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Based on a geometrical property which holds both for the Kerr metric and for the Wahlquist metric we argue
that the Kerr metric is a vacuum subcase of the Wahlquist perfect-fluid solution. The Kerr-Newman metric is
a physically preferred charged generalization of the Kerr metric. We discuss which geometric property makes
this metric so special and claim that a charged generalization of the Wahlquist metric satisfying a similar
property should exist. This is the Wahlquist-Newman metric, which we present explicitly in this paper. This
family of metrics has eight essential parameters and contains the Kerr—Newman—de Sitter and the Wahlquist
metrics, as well as the whole Plelsinlimit of the rotatingC metric, as particular cases. We describe the basic
geometric properties of the Wahlquist-Newman metric, including the electromagnetic field and its sources, the
static limit of the family and the extension of the spacetime across the horizon.
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I. INTRODUCTION shows that there may exist a close relationship between the
Wahlquist metric and the Kerr metric. However, no such
Among the few explicitly known stationargnon-stati¢  relationship has been found so far. One of the aims of this
and axially symmetric perfect-fluid spacetimes, the Wahl-paper is to show that the Kerr metric can be obtained as a
quist family [1] enjoys a privileged position. First, it is the particular, vacuum, subcase of the Wahlquist metric. In fact,
oldest known solution and it remains, in some sense, theve will also show that the Kerr—de Sitter metfit0], which
simplest one. More importantly, it has interesting physicalis vacuum with a cosmological constant, belongs to the
properties(see[2] and references thergiwhich have made Wahlquist family in the limitp+p=0.
this metric a good candidate to describe the interior of an The existence of physically privileged charged generali-
isolated rotating body in equilibrium. This view has beenzations of the Kerr and Kerr—de Sitter metrics, namely the
recently challenged i3], where the matching conditions Kerr—Newman[11] and Kerr—Newman—de Sitter space-
between the Wahlquist metric and a vacuum, asymptoticallyimes[10], leads us to consider whether a similar, privileged,
flat spacetime are claimed to be incompatible in a perturbagharged generalization of the Wahlquist metric exists. To
tive sense. This suggests that the Wahlquist metric does nahalyze such a question we should first make precise the
describe the interior or a rotating body in vacuum. In order tomeaning of the term “privileged.” As we shall see, the Kerr,
make this result conclusive it would be of interest to developthe Kerr—de Sitter and the Kerr—Newman—de Sitter metrics
a proper theoretical analysis of the perturbative approach thave very special geometric properties which relate the Weyl
the matching conditions. tensor, the Killing vector and the electromagnetic figithen
In any case, the fundamental properties which make thene is present Moreover, these conditions turn out to be
Wahlquist metric so special are of geometrical nature. Infulfilled also by the Wahlquist metric. Thus, there exists a
deed, this metric is known to be uniquely characterizedgyeometrically clear sense in which a privileged charged gen-
among stationary, rigidly rotating, perfect-fluid spacetimeseralization of the Wahlquist metric might exist. We call it
by any of the following, seemingly unrelated, properiisse ~ Wahlquist-Newman metric, first because it contains both

[4] for a discussion Wahlquist and Kerr—Newman—de Sitter as particular cases
(1) The Simon tensor vanishés]. and also in order to emphasize the very special geometrical
(2) The spacetime admits a Killing tensor of type properties fulfilled by this spacetime. The main objective of

[(AD(D][6]. this paper is to obtain the explicit form of this metric. It turns

(3) The spacetime is axially symmetric, the Weyl tensor isout that the Wahlquist-Newman family contains eight arbi-
Petrov type D and the equation of state of the perfect fluid israry parameters. It represents a rigidly rotating perfect fluid,
p+3p=const[7]. which may be charged or not, together with an electromag-

For the purposes of this paper, characterizatirwill be  netic field. The sources of the electromagnetic field are the
the most relevant one. The Simon tenf&jrwas put forward  perfect fluid(when this is chargedand/or a singularity of the
in order to obtain a unique characterization of the Kerr metspacetime. The latter corresponds to the singular source hid-
ric [9]. More precisely, the Kerr spacetime is the only strictly den behind the event horizon in the Kerr-Newman space-
stationary(i.e. with a Killing vector which is timelike every- time.
wherg, vacuum and asymptotically flat spacetime for which  The paper is organized as follows. In Sec. Il, we recall the
the Simon tensor vanishes. This fact, combined with relationship between the vanishing of the Simon tensor and

the Weyl tensor and we discuss which geometrical properties

make the Kerr, Kerr-Newman, Kerr—Newman—de Sitter and

*Also at Laboratori de sica Matemtica, Societat Catalana de Wahlquist metrics so special. In Sec. Ill, we rewrite the
Fisica, IEC, Barcelona, Spain. Wahlquist metric in such a way that the Kerr—de Sitter met-
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ric (and the Kerr metricare contained as particular subcases. TABLE I. Relationships between the metrics discussed in this
In Sec. IV, we present the Wahlquist-Newman metric and wepaper.

