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Chiral fermions, orbifolds, scalars, and fat branes
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We note that orbifold boundary conditions that produce chiral fermion zero modes in compactified higher
dimensional theories may distort scalar field vacuum expectation values, giving rise to nontrivial dependence
on the extra dimensions. We illustrate this in a simple five-dimensional model, which has chiral fermion zero
modes stuck to fat branes. The model could provide a simple and explicit realization of the separation of quarks
and leptons in the fifth dimension. We discuss the Kaluza-Klein expansion in some detail. We find that there
are, in general, non-zero-mode states stuck to the brane, just as the chiral zero mode is. We see explicitly the
transition from the states dominated by the internal structure of the fat brane to those dominated by the
compactification.
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I. CHIRAL FERMIONS IN FIVE DIMENSIONS in which the extra dimensiors is in the intervalO, L]. The
Lagrangian i$

A field theory in a space of more than four space-time T
dimensions may be relevant to the description of the real £=4(i0=y5d5) ¥ .3
world if the extra dimensions are compactifild2]. It may  The field y has four components and at the Lagrangian level
even be relevant if the extra dimensions are |nf|n|te and if thqhe theory appears Vector"ke_ However, we will impose
gravitational interactions distort the extra dimensions in amoundary conditions on the field that are periodic up ©,a
appropriate way3]. We will ignore the gravitational inter- symmetry of the Lagrangian so that the extra dimension be-
actions. Our starting point will be an effective description,comes an orbifold.In the process, we will introduce some
approximately valid at long distances, of a theory with com-chiral structure. The Lagrangigd.l) is invariant under the
pactified extra dimensions. We will focus on the chiral orbi- transformatiof
fold boundary conditions that seem necessary to obtain chiral
fermion zero modes from the compactified extra dimensions P(X,X5) =W (X,X5) = y5)(X,L —Xs). 1.2
[4,5]. The basic point is simple and generic. If the orbifold . ) _ .
boundary conditions force a scalar field to be odd at an or?Vith this Z; symmetry in hand, we can impose modified
bifold fixed point, the vacuum expectation val¢EV) must per|9d|c conditions on our fermion field in the following
vanish on the fixed point. If the potential is such that the field©™™
develops a VEV in the interior, a nontrivial shape must result
for the VEV. We will describe in detail a simple model in
which the orbifold boundary condition clashes with the ten-
dency of a scalar field to develop a constant VEV. The result
is a nontrivial model of a fat brane that supports chiral fer-
mion zero modes in a larger compactified space. We will b

(X, X5) =V (X,L+X5) = th(X,2L + Xz). (1.3

INote that we are ignoring the possibility of interactions on the
boundaries aks=0 andL. This is dangerous even in an effective-

ble t | the Kal KleifkK ion for thi ?ield theory treatment because interactions in the bulk may induce
able to analyze the Kaluza-KleifkK) expansion for this interactions on the boundaries. However, we believe that our con-

system in quantitative detail. We will find that there are, in¢jysions are unaffected, and we will return to the general issue in a

general, non-zero-mode states stuck to the brane, just as tBgparate paper. We are grateful to Misha Voloshin for discussions

chiral zero mode is. We will see explicitly the transition from gn this issue.

these states dominated by the internal structure of the fat?Cumrun Vafa has emphasized to us the differences between our

brane to those dominated by the compactification. construction and a string theory orbifold. He notes that because we
Our starting point is a simple example of a chiral orbifold miss the “winding” modes that are stuck to the fixed points, our

boundary condition equivalent to a model discussed in RefProcedure may be quite dangerous, possibly leading to nonunitary

