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Gauging the full R-symmetry group in five-dimensional,NÄ2
Yang-Mills-Einstein-tensor supergravity
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We show that certain five-dimensional,N52 Yang-Mills-Einstein supergravity theories admit the gauging
of the full R-symmetry group,SU(2)R , of the underlyingN52 Poincare´ superalgebra. This generalizes the
previously studied Abelian gaugings ofU(1)R,SU(2)R , and completes the construction of the most general
vector and tensor field coupled five-dimensional,N52 supergravity theories with gauge interactions. The
gauging ofSU(2)R turns out to be possible only in special cases, and leads to a new type of scalar potential.
For a large class of these theories the potential does not have any critical points.
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I. INTRODUCTION

Five-dimensional gauged supergravity theories have b
subject to a renewed intense interest during the last th
years. They offer an important tool in the study of the A
conformal field theory~CFT! correspondence@1–4# and
have, more recently, been discussed as a potential frame
for an embedding of the Randall-Sundrum~RS! scenario
@5,6# into string or M theory.

Whereas the embedding of the original discontinuous R
model @5# into 5D, N52 gauged pure supergravity o
R43S1/Z2 was studied in@7–9#, a realization in terms of a
smooth~‘‘thick’’ ! Bogomol’nyi-Prasad-Sommerfield~BPS!
domain wall solution seemed to be incompatible with a
riety of scalar potentials of known matter coupledN52 su-
pergravity theories@10–12#.

Since the most general 5D,N52 gauged supergravity
theory has not yet been constructed,1 it is, however, still
unclear how general these no-go theorems really are. A c
struction of the most general types of these theories sh
therefore help to settle this question, and might also be
teresting for~bulk-!matter coupled generalizations of the d
continuous model of@5,7–9#. At the same time, a complet
knowledge ofN52 gauged supergravity theories might al
contribute to a better understanding of various aspects o
N58 theory ~such as, e.g., the structure of its vacua! with
possible implications for the AdS-CFT correspondence.

Motivated by these and other applications, we have
cently studied the possible gaugings of vector and ten
field coupled 5D,N52 supergravity theories. All these theo
ries ~including the ones involving tensor multiplets! can be
derived from theungaugedN52 Maxwell-Einstein super-
gravity theories~MESGT’s! of Ref. @13#. These theories de
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1See note added.
0556-2821/2001/63~6!/064023~7!/$15.00 63 0640
en
ee

rk

-

-

n-
ld
-

he

-
or

scribe the coupling of Abelian vector multiplets toN52
supergravity and have a global symmetry group of the fo
SU(2)R3G. Here,G is the subgroup of the isometry grou
of the scalar field target space that extends to a symm
group of the full Lagrangian, andSU(2)R denotes the auto
morphism group~‘‘ R-symmetry group’’! of the 5D, N52
Poincare´ superalgebra.

In @14# we generalized the earlier work@15# and con-
structed all possible gaugings of subgroups ofU(1)R3G,
where U(1)R,SU(2)R denotes the Abelian subgroup o
SU(2)R . In particular, we also covered the case when
gauging of a subgroup ofG involves the dualization of some
of the vector fields of the ungauged theory to ‘‘self-dua
@16# antisymmetric tensor fields, a mechanism that is w
known from the maximally extended gauged supergravi
in d57 @17# andd55 @18–20# dimensions.

Thus, the only gaugings that have not yet been covere
this framework are those involving gaugings of thefull
R-symmetry groupSU(2)R . It is the purpose of this paper t
close this gap. This will complete the construction of t
possible gaugings of the entire vector-tensor sector ofN
52 matter coupled supergravity theories in five dimensio

The outline of this paper is as follows. In Sec. II, we fir
analyze to what extent the fullR-symmetry groupSU(2)R
can be gauged within the framework of vector and ten
field coupled 5D,N52 supergravity theories. The corre
sponding Lagrangians and the supersymmetry transforma
rules are then derived via the Noether method starting fr
some of our earlier results@14#. Section III, finally, is de-
voted to a discussion of the resulting scalar potentials.

II. GAUGING THE FULL R-SYMMETRY GROUP SU„2…R

The gauging ofSU(2)R is a little less straightforward
than gaugings of subgroups ofU(1)R3G, as we shall now
explain.

