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Chiral fermions, orbifolds, scalars, and fat branes
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We note that orbifold boundary conditions that produce chiral fermion zero modes in compactified higher
dimensional theories may distort scalar field vacuum expectation values, giving rise to nontrivial dependence
on the extra dimensions. We illustrate this in a simple five-dimensional model, which has chiral fermion zero
modes stuck to fat branes. The model could provide a simple and explicit realization of the separation of quarks
and leptons in the fifth dimension. We discuss the Kaluza-Klein expansion in some detail. We find that there
are, in general, non-zero-mode states stuck to the brane, just as the chiral zero mode is. We see explicitly the
transition from the states dominated by the internal structure of the fat brane to those dominated by the
compactification.
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I. CHIRAL FERMIONS IN FIVE DIMENSIONS

A field theory in a space of more than four space-tim
dimensions may be relevant to the description of the r
world if the extra dimensions are compactified@1,2#. It may
even be relevant if the extra dimensions are infinite and if
gravitational interactions distort the extra dimensions in
appropriate way@3#. We will ignore the gravitational inter-
actions. Our starting point will be an effective descriptio
approximately valid at long distances, of a theory with co
pactified extra dimensions. We will focus on the chiral or
fold boundary conditions that seem necessary to obtain ch
fermion zero modes from the compactified extra dimensi
@4,5#. The basic point is simple and generic. If the orbifo
boundary conditions force a scalar field to be odd at an
bifold fixed point, the vacuum expectation value~VEV! must
vanish on the fixed point. If the potential is such that the fi
develops a VEV in the interior, a nontrivial shape must res
for the VEV. We will describe in detail a simple model i
which the orbifold boundary condition clashes with the te
dency of a scalar field to develop a constant VEV. The re
is a nontrivial model of a fat brane that supports chiral f
mion zero modes in a larger compactified space. We will
able to analyze the Kaluza-Klein~KK ! expansion for this
system in quantitative detail. We will find that there are,
general, non-zero-mode states stuck to the brane, just a
chiral zero mode is. We will see explicitly the transition fro
these states dominated by the internal structure of the
brane to those dominated by the compactification.

Our starting point is a simple example of a chiral orbifo
boundary condition equivalent to a model discussed in R
@5#. Consider a free massless fermion field in five dimensi
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in which the extra dimensionx5 is in the interval@0, L#. The
Lagrangian is1

L5c̄~ i ]”2g5]5!c. ~1.1!

The fieldc has four components and at the Lagrangian le
the theory appears vectorlike. However, we will impo
boundary conditions on the field that are periodic up to aZ2
symmetry of the Lagrangian so that the extra dimension
comes an orbifold.2 In the process, we will introduce som
chiral structure. The Lagrangian~1.1! is invariant under the
transformation3

c~x,x5!→C~x,x5![g5c~x,L2x5!. ~1.2!

With this Z2 symmetry in hand, we can impose modifie
periodic conditions on our fermion field in the followin
form:

c~x,x5!5C~x,L1x5!5c~x,2L1x5!. ~1.3!

1Note that we are ignoring the possibility of interactions on t
boundaries atx550 andL. This is dangerous even in an effective
field theory treatment because interactions in the bulk may ind
interactions on the boundaries. However, we believe that our c
clusions are unaffected, and we will return to the general issue
separate paper. We are grateful to Misha Voloshin for discuss
on this issue.

2Cumrun Vafa has emphasized to us the differences between
construction and a string theory orbifold. He notes that because
miss the ‘‘winding’’ modes that are stuck to the fixed points, o
procedure may be quite dangerous, possibly leading to nonun
theories. We do not see how such disasters can occur in
effective-field theory approach we take in this paper. However,
reader should be warned that our examples may be difficult to
produce in a more fundamental scheme such as string theory.

3Note that the masslessness of the fermion is important—a c
stant mass term would not be invariant under Eq.~1.2!. However,
there is a singular limit of the model we discuss that correspond
a mass term that is piecewise continuous with a discontinuity on
orbifold boundary.
©2001 The American Physical Society27-1
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That is, the field is periodic inx5 with a period 2L, but if x5
is translated by an odd multiple ofL, one gets notc but the
transformed fieldC. It is through this boundary condition
that chirality enters into the theory@5#. Specifically, Eq.~1.3!
implies the following behaviors nearx550 andL:

c~x,2x5!5C~x,L2x5!5g5c~x,x5!,

c~x,L1x5!5C~x,x5!5g5c~x,L2x5!.
~1.4!