[5]. Consider a free massless fermion field in five dimensiondh€ories. We do not see how such disasters can occur in the
effective-field theory approach we take in this paper. However, the

reader should be warned that our examples may be difficult to re-

produce in a more fundamental scheme such as string theory.
3Note that the masslessness of the fermion is important—a con-

stant mass term would not be invariant under Bg2). However,

*Email address: georgi@physics.harvard.edu there is a singular limit of the model we discuss that corresponds to
"Email address: grant@gauss.harvard.edu a mass term that is piecewise continuous with a discontinuity on the
*Email address: hailu@feynman.harvard.edu orbifold boundary.
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That is, the field is periodic ing with a period 2, but if x5  structure in the fifth dimension whose consequences we ex-
is translated by an odd multiple &f one gets noty but the  plore in the rest of the paper. In Sec. Ill, we discuss KK

transformed fieldV. It is through this boundary condition expansion for the scalar field and a fermion field. Using tech-
that chirality enters into the theof$]. Specifically, Eq(1.3) niques borrowed from supersymmetric quantum mechanics

implies the following behaviors neag=0 andL: [7], we construct many of the KK modes in detail and iden-
tify qualitative features that depend on the nontrivial struc-
P(X, = X5) =W (X,L =X5) = ¥51/(X,Xs), ture in the extra dimension.
PX,L+X5) =W (X, X5) = 5 ih(X, L =Xs). 1.4 IIl. SCALARS AND THEIR VEVs

The elaborated model lives in the same five dimensional

Equation(1.4) shows that the pointss=0 andL are fixed-  gyace as the previous model, and involves a single additional
points of the orbifold boundary conditions. If we decompose,qq| scalar fieldp. The Lagrangian is

 into chiral components:.. , where

b=+, Y=, (1.9

then Eq.(1.4) is equivalent to having the chiral fields defined — 3 d5pdsp— £(¢2—U2)2, (2.1
on a circle,x5e[0,2L) with 2L identified with O, but with 4
the chiral componentg . required to be, respectively, sym-
metric and antisymmetric at the fixed points=0 andxs
=L, so this is arS,/Z, orbifold [6].

Obviously, this simple model has a chiral fermion zero d(X,X5)— P (X,X5)=— h(X,L—Xs),
mode,

L=y(id—ysd5— T D) P+ 3 9", ¢

where the couplingband\ are real. The Lagrangiai.l) is
invariant under the transformation

(X, X5) =W (X,X5) = y5h(X, L —Xs). (2.2)

{//+(X!X5):¢(X)v l)[f_(X,X5):O, (16)
. ) . Now, as before, we can require modified periodic boundary
independent of the extra dimension. All the non-zero-modeggnditions

come in chiral pairs, as they must. In this simple case, we

can find them explicitly with ease. In general, the modes of P(X,—X5) =W (X,L —X5) = y5¢/(X,Xs5),
massM have the form
(X, L +X5) =W (X,X5) = ysh(X,L —X5),
I+ (X,X5) = 1 (X) Em+ (Xs), (2.3
- (X,X5) = - (X) Em - (Xs), 1.7 d(X, —X5) =P (X, L —X5) = — (X, Xs),
where d(X,L+X5) =D (X,X5)= — p(X,L —Xg).

(2.9

—05ém-=Méyy, dséu+=Méy- (1.9 " . ,
The boundary condition&.4) require that the scalar field
andéy +(xs) are, respectively, symmetric and antisymmetricvanish on the orbifold fixed points at=0 andL. However,
at the pointsx;=0 and xs=L. For nonzeroM, we can if v2>0 in Eq. (2.1), the scalar field wants to develop a

change the sign d¥1 by simply changing the sign afy,—.  vacuum expectation value. The result is thakif is suffi-
Solving Eq.(1.8) gives ciently large, there is a minimum energy configuration in
which
Ev+(Xs)=kcosnmxs/L, &y_(Xs)=—ksinnmxs/L,
(1.9 (¢(x,X5)) =h(xs), (2.9
where where the real functioh(xs) satisfies
M=nm/L (1.10 h(0)=h(L)=0, h(xs)=h(L—x5)>0 for 0<xs<L.

. L (2.6
andk is a normalization factor.