The supermultiplets we are dealing with are (m,n, . . .
©2001 The American Physical Society23-1



es

i-

r
l

/2

ry

f,
o

r

s

g

-

n-

e

lets
e
s,

ds,

e

re
e-

up

-

er-
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and m,n, . . . denote curved and flat spacetime indic
respectively!:

~i! TheN52 supergravity multiplet, containing the grav
ton ~fünfbein! em

m , two gravitiniCm
i ( i , j , . . . ,51,2) and one

vector fieldAm
~ii ! The N52 vector multiplet, comprising one vecto

field Am , two spin-1/2 fermionsl i ( i , j , . . . 1,2) and one rea
scalar fieldw

~iii ! The N52 ‘‘self-dual’’ tensor multiplet consisting of
two real two-form fieldsBmn

(1) , Bmn
(2) ; four spin-1/2 fermions

l (1)i , l (2)i ( i , j , . . . 51,2) and two real scalar fieldsw (1),
w (2).

Of all the above fields, only the gravitini and the spin-1
fermions transform non-trivially underSU(2)R ~they form
doublets labeled by the indexi 51,2). In particular, all the
vector fields aresingletsunderSU(2)R . In order to gauge a
non-Abelian symmetry group likeSU(2)R , however, one
needs vector fields that transform in theadjoint representa-
tion of the gauge group.

The only way to solve this problem is to identifySU(2)R
with an SU(2) subgroup of the scalar manifold isomet
group, G, and to gauge bothSU(2)’s simultaneously.
In other words, SU(2)R cannot be gauged by itsel
rather one has to gauge a diagonal subgroup
SU(2)R3SU(2)G,SU(2)R3G. The most natural starting
point for a gauging ofSU(2)R is therefore a ‘‘Yang-Mills-
Einstein supergravity theory’’~see@15,14,21# for details on
this terminology! in which a subgroupK.SU(2)G of G is
gauged. In order to be as general as possible, we conside
case when the supersymmetric gauging ofK,G requires the
introduction of tensor fields~the case without tensor field
can easily be recovered as a special case!. At this point we
require the gauge groupK only to have anSU(2) subgroup
SU(2)G,K, but leave it otherwise undetermined.

We start by recalling some relevant properties of Yan
Mills-Einstein supergravity theories with tensor fields~see
@14,21# for details!. Yang-Mills-Einstein supergravity theo
ries with tensor fields describe the coupling ofn vector mul-
tiplets andm self-dual tensor multiplets to supergravity. Co
sequently, the field content of these theories is

$em
m ,Cm

i ,Am
I ,Bmn

M ,l i ã,w x̃% ~2.1!

where

I ,J,K . . . 50,1, . . .n

M ,N,P . . . 51,2, . . . 2m
06402
,

f

the

-

ã,b̃,c̃, . . . 51, . . . ,ñ

x̃,ỹ,z̃, . . . 51, . . . ,ñ,

with ñ5n12m.
Note that we have combined the ‘‘graviphoton’’ with th

n vector fields of then vector multiplets into a single (n
11)-plet of vector fieldsAm

I labeled by the indexI. Also, the
spinor and scalar fields of the vector and tensor multip
are combined intoñ-tupels of spinor and scalar fields. Th
indicesã,b̃, . . . andx̃,ỹ, . . . are the flat and curved indice
respectively, of theñ-dimensional target manifold,M, of the
scalar fields. The metric, vielbein and spin connection onM
will be denoted bygx̃ỹ , f x̃

ã andV x̃
ãb̃ , respectively.

A subset of the vector fieldsAm
I is used to promote

a subgroupK of the isometry group ofM to a Yang-Mills-
type gauge symmetry. Apart from these gauge fiel
only the tensor fieldsBmn

M , the spin-1/2 fieldsl i ã and the

scalar fieldsw x̃ transform non-trivially under this gaug
groupK.

The K-gauge covariant derivatives of these fields a
as follows (¹ denotes the ordinary spacetime covariant d
rivative, andg is the coupling constant of the gauge gro
K)

Dml i ã[¹ml i ã1gAm
I LI

ãb̃l i b̃

Dmw x̃[]mw x̃1gAm
I KI

x̃

DmBnr
M [¹mBnr

M 1gAm
I L IN

M Bnr
N . ~2.2!