Equation~1.4! shows that the pointsx550 andL are fixed-
points of the orbifold boundary conditions. If we decompo
c into chiral componentsc6 , where

c5c11c2 , g5c656c6 , ~1.5!

then Eq.~1.4! is equivalent to having the chiral fields define
on a circle,x5P@0,2L) with 2L identified with 0, but with
the chiral componentsc6 required to be, respectively, sym
metric and antisymmetric at the fixed pointsx550 andx5
5L, so this is anS1 /Z2 orbifold @6#.

Obviously, this simple model has a chiral fermion ze
mode,

c1~x,x5!5c~x!, c2~x,x5!50, ~1.6!

independent of the extra dimension. All the non-zero-mo
come in chiral pairs, as they must. In this simple case,
can find them explicitly with ease. In general, the modes
massM have the form

cM1~x,x5!5cM1~x!jM1~x5!,

cM2~x,x5!5cM2~x!jM2~x5!, ~1.7!

where

2]5jM25MjM1 , ]5jM15MjM2 ~1.8!

andjM6(x5) are, respectively, symmetric and antisymmet
at the pointsx550 and x55L. For nonzeroM, we can
change the sign ofM by simply changing the sign ofjM2 .
Solving Eq.~1.8! gives

jM1~x5!5k cosnpx5 /L, jM2~x5!52k sinnpx5 /L,
~1.9!

where

M5np/L ~1.10!

andk is a normalization factor.
This simple model has a chiral zero mode that is u

formly spread over the compact extra dimension. In Sec
we show that when we add a scalar field to the model i
simple and obvious way, we produce zero modes that
concentrated near the orbifold fixed point. The reason is
we add a potential that produces a nonzero VEV for
scalar field that breaks the symmetry between the two o
fold fixed points. Furthermore, the orbifold boundary con
tions make it impossible for the VEV to be constant. T
generic result is a pair of fat branes with a highly nontriv
06402
e

s
e
f

-
I,
a
re
at
e
i-

-

l

structure in the fifth dimension whose consequences we
plore in the rest of the paper. In Sec. III, we discuss K
expansion for the scalar field and a fermion field. Using te
niques borrowed from supersymmetric quantum mecha
@7#, we construct many of the KK modes in detail and ide
tify qualitative features that depend on the nontrivial stru
ture in the extra dimension.

II. SCALARS AND THEIR VEVs

The elaborated model lives in the same five dimensio
space as the previous model, and involves a single additi
real scalar fieldf. The Lagrangian is

L5c̄~ i ]”2g5]52 f f!c1 1
2 ]mf]mf

2 1
2 ]5f]5f2

l

4
~f22v2!2, ~2.1!

where the couplingsf andl are real. The Lagrangian~2.1! is
invariant under the transformation

f~x,x5!→F~x,x5![2f~x,L2x5!,

c~x,x5!→C~x,x5![g5c~x,L2x5!. ~2.2!

Now, as before, we can require modified periodic bound
conditions

c~x,2x5!5C~x,L2x5!5g5c~x,x5!,

c~x,L1x5!5C~x,x5!5g5c~x,L2x5!,
~2.3!

f~x,2x5!5F~x,L2x5!52f~x,x5!,

f~x,L1x5!5F~x,x5!52f~x,L2x5!.
~2.4!

The boundary conditions~2.4! require that the scalar field
vanish on the orbifold fixed points atx550 andL. However,
if v2.0 in Eq. ~2.1!, the scalar field wants to develop
vacuum expectation value. The result is that iflv2 is suffi-
ciently large, there is a minimum energy configuration
which

^f~x,x5!&5h~x5!, ~2.5!

where the real functionh(x5) satisfies

h~0!5h~L !50, h~x5!5h~L2x5!.0 for 0,x5,L.
~2.6!

There is another solution with

^f~x,x5!&52h~x5!, ~2.7!

related to Eq.~2.5! by the symmetry transformation~2.2!.
Now the fermion modes are given by Eq.~1.7! where the

j’s satisfy

$2]51 f h~x5!%jM25MjM1 ,

$]51 f h~x5!%jM15MjM2 , ~2.8!
7-2
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with jM6(x5), respectively, symmetric and antisymmetric
the pointsx550 andx55L.