This simple model has a chiral zero mode that is uni-There is another solution with
formly spread over the compact extra dimension. In Sec. Il,
we show that when we add a scalar field to the model in a (¢(x,X5))=—h(xs), 27
simple and obvious way, we produce zero modes that arg,
concentrated near the orbifold fixed point. The reason is that
we add a potential that produces a nonzero VEV for theg
scalar field that breaks the symmetry between the two orbi-

lated to Eq(2.5 by the symmetry transformatiaf2.2).
Now the fermion modes are given by H@4.7) where the
s satisfy

fold fixed points. Furthermore, the orbifold boundary condi- {—ds+fh(xs) ém-=Mé&ps
tions make it impossible for the VEV to be constant. The
generic result is a pair of fat branes with a highly nontrivial {95+ Th(Xg)}ém+=Mén_, (2.9
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with &y« (Xs), respectively, symmetric and antisymmetric at . FAT BRANES
the pointsxs=0 andxs=L.

The non-zero-modes of E(R.8) come in pairs as always.
For every mode witiM = u# 0, we can always find a mode
with M = — u by changing the sign ofy,_ . However, there
is a chiral zero mode that must ha¢ég_=0 because the
boundary conditions and the differential equations Kbr
=0 cannot be satisfied simultaneously for nonz&o. The
zero mode looks like

In this section, we examine the model of Sec. Il in more
quantitative detail. Because the shape of the fermion zero
mode in Eq.(2.9) defines a particular “fat brane,” it may be
interesting to identify effects that depend on the finite extent
of the zero mode. One such effect arises when we integrate
out the scalars. We will get four-fermion operators with cal-
culable coefficients. These and other such effects depend on
the structure of the KK modes. Here we discuss the KK
expansion. We will see that we can find the form of the

o+ (x5)=ke 5%, & (x5)=0, (2.9 modes explicitly in the limit.—c. That in turn will allow
us to write an excellent approximation to many of the modes
for for large finiteL.
We are interested in the Lagrangian as a function of the
Xs shifted field,
stxs) = 1 [ “ay hiy). (2.10 i
0 d(X,X5) = (X,X5) —(Xs). 3.1

Note that the boundary condition®.3) are automatically The functionh(xs) is the value ofp(xs) that minimizes
satisfied becaush(xs) vanishes on the fixed points at .
=0 andxs=L. If instead, we tried to find a nonzero solution f dxs
for &_, we would have to choose the normalization con- 0
stantk equal to zero to satisfy the boundary conditions, so no

1 A
2 J5¢(Xs5) d5p(Xs) + Z{QD(Xs)Z_UZ}Z (3.2

nontrivial solution is possible. subject to the boundary condition
If fh(xs) is positive, the zero mode in EqQR.9) is con- B _
centrated axs=0. If it is negative, the zero mode is concen- ¢(0)=¢(L)=0. 33

trated atxg=L. If there are several fermions with couplings
of different signs, those with positive couplings will be con-
centrated aks=0 while those W_ith negatiye coupling_s will aéh(x5)= — M= h(xs)? h(xs). (3.4
be concentrated at,=L. Thus this could give a very simple
explicit realization of the idea of8,9] that if quarks and Evidently, there is a tension between the boundary condi-
leptons are localized on different branes, the proton can bgons that force the field to vanish on the orbifold fixed points
stabilized. and the potential, which wants to produce a VEV in the
In the free-fermion example of Sec. I, the linkit>« is interior.
singular because the zero mode is not normalizable in the Before we discuss the form df(xs), let us consider the
limit. However, in the model of Eq92.1) with fh(xs)>0  constraints on the parametdrsf, \, andv in the effective-
and with the normalizable zero mode stuck to the orbifoldfield theory. It is important to note that the various dimen-
fixed point at the origin, we can take—o without doing  sional parameters in the effective low-energy theory are not
violence to the physics. In fact, the theory simplifies in thisa priori related. All come down to us from some more fun-
limit. This simpleL =9 limit is not particularly interesting damental theory at shorter distances, and each of the
phenomenologically. If we were to couple gauge fields to thesffective-theory parameters must satisfy a constraint in order
fermions, as we must certainly do to get a realistic modelthat the effective theory makes sense. But they need not be
taking L — o would send the effective gauge coupling to therelated to each other. This will be important to us because we
fermion zero modes to zerdecause the gauge fields would will find a region in the parameter space in which the calcu-
be spread over the whole space and the four-dimension#dtion is particularly simple and transparent. The constraints
gauge coupling would go to zero like il/). However, the from effective-field theory are simply that the dimensional
L= theory is a very interesting toy model because we carparameters are smdbr large compared to the fundamental
do the KK expansion explicitly. Thus we will discuss the scale to the appropriate power. Thus if the fundamental scale
=oo theory to help us understand the more interesting case @ Mp, the lengthL is much greater than W, the Yukawa