Here,KI
x̃ are the Killing vector fields onM that generate the

subgroupK of its isometry group. Thew-dependent matrices

LI
ãb̃ and theconstantmatricesL IN

M are theK-transformation

matrices ofl i ã andBmn
M , respectively.

Denoting the curls ofAm
I by Fmn

I and the structure con
stants of K by f JK

I , we combine the non-Abelian field
strengths F mn

I 5Fmn
I 1g fJK

I Am
J An

K with the antisymmetric
tensor fieldsBmn

M to form the tensorial quantity

H mn
Ĩ
ª~F mn

I ,Bmn
M ! ~ Ĩ ,J̃,K̃, . . . 50, . . . ,n12m!.

The general Lagrangian of a Yang-Mills-Einstein sup
gravity theory with tensor fields is then given by@14#
e21L52
1

2
R~v!2

1

2
C̄m

i Gmnr¹nCr i2
1

4
a° Ĩ J̃H mn

Ĩ H J̃mn2
1

2
l̄ i ã~GmDmd ãb̃1V x̃

ãb̃
GmD mw x̃!l i

b̃2
1

2
gx̃ỹ~D mw x̃!~D mw ỹ!

2
i

2
l̄ i ãGmGnCm i f x̃

ãD nw x̃1
1

4
hĨ

ã
l̄ i ãGmGlrCm iH lr

Ĩ 1
i

2A6
S 1

4
d ãb̃hĨ 1Tãb̃c̃hĨ

c̃D l̄ i ãGmnl i
b̃H mn

Ĩ

3-2



GAUGING THE FULL R-SYMMETRY GROUP IN FIVE- . . . PHYSICAL REVIEW D 63 064023
2
3i

8A6
hĨ @C̄m

i GmnrsCn iH rs
Ĩ 12C̄m iC i

nH mn
Ĩ #1

e21

6A6
CIJK«mnrsl

3H Fmn
I Frs

J Al
K1

3

2
gFmn

I Ar
J~ f LF

K As
LAl

F!1
3

5
g2~ f GH

J An
GAr

H!~ f LF
K As

LAl
F!Am

I J
1

e21

4g
«mnrslVMNBmn

M DrBsl
N 1gl̄ i ãGmCm iWã1gl̄ i ãl i

b̃Wãb̃2g2P ~2.3!
s

la
-

e
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q
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-

the
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o
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f

with e[det(em
m). The transformation laws are~to leading

order in fermion fields!

dem
m5

1

2
«̄ iGmCm i

dCm
i 5¹m« i1

i

4A6
hĨ ~Gm

nr24dm
n Gr!H nr

Ĩ « i

dAm
I 5qm

I

dBmn
M 52D[mqn]

M1
A6g

4
VMNhNC̄ [m

i Gn]« i

1
ig

4
VMNhNãl̄

i ãGmn« i

dl i ã52
i

2
f x̃

ã
Gm~Dmw x̃!« i1

1

4
hĨ

ã
Gmn« iH mn

Ĩ 1gWã« i

dw x̃5
i

2
f ã

x̃
«̄ il i

ã ~2.4!

with

qm
Ĩ [2

1

2
hã

Ĩ
«̄ iGml i

ã1
iA6

4
hĨC̄m

i « i . ~2.5!

The various scalar field dependent quantitiesa° Ĩ J̃ , hĨ , hĨ ,

hĨ
ã , hĨ ã andTãb̃c̃ that contract the different types of indice

are already present in the correspondingungaugedMESGT’s
and describe the ‘‘very special’’ geometry of the sca
manifold M ~see @13# for details!. These ungauged MES
GT’s also contain a constant symmetric tensorCĨ J̃K̃ . If the
gauging ofK involves the introduction of tensor fields, th
coefficients of the typeCMNP andCIJM have to vanish@14#.
The only components that survive such a gauging are
CIJK , which appear in the Chern-Simons-like term of E
~2.3!, andCIMN , which are related to the transformation m
trices of the tensor fields by

L IN
M 5

2

A6
VM PCIPN .
06402
r

us
.

Here VMN is the inverse ofVMN , which is a ~constant!
invariant antisymmetric tensor of the gauge groupK:

VMN52VNM , VMNVNP5dM
P . ~2.6!

