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We present a numerical method to compute quasiequilibrium configurations of close binary neutron stars in
the precoalescing stage. A hydrodynamical treatment is performed under the assumption that the flow is either
rigidly rotating or irrotational. The latter state is technically more complicated to treat than the former one
(synchronized binany but is expected to represent fairly well the late evolutionary stages of a binary neutron
star system. As regards the gravitational field, an approximation of general relativity is used, which amounts to
solving five of the ten Einstein equatiotisonformally flat spatial metrjc The obtained system of partial
differential equations is solved by means of a multidomain spectral method. Two spherical coordinate systems
are introduced, one centered on each star; this results in a precise description of the stellar interiors. Thanks to
the multidomain approach, this high precision is extended to the strong field regions. The computational
domain covers the whole space so that exact boundary conditions are set to infinity. Extensive tests of the
numerical code are performed, including comparisons with recent analytical solutions. Finally a constant
baryon number sequené¢evolutionary sequengés presented in detail for a polytropic equation of state with
y=2.
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[. INTRODUCTION by Baumgarteet al. [25,26], followed by Marronettiet al.

Inspiraling neutron star binaries are expected to be amon®7]. However, these computations considered synchronized
the strongest sources of gravitational radiation that could béinaries. This rotation state does not correspond to physical
detected by the interferometric detectors currently under corsituations, since it has been shown that the gravitational-
struction [GEO600, Laser Interferometric Gravitational radiation driven evolution is too rapid for the viscous forces
Wave Observatory(LIGO), and VIRGQ or in operation to synchronize the spin of each neutron star with the orbit
(TAMA300). Such binary systems are therefore subject td28,29 as they do for ordinary stellar binaries. Rather, the
numerous theoretical studiésee, e.g., Refl] for areview.  viscosity is negligible and the fluid velocity circulatigwith
Among them there aréi) post-Newtonian(PN) analytical respect to some inertial framis conserved in these systems.
treatmentge.g., Refs[2—4]) and(ii) fully relativistic hydro-  Provided that the initial spins are not in the millisecond re-
dynamical treatments, pioneered by the works of Oohara angime, this means that close binary configurations are well
Nakamura(see, e.g., Ref{5]), Wilson et al. [6,7] and re- approximated by zero vorticityi.e., irrotational) states. Ir-
cently developed by Shibaf8—11], the Neutron Star Grand rotational configurations are more complicated to obtain be-
Challenge groud12,13 and Oohara and Nakamufd4].  cause the fluid velocity does not vanish in the co-orbiting
These last three groups integrate forward in time the evoluframe (as it does for synchronized binarje§Ve have suc-
tion equations resulting from thetd formulation of general cessfully developed a numerical method to tackle this prob-
relativity [15,16]. In parallel with these dynamical calcula- lem and presented the first quasiequilibrium configurations
tions, some quasiequilibrium formulation of the problem hasof irrotational binary neutron stars elsewh¢gd]. The nu-
been developefl7-2Q and successfully implement¢d1l—  merical technigue relies on a multi-domain spectral method
24]. The basic assumption underlying the quasiequilibrium{30] within spherical coordinates. Since then, two other
calculations is that the time scale of the orbit shrinking isgroups have obtained relativistic irrotational configurations:
larger than that of the orbital revolution in the precoalescing(i) Marronetti, Mathews, and Wilsof22,31 by means of
state. Consequently the evolution of the binary system can b&ngle-domain finite difference method within Cartesian co-
approximated by a succession of exactly circular orbitsprdinates andii) Uryu, Eriguchi, and Shibat§23,24] by
hence the namgquasiequilibrium The study of these quasi- means of a multidomain finite difference method within
equilibrium configurations is justified in the view that the spherical coordinates.
fully dynamical computations mentioned above are only in  The present article is devoted to the detailed presentation
their infancy. In particular, they cannot follow more than aof our method, along with numerous tests of the numerical
few orbits. Also they involve a rather coarse resolution of thecode, while the previous papgtl1] gave only a sketch of the
stars, being performed in a single box with Cartesian coorequations and some results about an evolutionary sequence
dinates. Another motivation for computing quasiequilibriumbuilt on a polytropic equation of state. In particular, that
configurations is to provide valuable initial conditions for the letter focuses on the evolution of the central density along
dynamical evolution$11,12,14. the sequence in order to investigate the stability of each star

The first quasiequilibrium configurations of binary neu- against gravitational collapse. That study was motivated by
tron stars in general relativity were obtained three years agthe 1995 finding of Wilsoret al. [6,7] that the neutron stars

0556-2821/2001/68)/06402927)/$15.00 63 064029-1 ©2001 The American Physical Society



ERIC GOURGOULHONEet al. PHYSICAL REVIEW D 63 064029

may individually collapse into a black hole prior to merger. Deser-MisnefADM) 3-momentum of the system vanishes.
This unexpected result has been called into question by &n the other handn is a spacelike vector field which has
number of authorgsee Ref[32] for a summary of all the closed orbits and is zero on a two-dimensional timelike sur-
criticisms and some answerdRecently Flanagaf33] has face, called therotation axis m is normalized so that
found an error in the analytical formulation used by WilsonV(m-m)-V(m-m)/(4m-m) tends to 1 on the rotation axis
et al. [6,7]. New numerical computations by Mathews and[this latter condition ensures that the parametexssociated
Wilson [34], using a corrected code, show a significantlywith m along its trajectories byn=d/d¢ has the standard
reduced compression effect. 24 periodicity]. Let us calll the helicoidal Killing vector
The plan of the article is as follows. We start by present-We assume thatis a symmetry generator not only for the
ing the equations governing binary stars in general relativityspacetime metrig but also for all the matter fields. In par-
in Sec. Il (hydrodynamicsand Sec. lll(gravitational field.  ticular, | is tangent to the world tubes representing the sur-
The numerical method developed to integrate these equatiofgce of each star, hence its qualification haflicoidal (see
is presented in Sec. IV. Section V is then devoted to the testsig. 1 of Ref.[17]).
passed by the numerical code. Astrophysical results are then The approximation suggested above amounts to neglect-
presented in Sec. VI for an evolutionary sequence of irrotaing outgoing gravitational radiation. For nonaxisymmetric
tional binary stars constructed on polytropic equation of statgystems — as binaries are — imposinas an exact Killing
of adiabatic indexy=2. Section VIl contains the final dis- vector leads to a spacetime which is not asymptotically flat
cussion(comparison of our method with that used by other[37]. Thus, in solving for the gravitational field equations, a
groups, conclusions about the tgstd future prospects. certain approximation has to be devised in order to avoid the
Throughout the present article, we use units@&c=1  divergence of some metric coefficients at infinity. For in-
whereG andc denote the gravitational constant and speed oktance such an approximation could be the Wilson and

light. Mathews schem@38] that amounts to solving only for the
Hamiltonian and momentum constraint equations, as well as

Il. RELATIVISTIC EQUATIONS GOVERNING BINARIES the trace of the spatial part of the “dynamical” Einstein

IN CIRCULAR ORBITS equationgsee Sec. Il A. This approximation has been used

. ) in all the relativistic quasiequilibrium studies to date and is

Our treatment of binary neutron stars relies on the asggngistent with the existence of the helicoidal Killing vector

sumptions of(i) quasiequilibrium statgi.e., steady state in fig|q (1). Note also that since the gravitational radiation re-

the co-orbiting framk (ii) a specific velocity state for the 5cion shows up only at the 2.5-PN order, the helicoidal sym-

fluid: either rigid or irrotational flow(iii ) the spatial 3-metric metry is exact up to the 2-PN order.

is almost conformally flat. In this section, we examine the Following the standard-81 formalism[15], we introduce

assumptiongi) and (ii), without invoking assumptiofiiii), 4 foliation of spacetime by a family of spacelike hypersur-
which will be introduced only in Sec. Iil. faces3, such that at spatial infinity, the vectirintroduced
in Eq. (1) is normal toX,; and the ADM 3-momentum i,

A. Quasiequilibrium assumption vanisheg(i.e., the timet is the proper time of an asymptotic

In the late inspiral phase, before any orbital instability orinertial observer at rest with respect to the binary system
merging of the two stars, the evolution of binary neutronASymptotically,k=d/dt andm=d/d¢, whereg is the azi-
stars can be approximated by a succession of circular orbit§1uthal coordinate associated with the above asymptotic in-
Indeed when the separation between the centers of the twRjtial observer, so that E¢l) can be rewritten as
neutron stars is about 50 kim harmonic coordinatgshe ; 5

time variation of the orbital perio®,,, computed at the sec- |= )

ond post-Newtoniar{tPN) order by means of the formulas T de

established by Blanchett al. [35] is about 2%. The evolu-

tion at this stage can thus be still considered as a sequence of One can then introduce the shift vec®rof co-orbiting
equilibrium configurations. Moreover the orbits are expecteccoordinates by means of the orthogonal decompositioh of
to be circular(vanishing eccentricity as a consequence of with respect to the, foliation

the gravitational radiation reactiof86]. In terms of the

spacetime geometry, we translate these assumptions by de- I=Nn—-B, 3
manding that there exists a Killing vector fieldwhich is
expressible afl17] wheren is the unit future directed vector normal¥q, N is
called the lapse function ant B=0.
I=k+Qm, (1)

where() is a constant, to be identified with the orbital angu- B. Fluid motion

lar velocity with respect to a distant inertial observer, &nd  \ye consider a perfect fluid, which constitutes an excellent

andm are two vector fields with the following properties:  approximation for neutron star matter. The matter stress-
is timelike at least far from the binary and is normalized SOenergy tensor is then

that far from the star it coincides with the 4-velocity of in-
ertial observers with respect to which the total Arnowitt- T=(e+p)uku+pg, 4
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e being the fluid proper energy densitythe fluid pressure, that, in order for the constant to be uniform over the stream-
u the fluid 4-velocity, andy the spacetime metric. A zero- lines, i.e., to be a constant over spacetime, so that one gets a
temperature equation of statBOS is a very good approxi- firstintegral for the fluid motion, some additional property of
mation for neutron star matter. For such an EOS, the first lahe flow must be required. In the following two sections, we
of thermodynamics gives rise to the following identity €xplore two such additional properties: rigidity and irrota-

(Gibbs-Duhem relation tionality.
Vp 1 C. Rigid rotation
etp nvh )

A rigid motion corresponds t@ynchronizedstars (also
calledcorotatingstars. It is defined in relativity by the van-

hereh is the fluid ifi thalpy:
Wheren 1s the Tild specttic enthalpy ishing of the expansion tensoW,z:=(g},+Uu,u”)(gs

e+p +ugu”)V,u, of the 4-velocityu. In the presence of a Kill-
man’ (6) ing vectorl, this can be realized by requiring the colinearity
B of u andl :

n being the fluid baryon number density ang, the mean
baryon massmg=1.66x10 2’ kg. Note that for our zero-
temperature EOSngh is equal to the fluid chemical poten-
tial.

By means of the identity5), it is straightforward to show
that the classical momentum-energy conservation equati
V-T=0 is equivalent to the set of two equatidr#9,4q

u=Aal, (15

where A is a scalar field related to the norm bfby the
normalization of the 4-velocitx =(—1-1) "2 Inserting re-
0Iation (15) into the equation of fluid motioii7) shows that
the first term in Eq(12) vanishes identically, so that one gets
the well known first integral of motiof41]

u-(VAw)=0, () |-w=const. (16)

V- (nu)=0. ®) The second part of the equations of fluid motion, E).
(baryon number conservatipnis trivially satisfied by the

In Eq. (7), w is the comomentum 1-form : .
a- (7 form (15) becausé is a Killing vector.

w:=hu (9)
. . . D. Irrotational flow
andV/Aw denotes the exterior derivative of, i.e., the vor-

ticity 2-form [39]. In terms of components, one has As recalled in Sec. I, realistic binary neutron stars are not

expected to be in synchronized rotation, but rather to have an
(V/\W)QB:VQWB_VBWQZ R (10) irrotational motion. A relativistic irrotational flow is defined
by the vanishing of the vorticity 2-forrf39]
The vorticity 2-form enters Cartan’s identity which states

that the Lie derivative of the 1-forw along the vector field VAw=0. (17
lis
This is equivalent to the existence of a scalar fi#dsuch
Ew=I1-(VAW)+V(Il-w). (11  that
Because of the assumed helicoidal symmetryy=£0, so w=V¥, (18

that Cartan’s identity reduces to
This is the relativistic definition of potential flow{42]. Note

[-(VAW)+V(l-w)=0. (120  that the advantage of writing the equation for the fluid mo-
) . ) . _tion in the form(7), (8) rather than in the traditional form
This equation reveals to be very useful in the following; thisy. T=0 s that one can see immediately that a flow of the

justifies the introduction of the vorticity 2-form. form (18) is a solution of Eq(7).
In p_articular, performing the scalar product of Efj2) by The second part of the equation of motion, E8), is
the fluid 4-velocityu leads to satisfied by the potential flod8) provided that¥ obeys to
. (VAW)-u+u-V(Iw)=0. (13 e equation
The first term in the left-hand side vanishes by virtue of the EV~V\II+V\II-V(E> =0. (19
equation of motior(7), so that we obtain h h
u-v(-w)=0, (14) Inserting the irrotationality conditioril?7) into Eg. (12)

results in an equation showing the constancy of the scalar
which means that the quantityw=hl-u is constant along productl-w:
each streamline. This is the relativistic generalization of the
classical Bernoulli theorem. At this stage, it must be noticed |-w=const. (20
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We therefore obtain the same first integral as in the rigid case

[Eqg. (16) abovd. However note that the way to get it is
different: no use of the equation of moti¢r) has been made
to obtain Eq(20), contrary to the derivation of E¢l6). The
first integral(16) for rigid motion has been known for a long
time, at least since Boyer's wofk1]. To our knowledge, the
version(20) for an irrotational flow in presence of a Killing
vector is due to Cartgdi0].

