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Casimir effect of the graviton and the entropy bound
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In this paper we calculate the Casimir effect of free thermal gravitons in Einstein’s universe and discuss how
it changes the entropy bound condition proposed recently by Verlinde as a higher dimensional generalization
of Cardy’s formula for conformal field theorid€FT). We find that the graviton’s Casimir effect is necessary
in order not to violate Verlinde’'s bound for weakly coupled CFT. We also comment on the implication of this
new Cardy formula to the thermodynamics of a blgekrane.
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. INTRODUCTION z8 =[zMA Z(2)18, (4)

Verlinde in his recent pap¢f] proposed that the entropy \where
of a D-dimensional conformal field theofCFT) is given by

the generalized Cardy formula 7
A=ng+2ny+ —Ng, 5
27R 4
S=p7VE(2E~ Eo), (1)
B=—(2ny+ing), (6)

whereR is linear size of the system and . .
for a theory withng scalarsng Weyl fermions, anah, Max-

E.=DE—(D-1)TS (2)  wellfields. For exampleA=15N, B=—3N for N=4 U(N)
¢ super-Yang-Mills(SYM) theory.
is the Casimir energy that corresponds to the subleading term The basic partition functions are defined by
in the highT (temperatureexpansion of the total enerdy. oo
For a given total energ\E this formula automatically - ( 1 )(””)

, ()

leads to Bekenstein’s entropy bouf] of the macroscopic Zéd)z H

=0 n+1

system with limited gravity, 1-q
o whereq=e"27% and 6=1/(27RT) with R the radius ofs®
S<S=p—7ER (3)  andT the temperature. For references the explicit expression

of InZ{* in the highT expansion are

the bound is saturated whén=E.

Verlinde has shown that Cardy’s formula is exact for the In Zgz)zzﬂi(ﬁ—l_ )+ E+In 5+0(e 279, (8)
strongly coupled CFTs by using their holographic dual de- 24 2 '
scription[1,3]. Moreover, he showed that Cardy’s formula of
Eq. (1) holds even for strong gravitational system such as the @) 4
early universe with the help of a newly proposed cosmologi- InzZy"=2m>3530 "+9
cal principle that states thathe Casimir energy itself is not
sufficient to form a universe-size black hokeurthermore, 1,5 ghgence of the higher polynomial termsiis due to the
t_he Cardy formula coincides exactly Wlth the Friedman equar, sqular invariance of CET oBlx S3 (8], that is
tion when the above energy bound is saturated; the resultant
entropy, which is called Hubble bourd,1] obeys the area 1
law as expected from the holographic nature of gravity |g’)<—) =(—1)921{9(y), (10)
theory([5,6]. g

The Cardy formula is also checked for weakly coupled
CFTs in[7] by Kutasov and Larsen. They find that the for- Where
mula is in general not exact, which results in a violation of
Bekenstein bound in the low energy density.

As shown in[7] the partition function of a fre® =4 CFT
in Einstein universe can be decomposed into the product of
the basic partition functions as the following: As will be shown there is no modular invariance for graviton

partition sum.
From Eqgs.(4), (8), and(9), we can derive the free energy
*Email address: linfl@phya.snu.ac.kr F=—TIn (4%T, and the result is

+0(e 279, 9

J
19D(8)=— 5d’2(9—5|n z{ (12)
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A, B, ( A B) s Il. CASIMIR EFFECT OF GRAVITON
FR=720° ""24° 1220 24/ 7O T In the following we will calculatez” and discuss how it
12 changes the condition on the entropy bound. The usual way
to calculate the partition function or the effective action of a
We note that the leading term-(5~* for small §) is coming  field theory on a fixed background is by evaluating the path
from InZY and the subleading term~(5"2) from InZ?,  integral up to one-loop9]. However, in[7] a more efficient
which is the leading Casimir effect. This result is exactly theway for the CFT or5! X S® is to classify the operator content
same as the more familiar or{8] derived from the path by the representations of SO BU(2)x SU(2), theisom-

integral using zeta-function regularization for CFT on gen-etry group ofS3, and to calculate the partition sum from it.