describe its fundamental properties. First, we stress that the
geometrical properties described in Sec. Il also hold for this Non-charged metrics Charged counterparts
metric. Then, we give the explicit expressions for the energy-

. . . Kerr Kerr-Newman
density, the pressure and the fluid velocity of the perfect | - |
fluid. The electromagnetic field and its charge current are . .
. . . Kerr-de Sitter — Kerr-Newman-de Sitter
also written down and the number of essential parameters in 212 oo
the family is discussed. We also show that the particular case o .'l '
Wahlquist -7 Wabhlquist-Newman?

in which the perfect fluid vanishes corresponds to the well-
known Plebaski metric[12], which is an important limiting

case of the rotati.ng: metric[13]. This. shows, in_ particular, ., ist of condition(1) plus axial symmetry. Thus, with
that the Wahlquist-Newman spacetime contains the Ke”'hindsight, Kramer's uniqueness resifii of the Wahlquist

Newman-de Slt.ter. metric as a parchIar case. In Sec: vV, Whietric is equivalent to dropping the condition of axial sym-
analyze the static limit of the Wahlquist-Newman metric. Tometry from Wahlquist's original assumptions

do that, we rewrite the metric in a suitable coordinate system Following the discussion in the Introduction, we can ask

which admits an explicit static limit and which, in addition, whether condition(1) is also fulfiled by Kerr—de Sitter
allows for an extension of the Wahlquist-Newman spacetimgo.._Newman and Kerr—Newman—de Sitter. The answer is
across its horizorfalthough the metric represents a perfectyes as a simple calculation shows Howéver the Kerr-

fIUid.’ it does have a regqlar horizon,.as we shalbsE'ﬂ?aIIy, Newman and the Kerr—Newman—de Sitter spacetimes con-
we include an Appendix where Einstein-Maxwell's equa-iain in addition, an electromagnetic field. So we should ana-
tions under the assumptions of this paper are solved. lyze whether this field fits nicely into the geometrical relation
(1). This is very important for our purposes because it will
Il. GEOMETRIC PROPERTIES OF THE WAHLQUIST AND determine what makes these charged spacetimes so special,
THE KERR —~NEWMAN —de SITTER METRICS and it will indicate how the charged generalization of Wahl-

The Kerr metric and the Wahlquist metrics share thequist metric should be defined. Let us call the electromag-

property that the Simon tens@8] vanishes identically. The net'f fleldfaSK“B' Th|3_two-:;ocrmjerlnes_c‘:(a*nonllcally a Eelf_
geometrical meaning of the vanishing of the Simon tensor ifiudl two-form according 1ok, ;=K. +iK,,. It can be
vacuum has been recently clarified[i4]. The fundamental €aSily checked that in Kerr-Newman and Kerr—Newman-—de

underlying property is a close relationship between the Wey itter .the self-duql electromagnetig fi_eih;:l proportional to
the Killing form, i.e. K,zxF,z. This is the most natural

tensor and the stationary Killing vector. Properties of the lationshi I think o h .
Weyl tensor can be quite naturally described using the lant€lationship one could think of between these two objects.
Thus, all these metrics do have very special geometrical

guage of self-dual two forms, which are two-forrassatis- properties
ing X*=—iX wherex denotes the Hodge dual with re- S . . . .
fying g This discussion above indicates two things. First, that the

spect to the volume for . From the Weyl tensor ) L . .
P Mapyo Y Wahlquist metric is likely to contain the Kerr—de Sitter met-

Capys and the stationary Killing vectaf we can write down i (and hence the Kerr meti@s a particular subcase and,

two canonical self-dual objecES, the self-dual Weyl eNsOlgecond, that a charged generalization of Wahlquist should
Couap=Copapt (112)1,4,,C,, " and the so-called Killing

also exist satisfying the following propertied) It contains

i : 5 .
form Foz=V,&s+(1/2)7,5,5V7€°. It is natural to ask Foth Wahlquist and Kerr—Newman—de Sitter as subcases,
which spacetimes have the property that the self-dual Weyly it satisfies the relationshifl) between the Weyl tensor

te_nsor and th_e Killing form are related to each othe_r_ Theand the Killing form and(3) its self-dual electromagnetic
simplest relationship between these two objects which regq|q g proportional to the Kiling form. Its energy-
spects all thisymmetnes of the ;elf-dual Weyl tenscﬁthq momentum tensor should contain both an electromagnetic
object Zop,5=(9ay9ps~9as9py 1 Napys)/4 1S the canoni- a4 nart and a perfect-fluid part.

cal metric in the space of two-forms Table | shows graphically the interrelationships between
these metrics. Single arrows indicate well-established and
Copys=L| FupFys— EIQB SF2, (1) _nat_ural generglizations_ and arrows betw_een questic_m mar_ks

