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Nearly horizon skimming orbits of Kerr black holes

Scott A. Hughes
Institute for Theoretical Physics, University of California, Santa Barbara, California 93103

and Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125
~Received 16 October 2000; published 13 February 2001!

An unusual set of orbits about extreme Kerr black holes resides at the Boyer-Lindquist radiusr 5M , the
coordinate of the hole’s event horizon. These ‘‘horizon skimming’’ orbits have the property that their angular
momentumLz increaseswith inclination angle, opposite to the familiar behavior one encounters at larger
radius. In this paper, I show that this behavior is characteristic of a larger family of orbits, the ‘‘nearly horizon
skimming’’ ~NHS! orbits. NHS orbits exist in the very strong field of any black hole with spina
*0.952412M . Their unusual behavior is due to the locking of particle motion near the event horizon to the
hole’s spin, and is therefore a signature of the Kerr metric’s extreme strong field. An observational hallmark of
NHS orbits is that a small body spiraling into a Kerr black hole due to gravitational-wave emission will be
driven into orbits of progressively smaller inclination angle, toward the equator. This is in contrast with the
‘‘normal’’ behavior. For circular orbits, the change in inclination is very small, and unlikely to be of obser-
vational importance. I argue that the change in inclination may be considerably larger when one considers the
evolution of inclined eccentric orbits. If this proves correct, then the gravitational waves produced by evolution
through the NHS regime may constitute a very interesting and important probe of the strong-field nature of
rotating black holes.

DOI: 10.1103/PhysRevD.63.064016 PACS number~s!: 04.30.Db, 04.70.2s, 95.30.Sf
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I. INTRODUCTION

The space-based gravitational-wave Laser-Interferom
Space Antenna~LISA! @1# is being designed to make ver
precise measurements of the characteristics of black
spacetimes. One source that is particularly well suited
such measurements is the inspiral of a small~massm51
210M () compact body into a massive (M510527 M ()
Kerr black hole. Depending upon the values ofM, m/M , and
the hole’s spina, such an inspiral will spend several mont
to several years in LISA’s frequency band@2#, radiating
105– 106 gravitational-wave cycles. By accurately measuri
these cycles, LISA should be able to build a ‘‘map’’@3,4# of
the spacetime, testing in detail the predictions of gene
relativity.

As the community begins developing strategies for a
lyzing LISA’s datastream, it is important to reexamine a
carefully analyze the sources one expects to measure.
extreme mass ratio inspirals, this means understanding m
deeply the character of Kerr black hole orbits and the na
of gravitational radiation reaction deep in the Kerr metric
strong field. Of particular interest are features that might s
plify data analysis~which is likely to be very difficult, given
the many cycles that must be tracked! or that might consti-
tute a strong signature of the spacetime. In this paper, I a
lyze what might be such a feature — a unique signature o
the inspiral of a body through the extreme strong field
rapidly rotating black holes.

The key piece of this analysis was first discussed
Wilkins. Reference@5# contains a detailed examination o
circular orbits of extreme (a5M )1 Kerr black holes.~In this
context, ‘‘circular orbit’’ means ‘‘orbit of constant Boyer

1I use units whereG515c.
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Lindquist coordinate radius.’’! One very interesting resul
given in @5# is the existence of ‘‘horizon skimming’’ orbits
These are circular orbits of varying inclination angle at t
same coordinate radius as the event horizon,r 5M . ~Despite
being at the same radial coordinate, one can show that t
orbits have distinct proper separation, and in particular
outside the event horizon; see Ref.@6#, particularly Fig. 2.!
An extremely interesting feature of the horizon skimmi
orbits is that as an orbit’s inclination anglei is increased, its
angular momentum componentLz likewise increases:
]Lz /]i.0 for the horizon skimming orbits. This propert
holds over a sizable range of radius, out tor .1.8M . I will
call the full set of orbits for which]Lz /]i.0 the ‘‘nearly
horizon skimming’’ ~NHS! orbits. This defining property of
NHS orbits is opposite to weak-field intuition. For examp
in Newtonian theory, orbits at constant radius haveLz

5uLW ucosi ~whereuLW u is the same for all orbits at radiusr ),
which decreases asi increases.

