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Wahlquist-Newman solution

Marc Mars*
Albert Einstein Institut, Am Mu¨hlenberg 1, D-14476 Golm, Germany

~Received 4 December 2000; published 20 February 2001!

Based on a geometrical property which holds both for the Kerr metric and for the Wahlquist metric we argue
that the Kerr metric is a vacuum subcase of the Wahlquist perfect-fluid solution. The Kerr-Newman metric is
a physically preferred charged generalization of the Kerr metric. We discuss which geometric property makes
this metric so special and claim that a charged generalization of the Wahlquist metric satisfying a similar
property should exist. This is the Wahlquist-Newman metric, which we present explicitly in this paper. This
family of metrics has eight essential parameters and contains the Kerr–Newman–de Sitter and the Wahlquist
metrics, as well as the whole Pleban´ski limit of the rotatingC metric, as particular cases. We describe the basic
geometric properties of the Wahlquist-Newman metric, including the electromagnetic field and its sources, the
static limit of the family and the extension of the spacetime across the horizon.
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I. INTRODUCTION

Among the few explicitly known stationary~non-static!
and axially symmetric perfect-fluid spacetimes, the Wa
quist family @1# enjoys a privileged position. First, it is th
oldest known solution and it remains, in some sense,
simplest one. More importantly, it has interesting physi
properties~see@2# and references therein! which have made
this metric a good candidate to describe the interior of
isolated rotating body in equilibrium. This view has be
recently challenged in@3#, where the matching condition
between the Wahlquist metric and a vacuum, asymptotic
flat spacetime are claimed to be incompatible in a pertur
tive sense. This suggests that the Wahlquist metric does
describe the interior or a rotating body in vacuum. In orde
make this result conclusive it would be of interest to deve
a proper theoretical analysis of the perturbative approac
the matching conditions.

In any case, the fundamental properties which make
Wahlquist metric so special are of geometrical nature.
deed, this metric is known to be uniquely characteriz
among stationary, rigidly rotating, perfect-fluid spacetim
by any of the following, seemingly unrelated, properties~see
@4# for a discussion!:

~1! The Simon tensor vanishes@5#.
~2! The spacetime admits a Killing tensor of typ

@~11!~11!# @6#.
~3! The spacetime is axially symmetric, the Weyl tenso

Petrov type D and the equation of state of the perfect flui
r13p5const@7#.

For the purposes of this paper, characterization~1! will be
the most relevant one. The Simon tensor@8# was put forward
in order to obtain a unique characterization of the Kerr m
ric @9#. More precisely, the Kerr spacetime is the only stric
stationary~i.e. with a Killing vector which is timelike every-
where!, vacuum and asymptotically flat spacetime for whi
the Simon tensor vanishes. This fact, combined with~1!,
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shows that there may exist a close relationship between
Wahlquist metric and the Kerr metric. However, no su
relationship has been found so far. One of the aims of
paper is to show that the Kerr metric can be obtained a
particular, vacuum, subcase of the Wahlquist metric. In fa
we will also show that the Kerr–de Sitter metric@10#, which
is vacuum with a cosmological constant, belongs to
Wahlquist family in the limitr1p50.

The existence of physically privileged charged gener
zations of the Kerr and Kerr–de Sitter metrics, namely
Kerr–Newman @11# and Kerr–Newman–de Sitter spac
times@10#, leads us to consider whether a similar, privilege
charged generalization of the Wahlquist metric exists.
analyze such a question we should first make precise
meaning of the term ‘‘privileged.’’ As we shall see, the Ker
the Kerr–de Sitter and the Kerr–Newman–de Sitter met
have very special geometric properties which relate the W
tensor, the Killing vector and the electromagnetic field~when
one is present!. Moreover, these conditions turn out to b
fulfilled also by the Wahlquist metric. Thus, there exists
geometrically clear sense in which a privileged charged g
eralization of the Wahlquist metric might exist. We call
Wahlquist-Newman metric, first because it contains b
Wahlquist and Kerr–Newman–de Sitter as particular ca
and also in order to emphasize the very special geomet
properties fulfilled by this spacetime. The main objective
this paper is to obtain the explicit form of this metric. It turn
out that the Wahlquist-Newman family contains eight ar
trary parameters. It represents a rigidly rotating perfect flu
which may be charged or not, together with an electrom
netic field. The sources of the electromagnetic field are
perfect fluid~when this is charged! and/or a singularity of the
spacetime. The latter corresponds to the singular source
den behind the event horizon in the Kerr-Newman spa
time.