The non-zero-modes of Eq.~2.8! come in pairs as always
For every mode withM5mÞ0, we can always find a mod
with M52m by changing the sign ofjM2 . However, there
is a chiral zero mode that must havej0250 because the
boundary conditions and the differential equations forM
50 cannot be satisfied simultaneously for nonzeroj02 . The
zero mode looks like

j01~x5!5ke2s~x5!, j02~x5!50, ~2.9!

for

s~x5!5 f E
0

x5
dy h~y!. ~2.10!

Note that the boundary conditions~2.3! are automatically
satisfied becauseh(x5) vanishes on the fixed points atx5
50 andx55L. If instead, we tried to find a nonzero solutio
for j02 , we would have to choose the normalization co
stantk equal to zero to satisfy the boundary conditions, so
nontrivial solution is possible.

If f h(x5) is positive, the zero mode in Eq.~2.9! is con-
centrated atx550. If it is negative, the zero mode is conce
trated atx55L. If there are several fermions with coupling
of different signs, those with positive couplings will be co
centrated atx550 while those with negative couplings wi
be concentrated atx55L. Thus this could give a very simpl
explicit realization of the idea of@8,9# that if quarks and
leptons are localized on different branes, the proton can
stabilized.

In the free-fermion example of Sec. I, the limitL→` is
singular because the zero mode is not normalizable in
limit. However, in the model of Eqs.~2.1! with f h(x5).0
and with the normalizable zero mode stuck to the orbif
fixed point at the origin, we can takeL→` without doing
violence to the physics. In fact, the theory simplifies in th
limit. This simpleL5` limit is not particularly interesting
phenomenologically. If we were to couple gauge fields to
fermions, as we must certainly do to get a realistic mod
takingL→` would send the effective gauge coupling to t
fermion zero modes to zero~because the gauge fields wou
be spread over the whole space and the four-dimensi
gauge coupling would go to zero like 1/AL!. However, the
L5` theory is a very interesting toy model because we
do the KK expansion explicitly. Thus we will discuss theL
5` theory to help us understand the more interesting cas
finite but largeL.

In theL5` theory, the orbifold is a halfline, which is th
real line modded out byZ2:

f~x,x5!→2f~x,2x5!, c~x,x5!→g5c~x,2x5!.
~2.11!

We will see in the next section that the KK modes in theL
5` model can be found analytically@10#.
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III. FAT BRANES

In this section, we examine the model of Sec. II in mo
quantitative detail. Because the shape of the fermion z
mode in Eq.~2.9! defines a particular ‘‘fat brane,’’ it may be
interesting to identify effects that depend on the finite ext
of the zero mode. One such effect arises when we integ
out the scalars. We will get four-fermion operators with c
culable coefficients. These and other such effects depen
the structure of the KK modes. Here we discuss the K
expansion. We will see that we can find the form of t
modes explicitly in the limitL→`. That in turn will allow
us to write an excellent approximation to many of the mod
for large finiteL.

We are interested in the Lagrangian as a function of
shifted field,

f̃~x,x5![f~x,x5!2h~x5!. ~3.1!

The functionh(x5) is the value ofw(x5) that minimizes

E
0

L

dx5F 1
2 ]5w~x5!]5w~x5!1

l

4
$w~x5!22v2%2G ~3.2!

subject to the boundary condition

w~0!5w~L !50. ~3.3!

The function satisfies

]5
2h~x5!52l$v22h~x5!2%h~x5!. ~3.4!

Evidently, there is a tension between the boundary con
tions that force the field to vanish on the orbifold fixed poin
and the potential, which wants to produce a VEV in t
interior.

Before we discuss the form ofh(x5), let us consider the
constraints on the parametersL, f, l, andv in the effective-
field theory. It is important to note that the various dime
sional parameters in the effective low-energy theory are
a priori related. All come down to us from some more fu
damental theory at shorter distances, and each of
effective-theory parameters must satisfy a constraint in or
that the effective theory makes sense. But they need no
related to each other. This will be important to us because
will find a region in the parameter space in which the calc
lation is particularly simple and transparent. The constra
from effective-field theory are simply that the dimension
parameters are small~or large! compared to the fundamenta
scale to the appropriate power. Thus if the fundamental s
is M P , the lengthL is much greater than 1/M P , the Yukawa
coupling f is much smaller than 1/AM P, the self-couplingl
is much smaller than 1/M P , and the masslv2 is much
smaller thanM P

2 . This is summarized in Eq.~3.5!:

L@
1

M P
, f !