The function satisfies

finite but largeL. couplingf is much smaller than IMp, the self-coupling\
In the L= theory, the orbifold is a halfline, which is the is much smaller than Mp, and the mass\w? is much
real line modded out by,: smaller thari\/l%,. This is summarized in E43.5):
D(X,X5) = — (X, = Xs5),  P(X,X5)— Y5h(X, = Xs). 1 1 2 2
L>—, f< . A< , A\ <Ms. (3.5
(211 Mot S MW P
We will see in the next section that the KK modes in the But, for example, the dimensionless quantity?L? is not
=00 model can be found analytical[\L0]. constrained.
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For generic values of the parametersv, L, etc., it is
difficult to study the model analytically. However, in the
limit

L2> :
it is relatively easy to construct approximate solutions. In
this case, the solution fdn(xs) can be approximated by a
series of well separated kinks.

First considerL=c. Then a solution to Eq(3.4) is a

single kink given by

N 1/2
h(Xs):U tanl‘( E) UX5. (3n
It is convenient to choose units in which
2Av%=1 (3.8

because Rv? is the mass parameter that determines th
physical size of the kink. In these units, E®.6) becomes
simply L>1 and Eq.(3.7) is

X
h(Xs) = v tanh?S. (3.9
For large finiteL, we can construct approximate solutions

by putting together kinks at;=0 andxs;=L. In the interval
[0, L], such a solution can be accurately approximated by

L_X5

> +0(e™h).

(3.10

X5
h(xs)=v tanhEtanh

The VEV, h(xs), is odd about each of the orbifold fixed
points and can be continued to all valuesxgfsubject to the
orbifold boundary conditions.

Fluctuations of(x) about(#(x))=h(xs) can be studied
using a KK expansion. We write

) =h(xs) + B0 =h(x5) + 2 $n(x*)fn(Xs),
(3.11
where ¢,(x*) depends only on the four coordinates of the

noncompact space. We normalize theto unity.

f dxsf2(xs)=1. (3.12

Substituting Eq.(3.1)) into the action for the scalars from
Eg. (2.1 and expanding to quadratic order di,, we find

1 1
S= fd“x; fz((wnﬁ—g

Joxtot—1;

+m2(X5)fn}}d>ﬁ], (3.13

where

PHYSICAL REVIEW D63 064027

PV()
mZ(Xs): 982 (3.14
d=h(xz)
For infinite L
3 X
m2(Xs) = [ 1— Esecﬁf] (3.15
while for large finiteL
3 X5 3 L—x
mz(xs)z( 1-— Esecﬁf— Esecﬁ 5 5]. (3.16

If the KK modesf, are chosen to satisfy the equivalent
Schralinger eigenvalue problem
—fh+m?(xs) fo=mif,, (3.17)

then Eq.(3.13 reduces to the action for an infinite number of
four-dimensional scalar particles of masg,m,, etc.

€ We can understand the KK spectrum by considering the

case of an infinite extra dimension. The Sdalinger equa-
tion in this limit becomes

3 X
—fﬁ+(1——secl"r75)fn=mﬁfn. (3.189

2

On the finite line, this Schainger equation possesses two
bound states, witm?=0 andm?= 2, with wave functions

X X X
fo(x5)ocsecﬁ?5 . fi(xs) ocsinhE5 secﬁ75. (3.19

As expected, the ground state is even abaout 0 and the
excited state is odd. What is going on here is that the zero
mode is associated with the translational symmetry of the
infinite case. There is a zero mode because in the theory on
the infinite line, the kink is free to sit anywhere. In our
theory, however, translation invariance in tkedirection is
broken by the boundary conditions. This kink is stuck to the
orbifold and there is no scalar zero mode. This is consistent
because the solutiofy, is ruled out by our boundary condi-
tion that ¢ be odd inxs at the origin. Thusf; is the only
discrete KK mode folL=<«. Evidently, since it exists for