7 3ry indicate plausible relations between metrics. In particular, it

becomes apparent that some metric, the Wahlquist-Newman
wherelL is a complex, scalar function an*=F,s7**. It metric, should fill the lower, right corner of this table.
turns out[14] that the vanishing of the Simon tensor in
vacuum is equivalent to Eq1). We know that the Simon lll. KERR —de SITTER LIMIT IN THE WAHLQUIST
tensor vanishes for the Wahlquist metric. So, we can ask ' FAMILY
whether Eq.(1) holds also for the Wahlquist spacetime. A
straightforward calculation shows that this is indeed the case. Let us start by writing down the line-element of the Wahl-
Actually, it can be seen that the original assumptions madeuist family as it appears if2]. This is actually a generali-
by Wabhlquist in order to find his spacetime, although writtenzation(by adding a discrete parametef the original Wahl-
in another formalisn(see[2]), can be rewritten so that they quist metric as given irf1] and was originally given by
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Senovilla in[7] (see[15] for a discussion on the different which bringsU andV into the form
published versions of the Wahlquist metric and their interre-

lationships. The Wahlquist line element is B Mo | cosii2Bz)—1  zsinh(2pz)
U=Qo~ -~ 2 B
’ ’ 2B B B
d= — = (dt-Ade)2+r2dee+ 2| I 9
- q)z( )T o hy h, |’ L 1_003“2ﬂz)+a sinh(28z)
) ° op? Yo2p
where Vs Mo [17C0828y) _ysin2By)
hy(U)=ho+ €,CO8 2U) + (U+ Ug)Sin(2U), 0" 2p2 B2 B
—hs,— i 1—-cogq2 sin(2
h,(v)=ho— €,cosH2v) + (v +vg)sinh(2v), v g By)+al2 n( By). 5
23% 2B
1 h;—h
g=cog2u)+cosh2v), &= lKg 2 We should now analyze tHg, 6} block. The constants, ry

andv, correspond to the freedom of performing linear co-
ordinate changes ih and 6. Since the coordinates should
remain adapted to the Killing vectar (which is privileged
both for the Wahlquist and for the Kerr metricae consider
changes of the type=Db,(t+b,60),0=Db30. Let us choose

r2=4r2®2h,h,,

2kro[h,coqg2u) +h,cosh 2v
A= —2krycoshuv )+ ol N2082u) + hycosh )].

hi—h,
B
All symbols with zero subscripts, as well asandv,, are by= , by=2kry(costiva)— 1),
arbitrary constants. The energy-momentum of this spacetime VoK
is a rigidly rotating perfect fluidi.e. its velocity vector is
proportional to the Killing Vectog= dy). The energy-density by=483%\ /L,

p and pressure p are p=uo(l—«/®?) and p
= po(3(x/®%)—1), so that the equation of state st 3p  which bring the Wahlquist line elemer®) into the form
=2uq. We want to rewrite this metric in such a way that the 5

Kerr metric is included as a particular case. We first rescale N uv do?

u andv as follows:u=pBy+ m/2, v=pBz, where B is any N
non-zero constant. The functioy transforms into g V2 d2
=cosh(82)—cos(28y). The constantB is superfluous as +(vl+v2)(l+—z (6)
long as it remains non-zero, but it may be that the ligit v U/’

—0 gives another metric, perhaps the Kerr metric we ar
looking for. In order to work out this idea, we should make

. UlV+l12U
dSZ— —)\(dT— de

SvhereU andV are given by Eq(5), v, v, read

B—0 meaningful. This requires some redefinitions of con- cosi28z)—1 1—cog28y)
stants. We start by defining VST, U=, (7)
2B 2B
Qy.2)= cosh2pz) —cog2py) (3 andA=(V-U)/(v;+vy). All metric functions in Eq.(6)
' 232 ' are independently regular gt=0. The structure of this line

element is very similar to the one given by Senovilld T,
which is regular a3=0. The 2x 2 block spanned byu,v} the only difference being the choice of parameters. It is not
in Eq. (2) takes the formQ(U(z) dZ2+V(y) 'dy?), difficult to obtain the redefinitions which bring Senovilla’s
whereU = ugh, /(2% andV=uoh,/(28%. The constants form into Eq.(6). Thus, a regular limi3=0 could also have
must be redefined so thatandV are regular ag=0. Fur-  been obtained starting from that line element. We preferred
thermoreuo should remain finite and non-zefbecause of to start from Eq.(2) in order to deal only with essential
the relationp+ 3p=2u,, which is non-zero in the Kerr—de parameters.