E. 3+1 decomposition

PHYSICAL REVIEW D 63 064029

h:=g+n®n (28

is the orthogonal projector onto the spatial hypersurfages

h can also be viewed as the metric induceddgnto the
hypersurface&.;. Performing the scalar product of E@2)
with the second part of Eq26) leads to an expression of the
Lorentz factorl" in terms of quantities relative to the Eule-
rian observer only:

The first integral(16),(20), common to both the rigid and  Similarly, performing the projection of the second part of Eq.
irrotational motion, is expressed in terms of the contraction26) onto the hyperplane orthogonal toresults in the ex-
of a spacetime vectod) with a spacetime 1-formw). Go-  pression of the fluid 3-velocity/ with respect to the co-
ing back to the 3-1 formalism mentioned in Sec. Il A, let us orbiting observer in terms of the 3-velocitiesandU,, both
reexpress it in terms of quantities relative to the hypersurdefined with respect to the Eulerian observer:

facesX;. Following Ref.[17], we introduce theo-orbiting
observer whose 4-velocityv is the normalized symmetry
generator:

v=(N?2-B-B) %7, (21

1-U-U,

+(U-Ug)Ug— (Up- Ug)U].

Vv [Ug- (U=Ug)n+U—Ug

(30

where the normalization factor has been deduced from EdNote that in the case whet¢ and U, are aligned (=Ue
(3). Note that in the rigid motion case, the co-orbiting ob-andU,=U,e, e being some unit vector i&,) relation (30)

server and the fluid comoving observer coincide:v [see
Eqg. (15]. The 3+1 split of the 4-velocityv with respect to
the Eulerian observer is
V=F0(n+ Uo), (22)
where
I'o=—n-v=(1—Uy-Ug) 1?2 (23

is the Lorentz factor between the two observers bipdis

reduces to the classical velocity-addition law of special rela-
tivity: V=(U—-Ug)/(1—UUg)€’, wheree'=T"y(e+Ugn) is
the unit vector deduced fromby a boost of velocityJ,. In
particular forU=U,, which corresponds to synchronized bi-
naries,V vanishes identically.

For irrotational binaries is related to the potential by
combining Eqgs(9), (18), and(27) :

1

(31)

the orbital 3-velocity with respect to the Eulerian observer

(n-Uy=0). According to Egs(21) and(3), Uy is linked to
the shift vector of co-orbiting coordinates by

(24)

Thanks to the second part of E®3), Eq. (21) can be re-
written as

_To, 25
V—W. ( )

The fluid motion can be described by the following orthogo-

nal decompositions afi:
u=I'(v+V)=I"(n+U), (26)

wherel'=—v-u (I'y=—n-u) is the Lorentz factor between
the fluid and the co-orbitingEulerian observer, and/ (U)

is the fluid 3-velocity with respect to the co-orbitiigule-
rian) observer. In particulay-V=0, n-U=0 and

(27)

where

whereD is the covariant derivative associated with the met-
ric h of spatial hypersurfaces; . Combined with the relation
I',=(1—-U-U) 2 this relation results in

1 1/2
r,= 1+?D\P-D‘P) . 32)

We are now in position to write the43L form of the first
integral (16),(20), common to both the rigid and irrotational
motion. Substituting relatiof®) for w and relation(25) for |
into Eq. (16) results in

h NFLo =const. (33
We shall use actually the logarithm of this relation
H+v—InTy+InT'=const, (39
with the following definitions:
H:=Inh (35
and
v:=InN. (36)
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These two quantities have immediate meaning at the New-

tonian limit: H is the (nonrelativistig specific enthalpy and

is the Newtonian gravitational potential. The first integral of

motion written as Eq(34) coincides with Eq.(66) of Ref.
[17]. The link with the alternative expressions derived b
Teukolsky[19] and by Shibat§20] for the irrotational case
is performed in Appendix A. Note that I'=0 for synchro-
nized binaries, so that Eq34) simplifies somewhat. Note
also that substituting Eq29) for I' in Eq. (34) leads to an

alternative expression of the first integral of motion which

contains only quantities relative to the Eulerian observer
(37)

However, in the following, we shall use only the for(34).
Let us now turn to the 31 form the differential equation

(19 for the velocity potentiall of irrotational flows. Taking

into account the helicoidal symmetry, EQ.9) becomes

H+v+InT,+In(1—-U-Ugy)=const.

nD-DWV +Dn-DW¥=hI",Uy-Dn

h
+n D\If~DInN+U0~DFn +nhKI',,,

(38)

y
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U=vw, (42
whereV denotes the standard 3-dimensional gradient opera-
tor, i.e., the Newtonian limit of the operat@ introduced
above. The first integral of motiof87) reduces then to

1 . .
H+ v+ E(V\If)z—(er)V\If:const. (43

We recognize the classical expressi@ompare, e.g., with
Eqg. (12 of Ref.[19] or Eq.(11) of Ref.[43]]. The Newton-
ian limit of the continuity equatiori38) reads

NAY +Vn-VW=(Qxr)-Vn. (44)

Here again, we recognize the classical expresgiompare,
e.g., with Eq.(13) of Ref.[19]].

I1l. GRAVITATIONAL FIELD EQUATIONS
A. A simplifying assumption: the conformally flat 3-metric

As a first step in the treatment of binary configurations in
general relativity, a simplifying assumption can be intro-
duced, in order to reduce the computational task, namely, to

whereK is the trace of the extrinsic curvature tensor of thetake the 3-metric induced in the hypersurfagggo be con-

3., hypersurfaces. This equation has been obtained by Te
kolsky [19] and independently by Shibafa0]. We refer to
these authors for the details of the derivation of E3B)
from Eq. (19).

F. Newtonian limit

At the Newtonian limit, the Eulerian observer is an iner-
tial observer. Equations(2) and (3) show that B
—Q(dlde), so that Eq.(24) for the velocity of the co-
orbiting observer with respect to the inertial observer be
comes

U0=Q><r, (39)

Yormally flat:

h=A%f, (45)
where A is some scalar field anflis a flat 3-metric. This
assumption has been first introduced by Wilson and
Mathews[38] and has been employed in all the studies of
quasiequilibrium relativistic binaries to daf21-2§. It has
been also used in binary black hole initial data computations
(see, e.g., Ref§44-47). It is physically less justified than
‘the assumption of quasiequilibrium discussed above. How-
ever, some possible justifications of E¢5) are,

(1) it is exact for spherically symmetric configurations,
(2) it is very accurate for axisymmetric rotating neutron stars

wherer denotes the position vector with respect to the centef48], (3) the 1-PN metric fits it, and4) the 2.5-PN metric

of mass of the system. The logarithm of the correspondin
Lorentz factor tends téminug the centrifugal potentidlsee
Eqg. (23)]

|nF0:;(erF. (40)

The Newtonian limit of the first integral of motio{84) for
synchronized binaries (IF=0) gives the classical expres-
sion

1
H+v—§(Q><r)2=const, (41)

where, as recalled abovi, is the fluid specific enthalpy and

v the Newtonian gravitational potential.

¢49] deviates from it by only 2% for two 1M neutron
stars as close as 30 k@m harmonic coordinateg50].

B. Partial differential equations for the metric

To benefit from the helicoidal symmetry, we use co-
orbiting coordinatest(x*,x?,x%), i.e., coordinates adapted to
the Killing vectorl: d/dt=I. Assuming the conformally flat
forml(45) for h, the full spacetime metric takes then the
form

ds?= —(N?—B;B')dt?—2B;dtdx + A%f;;dx'dX. (46)

We thus have five metric functions to determine: the ldgse
the conformal facto®, and the three componens of the
shift vectorB [see Eq.(3)]. Let us define auxiliary metric

In the irrotational case, the Newtonian limit results in the

following fluid velocity with respect to the inertial franjset
h=1 andl',=1 in Eq.(31)]

06402

ILatin indicesi,j, . .., runfrom 1 to 3.
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guantities: we have already introduced the logarithriNof,  only five of the ten Einstein equations. The remaining five

via Eqg. (36); we introduce now the shift vector of nonrotat- Einstein equations are not used in this procedure. Moreover,

ing coordinates: some of these remaining equations are certainly violated, re-
flecting the fact that the conformally flat 3-met(i45) is an

(9 . . . . _
N=B+0 % 47) ?eprgroxmanon to the exact metric generated by a binary sys
. At the Newtonian limit, Eqs(51) and (52) reduce to 0
and the quantity =0. There remains only Eq50), which gives the usual
Poisson ion for the gravitational ntial
Be=In(AN). 49 oisson equation for the gravitational potentia
At the Newtonian limitN=0 andB=0. In the following, we C. Equations for the fluid with a conformally flat 3-metric
choose the slicing of spacetime by the hypersurfages be In this section we explicitly write some equations for fluid
maximal. This results ik =0. quantities when the 3-metric takes the fotd®). First the

The Killing equationV | 5+ V gl ,=0, gives rise to a re- | grentz factor(23) between the co-orbiting and Eulerian ob-
lation between th&, extrinsic curvature tensd and the  servers is written as

shift vector N [via Eg. (3) and the relationVn=—K—n o
@DInN] Fo=(1-A%;;Upul) 22 (55)

For irrotational motion, the expressidB2) for the Lor-
entz factorl’,, between the fluid and Eulerian observers be-
comes
L SIN TN 2 AT 49
=~ 5PN + 3 VN, (49 e 112

) T
= R IR!
K oy (D'B/+DIB)

whereV stands for the covariant derivative associated with

t_he flat 3-metricf. Here and in the following, the indexof  The corresponding fluid 3-velocit§81) is

V' is supposed to be raised with the meftitNote that since

dld¢ is a Killing vector of the flat metrid, the second part A 1 —

of this equation stands also witli replaced byB'. U'= Vv, (57)
The trace of the spatial part of the Einstein equation, com-

bined with the Hamiltonian constraint equation, result in th

following two equations:

eThe Lorentz factod’ between the fluid and co-orbiting ob-
server, which enters in the first integral of moti@¥), is

év=477'A2(E+S)+A2K” Kil —Evﬁﬂ, (50) deduced from the above quantities via E2P) :

3 T I'=T,o(1-A%f;U'Ub). (58)
AB=4m7A’S+ ZAZK”—K”— E(VivV'v+ViBV'B),
- Let us now consider the continuity equati¢(®8). For a

(52) zero-temperature EO$l can be considered as a function of
whereas the momentum constraint equation yields, by mear{@€ baryon densityr solely, so that one can introduce the
of Eq. (49), thermodynamical coefficient

oo l= = ) dinH
AN'+ §V'(VJ~NJ)= —167NA?(E+p) C=dmn (59
><U‘+2NA2K”€J-(3,8—41/). The gradient ofn which appears in Eq(38) can be then

(52) replaced by a gradient dfi so that, using the metri¢5),

L one obtains
In these equationsl::ViVi is the Laplacian operator asso- ——
ciated with the flat metri€, andE andSare, respectively, the (HAW +VIHV; W

matter energy density and trace of the stress tensor, both as 2 =
measured by the Eulerian observer =AhT'\UViH +¢H

Eon-T-n=TZ(e+ p)—p, 53 X[VIWV (H-B)+A2hULV,T,].  (60)

Si=h-T=3p+(E+p)U-U. (54) The potential¥ is in fapt dpminated by a pure translational
part. Therefore, we write, in each star,

The equations to be solved to get the metric coefficients o
are the elliptic equation€0)—(52). Note that they represent W =:Wo+ fi; Wex!, (61)
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WhereW{) is the constanttranslational velocity field defined 1 M kil
as the centrélvalue of \]i:meijk jgx(x‘K —x‘KI"dS§
W :=AhI" U}. (62