L =00, it is associated with the fat brane rather than the com-
pactification. The remaining solutions are continuum states
with m®>=1 (again in units with 2v?=1). The continuum
state withm?=k?+ 1 has the form

1 3
T2 _
“l27k =3

o cosk
5 tanh" coskxs.
(3.20

All these results are derived in detail in Appendix A.
Returning to the case of a finite extra dimension, we ex-
pect the solutions to look like solutions to the infinite prob-
lem near the orbifold fixed points. Because the normalized
solution f,(Xs) goes to zero ags—o0, we get approximate
solutions m?=3/4(=3\v?/2) for large L by taking linear
combinations of copies of this mode centeredkat0 and

X
for(Xs) secﬁ?5 sinkxs—
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xs=L. There will be two such states, corresponding to the X5
“plus” and “minus” linear combinations of the wave func- §M+(X5)0<90,W(X5)ESGCHW?, &m—(Xs5)=0.
tions centered ats=0 andxs=L, (3.30

fi(xg) =fi(L—xXz). (3.21) . . ) o .
1(Xs) =f1(L—Xs However, we find that fof — 1<w=]j for positive intege,
In addition, we expect the usual KK “continuum” states, there arej —1 massive modes stuck to the brane. Like the
with masses above\d 2 spaced byAm= /L. Approximate ~ zero mode, these states are associated with the fat brane itself
solutions for these can be obtained from Ej20 by taking ~ and not the compactification. They have the form

fon(Xs) for xs<L/2 (3.22 Em+(X5) %) w(Xs), En—(Xs)*awéu+(Xs), (3.31)
and either .
with
fo(L—xs) for xs>L/2 for k such thatf},(L/2)=0,
(3.23 M?=2wl—12. (3.32

or
The functiong; ,, is obtained by acting with l2a's with

—f(L—xs) for xg>L/2 for k such thatf,(L/2)=0.  decreasingv values ongg-,

(3.29 .
pairs
The matching conditions at;=L/2 then approximately de- - - N
termine the alloweds. _5 1 T T ¥ (xs) (3.33
For the fermions, the modes of magsmust satisfy ElwT Aply—172"" "Gy —1+1% - 1+128 0w 1\ X5 .
B N _ forI=1toj—1.
atm+=Méy-, aém-=Méy., (3.29 There are a few things worth noticing about these solu-
h tions.

where (1) All the functionsg; ,,(xs) are even forxs— —Xs, SO

a=ds+fh(xs), al'=—ds+fh(xs). (3.26 the boundary condition ats=0 is satisfied.

(2) g.w(Xs) goes to zero likee™(W~D% asxg—o. The
As with the scalars, we can make exact statements abofnction inherits this behavior from,,, . Thea''s acting
these modes in the cade=x, and reliable approximate ON It do not affect the leading exponential behavior. This is
statements for large but finite We will simply state results ©One reason why we cannot go beyohej—1 in Eq.
here. Some details are in appendix B and more will appear if3-33—the resulting functions would grow at infinity and

[11]. would not be normalizable.
For L=, Egs.(3.25 and(3.26 become (3) ém-(xs) is also proportional to the product in Eq.
(3.33 with the initial a&, removed because this state is an
aubys=Méy_, aléu_=Méy,, (3.27)  eigenstate of,a/,.
For M?>w?, we find continuum solutions. These cannot
where be written in elementary closed form except for integer or

half-integerw. But they can be found in terms of hypergeo-
metric functiong10,11.