The paper is organized as follows. In Sec. II, we recall
relationship between the vanishing of the Simon tensor
the Weyl tensor and we discuss which geometrical proper
make the Kerr, Kerr-Newman, Kerr–Newman–de Sitter a
Wahlquist metrics so special. In Sec. III, we rewrite t
Wahlquist metric in such a way that the Kerr–de Sitter m
©2001 The American Physical Society22-1
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MARC MARS PHYSICAL REVIEW D 63 064022
ric ~and the Kerr metric! are contained as particular subcas
In Sec. IV, we present the Wahlquist-Newman metric and
describe its fundamental properties. First, we stress that
geometrical properties described in Sec. II also hold for t
metric. Then, we give the explicit expressions for the ener
density, the pressure and the fluid velocity of the perf
fluid. The electromagnetic field and its charge current
also written down and the number of essential parameter
the family is discussed. We also show that the particular c
in which the perfect fluid vanishes corresponds to the w
known Pleban´ski metric@12#, which is an important limiting
case of the rotatingC metric @13#. This shows, in particular
that the Wahlquist-Newman spacetime contains the Ke
Newman–de Sitter metric as a particular case. In Sec. V,
analyze the static limit of the Wahlquist-Newman metric.
do that, we rewrite the metric in a suitable coordinate sys
which admits an explicit static limit and which, in additio
allows for an extension of the Wahlquist-Newman spacet
across its horizon~although the metric represents a perfe
fluid, it does have a regular horizon, as we shall see!. Finally,
we include an Appendix where Einstein-Maxwell’s equ
tions under the assumptions of this paper are solved.

II. GEOMETRIC PROPERTIES OF THE WAHLQUIST AND
THE KERR –NEWMAN –de SITTER METRICS

The Kerr metric and the Wahlquist metrics share
property that the Simon tensor@8# vanishes identically. The
geometrical meaning of the vanishing of the Simon tenso
vacuum has been recently clarified in@14#. The fundamental
underlying property is a close relationship between the W
tensor and the stationary Killing vector. Properties of t
Weyl tensor can be quite naturally described using the
guage of self-dual two forms, which are two-formsX satis-
fying X !52 iX where! denotes the Hodge dual with re
spect to the volume formhabgd . From the Weyl tensor
Cabgd and the stationary Killing vectorjW we can write down
two canonical self-dual objects, the self-dual Weyl ten
Cnmab[Cnmab1( i /2)habrsCnm

rs and the so-called Killing
form Fab[¹ajb1( i /2)habgd¹gjd. It is natural to ask
which spacetimes have the property that the self-dual W
tensor and the Killing form are related to each other. T
simplest relationship between these two objects which
spects all the symmetries of the self-dual Weyl tensor is@the
object Iabgd[(gaggbd2gadgbg1 ihabgd)/4 is the canoni-
cal metric in the space of two-forms#

Cabgd5LS FabFgd2
1

3
IabgdF2D , ~1!

whereL is a complex, scalar function andF2[FabF ab. It
turns out @14# that the vanishing of the Simon tensor
vacuum is equivalent to Eq.~1!. We know that the Simon
tensor vanishes for the Wahlquist metric. So, we can
whether Eq.~1! holds also for the Wahlquist spacetime.
straightforward calculation shows that this is indeed the ca
Actually, it can be seen that the original assumptions m
by Wahlquist in order to find his spacetime, although writt
in another formalism~see@2#!, can be rewritten so that the
06402
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consist of condition~1! plus axial symmetry. Thus, with
hindsight, Kramer’s uniqueness result@5# of the Wahlquist
metric is equivalent to dropping the condition of axial sym
metry from Wahlquist’s original assumptions.

Following the discussion in the Introduction, we can a
whether condition~1! is also fulfilled by Kerr–de Sitter,
Kerr-Newman and Kerr–Newman–de Sitter. The answe
yes, as a simple calculation shows. However, the Ke
Newman and the Kerr–Newman–de Sitter spacetimes c
tain, in addition, an electromagnetic field. So we should a
lyze whether this field fits nicely into the geometrical relati
~1!. This is very important for our purposes because it w
determine what makes these charged spacetimes so sp
and it will indicate how the charged generalization of Wa
quist metric should be defined. Let us call the electrom
netic field asKab . This two-form defines canonically a sel
dual two-form according toKab[Kab1 iK ab

! . It can be
easily checked that in Kerr-Newman and Kerr–Newman–
Sitter the self-dual electromagnetic fieldis proportional to
the Killing form, i.e. Kab}Fab . This is the most natura
relationship one could think of between these two objec
Thus, all these metrics do have very special geometr
properties.

This discussion above indicates two things. First, that
Wahlquist metric is likely to contain the Kerr–de Sitter me
ric ~and hence the Kerr metric! as a particular subcase an
second, that a charged generalization of Wahlquist sho
also exist satisfying the following properties:~1! It contains
both Wahlquist and Kerr–Newman–de Sitter as subca
~2! it satisfies the relationship~1! between the Weyl tenso
and the Killing form and~3! its self-dual electromagnetic
field is proportional to the Killing form. Its energy
momentum tensor should contain both an electromagn
field part and a perfect-fluid part.

Table I shows graphically the interrelationships betwe
these metrics. Single arrows indicate well-established
natural generalizations and arrows between question m
indicate plausible relations between metrics. In particular
becomes apparent that some metric, the Wahlquist-New
metric, should fill the lower, right corner of this table.

III. KERR –de SITTER LIMIT IN THE WAHLQUIST
FAMILY

Let us start by writing down the line-element of the Wah
quist family as it appears in@2#. This is actually a generali-
zation~by adding a discrete parameter! of the original Wahl-
quist metric as given in@1# and was originally given by

TABLE I. Relationships between the metrics discussed in t
paper.