1 . _
= T €k f# (XAPKK —xfAKIhds, (67

Then VW =VW +W, and A¥ =AW, so that Eq.(60) _
becomes - = wheree;; is the 3-dimensional alternating tenserare Car-
tesian coordinates, and the second equality follows from the
fact thatA=1 at spatial infinity. As forM, this integral can
be converted to a volume integral @p. Using the momen-
R — wW— tum constraint equatio®,KX'=8=(E+p)U* and the fact
=(W'=Wp)ViH+ {H| WoV(H —B) T Vilhn). that D,KK'=A"59(AK )/ox' for the conformally flat
. 3-metric (45), one obtains the expression

(HAW o +[(1-{H)V'H+ ZHV BV, W,

(63)
— 5 j11kq3
The advantage to solve E¢63) instead of Eq.(60) is that Ji_eiJkLtA (E+p)x'UTd. (68)
the right-hand side of the former is much smaller than the
right-hand side of the latter, due to the factt—Wj, in-  The baryon mass of each star is given by the integrakpn
stead ofW, in front of V,;H. of the baryon number density as measured by the Eulerian
observer:—nu-n=TI",n. In the case of the conformally flat

D. Global quantities 3-metric (45), this integral becomes

The total mass-energy content in33 hypersurface is M<Ba>:mBJ AT ndx, a=1.2. 69)

given by the Arnowitt-Deser-MisngADM ) massM, which
is expressed by means of the surface integral at spatial infin-

ity

stara

IV. NUMERICAL METHOD

M=i§ fikfj|(€hkl_€kh_l)ds (64) The equations to be solved to get a relativistic binary
167 J= ' ! system in quasiequilibrium are the elliptic equatiqbg)—

(52) for the gravitational field, supplemented by the elliptic
[see, e.g., Eq20.9 of Ref.[51]]. In the case of the confor- €quation(63) for the velocity potentia¥’,, in the irrotational
mally flat 3-metrich;; = A%f;; , this integral can be written ~ case. A cold matter equation of state, of the form
I n=n(H), e=e(H), p=p(H), (70
M= 2m fﬁov AMS. 9 must be supplied to close the system of equations. The ther-
modynamical quantityH has been privileged in the EOS
By means of the Gauss-Ostragradsky formula, this expresietting(70) because it is that quantity which is involved in
sion can be converted into the volume integrad@“’2. This the f|r.3t integral of motion(34). Altoggther, thesg equauon;
last quantity can be expressed by subtracting (66} from constitute a system of c_oupled nonlinear partial d|ﬁ§rent|_al
Eq. (51) [recall thatA=exp(8— v)], so that Eq(65) becomes equations. We solve this system by means of an iterative
an integral containing the matter energy density and the exerocedure.

trinsic curvature o2, :
A. Coordinate systems and computational domains

We use co-orbiting coordinateg,X,Y,Z) of Cartesian

1 .
M :j AS’Z( E+ —K”K'l)de’x_ (66)  type(i.e., fj;=4;), so that the line elemer®@6) can be writ-
3 16w ten
Following Bowen and York52] we define the total angular ds’= —N?dt*+ A?[(dX—BXdt)?
momentum in a%; hypersurface as the surface integral at +(dY—BYdt)2+ (dZ—BZdt)?] (71)

spatial infinity’
In these coordinates, the two stars have fixed locations and
figures. Let us define theenterof star No.a (a=1,2) as the
°The centers of the stars are defined in Sec. IV A. location of the maximum enthalgy (or equivalently maxi-
3Note that contrary to the ADM mass, the total angular momen-mum densitye) in star a. Note that thiscenter does not
tum hence defined is not asymptotically gauge invariant: it is decoincide with the center of mass of star We choose the
fined merely as the 7 part of K;; within our coordinatessee  coordinates X,Y,Z) such that(i) the orbital plane is defined
York [53] for a discussion. by Z=0, (i) the two stellar centers are located along ¥e
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FIG. 2. Domains used in the numerical computations, when
N(yy =Nz =3. The boundaries of domaimz{”, D{, D§?, and
D{? are represented. The outer boundaries of domﬁﬁsﬁ and
’D22> are located at infinity and are therefore not plotted.

FIG. 1. Coordinate systems used in the calculation. No. 1, the other on star No. 2. The numidér,, of domains
in each set is arbitrary, being simply equal or larger than 3.
axis, and(iii) the rotation axissee Sec. Il Ais located at  The list of theN;,+ N,y computational domains is
X=0, Y=0. Let us then denote b¥., and X, the X

. 1 1 1
coordinates of the two stellar centérs. DY - 'D<le>71' . 'D§“<>l>,1,
In order to describe properly the stellar interiors, we in-
troduce two systems of Cartesian coordinates D@ ..p2  .p2
0 M —1 Niy—1

(X(ay+Y(a) »Z(a)) centered on the two stars ligee Fig. 1

where we note the following.

X = X=Xy X = ~(X=X@) domainD{® (a=1,2) has the topology of a ball and con-
Yoy =Y and Yoo = —Y _ tains the center of staa; it is designed thereafter as the
zqy = Z 2o = Z nucleus

M q (a=1,2) is the number of domains which cover the
(72) interior of stara. It obeys M ;=1 and M <N —2.
The outer boundary of domai@ﬁ?a>,l coincides exactly
with the surface of stara. The topology of domains
D, ... 'Df\;"i?arl is that of a spherical shell; these domains

Note that the system X(i).,y(1).%1)) is aligned with
(X,Y,2), whereasX2),Y(2),Z2)) is anti-aligned rotation of
angle in the (X,Y) plang with (X,Y,Z). This choice en- )
sures that the companion of star Nois located at,,>0  are designed thereafter as tieells 3
for both stars. In particular, for equal mass stars, the descrip- domalnsD§\,|<>a>, e ’D§\|<>a>—2 cover the noncompactified
tions of each star in terms ok, ,Yya),2¢) are identical. part of the space outside staythey are also calleghells
Furthermore ~ we introduce  spherical ~ coordinatesThe inner boundary of doma’ﬂ?ﬁ;’j‘?a> coincides exactly with
(r<a> 0 ,<p_<a>) (a=1,2) associated with each of the Carte- y,o syrface of staa.
ﬁgj]alcf%?rrr?l:ﬁ]:;e systems«, Y (a),Z()) by means of the domainD§j‘>al _, is the most external one; it extends up to
Since some of the equations to be solved are elliptic equd-— * - We call this domain the compactified external do-
tions with non-compactly supported sources, the Computamaln(CED) since thanks to some comp_actmcatlon it will be
tional domain must extend up to spatial infinity, i.e., mustMapped to a finite computational domain. ,
cover the full hypersurfac®, , in order to put correct bound- <8f course<1t>he two<2>sets of c?g}mams overlap since
ary conditions(flat spacetimg Any truncated computational Po Y -+ UDN), -1=D¢”U ... UDy 1=2. The vari-
domain(“box” ) would result in approximate boundary con- ous domains are represented in Fig. 2¥gg, =N, = 3.
ditions, which inevitably would induce some error in the Following the technique introduced previougl§0], we
numerical solution. The technique to cover the fijlis to  define in each domain thecomputational coordinates
divide it in various domains, the outermost of it being com-(&,6',¢") according t0
pactified in order to deal with finite computational domain
only [30]. Following the introduction of the two coordinate 0'=6, ¢ =¢ (73
systems (), 0(ay » ¢(a)) (ONE centered on each stave will
actually use two sets of such domains: one centered on stand in the nucleus,

“In all this article, indices or superscripts in angle brackets will °For the sake of clarity we omit here the star indi¢a$ on the
label the two stars. spherical coordinates () , /4y , ¢(a)) Centered on staa.
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The spectral method amounts to reducing linear partial

E+(3EM-2£%Fo(0,0) differential equations into a system of algebraic equations for

the coefficients of the spectral expansions. We refer to Refs.
[55,56 for the details of this multidomain spectral method
(553_355)60(914’)}1 £e[0,1]; (74 and here simply recall some basic features.
As explained above, spherical-type coordinat&®(,¢’)
in the shells (EI<N—2), centered on each star are used: this ensures a much better
description of the stars than by means of Cartesian coordi-
nates.

&+ 1(53— 3E+2)F(0,0) These spherical-type coordinates are surface-fitted coordi-
nates: i.e., the surface of each star lies at a constant value of
the coordinate thanks to the mappingé(6',¢')—(r,0,¢)

+B, &e[—1.1]; defined by Eqs.74),(75. This ensures that the spectral
method applied in each domain is free from any Gibbs phe-

(75 nomenon(spurious oscillations generated by discontinujties
The outermost domain extends up to spatial infinity,
thanks to the mapping76). This enables us to put exact
2R boundary conditions on the elliptic equatiof&0)—(52) for

r= ﬂy Ee[—11]. (76)  the metric coefficients: spatial infinity is the only location

1-¢ where the metric is known in advané®linkowski metrig.

_ Thanks to the use of a spectral method in each domain,
In the above relationsy and g, are some constants, the e nymerical error ivanescentor analytical fields(e.g.,

functionsF,(6,¢) andG, (0, ) define the boundary of each qensity fields for ay=2 equation of stajei.e., it decreases
domain: the outer boundary of the nucleus corresponds to exponentially with the number of coefficientsr equiva-

=1 and is given by the equation lently collocation grid pointsused in the spectral expansions
55,56|.
= a1+ Fo6,6) + Gol 6,0)], 1958

I’=a0

N| -

J’_

I=q

1
+ 7 (—E436+2)Gy(6,0)

in the CED,

where Fo(0,¢) contains only odd Fourier harmonics i C. Splitting of the metric quantities

andGo( 6, ) only even harmonics, the inner boundary of the  Having introduced two sets of computational domains
shell No.| (1<I<Ny—2) corresponds t¢=—1 and is  (grids), we linearly split the metric potentials, 3, andN'

given by the equation into
r=a[-1+F(0,¢)]+8, (78 v=vyt v T vyt VeanT Vi T V), (80)
whereas its outer boundary correspondg+ol and is given B=By*tB2y=Byt Bra—-1)= B2+ B,
by the equation (81
r=a[1+G(6,¢)]+5. (79 N'=Nig) + Nigy=Nigy +Niz. 1) = Niz )+ Ny,

(82
Finally Rcgp is the radius of the inner boundary of the CED,

which is assumed to be spherical. where the quantities labeled by(&)” or “ (b—a)” (a

=1,2,b=3—a) are defined at the collocation points of the
domainsD{? centered on staa, and the quantities labeled
by “(a)” and “{a—b)" represents the same physical field
In each domain, we expand the various physical fields irbut described at different collocation poiritose of domain
a series of basis functions ¢f ¢’ and¢’. We use Cheby- sets D{* and D{”, respectively, i.e., vy z=wqy,
shev polynomials irt, trigonometrical polynomials or asso- v, =y, etc.
ciated Legendre functions if’, and Fourier series ip’. The basic idea underlying the splitting80)—(82) is that
The interested reader is referred to Sec. Il A of R8@] for ~ for each metric potential, there are two primary quantities,
more details about these spectral expansions. Let us denatgose labeled by {‘1)” and “ (2),” which are “mostly gen-
by N{¥(1) the number of coefficient in thé expansion used erated” by, respectively, star 1 and star 2 and which we
in domainD{®, by N{® (1) the number of coefficients in the called theautopotentialgthe precise definitions are given by
0’ expansion and biN{?'(1) the number of coefficients in Egs. (83)—(85) below]. The autopotentials are obtained by
the ¢’ expansion. We employ eollocation spectral methgd ~ solving the gravitational field equations, on domam@ for
which means that in each domain, a function can be dethe “(1)” potentials, and oriD|<2> for the “(2)"” ones. The
scribed either by the coefficients of its spectral expansion oguantities labeled by (1—2)" [“(2—1)"] are then
by its value at some particular grid points, called totlo-  merely representations of thg1)” [“(2)” ] autopotentials
cation points[54]. The grids plotted in Fig. 2 show actually at the collocation points associated with the companion star.
these collocation points. For this reason, we shall call them the comp-potentials.

B. Multidomain spectral method

064029-9
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Following the splittings(80)—(82), the gravitational field
equations(50)—(52) are themselves split in two parts,,

PHYSICAL REVIEW D 63 064029

in Eqg. (52). Therefore, having obtained solutiong,, B
and N'<a> of the Eqs.(83)—(85), we can form the solution of

and v, are thus defined as the solutions of the two equathe gravitational field equatior(§0), (51), and(52) via Egs.

tions
Avay=4mAX(E )+ Sa)) + Qay+ Qoa)~ Viva)

X[V Biay+ (VB o). a=12 (b=3-a),
(83

(80)—(82.