Returning to the finite case, one might worry that because
of the asymmetry betweer;=0 where the fermions are
with bound andxs=L where they are repelled, it might be diffi-

cult to find modes corresponding to the massive normalized
w=fv>0. (329  states in Eq(3.33 that satisfy the boundary conditions at
- _ large L. The boundary condition is automatic for the zero
The condition(3.29 is necessary to ensure that the normal-mode but not for the massive modes. Fortunately, there is a
izable fermion zero mode is stuck to the orbifoldkg=0 S0 simple way to construct approximate eigenfunctions for large
thatL can be taken to infinit§. L

There is always a normalizable chiral zero mode stuck to  one way to find the normalizable chiral zero mode for
the brane given by Eq$2.9) and(2.10, which in this case finite L is to use Eqs(2.9) and(2.10 with our approximate
becomes simply form for h(xs) [Eq. (3.10]. But another way is to think of

dividing the orbifold into two regions as we did for the scalar
modes x;<L/2 dominated by the fixed point at=0, and
“Note also thatas Misha Voloshin pointed out to i f is large, ~ X5>L/2 dominated by the fixed point a&=L. Near Xs
radiative corrections may be important in the calculation of the=L, the solution looks like a non-normalizable zero mode,
VEV of ¢. We ignore this issue in this paper. just the inverse o, :

_ X5  +_ X5
aw—a5+wtanh?, aW——05+wtanh§ (3.28
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B L—Xsg for constants and a. This is interesting because far>2,
&+ (Xs) % Tou(Xs) =CcosH" 5+ tm-(x5)=0. h(xs) changes sign at
3.3
(3:39 Xs=2 arctank/1—2/a (4.3

Now asxs decreases froms=L towardxs=L/2, Qg in- _ ) ) )
creases exponentially, andxat=L/2 it can be matched to an and atxs=L—Xs. For f>0, this describes a fermion con-

excellent approximation ontgg,,(Xs), which is exponen- centrated &ks or L —X; depending on the sign div.
tially falling at the same rate. Note that for reasonable values @f X5 is of order one.

For the j—1 massive modes of Eq€3.31)—(3.339, a  Thus the zero mode does not stray very far from the orbifold

similar strategy can be applied. There are non-normalizabléxed point. What we would expect in a model with finite
solutions that are analogous to the normalizable modes at ttd several fermions is that the fermions would fall into four

other end of the orbifold: sets:
Ens (X) Ty w(Xs),  Em—(Xs)xawén s (Xs), (3.39 for f>0 and a<2 the zero mode is concentrated at
X5:O,
I pairs
7 ~ N for >0 and a>2 the zero mode is concentrated at
—— —————
gru=alal_yyalal g pBon—i(xs) (3.36 Xs=Xs near xs=0,

for =1 to j—1. These satisfy the boundary condition at ¢, <0 and a<?2 the zero mode is concentrated at
xs=L and match smoothly onto Eq§3.3)—(3.33 at xg

=L/2. Note that thdj’s never vanish. Thus all the nodes in xs=L,

these wave functions are near the fixed poinkat 0, as

expected. for f<0 and a>2 the zero mode is concentrated at
We do not know a similarly simple approximation to

match the continuum modes from the two sides of the orbi- Xs=L—Xs near Xs=L. 4.9

fold.

One annoying thing about this is that the higher derivative
coupling we have added has a higher dimension than the
ordinary Yukawa coupling, and therefore we might expect

The fermion zero modes described in Sec. Il are all conthe parametem to be small—of ordemv?/M%. We can
centrated on one of the orbifold fixed points,xgt=0 orL.  consistently take of order one in our units only ifis small.

In this section, we note that by elaborating the modelThis could be a problem in model building.
slightly, we can produce zero modes that are maximized near

but not on the fixed points. Consider the fO”OWing V. CONCLUDING QUESTIONS
Lagrangiarr

IV. ZERO MODES NEAR THE FIXED POINT

We have shown in a very explicit example how scalar

L=Ulib— vede—F{1—ala. g*— 2 119009 VEVs_ a_md orbifold l_aoundary con_dltlons_ combm_e to produc.e
! 7595~ 1 (O SIlyta 0 bd,d nontrivial structure in the extra dimensions. This behavior is

N N, generic, and we expect behavior of this kind to appear in
—205¢dsp— 7 (670" (4.1 other explicit models of fat branes. The most interesting gen-

eral result is that the KK expansion may produce two kinds
We have added to E¢2.1) only the single term proportional of massive modes—those truly associated with the compac-
to the new parametes. Now, however, the zero mode is tification and those stuck to the fat brane. Let us close with a

given by Egs.(2.9 and (2.10 with a differenth(xz) that couple of very different questions.