eral curved background: For example, a conformal scalar and its higher descendants
are represented byn(2,n/2) of SO4) with degeneracy r{
F 2T T2 +1)? and conformal weighA=n+1 forn=1,2,3 ..., and
V- g0 AtM)=5Bay(M)+---, (13 the resulting partition sum is
% 1 (n+1)2
wherea, (M) are the well-known “Hamidew” coefficients 7@ = H —7(4) (15)
_al _ —9/R2 S il b’

[9]. For M=S'XS® a,=1, a;=2/R?. n=0 \ 1—q

One can then dedude=F+ TS andSfrom F in the way
for a canonical ensemble arif} from Eq.(2).} It is easy to  This method of enumerating the operator content has the
see[7] that Cardy’s formula of Eq(1) is not exact; and for advantage of automatically taking care of the constraints
the entropy to be bounded by the formula requires such as equations of motion, Bianchi identities, etc.
Similarly, the Maxwell field and its descendants are
represented by (n/2,(n+2)/2)+H.c. with degeneracy
, (149  2(n+1)(n+3) and conformal weighA=n+2,2 and the

A
—=<
-B resulting partition sum is

N ol

N=4, U(N) SYM, A/—B=5 for all N and thus the bound zW=11
is violated. In general we could arbitrarily adjust the matter n=0
content to satisfy the above entropy bound condition, but in ) o )
this paper we will consider onlyW=4 SYM and see how Note that the leading term is just twice the one fqr t_he scalar
graviton's Casimir effect changes the entropy bound condi@S €xpected for massless photon; however, this is not the
tion for SYM. case for the leading Casimir effect.

Moreover, the authors ¢f7] observe that if Eq(14) does Generalizing the above counting to graviton, the contribu-
not hold, then the Bekenstein bound of E8) will be vio- tion to the partition sum is due to the spin 2 representations
lated wherER=A/(9x 720); however this condition can be ("/2,(n+4)/2)+H.c. with degeneracy 2(+1)(n+5) and
translated intos=(3)%* by using the explicit>-dependence Cconformal W‘(*é?ht A=n+3. The scaling dimension of
of ER=(A/240)5 4+0(5 ), which implies the highT ~ 99.,=09u»~ 9y, IS One, and from the requirement of gen-
(small §) expansion of free energy in E¢L2) is no longer ~ €ral covariance and conformal invariance, the lowest opera-
valid. It deserves more study of the low temperature thermotOr should be the Weyl tensor{dd4g), which has ten in-
dynamics on the Bekenstein bound. dependent componen{40] and scaling dimension 3, this

On the other hand, in the high regime, where Eq(12) ~ agrees with the above counting fo=0.
works and the Bekenstein bound is not violated, the curva- The resulting partition sum for graviton is
ture effect becomes important because1/27RT<1, the " 2n(n+4)
thermal energy becomes larger than the characteristic 2(4)_ 1—[ 1
planckian energy, which is inversely proportionalRolt is 9 o 1—-q"*2
then natural to incorporate the contribution of thermal gravi-

tons and gravitinos to the total partition functia®®  which cannot be decomposed into the basic partition func-
=z{z{};, where Zg? is the partition function due to tions of Eq.(7). Instead we should evaluate the following

=[ZP(ZP17% (19

where the equality holds when the bound is saturated. For o ( 1 )Zn(n+2)
n+1

1-q

. 17

gravitons and gravitinos. new basic partition functions
. d-2
) 1 (n+2)
'For completeness, the explicit expressions arg Zb :nl;[o 1_qn+2 ) (18)

=27[(A/180)5 3+ (B/12)6 1]+ O(e 2™), and ERR=
—(B/12)6 2+ (—AlI60+BI6)+ O(e~?"%). Note that, the leading
term in E; is zero for conformal scalars but positive for fermions
and gauge fields, and also for supergravitons as shown later; how-The primary operator is n&k,, of scaling dimension one but the
ever, thes-independent piece is negative in general, which is thefield strengthF,, of scaling dimension 2 because the first is not
usual Casimir energy at zero temperature. gauge invariant but the latter is.
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'(d)
We generalize the method [8,7] to calculateZ by the
following expansion:

"(d)
dinZ * *

b :277.2 (n+2)d—12 e—27r§(n+2)k’ (19)
o) n=0 k=1

and using the Mellin representation

e X X ' (z)dz (20

T2 e

where the contourC is along the imaginary axis with
Re(z) >0 large, we arrive

d @ 1 l1-z¢-2
_%lnzb :mfc(Zw) 6 (z+1-d){(z2)I'(z2)dz

1 1-z9-2
_ﬁfc(zﬂ-) 8 % (2)T'(z)dz. (21)

It is easy to see that the first term is just the same as
—(9138)InZ9, and the integrand of the second term has the
. Theresulting expressions of note that the leading term is the same as the one for a Weyl

poles atz=1, 0,~1,—3,...
"(d)

Z in the expansion ob are

| Z’(Z)—I Z® +In 6+0(8)=2 15*1+3| 5+0(8
nZ =InZ n ()—7724 2n (6),
(22)

| z'(4)—| Z®+In6+0(8)=2 ! 5*3+1| 5+0(68
nZ =Inzj n ()—77720 2n (6).
(23
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where the basic fermionic partition functions are defined as

fo(d): nﬂo (1+ qn+3/2)(n+3/2)d’2_

(26)
Using the identity
2 (n+3) =2~ 1)¢(2) -2 27)

and the Mellin representation, it can be shown that the lead-
"(d)
ing term ian is the same as in the basic partition function

for a Weyl fermion

o

Z]((d): H (1+qn+1/2)(n+1/2)d*2:e(1—1/2d*1)zéd) _
n=0
(28)
We then arrive at

Z(g‘#)z[zé4)]7/4[zk2)]—9/4, (29)

fermion.

Combining the contributions of graviton and gravitino to-
gether we find that the total partition function of the on-shell
supergravity theory is

z®= 284)[253)]/\/:[Zg4)]2+(7/4)/\/[z§)2)] ~8-(94V (3)

where is the number of supersymmetries. We see that the
entropy bound condition of Ed14) is not violated because
(A/=B)sugra=(2+7N14)/(8+9N/4)<5/2.

Now we could combine the contribution 8f=4 SU(N)

We see that the high order terms exist because there is n9y\ theory and the thermal supergraviton together, it yields

modular invariance property for the new partition sums;

however, the leading terms here are still the same as those in Z(“):Z(C"'F)ng‘):[Zf,"')]“(w‘w* 15N[Z§)2)]*8*(9/4W*3N;

Z{ | Note that the leading terms are the only relevant terms (31)
in determining the entropy bound condition. N
The graviton partition surz$? can be decomposed into We see that the entropy bound condition becomes
"4), _'(2) A  9+15N 5
(4)_ 2 -8_r17(4)12r7271-8 i <=_
z§=1z, Piz, 1 *=1Z"PZ31°% (29 == TTraN 3 (32
where "~" means having the same _Ieading and S’Ubl‘:""’“jinQ/vhich leads to a constraint on the rank of the gauge group
terms. Note that the leading term is just twice of the one for
scalar as expected. The resultiif’ also implies that the 67
theory consisting of only free conformal thermal graviton N= 15 (33

will not violate the entropy bound given by the Cardy for-

mula of Eq.(1) because it hasA/ —B)y=3<5.

Similarly, we can calculate the gravitino’s partition sum
by identifying its descendants as described by the represe

tation 2(n,(n+3)/2) of SO4) with degeneracy 2(+1)(n
+4) and conformal weighh =n+ 3. The resulting partition
sum for gravitino is

0

"4), _'(2)
Z(g‘:‘):[;l.:[o(1+qn+3/2)2n(n+3):[zf ]Z[Zf ]*9/2, (25)

By generalizing to more physical matter contents such as the
standard model, one may find a deep connection between
I%ntropy bound and why there are only three colors in nature.