1

AM P

, l!
1

M P
, lv2!M P

2 . ~3.5!

But, for example, the dimensionless quantitylv2L2 is not
constrained.
7-3



e

In
a

th

ns

y

d

he

nt

of

the

o

ero
the
y on
r

he
tent
-

m-
tes

ex-
b-
ed

HOWARD GEORGI, AARON K. GRANT, AND GIRMA HAILU PHYSICAL REVIEW D63 064027
For generic values of the parametersl, v, L, etc., it is
difficult to study the model analytically. However, in th
limit

L2@
1

lv2 , ~3.6!

it is relatively easy to construct approximate solutions.
this case, the solution forh(x5) can be approximated by
series of well separated kinks.

First considerL5`. Then a solution to Eq.~3.4! is a
single kink given by

h~x5!5v tanhS l

2D 1/2

vx5 . ~3.7!

It is convenient to choose units in which

2lv251 ~3.8!

because 2lv2 is the mass parameter that determines
physical size of the kink. In these units, Eq.~3.6! becomes
simply L@1 and Eq.~3.7! is

h~x5!5v tanh
x5

2
. ~3.9!

For large finiteL, we can construct approximate solutio
by putting together kinks atx550 andx55L. In the interval
@0, L#, such a solution can be accurately approximated b

h~x5!.v tanh
x5

2
tanh

L2x5

2
1O~e2L!. ~3.10!

The VEV, h(x5), is odd about each of the orbifold fixe
points and can be continued to all values ofx5 subject to the
orbifold boundary conditions.

Fluctuations off(x) about^f(x)&5h(x5) can be studied
using a KK expansion. We write

f~x!5h~x5!1f̃~x!5h~x5!1(
n

fn~xm! f n~x5!,

~3.11!

wherefn(xm) depends only on the four coordinates of t
noncompact space. We normalize thef n to unity.

E dx5f n
2~x5!51. ~3.12!

Substituting Eq.~3.11! into the action for the scalars from
Eq. ~2.1! and expanding to quadratic order infn , we find

S5Ed4x(
n

H 1

2
~]fn!22

1

2 F Edx5f n$2 f n9

1m2~x5! f n%Gfn
2J , ~3.13!

where
06402
e

m2~x5!5
]2V~f!

]f2 U
f5h~x5!

. ~3.14!

For infinite L

m2~x5!5H 12
3

2
sech2

x5

2 J ~3.15!

while for large finiteL

m2~x5!.H 12
3

2
sech2

x5

2
2

3

2
sech2

L2x5

2 J . ~3.16!

If the KK modes f n are chosen to satisfy the equivale
Schrödinger eigenvalue problem

2 f n91m2~x5! f n5mn
2f n , ~3.17!

then Eq.~3.13! reduces to the action for an infinite number
four-dimensional scalar particles of massm1 ,m2 , etc.

We can understand the KK spectrum by considering
case of an infinite extra dimension. The Schro¨dinger equa-
tion in this limit becomes

2 f n91S 12
3

2
sech2

x5

2 D f n5mn
2f n . ~3.18!

On the finite line, this Schro¨dinger equation possesses tw
bound states, withm250 andm25 3

4 , with wave functions

f 0~x5!}sech2
x5

2
, f 1~x5!}sinh

x5

2
sech2

x5

2
. ~3.19!

As expected, the ground state is even aboutx550 and the
excited state is odd. What is going on here is that the z
mode is associated with the translational symmetry of
infinite case. There is a zero mode because in the theor
the infinite line, the kink is free to sit anywhere. In ou
theory, however, translation invariance in thex5 direction is
broken by the boundary conditions. This kink is stuck to t
orbifold and there is no scalar zero mode. This is consis
because the solutionf 0 is ruled out by our boundary condi
tion that f be odd inx5 at the origin. Thusf 1 is the only
discrete KK mode forL5`. Evidently, since it exists for
L5`, it is associated with the fat brane rather than the co
pactification. The remaining solutions are continuum sta
with m2>1 ~again in units with 2lv251!. The continuum
state withm25k211 has the form

f 2k~x5!}S 1

2
2k22

3

4
sech2

x5

2 D sinkx52
3k

2
tanh

x5

2
coskx5 .

