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We show that certain five-dimensional=2 Yang-Mills-Einstein supergravity theories admit the gauging
of the full R-symmetry groupSU(2)g, of the underlying\/=2 Poincaresuperalgebra. This generalizes the
previously studied Abelian gaugings 0f(1)gC SU(2)g, and completes the construction of the most general
vector and tensor field coupled five-dimension&k=2 supergravity theories with gauge interactions. The
gauging ofSU(2)g turns out to be possible only in special cases, and leads to a new type of scalar potential.
For a large class of these theories the potential does not have any critical points.
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. INTRODUCTION scribe the coupling of Abelian vector multiplets =2
supergravity and have a global symmetry group of the form

Five-dimensional gauged supergravity theories have beegU(2);x G. Here,G is the subgroup of the isometry group
subject to a renewed intense interest during the last thregf the scalar field target space that extends to a symmetry
years. They offer an important tool in the study of the AdSgroup of the full Lagrangian, an8U(2)g denotes the auto-
conformal field theory(CFT) correspondencgl-4] and  morphism group(** R-symmetry group’) of the 5D, N'=2
have, more recently, been discussed as a potential framewopgincaresuperalgebra.
for an embEdding of the Randa”'sundrl{lﬁS) scenario In [14] we genera”zed the earlier WOMS] and con-
[5,6] into string or M theory. structed all possible gaugings of subgroupsUdfl)gX G,

Whereas the embedding of the original discontinuous RSyhere U(1)sCSU(2)g denotes the Abelian subgroup of
model [5] into 5D, N=2 gauged pure supergravity on SU(2)g. In particular, we also covered the case when the
R*x S'Z, was studied if7-9], a realization in terms of a gauging of a subgroup @ involves the dualization of some
smooth (“thick” ) Bogomol'nyi-Prasad-Sommerfiel(BPS  of the vector fields of the ungauged theory to “self-dual”
domain wall solution seemed to be incompatible with a va{16] antisymmetric tensor fields, a mechanism that is well
riety of scalar potentials of known matter coupl&@ 2 su-  known from the maximally extended gauged supergravities
pergravity theorie$10-12. ind=7 [17] andd=5 [18-2( dimensions.

Since the most general 5DyV=2 gauged supergravity Thus, the only gaugings that have not yet been covered in
theory has not yet been constructed, is, however, still this framework are those involving gaugings of thdl
unclear how general these no-go theorems really are. A cori®-Symmetry groufsU(2). Itis the purpose of this paper to
struction of the most general types of these theories shoul@lose this gap. This will complete the construction of the
therefore help to settle this question, and might also be inPoSsible gaugings of the entire vector-tensor sector\of
teresting for(bulk-)matter coupled generalizations of the dis- — 2 Matter coupled supergravity theories in five dimensions.
continuous model of5,7—-9. At the same time, a complete The outline of this paper is as follows. In Sec. Il, we first
knowledge of V=2 gauged supergravity theories might also@"@lyze to what extent the fuR-symmetry groupSU(2)g
contribute to a better understanding of various aspects of tHgA" Pe gauged within the framework of vector and tensor
N=8 theory(such as, e.g., the structure of its vacudth field c_oupled 5D,N=2 supergravity theories. The corre-
possible implications for the AdS-CFT correspondence. ~ SPonding Lagrangians and the supersymmetry transformation

Motivated by these and other applications, we have refules are then derwed via the Noether meth_od starting from
cently studied the possible gaugings of vector and tensogrome of our earlier resultl4]. Section Ill, finally, is de-
field coupled 5D'=2 supergravity theories. All these theo- voted to a discussion of the resulting scalar potentials.
ries (including the ones involving tensor multiplétsan be
derived from theungauged\N/=2 Maxwell-Einstein super-
gravity theorieSMESGT’s) of Ref.[13]. These theories de- !l GAUGING THE FULL R-SYMMETRY GROUP SU(2)

The gauging ofSU(2)g is a little less straightforward

*Email address: murat@phys.psu.edu than gaugings of subgroups bf(1)gX G, as we shall now
TEmail address: zagerman@phys.psu.edu explain.
!See note added. The supermultiplets we are dealing with are, ¢, . ..
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and m,n, ...
respectively:

(i) The N'=2 supergravity multiplet, containing the gravi-
ton (flnfbein) e}, two gravitini¥', (i,j, ...,=1,2) and one
vector fieldA,,

(i) The N=2 vector multiplet, comprising one vector
field A, , two spin-1/2 fermiona' (i,j, ... 1,2) and one real
scalar fielde

(iii) The N=2 “self-dual” tensor multiplet consisting of
two real two-form fieldsB(}), B{?); four spin-1/2 fermions

AN NG (), ...=1,2) and two real scalar fields™,
(2)
®

fermions transform non-trivially undesU(2)g (they form
doublets labeled by the indéx=1,2). In particular, all the
vector fields aresingletsunderSU(2)g. In order to gauge a
non-Abelian symmetry group lik&U(2)gr, however, one
needs vector fields that transform in tadjoint representa-
tion of the gauge group.

The only way to solve this problem is to identiBU(2)g

denote curved and flat spacetime indices,
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with n=n+2m.

Note that we have combined the “graviphoton” with the
n vector fields of then vector multiplets into a singlen(
+1)-plet of vector fieldsAL labeled by the indek Also, the
spinor and scalar fields of the vector and tensor multiplets
are combined inta-tupels of spinor and scalar fields. The

indicesa,b, ... andx,y, ... are the flat and curved indices,

Of all the above fields, only the gravitini and the spin-1/2 respectively, of th@-dimensional target manifoldyt, of the

scalar fields. The metric, vielbein and spin connection\dn
will be denoted bygsy, 2 and 2", respectively.

A subset of the vector fields\'ﬂ is used to promote
a subgrouK of the isometry group of\ to a Yang-Mills-
type gauge symmetry. Apart from these gauge fields,
only the tensor field8Y | the spin-1/2 fields\'2 and the

uv?

with an SU(2) subgroup of the scalar manifold isometry scalar fields¢* transform non-trivially under this gauge

group, G, and to gauge bothSU(2)'s simultaneously.
In other words, SU(2)g cannot be gauged by itself,
rather one has to gauge a diagonal
SU(2)gXSU(2)cCSU(2)gX G. The most natural starting
point for a gauging ofSU(2)g is therefore a “Yang-Mills-
Einstein supergravity theory(see[15,14,2] for details on
this terminology in which a subgroug{OSU(2)g of G is

groupK.
The K-gauge covariant derivatives of these fields are

subgroup o#és follows (V denotes the ordinary spacetime covariant de-

rivative, andg is the coupling constant of the gauge group
K)

D NR=V N3+ gAl LEO\D

gauged. In order to be as general as possible, we consider the

case when the supersymmetric gauginglaf G requires the
introduction of tensor field¢the case without tensor fields
can easily be recovered as a special La&ethis point we
require the gauge groug only to have arSU(2) subgroup
SU(2)gCK, but leave it otherwise undetermined.

We start by recalling some relevant properties of Yang

Mills-Einstein supergravity theories with tensor fieltsee
[14,2]] for detaily. Yang-Mills-Einstein supergravity theo-
ries with tensor fields describe the couplingrofector mul-

tiplets andm self-dual tensor multiplets to supergravity. Con-

sequently, the field content of these theories is

{em,w! Al BY A2 o) (2.1)
where
1LJK...=01,...n
M,N,P...=12,...2n

X 0 X I X
D, ¢*=d,¢"+ gA.K|

D,B"=v M

| M N
B =V,BY +gAl ANBY . 2.2

Here,Kf‘ are the Killing vector fields ooM that generate the

subgroupK of its isometry group. The-dependent matrices
L2 and theconstantmatricesA i are theK-transformation

matrices ofn'@ and B/, . respectively.

Denoting the curls oA}, by F},, and the structure con-
stants of K by f,, we combine the non-Abelian field
strengths 7,,=F),,+gf} AJAS with the antisymmetric
tensor fieldﬂBZ’V to form the tensorial quantity

T M ] _
H oy =(F B (LK, ...=0,... n+2m).
The general Lagrangian of a Yang-Mills-Einstein super-

gravity theory with tensor fields is then given pi/4]

