field in the fluid frame is shown
Fig. 24. The plots are cross sections ofZ50 and Y50
planes.

Finally, we show in Fig. 25 the internal velocity field i
the co-orbiting frame, or more precisely the orthogonal p
jection in theS t hypersurface of the vector fieldV given by
Eq. ~30!. Note that this vector field is tangent to the surfa
of the stars, as it should be.
he
FIG. 21. Isocontour of the gravitational potentialn ~logarithm of the lapse functionN) when the coordinate separation is 41 km. T
plots are cross sections of theX5220.5 km,Y50, andZ50 planes. The thick solid lines denote the surfaces of the stars.
9-22
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QUASIEQUILIBRIUM SEQUENCES OF SYNCHRONIZED . . . PHYSICAL REVIEW D63 064029
VII. DISCUSSION

A. Comparison with other numerical methods

The numerical method presented in this article is the o
method for computing relativistic binaries in which the com
putational domains extends to infinity, thereby enabling u
impose exact boundary conditions on the gravitational fi
equations. All the other methods@26,22,23# employ finite
computational boxes. Our experience from calculations
single rotating neutron stars show that the finite size of
computational domain can result in some loss of accur
~see Ref.@66# for a discussion of this point!.

FIG. 22. Shift vectorN of nonrotating coordinates in the orbita
plane when the coordinate separation is 41 km. The thick solid l
denote the surfaces of the stars.
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In addition, thanks to the splitting of the metric quantiti
in a part described on the domains centered on star 1 a
part described on the domains centered on star 2, we
describe without any loss of accuracy very distant stars
fact we can recover the spherical limit when the stars h
very large separations, contrary to all other numerical me
ods which are losing resolution when the stars are put far
apart ~see, for instance, the discussion in Sec. V A
Ref. @26#!.

We are using surface-fitted spherical coordinates, wh
by construction are well adapted to describe the stellar fl
interiors. As it can be seen on Figs. 21–23, these coordin
systems, which are centered on one of the two stars, are
well adapted to the description of the metric quantities,
cause these latter are maximum at the location of the s
Baumgarteet al. @26# and Marronettiet al. @22# use instead
Cartesian coordinates in a single domain~‘‘box’’ !. Closer to
our approach, Uryu and Eriguchi@23# developed a multido-
main method with surface-fitted spherical coordinates, wh
enable them to treat precisely the fluid interiors of the sta
However, for the gravitational field they use a single sphe
cal coordinate system which is centered at the system ce
of mass.

As far as irrotational binaries are concerned, we pai
special attention to the resolution of the equation for
velocity potentialC. First we solve numerically only for a
small partC0 of C, thereby reducing the numerical erro
Second we let appear in the equation forC0 a partial differ-
ential operator which is invertible and give as a unique
lution that with the correct behavior at the stellar surfa
~velocity field tangent to the surface in the co-orbitin
frame!. The equation forC is instead solved as a Poisso
equationDC5sourcewith a boundary condition at the ste
lar surface by Uryu and Eriguchi@23# and Marronettiet al.
@22,31#. Note that Marronettiet al. performs only an ap-
proximate treatment of the boundary condition, whi
amounts to considering that the surface of the star is an e
sphere. This is of course not valid for close configuratio
On the contrary, thanks to the introduction of surface-fitt

s

te
FIG. 23. Isocontours of the componentsKXX, KXY, andKYY ~multiplied by A2) of the extrinsic curvature tensor when the coordina
separation is 41 km. The plots are cross sections of the orbital plane (Z50). The solid~ dashed! line denotes positive~negative! values. The
thick solid lines mark the surfaces of the stars.
9-23
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FIG. 24. Isocontours of the
fluid proper baryon densityn
when the coordinate separation
41 km. The plots are cross sec
tions of Z50 and Y50 planes.
The thick solid lines denote the
surfaces of the stars.
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coordinates, Uryu and Eriguchi@23# have been able to trea
the boundary condition exactly.

B. Tests passed by the code

We have performed extensive tests of the numerical co
In particular, we have shown that, in the Newtonian lim
our numerical results coincides with the semianalytical so
tions recently obtained by Taniguchi and Nakamura@63,64#
for compressible polytropic stars. The only discrepancies
peared to be due to missing higher order terms in Tanigu
and Nakamura’s solutions and not to some inaccuracy of
numerical code.