Intuition from Newtonian theory is highly suspect in th
strong field of black holes. However, the true behavior ofLz
as a function ofi is qualitatively the same as in Newtonia
theory over a wide range of orbital radii and spins. For e
ample, whena50.95M , ]Lz /]i,0 for all circular orbits, so
there are no NHS orbits whena50.95M . It turns out that
NHS orbits can only exist whena*0.952412M . This is the
smallest spin for which stable orbits come close enough
the hole’s event horizon that]Lz /]i can switch sign: the
property]Lz /]i.0 arises because, very close to the bla
hole, all physical processes become ‘‘locked’’ or ‘‘frozen
to the hole’s event horizon@7#. In particular, their orbital
motion locks to the horizon’s spin. This locking dominat
the ‘‘Keplerian’’ tendency of an orbit to move more quickl
at smaller radius (vKepler5AM /r ), forcing a body to actually
slow in the innermost orbits. The locking is particular
©2001 The American Physical Society16-1
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SCOTT A. HUGHES PHYSICAL REVIEW D 63 064016
strong for the most-bound orbits. As I show below, the lea
bound orbits do not strongly lock to the black hole’s sp
until they have very nearly reached the innermost orbit. T
NHS orbit’s ]Lz /]i behavior follows from the fact that th
most-bound orbit locks to the horizon more readily than
least-bound orbit.

This behavior could have interesting observational con
quences. It has been well-understood for some time that
inclination angle of an inspiraling body increases due
gravitational-wave emission@8,9#. Gravitational waves carry
Lz away from the orbit, so thatdLz /dt,0. Since ‘‘normal’’
orbits have]Lz /]i,0, it follows thatdi/dt.0. If ]Lz /]i
switches sign, thendi/dt will switch sign as well: an in-
spiraling body will evolve toward an equatorial orbit. If th
change ini is large, it could have a large effect on the gra
tational waveform. For example, the spin-orbit modulation
the wave’s amplitude and phase is due to motion in thu
coordinate. This modulation will be reduced as the body’u
motion reduces.

Since the size of NHS orbits is significant near the ‘‘a
trophysically maximal’’ value a50.998M ~the value at
which a hole’s spin tends to be buffered due to photon c
ture from thin disk accretion; see Ref.@10#!, astrophysical
black holes might spin quickly enough for NHS orbits
play some important role. This motivates a careful analy
to see what role, if any, NHS orbits might play
gravitational-wave sources. I use the code described in
@9# ~which uses the Teukolsky and Sasaki-Nakamura eq
tions @11,12# to compute the flux of energy andLz carried
away from the orbit by gravitational waves! to study how a
small body’s motion evolves as it spirals through the NH
region. By computing the change (dr/dt,di/dt) at a large
number of points, it is straightforward to construct the
spiral trajectory for a small body@13#. I find that the total
change in inclination angle as a body spirals through
NHS region is very small — at most,di.1°22°. ~See Fig.
5; note that theshapeof the curves in this figure are inde
pendent of the values ofm and M, although the timescale
strongly depend onm andM.!

The inspiral code relies on the fact that circular orb
remain circular as they evolve on an adiabatic timescale@14–
16#. It is thus explicitly restricted to the evolution of circula
orbits, and cannot say anything about the evolution of ecc
tric orbits, which are much more realistic as LISA sourc
@17,18#. Based on the leading order corrections todi/dt seen
from a post-Newtonian analysis@15#, I speculate that the
change ini might be much larger when eccentric, incline
orbits evolve through the strong field. Verifying this, how
ever, will require a strong-field radiation reaction formalis
that can evolve generic Kerr orbits: orbits that are inclin
and eccentric. Such a formalism may need to be based o
local radiation reaction force@19#, although recent discussio
suggests it may be possible to evolve generic orbits us
gravitational-wave fluxes alone@20#. The possibility that in-
spiral through the extreme strong field may leave an ob
vationally significant imprint on the system’s gravitation
waveform will hopefully motivate future activity and
progress on this problem.

Throughout this paper, the quantitiest, r, u, andf refer
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to the Boyer-Lindquist coordinates. A prime on any quant
denotes]/]r . ~Note that in Ref.@9# I erroneously wrote that
prime denotesd/dr.! Section II reviews the properties o
circular Kerr orbits, providing formulas that are useful f
describing their conserved quantitiesE, Lz , and Q in the
very strong field. These are used in Sec. III to study the N
orbits. The NHS orbits are developed and mapped ou
functions of spin and radius in Sec. III A. Section III B the
re-examines them from the viewpoint of the ‘‘zero angu
momentum observer,’’ or ZAMO. The ZAMO makes loc
measurements of the orbital properties, and can see that
defining behavior]Lz /]i.0 arises due to the locking o
NHS orbits to the black hole’s spin. In Sec. IV, I examine t
trajectory of a body that is inspiraling through the NHS r
gion under gravitational-wave emission. Here I show t
very small change ini as the body spirals in, and argue th
eccentricity might impact this result greatly. Some conclu
ing discussion is given in Sec. V.

II. CIRCULAR ORBITS OF KERR BLACK HOLES

Geodesic orbits of a Kerr black hole with massM and
spin per unit massa are governed by the following fou
equations@21#:

S2S dr

dt D 2

5@E~r 21a2!2aLz#
22D@r 21~Lz2aE!21Q#

[R, ~2.1a!

