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Casimir effect of the graviton and the entropy bound
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School of Physics & Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

~Received 19 October 2000; published 22 February 2001!

In this paper we calculate the Casimir effect of free thermal gravitons in Einstein’s universe and discuss how
it changes the entropy bound condition proposed recently by Verlinde as a higher dimensional generalization
of Cardy’s formula for conformal field theories~CFT!. We find that the graviton’s Casimir effect is necessary
in order not to violate Verlinde’s bound for weakly coupled CFT. We also comment on the implication of this
new Cardy formula to the thermodynamics of a blackp-brane.
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I. INTRODUCTION

Verlinde in his recent paper@1# proposed that the entrop
of a D-dimensional conformal field theory~CFT! is given by
the generalized Cardy formula

S5
2pR

D21
AEc~2E2Ec!, ~1!

whereR is linear size of the system and

Ec[DE2~D21!TS ~2!

is the Casimir energy that corresponds to the subleading
in the highT ~temperature! expansion of the total energyE.

For a given total energyE this formula automatically
leads to Bekenstein’s entropy bound@2# of the macroscopic
system with limited gravity,

S<SB[
2p

D21
ER; ~3!

the bound is saturated whenEc5E.
Verlinde has shown that Cardy’s formula is exact for t

strongly coupled CFTs by using their holographic dual d
scription@1,3#. Moreover, he showed that Cardy’s formula
Eq. ~1! holds even for strong gravitational system such as
early universe with the help of a newly proposed cosmolo
cal principle that states thatthe Casimir energy itself is no
sufficient to form a universe-size black hole. Furthermore,
the Cardy formula coincides exactly with the Friedman eq
tion when the above energy bound is saturated; the resu
entropy, which is called Hubble bound@4,1# obeys the area
law as expected from the holographic nature of grav
theory @5,6#.

The Cardy formula is also checked for weakly coupl
CFTs in @7# by Kutasov and Larsen. They find that the fo
mula is in general not exact, which results in a violation
Bekenstein bound in the low energy density.

As shown in@7# the partition function of a freeD54 CFT
in Einstein universe can be decomposed into the produc
the basic partition functions as the following:
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ZCFT
(4) 5@Zb

(4)#A@Zb
(2)#B, ~4!

where

A5nS12nV1
7

4
nF , ~5!

B52~2nV1 1
4 nF!, ~6!

for a theory withnS scalars,nF Weyl fermions, andnV Max-
well fields. For example,A515N, B523N for N54 U(N)
super-Yang-Mills~SYM! theory.

The basic partition functions are defined by

Zb
(d)5 )

n50

` S 1

12qn11D (n11)d22

, ~7!

whereq5e22pd andd51/(2pRT) with R the radius ofS3

andT the temperature. For references the explicit express
of ln Zb

(2,4) in the highT expansion are

ln Zb
(2)52p

1

24
~d212d!1

1

2
1 ln d1O~e22pd!, ~8!

ln Zb
(4)52p

1

240S 1

3
d231d D1O~e22pd!. ~9!

The absence of the higher polynomial terms ind is due to the
modular invariance of CFT onS13S3 @8#, that is

I b
(d)S 1

d D5~21!d/2I b
(d)~d!, ~10!

where

I b
(d)~d![2dd/2

]

]d
ln Zb

(d) . ~11!

As will be shown there is no modular invariance for gravit
partition sum.

From Eqs.~4!, ~8!, and~9!, we can derive the free energ
F52T ln ZCFT

(4) , and the result is
©2001 The American Physical Society26-1
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2FR5
A

720
d241

B

24
d221S A

240
2

B

24D1O~e22pd!.

~12!

We note that the leading term (;d24 for smalld) is coming
from lnZb

(4) and the subleading term (;d22) from lnZb
(2) ,

which is the leading Casimir effect. This result is exactly t
same as the more familiar one@9# derived from the path
integral using zeta-function regularization for CFT on ge
eral curved backgroundM:

F

V
52

p2T4

90
Aa0~M!2

T2

24
Ba1~M!1•••, ~13!

whereak(M) are the well-known ‘‘Hamidew’’ coefficients
@9#. For M5S13S3, a051, a152/R2.