FIG. 25. Internal velocity field with respect to the co-orbitin
frame in the orbital plane when the coordinate separation is 41
The thick solid lines denote the surfaces of the stars.
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Regarding relativistic configurations, no analytical so
tions was available to compare with. In this case, we chec
only by comparing with previous numerical solution
namely that of Baumgarteet al. @26# for synchronized bina-
ries and Uryu and Eriguchi@23# for irrotational binaries. The
agreement is of the order of 1%. For the astrophysica
relevant case of irrotational relativistic binaries, a detai
comparison with the Uryu and Eriguchi code@23# is under-
way @65#.

C. Future prospects

We are currently using the method described in this
ticle to compute models of close binary neutron stars w
various equations of states: polytropic EOS with vario
polytropic indices, dense matter EOS resulting from rec
nuclear physics calculations. In particular, we are study
how parameters such as the frequency location of the in
most stable orbit~if any! depends on the equation of state,
order to help in the interpretation of gravitational wave s
nals from coalescing neutron star binaries. The results
these studies will be published elsewhere@67#.
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APPENDIX A: LINK WITH TEUKOLSKY’S
AND SHIBATA’S FORMULATIONS

The first integral of motion for quasiequilibrium irrota
tional binaries derived by Teukolsky@19# is @see his Eq.~57!,
rewritten within our notation8#

8Our shift vectorB is the negative of Teukolsky’sB.
.
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N~h21DC•DC!1/21B•DC5C, ~A1!

whereC is some constant. At first glance, this might loo
quite different from our first integral of motion~34!. How-
ever, if we substitute Eq.~29! for G in the exponential form
of our first integral@i.e., Eq.~33!# we get

hNGn~12U•U0!5const. ~A2!

By means of Eqs.~31! and ~24!, this equation becomes

hNGn1B•DC5const. ~A3!

Finally, if we substitute Eq.~32! for Gn is this relation, we
recover Eq.~A1!. In particular this shows that the constant
the right-hand side of Eq.~33! is nothing but the constan
denotedC by Teukolsky@19#.

The first integral of motion for quasiequilibrium irrota
tional binaries derived by Shibata@20# is @see his Eq.~2.18!,
rewritten within our notations9#

h

l
1S•DC5const, ~A4!

wherel andS are defined by the following decomposition
the fluid 4-velocity in a part along the Killing vectorl and a
part parallel to the hypersurfaceS t :

u5l~ l1S! with n•S50. ~A5!

Now, substituting Eq.~3! for l in this relation and using Eq
~27!, we get

S5
1

l
GnU1B5

1

lh
DC1B, ~A6!

where the second equality follows from Eq.~31!. Inserting
Eq. ~A6! into ~A5! and using the normalization relatio
u•u521 results in the following expression forl:

l5
1

hN
~h21DC•DC!1/2. ~A7!

Finally substituting Eq.~A7! for l and Eq.~A6! for S into
Shibata’s first integral of motion~A4! results in Teukolsky’s
form of the integral of motion@Eq. ~A1! above#, which
shows the equivalence of the various formulations.

APPENDIX B: NUMERICAL METHOD TO SOLVE THE
ELLIPTIC EQUATION FOR THE VELOCITY

POTENTIAL

Equation~63! for the partC0 of the velocity potential can
be written

aDC01bi¹̄ iC05s, ~B1!

9Our l and S are denoted, respectively, byu0 and Vi by
Shibata@20#.
06402
with

aªzH, ~B2!

bi
ª~12zH !¹̄ iH1zH¹̄ ib, ~B3!

and

sª~Wi2W0
i !¹̄ iH1zHS W0

i ¹̄ i~H2b!1
Wi

Gn
¹̄ iGnD .

~B4!

Equation~B1! is not merely a Poisson type equation forC0
because the coefficienta vanishes at the surface of the star.
therefore deserves a special treatment. In the works of M
ronettiet al. @22,31# and Uryu and Eriguchi@23#, Eq. ~B1! is
recast as a Poisson equation10 DC05source, dividing both
sides of Eq.~B1! by a. In order that the right-hand side b
regular, one must then impose as a boundary condi
bi¹̄ iC02s50 at the surface of the star. We choose her
different approach, considering that the operator in Eq.~B1!
is not the Laplacian but instead the operator

LC0ªa~12j2!DjC01bj
]C0

]j
, ~B5!

wherea andb are two constants,jP@0,1# is the computa-
tional radial coordinate introduced in the mapping~74!, and
Dj is an operator which, expressed in terms of the compu
tional coordinates (j,u8,w8) has the same structure than th
Laplacian operator:

DjC0ª
1

j2

]

]j S j2
]C0

]j D
1

1

j2sinu8

]

]u8
S sinu8

]C0

]u8
D 1

1

j2sin2u8

]2C0

]w82
.

~B6!