S2S du

dt D 2

5Q2cot2uLz
22a2cos2u~12E2![Q2,

~2.1b!

SS df

dt D5csc2uLz1aES r 21a2

D
21D2

a2Lz

D
,

~2.1c!

SS dt

dt D5EF ~r 21a2!2

D
2a2sin2uG1aLzS 12

r 21a2

D D .

~2.1d!

The quantitiesE, Lz , and Q ~‘‘energy,’’ ‘‘ z-component of
angular momentum,’’ and ‘‘Carter constant’’! specify a fam-
ily of orbits, and are conserved along any orbit of the fami
Here, S5r 21a2cos2u and D5r 222Mr 1a2. Equations
~2.1a! and ~2.1b! have been divided bym2, and Eqs.~2.1c!
and~2.1d! by m ~wherem is the mass of a small body in a
orbit!; E, Lz , and Q are thus the specific energy, angul
momentum and Carter constant. Also,a>0; prograde and
retrograde orbits are distinguished by the orbit’s tilt ang
rather than the sign of the hole’s spin.

A circular orbit must satisfyR50, R850; to be stable, it
also must satisfyR9,0. These conditions are met for som
set of orbits everywhere outside the innermost stable circ
orbit, ~ISCO!. The ISCO lies at@6#

r ISCO/M531Z22@~32Z1!~31Z112Z2!#1/2, ~2.2!
6-2
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Z1511@12~a/M !2#1/3@~11a/M !1/3

1~12a/M !1/3#, ~2.3!

Z25@3~a/M !21Z1
2#1/2. ~2.4!

The ISCO varies fromr 56M for a Schwarzschild black
hole to r 5M for an extreme Kerr hole.

At all r>r ISCO there exists a family of circular orbits
each member having a different inclination anglei. We are
interested in parameterizing these orbits as functions ofr and
i. Consider first the weak-field limit,r @r ISCO. Ryan@8# has
provided formulas which, with some manipulation, giveE,
Lz , andQ as functions ofr and i:

E512
M

2r
22

a

M S M

r D 3/2

cosi, ~2.5!

~Lz
21Q!1/25ArM F123

a

M S M

r D 3/2

cosi G . ~2.6!

@Note there is a sign error in Eq.~7! of Ref. @8#, as can be
seen by taking the zero eccentricity limit of Eq.~6! of Ref.
@15#.# One can then getLz from the definition of the inclina-
tion angle:

cosi5
Lz

ALz
21Q

. ~2.7!

Two features of these formulas are particularly notewort
First, energy monotonically increases asi increases:]E/]i
.0 for all parameters. This turns out to be true everywhe
not just in the weak field. Second,Lz monotonically de-
creases asi increases provided we don’t abuse the appli
bility of Eqs. ~2.6! and ~2.7!: ]Lz /]i,0 except whenr /M
&(6a/M )2/3. This range is not even close to the weak-fie
so there is no reason to believe that this result is at all ph
cally relevant. Nonetheless, it foreshadows the behavio
the nearly horizon skimming orbits.

Turn now from the weak field to the strong field. As
conventional@8,9,15#, I will use Eq.~2.7! to define the incli-
06401
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nation angle2 even in this regime. Themost-boundorbit3 ~the
orbit with the smallest orbital energy! at each radius is the
prograde, equatorial orbit. Its constants are given by@6#

Emb5
122v21qv3

A123v212qv3
, ~2.8!

Lz
mb5rv

122qv31q2v4

A123v212qv3
, ~2.9!

Qmb50, ~2.10!

where v[AM /r and q[a/M . At fixed radius, the orbital
energy increases as the tilt increases from the most-bo
orbit at i50° to the least-boundorbit. The least-bound or-
bit’s characteristics depend uponr and the black hole’s spin
If r>r ret, where@6#

r ret/M531Z21@~32Z1!~31Z112Z2!#1/2, ~2.11!

then the least-bound orbit is just the retrograde, equato
orbit. This orbit hasQ50 andi5180°; expressions for its
energy and angular momentum can be found in Ref.@6#. For
radii r ISCO<r<r ret, the least-bound orbit is themarginally-
stableorbit: the orbit which satisfiesR50, R850, andR9
50. This orbit has the maximum allowed inclination ang
imax at that radius. Any orbit tilted at a larger angle is u
stable to small perturbations and will quickly plunge into t
black hole.

For the rest of this paper, I will focus on the extrem
strong field of rapidly rotating black holes. The orbits
interest are well inside the radius of the retrograde or
Hence, the energyElb, angular momentumLz

lb , and Carter
constantQlb of the least-bound orbit will be determined b
numerically solving the equationsR50, R850, R950.