Non-charged metrics Charged counterparts

Kerr → Kerr-Newman
↓ ↓

Kerr-de Sitter → Kerr-Newman-de Sitter
?↓? ?↓?

Wahlquist ?→? Wahlquist-Newman?
2-2



t
re

tim

he
a

ar
ke
n

ld

o-
d

not
’s

red
l

WAHLQUIST-NEWMAN SOLUTION PHYSICAL REVIEW D 63 064022
Senovilla in @7# ~see@15# for a discussion on the differen
published versions of the Wahlquist metric and their inter
lationships!. The Wahlquist line element is

ds252
1

F2
~dt2Adu!21r 2du21

g

m0
S du2

h1
1

dv2

h2
D ,

~2!

where

h1~u!5h01e0cos~2u!1~u1u0!sin~2u!,

h2~v !5h02e0cosh~2v !1~v1v0!sinh~2v !,

g5cos~2u!1cosh~2v !,
1

F2
5

h12h2

kg
,

r 254r 0
2F2h1h2 ,

A522kr 0cosh~vA!1
2kr 0@h2cos~2u!1h1cosh~2v !#

h12h2
.

All symbols with zero subscripts, as well ask and vA , are
arbitrary constants. The energy-momentum of this space
is a rigidly rotating perfect fluid~i.e. its velocity vector is
proportional to the Killing vectorjW5] t!. The energy-density
r and pressure p are r5m0(12k/F2) and p
5m0„3(k/F2)21…, so that the equation of state isr13p
52m0. We want to rewrite this metric in such a way that t
Kerr metric is included as a particular case. We first resc
u and v as follows: u5by1p/2, v5bz, whereb is any
non-zero constant. The functiong transforms into g
5cosh(2bz)2cos(2by). The constantb is superfluous as
long as it remains non-zero, but it may be that the limitb
→0 gives another metric, perhaps the Kerr metric we
looking for. In order to work out this idea, we should ma
b→0 meaningful. This requires some redefinitions of co
stants. We start by defining

Q~y,z![
cosh~2bz!2cos~2by!

2b2
, ~3!

which is regular atb50. The 232 block spanned by$u,v%
in Eq. ~2! takes the formQ„U(z)21dz21V(y)21dy2

…,
whereU5m0h2 /(2b4) andV5m0h1 /(2b4). The constants
must be redefined so thatU andV are regular atb50. Fur-
thermorem0 should remain finite and non-zero~because of
the relationr13p52m0, which is non-zero in the Kerr–de
Sitter metric!. In addition, the number of parameters shou
not be reduced in the limitb→0. All this is achieved by the
following redefinition of constants

m0invariant,
h0m0

2b4
5Q01

n0

2b2
1

m0

2b4
,

m0e0

b2
5n01

m0

b2
,

m0v0

b3
5a1 ,

m0~u01p/2!

b3
52a2 , ~4!
06402
-

e
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e

-

which bringsU andV into the form

U5Q02
m0

2b2 Fcosh~2bz!21

b2
2

z sinh~2bz!

b G
1n0

12cosh~2bz!

2b2
1a1

sinh~2bz!

2b
,

V5Q01
m0

2b2 F12cos~2by!

b2
2

y sin~2by!

b G
1n0

12cos~2by!

2b2
1a2

sin~2by!

2b
. ~5!

We should now analyze the$t,u% block. The constantsk, r 0
and vA correspond to the freedom of performing linear c
ordinate changes int and u. Since the coordinates shoul
remain adapted to the Killing vectorjW ~which is privileged
both for the Wahlquist and for the Kerr metrics!, we consider
changes of the typet5b1(t1b2u),s5b3u. Let us choose

b15
b

Am0k
, b252kr 0„cosh~vA!21…,

b354b3r 0A k

m0
,

which bring the Wahlquist line element~2! into the form

ds252lS dt2
v1V1v2U

V2U
ds D 2

1
UV

l
ds2

1~v11v2!S dy2

V
1

dz2

U D , ~6!

whereU andV are given by Eq.~5!, v1 , v2 read

v15
cosh~2bz!21

2b2
, v25

12cos~2by!

2b2
, ~7!

and l5(V2U)/(v11v2). All metric functions in Eq.~6!
are independently regular atb50. The structure of this line
element is very similar to the one given by Senovilla in@7#,
the only difference being the choice of parameters. It is
difficult to obtain the redefinitions which bring Senovilla
form into Eq.~6!. Thus, a regular limitb50 could also have
been obtained starting from that line element. We prefer
to start from Eq.~2! in order to deal only with essentia
parameters.

The explicit form of the metric~6! when b50 is ~after
trivially reorganizing the block$t,s%)

ds252
V̂

y21z2
~dt2z2ds!21

Û

y21z2
~dt1y2ds!2

1~y21z2!S dy2

V̂
1

dz2

Û
D , ~8!

where
2-3
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Û5Q01
m0

3
z42n0z21a1z,V̂5Q01

m0

3
y41n0y21a2y,

l̂5n01a2

y

y21z2
2a1

z

y21z2
1

m0

3
~y22z2!.