The quantitiesWã(w) andWãb̃(w) and the scalar poten
tial P(w) are due to the gauging ofK in the presence of the
tensor fields, and are given by

Wã52
A6

8
hM

ã VMNhN

Wãb̃52Wb̃ã5 ihJ[ ãKJ
b̃]1

iA6

4
hJKJ

ã;b̃

P52WãWã, ~2.7!

where the semicolon denotes covariant differentiation on
target spaceM.

We will now use the above theory as our starting point
the additional gauging ofSU(2)R . To this end, we first split
the indexI of the (n11) vector fieldsAm

I according to

I 5~A,I 8!,

whereA,B,C, . . . P$1,2,3% are the indices corresponding t
the three gauge fields ofSU(2)G,K, andI 8,J8,K8, . . . la-
bel the remaining (n22) vector fields.

In order to gaugeSU(2)R , we use the gauge fieldsAm
A to

covariantize theK- and spacetime covariant derivatives
the fermions also with respect toSU(2)R ; i.e., we make the
replacements

¹mCn
i →DmCn

i
ª¹mCn

i 1gRAm
ASA j

i Cn
j ~2.8!

¹m« i→Dm« i
ª¹m« i1gRAm

ASA j
i « j ~2.9!

D ml i ã→Dml i ã
ªD ml i ã1gRAm

ASA j
i l j ã

[¹ml i ã1gAm
I LI

ãb̃l i b̃1gRAm
ASA j

i l j ã

~2.10!

in the Lagrangian~2.3! and the transformation laws~2.4!.
Here,gR denotes theSU(2)R coupling constant, and theSA j

i

( i , j , . . . 51,2) are theSU(2)R transformation matrices o
the fermions, which can be chosen as
3-3
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SA j
i 5

i

2
sA j

i ~2.11!

with sA j
i being the Pauli matrices. The indicesi , j , . . . are

raised and lowered according to

Xi5« i j Xj , Xi5Xj« j i

with « i j , « i j antisymmetric and«125«1251. ~The traceless-
ness ofSA j

i then impliesSAi j5SA ji .)
The above replacements break supersymmetry, but

latter can be restored by adding

e21L85gRC̄m
i GmnCn

j R0i j ~w!1gRl̄ i ãGmCm
j Rãi j ~w!

1gRl̄ i ãl j b̃Rãb̃i j ~w!2gR
2 P(R)~w!, ~2.12!

to the Lagrangian and by adding

d8Cm i5
2

3
gRR0i j ~w!Gm« j

d8l i
ã5gRRi j

ã ~w!« j ~2.13!

to the transformation laws.

The quantitiesR0i j ,Ri j
ã ,Rãb̃i j and the additional potentia

term P(R) are fixed by supersymmetry:

R0i j 5 iA3

8
hASAi j ~2.14!

Ri j
ã 5hAãSAi j ~2.15!

Rãb̃i j 52
1

3
d ãb̃R0i j 2 iA2

3
Tãb̃c̃Ri j

c̃ ~2.16!

P(R)52
16

3
R0 j

i R0i
j 2Rj

ãiRi
ãj . ~2.17!

Supersymmetry also requires

f I 8B
A

5 f I 8J8
A

50 ~2.18!

gR@SA ,SB# i j 5g fAB
C SCi j ~2.19!

SAi j ,x̃50. ~2.20!

@The structure constants of the typef I 8A
J8 do not necessarily

have to vanish for supersymmetry. If they do vanish, ho
ever,K is a direct product ofSU(2)G and some other group
K8. Otherwise, K is a semi-direct product of the form
„SU(2)G3S…›T, where› denotes the semi-direct produ
andS andT are some other subgroups ofK.#

The following constraints are consequences of the ab
and are needed in the proof of supersymmetry:

Ri j
ã KJ

ã52A3

2
SAi j f JK

A hK ~2.21!
06402
he

-

e

2 iA3

2
hBãf BC

A hCSAi j5
10

3
WãR0i j 12Ri j

b̃ Wãb̃12Rãb̃i j W
b̃

~2.22!

Ri j ; x̃
ã

5 i f x̃
ã
R0i j 2 iRãb̃i j f x̃

b̃
~2.23!