The advantage of solving the system of 2= 10 patrtial
differential equationgPDES (83)—(85), instead of solving
the system of 5 PDE$50)—(52), is that the source terms
(right-hand-sidg of the former are mostly concentrated on
one of the two stars and therefore well described by one of
the two domain sets introduced in Sec. IV A. This is not true

whereasB ;) and B, are defined as the solutions of the two for the source terms involving the comp-potentialgb*

equations

3
ABay=4TA%S 5 +2 Q)+ Qu-a) = 5Viv

X[ V! Viayt (V' V)(bﬂaﬂ - Evi,&a}

X[V Bay+ (VB ). a=12 (b=3-a),
(84)

and Nj;, and Nj,, are defined as the solutions of the two

equations
AN+ 3V(T)N
ANig+ 3VI(ViNG)
=~ 16aNAZ(E () + P(ay) Ujay + NKiky
X(6[ViBay+(ViB)b—ay) = 8[Vjv(a

+(V)pa)), a=12 (b=3-a).
(85)

In these equationE 4y, Siay: Pay U'<a> are the quantities

relative to the fluid of stam only and defined, respectively,

by Egs.(53), (54), (4), and (27). RL‘Q is defined fromNi<a>
according to

K|<Ja>:=—m VIN23>+V]NI<3>_§fIJVkN|<(a>], a= 1,2,
(86)

so that the total extrinsic curvature is given kj = (K}},

+Kib)/A?. Finally Q(ay andQ,_ are defined by

Q<a>’=A2fikfilR'<(ell>ki<L>, a=1.2, (87)

Qoay=A?fyf; KILK, o, a=1,2 (b=3-a),
(88)

where K}, ., is the same physical field thaK},, but

—a).” However, these terms enter only via quadratic com-
binations in which each of them is multiplied by the gradient
of an autopotential term, which is small where the comp-
potential is large, so that the product of the two is smaller
than the other sources terms, such as the scalar product of
gradients of autopotentials. The same considerations hold for
Q(b—ay Which appears to be much smaller th@p,, . Ac-
cording to these remarks, E@3) for v, is naturally solved

on domainst”, Eq. (83 for v, is solved on domains
Df2> , and more generally, each equation for an autopotential
is solved onto the domains set centered on the corresponding
star.

Once the autopotentials are knovat a given step of the
iterative procedure described in the next segtidhere re-
mains to compute the corresponding comp-potentials. This
means that given, e.gu ) at the collocation points of do-
mains D{", one has to compute its values; _,, at the
collocation points of domain®{? . One may think first to
use some interpolation technique since the two sets of do-
mains overlap. But this will necessarily introduce some “nu-
merical noise.” We will proceed differently, taking advan-
tage of the use of a spectral method. Indeed, the values of the
field v, at the collocation points of domairiz{" is not the
only numerical representation of;, we have at our dis-
posal. We can use the alternative representation by the set of
coefficients of its spectral expansion in each domaiﬁ>
(0=<I=<Nyy—1) (see Sec. IV B By means of this spectral
expansion, we can compute the valuevpf, atany point in
the domairID|<1> , hot necessarily a collocation point. Hence,
given a collocation point§ ,6; ,¢,) of domain Df?, we

first compute the corresponding physical spherical coordi-
nates ((2),0.2),¢2) Via Egs.(74—(76), then the corre-
sponding Cartesian coordinates .,y »,Z); these latter
are translated into Cartesian coordinateg(,y1),Z1)) via

Eq. (72). We finally obtain the corresponding spherical co-
ordinates (1), 61),¢(1)) centered on star 1. We then deter-
mine in which domainD{" this point is localized and to
which value of the coordinaté it corresponds by inverting
the relationg74)—(76). Then we may use the spectral expan-
sion of v(;, to get the searched value

numerically described at the collocation points of the do- via2y(lo.&.0] k)

mainsD{*, Ki}, being given at the collocation points of the

domainsD(® .

It is straightforward to check that adding the two equa-

tions (83) results in Eq.(50), adding the two equation®4)
results in Eq.(51) and adding the two equatiori85) results

NP -1 [N -1 NP)-1
O;(01y)

> > 20 ikji Xkji(€)

k=0 i=o

X P (1), (89
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where the;lkji are the coefficients of;, in domaian”, These coordir)ates will remgin fixed dyr_iljg the iteration.
X, denotes the basis functions & (typically Chebyshev O_nly the location _of the rotation axis,,;, initially set to 0,
polynomial3, ®,; the basis functions i (typically cosng ~ Will change(see Fig. 1 Accordingly the formulag90) have

or sinné) and ®, the basis functions i (Fourier serigs O Physical meaning whatsoever. They can be viewed as the
These functions depend on the type of dontaincleus, shell setting of the origin of the coordinate systelg,Y,Z). The

. . g location of this origin isa priori arbitrary, only the distance
Fetoﬁ:ED) and are described in details in Sec. IllA of Ref. d between the two stellar centers having a physical meaning;

the setting(90) simply insures that this origin is not too far
_ from the rotation axis.

D. Iterative procedure The angular velocity() is initialized according to a for-

Within our procedure, a quasiequilibrium binary neutronmula for second order post-Newtonian spherical §t36s57)
star configuration is obtained by specifyifij the equation M. M.[11 2R 12 R®
of state(70) for each star(2) the rotation state: either rigidly Q2 —_ ( 17— 7T @# BT ?’2}
rotating (synchronized binaries, Sec. I)Qr irrotational s d d 25d
flow (Sec. 11D, (3) the coordinate distancel: -|X
—X(1y| between the two stellar centers, af the Central +(
enthalpiedH? 1) andH<2> in each star, or equivalently, via Eq.
(70), the central density in each stawith our definition of
the stellar center, this coincides with the maximum density
As we discuss below, itertd) can be replaced by the speci-
fication of the baryon mass of each star.

Min,) 69 11R?> 17R*
d tTE EEY

whereM;,i:==M1y+M 5, Ris the coordinate radius of one

of the two star® (which is spherical initially and y= yiqot
=0 for irrotational binaries, whereas y= yot
_5|<a>/(2M<a>R<a) for corotating binaries| ;) being the
moment of inertia of staa. For this last quantlty, we use as
an ansatz the exact value for a Newtoniaa 1 polytrope,
The above parameters being set, we start by computinghich results inyy o= 5/3(1— 6/72), independent oé.
initial conditions for the iterative procedure. These initial  The metric autopotentials are initialized as follo
conditions are constituted by two numerical solutions forand/g (ay are set to the values efandg for the static sphen-
spherically symmetric static isolated neutron stars, of respeal models. The shifi;,, is initialized to the first-order post-
tive central enthalpy{<1> andH<2> M1y andM,, being the  Newtonian value for spherical incompressible binafitss
gravitational masses of these spherical symmetrlc modelsalue can be obtained by taking the limit for a spherical star
we set theX coordinates of the two stellar centers accordingof the equations presented in Rpf))
to the Newtonian-like formulas

e

1. Initial conditions

M) M Niy=g Wi~ g(V'X@+ V'WiaX), a=12, (92)
Xy=— 24 and X =——"-—d. (90)

M)+ Mz M)+ Mz with

6M 4 2id r2
(a)y*#ini (a)
€ 1- for ri5 <R/, ,
(@) (1+ M<a>/M(b))R<a) ( 3R<2a)> @ @

X _ Y _ z _
& for r >R
€, ’
<a>(1+ M<a>/M<b>)|'<a> @ @
(€i1y:=—1, €/5:=1, b=3—a) and
(1) (2)

M 2y Qinid 3r?

(a)*=ini Yia 1- @ , for ra=<Rp,
(1+ M) /M py)Ra 5R?

_ (a)
Xa)™ (94)

4M(a>QinidR<2a) Y
5(1+ M) M) 13,

for r<a>> R(a) .

SEquation(91) is valid only for equal-mass stars binaries. There also exists a more complicated formula for stars with different masses.
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We refer to Sec. IV A for the definition of the coordinabés ¥ is deduced fromJ, and the previous step value ¥, via

Y, Z, 15, andy, involved in these formulas. It appeared g (61); the Lorentz factol,, is then computed via EG56)
that the initial shift vector given above results in a too largegng the 3-velocityU follows from Eg. (57). The Lorentz
angular velocity in the first steps. Therefore, we artificially f5ctor ' petween the fluid and the co-orbiting observer is
lower it by multiplying it by 0.6. From this initial value of 4equced from the above quantities via E5g).

the shift, we get initial values d€}},, via Eq.(86), and initial The elliptic equation(63) for W, is then solved by the
values ofB and U, via Eqgs.(47) and (24). numerical method described in Appendix B. We then adapt
Regarding the fluid quantities, the 3-velocltyis initial-  the computational domains to the stars as follows. The first

ized to Uy in the synchronized case, whereas in the irrotadintegral of motion(34) is written, following the splitting 80)
tional case, ¥ is initialized to zero andV is initialized

chordingly via Eq(61); the Lorentz.factpﬂ“.n-i.s t_hen ini- H= |_|<Ca>+ ,,<Ca>+q><ca>‘exl_ iy~ Pay exts (98)
tialized via Eq.(56) and the 3-velocityU is initialized ac-
cording to Eq(57). We get then initial values of the Eulerian
energy densitf and the trace of stress tenstwia Eqs.(53)
and (54). In these equations, we use for the proper energy
densitye and pressur@ the values of the spherically sym-
metric initial stellar models.

where we have introduced the “external” potential
(I)<a>'ext==1/<b*)a>—|n FO+|nF (99)

and the superscript¢” stands for values at the center of the
2. Description of one step star. First, we rescale the auto-potentig), by a factora? to

. . make sure that the enthalpy vanishes at the paint
At a given step, we start by determining the value of the_ 712, @@x=0 on the extemal boundary of domain

orbital angular velocit) and the value of th& coordinate (a)
of the rotation axisX, (see Fig. 1, by taking the gradient ~ M@~ 1"
along X of the first integral of motior(34). Demanding that

the enthalpyH be maximal at the center of each staur 5 Hiayt Pl e Play,ext
definition of centey, this results in the two equations at= s < , (100
V(a)™ V(a)
J J
—~nTo = (v+InT) a=1.2, where the superscripts” stands for values at the point
oX axX @) -
(X(2)0.0) (X(2):0:0) =1, 0= /2, ¢(y=0 of domainDj;’ _;. When the it-
(95) (@

eration convergesq tends to 1. We then replace,, by
where Inl', can be expressed in terms @f and X, thanks ~ @°¥(a) in Eq. (98) to get the enthalpy field in all space.
to Egs.(23), (24), (45), and (47): Following the technique described in RgB0], we then
compute new function&(0,¢) and G,(6,¢) in the map-
pings (74) and (75) in order to make the outer boundary of
domain1)§\j"<>a>_l coincide exactly with the surface of the star.

Since the collocation points of the new mapping do not co-
HF[OQ(X=X,g) = NYJ2+ (N?)?]} . (96) incide [in the phy_sical space, descr_ibed by th_e coordinates

(ray+ 0ca) ,<p<a>)] with that of the previous mapping, the val-

ues of the enthalpy field at the new collocation points have to

Inserting this relation into Eq95) and settingy=Z2=0, X  pe computed. The details of these computations are ex-
=X(1y Or Xz results in a system of two equations for the plained in Sec. VA of Ref[30].

two unknowns() andX.. This system is solved by standard = From this new value of, we compute the fluid proper

methods. Having determined and Xy, we can compute haryon densityn, proper energy density and pressure via
the components of the orbiting velocity, via Egs.(24) and  the EOS(70). We then get the Eulerian energy denditand
(47): the trace of stress tensBivia Egs.(53) and(54). These last
quantities are subsequently used to evaluate the source terms
Ué= _ E(QY+NX); ngi[ﬂ(x_xmt)_NY]; of the elliptic equatio_ns{83)—(85) for the gravitational po- _
N N tentials. These equations are solved by means of the multi-
domain scalar and vector Poisson solvers for noncompact
2 N# sources described in details in R€f30,56. In particular the
Uo= -~ N’ 97 vector Poisson equatio(85) for the auto shiftN'<a> is re-
duced to a set of 4 scalar Poisson equations according to the
whereN, NX, NY andN? are the values of the lapse function scheme used by Shibata and OoH&®,10.
and the components of the nonrotating-coordinates shift vec- Before the beginning of a new step, some relaxation is
tor taken from the previous step. Froby, we of course performed onto the enthalpy field and the autopotentials, ac-
compute the Lorentz factof, by Eq. (23). The fluid cording to
3-velocity with respect to the Eulerian observerjs set to
U, in the synchronized case, where in the irrotational case, Q'—\Q’+(1—M)Q Y, (101

1 A?
INFo=— I 1-H[(QY+ N*)2
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whereQ stands for any of the fields, v, B(a and N'<a> and G,(0,¢) are assumed to be expandable in kés(r

(a=1,2),J (J—1) labels the current stefprevious step  sin(ké) series and in Fourier series in which implies that

andA is the relaxation factor, typically chosen to be 0.5 forthey are smooth functions ob(¢).