To compute the properties of a circular orbit, pick two
its constants — e.g., the orbit’s radiusr and angular momen
tum Lz — and solveR505R8 to find the other two. This
yields the following solution forE(r ,Lz) andQ(r ,Lz) @9#:
lue

hen

ith the
E~r ,Lz!5
a2Lz

2~r 2M !1rD2

aLzM ~r 22a2!6DAr 5~r 23M !1a4r ~r 1M !1a2r 2~Lz
222Mr 12r 2!]

, ~2.12!

Q~r ,Lz!5
@~a21r 2!E~r ,Lz!2aLz#

2

D
2@r 21a2E~r ,Lz!

222aE~r ,Lz!Lz1Lz
2#. ~2.13!

There is a sign choice in the denominator of Eq.~2.12!. In general, only one choice is physically meaningful at a given va
of r. The argument of the square root in the denominator of Eq.~2.12! goes to zero at some radiusr branch(a); the plus sign

2As discussed in Ref.@9#, this angle does not necessarily accord with intuitive notions of inclination angle. For example, except wa
50, i is not the angle at which most observers would see the small body cross the equatorial plane.

3In this paper, the terms ‘‘most-bound,’’ ‘‘least-bound’’ and ‘‘marginally-stable’’ describe orbits at each radius. This contrasts w
usage in, e.g., Ref.@6# where these terms refer to properties ofall orbits, regardless of radius.
6-3
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SCOTT A. HUGHES PHYSICAL REVIEW D 63 064016
corresponds tor>r branch(a), and the minus sign tor
<r branch(a). In Ref. @9#, Eq. ~2.12! was used with the plus
sign only since the focus in that paper was on comparativ
large radius@in all cases,r branch(a) is close to 2M ]. In this
work, since I will focus on the extreme strong field,both
signs are needed.

Rather than using Eq.~2.12!, I will avoid this sign ambi-
guity by starting withr andE, and re-solving the systemR
505R8 for Lz andQ. Then,

Lz~r ,E!5
EM~r 22a2!2DAr 2~E221!1rM

a~r 2M !
,

~2.14!

Q~r ,E!5
@~a21r 2!E2aLz~r ,E!#2

D

2@r 21a2E22aELz~r ,E!1Lz~r ,E!2#.

~2.15!

~There exists a second solution forLz which has a1 sign in
front of theD, but it is not physically meaningful.! Note that
Eq. ~2.14! does not behave well asa→0. This is because o
a degeneracy in this limit: knowledge of any three of t
parametersE, r, Lz , and Q suffices to determine the orb
~because of spherical symmetry!. Since this paper deals wit
a;M , this issue is irrelevant here.

Assembling strong-field orbits now reduces to a sim
recipe. First, pick an orbital radius. Allow the orbital ener
to vary from Emb @Eq. ~2.9!# to Elb ~found by solving the
systemR50, R850, R950). For each energy, findLz and
Q with Eqs.~2.14! and~2.15!. Parameterize each orbit by it
inclination anglei @Eq. ~2.7!#. Repeat at a new radius.

III. NEARLY HORIZON-SKIMMING ORBITS

A. Overview

Consider for a moment the extreme Kerr limit,a5M .
From Eq.~2.3!, the ISCO is located atr 5M , which is also
the coordinate of the event horizon. It is not difficult to sho
that there exists a set of orbits at this radius, with the par
eters

2M /A3<Lz<A2M , ~3.1!

E5Lz/2M , ~3.2!

Q53Lz
2/42M2. ~3.3!

These are the horizon skimming orbits. They obey]Lz /]i
.0, similar to the behavior seen when the weak-field res
for Lz are pushed into the very strong field. This is oppos
to the typical behavior, as exemplified by the correct us
of Eqs.~2.6! and ~2.7!.

Focus for now on the most-bound and least-bound orb
These orbits bound the behavior of all orbits at each rad
As described in Sec. II, it is simple to solve forLz

lb as a
function of radius, at least numerically. Doing so fora
5M , we find that there is a region stretching tor .1.8M in
06401
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which Lz
lb>Lz

mb. The orbits in this domain have the sam
dynamical characteristics as Wilkins’ horizon skimming o
bits, so we shall call them ‘‘nearly horizon skimming
~NHS! orbits.

Figure 1 illustrates the NHS region, and contrasts it w
the ‘‘usual’’ behavior of Kerr orbits. It plotsLz

mb andLz
lb for

black holes witha50.95M ~top panel! and a5M ~bottom
panel!. For a50.95M , the least-bound and most-bound o
bits coincide at the ISCO. Moving out in radius, the mo
bound orbit’s Lz grows and the least-bound orbit’sLz
shrinks. This makes sense intuitively, since the inclinat
angle of the least-bound orbit grows as we move away fr
the ISCO.~Eventually, it tips over completely toi5180°,
and becomes the retrograde equatorial orbit.! The lower
panel of Fig. 1 shows the behavior whena5M . We see the
horizon skimming orbits atr 5M and the NHS orbits stretch
ing out to r .1.8M . At that point,Lz

lb and Lz
mb cross over.