~3.20!

All these results are derived in detail in Appendix A.
Returning to the case of a finite extra dimension, we

pect the solutions to look like solutions to the infinite pro
lem near the orbifold fixed points. Because the normaliz
solution f 1(x5) goes to zero asx5→`, we get approximate
solutions m2.3/4(53lv2/2) for large L by taking linear
combinations of copies of this mode centered atx550 and
7-4
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x55L. There will be two such states, corresponding to
‘‘plus’’ and ‘‘minus’’ linear combinations of the wave func
tions centered atx550 andx55L,

f 1~x5!6 f 1~L2x5!. ~3.21!

In addition, we expect the usual KK ‘‘continuum’’ state
with masses above 2lv2 spaced byDm.p/L. Approximate
solutions for these can be obtained from Eq.~3.20! by taking

f 2k~x5! for x5,L/2 ~3.22!

and either

f 2k~L2x5! for x5.L/2 for k such that f 2k8 ~L/2!50,
~3.23!

or

2 f 2k~L2x5! for x5.L/2 for k such that f 2k~L/2!50.
~3.24!

The matching conditions atx55L/2 then approximately de
termine the allowedk’s.

For the fermions, the modes of massM must satisfy

ajM15MjM2 , a†jM25MjM1 , ~3.25!

where

a5]51 f h~x5!, a†52]51 f h~x5!. ~3.26!

As with the scalars, we can make exact statements a
these modes in the caseL5`, and reliable approximate
statements for large but finiteL. We will simply state results
here. Some details are in appendix B and more will appea
@11#.

For L5`, Eqs.~3.25! and ~3.26! become

awjM15MjM2 , aw
† jM25MjM1 , ~3.27!

where

aw5]51w tanh
x5

2
, aw

† 52]51w tanh
x5

2
~3.28!

with

w5 f v.0. ~3.29!

The condition~3.29! is necessary to ensure that the norm
izable fermion zero mode is stuck to the orbifold atx550 so
that L can be taken to infinity.4

There is always a normalizable chiral zero mode stuck
the brane given by Eqs.~2.9! and ~2.10!, which in this case
becomes simply

4Note also that~as Misha Voloshin pointed out to us! if f is large,
radiative corrections may be important in the calculation of
VEV of f. We ignore this issue in this paper.
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jM1~x5!}g0,w~x5![sech2w
x5

2
, jM2~x5!50.

~3.30!

However, we find that forj 21,w< j for positive integerj,
there arej 21 massive modes stuck to the brane. Like t
zero mode, these states are associated with the fat brane
and not the compactification. They have the form

jM1~x5!}gl ,w~x5!, jM2~x5!}awjM1~x5!, ~3.31!

with

M252wl2 l 2. ~3.32!

The functiongl ,w is obtained by acting with 2l a†s with
decreasingw values ong0,w2 l ,

~3.33!

for l 51 to j 21.
There are a few things worth noticing about these so

tions.
~1! All the functionsgl ,w(x5) are even forx5→2x5 , so

the boundary condition atx550 is satisfied.
~2! gl ,w(x5) goes to zero likee2(w2 l )x5 as x5→`. The

function inherits this behavior fromg0,w2 l . Thea†’s acting
on it do not affect the leading exponential behavior. This
one reason why we cannot go beyondl 5 j 21 in Eq.
~3.33!—the resulting functions would grow at infinity an
would not be normalizable.

~3! jM2(x5) is also proportional to the product in Eq
~3.33! with the initial aw

† removed because this state is
eigenstate ofawaw

† .
For M2.w2, we find continuum solutions. These cann

be written in elementary closed form except for integer
half-integerw. But they can be found in terms of hyperge
metric functions@10,11#.

Returning to the finite case, one might worry that beca
of the asymmetry betweenx550 where the fermions are
bound andx55L where they are repelled, it might be diffi
cult to find modes corresponding to the massive normali
states in Eq.~3.33! that satisfy the boundary conditions
large L. The boundary condition is automatic for the ze
mode but not for the massive modes. Fortunately, there
simple way to construct approximate eigenfunctions for la
L.

