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An unusual set of orbits about extreme Kerr black holes resides at the Boyer-Lindquist radiis the
coordinate of the hole’s event horizon. These “horizon skimming” orbits have the property that their angular
momentumL, increaseswith inclination angle, opposite to the familiar behavior one encounters at larger
radius. In this paper, | show that this behavior is characteristic of a larger family of orbits, the “nearly horizon
skimming” (NHS) orbits. NHS orbits exist in the very strong field of any black hole with spin
=0.952412. Their unusual behavior is due to the locking of particle motion near the event horizon to the
hole’s spin, and is therefore a signature of the Kerr metric’s extreme strong field. An observational hallmark of
NHS orbits is that a small body spiraling into a Kerr black hole due to gravitational-wave emission will be
driven into orbits of progressively smaller inclination angle, toward the equator. This is in contrast with the
“normal” behavior. For circular orbits, the change in inclination is very small, and unlikely to be of obser-
vational importance. | argue that the change in inclination may be considerably larger when one considers the
evolution of inclined eccentric orbits. If this proves correct, then the gravitational waves produced by evolution
through the NHS regime may constitute a very interesting and important probe of the strong-field nature of
rotating black holes.
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[. INTRODUCTION Lindquist coordinate radius)’One very interesting result

The space-based gravitational-wave Laser-Interferometeagiven in[5] is the existence of “horizon skimming” orbits.
Space AntenndLISA) [1] is being designed to make very These are circular orbits of varying inclination angle at the
precise measurements of the characteristics of black holeame coordinate radius as the event horizenM. (Despite
spacetimes. One source that is particularly well suited fobeing at the same radial coordinate, one can show that these
such measurements is the inspiral of a sntalhssu=1 orbits have distinct proper separation, and in particular lie
—10My) compact body into a massiveM(=10>"" M) outside the event horizon; see RE3], particularly Fig. 2)
Kerr black hole. Depending upon the valuesfu/M, and  An extremely interesting feature of the horizon skimming
the hole’s spimp, such an inspiral will spend several months orbits is that as an orbit’s inclination anglés increased, its
to several years in LISA’s frequency barnd], radiating angular momentum component, likewise increases:
10°— 10 gravitational-wave cycles. By accurately measuringdL,/d.>0 for the horizon skimming orbits. This property
these cycles, LISA should be able to build a “maf8,4] of  holds over a sizable range of radius, outrte1.8M. | will
the spacetime, testing in detail the predictions of generatall the full set of orbits for whichiL,/3.>0 the “nearly
relativity. horizon skimming” (NHS) orbits. This defining property of

As the community begins developing strategies for anaNHS orbits is opposite to weak-field intuition. For example,
lyzing LISA’s datastream, it is important to reexamine andin Newtonian theory, orbits at constant radius have
carefully analyze the sources one expects to measure. Fer|[ |cos, (where|L| is the same for all orbits at radiug,
extreme mass ratio inspirals, this means understanding mo{gnich decreases asincreases.
deeply the character of Kerr black hole orbits and the nature |ntuition from Newtonian theory is highly suspect in the
of gravitational radiation reaction deep in the Kerr metric’sstrong field of black holes. However, the true behaviok pf
strong field. Of particular interest are features that might simxg 3 function of, is qualitatively the same as in Newtonian
plify data analysigwhich is likely to be very difficult, given  theory over a wide range of orbital radii and spins. For ex-
the many cycles that must be trackemt that might consti-  ample, whera=0.95M, JL,/3.<0 for all circular orbits, so
tute a strong signature of the spacetime. In this paper, | angnere are no NHS orbits wheam=0.95\. It turns out that
lyze what might be such a feagir— a unique signature of NHS orbits can only exist whea=0.95241M. This is the
the inspiral of a body through the extreme strong field ofgmallest spin for which stable orbits come close enough to
rapidly rotating black holes. the hole’s event horizon thatl,/d. can switch sign: the

The key piece of this analysis was first discussed by,roperty gL ,/9.>0 arises because, very close to the black
Wilkins. Reference[5] contains a detailed examination of e all physical processes become “locked” or “frozen”

circular orbits of extremeg=M)* Kerr black holes(In this 5 the hole’s event horizofi7]. In particular, their orbital
context, “circular orbit” means “orbit of constant Boyer- mation locks to the horizon’s spin. This locking dominates
the “Keplerian” tendency of an orbit to move more quickly

at smaller radiusu(kepier= JM/r), forcing a body to actually
Y use units wher&s=1=c. slow in the innermost orbits. The locking is particularly
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strong for the most-bound orbits. As | show below, the least{o the Boyer-Lindquist coordinates. A prime on any quantity
bound orbits do not strongly lock to the black hole’s spindenotesi/dr. (Note that in Ref[9] | erroneously wrote that
until they have very nearly reached the innermost orbit. Theorime denotesd/dr.) Section Il reviews the properties of
NHS orbit’s L, /d¢ behavior follows from the fact that the circular Kerr orbits, providing formulas that are useful for
most-bound orbit locks to the horizon more readily than thedescribing their conserved quantiti&s L,, and Q in the
least-bound orbit. very strong field. These are used in Sec. lll to study the NHS