One can then deduceE5F1TS andS from F in the way
for a canonical ensemble andEc from Eq. ~2!.1 It is easy to
see@7# that Cardy’s formula of Eq.~1! is not exact; and for
the entropy to be bounded by the formula requires

A

2B
<

5

2
, ~14!

where the equality holds when the bound is saturated.
N54, U(N) SYM, A/2B55 for all N and thus the bound
is violated. In general we could arbitrarily adjust the mat
content to satisfy the above entropy bound condition, bu
this paper we will consider onlyN54 SYM and see how
graviton’s Casimir effect changes the entropy bound con
tion for SYM.

Moreover, the authors of@7# observe that if Eq.~14! does
not hold, then the Bekenstein bound of Eq.~3! will be vio-
lated whenER&A/(93720); however this condition can b
translated intod>(3)3/4 by using the explicitd-dependence
of ER5(A/240)d241O(d22), which implies the highT
~small d) expansion of free energy in Eq.~12! is no longer
valid. It deserves more study of the low temperature therm
dynamics on the Bekenstein bound.

On the other hand, in the highT regime, where Eq.~12!
works and the Bekenstein bound is not violated, the cur
ture effect becomes important becaused51/2pRT!1, the
thermal energy becomes larger than the character
planckian energy, which is inversely proportional toR. It is
then natural to incorporate the contribution of thermal gra
tons and gravitinos to the total partition functionZ(4)

5ZG
(4)ZCFT

(4) , where ZG
(4) is the partition function due to

gravitons and gravitinos.

1For completeness, the explicit expressions areS
52p@(A/180)d231(B/12)d21#1O(e22pd), and EcR5
2(B/12)d221(2A/601B/6)1O(e22pd). Note that, the leading
term in Ec is zero for conformal scalars but positive for fermio
and gauge fields, and also for supergravitons as shown later; h
ever, thed-independent piece is negative in general, which is
usual Casimir energy at zero temperature.
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II. CASIMIR EFFECT OF GRAVITON

In the following we will calculateZG
(4) and discuss how it

changes the condition on the entropy bound. The usual
to calculate the partition function or the effective action o
field theory on a fixed background is by evaluating the p
integral up to one-loop@9#. However, in@7# a more efficient
way for the CFT onS13S3 is to classify the operator conten
by the representations of SO(4).SU(2)3SU(2), theisom-
etry group ofS3, and to calculate the partition sum from i
For example, a conformal scalar and its higher descend
are represented by (n/2,n/2) of SO~4! with degeneracy (n
11)2 and conformal weightD5n11 for n51,2,3, . . . , and
the resulting partition sum is

ZS
(4)5 )

n50

` S 1

12qn11D (n11)2

5Zb
(4) . ~15!

This method of enumerating the operator content has
advantage of automatically taking care of the constra
such as equations of motion, Bianchi identities, etc.

Similarly, the Maxwell field and its descendants a
represented by „n/2,(n12)/2…1H.c. with degeneracy
2(n11)(n13) and conformal weightD5n12,2 and the
resulting partition sum is

ZV
(4)5 )

n50

` S 1

12qn11D 2n(n12)

5@Zb
(4)#2@Zb

(2)#22. ~16!

Note that the leading term is just twice the one for the sca
as expected for massless photon; however, this is not
case for the leading Casimir effect.

Generalizing the above counting to graviton, the contrib
tion to the partition sum is due to the spin 2 representati
„n/2,(n14)/2…1H.c. with degeneracy 2(n11)(n15) and
conformal weight D5n13. The scaling dimension o
dgmn5gmn2gmn

(B) is one, and from the requirement of ge
eral covariance and conformal invariance, the lowest ope
tor should be the Weyl tensor (;]]dg), which has ten in-
dependent components@10# and scaling dimension 3, thi
agrees with the above counting forn50.

The resulting partition sum for graviton is

Zg
(4)5 )

n50

` S 1

12qn12D 2n(n14)

, ~17!

which cannot be decomposed into the basic partition fu
tions of Eq. ~7!. Instead we should evaluate the followin
new basic partition functions

Z
b

8(d)
5 )

n50

` S 1

12qn12D (n12)d22

. ~18!

w-
e

2The primary operator is notAm of scaling dimension one but th
field strengthFmn of scaling dimension 2 because the first is n
gauge invariant but the latter is.
6-2
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We generalize the method in@8,7# to calculateZ
b

8(d)
by the

following expansion:

2
] ln Z

b

8(d)

]d
52p (

n50

`

~n12!d21(
k51

`

e22pd(n12)k, ~19!

and using the Mellin representation

e2x5
1

2p i EC
x2zG~z!dz, ~20!

where the contourC is along the imaginary axis with
Re(z).0 large, we arrive

2
]

]d
ln Z

b

8(d)
5

1

2p i EC
~2p!12zd2zz~z112d!z~z!G~z!dz

2
1

2p i EC
~2p!12zd2zz~z!G~z!dz. ~21!