One way to find the normalizable chiral zero mode f
finite L is to use Eqs.~2.9! and ~2.10! with our approximate
form for h(x5) @Eq. ~3.10!#. But another way is to think of
dividing the orbifold into two regions as we did for the scal
modes,x5,L/2 dominated by the fixed point atx550, and
x5.L/2 dominated by the fixed point atx55L. Near x5
5L, the solution looks like a non-normalizable zero mod
just the inverse ofg0,w :

e

7-5
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HOWARD GEORGI, AARON K. GRANT, AND GIRMA HAILU PHYSICAL REVIEW D63 064027
jM1~x5!}g̃0,w~x5![cosh2w
L2x5

2
, jM2~x5!50.

~3.34!

Now asx5 decreases fromx55L toward x55L/2, g̃0,w in-
creases exponentially, and atx55L/2 it can be matched to a
excellent approximation ontog0,w(x5), which is exponen-
tially falling at the same rate.

For the j 21 massive modes of Eqs.~3.31!–~3.33!, a
similar strategy can be applied. There are non-normaliza
solutions that are analogous to the normalizable modes a
other end of the orbifold:

jM1~x5!}g̃l ,w~x5!, jM2~x5!}awjM1~x5!, ~3.35!

~3.36!

for l 51 to j 21. These satisfy the boundary condition
x55L and match smoothly onto Eqs.~3.31!–~3.33! at x5
5L/2. Note that theg̃’s never vanish. Thus all the nodes
these wave functions are near the fixed point atx550, as
expected.

We do not know a similarly simple approximation
match the continuum modes from the two sides of the o
fold.

IV. ZERO MODES NEAR THE FIXED POINT

The fermion zero modes described in Sec. II are all c
centrated on one of the orbifold fixed points, atx550 or L.
In this section, we note that by elaborating the mo
slightly, we can produce zero modes that are maximized n
but not on the fixed points. Consider the followin
Lagrangian:5

L5c̄@ i ]”2g5]52 f $12a~]m]m2]5
2!%f#c1 1

2 ]mf]mf

2 1
2 ]5f]5f2

l

4
~f22v2!2. ~4.1!

We have added to Eq.~2.1! only the single term proportiona
to the new parametera. Now, however, the zero mode i
given by Eqs.~2.9! and ~2.10! with a different h(x5) that
includes the effect of the new term. For largeL, we can write

h~x5!' f vS tanh
x5

2
1a]5

2 tanh
x5

2 D S tanh
L2x5

2

1a]5
2 tanh

L2x5

2 D ~4.2!

5This Lagrangian was suggested to us by Martin Schmaltz to
place a more complicated scheme that we used to get the same
result.
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for constantsf and a. This is interesting because fora.2,
h(x5) changes sign at

x̃552 arctanhA122/a ~4.3!

and atx55L2 x̃5 . For f .0, this describes a fermion con
centrated atx̃5 or L2 x̃5 depending on the sign off v.

Note that for reasonable values ofa, x̃5 is of order one.
Thus the zero mode does not stray very far from the orbif
fixed point. What we would expect in a model with finiteL
and several fermions is that the fermions would fall into fo
sets:

for f .0 and a,2 the zero mode is concentrated a

x550,

for f .0 and a.2 the zero mode is concentrated a

x55 x̃5 near x550,

for f ,0 and a,2 the zero mode is concentrated a

x55L,

for f ,0 and a.2 the zero mode is concentrated a

x55L2 x̃5 near x55L. ~4.4!

One annoying thing about this is that the higher derivat
coupling we have added has a higher dimension than
ordinary Yukawa coupling, and therefore we might expe
the parametera to be small—of orderlv2/M P

2 . We can
consistently takea of order one in our units only iff is small.
This could be a problem in model building.

V. CONCLUDING QUESTIONS

We have shown in a very explicit example how sca
VEVs and orbifold boundary conditions combine to produ
nontrivial structure in the extra dimensions. This behavio
generic, and we expect behavior of this kind to appear
other explicit models of fat branes. The most interesting g
eral result is that the KK expansion may produce two kin
of massive modes—those truly associated with the comp
tification and those stuck to the fat brane. Let us close wit
couple of very different questions.