Moving further out in radius, they behave in the ‘‘normal
way.

There must exist some critical spin value, 0.95M,aNHS
,M , at which NHS orbits first come into existence. Th
NHS orbits are bounded by two radii,r ISCO andr cross@where
the angular momentum of the least-bound and most-bo
orbits cross:Lz

mb(r cross)5Lz
lb(r cross)]. Decreasinga must de-

crease the size of the NHS region —r ISCO and r cross ap-
proach one another. The spin at which these radii coinc
and the NHS region vanishes isaNHS.

Recall from Eq.~2.12! that there are two solutions fo
orbital energy, only one of which is usually physical. At th
crossover point, however,both of these energies must b
physical: that with the minus sign~which is larger in magni-
tude! gives Elb, and vice versa. Whenr ISCO5r cross the two
energies likewise coincide, since the most-bound orbit is a
the least-bound orbit at the ISCO. Thus,aNHS is the spin that
satisfies

FIG. 1. Angular momentumLz for the most-bound and least
bound circular orbits, as functions of radius. The upper panel is
a50.95M , the lower fora5M .
6-4
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E1@r ISCO~aNHS!,Lz
mb,aNHS#5E2@r ISCO~aNHS!,Lz

mb,aNHS#

~3.4!

@whereE6 denotes the two roots given in Eq.~2.12!#. The
solution to this isaNHS/M50.952412 . . . .

Figure 2 illustrates the change to the NHS region as s
is varied, vanishing altogether whenaNHS is reached. The
size is still significant neara50.998M . This is interesting,
sincea50.998M is probably the largest spin value that w
can encounter in nature@10#. This opens the possibility tha
NHS orbits may play a role in astrophysical processes.

B. Nearly horizon skimming orbits as seen by a ZAMO

The NHS characteristic]Lz /]i.0 can be better under
stood by considering these orbits from the viewpoint of
zero angular momentum observer~ZAMO! @7#. The ZAMO
is the observer that corotates with the coordinate syst
such that its angular velocity as seen at infinity is

vZAMO5
2aMr

~r 21a2!22a2D sinu2 . ~3.5!

If one imagines spacetime to be dragged into a whirlpo
like flow by the black hole’s rotation, then the ZAMO is th
observer who simply rides along with the flow.~In accor-
dance with this viewpoint, Wald@22# calls the ZAMO the
‘‘locally non-rotating observer.’’!

The ZAMO examines orbits in its local neighborhoo
This allows it to interpret the motion of a body in a stron
field orbit with special relativistic formulas. For instance, t

FIG. 2. The region of nearly horizon-skimming orbits for se
eral values of the spin. The solid lines correspond to least-bo
orbits, dotted lines to most-bound orbits. Notice that the region g
progressively smaller as the spin decreases froma5M , vanishing
altogether ata5acrit.0.952412M . However, the nearly horizon
skimming region remains fairly large at least through the vicinity
a50.998M , which might apply to some astrophysical black hole
06401
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ZAMO measures the small body to have velocityvW and en-
ergy Elocal5(12vW •vW )21/2[g. This local energy isnot a
constant of the body’s motion. It is related to the conserv
energy by the formula@7#

E5aElocal1vZAMOLz , ~3.6!

where

a5A SD

~r 21a2!22a2D sinu2 ~3.7!

is the lapse function. Knowing the energy and the angu
momentum of the small body then tells us the body’s sp

v5AvW •vW as seen by the ZAMO.
Applying Eq. ~3.6! shows that a body’s speed is smalle

in the most-bound orbit and highest in the least-bound or
varying smoothly between the two. This is due to the dra
ging of spacetime by the hole’s spin. Let us contrast
prograde and retrograde orbits,i50° andi5180°. The pro-
grade orbit is moving ‘‘downstream’’: part of the motio
needed to keep it in orbit is provided by the dragging
inertial frames. It can orbit with relatively small velocity
The retrograde orbit, by contrast, must ‘‘swim upstream’’:
must overcome the dragging of inertial frames on top of
motion needed to stay in orbit. It therefore is more energe
than the prograde orbit. The anglei smoothly varies the orbit
between these extremes, so that largeri corresponds to large
energy~and larger speed!.