Sitter metrig. In addition, the number of parameters should The explicit form of the metrig6) when =0 is (after
not be reduced in the limj8— 0. All this is achieved by the trivially reorganizing the blocK 7,0})
following redefinition of constants - N

Y
h dsz=—ﬁ(dr—22do)2+ > 2(d7'+y2d0-)2
. . oMo Vo = Mo Mo€o Ho y°+z ye+z
,LLO|nVa.r|ant, 2[84_Q0+2_B2 2—B4, IBZ =V E’
dy? d7
+(y2+22) Ty‘i‘T , (8)
MoV Ho(Ug+ 7/2) vV U
—ay, e =—a, (@
B B where
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. Mo, ) . Mo, ) ric (6). The reason why we must allow both functiovigy)

U=Qo+ 52"~ 1oz +a12,V=Qo+ Zy +roy+ayy, andU(2) to be changed instead of only ofes in the Kerr—
Newman-de Sitter cagavill become clear later. So, let us
assume that the Wahlquist-Newman metric can be written in

R = £o 22 the f
A=vpyt+a -a +—=(y*>—27°). e form
VI R I R (y*=29)
1 Ul
This is the uncharged subcase of the Plskametric[12], ds’=— 5 +02(d7—01d0)2+ 5 vz(d7+vzd0)2
which is an important limiting case of the Plels&i ! !
Demiarski metric, also called rotating metric [13]. The dy? dZ?
constant, is closely related to the NUT parameter amgis +(v1tvp) V_1 T U_1 ' 11

related to the mass parameter. A particular case of this metric
is obtained by settin®)o=a?, vo=1—-a?A/3, a;=0 and  whereV,(y) andU4(z) are unknown functions and,(z),
redefininga,——2M and uo— — A. After the coordinate y,(y) are given by Eq(7). We want to solve the Einstein-

changes Maxwell field equations for an energy-momentum tensor
T, consisting of two parts: a perfect-fluid componé’r/’fﬂ,

y=r, z=acosf, ac= —¢ e t-a¢ , with the fluid yelocity being proportional to the stationary
1+ EAaZ 14 EAaz Killing vector £= 4, and an electromagnetic paff,]. If we
3 3 denote byK,,, the electromagnetic field and Wy, its self

9 dual part, we want to imposi€« F, so that the fundamental

geometric property satisfied by the Kerr-Newman metric is
preserved. In Kerr-Newman, the electromagnetic field is
source-free(more precisely, the source of the electromag-

we obtain the Kerr—de Sitter metrj@0] in Boyer-Lindquist
coordinates,

dr2 de? netic field is located at the singularity inside the black hole
ds?=p [ — A+ AsiP0ac]+p?| —+—], This is most reasonable because there is no matter to support
A Ay (10 electric charge. In our case, however, there is a perfect fluid

which may perfectly be charged. So, we admit a charge cur-
where p?=r?+a%cog6, A,=(a%+r?)(1-1Ar?)—2Mr rentf proportional to the fluid velocity]. Hence, Maxwell's

andA ,=1+ 3 Aa’cog6. The one-formsy, and a; are equations read
1 dK=0, dxK=4mxj, j=C§, (12
ay=———(dt—asirfd¢),
1 . . Lo . -
1+ = Aa? whereC is a scalar function. Our aim is to solve Einstein
3 Maxwell's field equations under these assumptions. Al-

though the calculations are not very difficult, some manipu-

1 . lations are required. The details are given in the Appendix.
a=—7—[adt=(@+r)d¢]. The solution reads as follows:
1+ §Aa2 ) ['(Zﬁ )
sin z
| o Us(2)=Qo—2a{ +a;— —
Of course, by settinga=0 in this metric we get the B
Schwarzschild—de Sitter metric and the particular cAse vz sinh(232)
=0 is the Kerr metric. Thus, the Wahlquist metdoescon- + e (8aj—2vyz)cosh2Bz)+3y——+—
tain Kerr—de Sitterland Ker) as a particular case, as we B
wanted to prove.
1—cosh2Bz
+(vo+2B%a’+2pB%a?) “2 A2)
IV. THE WAHLQUIST-NEWMAN FAMILY OF METRICS 2B
The line-element of the Kerr—Newman—de Sitter space- Mo | cosi2Bz)—1 zsinh(2Bz)
time can be obtained from E@10) just by modifying the T o2 2 - B ' (13
) . ) . 2 B
function A, with an additive constant, i.e.,
1 _ 2 Sln(zlgy)
A=(@%+1?) 1- A1 |~ 2Mr +?, Vi(y)=Qot 2ai+ 8, 5
the constang being directly related to the electric charge of + res (zyy_gar)cog(zgy)_gyw}
the black hole(and hence to the electromagnetic fielBy 4 B

analogy, we assume as a working hypothesis that the 1—cog2y)
Wahlquist-Newman metric we are seeking can be obtained +(vo—2B2a’— 2207 1-cos28y)
by modifying the functions on the blodkly,dz} of the met- ' ' 282
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1-cog2By) ysin(2By) 14 P3P B2+ By
23 B2 B | 2