It is easy to see that the first term is just the same
2(]/]d)ln Zb

(d) , and the integrand of the second term has
poles atz51, 0,21,23, . . . . Theresulting expressions o

Z
b

8(d)
in the expansion ofd are

ln Z
b

8(2)
5 ln Zb

(2)1 ln d1O~d!52p
1

24
d211

3

2
ln d1O~d!,

~22!

ln Z
b

8(4)
5 ln Zb

(4)1 ln d1O~d!52p
1

720
d231

1

2
ln d1O~d!.

~23!

We see that the high order terms exist because there i
modular invariance property for the new partition sum
however, the leading terms here are still the same as tho
Zb

(d) . Note that the leading terms are the only relevant ter
in determining the entropy bound condition.

The graviton partition sumZg
(4) can be decomposed into

Zg
(4)5@Z

b

8(4)
#2@Z

b

8(2)
#28.@Zb

(4)#2@Zb
2#28, ~24!

where ‘‘. ’’ means having the same leading and sublead
terms. Note that the leading term is just twice of the one
scalar as expected. The resultingZg

(4) also implies that the
theory consisting of only free conformal thermal gravit
will not violate the entropy bound given by the Cardy fo
mula of Eq.~1! because it has (A/2B)g5 1

4 , 5
2 .

Similarly, we can calculate the gravitino’s partition su
by identifying its descendants as described by the repre
tation 2„n,(n13)/2… of SO~4! with degeneracy 2(n11)(n
14) and conformal weightD5n1 5

2 . The resulting partition
sum for gravitino is

Zg f
(4)5 )

n50

`

~11qn13/2!2n(n13)5@Z
f

8(4)
#2@Z

f

8(2)
#29/2, ~25!
06402
e
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where the basic fermionic partition functions are defined

Zf8
(d)5 )

n50

`

~11qn13/2!(n13/2)d22
. ~26!

Using the identity

(
n50

`

~n1 3
2 !2z5~2z21!z~z!22z ~27!

and the Mellin representation, it can be shown that the le

ing term inZ
f

8(d)
is the same as in the basic partition functio

for a Weyl fermion

Zf
(d)5 )

n50

`

~11qn11/2!(n11/2)d22
5e(121/2d21)Zb

(d) .

~28!

We then arrive at

Zg f
(4).@Zb

(4)#7/4@Zb
2#29/4, ~29!

note that the leading term is the same as the one for a W
fermion.

Combining the contributions of graviton and gravitino t
gether we find that the total partition function of the on-sh
supergravity theory is

ZG
(4)5Zg

(4)@Zg f
(4)#N.@Zb

(4)#21(7/4)N@Zb
(2)#282(9/4)N, ~30!

whereN is the number of supersymmetries. We see that
entropy bound condition of Eq.~14! is not violated because
(A/2B)sugra5(217N/4)/(819N/4)<5/2.

Now we could combine the contribution ofN54 SU(N)
SYM theory and the thermal supergraviton together, it yie

Z(4)5ZCFT
(4) ZG

(4)5@Zb
(4)#21(7/4)N115N@Zb

(2)#282(9/4)N23N;
~31!

we see that the entropy bound condition becomes

A

2B
5

9115N

1713N
<

5

2
, ~32!

which leads to a constraint on the rank of the gauge gro

N<
67

15
. ~33!

By generalizing to more physical matter contents such as
standard model, one may find a deep connection betw
entropy bound and why there are only three colors in natu

III. BLACK p-BRANE AND CARDY’S FORMULA

TheD52 Cardy formula of Eq.~1! is the same as the on
derived from the saddle point approximation of the formu
for density of states@11,12#
6-3
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FENG-LI LIN PHYSICAL REVIEW D 63 064026
r~D!5E dde2pdD@Zb
(2)~d!#c.e2pA(c/6)(D2c/24), ~34!

where c is the central charge;Zb
(2) is given by Eq.~8! in

which the higher order terms is suppressed by the mod
invariance property and thus the saddle point approxima
can be simplified. The entropyS5 ln r(D) agrees with the
Cardy formula of Eq.~1! by identifying EcR5c/12 and
ER5D. For D.2, there is no such simple square-ro
Cardy formula.