The velocity of a body in a non-equatorial orbit has co
ponents in both theu and f directions. Theu component
goes to zero, however, at the orbit’s turning poin
(umax,umin), when it reverses inu. ~Formulas for computing
umax/min can be found in Ref.@9#; they are just the angles a
which du/dt50 @cf. Eq. ~2.1b!#.! At these two points, the
velocity is purely alongf, and the body’s motion is fully
described by the componentv f̂5vW •eW f̂ ~where eW f̂ is the
f-component of the orthonormal basis that the ZAMO us
to make measurements!. Evaluating Eq.~3.6! at umax/min and
writing Elocal5g gives a condition forv f̂ at the turning
points.

The top panel of Fig. 3 showsv f̂(umax/min) for the most-
bound and least-bound orbits at several interesting spins
expected, bodies move quite a bit faster in the least-bo
orbit than in the most-bound orbit. Perhaps more intere
ingly, v f̂ becomes substantially smaller towards the inn
most orbits. This is because of the ‘‘freezing’’ of physic
near the hole’s event horizon; see Ref.@7# ~particularly Secs.
IIC1 and IIIA4! for further discussion. Close to the horizo
a body’s motion locks to the hole’s spin, and it is dragg
into rigid corotation. This horizon locking causesv f̂(r ) to
peak atr;1.5M : the ‘‘Keplerian’’ tendency of a body to
move faster as it moves inward dominates at large radii~as-
ymptoting toAM /r in the weak field!, but is overwhelmed as
the body locks onto the horizon close to the hole.

Consider next the orbit’s angular momentumLz . The
ZAMO seesLz as the product of a radius of gyrationÃ and
a locally measured azimuthal momentumpf̂ @7#:
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SCOTT A. HUGHES PHYSICAL REVIEW D 63 064016
Lz5Ãpf̂5Ãgv f̂ . ~3.8!

Theg factor causespf̂ to be even more strongly peaked th
v f̂ ; see the lower panel of Fig. 3.

The radius of gyration is a purely geometric quantity. It
just the circumference of the ZAMO’s constantr, constantu
orbit, divided by 2p:

Ã5C~umax/min!/2p5
1

2pE0

2p
Agff~r ,umax/min! df

5A~r 21a2!22a2D sinumax/min
2

r 21a2cosumax/min
2 sinumax/min. ~3.9!

This function is plotted in Fig. 4. There are no surprises he
In the most-bound orbit,Ã increases monotically with or
bital radius, asymptoting tor at large radius. The least-boun
orbit is more interesting:Ã is smaller~not surprising, since it
is a tilted orbit! and is nearly flat as a function of radius,
least over the range of NHS orbits. This near flatness is
to the orbit’s increasing tilt:umax/min of the least-bound orbi

FIG. 3. The azimuthal velocity and momentum at theu turning
points of an orbiting compact body, as seen by a ZAMO. The
panel displaysv f̂ for the most-bound orbit~dotted curve! and least-
bound orbit~solid curve! at several spin values; the bottom pan
likewise displayspf̂ . As expected, a body in the least-bound or
moves substantially faster than a body in the most-bound o
Notice that the motion becomes slower as the ISCO~the innermost
orbit! is approached. This is because the ISCO is close to the h
zon at these spin values. Orbits that come close to the hor
become locked to the rotation of the black hole. This close to
horizon, locking is substantial. This locking is reponsible for t
peaks in these functions: moving inward along a sequence of or
a body first orbits more quickly, but then slows as its motion loc
to the spin. The momentum peak is magnified~note the different
vertical scales in the two panels! because pf̂5gv f̂5v f̂(1
2v f̂

2 )21/2.
06401
e.

e

changes such that the circumference of the ZAMO’s orbi
umax/min remains nearly constant.

SinceLz is just the product of the curves shown in Figs.
and 4, any unusual features in the behavior ofLz must arise
from features inpf̂ and Ã. Considering these two figures
we immediately see why NHS orbits haveLz

lb.Lz
mb: the

least-bound orbit has so much more linear momentum t
the most-bound orbit that it compensates for its smaller
dius of gyration. The linear momentum is so much larger,
turn, because the most-bound orbit is strongly locked to
spin of the black hole. The least-bound orbit is also lock
for r very close tor ISCO. However, it does not lock as
strongly: being so energetic, the least-bound orbit only lo
as the very innermost orbits are approached. Hence, N
orbits exist because very close orbits are forced to move
rigid corotation with the event horizon.

IV. APPLICATION: EVOLUTION UNDER
GRAVITATIONAL-WAVE EMISSION

As discussed in the Introduction, binary systems cons
ing of a small body spiraling into a massive black hole a
one of the more anticipated sources of gravitational wa
for space-based detectors such as LISA. The NHS regio
still rather large fora.0.998M ~cf. Fig. 2!, indicating that
there might be plenty of time for the properties of NHS o
bits to influence the gravitational-wave signal of the
sources.