R0i j ,x̃52
i

2
Rx̃i j . ~2.24!

Furthermore, the cancellation of thedw x̃ variation of P(R)

and similar terms requires that

tr~S (ASB)SC!50 ~2.25!

@as well as tr(SA)50], which is, however, a general prop
erty of traceless anti-Hermitian (232) matrices.

For the sake of concreteness, let us conclude this sec
with a brief overview of the most interesting examples
Yang-Mills-Einstein supergravity theories that admit t
gauging ofSU(2)R .

Even though the constraints from supersymmetry@Eq.
~2.18!# allow K to be a semi-direct product group, we sha
restrict ourselves to gauge groups that are not of the se
direct type. In this case,K is a direct product of SU(2)G
with another group. We can thus confine ourselves to
caseK5SU(2)G , since additional group factors inK do not
change the structure of the above theory very much.

Now, to be able to gaugeK5SU(2)G , the isometry
group ofM must have anSU(2) subgroup,SU(2)G , that
extends to a symmetry group of the full Lagrangian w
three of the vector fields of the theory transforming in t
adjoint representation ofSU(2)G .

For the generic Jordan family of MESGT’s with the sca
manifold SO(1,1)3SO(ñ21,1)/SO(ñ21) @13#, such a
subgroup exists for all theories withñ.3 ~see Sec. III A!.
Similarly, for the generic non-Jordan family with the scal
manifold SO(ñ,1)/SO(ñ) @22# one can gaugeSU(2)G

wheneverñ.3 ~see Sec. III C!.
Of the ‘‘magical’’ N52 MESGT’s @13#, all but the one

defined by the Jordan algebra of real symmetric (333) ma-
trices,J3

R , admit such a gauging.
Finally, all the members of the infinite family with

SU(N) isometries (N.3) described in Ref.@14# also admit
a gauging ofSU(2)G @and thus ofSU(2)R].

For the generic Jordan and the generic non-Jordan fa
lies one can choose theSU(2)G subgroup of the isometry
group such that all the other vector fields are inert unde
i.e. one does not have to dualize any vector fields to ten
fields. On the other hand, the gauging ofSU(2)G requires
the dualization of some of the vector fields to tensor fields
the magical theories as well as in the theories withSU(N)
isometries.

III. THE SCALAR POTENTIAL

As seen in the previous section, the gauging ofSU(2)R
introduces an additional contribution,P(R)(w), to the total
scalar potential. Before we take a closer look at this pot
3-4
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tial, let us first make contact with the earlier work@15# on the
most general gauging of aU(1)R subgroup ofSU(2)R . We
first note that the triplet of vector fields transforming in t
adjoint representation ofSU(2)G cannot include the gravi
photon. This follows from the fact thatSU(2)G is a sub-
group of the compact part of the isometry group ofM, under
which the graviphoton is inert. Thus theU(1)R gauged theo-
ries obtained by restricting oneself to aU(1) subgroup of
SU(2)R do not describe the most generalU(1)R gaugings
possible: For the most generalU(1)R gauging, one can
choose an arbitrary linear combinationAm

I VI of all the vector
fields, as was done in@15#, including the graviphoton.

For the theories of the Jordan family, it was shown in@15#
that the genericU(1)R gauging either leads to a flat potenti
with Minkowski ground states wheneverVI corresponds to
an idempotent of the Jordan algebra, or an anti–de S
ground state wheneverVI lies in the ‘‘domain of positivity’’
of the Jordan algebra, or to no critical points at all when no
of the above is true forVI . Looking now at theU(1)R re-
strictions of theSU(2)R gaugings in the Jordan family, on
finds that theVI are of the last type, i.e., they are neith
idempotents nor do they lie in the domain of positivity. Th
already suggests that, at least in the Jordan family,
SU(2)R gauging leads to theories without critical points.

In fact, we are able to verify this statement for all theor
for which the scalar manifoldM is a symmetric space
These can be divided into three families:

~i! The generic Jordan family.
~ii ! The magical Jordan family.
~iii ! The generic non-Jordan family.
Before we look at each of these three families in mo

detail, let us recast the scalar potentialP(R) of Eq. ~2.17! into
a more compact form. In the basis~2.11!, P(R) becomes

P(R)5F2hAhB1
1

2
hAãhBãGdAB . ~3.1!