On the other hand, the square-root behavior ofD52
Cardy formula has been shown to be obeyed by the n
horizon classical gravitational dynamics for theD.2 sys-
tems such as the black holes@13–16#, de Sitter universe
@17,18#, and the apparent horizons@19#. These cases imply
that the near-horizon physics is associated with aD52 CFT,
and exemplify the holographic nature of strong-gravity
gime. It is then curious to see if the Cardy formula of Eq.~1!
can be an indication of holographic nature of strong grav
tional system. It is easy to check that the Cardy formula
satisfied trivially by the Schwarzschild black hole but not
the Reissner-Nordstrom black hole withEc[E2TS2mQ
where m and Q are the chemical potential and the corr
sponding charge. As shown below, a nontrivial example t
fits the Cardy formula is the blackp-brane (p,7) described
by

ds10
2 5@Hp~r !#21/2@2 f ~r !dt21d2xi#1@Hp~r !#1/2

3S dr2

f ~r !
1r 2dV82p

2 D , ~35!

C012•••p~r !5A11
r 0

72p

L72p

Hp~r !21

Hp~r !
, ~36!

Hp~r !511
L72p

r 72p
, f ~r !512

r 0
72p

r 72p
, ~37!

where the parametersL and r 0 are the anti–de Sitter throa
size and the position of the horizon, respectively. They p
analogous roles of the size and temperature as those in C

From the metric and theRR potentialCp11, we can de-
rive the massM, RR chargeQ, chemical potentialm, tem-
peratureT, and entropyS for the system@20#:

M5
V82pVp

2k10
2 @~82p!r 0

72p1~72p!L72p#, ~38!

Q5
~72p!V82p

2k10
2 Tp

L (72p)/2Ar 0
72p1L72p, ~39!

m5VpTp

L (72p)/2

Ar 0
72p1L72p

, T5
72p

4p

r 0
(52p)/2

Ar 0
72p1L72p

,

~40!
06402
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S5
4pV82pVp

2k10
2

r 0
(92p)/2Ar 0

72p1L72p, ~41!

whereVp is the spatial volume of thep-brane, andTp is the
brane tension. These thermodynamical quantities satisfy
first law: dM5TdS1mdQ; however, in its integral form
there is an excess, which can be identified as the Cas
energy in@1#

Ec52~M2TS2mQ!. ~42!

It is then straightforward to see that

S5
2pr 0

A72p
AEc~2M2Ec!, ~43!

which is in the same form of Cardy’s formula of Eq.~1! but
with different overall factors. It is interesting to see if th
formula bears any microscopic interpretation fromD-brane
and string theory as done for black string@21#. It also de-
serves further study of the thermodynamics of the ho
graphic dual theory corresponding to the blackp-brane and
examine the validity of Eq.~43! from the dual point of view.

IV. CONCLUSION

In Verlinde’s proposal@1# the Cardy formula of Eq.~1! is
expected to be exact for CFT, but it turns out that this is t
only for strongly coupled theory but not for weakly couple
one @7#. On the other hand, this formula unifies the Beke
stein bound and Hubble bound in the cosmology context.
long as the theory does not violate the entropy bound gi
by Cardy’s formula, it would have no problem to satisfy bo
Bekenstein bound for weak-gravity regime and Hubb
bound for strong-gravity regime along the evolution of t
closed universe. From these facts it is more natural to th
Verlinde’s proposal as a universal entropy bound but not
exact entropy formula for CFT. We have seen that the p
perturbative effect of gravity will not violate the bound b
Cardy’s formula. This can be viewed as a self-consistent
for the Bekenstein entropy bound though that its validity h
been under debate@22# since it was proposed twenty yea
ago. Moreover, when combining with CFT’s contributio
we see that graviton’s Casimir effect is necessary for
CFT to satisfy the entropy bound condition that yields
constraint on the rank of the gauge group of the CFT. W
also see that there is an intriguing resemblance of Card
formula in blackp-brane’s thermodynamics, which deserv
further study for its physical implication.
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