In the extreme mass ratio, radiation reaction should op
ate adiabatically. In other words, the timescale
gravitational-wave emission to change an orbiting body’s

p

l

it.

ri-
n
e

ts,
s

FIG. 4. The radius of gyrationÃ5circumference(umax/min)/2p
for the most-bound orbit~dotted curve! and least-bound orbit~solid
curve!. Notice thatÃ barely varies for the least-bound orbit ove
this range. This is essentially because the change inumax/min com-
pensates for the change in radius such that the circumference o
least-bound orbit remains roughly constant.
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rameters (r , E, Lz , Q) should be significantly longer than a
orbital period:Torb/tGW!1. ~More careful discussion of this
point can be found in Ref.@9#.! Because the change in the
constants is very slow, the body’s motion is we
approximated as geodesic over small time intervals. It is t
useful to regard the body’s true, radiatively evolving traje
tory as motion through a sequence of geodesic orbits.
circular orbits, we regard the body’s inspiral trajectory as
evolution of its radius and inclination angle.

A simple argument shows that a body spiraling throu
the NHS region should behave rather differently from a bo
spiraling through ‘‘normal’’ orbits. At a given moment,
circular orbit can be represented as a point on the (r ,Lz)
plane. For example, a point on either the top or the bott
panels of Fig. 1 lying between the most-bound and lea
bound orbit curves represents a physically allowed orbit.
diation reaction will tend to drive this point downward and
the left in this figure: gravitational-wave emission shrinks
object’s radius and reducesLz . For a ‘‘normal’’ orbit, as in
the top panel of Fig. 1, the body is pushed toward less-bo
orbits, increasingi. This behavior was predicted by wea
field calculations@8,15# and was recently confirmed in th
strong field @9#. The evolution is in the opposite directio
inside the NHS region — radiation emission pushes the b
toward the sequence of most-bound orbits, so thati de-
creases.

Decreasing inclination angle could have important con
quences for the gravitational-wave signal. Inclined circu
orbits emit waves characterized by harmonics ofVf
52p/Tf andVu52p/Tu ~whereTf is the period of a full
range off motion, andTu is the period ofu motion! @9#.
Roughly speaking, theu motion modulates the gravitationa
waveform. The waves emitted by a body in an equato
orbit, on the other hand, depend only onVf — there is no
motion in u, so the amplitudes ofVu harmonics vanish. As
the orbiting body moves toward the equatorial plane,
importance of theVu harmonics decreases, simplifying th
waveform. Observing such simplification would be a cle
signal that the small body is evolving toward the equato
plane.

A rigorous analysis of NHS evolution requires a radiati
reaction formalism good deep in the strong field. Such
formalism, specialized to the adiabatic evolution of circu
orbits, is given in Ref.@9#. The code described there solv
the Teukolsky equation@11# to calculate the flux ofE andLz
to infinity and down the event horizon. It then applies t
proof that circular orbits remain circular~changing only their
radius and inclination angle! when they evolve adiabaticall
under radiation emission@14–16# to compute the change i
Q. From this information, it is simple to obtain the change
r andi. By computingdr/dt anddi/dt at a large number o
points, it is not difficult to compute the inspiral trajecto
followed by a body that starts in an inclined, circular orb
An algorithm and code for computing such trajectories w
be presented at a later date@13#.

Figure 5 shows some trajectories in the NHS region
the inspiral of a 1M ( compact body into a 106 M ( Kerr
black hole. The hole has spina50.998M . The inspiral time
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for most trajectories is significant. The number of orb
around the spin axis of the black hole by the body var
from Nf.73000 for the inspiral beginning ati50° to Nf
.400 for the inspiral beginning ati540°. The number of
gravitational-wave cycles is roughly proportional toNf , in-
dicating that waves from the NHS region could contribu
substantially to a measured signal. The inspiral durat
scales withM2/m, and the number of orbits withM /m.
These quantities should be of interesting magnitude fo
reasonably wide range of masses, at least for spina
50.998M . ~As the spin of the black hole is dialed down
a5aNHS, the NHS orbits lose significance and inspir
through them becomes irrelevant.! Gravitational waves pro-
duced in the NHS region will form a significant part of th
data measured from inspirals into rapidly rotating bla
holes.

Figure 5 also indicates that the signature of NHS insp
is not very large. Althoughi does decrease, as expected,
degree of decrease is quite small. For the inspirals shown
largest change ini is for the trajectory that starts ati
525°: the final inclination isi523.8°. The changedi
51.2° is a rather paltry effect, not at all a robust signature
the strong field.