1 1 1— ., o 7 . 5, L b, ab on B L % 5
e L=~ SR(0) = SV, TV W= 28 H |, H 4 = SN(THD, 80+ Q5 THD @I\~ 5 G5(D ) (D )

|—|5 §73 plkZ a X 1 5_|§ KT AP T
— GNETUT 2D @t ZENETATM 1+

N U [y S 0
abM T Tabe | A )\iH,uV

2.6\4
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with ezdet(efj). The transformation laws ar@o leading

order in fermion fields

ell= E?mem

. : i -
SV, =V &'+ 2T, = 48T H boE

4\6
SA, =D,

J6g

M _ M MNpR i
6BMV_2D[M1(}V]+TQ hN\PI F ]8i

[t v

i o~
+ ZgQMNhN’é)\laFMVSi

o\ = — LAru(D, el 4 parmrgin]
2 'x u? 4 Iz
o~ -
5¢X=§f§?)\ia
with
~ 15— ~ i\/g ~—
ﬁﬂE—EhBSIFM)\?ﬁ‘ Thlq’:us

_ The various scalar field dependent quantiﬁeﬁ, hy, hT,

h?, h'a and T3be that contract the different types of indices
are already present in the correspondingaugedVESGT's

wvp

T gV\lasi

66

v

3
LAV TEEAAT) + Z P (TR ATAT (FALAD A,

(2.3

Here QMN is the inverse of)y,y, which is a(constant
invariant antisymmetric tensor of the gauge grdup
Qun=—=Onm, QMNQNP:‘S:\D/I' (2.6)
The quantitie3N5(¢) and WEB(¢) and the scalar poten-
tial P(¢) are due to the gauging & in the presence of the
tensor fields, and are given by

. 6 -
We= — Z-hg QMg

6

~— ~— ~ =~ i\6 ~~
Web= —Wha=ih Kl + ——hKS®

P=2WaW2, (2.7
where the semicolon denotes covariant differentiation on the
target spaceu.

We will now use the above theory as our starting point for
the additional gauging ddU(2)g. To this end, we first split
the index! of the (n+1) vector fieldsA), according to

2.4
24 I=(Al"),
whereA,B,C, ... e{1,2,3 are the indices corresponding to
the three gauge fields &§U(2);CK, andl’,J' ,K’, ... la-
2.5 bel the remainingrf—2) vector fields.

In order to gaug& U(2)g, we use the gauge fieldlsﬁ to
covariantize theK- and spacetime covariant derivatives of
the fermions also with respect ®U(2)g; i.e., we make the
replacements

VD, W=V W+ gpALS ), W 2.9

and describe the ‘“very special” geometry of the scalar

manifold M (see[13] for detaily. These ungauged MES-

V#si—>©ﬂsi:=Vﬂsi+gRA22iAjsj (2.9

GT'’s also contain a constant symmetric ten€gji . If the

gauging ofK involves the introduction of tensor fields, the
coefficients of the typ€ynp andC,;y have to vanist14].

The only components that survive such a gauging are thus
Cijk,» Which appear in the Chern-Simons-like term of Eg.
(2.3), andC,y N, Which are related to the transformation ma-

trices of the tensor fields by

2

V6

All\{l\l: QMPC“:)N.

Dﬂ)\iaqgﬂ)\i;\::pﬂ)\ia_i_ gRAﬁEIA])\JS
=V N2+ gA LPAP+gpAlS ) M2
(2.10

in the Lagrangian2.3) and the transformation law&.4).
Here,gr denotes th&U(2)g coupling constant, and t@'Aj
(i,j,...=1,2) are theSU(2)g transformation matrices of
the fermions, which can be chosen as

064023-3



M. GUNAYDIN AND M. ZAGERMANN PHYSICAL REVIEW D 63 064023

A 3 - 10 -~ ~ -
2= 0] (210 - \[thaféchCEAif?WaRO” + 2RE Wap + 2Rgg WP
TR . : o (2.22
with o"AJ- being the Pauli matrices. The indices, ... are B B B
: : : . b
raised and lowered according to Ria} ;;:Ingo” iRz 2 2.23
Xizsinj, Xi:ngji |
with &', &;; antisymmetric and'?=e,=1. (The traceless- Roij x= ~ 2 R - (2.24

ness ofEiAj then impliesX 5j; =2 5j; .) -
The above replacements break supersymmetry, but theurthermore, the cancellation of th&* variation of P(R

latter can be restored by adding and similar terms requires that
& L' =GRV, IV Ry () + grNT#W Ry (¢) M(Za22e) =0 229
+ananbR=z (o) — g2p®R) _ [as well as trEA)=0.], Whigh is, however,. a general prop-
9rM A Rabij (0) —GRPT(0), (212 erty of traceless anti-Hermitian ¢22) matrices.
to the Lagrangian and by adding For the sake of concreteness, let us conclude this section

with a brief overview of the most interesting examples of
2 , Yang-Mills-Einstein supergravity theories that admit the
8"V i = 3 9rRoij (@)1 ,¢’ gauging ofSU(2)g.