~i! Do the KK states that are normalizable in theL5`
limit play a special role or are they simply the lightest of t
KK excitations? It seems likely to us that the answer is
former. These states are stuck to the fat brane and are
very different from the KK states associated with compac
fication. Particularly intriguing is the nearly degenerate p
of scalars in Eq.~3.21!. These may be an important source
communication between fermions localized on the two d
ferent branes.

~ii ! Does this kind of construction~which in some ways
resembles the Kaplan idea@12#! help in any way with the
difficulties of putting chiral fermions on the lattice? We d
not think so. It seems that this structure makes it imposs

e-
nal
7-6
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to decouple the doublers associated with the zero mode
the question is interesting and may be worth pursuing
ther.
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APPENDIX A: SUSY QUANTUM MECHANICS

Here we give more details about the solution for the sca
modes in theL5` model. We use techniques from supe
symmetric ~SUSY! quantum mechanics@7#. In solving for
the scalar KK modes in the kink background, one needs
eigenfunctions of the Schro¨dinger equation~3.18!. In the
case of an infinite extra dimension, we can solve this eq
tion exactly using supersymmetric quantum mechanics. F
we define two sets of ‘‘raising’’ and ‘‘lowering’’ operators

ai
†52]51gi~x5!, ai5]51gi~x5!, ~A1!

where

g15
1

2
tanh

x5

2
, g25tanh

x5

2
. ~A2!

Because

]5 tanh
x5

2
5

1

2 S 12tanh2
x5

2 D , ~A3!

it is straightforward to verify that

a1a1
†52]5

21
1

4 S 12tanh2
x5

2 D1
1

4
tanh2

x5

2

52]5
21

1

4
, ~A4!

a1
†a152]5

22
1

4 S 12tanh2
x5

2 D1
1

4
tanh2

x5

2

52]5
22

1

4
1

1

2
tanh2

x5

2
, ~A5!

a2a2
†52]5

21
1

2 S 12tanh2
x5

2 D1tanh2
x5

2

52]5
21

1

2
1

1

2
tanh2

x5

2
, ~A6!
06402
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a2
†a252]5

22
1

2 S 12tanh2
x5

2 D1tanh2
x5

2

52]5
22

1

2
1

3

2
tanh2

x5

2
, ~A7!

Thus

a1
†a15a2a2

†2
3

4
52]5

21S 1

4
2

1

2
sech2

x5

2 D , ~A8!

while

a2
†a252]5

21S 12
3

2
sech2

x5

2 D . ~A9!

We see thata2
†a2 is the Hamiltonian we wish to diagonalize

To construct solutions to this Hamiltonian, we first obser
that it is trivial to find the eigenfunctions of Eq.~A4!: these
are just plane waves. Furthermore, given a plane wave w
wave numberk obeying

a1a1
†x2k5~k211/4!x2k , ~A10!

we can construct an eigenfunction of Eq.~A8! by applying
a1

† to both sides:

a1
†a1~a1

†x2k!5~k211/4!~a1
†x2k!. ~A11!

So we conclude thata1
†a1 has all of the plane wave eigen

states ofa1a1
† plus an additional zero-energy bound sta

which is obtained by solvinga1x150:

a1x150→x1}sech
x5

2
. ~A12!

Furthermore, since Eq.~A8! can also be expressed i
terms ofa2a2

† , we can use the solutions of Eq.~A8! to find
solutions of the final Hamiltonian~A9!. Indeed, for each ei-
genvaluek of a1

†a1 , we have

a2a2
†f 5~a1

†a113/4! f 5~k213/4! f . ~A13!

Thus

a2a2
†x15

3

4
x1 , a2a2

†a1
†x2k5~k211!a1

†x2k . ~A14!

Multiplying both sides bya2
† yields eigenfunctions of our

original Hamiltonian. So the spectrum ofa2
†a2 consists of all

eigenvalues ofa1
†a1 ~shifted by 3

4! plus a zero-energy boun
state obtained froma2f 050:

a2f 050→ f 0}sech2
x5

2
. ~A15!