This is the uncharged subcase of the Pleban´ski metric @12#,
which is an important limiting case of the Pleban´ski-
Demiański metric, also called rotatingC metric @13#. The
constanta1 is closely related to the NUT parameter anda2 is
related to the mass parameter. A particular case of this m
is obtained by settingQ05a2, n0512a2L/3, a150 and
redefininga2→22M and m0→2L. After the coordinate
changes

y5r , z5a cosu, as5
2f

11
1

3
La2

, t5
t2af

11
1

3
La2

,

~9!

we obtain the Kerr–de Sitter metric@10# in Boyer-Lindquist
coordinates,

ds25r22@2D ra0
21Dusin2ua1

2#1r2S dr2

D r
1

du2

Du
D ,

~10!

where r25r 21a2cos2u, D r5(a21r 2)(12 1
3 Lr 2)22Mr

andDu511 1
3 La2cos2u. The one-formsa0 anda1 are

a05
1

11
1

3
La2

~dt2a sin2udf!,

a15
1

11
1

3
La2

@adt2~a21r 2!df#.

Of course, by settinga50 in this metric we get the
Schwarzschild–de Sitter metric and the particular caseL
50 is the Kerr metric. Thus, the Wahlquist metricdoescon-
tain Kerr–de Sitter~and Kerr! as a particular case, as w
wanted to prove.

IV. THE WAHLQUIST-NEWMAN FAMILY OF METRICS

The line-element of the Kerr–Newman–de Sitter spa
time can be obtained from Eq.~10! just by modifying the
function D r with an additive constant, i.e.,

D r5~a21r 2!S 12
1

3
Dr 2D22Mr 1q2,

the constantq being directly related to the electric charge
the black hole~and hence to the electromagnetic field!. By
analogy, we assume as a working hypothesis that
Wahlquist-Newman metric we are seeking can be obtai
by modifying the functions on the block$dy,dz% of the met-
06402
ric

-

e
d

ric ~6!. The reason why we must allow both functionsV(y)
andU(z) to be changed instead of only one~as in the Kerr–
Newman–de Sitter case! will become clear later. So, let u
assume that the Wahlquist-Newman metric can be written
the form

ds252
V1

v11v2
~dt2v1ds!21

U1

v11v2
~dt1v2ds!2

1~v11v2!S dy2

V1
1

dz2

U1
D , ~11!

whereV1(y) and U1(z) are unknown functions andv1(z),
v2(y) are given by Eq.~7!. We want to solve the Einstein
Maxwell field equations for an energy-momentum tens
Tmn consisting of two parts: a perfect-fluid componentTmn

p f

with the fluid velocity being proportional to the stationa
Killing vector jW5]t and an electromagnetic partTmn

em. If we
denote byKmn the electromagnetic field and byKmn its self
dual part, we want to imposeK}F, so that the fundamenta
geometric property satisfied by the Kerr-Newman metric
preserved. In Kerr-Newman, the electromagnetic field
source-free~more precisely, the source of the electroma
netic field is located at the singularity inside the black hol!.
This is most reasonable because there is no matter to sup
electric charge. In our case, however, there is a perfect fl
which may perfectly be charged. So, we admit a charge c
rent jW proportional to the fluid velocityuW . Hence, Maxwell’s
equations read

dK50, d!K54p! j, j5Cj,

whereC is a scalar function. Our aim is to solve Einstei
Maxwell’s field equations under these assumptions.
though the calculations are not very difficult, some manip
lations are required. The details are given in the Append
The solution reads as follows:

U1~z!5Q022a i
21a1

sinh~2bz!

2b

1
gz

4 F ~8a i22gz!cosh~2bz!13g
sinh~2bz!

b G
1~n012b2a r

212b2a i
2!

12cosh~2bz!

2b2

2
m0

2b2 Fcosh~2bz!21

b2
2

z sinh~2bz!

b G , ~13!

V1~y!5Q012a r
21a2

sin~2by!

2b

1
gy

4 F ~2gy28a r !cos~2by!23g
sin~2by!

b G
1~n022b2a r

222b2a i
2!

12cos~2by!

2b2
2-4
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1
m0

2b2 F12cos~2by!

b2
2

y sin~2by!

b G , ~14!

whereb, Q0 , m0 , a1 , a2 , n0 , a r , a i and g are arbitrary
constants. These symbols have been chosen so that th
charged subcase~i.e. the Wahlquist metric! can be directly
obtained just by settingg5a r5a i50. Thus, the Wahlquist-
Newman family of metrics contains three more essential
rameters than the Wahlquist family. It is worth pointing o
that Kerr–Newman–de Sitter has only one additional para
eter with respect to the Kerr–de Sitter metric~i.e. the charge
of the black hole!. The difference comes from the fact tha
in our case, a non-vanishing charge currentjW is allowed. The
electromagnetic fieldK of the Wahlquist-Newman spacetim
is

K5Xru
0`dy2Xiu

1`dz,

whereu05dt2v1ds, u15dt1v2ds, and the functionsXr
andXi are the real and imaginary parts of the complex fu
tion X5Xr1 iXi given by

X5
1

~v11v2!2 F12cos~2by!cosh~2bz!

b2

2 i
sin~2by!sinh~2bz!

b2 G
3Fa r2

gy

2
1

g

4

sin~2by!

b
cosh~2bz!