Even though the constraints from supersymmdtey.
(2.18)] allow K to be a semi-direct product group, we shall
restrict ourselves to gauge groups that are not of the semi-
direct type. In this caseK is a direct product of SU(2)¢
with another group. We can thus confine ourselves to the
caseK=SU(2)g, since additional group factors Kido not
change the structure of the above theory very much.

3 NOW, to be able to gaUgK—SU(Z)G, the isor Ietl’y
1
ROij = \/:hAE i

8'\}=grR% (@)e! (2.13

to the transformation Iqws.

The quantitieR; Rﬁ ,Rzgi; and the additional potential
term P(R are fixed by supersymmetry:

(2.14 group of M must have ar8U(2) subgroupSU(2)s, that
extends to a symmetry group of the full Lagrangian with
- - three of the vector fields of the theory transforming in the
R :hAaEAij (2.19  adjoint representation &U(2) .

For the generic Jordan family of MESGT’s with the scalar
manifold SO(1,1)Xx SO(n—1,1)/SO(n—1) [13], such a
subgroup exists for all theories wiifi>3 (see Sec. Ill A
Similarly, for the generic non-Jordan family with the scalar

p(RI_ _ E’RBR{) i_R;:uRiaj_ (217 ~ manifold ~SO(F1,1)/SO(F1) [22] one can gaugeSU(2)g
3 ™ . whenevem>3 (see Sec. Il (.
Of the “magical” N=2 MESGT's[13], all but the one
defined by the Jordan algebra of real symmetrixx @ ma-

1 2 -
Regij =~ 3 926Roij — \[g aBeRy) (2.16

Supersymmetry also requires

A —fA —p (2.18 trices,JE, admit such a gauging.
I'B 113’ . . . e . . .
Finally, all the members of the infinite family with
_fC s SU(N) isometries N>3) described in Ref.14] also admit
9r[*a 25l =9 fae>cij @19 3 gauging ofSU(2)¢ [and thus ofSU(2)g].
3 a1 5=0 (2.20 For the generic Jordan and the generic non-Jordan fami-

lies one can choose theU(2)s subgroup of the isometry

[The structure constants of the t ID?%' do not necessarily 97°UP such that all the other vector fields are inert under it,
YPEA Y j'e. one does not have to dualize any vector fields to tensor

have to' vani;h for supersymmetry. If they do vanish, how’fields. On the other hand, the gauging $8(2)g requires
ever,K is a direct product 05U(2)c and some other group o qyalization of some of the vector fields to tensor fields in

K'. Otherwise,K is a semi-direct produclt c.)f the form the magical theories as well as in the theories v8tt(N)
(SU(2)c X S)X T, wherex denotes the semi-direct product isometries.

andSandT are some other subgroups Kf]
The following constraints are consequences of the above

. . IIl. THE SCALAR POTENTIAL
and are needed in the proof of supersymmetry:

As seen in the previous section, the gaugingSaf(2)g
R KA _ \/EE A LK (2.7 Introduces an additional contributio®® (), to the total
1 27 Al ' scalar potential. Before we take a closer look at this poten-
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tial, let us first make contact with the earlier wgds] on the A. The generic Jordan family
fmotst gfnizalt %ﬁ“?'?‘% ?f la]!(l)Rtsutf:)'glrgu;i ofS ?(2)3. Weth The generic Jordan family corresponds to the scalar mani-
rst note that the triplet of vector fields transforming in the 1 " ¢ o e - ST 1)% SOM—1,1)/SO—1),

adjoint representation ddU(2)s cannot include the gravi- ; .
photon. This follows from the fact theBU(2)s is a sub- The Iattgr can be Qescrlbed as the hypersurfagt) =1 of
the cubic polynomia13]