includes the effect of the new term. For laigewe can write . (') Do the KK. states that are normahzable_m thesco
limit play a special role or are they simply the lightest of the

L—x KK excitations? It seems likely to us that the answer is the
tanh—— former. These states are stuck to the fat brane and are thus
2 very different from the KK states associated with compacti-
L fication. Particularly intriguing is the nearly degenerate pair
+adz tanh—) 4.2) of scalars in Eq(3.21). These may be an important source of
2 communication between fermions localized on the two dif-
ferent branes.
(i) Does this kind of constructiofwhich in some ways
SThis Lagrangian was suggested to us by Martin Schmaltz to rerésembles the Kaplan idg¢d?2]) help in any way with the
place a more complicated scheme that we used to get the same firdifficulties of putting chiral fermions on the lattice? We do
result. not think so. It seems that this structure makes it impossible

Xs 5 Xs
h(xs)~fv tanhg +ads tanhE
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to decouple the doublers associated with the zero mode, but ; , 1 Xs Xs
the question is interesting and may be worth pursuing fur- aa,=—ds— E(l—tanl?? +tanr??
ther.
1 3 X5
=— 92— =+ stantf—, A7
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11 X5
Z— ESECH;) , (A8)

aja,=— g2+ >

1- 3 secﬁ%) . (A9)

APPENDIX A:  SUSY QUANTUM MECHANICS P o _ _ _
We see that,a, is the Hamiltonian we wish to diagonalize.

Here we give more details about the solution for the scalafro construct solutions to this Hamiltonian, we first observe
modes in theL = model. We use techniques from super-that it is trivial to find the eigenfunctions of E¢A4): these

symmetric (SUSY) quantum mechanicf7]. In solving for  are just plane waves. Furthermore, given a plane wave with
the scalar KK modes in the kink background, one needs th@ave numbek obeying

eigenfunctions of the Schdinger equation(3.18). In the

case of an infinite extra dimension, we can solve this equa- ajal o= (k>+1/4) x5, (A10)

tion exactly using supersymmetric quantum mechanics. First

we define two sets of “raising” and “lowering” operators we can construct an eigenfunction of E&8) by applying
a] to both sides:

al=—ds+0i(Xs), a=ds+0i(Xs), (A1) i 5 :
ajas(agxak) = (kK°+1/4)(as x2k)- (Al11)
where + .
So we conclude thad,a; has all of the plane wave eigen-
1 Xs Xs states ofa;a} plus an additional zero-energy bound state,
glzztanh?, gzztanhE. (A2)  which is obtained by solving; x;=0:
X5
Because ajx1= O—>Xlo<sech§. (A12)
X5 1 X i i
a5tanh—5=—(1—tanh’-—5), (A3) Furtherm?re, since EqA8) can _also be express_ed in
2 2 2 terms ofa,a;, we can use the solutions of EG\8) to find
solutions of the final HamiltoniafA9). Indeed, for each ei-
it is straightforward to verify that genvaluex of a{al, we have
1 xs| 1 Xg a,alf=(ala;+3/4)f=(k>+3/4)f. (A13)
ajal=—d+ —| 1—tanf—| + — tanH—>
4 2 4 2
Thus
=—92+ -, (A4) 3
° 4 aza;Xlszl, ayajalx=(K2+1)ajxs. (Al4)
ala,=—d2— 1—tanf?28| + Et s Multiplying both sides bya) yields eigenfunctions of our
4 2 2 original Hamiltonian. So the spectrum afa, consists of all
1 1 X eigenvalues ohIal (shifted by?) plus a zero-energy bound
=—92— 1 + Etanh’-f, (A5)  state obtained froma,fy=0:
fo=0—f R (A15)
1 X X arTg=U—TpxSechn—-.
aal=—d2+ > 1—tanh’-75 +tanh2?5 2
11 However, this zero mode is even and therefore, does not
X ) " :
__ 2 5 satisfy the boundary conditions. Thus, the allowed eigen-
=—0t+ -+ —
% 2 2 tantt 2’ (A6) states ard; and the odd plane waves
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t beanX8_3. X5 X5 R
ficayyi*a, sech§ = Etanh;sechf, with m*=7y,