(20, — yy)sin(2By) +(2a;— yz)sinh(28z)
% Ul+l)2

where B, Qq, mo, 81, &2, Vg, @, & andy are arbitrary
constants. These symbols have been chosen so that the un-
charged subcasg.e. the Wahlquist metrjccan be directly
obtained just _by setting_= ar= o= 0. Thus, the Wahlqu_ist- p+p=282\, (16)
Newman family of metrics contains three more essential pa-

rameters than the Wahlquist family. It is worth pointing out

that Kerr—Newman—de Sitter has only one additional paramwherex = (V,—U,)(v,+tv,) = — ¢, is minus the squared
eter with respect to the Kerr—de Sitter metfiiie. the charge norm of the Killing vector. When the particles are uncharged
of the black holg The difference comes from the fact that, (y=0) the perfect fluid satisfiep+3p=2uy as in the

in our case, a non-vanishing charge Currﬁi’ﬂ allowed. The Wahlquist family. Wheny# 0, there is no functional relation

electromagnetic fiel& of the Wahlquist-Newman spacetime betweenp and p and therefore no barotropic equation of
is state. Thus, the presence of an electric charge in the particles

seems to change the thermodynamic properties of the perfect
K=X, °A\dy—X;#*/\dz, fluid (this cannot be made certain until a proper thermody-
namic analysis is done
where°=dr—u,do, 8'=dr+uv,do, and the function, From Eq.(14) we observe that both functiong, andU,

andX; are the real and imaginary parts of the complex func- have a smooth limi{B—0 (the integration constants were
tion X=X, +iX; given by chosen carefully so that this property hgldBhe expressions

for the density and pressurd6) shows that3=0 corre-
sponds to having no perfect fluid but rather a cosmological

X— 1 1—cog2By)cosh2p2) constant with value\ = — u,. The electromagnetic field in
(v1+v,)? B? this case is source-free, as it should be because no matter is
present. The explicit form fas,, v,, U, andV, in the limit
sin(2By)sinh(28z) B=0 is, after redefining, , a, and, so that the constant
- B2 disappearsno trace ofy can be left in this case because the
charge current vanishes
sin(2
X | a,— %y +%/ %COSHZBZ)
— 52 —\2 —O.—2,2 2, Moy
. vz v sinh(282) , V1=2% vy=Y° U;=Q¢—2¢f+a,z—vez°+ 32,
+1| ?'FZTCOS( BY) | |.
The charge current of this electromagnetic field is Vi=Qqo+2a’+ayy+ voy?+ %y“. a7
. Y0 15
1= 2w Jdt’ The metric(11) with the functions(17) is the Plebaski limit

of the rotatingC metric, as expected, and therefore it con-

Thus, the constany is directly related to the charge of the tains the Kerr—Newman—de Sitter metric as a particular case.
particles in the fluid. Notice that the valug=0 (i.e. un- Hence, metri¢11) contains both the Wahlquist and Kerr—
charged particlgsis perfectly possible. In that case, the Newman—de Sitter metrics. Furthermore, a simple calcula-
source of the electromagnetic field lies in the singulagity tion shows that the geometric relationskip is also satisfied
+v,=0<2z=0y=nmx/B,neZ, analogously as in the Kerr— by this metric. Since the self-dual electromagnetic field is
Newman—de Sitter metric. Whep=0, the electromagnetic proportional to the Killing form of¢ by construction, we
field is described by the two constamtsanda; but only the  conclude that Eq(11) is the Wahlquist-Newman metric we
combinationar2+ aiz appears in the metric. This reflects the are seekingthis completes Table).l This family of metrics
well-known electromagnetic duality symmetry of the source-contains eight arbitrary parametés nine if we countg).
free Einstein-Maxwell field equations. Thus, for uncharged Finally, we can now see why both functiokls, andV;
particles the Wahlquist-Newman family adds only one pa-had to be modified instead of only one as in Kerr—
rameter to the Wahlquist family, exactly the same as in thé&Newman—de Sitter. In the cosmological constant case, both
Kerr—Newman-—de Sitter case. functions get modified by the inclusion of an electromagnetic

Regarding the perfect fluid, its velocity is, by assumption,field [see Eq.(17)]. However, a redefinition o), can be
proportional tod. so only the energy-densify and pressure used to compensate one of the changes. In the perfect-fluid
p remain to be given. They can be directly obtained from thecase, the modifications are more complicated and cannot be
expressions reabsorbed by redefinitions of constants.
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V. EXTENSION OF THE WAHLQUIST-NEWMAN spacetimes are not unique in general. The extension we have
SOLUTION AND STATIC LIMIT performed, however, is uniquely determined by the geomet-
. . . . ric condition(1) which still holds in the extended spacetime.
ou;—hs?artrilftlrilr%i?smglteznir:n I\E/vcﬁt%%groilsjcnho'[ahﬁﬁtagxiostt)gl-is Thus, this is the natural extension of the Wahlquist-Newman
’ yzing - metric from the geometrical point of view. It must be em-

spherically symmetric static limit, namely the Whittaker SO_%hasized, however, that this extension may not be the most
P y sy ' y relevant from the physical point of view because the ex-

lution [16] which represents an isolated fluid ball in equilib- tended region contains, in addition to an electromagnetic

e ey o,  chargd achyonc i, Which i rater inphysical,
9 ' We can now try to determine the static limit of EG.8).

itter—Reissner—Nor metric or th -called rotatin . L ‘
Sitte YEISSNeEr=no dstro metric or the so-ca ed rotating From Kerr—de Sitter, we know that some lirait> const will
topological black holegsee e.g[17]). Thus, it is reasonable : ) : ;
S ) be involved. So, we should avoid usings a coordinate. We
to expect that the static limit of the Wahlquist-Newman . : .
Pccompllsh this as follows. Let us consider a connected two-

spacetime may also have interesting properties. We devo&mensional manifold endowed with the metric
this section to find this limit.