Using @13#

CĨ J̃K̃hK̃5hĨhJ̃2
1

2
hĨ

ã
hJ̃

ã ,

this can be rewritten as

P(R)52CABĨhĨdAB , ~3.2!

where we have defined

CĨ J̃K̃[a° Ĩ Ĩ 8a° J̃J̃8a° K̃K̃8CĨ 8J̃8K̃8

with a° Ĩ J̃ being the inverse ofa° Ĩ J̃ .
Let us now analyze this potential for the above-mention

three families of symmetric spaces.
06402
er

e

e

s

e

d

A. The generic Jordan family

The generic Jordan family corresponds to the scalar m
folds of the form M5SO(1,1)3SO(ñ21,1)/SO(ñ21).
The latter can be described as the hypersurfaceN(j)51 of
the cubic polynomial@13#

N~j!5S 2

3D 3/2

CĨ J̃K̃j Ĩj J̃j K̃

5A2j0@~j1!22~j2!22•••2~j ñ!2#, ~3.3!

where thej Ĩ parametrize an ambient spaceRñ11. The isom-
etry group of this space isSO(1,1)3SO(ñ21,1). For
SU(2);SO(3) to be a subgroup, one obviously needsñ
>4, as we will assume from now on.

The constraintN(j)51 can be solved by

j05
1

A2iwi2

j15w1

A

j ñ5w ñ, ~3.4!

where iwi2[(w1)22(w2)22 . . . 2(w ñ)2 has been intro-
duced. As explained in@21#, the scalar field metricgx̃ỹ and

the vector field metrica° Ĩ J̃ are positive definite only for
iwi2.0. Without loss of generality, we chooseAm

2 ,Am
3 ,Am

4

as theSO(3) gauge fields.
For the Jordan cases, one hasCĨ J̃K̃5CĨ J̃K̃5const ~com-

ponentwise! @13#. Using hĨ 5(1/A6)(]/]j Ĩ )NuN51 @13#, one
then obtains for the scalar potential~3.2!

P(R)5
3

2
iwi2. ~3.5!

It is easy to see that this scalar potential doesnot have any
critical points in the physically relevant regioniwi2.0.

This situation does not change when one gauges an a
tional SO(2),G along the lines of Ref.@21# by introducing
tensor fields. For such a gauging, one needs at leastñ>6.
Choosingj5 and j6 to form anSO(2) doublet, the corre-
sponding vector fieldsAm

5 and Am
6 have to be dualized to

tensor fields. This gives rise to the additional potential te
@21#

P5
1

8

@~w5!21~w6!2#

iwi6
. ~3.6!

It is easy to verify that the combined potentialPtot5P(R)

1P does not have any ground states either.
3-5
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B. The magical Jordan family

We now turn to the magical Jordan family@13#. The sim-
plest example in whichSU(2)R can be gauged is provide
by the model with the scalar manifold M
5SL(3,C)/SU(3). This theory contains eight vector mult
plets ~i.e. it comprises eight scalar fields and nine vec
fields!. M can be described as the hypersurfaceN(j)51 of
the cubic polynomial

N~j!5A2j4habjajb1gaMNjajMjN, ~3.7!

where

a,b, . . . 50,1,2,3

M ,N, . . . 55,6,7,8

hab5diag~1,2,2,2 !

g05214

g1512^ s1

g252s2^ s2

g3512^ s3.

It is easy to show that the vector field metrica° Ĩ J̃ becomes
degenerate, whenhabjajb50. We therefore can restric
ourselves to the regionhabjajbÞ0, where the constrain
N(j)51 can be solved by

ja5wa5:xa

j45
12bTx̄b

A2ixi2

jM5wM5:bM,

where bTx̄b[bMx̄MNbN with x̄MN[xagaMN and ixi2

[habxaxb.
In the above model, one can gauge a@U(1)3SU(2)#

subgroup of the isometry groupSL(3,C). The vector fieldAm
0

corresponds to theU(1) gauge field, whereas the vect
fields Am

1 ,Am
2 ,Am

3 act as theSU(2) gauge fields. The vecto
fieldsAm

M are charged under@U(1)3SU(2)# and have to be
dualized to tensor fields. The vector fieldAm

4 is a spectator
vector field. The introduction of the tensor fields leads to
non-trivial potentialP, which turns out to be

P52
1

8
bT~ x̄!3b. ~3.8!