Ill. BLACK p-BRANE AND CARDY'S FORMULA

TheD =2 Cardy formula of Eq(1) is the same as the one
derived from the saddle point approximation of the formula
for density of state$11,12]
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w 7 (cI6)(A=cl24) 4mQg oV
p(A)= f d6e’m A Z{P(5)]°=e>m(TOBE2 - (34) sz%rgwﬂﬁg*uuw, (41)
K10

wherec is the central chargez{? is given by Eq.(8) in whereV, is the spatial volume of thp-brane, andr, is the
which the higher order terms is suppressed by the modulasrane tension. These thermodynamical quantities satisfy the
invariance property and thus the saddle point approximatiofirst Jaw: dM=TdS+ «dQ; however, in its integral form
can be simplified. The entrop$=Inp(A) agrees with the there is an excess, which can be identified as the Casimir
Cardy formula of Eq.(1) by identifying EcR=c/12 and  energy in[1]
ER=A. For D>2, there is no such simple square-root
Cardy formula. E.=2(M—-TS—uQ). (42

On the other hand, the square-root behaviorDof 2
Cardy formula has been shown to be obeyed by the neatt is then straightforward to see that
horizon classical gravitational dynamics for the>2 sys-

tems such as the black hol¢$3—16, de Sitter universe o 2 E oM —E 43
[17,18, and the apparent horizof$9]. These cases imply - J7-p ol o) (43)

that the near-horizon physics is associated with-a2 CFT,

and exemplify the holographic nature of strong-gravity re-which is in the same form of Cardy’s formula of Eq) but
gime. Itis then curious to see if the Cardy formula of E.  with different overall factors. It is interesting to see if this
can be an indication of holographic nature of strong gravitaformula bears any microscopic interpretation fr@vbrane
tional system. It is easy to check that the Cardy formula isand string theory as done for black strif@]. It also de-
satisfied trivially by the Schwarzschild black hole but not by serves further study of the thermodynamics of the holo-
the Reissner-Nordstrom black hole wiyk=E—-TS—uQ  graphic dual theory corresponding to the blgekrane and

where 1 and Q are the chemical potential and the corre- examine the validity of Eq43) from the dual point of view.
sponding charge. As shown below, a nontrivial example that

fits the Cardy formula is the blagikbrane <7) described IV. CONCLUSION

by
In Verlinde’s proposall] the Cardy formula of Eq(l) is
ds§0=[Hp(r)]‘1’2[— f(r)dt?+ d2XH]+[Hp(r)]1/2 expected to be exact for CFT, but it turns out that this is true
) only for strongly coupled theory but not for weakly coupled
% d_f+ 240)2 35 one[7]. On the other hand, this formula unifies the Beken-
f(r) r 8-p)’ ( stein bound and Hubble bound in the cosmology context. As
long as the theory does not violate the entropy bound given
- by Cardy’s formula, it would have no problem to satisfy both
ro PHL(r)—1 : - :
_ 0 p Bekenstein bound for weak-gravity regime and Hubble
Coiz...p(r) 1+ —= , (36) . . )
L7=P Hp(r) bound for strong-gravity regime along the evolution of the
closed universe. From these facts it is more natural to think
L7p (7P Verlinde's proposal as a universal entropy bound but not an
Hop(r)=1+ . f(n=1- 0_, (37) exact entyopy formula for .CFT..We haye seen that the pure
r’-p r’-p perturbative effect of gravity will not violate the bound by

Cardy’s formula. This can be viewed as a self-consistent test
where the parametetsandr, are the anti—de Sitter throat for the Bekenstein entropy bound though that its validity has
size and the position of the horizon, respectively. They playpeen under debafR2] since it was proposed twenty years
analogous roles of the size and temperature as those in CF&go. Moreover, when combining with CFT’s contribution,

From the metric and th&R potentialC,.;, we can de- We see that graviton’s Casimir effect is necessary for the
rive the masaM, RR chargeQ, chemical potential,, tem- ~ CFT to satisfy the entropy bound condition that yields a
peratureT, and entropysS for the systeni20]: constraint on the rank of the gauge group of the CFT. We

also see that there is an intriguing resemblance of Cardy’s
formula in blackp-brane’s thermodynamics, which deserves

Qg oV . A
M = S_PZP[(B_ p)rg—p+(7_ p)L7 P, (38) further study for its physical implication.
2K70
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