(A16)
and
1 3 X5\ .
fopocabal you 5= kz—ZsecH? sinkxg
3k hﬁ «
— — tanh-coskxs,
(A7)

with m?=k?+1.
APPENDIX B: FERMIONS ON FAT BRANES
Here we will sketch the proof of Eq§3.31)—(3.33). From

Egs.(3.27) and(3.28) it follows that £— is an eigenfunction
of

w
auay=—d5+ o

X X
1-— tanl’?75 +w? tanh’-75 (B1)

and ¢y + is an eigenfunction of

W
T _ 2
a,ay= —dg— >

X X
1— tanr?75 +w? tanh’-75. (B2)

PHYSICAL REVIEW D63 064027

|E—W+%W_ %)0(3.&,_1/2|E_2W+1,W_1>1 (B7)

and therefore,

|E,w)ecal |[E-—w+F,w—3)ecalal _JE—2w+1w—1).
(B8)

If |E, w) is to be an eigenstate, this process must terminate in
a chiral zero mode. Conversely, we get all the normalizable
modes by acting on the zero modes by pairs’sfas in Eq.
(B8). This is the basis of Eq3.33.

APPENDIX C: ANOTHER SIMPLE LIMIT

If L is not large, the approximations discussed in Sec. llI
fail badly. In general, we then have to resort to numerical
techniques. Here we discuss one way of approaching the
problem and identify another simple limit. In order to incor-
porate the effects of the boundary conditions, we could ex-
pand theg field in a set of basis functions . In this case
the obvious ones are

1/2
sin

2
fn(XS)E(E

n’]TXS
L -

(CD

This will allow us to formulate the problem in general, and
also make it easy to solve it exactly in a particular limit.

We will use a Dirac notation for the eigenfunctions, denoting Now we can formulate the problem in general by expand-

an eigenstate of EqB2) with eigenvalueE by |E, w).
Now it is obvious that

+(w—a)2tanhz§
(B3)

w—a X
al_ Ay o,=—02— T( 1—tanhz75

and thus

2W—a
2

T T —
Ay~ Ay glw-o= T

(1—tanh’-§)

X

+(2wa— az)tanh’-?s. (B4)

For a=%, the terms proportional to taflkancel in Eq(B4)
and we have

ayah=al_1y_ 12t W . (BS)

Thus if|[E—w+ %,w—1%) is an eigenstate af,_,,a,_ 1
with eigenvalueE—u+3%, thena!|E—w+3,w—1) is an

eigenstate oaf,‘\,aw with eigenvalueE. That is, so long as the

eigenstatéE—w+ 7,w—3) exists, we can write

|Ew)ocal |[E—w+2w—3). (B6)

ing h(xs) and ¢(x,xs) in terms of the basis function€1).

We can truncate this expansion for some langand solve
the finite problem. The coefficients in the expansiomEfs)

can be determined by minimizing Eq3.2). However, a
close look suggests that there is a limit of the theory in which
the calculation is much simpler. One can immediately see
that the expectation valu®(xs) goes to zero as

Av2L2— 72 (C2
from above. For smaller values ofv?L?, there is no
vacuum expectation value. This suggests taking

AL2=7+ € (C3)

for small e. When we do that, we find that we can calculate
the coefficients inh(xs) as a power series im. The first
terms are

1/2

h(xs)= 53/253(X5)

2 1/2 s 1 2
) € a0t ozl e

+0(e>?).

(C4

Furthermore, doing the KK expansion, we find that the

mass squared of thé; mode is Z/L?, while all the other
mass squares scale with’/L?, not suppressed by. To

Applying the same argument again shows that if theleading order, the mass squared of the megeor n>1 is

eigenstatdE—2w+1w— 1) exists, we can write

(n?—1)7?/L2
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