H and 0.65 for the autopotentials. The solution to this problem consists in freezing the ad-
For appreciably relativistic configurations, it appearedaptation of the mapping to the stellar surface when the en-

that the above relaxation is not sufficient to ensure the Conthalpy gradient becomes too small at the surface point which

vergence. In this case, we update the comp-potentials ngces the companion star. More precisely, we define the ratio
every step but everyn steps, with typicallym=8. This

slows the convergence but enforces it. _(dH/91)eq,comp

X GHTI e (104

3. Convergence to a given baryon mass

In order to compute evolutionary sequences of binarywhere the index “eq,comp” stands for the value at the point
neutron stars, one should be able to compute configuration®,,,= 7/2, ¢5=0) on the stellar surface, whereas the
for a given baryon mass, since this quantity is conservedindex” pole stands for the value at the pointdg,
during the gravitational-radiation driven evolution of the sys-=0, ¢,,=0) on the stellar surface. Whenpasses below a
tem. The baryon mass, given by E®9), is not a natural certain thresholg, during the iteration process, we stop the
parameter we can set in our procedure. As stated above, tkelaptation of the mapping to the surface of the staris
freely specifiable parameters which fix one configuration ar&hosen typically chosen between 0.3 and 0.55.
the coordinate distanaibetween the two stellar centers and  In this case, a Gibbs phenomenon is present. The accu-
the central enthalpiebl?n and H<Cz> in each star. However, racy of the calculation is then lower than when the mapping
we can use the iteration procedure itself to make the finais adapted to the surface of the star. However, since the dif-
configuration have a specified baryon mass. Indeed, since tlierence between the stellar surface at the domain boundary is
baryon mass is an increasing function of the central enthalppretty small, the Gibbs phenomenon is rather limited.

(at least for the stable stars we are studyimge multiply at For irrotational configurations, the noncoincidence of the
each step, the central enthalbljD by the factor stellar surface with a domain boundary introduces a small
error in the resolution of Eq63) for the velocity potential

1a ¥, by means of the technique explained in Appendix B.

2
*< , (102

2+2¢

77::

. . . F. Numerical implementation
where( is the relative discrepancy between the actual baryon

mass at the considered ste!‘p]fg1>J and the wanted baryon
massM{: 7:=M{/M—1. When the iterative proce-
dure converge, the factoy tends to one. The same treatment

The numerical code implementing the method described
above is written in the.ORENE (LANGAGE OBJET POUR LA

RELATIVITE NUMERIQUE) language[59], which is a Cr+

is performed on star 2. based Ianguage for numerical relativity. A typical run makes
use of 6 domainsN1y=N,=3 andM,=M,=1), with
4. End of the iteration N, X Ny*xN,=33X21X 20 coefficients in each domain. The

) ) corresponding memory requirement is 232 MB for an irrota-
To control the convergence of the iterative procedure, we;, -, configuration. A computation involves 250 steps,

introduce the relative difference between the enthalpy field§ ich takes 14 h on one CPU of a SGI Origin200 computer
of two successive steps (MIPS R10000 processor at 180 MH2f the number of

3 -1 coefficients is lowered tdN,XN,XN,=25X17X16, the
_Zi[HIOa) —HT ()|

SH (103 memory requirement and CPU times becomes respectively
2i[HITH )| ,

100 MB and 6 h 30min.
Note that due to the rather small memory requirement,
where the summation is extended to all the collocation pointsuns can be performed in parallel on a multiprocessor plat-

X; inside the star and is the step label. form. This is especially useful to compute sequences of con-
We use typicallydH=10"" as a criterion to end the it- figurations.
eration. For very high precision calculatioftheck with ana- Both Newtonian and relativistic configurations, either
lytical solutions, see beloywwe use insteadH =10 12, corotating or irrotational, are calculated by the same code.
Only the parts of the computation specific to one of these
E. Treatment of cusps four cases are treated by different branches of the code.

For very close configurations, an angular poiotisp
may appear at the surface of the stars, similar to that in the
Roche lobe at the Lagrange poinf in the Roche problem. After constructing a numerical code for calculation of bi-
At this point the enthalpy gradientH/dr vanishes in the nary neutron stars, we must assert its validity by performing
direction of the companion. The surface of the star is then ngelf-consistency checks and comparing the results with those
longer smooth and surface cannot be described by the diffenf analytic solutions or those of previous numerical works.
entiable mappind74), (75), because the functior’s,(6,¢) The plan of the tests of the numerical code is as follows. For

V. TESTS OF THE NUMERICAL CODE

064029-13
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Convergence curve Convergence of ADM mass
Trrotational configuration: Y=2, M,=1.625 M_, M/R=0.14 ¥=2, k=0.0332 p,, ~'c’, M,=1.625 M, M/R=0.14
T T 1.50068 T T T T
F - Coordinate separation = 60 km
210 1
5
g 1.50067 1
» —
» 3
2 a4 =
s 10 il 2
Q 1]
£ E  1.50066 1
o =
= a
3 <
&, s o
g 10 ] o
b4 1.50065 b
@
2
E o
[
o
10° : :
0 100 200 300 1.50064 . ! ! :
0 10 20 30 40 50

Step . . .
Number of radial collocation points

FIG. 3. Convergencémeasured by the relative differenékl in
the enthalpy field between two successive steysthe iterative
procedure for one of the irrotational models wit} XN,XN,,
=33X 21X 20 collocation points. The bump around the 70th step
corresponds to the switch on of the procedure of convergence to-
wards a given baryon mass. is measured by means of the relative differedtebetween
two successive steps values of the enthalpy field, as given by
the irrotational configurationg]l) check the convergence of Eq.(103). The bump around the 70th step corresponds to the
the iterative procedurg?) check the convergence of the glo- switch on the procedure of convergence towards a given
bal quantities when increasing the number of coefficients obaryon mass, as described in Sec. IV D 3. One can notice
the spectral method3) check the decay of the relative error systematic oscillations in the convergence curve every 8
in the virial theorem for Newtonian binary systems whensteps. They result from the fact that the comp-potentials are
increasing the number of coefficients of the spectral methodjpdated only every 8 steps, as discussed in Sec. IV D 2. We
(4) check the agreement with some analytic solutions forstop the iterations when the convergence has reached the
Newtonian binary systemg5) check the agreement with 8H=10"7 level (dashed horizontal line in Fig.)3
previous numerical solutions for Newtonian binary systems, Next, we show the convergences of the global quantities
(6) check the coincidence of the results of the purely Newi.e., ADM mass and total angular momentufar one con-
tonian calculation with those of general relativistic one withfiguration when the number of spectral coefficierits
small compactness; and, for the corotating configuratidns, equivalently the number of collocation points, see Sec. }V B
check the agreement with previous numerical solutions ofs increased. Furthermore, we present the convergence of the
relativistic binary systems. relative change in central energy density along a sequence
For the purpose of the test computations, we considewhen we increase the number of spectral coefficients. The
identical star binary systems with the polytropic equation ofcalculations are performed for the case o2, «
state =0.033%,,:¢? (pnuc=1.66x10'" kg m~%); the baryon
1 Uy-1) mass isMB=1.625\/I_@, which corrt_asponds to the compgct-
n(H)= y—4 %[GXKH)—].] ' (105 nessM/R=0.14 for isolated spherical stars. The coordinate
Y K separatiord is taken to be 60 km. Six domains are used, with
the following parameteréusing the notations of Sec. IV)A
p(H):Kn(H)y, (106 N<1>=N<2>=3, M<1>=M<2>=1, with the same
number of coefficients in each domairig!®(0)=N{*(1)

e(H)= ———n(H)"+mgn(H), 109 = =Ne, NPO)=N{P(1)=- =N, and N{(0)
y—1 :prl>(1):...:;|\|¢_

The ADM mass and total angular momentum are shown
in Figs. 4 and 5 as functions &f, . We used the following
numbers of spectral coefficient®, XNy XN,=9X7X86,
13X9X8, 17X13X12, 25x17X16, 33x21X20 and 41
X 25X 24. In Fig. 6, we give the relative change in central

First of all, we show in Fig. 3 the convergence of the energy density along a quasiequilibrium sequence for various
iterative procedure described in Sec. IV D. This convergenc@umbers of spectral coefficients:N(,N,,N,)=(9,7,6),

FIG. 4. Convergence of the ADM mass for one of the irrota-
tional relativistic models, as the number of collocation poifts
equivalently of spectral coefficientss increased.

wherey, k, andmg are some constants. Forz we will use
mg=1.66x 10" 2’ kg (mean baryon mags

A. Self-consistency checks

064029-14
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Convergence of total angular momentum Convergence of relative error in virial theorem
=2, k=0.0332 pm_lcz, M,=1.625M_,, M/R=0.14 Newtonian irrotational calculation: y=2, k=0.0332 P € My=0.001 M, |
9.742 T T T T 10 T T T T
Coordinate separation = 60 km 102 | J
974 1

_4

10 -
9.738 -

9.736

9.734 -

Relative error in virial theorem
-
o
T

+ - -+ 17x13x12
& — 4 25x17x16
_14 ¥ - ¥ 33x21x20
9.73 - 4 *——k 33x25x24

9.732 -

Total angular momentum [GMmf/c]

1 0_16 L L 1 1
| | 40 60 80 100 120 140

0 10 20 30 40 50 Coordinate separation [km]
Number of radial collocation points

9.728

FIG. 7. Relative error in the virial theorem along an evolution-
FIG. 5. Same as Fig. 4 but for the total angular momentum. ary sequence, for various numbelg XNyXN, of collocation
points (or equivalently of spectral coefficients

(13,9,8), (17,13,12), (25,17,16), (33,21,20), and _ . )
(33,25,24). We find that these global quantities settle to spectively. Note that the Newtonian limit of the polytropic

constant valuévariations below~10"5) for N,=25. equation of stat¢105—(107) is obtained foH <1 and reads
y—1mg |YO-D
B. Tests in the Newtonian regime n(H)= T — , (108
In order to test Newtonian calculations, we compute a
MB=.1O’3M@ Newtqnian sequence basedicin a ponFropic p(H)=«kn(H)?, (109
equation of state withy=2 and x=0.033%,c2. In this
case, the central baryon density and the radius of infinitely e(H)=mgn(H). (110

separated stars becomes 1.88D 3p,,. and 20.57 km, re-
1. Virial theorem

Convergence of relative change in e, A useful method to estimate the global numerical error in
¥=2, k=0.0332 p, ", M,=1.625 M, M/R=0.14 Newtonian computations is to calculate the relative error in
0.01 ' ' ' the virial theorem. This latter states thal 2W-+3P=0,
whereT, W, andP denote, respectively, the kinetic energy of
£ the binary system, its gravitational potential energy and the
§ ol volume integral of the fluid pressure. We therefore define the
) virial error as
[
=4
s |2T+W++ 3P|
g -0.01 errorzT (111
c . . .
° This error estimator is shown along a constant baryon
§ | ;_S?ﬁﬁis number sequence in Fig. 7. In order to check the conver-
§ 002 | - e 17x13x12 | gence of the numerical method, we present various cases of
i & — 2 25x17x16 increasing number of spectral coefficieMgXN,XN,=9
2 e XT7X6, 13x9x8, 17x13x 12, 25<17x 16, 33x21x 20,
x25x24 _ .
and 33<25x 24. We usedsH =102 as the criterion to end
—0.03 : . . the iteration. It is found from Fig. 7 that for large separations
20 40 60 80 100

the relative error converges to 1% when the number of

spectral coefficients is increased, which is of the order of
FIG. 6. Convergence of the evolution of the central energy dendH. Anyway, one cannot go much further, evendifl is

sity along a quasiequilibrium sequence, as the nunitexN,  lowered significantly, because of the use of 15 digits num-

XN, of collocation pointgor equivalently of spectral coefficients ~bers (double precisionand the resulting accumulation of

is increased. round-off errors in the arithmetical operations. In addition,

Coordinate separation [km]
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we notice in Fig. 7 the appearance of a rapidly increasing
error for closer separations. Note, however, that at the poin
of closest approaclicusp point this error is below 10*

(except for the low numbers of spectral coefficientghich

is very satisfactory. Finally, we see on Fig. 7 that when we
increase the number of polar and azimuthal collocation
points fixing the number of radial ones, the relative error in
the virial theorem becomes better around intermediate sepe<;
rations.