Here we assume that there is only one domain covering
star, i.e. thatM ^1&5M ^2&51, so that the surface of the star
given byj51. Equation~B1! is then rewritten as

LC05s1a~12j2!DjC02aDC01bj
]C0

]j
2bi¹̄ iC0.

~B7!

The basic idea is to solve this equation by iterations, con
ering the whole right-hand as a source term and using
previous step value ofC0 in it. One must also choose th
constants a and b so that the terma(12j2)DjC0

(bj]C0 /]j) is as close as possible toaDC0 (bi¹̄ iC0). We
opt for the following choices:

10These authors are usingC and notC0 as the unknown function,
but this has no consequence on the following discussion.
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a5aS ]r

]j D 2U
j50

~B8!

and

b52maxUbr S ]r

]j D 2U, ~B9!

wherebr is ther component of the vectorbi . In solving Eq.
~B7! by iterations, we introduce the following relaxation:

C0
J←lC0

J1~12l!C0
J21 , ~B10!

whereJ (J21) labels the current step~previous step! andl
is the relaxation factor, typically chosen to be 0.5.

At each step of the iteration, Eq.~B7! is solved by the
following spectral method. First an expansion in spheri
harmonicsYl

m(u8,w8) is performed, so that Eq.~B7! be-
comes equivalent to a set of ordinary differential equatio
@one equation for each couple (l ,m)#:

Ll f ~j!5s~j!, ~B11!

where f (j) ands(j) are the (l ,m) coefficient ofC0 and of
the whole right-hand side of Eq.~B7!, respectively, andLl is
the following differential operator:

Ll fªa~12j2!Fd2f

dj21
2

j

d f

dj
2

l ~ l 11!

j2 f G1bj
d f

dj
.

~B12!

Since the sources(j) vanishes forl 50, we treat only the
casel .0. Regularity properties at the origin (j50) imply
that f (j) and s(j) should be expandable in even~odd!
Chebyshev polynomialsTn(j) for l even~odd!. Due to the
division by j andj2, the differential operatorLl is singular
on Chebyshev polynomials atj50, except forl 51. There-
fore, instead of Chebyshev polynomials, we use the follo
ing polynomialsPn(j) as a expansion basis forf @N is the
total number of coefficients in the Chebyshev expansio
denotedNr

^a&(0) in Sec. IV B# for l even : Pn(j)ªT2n(j)
1T2n12(j)52jT2n11(j), 0<n<N22; for l 51: Pn(j)
ªT2n11(j), 0<n<N21; for l odd and l .1: Pn(j)
ª(2n13)T2n11(j)1(2n11)T2n13(j), 0<n<N22. The
r
s,

-
7

06402
l

s

-

s,

operator on the left-hand side of Eq.~B11! is regular for each
of the polynomialsPn(j) ~such a basis is called a Galerk
basis!.

We thus consider the differential operatorLl acting for l
even : from the (N21) dimensional vectorial space span b
the polynomialsPn(j) (0<n<N22) to the (N21) dimen-
sional vectorial space span by the polynomialsT2n(j) (0
<n<N22); for l 51 : from the N-dimensional vectorial
space span by the polynomialsPn(j)5T2n11(j) (0<n<N
21) to itself; for l odd and l .1: from the
(N21)-dimensional vectorial space span by the polynom
Pn(j) (0<n<N22) to the (N21)-dimensional vectorial
space span by the polynomialsT2n11(j) (0<n<N22).
The operatorLl is then one-to-one~isomorphism! between
these vectorial spaces. This means that the only homo
neous solution is zero. Otherwise stated, for eachl there is a
unique solution to Eq.~B11! in the vectorial space spans b
the Pn(j)’s. To find this solution, we transform the matri
Ai j of Ll in the above bases into a banded matrix by me
of the following linear combinations:

for l even:

Āi j 5
1

i 11
@Ai j 2A( i 11) j # for 0< i<N23, ~B13!

Ãi j 5Āi j 2Ā( i 12) j for 0< i<N25; ~B14!

for l odd:

Āi j 5
1

i 11
@~11d0

i !Ai j 2A( i 12) j # for 0< i<N23,

~B15!

Ãi j 5Āi j 2Ā( i 12) j for 0< i<N25. ~B16!

Since the resulting matrixÃi j has at most 5 bands, the linea
system is easily and CPU-efficiently solved to get the co
ficients of the solutionf in the basis of the polynomials
Pn(j). A simple combination is then performed on the
coefficients to get the coefficients on the usual Chebys
bases. A very discriminating test of this numerical techniq
namely the evaluation of the tinyz component of the velocity
field resulting fromC, is presented in Figs. 13–15~Sec.
V B 2!.
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