1 i S a i2
gz

2
1

g

4

sinh~2bz!

b
cos~2by! D G .

The charge current of this electromagnetic field is

jW5
gb2

2p

]

]t
. ~15!

Thus, the constantg is directly related to the charge of th
particles in the fluid. Notice that the valueg50 ~i.e. un-
charged particles! is perfectly possible. In that case, th
source of the electromagnetic field lies in the singularityv1
1v250⇔z50,y5np/b,nPZ, analogously as in the Kerr–
Newman–de Sitter metric. Wheng50, the electromagnetic
field is described by the two constantsa r anda i but only the
combinationa r

21a i
2 appears in the metric. This reflects th

well-known electromagnetic duality symmetry of the sourc
free Einstein-Maxwell field equations. Thus, for uncharg
particles the Wahlquist-Newman family adds only one p
rameter to the Wahlquist family, exactly the same as in
Kerr–Newman–de Sitter case.

Regarding the perfect fluid, its velocity is, by assumptio
proportional to]t so only the energy-densityr and pressure
p remain to be given. They can be directly obtained from
expressions
06402
un-

-
t
-

-

-
d
-
e

,

e

r13p

2
5m01b2g21bg

3
~2a r2gy!sin~2by!1~2a i2gz!sinh~2bz!

v11v2
,

r1p52b2l, ~16!

wherel5(V12U1)(v11v2)52jaja is minus the squared
norm of the Killing vector. When the particles are uncharg
(g50) the perfect fluid satisfiesr13p52m0 as in the
Wahlquist family. WhengÞ0, there is no functional relation
betweenr and p and therefore no barotropic equation
state. Thus, the presence of an electric charge in the part
seems to change the thermodynamic properties of the pe
fluid ~this cannot be made certain until a proper thermo
namic analysis is done!.

From Eq.~14! we observe that both functionsV1 andU1
have a smooth limitb→0 ~the integration constants wer
chosen carefully so that this property holds!. The expressions
for the density and pressure~16! shows thatb50 corre-
sponds to having no perfect fluid but rather a cosmolog
constant with valueL52m0. The electromagnetic field in
this case is source-free, as it should be because no mat
present. The explicit form forv1 , v2 , U1 andV1 in the limit
b50 is, after redefininga1 , a2 andn0 so that the constantg
disappears~no trace ofg can be left in this case because t
charge current vanishes!

v15z2, v25y2, U15Q022a i
21a1z2n0z21

m0

3
z4,

V15Q012a r
21a2y1n0y21

m0

3
y4. ~17!

The metric~11! with the functions~17! is the Pleban´ski limit
of the rotatingC metric, as expected, and therefore it co
tains the Kerr–Newman–de Sitter metric as a particular ca

Hence, metric~11! contains both the Wahlquist and Kerr
Newman–de Sitter metrics. Furthermore, a simple calcu
tion shows that the geometric relationship~1! is also satisfied
by this metric. Since the self-dual electromagnetic field
proportional to the Killing form ofjW by construction, we
conclude that Eq.~11! is the Wahlquist-Newman metric w
are seeking~this completes Table I!. This family of metrics
contains eight arbitrary parameters~or nine if we countb).

Finally, we can now see why both functionsU1 and V1
had to be modified instead of only one as in Ker
Newman–de Sitter. In the cosmological constant case, b
functions get modified by the inclusion of an electromagne
field @see Eq.~17!#. However, a redefinition ofQ0 can be
used to compensate one of the changes. In the perfect-
case, the modifications are more complicated and canno
reabsorbed by redefinitions of constants.
2-5
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V. EXTENSION OF THE WAHLQUIST-NEWMAN
SOLUTION AND STATIC LIMIT

The metric as written in Eq.~11! does not have an obvi
ous static limit. Analyzing whether such a limit exists
relevant because the Wahlquist metric has an interes
spherically symmetric static limit, namely the Whittaker s
lution @16# which represents an isolated fluid ball in equili
rium. Moreover, the static limit of the Pleban´ski metric has
interesting subcases, like the fundamental Schwarzschild
Sitter–Reissner–Nordstro¨m metric or the so-called rotatin
topological black holes~see e.g.@17#!. Thus, it is reasonable
to expect that the static limit of the Wahlquist-Newm
spacetime may also have interesting properties. We de
this section to find this limit.