2. Comparison with analytic solutions

Total energy [M,,

Until recently the only analytic solutions for binary stars
were constructed with incompressible fluid and belong to the
so-called families of Roche-Riemann or Darwin-Riemann
ellipsoids [60,61] (see Ref[62] for a good introduction to
these ellipsoidal solutions We have presented elsewhere
[30] the comparison with Roche ellipsoide subclass of
Roche-Riemann ellipsoids constituted by synchronized sys:
tems, as a validation of our multidomain spectral approach

PHYSICAL REVIEW D 63 064029

Total energy compared with analytic solution

Newtonian irrotational calculation: y=2, k=0.0332 pm;'cz, M,=0.001 M_,

—7.6x108}
-7.8x108}

-8x108}
-8.2x108}
-8.4x108}
-86x108}

-8.8x10°8}

-9x10°8

o—=e Numerical calculation b
---- Analytic solution

40

60 80 100 120
Coordinate separation [km]

140

with surface-fitted coordinates. As can be seen from Fig. 6 of G, g Total energy compared with Taniguchi and Nakamura’s
Ref. [30] the numerical error is decreasing exponentially analytic solutior{63,64 along an evolutionary sequence. Solid and

with the number of spectral coefficientéhe so-called
evanescengrror typical of spectral methogseaching 10°
for a Roche ellipsoid with axis ratios,/a;=0.75 and
a3/a1=0.68.

dashed lines denote the results of numerical and analytic calcula-
tions, respectively.

code, in particular the solution of E¢63) for the velocity

The case of compressible fluid bodies has been investijqential. Indeed the Darwin-Riemann solutions could not

gated recently by Taniguchi and Nakamy&8,64], who

have been used for testing this important part of the code

have obtained semianalytic solutions for equilibrium se-yecq,56 Eq(63) is degenerate for an incompressible fluid
guences of irrotational binary polytropic stars in Newtoman(g:w)_

gravity. For an equal-mass star binary system wijth 2,

First, we compare our numerical results with Taniguchi

they have produced the following simple equations for the;q Nakamura's analytic solutions for global quantit@sch

total energyE, the total angular momenturd, the orbital

that total energy, total angular momentum, orbital angular

angular velocityQ) and the relative change in central baryon velocity, and relative change in the central baryon depsity

density

_ GM? 1/Ro 15 Ro|°
L E el e

1, . Ro
J=§Md Q4 1+ higher term thar© q ,
(113
, 2GM 15 Ro|°
== |16 =1 | | (114
_ PcT Pco 45 (Ro e
opc= e ——ﬁ(g : (119

whered is the separatiory, the central densityR, the ra-
dius of the spherical star of mabk(i.e., the radius at infinite
separatiopand p.g the central density of this spherical star.
These equations are exact up@®p(R,/d)®] and are very
valuable to check the validity of the Newtonian limit of our

Total angular momentum [Gwa/c]

"Note, however, that these solutions are not exact for the gravita-
tional potential of the companion must be truncated to the second
order to get perfectelly ellipsoidal shapes.

064029-16

along an evolutionary sequence in Figs. 8—11. For the nu-
merical computation, we usé,XN,XN,=33X25x24
spectral coefficients in each domain and the criterih
=10 *? to end the iterations. It is found from these figures
6 that the numerical results agree very well with the analytic

Total angular momentum compared with analytic solution

0.00022

-1 2

Newtonian irrotational calculation: Y=2, k=0.0332p_ =~ ¢, My=0.001 M_

0.0002

0.00018

0.00016

0.00014 ~

0.00012

o——=o Numerical calculation
--—-- Analytic solution

40

60

80 100 120
Coordinate separation [km]

140

FIG. 9. Same as Fig. 8 but the total angular momentum.
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Orbital angular velocity compared with analytic solution Relative difference from analytic solution
Newtonian irrotational calculation: v=2, k=0.0332 pm"cz, M =0.001 M_;
50 : : . : 107
‘\\ &——e Numerical calculation
\ -——- Analytic solution
\ -3
40 + \ i 107 ¢ 4
@ \
3 ]
®
z \.\ g 10™ ¢ ]
8 \ 1 5
S o
2 \ £
g AN e 107 ¢ o o DifferenceinE (1.625M,) 3
2020 - e i 2 u--n Difference in I (1.625M,_)
8 «© + — -+ Difference in Q (1.625M, )
s TSe_ e, 0 L 4~ Difference in &, (1L623M,,)
5 e E o—o Difference in E (0.001M, ) E
e} \ =2 Difference in J (0.00IM,:)
10 + ~9 & - - Difference in Q (0.001M,)
7 &— —A Difference in 3p, (0.001M, )
107 & — Line parallel to ARy’ 3
=== Line parallel to (d/R;)"
O Il L 1 L
40 60 80 100 120 140 1 0-8
Coordinate separation [km] 1 10

Coordinate separation / Radius of a spherical star

FIG. 10. Same as Fig. 8 but the orbital angular velocity.
FIG. 12. Relative differences in total ener@y total angular

ones. Note that the analytic solution ends at the contaGhomentumJ, orbital angular velocity, and relative change in

point, whereas the numerical one ends befovhen a cusp  central baryon densityp, when comparing the numerical solution

appears at the stellar surface, see Sec. IVHowever, the  yjth Taniguchi and Nakamura’s analytic solutif83,64 along an

analyti_c solution, based on an expansion _UI@(QRO/d)G], equilibrium sequence. The horizontal axis denotes logarithmically

loses its accuracy for very close separations and cannot RgRr,, whered is the separation between the two stellar centers, and

used to test the code in this regime. R, the stellar radius at infinite separation. The thick solid and thick
In order to investigate the discrepancy between the resuligashed lines are reference ones in order to check the inclinations of

from the numerical code and those from Taniguchi and Nathe results easily.

kamura’s analytic solution, we present the relative differ-

ences on global quantities as functions of the separation in a

log-log plot in Fig. 12. The relative differences are defined as Jnumi~ Jana ' (117
follows: Md?Qyep/2
Enumf Eana QO -0
) (116) num ana
2 _—, 118
GMZR, Qe (118

Relative change in central baryon density
Lo . 12 | 8pc:num™ Opc:and (119
Newtonian irrotational calculation: y=2, k=0.0332 p_ ¢, M=0.001 M_;

° ; where() ., is the Keplerian velocity for point mass particles
% 2GM 1/2
3 QKep::(da) . (120
s
S -0.005 |- .
= Two reference lines, proportional tod/(R,) ° and
£ (d/Ry) "5, have been drawn in Fig. 12 in order to check the
2 slope of the results easily.
o It is found that for separations closer thdfR,= 10, the
S -001| . discrepancies between numerical and analytic solutions for
§ the energyE and the relative change in central denshy,
B are both proportional to ~(d/R,)°, and become
< o—e Numerical calculation ~(d/Ry) ~ 2 aroundd/R,~ 3. At first glance, this agreement
-~~~ Analytic solution between the numerical and analytical solutions seems too
-0.015 - = ” pres 0 40 good, because we know that the next order term missing in
Egs. (112 and (115 is O[ ~(d/Ry) "8]. We interpret the

Coordinat tion [k . A
cordinate separation (k! fact that this term does not show up in Fig. 12 by the fact that

FIG. 11. Same as Fig. 8 but the relative change in central baryoit is produced by the octupole deformation, which should be
density. very small. Of course, for separations much larger than
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Z-axis component of internal velocity field

d/Ry=10, the term proportional te- (d/R,) ~® would domi- ®, 9) = (4, 1/d)

nate the inclination of the lines. 2x10°8 ‘ 4x10’® :
For the residual terms of the angular momentiiand the d=200km d=140km
orbital angular velocity(), we can see that while they are _ 8 8 ‘

. —7 o 110"+ 4 2x10™F  —— Numerical
proportional to~(d/Ry) ~ * aroundd/Ry~ 10, the term pro- - - - Analytic
portional to ~(d/R,) 8 dominates for separations closer ‘g o
thand/Ry,~6, and finally goes up to-(d/Ry) "*% We can  ~ e |
explain this dependence as follows. First, the high order ex- . - =~ Anglytic
pansion ofQ) can be written as —1x10°5 10 20

-5 d -7 0 . . .
O=0 1+0|| = +0 (—) } d=100km .
“er RO RO —_ -7 -6 \\\
o -1x10'r E -2x10 - N
-8 % NS
— ) 2 \\
+O (RO + (121) g —2)(10_7— \\ i —4X10.6— \\
—— Numerical NG —— Numerical
. . - - - Analytic - -~ Analytic
Note here that the second term inside the brackets come  _gyx157 - ‘ _6x1078 - ‘
0 10 20 0 10 20

from the quadrupole deformation of the star and is included
in the analytic solutionEq. (114)]. After subtracting the
analytic solution(114) from expressior(121), there remains FIG. 13. Thez-axis component of the internal velocity field in
the termO[ (d/Ry) /] as a leading one. Therefore it domi- the co-orbiting frame compared with the Taniguchi and Nakamura
nates the behavior of the curve of the relative differenc® in analytic solutior{63,64]. The horizontal line denotes the radial dis-
aroundd/R,y~10. tance from the center to the surface of star 1, in the direction
On the other hand, the angular momentum is expandabl€d 1) ¢(1)) = (7/4,m/4). The four panels are snapshots at different
separations: 200, 140, 100, and 70 km. Solid and dashed lines de-
note the results of numerical and analytic calculations, respectively.

Radial direction [km] Radial direction [km]

as

-8

J= 1+0

Re 4.

(122

M
2
2dQ

3. Comparison with previous numerical solutions

) ) ] ] As a final test for Newtonian computations, we compare
This means t_hat aﬁerzsubtractlng the gnalytlc solufibhi) our results with those of Uryu and Eriguck#3] for poly-
and normalizing bMd“Q /2, the leading term o comes  opic equation of state with=5/3, 2, and 3, corresponding
from Q,7 beqause thls latter has.a term proportional toy, polytropic indicesn=1.5, 1, and 0.5, respectivelyy(
(d/Ro) . This explains why the discrepancy curves for —1.41/n). The comparison is presented in Table I, where
and() have almost the same behavior. ~the upper lines for each configuration are the results of Uryu
From the above discussion about the slopes of Fig. 12nq Eriguchi and the lower ones are ours. We have chosen

curves, we can conclude that the numerical solution agrees . onfiqurationsi=3.6 in Tables 2. 4. and 5 of Urvu and
with the semianalytical one within the accuracy of this latter, 9 ' T y

i.e., the increase of the discrepancy when the separation de-
creases is due to missirgigh ordej terms in the analytic
solution(112—(115). Finally, we see from Fig. 12 that even 0
if the baryon mass is changed by a factor larger thah th@
numerical and analytical solutions agree in the very same
manner.

Next, we compare the internal velocity field in the co-

Z—axis component of internal velocity field (8, 9) = (v/4, 7/2)

-8
-1x10
-1x107

_2x10°8

Velocity [c]

—2x107}

orbiting frame with that of Taniguchi and Nakamura’s ana- -x10 — Numorical
lytic solution. We focus on the velocity component along the g T Anaiic | e
orbital axis @ axis), because it is three orders of magnitude =4x10°70 10 20 -3x10°, 10 20

smaller than the:- andy-axis components even for the case
of closer separation, and is therefore a very valuable quantity
to check whether the equation of continuitg3) is well
solved or not. In Figs. 13-15, we show the velocity
z-component as a function of the radial distangg from the
center of star 1 along three directionse ¢ 1))

-5x107 | 1 _ax107®t

Velocity [c]

—1x10°8t 4 —sx108t

=(7wl4mld), (wl4,mw12), and @r/4,37/4) and for the orbital
separationsl= 200, 140, 100, and 70 km. It is found that the

—— Numerical
— —— Analytic

— Numerical
——— Analytic

_15x10°® _1.2x1078 : :
0 0 10 20
Radial direction [km]

numerical results agree nicely with those of analytic calcula- o 20
. . . Radial direction [km]
tions. Once again, note that the discrepancy at small separa-

tion comes from the fact that the analytic solution deviates FIG. 14. Same as Fig. 13 but for the directiofi(,e 1))

substantially from the exact solution. =(mwl4,m12).
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Z-axis component of internal velocity field (8, @) = (n/4, 3m/4) Total energy compared with Newtonian limit of GR calculation
¥=2, k=0.0332 p, ~'c’, M,=0.001 M,
0 0 , -7.5x10°® ‘ : ‘ :
11 0—8 | d=140km ®——# Newtonian calculation
o) 2108 _1x10”7 , & - -E GR calculation with small compactness
= - ] oL
£ -7.7x10 = |
§ -3x10° - 7 -
> -2x10
—4x1 0-8 | —— Numerical 4 —— Numerical N
- - - Analytic - - - Analytic K] _7,9><10'8 F B
-5x10°® : ' -3x10” ‘ ' 2
0 10 20 0 10 20 z
2
0 = -8.1x108 ¢ 1
2
T 5x107}F .
> -8
g -8.3x107 - i
o° g
2 o’ 1
—— Numerical \ —— Numerical
- - - Analytic - —— Analytic —8.5X10_8 . . \ \
-15x10°® : ' -8x10°® ‘ ' 40 60 80 100 120 140
0 . 19 . 20 0 . 19 . 20 Coordinare separation [km]
Radial direction [km] Radial direction [km]

. N FIG. 16. Total energy of a relativistic sequence of small com-
B FI/Cj.31/54 Same as Fig. 13 but for the directiofl,§,¢()) pactnessl/R=7.18x 10~%) compared with that of that of a New-
= (m/4,3ml4). tonian sequence of the same mass. Solid line with filled circles

. ) denotes the Newtonian computation and dashed line with squares
Eriguchi[43]. Here, our results are calculated by usiNg  jenotes the relativistic one.