group of the compact part of the isometry grouphdf, under

which the graviphoton is inert. Thus th& 1)g gauged theo- 312 e -

ries obtained by restricting oneself tol(1) subgroup of N(f)z(g) Cryé'&lel

SU(2)g do not describe the most genetkd(1)g gaugings

possible: For the most generél(1)g gauging, one can :\/Ego[(gl)z_(gz)z_,”_(gﬁ)z], (3.3

choose an arbitrary linear combinatiAhV, of all the vector
fields, as was done ifL5], including the graviphoton. 5 . . ~ i1 .
For the theories of the Jordan family, it was showfiis] ~ Where the¢' parametrize an ambient spasé” *. The isom-
that the generitJ (1) gauging either leads to a flat potential €try group of this space iISQ(1,1)XSO(n—1,1). For
with Minkowski ground states whenev®f, corresponds to SU(2)~SO(3) to be a subgroup, one obviously neets
an idempotent of the Jordan algebra, or an anti—de Sittex4, as we will assume from now on.
ground state whenevaf, lies in the “domain of positivity” The constraintN(¢)=1 can be solved by
of the Jordan algebra, or to no critical points at all when none
of the above is true fo¥,. Looking now at theU(1)y re- 1
strictions of theSU(2)g gaugings in the Jordan family, one O=——
finds that theV, are of the last type, i.e., they are neither \/§||<P||2
idempotents nor do they lie in the domain of positivity. This
already suggests that, at least in the Jordan family, the =gt
SU(2)g gauging leads to theories without critical points.
In fact, we are able to verify this statement for all theories
for which the scalar manifoldM is a symmetric space.
These can be divided into three families: -

(i) The generic Jordan family. =", (3.4
(ii) The magical Jordan family. B
(iii ) The generic non-Jordan family. where [|¢[2=(¢Y)2—(¢?)2— ... —(¢™? has been intro-

B(_efore we look at each of these tk;ree families in moregyced. As explained if21], the scalar field metrigsy and
detail, let us recast the scalar potenf4F of Eq.(2.17) into the vector field metrica= are positive definite onlv for
a more compact form. In the bag.11), P(® becomes vector 1 ricay; aré posiiv niteonly 1

| ¢l|*>0. Without loss of generality, we choo@«%,A AL

as theSO(3) gauge fields. L
PRI | _pAnB4 EhAEhBE Sas. 3.1) For the Jordan cases, one Hagj = C'’=const(com-
2 ponentwisg [13]. Using hy= (1//6)(a/3&')N|n—1 [13], one
then obtains for the scalar potenti@.2)
Using[13]

3
PR = lell?. (35

Crgh'=hihs— %h?hé‘,
It is easy to see that this scalar potential doeshave any
critical points in the physically relevant regidip[?>0.
this can be rewritten as This situation does not change when one gauges an addi-

tional SO(2)C G along the lines of Ref.21] by introducing
tensor fields. For such a gauging, one needs at lea$.

(R)_ _ ~ABI
P SENULE 32 Choosing¢&® and £ to form anSO(2) doublet, the corre-
sponding vector field#A> and A% have to be dualized to
where we have defined tensor fields. This gives rise to the additional potential term
[21]
CIJKE°7’°33’5RR’CT,3,R, 1 T(05) 2+ ( o5)2
p_ L)+ (e)] 36

&8 el®

with a9 being the inverse 03173.
Let us now analyze this potential for the above-mentionedt is easy to verify that the combined potenti,,= P®
three families of symmetric spaces. + P does not have any ground states either.
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B. The magical Jordan family Taking into account that dé))=[||x| %1%, it easy to verify
We now turn to the magical Jordan fam[l¥3]. The sim-  that the total potentia,,= P+ P®) doesnothave any criti-
plest example in whicl8U(2)g can be gauged is provided cal points in the physically relevant region, whéfrei*#0.
by the model with the scalar manifold M The other magical theories corresponding t&1
=S1(3,0)/SU(3). This theory contains eight vector multi- =SU*(6)/USp(6) and M=Eg_,5/F4, which also allow
plets (i.e. it comprises eight scalar fields and nine vectorthe gauging oSU(2)g, have a very similar structure to the

fields). M can be described as the hypersurfafg) =1 of ~ above and contain th®L(3,()/SU(3) model as a subsector;
the cubic polynomial one therefore does not expect to find any critical points ei-

ther.
N(&) = V2&* 7,5 6P+ Y amné“EVEN, (3.7)