It seems that the unique signature of orbital evoluti
through the NHS region is not likely to be of observation
interest. Before dismissing the idea entirely, let us specu
for a moment on how eccentricity might affect this concl
sion. Using a weak-field radiation reaction force, Ryan h

FIG. 5. The evolution of radius and inclination angle for a sm
body inspiraling through the NHS region. The small body hasm
51 M ( , the large black hole hasM5106 M ( and spin a
50.998M . The inclination angle decreases in this region, oppo
to the usual behavior. The amount of decrease is, however, ra
small. @The gap at the end of the inspiral trajectories fori<20° is
because of computational limitations: it is computationally exp
sive to generate a very dense mesh of (dr/dt,di/dt) data close to
the ISCO.#
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calculated the leading order evolution of the parameters o
inclined, eccentric orbit of a Kerr black hole due
gravitational-wave emission@15#. His results indicate tha
the eccentricitye can significantly magnify the rate at whic
i changes:

di

dt U
eÞ0

5~12e2!27/2S 11
73

24
e21

37

96
e4Ddi

dtU
e50

. ~4.1!

This relation is derived under the assumption thatr @M , so
there is no reason to believe it holds in the NHS regi
However, it could be indicative of the effect that eccentric
has in the strong field. Notice that as eccentricity varies o
the range 0<e<0.8 ~a reasonable range for sources th
LISA is likely to measure@23,24#!, the factor magnifying
di/dt increases from 1 to about 100. One can speculate
di/dt will be magnified by a similar factor~at least to order
of magnitude! under strong-field radiation reaction. At th
time, there is no way to tell. Hopefully, strong-field radiatio
reaction programs@19,20# will be able to model the evolu
tion of generic Kerr orbits soon. If this speculation prov
correct, then the gravitational-waves emitted by insp
through the NHS region will contain a very strong signatu
of the Kerr metric strong field.

V. CONCLUSION

The result of this analysis is somewhat equivocal. I ha
shown that the ‘‘horizon skimming’’ orbits found by Wilkin
are a subgroup of a larger family of orbits, the ‘‘nearly h
rizon skimming’’ orbits existing around any black hole wi
spin a*0.952412M . The signature characteristic of the
NHS orbits is that, at fixed orbital radius, thez-component of
orbital angular momentum increases as the orbit’s tilt
creases, in opposition to the ‘‘normal’’ behavior. This h
the consequence that radiation emission, which carries a
lar momentum away from the orbit, tends to drive the syst
into an equatorial orbit — the system’s inclination anglede-
creasesrather than increases.

The fact that radiation emission drives these orbits tow
the equator is a consequence of the motion of bodies in
strong field of Kerr black holes. As a body spirals in fro
large radius, its orbital speed initially increases, in acc
dance with Keplerian intuition that a body in a circular orb
of radius r has a speedv5AM /r . As the body gets very
close to the black hole, however, its dynamics become do
nated by the nearness of the hole’s event horizon. All ph
cal processes become ‘‘locked’’ to the hole as the horizo
approached. Eventually the motion of orbiting bodies s
chronizes with the hole’s spin. The least-bound orbit do
not lock as quickly as the most-bound orbit: close to
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horizon, a less-bound orbit moves quite a bit faster tha
highly bound orbit, not locking to the hole’s spin until th
very innermost orbits are reached. This effect is shown
Fig. 3.

As an inspiraling body’s inclination decreases, the mod
lation of its gravitational waveform by theu motion de-
creases. Measuring this decreasing modulation could be
observational hallmark of the Kerr strong field. Unfort
nately, at the moment the most mature formalism for co
puting the effects of gravitational radiation reaction on t
orbits of small bodies can only tackle the evolution of circ
lar, inclined orbits. In this restricted case, the total change
inclination angle as a body evolves through the NHS reg
is quite small — at most, the orbital inclination changes
about 122 degrees. Although I have not examined the eff
of this change on the waveform, it is hard to imagine it w
be particularly marked.

It is extremely unlikely that realistic extreme mass ra
inspirals will be circular. When such binaries initially form
their eccentricities are likely to be rather close to 1@17,18#,
and remain significant by the time that the binary enters
sensitivity band of LISA. Weak field calculations sugge
that the rate by which the inclination angle changes might
magnified by a rather large factor. If we take the leadi
order results at face value@cf. Eq.~4.1!#, the change might be
so strong that the orbit is driven nearly into the equato
plane.

Because the NHS region is so deep in the strong fie
however, it is a mistake to infer too much from leading ord
effects. Further progress will require a scheme to calcu
radiation reaction in the strong field forgenericKerr orbits
— orbits that are inclined and eccentric. This may requ
local radiation reaction forces@19#, or a clever scheme fo
extracting the change in the Carter constant from the ra
tion flux @20#. The fact that observations might be able
detect a strong signature of the Kerr strong field will hop
fully motivate future progress.
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