XNyXN,=33x 25X 24 spectral coefficients in each of the 6
domains and we adopted the same definitions as in Uryu and One can see from Table | that our results coincide with

Eriguchi’s article[43], namely, those of Uryu and Eriguchi within 0.3% for physical values
such as the total energy, the total angular momentum and the
— dg orbital angular velocity. Note that the labélof Uryu and
G-~ R_o’ (123 Eriguchi[43] configurations is the orbital separation between

the geometrical centers of two stars normalized by the geo-
metrical radius of the star along thxeaxis. In our computa-
O Q (124) tion, since the geometrical separation is obtained after calcu-

(7Gpo)¥?’ lation, we cannot fixd initially. Therefore we use the
corresponding separation between the centers of mass of two
o J stars which Uryu and Eriguchi gave in their pap48] as the
Ji= 0, (125  orbital separation between tieentersof two starsd=d/R,,.
(GM"Ry) Although our definition of the center of the star, which is the
location of the maximum enthalp§Bec. IV A), is different
E— E (126 from the center of mass, the relative difference between these
" GM?R,’ centers is only about 0.01% aroude 3.6.

wheredg is the distance between the two stellar centers of C. Test of the Newtonian limit of relativistic calculations
mass ancE):=M/(477R8/3). We have made many tests of the code in the Newtonian
regime up to now, so that we are rather confident in the

TABLE |. Comparison with the results of Uryu and Eriguchi. accuracy of the Newtonian part of the code. As a next step,
we compare the results of relativistic calculations with small

Separation Q J E compactnessNI/R=7.18x 10 °) with those of Newtonian
ones. In Figs. 16—18, the total energy, the total angular mo-
y=3 (n=0.5) mentum and the orbital angular velocity are shown along a
ds=3.804 0.2219 1.385 -1.241 sequence. We use, X N,XN,=25X17X16 spectral coef-
d=3.804 0.2211 1.385 -1.242 ficients in each domain. It appears clearly that the results of
—2 (n= the small compactness relativistic computation coincide with
r=2=1) hose of the Newtonian computation, as it should b
4.—3.753 0.2259 1371 1133 those of the Newtonian computation, as it should be.
d=3.753 0.2252 1.373 1133 D. Comparison with previous relativistic numerical solutions
y=5/3 (n=1.5)
ds=3.726 0.2279 1.364 -0.9921 1. Corotating case
d=3.726 0.2274 1.367 -0.9911 As a check of for relativistic computations, we compare

our results for corotating configurations with those of Baum-
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Total ang. mom. compared with Newt. limit of GR calculation Orbital ang. velocity compared with Newt. limit of GR calculation
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FIG. 17. Same as Fig. 16 but for the total angular momentum. oordinate separation [kmj

FIG. 18. Same as Fig. 16 but for the orbital angular velocity.
garteet al. [26]. We have chosen Tables Il and VI of their
paper, and compare the results of two different separationshe agreement is very satisfactory: the relative discrepancy
z,=0.2 and 0.3 in each table. We udg XN,XN_ =33 s below 0.1% onM, 0.4% onQMg, 2.1% onJ/M?, and
X 25X 24 spectral coefficients in each domain and the crite2.1% on the semidiametey, of the star§Eq. (129 below].
rion SH=10"' to end the computation of one configuration.
We adopt the same equation of stdfmlytropic with y
=2), the same value of the separatigi=d/2 and the same
value of the baryon maskl,. These results are shown in  The tests of the code being successfully passed, we em-
Table Il where the upper lines for each configuration denotéloy the code to compute an irrotational relativistic sequence
the results of Baumgartet al, and the lower ones corre- based on the polytropic equation of st&1®5—(107) with
spond to our results. We find a relative discrepancy of 2% ory=2. We are usingc=0.033%,,:c?, and consider the com-
Q, 4.5% ong™® 0.07% onM, 0.6% onJ, 4.5% onr ,, and  Pactness parameté/R=0.14 at infinite separation. This
1.5% onre results in the baryon masdg=1.625M .
5% onrg. ) o .
The computational parameters are as follows: six domains
are used, such thausing the notations of Sec. IV)AN, 4,
=N(2=3, M(1y=M =1, with the same number of coef-
For irrotational relativistic configurations, a detailed com-ficients in each domairl, X N,X N,= 33X 21X 20. The cri-
parison with Uryu and Eriguchi resul{23,24 is underway terion to end the computation of one configuration is set to
[65]. For the purpose of the present article, we have comsH=10 ". A special treatment has been performed for the
pared only the cusp point configuration ofM/R=0.14 vy  closest configuration, because of the existence of a cusp on
=2 polytropic sequence as given in the next to last line ofthe stellar surfacéSec. IV B: N, XN,XN,=25X17X16
Table IV of Ref.[23] and the last line of our Table IV below. coefficients have been used along with the enthalpy gradient

VI. RESULTS FOR y=2 POLYTROPES

2. Irrotational case

TABLE Il. Comparison with the results of Baumgarte al.

Z5 M, qme M J Q

A e s

TABLE Ill ( M/R=0.05)
0.20 0.0595 0.0284 0.057815 0.01109 0.048 0.591 1.791 2.959

0.0280 0.057816 0.01113 0.048 0.582 2.923
0.30 0.0288 0.057836 0.01155 0.037 0.975 2.118 3.251
0.0285 0.057836 0.01161 0.038 0.968 3.217

TABLE VI (M/R=0.15)
0.20 0.1534 0.1303 0.140859 0.04174 0.116 0.413 1.244 2.067

0.1242 0.140774 0.04194 0.117 0.395 2.037
0.30 0.1341 0.140971 0.04268 0.092 0.682 1.477 2.273
0.1286 0.140874 0.04294 0.093 0.668 2.249
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0.5 x ADM mass Total angular momentum
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FIG. 19. Half of the ADM mass of the binary system as a

function of the coordinate separation for an evolutionary sequence FIG. 20. Same as Fig. 19 but for the total angular momentum.
of relativistic irrotational stars.

thresholdy;, = 0.55, resulting in a frozen mapping. We summarize the results about the sequence in Table lll,

In Figs. 19 and 20, the half of the ADM mass and the totalliSting the ADM mass, the total angular momentum, the or-
angular momentum of the binary system, as defined in Se®ital angular velocity, the axis ratios, and the relative change
Il D, are shown along the evolutionary sequence. This seln central energy density along the quasiequilibrium se-
quence ends at arourd=37.5 km (=380 Hz) where a quence. Since this is the first table presented for a sequence
cusp appears on the surface of the stars. of relativistic irrotational binary neutron stars, we give a

One can see from these figures that there is no turningather large number of digits in order to compare with the
point for they=2 case. This result agrees with that of Uryu results of other works from now on. Note that we are using
and Eriguchi[23]. the following values of the fundamental constants:

An important result of this computation has already beer=6.6726<10 ' m®kg™'s 2, ¢=2.9979245& 10 ms™?
presented in Ref[21], namely, the central energy density and M= 1.989x 10° kg.
remains rather constatwith a slight increase below 0.01)% For comparison purposes with other works, we also give
and finally decreasesee Fig. 6. As discussed in the Intro- Table IV in which the physical quantities are normalized by
duction, this result makes the collapse of the individual neuusing the equation of state constartsindy to set a length
tron stars to black hole very unlikely prior to the merger. scaleR,, according to

TABLE Ill. Half of ADM mass M, total angular momenturd orbital angular velocity), axis ratios, and
relative change in central energy density alord g= 1.625M  quasiequilibrium sequence constructed upon
a y=2 polytropic EOSa,, a,, andas denote the coordinate lengths parallel to the semimajoraxesand
z, respectivelya, o, is the length in the direction opposite to the companion star.

d[km] 0.5XM[Mg] J[GMé/c] Q [radld Q/(27) [Hz] ay/a; agla; ajgpf/as (6c—€c.)/ec.

100 1.50545 11.8370 597.24 95.054 0.99100 0.99367 0.99319  4.0606e-05
90 1.50457 11.34083 695.15 110.64 0.98839 0.99139 0.99234  6.0695e-05
80 1.50351 10.8243 823.17 131.01 0.98445 0.98788 0.99106 6.9369e-05
70 1.50223 10.2880 996.14 158.54 0.97811 0.98210 0.98903  8.4666e-05
60 1.50065 9.73115 1239.9 197.34 0.96687 0.97171 0.98466  3.2735e-05
50 1.49870 9.15576 1603.5 255.20 0.94402 0.95037 0.97369 -5.9816e-04
45 1.49758 8.86296 1858.8 295.84 0.92226 0.92999 0.96263 -2.0684e-03
42 1.49679 8.68172 2041.4 324.89 0.90315 0.91100 0.95408 -4.2246e-03
41 1.49655 8.62425 2111.0 335.98 0.89206 0.89940 0.95076 -5.4239e-03

37.5 1.49572 8.43623 2389.7 380.33 0.81445 0.82752 0.91949 -1.2238e-02
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TABLE IV. Dimensionless ADM massﬁ, total angular momenturﬁ, orbital angular velocitﬁ, and

half of the coordinate length along tlfa(eaxisgO along thel\WB:O.l46202 quasiequilibrium sequence pre-
sented in Table IlI.

d dg 0.5xM J Jim? Q QMg ao

6.0927 6.0924 0.135446 9.58174e-02 1.30573 3.2698e-02 4.7805e-03 0.81089
5.4835 5.4830 0.135367 9.17965e-02 1.25239 3.8058e-02 5.5642e-03 0.80934
4.8742 4.8736 0.135272 8.76195e-02 1.19708 4.5067e-02 6.5889e-03 0.80770
4.2649 4.2642 0.135156 8.32782e-02 1.13973 5.4536e-02 7.9733e-03 0.80623
3.6556 3.6546 0.135014 7.87708e-02 1.08031 6.7883e-02 9.9246e-03 0.80542
3.0464 3.0447 0.134839 7.41131e-02 1.01907 8.7788e-02 1.2835e-02 0.80796
2.7417 2.7396 0.134738 7.17429e-02 0.98796 1.0177e-01 1.4879e-02 0.81489
2.5589 2.5565 0.134667 7.02758e-02 0.96878 1.1176e-01 1.6339e-02 0.82583
2.4980 2.4954 0.134645 6.98107e-02 0.96268 1.1557e-01 1.6897e-02 0.83271
2.2848 2.2810 0.134571 6.82887e-02 0.94273 1.3083e-01 1.9127e-02 0.88016

RpolygzKllz(rl)_ (127 Finally, let us show some figures about metric, density,
and internal velocity fields. The lapse functidhis repre-
We can therefore define the same dimensionless quantitig®nted in Fig. 21. The coordinate system is tkeY(,Z) one
as Baumgarteet al. [26] and Uryu and Eriguchj23]: Mg defined in Sec. IV A and the coordinate separation is 41 km
=Mg/Roy, M=M/Ry, J=J/RZ.. Q=R o d (next to last line in Tables Il and I)/ At this separation, the
B poly: poly:_ poly pon2 central value oN of each star is 0.6416.

= d/Rpoly, do=de/Rooly, 80=80/Rpay, Whereds is the The shift vectom of nonrotating coordinateslefined by

distance between the “centers of mass” of each stars a . S . .
defined by Eq(107) of Uryu and Eriguch{23] qu g:g)igallspslggévn in Fig. 22. The plot is a cross section of

1 The K*X, KXY, andK"Y components of the extrinsic cur-
dgi= _1f AT nXdPx— —— A3 nXdx vature tensor of the hypersurfadesconst are shown in Fig.
M star 1 M@ Jstar 2 23. The values in the figures are multiplied by the square

conformal factorA?, and the plots are cross section of the
(128  orbital plane.

The baryon density field in the fluid frame is shown in
andag is half of the coordinate length of a star along ke Fig. 24. The plots are cross sections 20 and Y=0
axis planes.

Finally, we show in Fig. 25 the internal velocity field in
the co-orbiting frame, or more precisely the orthogonal pro-
jection in theX,; hypersurface of the vector fieM given by
Eqg. (30). Note that this vector field is tangent to the surface
This latter quantity is denotey by Uryu and Eriguchf23].  of the stars, as it should be.