This behavior could have interesting observational conseerbits. The NHS orbits are developed and mapped out as
guences. It has been well-understood for some time that thieinctions of spin and radius in Sec. Il A. Section Ill B then
inclination angle of an inspiraling body increases due tore-examines them from the viewpoint of the “zero angular
gravitational-wave emissiof8,9]. Gravitational waves carry momentum observer,” or ZAMO. The ZAMO makes local
L, away from the orbit, so thatL,/dt<0. Since “normal”  measurements of the orbital properties, and can see that their
orbits havedlL,/d.<0, it follows thatd./dt>0. If JL,/d¢ defining behaviordlL,/d.>0 arises due to the locking of
switches sign, theml./dt will switch sign as well: an in- NHS orbits to the black hole’s spin. In Sec. IV, | examine the
spiraling body will evolve toward an equatorial orbit. If the trajectory of a body that is inspiraling through the NHS re-
change in is large, it could have a large effect on the gravi- gion under gravitational-wave emission. Here | show the
tational waveform. For example, the spin-orbit modulation ofvery small change in as the body spirals in, and argue that
the wave’'s amplitude and phase is due to motion in @he eccentricity might impact this result greatly. Some conclud-
coordinate. This modulation will be reduced as the body’s ing discussion is given in Sec. V.
motion reduces.

Since the size of NHS orbits is significant near the “as- Il. CIRCULAR ORBITS OF KERR BLACK HOLES
trophysically maximal” valuea=0.998V (the value at . ) )
which a hole’s spin tends to be buffered due to photon cap- Geodesic orbits of a Kerr black hole with malst and
ture from thin disk accretion; see R4fL0]), astrophysical ~SPIn per unit masa are governed by the following four
black holes might spin quickly enough for NHS orbits to €quationg21]:
play some important role. This motivates a careful analysis
to see what role, if any, NHS orbits might play in 52
gravitational-wave sources. | use the code described in Ref.
[9] (which uses the Teukolsky and Sasaki-Nakamura equa-
tions 11,12 to compute the flux of energy arid, carried
away from the orbit by gravitational wave® study how a 5
small body’s motion evolves as it spirals through the NHS 22(%) — Q- colL2—a2coLh(1— E2) =02
region. By computing the changar(/dt,d./dt) at a large z ’

2
d_;) =[E(r*+a%) —al,]*~ A[r*+(L,~aE)*+Q]

R, (2.13

dr
number of points, it is straightforward to construct the in- (2.1b
spiral trajectory for a small bodj13]. | find that the total

change in inclination angle as a body spirals through the de 2 r’+a’ a’L,

NHS region is very small — at moséz=1°—2°. (See Fig. z e oL, +ak A ] A

5; note that theshapeof the curves in this figure are inde- (2.109

pendent of the values gi andM, although the timescales

strongly depend ome andM.) dt (r’+a?)? ) r2+a2
The inspiral code relies on the fact that circular orbits E(d_r) = T_a sinfe|+al,| 1- A

remain circular as they evolve on an adiabatic timesdale-
16]. It is thus explicitly restricted to the evolution of circular (2.10
orbits, and cannot say anything about the evolution of eccen-
tric orbits, which are much more realistic as LISA sourcesThe quantitiesE, L,, andQ (“energy,” * z-component of
[17,18. Based on the leading order correctionsliddt seen  angular momentum,” and “Carter constantSpecify a fam-
from a post-Newtonian analysid5], | speculate that the ily of orbits, and are conserved along any orbit of the family.
change in. might be much larger when eccentric, inclined Here, 3 =r?+a’cos0 and A=r?—2Mr+a2. Equations
orbits evolve through the strong field. Verifying this, how- (2.1a and (2.1b have been divided by.?, and Eqs(2.19
ever, will require a strong-field radiation reaction formalismand(2.1d by u (wherew is the mass of a small body in an
that can evolve generic Kerr orbits: orbits that are inclinedorbit); E, L,, and Q are thus the specific energy, angular
and eccentric. Such a formalism may need to be based on momentum and Carter constant. Also=0; prograde and
local radiation reaction forcel9], although recent discussion retrograde orbits are distinguished by the orbit’s tilt angle
suggests it may be possible to evolve generic orbits usingather than the sign of the hole’s spin.
gravitational-wave fluxes alorf®0]. The possibility that in- A circular orbit must satisffR=0, R’ =0; to be stable, it
spiral through the extreme strong field may leave an obseralso must satisifiR”<0. These conditions are met for some
vationally significant imprint on the system’s gravitational set of orbits everywhere outside the innermost stable circular
waveform will hopefully motivate future activity and orbit, (ISCO). The ISCO lies af6]
progress on this problem.