To do that, the coordinate system in Eq.~11! must clearly
be changed. We choose a coordinate system which, in a
tion, extends the metric~11! across its Killing horizon, which
is contained within the set of points where the Killing ve
tors ]h and ]s span a null two-plane. Notice, that this ca
only happen at points wherel<0. From the perfect-fluid
interpretation of Eq.~11! this would seem to be impossible
However, the energy-momentum tensor of Eq.~11! is regular
at the points wherel50, i.e. at the ergospheres of the Kil
ing vectorjW . Indeed, the electromagnetic field is easily se
to be regular there and even though the velocity of the p
fect fluid becomes singular wherel50, the combination
(r1p)uaub5l21(r1p)jajb52b2jajb is finite. Obvi-
ously the perfect-fluid interpretation breaks down at the
gospheres ofjW but still the spacetime is regular. This ind
cates that horizons may also be present in the Wahlqu
Newman spacetime. In order to find them, we sho
evaluateN5(]t ,]t)(]s ,]s)2(]t ,]s)2 where ~ , ! means
scalar product with the metric~11!. A simple calculation
givesN5V1U1. Thus,N vanishes at the points where eith
V1 or U1 vanish. It is not cleara priori whether we should
try to extend the metric across the hypersurfaceV150 or
across the hypersurfaceU150. We know from Eq.~9! that
the coordinatey is radial andz angular, at least in the limi
b50 without electromagnetic field. Therefore, we choose
extend the spacetime acrossV1(y)50. Let us choose the
region V1(y).0 and define the following coordinate tran
formation:

v5t1E v2

V1
dy,w52s1E 1

V1
dy.

It is easy to check that the metric can be cast into the fo

ds252l~dv1v1dw!212~dy2U1dw!~dv1v1dw!

1QS dz2

U1
1U1dw2D , ~18!

whereQ[v11v2. This metric is regular atV1(y)50 and
can therefore be extended. It is straightforward to check
the hypersurfacey5y0 with V1(y0)50 is null and that the
Killing vector 2v2(y0)]t1]s is also null and tangent to thi
hypersurface. Thus,y5y0 is a Killing horizon. Extensions of
06402
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spacetimes are not unique in general. The extension we h
performed, however, is uniquely determined by the geom
ric condition~1! which still holds in the extended spacetim
Thus, this is the natural extension of the Wahlquist-Newm
metric from the geometrical point of view. It must be em
phasized, however, that this extension may not be the m
relevant from the physical point of view because the e
tended region contains, in addition to an electromagn
field, a charged tachyonic fluid, which is rather unphysica

We can now try to determine the static limit of Eq.~18!.
From Kerr–de Sitter, we know that some limitz→const will
be involved. So, we should avoid usingz as a coordinate. We
accomplish this as follows. Let us consider a connected t
dimensional manifoldS endowed with the metric

h5
1

U1~z!
dz21U1~z!dw2, ~19!

and volume formhh5dz̀ dw. Denote by!h the Hodge
dual in (S,h,hh). We obviously have!hdz5U1dw and
d!hdz5(dU1 /dz)hh . Furthermore, the one-formv5
2v1(z)dw on S satisfiesdv52(dv1 /dz)hh . The scalar
curvature of the metric~19! is easily computed to beR(h)
52d2U1 /dz2. With these definitions, the metric~18! can be
written as

ds252l~dv2v!212~dy2!hdz!~dv2v!1Qh.
~20!

In this metric,z need not be a coordinate any longer and c
be regarded just as a real function defined onS. The func-
tions Q and l depend on the spacetime point only throu
the values ofy andz at that point.jW5]v is static if

j`dj52V1l ,zdv`hh1dy`@Ql zhh1~l ,zdz1l ,y!hdz!

`~v2dv !#50,

which holds if and only ifl ,z50 and !hdz50. Thus, z
5z05const andl ,zuz5z0

50. From l5(V12U1)/Q and

Eqs. ~7!, ~14! this can only happen iffz050 and a15
22ga i . In that case, the one-formv and the scalar curva
ture of h are

dv52S dv1

dz U
z50

Dhh50,

R~h!52
d2U1

dz2 U
z50

52@n012b2~a r
21a i

2!2g2#.

Thus,v is locally exact and can be reabsorbed into the
ordinatev. Sinceh is of constant curvature, there exist c
ordinatesx1 andx2 such that

h5B2@dx1
21S~x1 ,e!dx2

2#,

where S(21, x1)5sinh(x1), S(0, x1)5x1 and S(1, x1)
5sin(x1) andBPR satisfies
2-6
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eB225n012b2~a r
21a i

2!2g2. ~21!

Inserting this into Eq.~20! we find that the static limit of the
Wahlquist-Newman metric is

ds252l̃dv212dydv1
12cos~2by!

2b2

3B2
„dx1

21S~x1 ,e!dx2
2
…, ~22!

wherel̃[l(y,0) reads explicitly

l̃5~n022b2a r
222b2a i

2!1
2b2

12cos~2by! H 2~a r
21a i

2!

1a2

sin~2by!

2b
1

m0

2b2 F12cos~2by!

b2
2

y sin~2by!

b G
1

gy

4 F ~2gy28a r !cos~2by!23g
sin~2by!

b G J .