However, this zero mode is even and therefore, does
satisfy the boundary conditions. Thus, the allowed eig
states aref 1 and the odd plane waves
7-7
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f 1}a2
†x1}a2

† sech
x5

2
5

3

2
tanh

x5

2
sech

x5

2
, with m25 3

4 ,

~A16!

and

f 2k}a2
†a1

†x2k}S 1

2
2k22

3

4
sech2

x5

2 D sinkx5

2
3k

2
tanh

x5

2
coskx5 ,

~A17!
with m25k211.

APPENDIX B: FERMIONS ON FAT BRANES

Here we will sketch the proof of Eqs.~3.31!–~3.33!. From
Eqs.~3.27! and~3.28! it follows that j2 is an eigenfunction
of

awaw
† 52]5

21
w

2 S 12tanh2
x5

2 D1w2 tanh2
x5

2
~B1!

andjM1 is an eigenfunction of

aw
† aw52]5

22
w

2 S 12tanh2
x5

2 D1w2 tanh2
x5

2
. ~B2!

We will use a Dirac notation for the eigenfunctions, denoti
an eigenstate of Eq.~B2! with eigenvalueE by uE, w&.

Now it is obvious that

aw2a
† aw2a52]5

22
w2a

2 S 12tanh2
x5

2 D1~w2a!2 tanh2
x5

2
~B3!

and thus

awaw
† 2aw2a

† aw2a51
2w2a

2 S 12tanh2
x5

2 D
1~2wa2a2!tanh2

x5

2
. ~B4!

For a5 1
2 , the terms proportional to tanh2 cancel in Eq.~B4!

and we have

awaw
† 5aw21/2

† aw21/21w2 1
4 . ~B5!

Thus if uE2w1 1
4 ,w2 1

2 & is an eigenstate ofaw21/2
† aw21/2

with eigenvalueE2u1 1
4 , then aw

† uE2w1 1
4 ,w2 1

2 & is an
eigenstate ofaw

† aw with eigenvalueE. That is, so long as the
eigenstateuE2w1 1

4 ,w2 1
2 & exists, we can write

uE,w&}aw
† uE2w1 1

4 w2 1
2 &. ~B6!

Applying the same argument again shows that if
eigenstateuE22w11,w21& exists, we can write
06402
e

uE2w1 1
4 w2 1

2 &}aw21/2
† uE22w11,w21&, ~B7!

and therefore,

uE,w&}aw
† uE2w1 1

4 ,w2 1
2 &}aw

† aw21/2
† uE22w11,w21&.

~B8!

If uE, w& is to be an eigenstate, this process must terminat
a chiral zero mode. Conversely, we get all the normaliza
modes by acting on the zero modes by pairs ofa’s as in Eq.
~B8!. This is the basis of Eq.~3.33!.

APPENDIX C: ANOTHER SIMPLE LIMIT

If L is not large, the approximations discussed in Sec.
fail badly. In general, we then have to resort to numeri
techniques. Here we discuss one way of approaching
problem and identify another simple limit. In order to inco
porate the effects of the boundary conditions, we could
pand thef̃ field in a set of basis functions inx5 . In this case
the obvious ones are

jn~x5![S 2

L D 1/2

sin
npx5

L
. ~C1!

This will allow us to formulate the problem in general, an
also make it easy to solve it exactly in a particular limit.

Now we can formulate the problem in general by expan
ing h(x5) and f̃(x,x5) in terms of the basis functions~C1!.
We can truncate this expansion for some largen and solve
the finite problem. The coefficients in the expansion ofh(x5)
can be determined by minimizing Eq.~3.2!. However, a
close look suggests that there is a limit of the theory in wh
the calculation is much simpler. One can immediately s
that the expectation valueh(x5) goes to zero as

lv2L2→p2 ~C2!

from above. For smaller values oflv2L2, there is no
vacuum expectation value. This suggests taking

lv2L25p21e ~C3!

for small e. When we do that, we find that we can calcula
the coefficients inh(x5) as a power series ine. The first
terms are

h~x5!5S 2

3lL D 1/2

e1/2j1~x5!1
1

24p2 S 2

3lL D 1/2

e3/2j3~x5!

1O~e5/2!. ~C4!

Furthermore, doing the KK expansion, we find that t
mass squared of thef̃1 mode is 2e/L2, while all the other
mass squares scale withp2/L2, not suppressed bye. To
leading order, the mass squared of the modef̃n for n.1 is
(n221)p2/L2.
7-8
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