Throughout this paper, the quantities, 6, and ¢ refer Msco/M=3+Z,—[(3—2,)(3+Z,+2Z,)1*2, (2.2
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Z,= 1+[1—(a/M)2]¥ (1+a/M)¥3 nation angléeven in this regime. Thmost-boundrbit® (the
orbit with the smallest orbital energyat each radius is the
+(1—a/M)¥3], (2.3 prograde, equatorial orbit. Its constants are giveriedy
Z,=[3(alM)?+ 2312, (2.4 120240 e
The ISCO varies frontr=6M for a Schwarzschild black J1-3v2+2qud’ 29
hole tor =M for an extreme Kerr hole.
At all r=r 5o there exists a family of circular orbits, 1-2quv+q?
each member having a different inclination anglé/Ne are L;“bz M ———, (2.9
interested in parameterizing these orbits as functiomsaoid v1=3v°+2qu
¢. Consider first the weak-field limit>r sco. Ryan[8] has
provided formulas which, with some manipulation, gie QmP=0, (210

L,, andQ as functions of and.:
ao wherev_E\/M/r and an/M.'At fixed radius, the orbital
E—1_ M_z_(M> oSt 2.5 energy increases as the tilt increases from the most-bound
2r M r ' ' orbit at :=0° to theleast-boundorbit. The least-bound or-
bit's characteristics depend uporand the black hole’s spin.
If r=r ., where[6]

(L2+ QY= M| 134 . (2.6

alM 3/2
1—3—(7) CcOoSt

M M=3+Z,+[(3—Z1)(3+Z,+2Z,)1"2 (2.1)
[Note there is a sign error in Eq7) of Ref.[8], as can be
seen by taking the zero eccentricity limit of E§) of Ref.  then the least-bound orbit is just the retrograde, equatorial
[15].] One can then gdt, from the definition of the inclina-  orbit. This orbit hasQ=0 and.=180°; expressions for its

tion angle: energy and angular momentum can be found in R&f.For
radii rigco=<r=r s, the least-bound orbit is thmarginally-
L stableorbit: the orbit which satisfieR=0, R’=0, andR"

cost= \/LZTQ 27 =0. This orbit has the maximum allowed inclination angle

Lmax at that radius. Any orbit tilted at a larger angle is un-

Two features of these formulas are particularly noteworthystable to small perturbations and will quickly plunge into the
First, energy monotonically increases ascreasesgE/d.  black hole.
>0 for all parameters. This turns out to be true everywhere, For the rest of this paper, | will focus on the extreme
not just in the weak field. Second,, monotonically de- strong field of rapidly rotating black holes. The orbits of
creases as increases provided we don’'t abuse the applicainterest are well inside the radius of the retrograde orbit.
bility of Egs. (2.6) and (2.7): dL,/3.<0 except whermr/M  Hence, the energ®, angular momentunh?, and Carter
<(6a/M)?3. This range is not even close to the weak-field,constantQ™ of the least-bound orbit will be determined by
so there is no reason to believe that this result is at all physirumerically solving the equatior®=0, R'=0, R"=0.
cally relevant. Nonetheless, it foreshadows the behavior of To compute the properties of a circular orbit, pick two of
the nearly horizon skimming orbits. its constants — e.g., the orbit’s radiusnd angular momen-

Turn now from the weak field to the strong field. As is tum L, — and solveR=0=R’ to find the other two. This
conventiona[8,9,15, | will use Eq.(2.7) to define the incli-  yields the following solution folE(r,L,) andQ(r,L,) [9]:

a’L%(r—M)+rA?
E(r,L,)= , (2.12
aL,M(r2—a?) £ A\r3(r—3M)+a%r(r+ M) +a2r(L2—2Mr +2r2)]

2 2 _ 2
Q(r,LZ)=[(a o )E(Ar’LZ) . [r2+a2E(r,L,)%—2aE(r,L,)L,+L2]. (2.13

There is a sign choice in the denominator of E2j12). In general, only one choice is physically meaningful at a given value
of r. The argument of the square root in the denominator of(Ed.2 goes to zero at some raditganc{a); the plus sign

2As discussed in Ref9], this angle does not necessarily accord with intuitive notions of inclination angle. For example, excet when
=0, ¢ is notthe angle at which most observers would see the small body cross the equatorial plane.