We call this metric Whittaker-Reissner-Nordstro¨m metric. Its
energy-momentum tensor is~in the regionl.0) the sum of
a perfect-fluid and an electromagnetic field. The density
pressure of the perfect fluid can be read off from Eq.~16!
after insertingz50. The electromagnetic field can be o
tained by performing the coordinate changes we made to
the static limit. The result is

K5
2b2

12cos~2by! F2a r1gS sin~2by!

2b
2yD G

3dv`dy22a ihh ,

where the two-formhh is hh5B2S(x1 ,e)dx1`dx2. Its
charge current is still given by Eq.~15!. The metric~22! is
static and spherically symmetric as long as@n012b2(a r

2

1a i
2)2g2#.0. When this expression is zero or negativ

the spacetime is plane symmetric and ‘‘hyperbolic’’ symm
ric respectively. When the electromagnetic field vanishes
n0.0 the metric is the spherically symmetric perfect-flu
found by Whittaker @16#. The limit b→0 gives the de
Sitter–Reissner–Nordstro¨m metric~whene51) or its hyper-
bolic or plane counterparts. Another physically relevant s
case of Whittaker-Reissner-Nordstro¨m is a r5a i5a250
and n0.g2. This represents a charged fluid ball in equili
rium, with no singularities inside.

A thorough investigation of the geometry of th
Wahlquist-Newman and Whittaker-Reissner-Nordstr¨m
spacetimes would be of interest. Also, studying the phys
applications of this geometrically privileged metrics shou
be a matter of further investigation.
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APPENDIX

In this appendix we solve the Einstein-Maxwell equatio
under the assumptions described in Sec. IV. Let us star
introducing an orthogonal tetrad

u05dt2v1ds, u15dt1v2ds, u25dy, u35dz,
~A1!

so that the metric~11! takes the form

ds252
V1

v11v2
~u0!21

U1

v11v2
~u1!2

1
v11v2

V1
~u2!21

v11v2

U1
~u3!2.

We take the volume formh5u0`u1`u2`u3. Lowering
the indices tojW5]t we find

j52
V1

v11v2
u01

U1

v11v2
u1.

In order to imposeKab}Fab , we need to evaluate the Kill
ing formF associated tojW . After a simple computation we
obtain

F5
1

2 FV1,y1 iU 1,z

Q
1

V12U1

Q2
~ iv1,z2v2,y!G

3~u0`u21 iu1`u3!, ~A2!

whereQ5v11v2. Thus, two of the three linearly indepen
dent ~complex! coefficients of the Killing formF are iden-
tically zero. Since the fluid velocityuW }jW , the perfect-fluid
part of the energy-momentum tensor reads

Tp f5S D
V1

2

Q2
2p

V1

Q D ~u0!222D
V1U1

Q2
u0u1

1S D
U1

2

Q2
1p

U1

Q D ~u1!21pQS ~u2!2

V1
1

~u3!2

U1
D ,

wherep is the pressure and the densityr is obtained from the
scalar D by r1p5Q21D(U12V1). The electromagnetic
field K is required to satisfy

K5X@u0`u21 iu1`u3#,

whereX is a complex scalar function. Hence the electroma
netic energy-momentum tensorTmn

em5(1/4)KmaK̄n
a takes

the diagonal form

Tem5
1

2
XX̄FV1

Q
~u0!21

U1

Q
~u1!22

Q

V1
~u2!21

Q

U1
~u3!2G .
2-7
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Using units in which 8pG5c51 and denoting byGab the
Einstein tensor of Eq.~11!, the Einstein equationsGmn

5Tmn
em1Tmn

p f become

G001
V1

U1
G011

V1
2

Q2
G2250, G111

U1

V1
G012

U1
2

Q2
G3350,

~A3!

D52
G01Q

2

V1U1
, p5

V1G22

2Q
1

U1G33

2Q
, ~A4!

XX̄5
U1G33

Q
2

V1G22

Q
. ~A5!

The two equations~A3! are identically satisfied by the metri
~11!. Actually, it can be proven that allowingv1(y) and
v2(z) to be arbitrary, the two equations~A3! force them to
be Eq.~7!. Thus, our assumption thatv1 andv2 remain un-
changed implies no loss of generality. The two equations
Eq. ~A4! can be regarded as defining expressions forr andp
~we do not impose any equation of state for the perfect fl
a priori!. Equation~A5! needs to be solved in combinatio
with the Maxwell’s equations~12!, which we now analyze
The electromagnetic field is required to be Lie constant al
the Killing vector fields]t and]s . ThusX5X(y,z). In our
case, it is simpler to solve Maxwell’s equations by looki
for an electromagnetic potentialA satisfyingdA5K. SinceA
can be chosen to be Lie constant along the Killing vecto
we can write

A5A0~y,z!u01A1~y,z!u11A2~y,z!u21A3~y,z!u3,

so that its exterior derivative takes the form

dA5F2]yA01
sin~2by!

b

A1

Q Gu0`u2

2F]zA01
sinh~2bz!

b

A0

Q Gu0`u3

2F]yA11
sin~2by!

b

A1

Q Gu1`u2

1F2]zA11
sinh~2bz!

b

A0

Q Gu1`u3

1@]yA32]zA2#u2`u3. ~A6!