C. The generic non-Jordan famil
where 9 y

This leaves us with the theories of the generic non-Jordan
ap,...=0123 family [22]. They are given by\{=SO(1,n)/SO(n), which
can be described as the hypersurfa{g) =1 of

M,N, ...=5,6,7,8
_ 00 ¢1\2_ ¢lr e2N2 4 . ny2
pes=diag +,— 1, —) N(&)=V2£(£)2 - €17+ -+ (€M) (310
The constrainN=1 can be solved by
Yo=—14
1=Le®o; §O=;+i¢>1[(¢2)2+ .. .+((pﬁ)2]
V2(eh? V2
V2= T 02807
=o!
V3= 12® 3.
52: g01<PZ
It is easy to show that the vector field metag; becomes
degenerate, whemaﬂ&’gﬁ:o. We therefore can restrict
ourselves to the regiomaﬁg‘*gﬁio, where the constraint _ _
N(&)=1 can be solved by E=plon.
§r=pt=:x" In contrast to the Jordan families, one no longer has the
_ equality of the constar®ijz to C'JX. Instead, theC'’¥ are
1_bT b . . L .
4_ X now scalar field dependent, which makes a similar analysis
V2x12 more complicated. What makes the calculation of the scalar
potential nevertheless feasible is that the scalar field metric
M= pM=:pM, gxy becomes diagonal, and therefore easily invertible, in the

above coordinate system. To be specific, one obtains

where bTxb=bMxy,\b" With Xyn=X*y.un and |x|? _
= X XE. MM MN MN gy=diad 3 eH2 (13, ... (¢H%], (31D
SubgroLp of the isomorty QroupL3. ). The veclor il "Ich S positve definie fo >0,

group Y9 . “ In order to gauge ar8OQ(3)~SU(2) subgroup of the
corresponds to th&J(1) gauge field, whereas the vector . , ~
fields A, ,AZ ,AS act as theSU(2) gauge fields. The vector isometry group of\, one obviously needs atsleafla4, as
fields ANl are charged undéit(1)x SU(2)] and have to be @ Will assume from now on. We choosg, A, A, as the

dualized to tensor fields. The vector fi is a spectator SU2)e gauge fields. Inspection &f above shows that this

2 £3 g4 i
vector field. The introduction of the tensor fields leads to sd"OUP rotateg?,£°,£* into each other, but leaves the otfger
non-trivial potentialP, which turns out to be unchanged. Thus, no tensor fields have to be introduced. The

resulting scalar potentidB.1) turns out to be

P=- %bT(X)3b. (3.8 1 31
PR == Z(@)2[(¢2)*+ (%) +(¢)?]+5 .
As described earlier, th8U(2)s gauge fieldsA; A2 A° ¢ (3.12
can be used to simultaneously gau®e(2)g. This leads to
an additional potential which again does not admit any ground states for the physi-
cally interesting regionp>0.
P(R)=§||x||2 3.9 Similar conclusions hold true when one introduces tensor
2 ' ' fields by gauging an additiongdQ(2), which is possible
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whenn>5. Just as in the generic Jordan case, 8@2) relative coupling constants as in the gaugingsJéfl )z < K
can be chosen to rotat® and &° into each other and thus in order to change the properties of critical points of the

requires the dualization o&>, and AS to tensor fields. The ~Scalar potentiaP, =P+ P(® [14,21) (if such critical points
total scalar potential then gets an additional contributryn, Were to exist for some of the models we have not studied in

which turns out to be this pape). Hence,SU(2)g-gauged supergravity theories are
much more rigid than theid (1)g-gauged relatives.
1 e s 62 Note addedThis paper appeared contemporaneously with
P= g(@ )’L(e7) "+ (¢°)7]. Ref. [23] on the generalV=2 d=5 supergravity including
hypermultiplets andSU(2)g gauging. Where these two pa-
Again, it is easy to see that the combined poterfigl= P pers overlap, the authors §23] have found the results of

+P® does not have any critical points fgr'>0. their revised version to be consistent with our results.
To conclude, at least when the scalar manifgid is a
symmetric space, thBU(2)g gauging leads to a total scalar ACKNOWLEDGMENTS
potential which does not have any critical points.
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