1
a0:§|xmax_ Xmin|- (129

In(N) (x=x1)

In(N) (y=0) In(N) (z=0)

(=
(o]

z [km]
z [km]
y [km]

(=] =]
re) 1 I I 1 I Ire) I I 1 |
! -40 -20 0 20 40 -50 0 50 —50 0 50

y [km] x [km] x [km]

FIG. 21. Isocontour of the gravitational potentiallogarithm of the lapse functioh) when the coordinate separation is 41 km. The
plots are cross sections of tike= —20.5 km,Y=0, andZ=0 planes. The thick solid lines denote the surfaces of the stars.
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Shift vector (z=0) In addition, thanks to the splitting of the metric quantities
in a part described on the domains centered on star 1 and a
part described on the domains centered on star 2, we can
describe without any loss of accuracy very distant stars. In
fact we can recover the spherical limit when the stars have
very large separations, contrary to all other numerical meth-
ods which are losing resolution when the stars are put farther
= apart (see, for instance, the discussion in Sec. VA of
Ref.[26]).
7 We are using surface-fitted spherical coordinates, which
by construction are well adapted to describe the stellar fluid
interiors. As it can be seen on Figs. 21-23, these coordinate
§ systems, which are centered on one of the two stars, are also
well adapted to the description of the metric quantities, be-
y cause these latter are maximum at the location of the stars.
Baumgarteet al. [26] and Marronettiet al. [22] use instead
Cartesian coordinates in a single doméibox” ). Closer to
y our approach, Uryu and Erigucf23] developed a multido-
main method with surface-fitted spherical coordinates, which
' enable them to treat precisely the fluid interiors of the stars.
50 However, for the gravitational field they use a single spheri-
cal coordinate system which is centered at the system center
of mass.

FIG. 22. Shift vectoN of nonrotating coordinates in the orbital ~ As far as irrotational binaries are concerned, we paid a

plane when the coordinate separation is 41 km. The thick solid linespecial attention to the resolution of the equation for the
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denote the surfaces of the stars. velocity potential'V. First we solve numerically only for a
small part¥, of W, thereby reducing the numerical error.
VII. DISCUSSION Second we let appear in the equation Yo a partial differ-
. . . ential operator which is invertible and give as a unique so-
A. Comparison with other numerical methods lution that with the correct behavior at the stellar surface

The numerical method presented in this article is the only(velocity field tangent to the surface in the co-orbiting
method for computing relativistic binaries in which the com-frame. The equation for is instead solved as a Poisson
putational domains extends to infinity, thereby enabling us tequationAW = sourcewith a boundary condition at the stel-
impose exact boundary conditions on the gravitational fieldar surface by Uryu and Eriguchi23] and Marronettiet al.
equations. All the other method26,22,23 employ finite  [22,31. Note that Marronettiet al. performs only an ap-
computational boxes. Our experience from calculations oproximate treatment of the boundary condition, which
single rotating neutron stars show that the finite size of themounts to considering that the surface of the star is an exact
computational domain can result in some loss of accuracgphere. This is of course not valid for close configurations.
(see Ref[66] for a discussion of this point On the contrary, thanks to the introduction of surface-fitted

A® K (2=0) A% K (2=0) A% K7 (2=0)

y [km]
y [km]

x [km] x [km]

FIG. 23. Isocontours of the componemt&®, KXY, andKYY (multiplied by A%) of the extrinsic curvature tensor when the coordinate
separation is 41 km. The plots are cross sections of the orbital pfan@). The solid( dasheglline denotes positivenegative values. The
thick solid lines mark the surfaces of the stars.
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coordinates, Uryu and Eriguch23] have been able to treat Regarding relativistic configurations, no analytical solu-

the boundary condition exactly. tions was available to compare with. In this case, we checked
only by comparing with previous numerical solutions,
B. Tests passed by the code namely that of Baumgartet al. [26] for synchronized bina-

ries and Uryu and Erigucli23] for irrotational binaries. The
eatgreement is of the order of 1%. For the astrophysically
relevant case of irrotational relativistic binaries, a detailed

We have performed extensive tests of the numerical cod
In particular, we have shown that, in the Newtonian limit,
our numerical results coincides with the semianalytical solu- - - : : :
tions recently obtained by Taniguchi and Nakam{63,64)] \(I:V(;r;r[Jggl]son with the Uryu and Eriguchi cof23] is under-
for compressible polytropic stars. The only discrepancies ap- '
peared to be due to missing higher order terms in Taniguchi
and Nakamura’s solutions and not to some inaccuracy of the
numerical code. We are currently using the method described in this ar-
ticle to compute models of close binary neutron stars with
various equations of states: polytropic EOS with various
polytropic indices, dense matter EOS resulting from recent
nuclear physics calculations. In particular, we are studying
how parameters such as the frequency location of the inner-
- - most stable orbitif any) depends on the equation of state, in
order to help in the interpretation of gravitational wave sig-
- 1 nals from coalescing neutron star binaries. The results of
these studies will be published elsewhgs&].

C. Future prospects

Velocity w.r.t corotating frame (z=0)

40

20
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3 L | APPENDIX A: LINK WITH TEUKOLSKY'S
! AND SHIBATA'S FORMULATIONS
| \ L L L | L L \ \ |
—50 0 50 The first integral of motion for quasiequilibrium irrota-
tional binaries derived by Teukolsk{9] is [see his Eq(57),
x [km] rewritten within our notatiofy

FIG. 25. Internal velocity field with respect to the co-orbiting
frame in the orbital plane when the coordinate separation is 41 km.
The thick solid lines denote the surfaces of the stars. 80ur shift vectorB is the negative of Teukolsky'B.
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N(h?+D¥.DV¥)Y2+B.D¥=C, (A1)  with

where C is some constant. At first glance, this might look a:=_{H, (B2)
quite different from our first integral of motio(84). How-

ever, if we substitute Eq29) for T in the exponential form bi:=(1—¢H)VH+HV B, (B3)
of our first integralli.e., Eq.(33)] we get

and
hNI",(1—U-Uy)=const. (A2)

_ _ i
By means of Eqs(31) and(24), this equation becomes o=(W— iO)ViH+§H VV'bVi(H—B)ﬁL\l/ﬂlViFn)-
n
hNI',+B-D¥ = const. (A3) (B4)

Finally, if we substitute Eq(32) for T, is this relation, we Equation(B1) is not merely a Poisson type equation B,
recover Eq(A1). In particular this shows that the constant in because the coefficieatvanishes at the surface of the star. It
the right-hand side of Eq33) is nothing but the constant therefore deserves a special treatment. In the works of Mar-
denotedC by Teukolsky[19]. ronettiet al.[22,31] and Uryu and ErigucHi23], Eq. (B1) is
The first integral of motion for quasiequilibrium irrota- recast as a Poisson equaﬁ%g\lfozsource, dividing both

tional binaries derived by Shibafa0] is [see his Eq(2.18), sides of Eq.B1) by a. In order that the right-hand side be
rewritten within our notatiorg regular, one must then impose as a boundary condition
b'V,W,—o=0 at the surface of the star. We choose here a
different approach, considering that the operator in (B4)

h
N TS D¥=const, (A4) is not the Laplacian but instead the operator

N

where\ andS are defined by the following decomposition of ) AL

the fluid 4-velocity in a part along the Killing vectbrand a LWo=a(l-§ )qu’0+5§¥! (BS)

part parallel to the hypersurfacs :

wherea and 8 are two constantst €[ 0,1] is the computa-
tional radial coordinate introduced in the mappiiTd), and

A, is an operator which, expressed in terms of the computa-
tional coordinates4,6’,¢’) has the same structure than the

u=A(I+9) with n-S=0. (A5)

Now, substituting Eq(3) for | in this relation and using Eq.

(27, we get Laplacian operator:
1 1
S=TWU+B= DV +B, (AB) A %:zizi L,V
Tl o
where the second equality follows from E@1). Inserting )
Eqg. (A6) into (A5) and using the normalization relation I 1 i 0,‘9\1'0 n 1 Vo
u-u=—1 results in the following expression far. £%sing’ 96’ 90" | E%sirte’ dp’?
1 (B6)
)\=m(h2+ DV¥.DV)Y2 (A7)

Here we assume that there is only one domain covering the
star, i.e. thaM y=M =1, so that the surface of the star is

Finally substituting Eq(A7) for A and Eq.(A6) for S into given by é=1. Equation(B1) is then rewritten as

Shibata’s first integral of motiofA4) results in Teukolsky's
form of the integral of motion[Eg. (A1) abovd, which P
. . : A —
shows the equivalence of the various formulations. LV o=0+a(l— gz)qu,o_aéq,ojLBga_g —b'V, W,
APPENDIX B: NUMERICAL METHOD TO SOLVE THE (B7)

ELLIPTIC EQUATION FOR THE VELOCITY The basic idea is to solve this equation by iterations, consid-

POTENTIAL ering the whole right-hand as a source term and using the
Equation(63) for the part¥ of the velocity potential can previous step value o¥, in it. One must also choose the
be written constants @ and B so that the terma(l—&)A,V,
_ (BEIW10¢) is as close as possible &\ ¥, (b'V;¥,). We
aAWV,+b'Vivy=o, (B1)  opt for the following choices:
%Our A and S are denoted, respectively, by’ and V' by 0These authors are using and not¥, as the unknown function,
Shibata[20]. but this has no consequence on the following discussion.
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- a_r (B8)
a=a <9§ o
and
B [ or 2
,6’——ma b (9_6 , (Bg)

whereb' is ther component of the vectds'. In solving Eq.
(B7) by iterations, we introduce the following relaxation:

W AT+ (1-N) W) 2, (B10)
wherelJ (J—1) labels the current stegprevious stepand\

is the relaxation factor, typically chosen to be 0.5.
At each step of the iteration, EGB7) is solved by the

PHYSICAL REVIEW D 63 064029

operator on the left-hand side of E@®11) is regular for each
of the polynomialsP,(¢) (such a basis is called a Galerkin
basis.

We thus consider the differential operatgracting forl
even : from the N— 1) dimensional vectorial space span by
the polynomialsP,(£) (0sn=N-2) to the N—1) dimen-
sional vectorial space span by the polynomidis(¢) (O
=n=N-2); for I=1 : from the N-dimensional vectorial
space span by the polynomidfs,(&) =Ton:1(€) (0=<n<N
—1) to itself; for | odd and I>1: from the
(N—1)-dimensional vectorial space span by the polynomials
P,(£€) (0=n=N-2) to the (N—1)-dimensional vectorial
space span by the polynomials,, 1(£¢) (0<n=N-2).
The operator, is then one-to-onéisomorphism between
these vectorial spaces. This means that the only homoge-
neous solution is zero. Otherwise stated, for daittere is a

following spectral method. First an expansion in sphericalunique solution to Eq(B11) in the vectorial space spans by

harmonicsY["(¢',¢’) is performed, so that EqB7) be-

the P,(£)’s. To find this solution, we transform the matrix

comes equivalent to a set of ordinary differential equationgd;; of L, in the above bases into a banded matrix by means

[one equation for each couplé i) ]:
Lif(&)=s(),

wheref (&) ands(¢) are the (,m) coefficient of W, and of
the whole right-hand side of EGB7), respectively, and, is
the following differential operator:

(B11)

L[ d?f 2df 1(1+1) df
Lif==a(1-£%) AT T +’8§d_§'
(B12)

Since the source(¢) vanishes folt =0, we treat only the
casel>0. Regularity properties at the origit€0) imply
that f(¢) and s(¢) should be expandable in evdodd)
Chebyshev polynomial¥,(&) for | even(odd). Due to the
division by ¢ and £2, the differential operatot, is singular
on Chebyshev polynomials §=0, except fol =1. There-

of the following linear combinations:

for | even:
Kij: i+1[Aij_A(i+1)j] for 0<i=N-3, (B13
'Z‘iJZKii_K(Hz)j for 0<i<N-5; (B14)

for | odd:

_ 1 A |

Aij= 7 [(1+ 80 A=A 2)] for 0<i=N-3,
(B15)

Aj=Aj—Ajip; for 0<i<N-5. (B16)

Since the resulting matri?&ij has at most 5 bands, the linear
system is easily and CPU-efficiently solved to get the coef-

fore, instead of Chebyshev polynomials, we use the followficients of the solutionf in the basis of the polynomials

ing polynomialsP,(§) as a expansion basis fof N is the

P.(&€). A simple combination is then performed on these

total number of coefficients in the Chebyshev expansionsgoefficients to get the coefficients on the usual Chebyshev

denotedN‘®(0) in Sec. IV B for | even :P,(&):=T,n(£)
T Ton+2(8) =28T2n+1(8), Osn=N-2; for I=1: P,(¢§)
=Ty 1(€), Osn=N-1; for | odd and|>1: P,(§
:=(2n+3)T2n+l(§)+(2n+ 1)T2n+3(§), osnsN-2. The

bases. A very discriminating test of this numerical technique,
namely the evaluation of the tirscomponent of the velocity
field resulting fromV, is presented in Figs. 13—1f5ec.
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