DecomposingX into its real and imaginary partsX5Xr
1 iXi , the electromagnetic field readsK5Xru

0`u22Xiu
1

`u3. Imposing nowdA5K we obtain, first of all, that the
coefficient in u2`u3 must vanish. ThusA2u21A3u3 is
closed and can be redefined away by a gauge transforma
So, we can putA25A350. The vanishing of the coefficient
in u0`u3 and u1`u2 in ~A6! implies A05Ã0(y)/Q and
A15Ã1(z)/Q. The remaining components ofdA5K give
expressions forXr and Xi in terms of Ã0 and Ã1 and their
derivatives. A convenient way of writing them is
06402
in
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Xr52]yF Ã01Ã1

v11v2
G , Xi5]zF Ã01Ã1

v11v2
G . ~A7!

We turn now into the equationd!K54p! j, which after us-
ing the form ofK and j reads

S Xi ,z1Xi

v1,z

Q
1Xr

v2,y

Q D u0`u2`u3

1S 2Xr ,y2Xi

v1,z

Q
2Xr

v2,y

Q D u1`u2`u3

54pC~u1`u2`u32u0`u2`u3!. ~A8!

This impliesXr ,y2Xi ,z50, or using Eq.~A7!,

~]yy1]zz!F Ã01Ã1

Q
G50. ~A9!

Defining the complex variablez5y1 iz, the general solution
of Eq. ~A9! is Ã01Ã15Q•@g(z)1g(z )̄#, whereg is a ho-
lomorphic function ofz. In terms ofz, the functionQ5v1

1v2 becomes simplyQ5b22sin(bz)sin(bz̄). It remains to
impose thatÃ0 andÃ1 depend only ony andz respectively,
or equivalently (]zz2]z̄z̄)(Ã01Ã1)50. This implies the fol-
lowing equation forg:

g,zz12b
cos~bz!

sin~bz!
gz5ḡ,z̄ z̄12b

cos~bz̄ !

sin~bz̄ !
ḡz̄ .

Thus, there exits a real constantb2g such that each term o
this equation equalsb2g. The resulting ordinary differentia
equation~ODE! can be integrated once to give~after choos-
ing the integration constant so that the limitb→0 exists!

gz5
b2

sin2~bz!
F2a1gS z

2
2

sin~bz!cos~bz!

2b D G ,
~A10!

wherea is an arbitrary complex constant. From this expre
sion we could easily integrateg(z) and obtainA. However,
to obtainK we only need to determineX,

X5Xr1 iXi5S 2
]

]y
1 i

]

]zD S Ã01Ã1

Q
D 522

]

]z
„g~z!

1ḡ~ z̄ !…522g,z .

The scalarC can now be read off from Eq.~A8!, the result
being C5gb2/2p. We can now solve the Einstein fiel
equation~A5!. First, we need to evaluateXX̄. Decomposing
a into its real and imaginary parts asa5a r1 ia i , and using
Eq. ~A10! we getXX̄54Q21YȲ, where
2-8
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Y52a r1
gy

2
2

g

4

sin~2by!

b
cosh~2bz!

1 i S 2a i1
gz

2
2

g

4

sinh~2bz!

b
cos~2by! D .

Einstein’s equation~A5! reads, after dropping a factorQ
5v11v2,

~v11v2!~U1G332V1G22!24YȲ50, ~A11!

which is a rather long equation involving the functionsV1 ,
U1 and their derivatives. Since they are functions of differe
variables, a reasonable strategy is to try and separate
equation. This can be accomplished after taking the pa
derivative of Eq.~A11! with respect toy andz. The resulting
expression separates nicely into the form

b

sin~2by!
@V1,yyy14b2V1,y18b2g cos~2by!~gy22a r !#

5
b

sinh~2bz!
@U1,zzz24b2U1,z18b2g cosh~2bz!

3~gz22a i !#54m0 ,

wherem0 is the separation constant. Thus, we are faced w
two linear, third order ordinary differential equations. The
solution can be explicitly written down in the followin
form, after choosing carefully the integration constants
that the limitb→0 exists:
s

s

s
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U15L11a1

sinh~2bz!

2b
1

gz

4 F ~8a i22gz!cosh~2bz!

13g
sinh~2bz!

b G1S1

cosh~2bz!21

2b2

2
m0

2b2 Fcosh~2bz!21

b2
2

z sinh~2bz!

b G ,

V15L01a2

sin~2by!

2b
1

gy

4 F ~2gy28a r !cos~2by!

23g
sin~2by!

b G1S0

12cos~2by!

2b2

1
m0

2b2 F12cos~2by!

b2
2

y sin~2by!

b G ,

whereL0 , L1 , S0 , S1 , a1 anda2 are integration constants
Inserting these expressions back into the Einstein equa
~A11!, we find that the equation is satisfied if and only
S11S0524b2(a r

21a i
2) and L15L022(a r

21a i
2). By re-

definingS0 , S1 andL0 in a trivial way we obtain the form
for U1 andV1 given in Eq.~14!.
-
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