To do that, the coordinate system in Efj1) must clearly 1
be changed. We choose a coordinate system which, in addi- h=——dZ2+ U (2)d¢?, (19
tion, extends the metri@ 1) across its Killing horizon, which Ui(2)

is contained within the set of points where the Killing vec-
tors d,, and d,, span a null two-plane. Notice, that this can
only happen at points where<0. From the perfect-fluid
interpretation of Eq(11) this would seem to be impossible.
However, the energy-momentum tensor of Ed) is regular . ! ,

curvature of the metri¢19) is easily computed to bR(h)

at the points whera =0, i.e. at the ergospheres of the Kill- ? PN b
. > e . = —d“U,/dz°. With these definitions, the metri¢8) can be
ing vectoré. Indeed, the electromagnetic field is easily seen

and volume formyn,=dz/\d¢. Denote byx, the Hodge
dual in (S,h,7n,). We obviously havex,dz=U;d¢ and
dx,dz=(dU,/d2)n,. Furthermore, the one-formw=

—v4(2)de on S satisfiesdw=—(dv,/d2) »,. The scalar

to be regular there and even though the velocity of the per\-Nmten as
fect fluid becomes singular whene=0, the combination ds2= —\(dv — @)%+ 2(dv— *.d2)(dv — e) + Oh
(p+p)uauﬁ=)\‘1(p+p)§a§ﬁ=2,82§a§ﬁ is finite. Obvi- (v~ @) (dy=*pd2)(dv=e)+Q '(20)

ously the perfect-fluid interpretation breaks down at the er-

gospheres of but still the spacetime is regular. This indi- In this metric,z need not be a coordinate any longer and can
cates that horizons may also be present in the Wahlquisbe regarded just as a real function definedShe func-
Newman spacetime. In order to find them, we shouldtions Q and\ depend on the spacetime point only through
evaluateN=(4,,d,)(d,.,d,) —(9.,0,)* Where (,) means the values of andz at that pointé=d, is static if

scalar product with the metri€l1). A simple calculation

givesN=V1U-l. Thu_s,N vanishes Qt the points where either ¢\d&=—V i\ ,dv/\ 7, +dy/\[QX 2ht (N dzZ+ N y*,d2)

V, or U, vanish. It is not cleaa priori whether we should

try to extend the metric across the hypersurf&Ge=0 or No—dv)]=0,

across the hypersurfadg; =0. We know from Eq.(9) that ) ) .

the coordinatey is radial andz angular, at least in the limit which holds if and only ifx ,=0 and x,dz=0. Thus,z
B=0 without electromagnetic field. Therefore, we choose to= 20=Const and\ [, =0. From A =(V;~U,)/Q and
extend the spacetime acro¥g(y)=0. Let us choose the EQgs. (7), (14) this can only happen ifiz,=0 and a;=
regionV,(y)>0 and define the following coordinate trans- —27y«; . In that case, the one-for@ and the scalar curva-

formation: ture ofh are

) 1 dv,

= — =— — do=—|—— =0,
o=rt [ Grdve=os [ oy ( dz z-o) i
It is easy to check that the metric can be cast into the form d2u,
R(h)=— =2[vo+2B%(a?+ a?)—y?).
ds?=—\(dv+v,de)?+2(dy— U de)(dv +v,de) dz o
+Q(ﬁ+ U,d¢? (18) Thus, w is locally exact and can be reabsorbed into the co-
Uy ! ' ordinatev. Sinceh is of constant curvature, there exist co-

ordinatesx; andx, such that
where Q=v,+uv,. This metric is regular a¥/,(y)=0 and
can therefore be extended. It is straightforward to check that h= Bz[dx§+2(x1,e)dx§],
the hypersurfacg =y, with V1(yg) =0 is null and that the
Killing vector —v,(Yg)d.+ 4, is also null and tangent to this where X (—1, x;)=sinhf;), (0, X;)=X; and %(1, Xx;)
hypersurface. Thug,=yj is a Killing horizon. Extensions of =sin(x;) andB e R satisfies
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eB72=ypy+ 232(ar2+ai2)_ Y (21 per. | would also like to thank the Albert Einstein Institute
for kind hospitality.