As described earlier, theSU(2)G gauge fieldsAm
1 ,Am

2 ,Am
3

can be used to simultaneously gaugeSU(2)R . This leads to
an additional potential

P(R)5
3

2
ixi2. ~3.9!
06402
r

a

Taking into account that det„( x̄)3
…5@ ixi2#6, it easy to verify

that the total potentialPtot5P1P(R) doesnot have any criti-
cal points in the physically relevant region, whereixi2Þ0.

The other magical theories corresponding toM
5SU* (6)/USp(6) andM5E6(226) /F4, which also allow
the gauging ofSU(2)R , have a very similar structure to th
above and contain theSL(3,C)/SU(3) model as a subsecto
one therefore does not expect to find any critical points
ther.

C. The generic non-Jordan family

This leaves us with the theories of the generic non-Jor
family @22#. They are given byM5SO(1,ñ)/SO(ñ), which
can be described as the hypersurfaceN(j)51 of

N~j!5A2j0~j1!22j1@~j2!21•••1~j ñ!2#. ~3.10!

The constraintN51 can be solved by

j05
1

A2~w1!2
1

1

A2
w1@~w2!21 . . . 1~w ñ!2#

j15w1

j25w1w2

A

j ñ5w1w ñ.

In contrast to the Jordan families, one no longer has
equality of the constantCĨ J̃K̃ to CĨ J̃K̃. Instead, theCĨ J̃K̃ are
now scalar field dependent, which makes a similar analy
more complicated. What makes the calculation of the sc
potential nevertheless feasible is that the scalar field me
gx̃ỹ becomes diagonal, and therefore easily invertible, in
above coordinate system. To be specific, one obtains

gx̃ỹ5diag@3/~w1!2,~w1!3, . . . ,~w1!3#, ~3.11!

which is positive definite forw1.0.
In order to gauge anSO(3);SU(2) subgroup of the

isometry group ofM, one obviously needs at leastñ>4, as
we will assume from now on. We chooseAm

2 ,Am
3 ,Am

4 as the
SU(2)G gauge fields. Inspection ofN above shows that this
group rotatesj2,j3,j4 into each other, but leaves the otherj Ĩ

unchanged. Thus, no tensor fields have to be introduced.
resulting scalar potential~3.1! turns out to be

P(R)52
1

2
~w1!2@~w2!21~w3!21~w4!2#1

3

2

1

w1
,

~3.12!

which again does not admit any ground states for the ph
cally interesting regionw1.0.

Similar conclusions hold true when one introduces ten
fields by gauging an additionalSO(2), which is possible
3-6
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when ñ.5. Just as in the generic Jordan case, thisSO(2)
can be chosen to rotatej5 and j6 into each other and thu
requires the dualization ofAm

5 and Am
6 to tensor fields. The

total scalar potential then gets an additional contributionP,
which turns out to be

P5
1

8
~w1!5@~w5!21~w6!2#.

Again, it is easy to see that the combined potentialPtot5P
1P(R) does not have any critical points forw1.0.

To conclude, at least when the scalar manifoldM is a
symmetric space, theSU(2)R gauging leads to a total scala
potential which does not have any critical points.

One also notes that the gauge couplinggR for SU(2)R
is related tog ~2.19!, which is, of course, a consequence
the fact that we are gauging a diagonal subgroup
SU(2)R3SU(2)G . This implies that one cannot tune th
B

se
a

e

ys

06402
f
f

relative coupling constants as in the gaugings ofU(1)R3K
in order to change the properties of critical points of t
scalar potentialPtot5P1P(R) @14,21# ~if such critical points
were to exist for some of the models we have not studied
this paper!. Hence,SU(2)R-gauged supergravity theories a
much more rigid than theirU(1)R-gauged relatives.

Note added.This paper appeared contemporaneously w
Ref. @23# on the generalN52 d55 supergravity including
hypermultiplets andSU(2)R gauging. Where these two pa
pers overlap, the authors of@23# have found the results o
their revised version to be consistent with our results.
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