Inserting this into Eq(20) we find that the static limit of the
Wahlquist-Newman metric is APPENDIX

In this appendix we solve the Einstein-Maxwell equations

ds?= —Xdv2+2dydv + 1-cod2py) under the assumptions described in Sec. IV. Let us start by
232 introducing an orthogonal tetrad
XBX(dX{+ 2 (%1, €)dx), (22) P=dr—v,do, O'=dr+v,do, @*=dy, 63=dz,
(A1)
wherex=A(y.0) reads explicitly so that the metri¢11) takes the form
~ 287 Vv U
N=(vo—2B%a’—2p%a?)+ ——————{ 2(a?+a? Y g2y T 2
(vo—2B%a; Bay) 1—cog28y) (e i) ds? Ul+U2(6) +Ul+U2(6)
sin(2 1—cog2 sin(2 v1tvs v1tv2
ta, n2BY) . ro 42py) _ysin(2By) R S GR
2B 232 B? B 1 1
) —_ 00N pLA g2 A p3 .
vy sin(28y) We .talfe the evolume fgrmn 0°/\6+/\6°/\0°. Lowering
tr (27y—36¥r)005(2/5’Y)—33’T the indices ta¢= g, we find
. . . . . . Vy U
We call this metric Whittaker-Reissner-Nordstranetric. Its é&=— 6°+ 0.
U1+Uz Ul+1}2

energy-momentum tensor ( the region\ >0) the sum of

a perfect-fluid and an electromagnetic field. The density an . -
pressure of the perfect fluid can be read off from Etf) % o;der t;-lmpose.icfﬁgct Bﬁp‘\lee negd t(I) evaluatr: tthe Kill
after insertingz=0. The electromagnetic field can be ob- N9 form F associated t@. After a simple computation we
tained by performing the coordinate changes we made to g@Pt@in
the static limit. The result is

1|V tiUg, Vi—Up
22 sin(23y) “3|7 @ g vavey)
““Tcoxzay P T2s Y
Y X (0O 6%+i 61\ 6°), (A2)

XdoAdy—2a; 7y,
whereQ=v,+v,. Thus, two of the three linearly indepen-

where the two-formzy, is 7,=BZ3(Xy,€)dxA\dx,. Its dent(complex coefficients of the Killing formF are iden-
charge current is still given by E@15). The metric(22) is  tically zero. Since the fluid velocity]ocf, the perfect-fluid
static and spherically symmetric as long [ag+28%(a?  part of the energy-momentum tensor reads
+ai2)—'y2]>0. When this expression is zero or negative,
the spacetime is plane symmetric and “hyperbolic” symmet-
ric respectively. When the electromagnetic field vanishes and
vo>0 the metric is the spherically symmetric perfect-fluid
found by Whittaker[16]. The limit 3—0 gives the de
Sitter—Reissner—Nordstmometric(whene=1) or its hyper- +
bolic or plane counterparts. Another physically relevant sub-
case of Whittaker-Reissner-Nordstiois a,=a;=a,=0
and v,>y2. This represents a charged fluid ball in equili
rium, with no singularities inside.

A thorough investigation of the geometry of the
Wahlquist-Newman and Whittaker-Reissner-Nordstro
spacetimes would be of interest. Also, studying the physical
applications of this geometrically privileged metrics should
be a matter of further investigation.

2
V
"% P

TPf=
Q

)(00)2—2D—V1Ul 6°6*
QZ

2
1 1
"o Pa

+
Vi Uy

(6H%+pQ

(6%)? (03>2)

b- Wherep is the pressure and the densitys obtained from the
scalarD by p+p=Q D(U;—V;). The electromagnetic
field K is required to satisfy

IC=X[6°N 62+i '\ 6°],

whereX is a complex scalar function. Hence the electromag-

netic energy-momentum tensd’rfLT=(1/4)1CWI€,f“ takes
the diagonal form
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U_sing _units in which 8rG=c=1 an_d de_noting bﬁaﬁ the Ao+A, Ao+A,
Einstein tensor of Eq(11), the Einstein equation§,,, Xi=—dy| ——1|, =0 ——|. (A7)
=Te"+ TP" become V1t 0, v1t v,
y72% y72%
Vv, Vi U, Ui We turn now into the equatiodx K=4mx], which after us-
Goot+ U_1G°1+ EGZZZ 0, G+ V_1G°1_ 3533: 0, ing the form ofK andj reads
(A3)
X, X 22+ X, ﬂ) 09\ 02N\ §°
GoiQ? V1Gz U Gas Q Q
D=- . p= + : (A4)
ViU, 2Q 20 vi, Uy
Xy Xy Xy o'\ o* N\ 6
- UGz ViGyp
XX= o o (A5) =4A7C(0\ 62\ 63— 8°/\6°/\ 6°). (A8)

The two equationgA3) are identically satisfied by the metric This impliesX; ,—X; ,=0, or using Eq(A7),
(11). Actually, it can be proven that allowing,(y) and

v,(2) to be arbitrary, the two equatiori#3) force them to

be Eq.(7). Thus, our assumption that andv, remain un- (dyytdz2)
changed implies no loss of generality. The two equations in

Eq. (A4) can be regarded as defining expressiongfandp

(we do not impose any equation of state for the perfect fluidP€efining the complex variablé=y+iz, the general solution
a priori). Equation(A5) needs to be solved in combination of Eq. (A9) is Ag+A;=Q-[g({)+g(£)], whereg is a ho-
with the Maxwell’'s equation$12), which we now analyze. lomorphic function of{. In terms of¢, the functionQ=uv,
The electromagnetic field is required to be Lie constant along, ;,, hecomes simplyQ= 8 2sin(87)sin(3). It remains to

the Killing vector fieldsd, andd,. ThusX=X(y,z). In our impose thafh, andA, depend only ory andz respectively,

case, it is simpler to solve Maxwell's equations by looking . I R
for an electromagnetic potentialsatisfyingdA=K. SinceA  Of equivalently §;;— d;)(Ag+A;) =0. This implies the fol-
lowing equation forg:

can be chosen to be Lie constant along the Killing vectors,
we can write

(A9)

Ao +A
0 1}:0_
Q

cofBl)  — cos B{)—
A=Ay(y,2) °+ AL (y,z) 01+ Ay(y,z) 02+ As(y,2) 63, 9.t ZBng: 9zt ZBWQZ-

so that its exterior derivative takes the form
Thus, there exits a real constgBty such that each term of
sin(2B8y) A, On 2 this equation equalg?y. The resulting ordinary differential
T 6 0°/\6 equation(ODE) can be integrated once to givafter choos-
ing the integration constant so that the lingit-0 existg

dA: - (9on+

sinh(28z) A
— 32A0+M_0} 6N 63 ) .
A Q gob [_M (g_ Sm(Bi)COS(,Bé)”
—lo.A +Mﬁ oL g2 ‘ sin’(B¢) 7\2 2p ’
yo1 B Q (A10)
ol —ga g SIN2B2) Aol s wherea is an arbitrary complex constant. From this expres-
z B Q sion we could easily integraig({) and obtainA. However,
+[ayAg— I,A PN 6P, (A6) to obtainK we only need to determiny,
DecomposingX into its real and imaginary part¥=X, _ L Jd . d §0+R1 _ d
+iX;, the electromagnetic field reads=X, 8°/\ 62— X; 6* X=X +iXi=| = WJ" 9z Q ——Zﬁ—g(g(g)

/\6%. Imposing nowdA=K we obtain, first of all, that the o

coefficient in 62/\9° must vanish. ThusA,6%+A;6° is +9({)=-29;.

closed and can be redefined away by a gauge transformation.

So, we can puf,=A3z=0. The vanishing of the coefficients The scalarC can now be read off from EqA8), the result
in 6°A\ 6% and 6\ 6% in (A6) implies Ay=Ay(y)/Q and being C=yB%2mw. We can now solve the Einstein field
A;=A;(2)/Q. The remaining components afA=K give  equation(A5). First, we need to evaluatéX. Decomposing
expressions foiX, and X; in terms ofA, andA; and their @ into its real and imaginary parts as= o, +ia;, and using
derivatives. A convenient way of writing them is Eq. (A10) we getXX=4Q 1YY, where
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Yy v sin(2By) sinh(2Bz) =~ vz
Y=—a,+ 7—2 TCOSKZBZ) U1=L1+alT+I (8ai—2’yZ)COS|'(2,BZ)
. yz vy sinh(2B2) sinh(23z) cosh28z)—1
+1 —a’i+7—ZTCOS(2By) . +3y 5 +S; 2B2
EISStfl:ZS equation(A5) reads, after dropping a factdp 1o [cosh2Bz)~1  zsinh(22)
— U1 ’ I - ’
282 B? B

(v1+02)(U;G33—V,Gp) —4Y Y=0, (A11)

which is a rather long equation involving the functiovisg, sin(23y)
U, and their derivatives. Since they are functions of different v/, =  + az—y 24 [ (2yy—8a,)cog28y)

+_
variables, a reasonable strategy is to try and separate this 2B 4
equation. This can be accomplished after taking the partial )
derivative of Eq(A11) with respect toy andz The resulting _3y5'n( ZﬁY)} is, 1-cog2py)
expression separates nicely into the form B 232
B 1—cog?2 in(2
oy Vit 4821, + 867y cos28y) vy —2a)] y b0 | 17 CON2BY) Y SNZhY)
sin(2By) 282 52 B '
B

IW[ULZZZ—4,32U1,Z+ 8%y cosh{2Bz) . .
wherelLy, L1, Sy, S;, a; anda, are integration constants.
X(yz—2ai)|=4u0, Inserting these expressions back into the Einstein equation
) i _ (Al1), we find that the equation is satisfied if and only if
Wher_e,uo is the separatlon' consta}nt. Thgs, we are faced W.It +Sy= _432(a5+ aiz) and |—1=|-o—2(ar2+ai2)- By re-
two I_mear, third order_ o_rdlnary dlfferentlal_ equations. T.he'rdefiningso, S, andL, in a trivial way we obtain the form
solution can be explicitly written down in the following : .
form, after choosing carefully the integration constants Sgor Uy andV, given in Eq.(14).
that the limit 3—0 exists:
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