3In this paper, the terms “most-bound,” “least-bound” and “marginally-stable” describe orbits at each radius. This contrasts with the
usage in, e.g., Ref6] where these terms refer to propertiesaiforbits, regardless of radius.
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corresponds tor =ry;ac{@), and the minus sign ta which L'Zb> LQ‘b. The orbits in this domain have the same

<rpancf{@). In Ref.[9], Eq. (2.12 was used with the plus dynamical characteristics as Wilkins’ horizon skimming or-

sign only since the focus in that paper was on comparativelpits, so we shall call them *“nearly horizon skimming”

large radiugin all casesfanc{@) is close to M]. In this  (NHS) orbits.

work, since | will focus on the extreme strong fieldpth Figure 1 illustrates the NHS region, and contrasts it with

signs are needed. the “usual” behavior of Kerr orbits. It plots " andL¥ for
Rather than using Eq2.12), | will avoid this sign ambi-  black holes witha=0.95M (top panel anda=M (bottom

guity by starting withr andE, and re-solving the syste®  pane). Fora=0.95, the least-bound and most-bound or-
=0=R’ for L, andQ. Then, bits coincide at the ISCO. Moving out in radius, the most-

bound orbit's L, grows and the least-bound orbitk,
EM(r?—a?)—AJr?(E>=1)+rM shrinks. This makes sense intuitively, since the inclination
alr—M) ) angle of the Ieast—boun_d c_)rbit grows as we move away from
(2.14 the ISCO.(Eventually, it tips over completely to=180°,
and becomes the retrograde equatorial orbithe lower
[(a2+r2)E—aL,(r,E)]? panel of F?g. 1_shows_ the behavior whar M. Wg see the
Q(r,E)= horizon skimming orbits at=M and the NHS orbits stretch-
A ing out tor=1.8M. At that point,L"” and L™ cross over.
—[r2+a2E—2aEL,r,E)+L,r,E)?]. Moving further out in radius, they behave in the “normal”
way.

(2.19 There must exist some critical spin value, V5 ayys
<M, at which NHS orbits first come into existence. The
NHS orbits are bounded by two radiigco andr ¢oss[Where
the angular momentum of the least-bound and most-bound
orbits crossL™(r grosd = LP(r cr0sd]. Decreasinga must de-
crease the size of the NHS region #gco and r s @p-
proach one another. The spin at which these radii coincide

L,(r,E)=

(There exists a second solution foy which has at+ sign in
front of theA, but it is not physically meaningfulNote that
Eqg. (2.14 does not behave well as—0. This is because of
a degeneracy in this limit: knowledge of any three of the
parameters, r, L,, and Q suffices to determine the orbit
(because of spherical symmetrgince this paper deals with : ; .
a~M, this issue is irrelevant here. and the NHS region vanishes s .
Assembling strong-field orbits now reduces to a simple Recall from Eq.(2.19 that .the_re are two 50'9“0”3 for
recipe. First, pick an orbital radius. Allow the orbital energy orbital energy, only one of which is usually physmal. At the
to vary fromE™ [Eq. (2.9] to E® (found by solving the = Crossover point, howevehoth of these energies must be
systemR=0, R’=0, R"=0). For each energy, find, and physical: that with the minus sigwhich is larger in magni-

; Ib : -
Q with Eqs.(2.14 and(2.15. Parameterize each orbit by its teundeerg?é\éeliskivx;iszngoi\gg?d(\e/eéisr?ée\q/r?: f%sgsci—bfc;;aogatf;?bﬁl\gg also
inclinati lec [Eq. (2.7)]. R ius. : ’ - )
inclination angle: [Eq. (2.7]. Repeat at a new radius the least-bound orbit at the ISCO. Thagys is the spin that

ll. NEARLY HORIZON-SKIMMING ORBITS satisfies

A. Overview a5

Consider for a moment the extreme Kerr limi=M.
From Eq.(2.3), the ISCO is located at=M, which is also
the coordinate of the event horizon. It is not difficult to show = 15
that there exists a set of orbits at this radius, with the param-
eters

2

1

[ ) T — TR NI R W T | PRI N T S B ]

ZM/\/§$ L,< \/EM, (3.1 2 2.5 3 35 4
r/M
E=L,/2M, 3.2
a=10M
5 ) 1.8 ——————7———— :
Q=3L%4— M2 (3.3
1.6 least—bound crbit m

These are the horizon skimming orbits. They olagy, /.

>0, similar to the behavior seen when the weak-field results=" 14
for L, are pushed into the very strong field. This is opposite

to the typical behavior, as exemplified by the correct usage

most—bound orbit

of Egs.(2.6) and(2.7). L L 1 . Loy .
Focus for now on the most-bound and least-bound orbits. 1 1.5 2 25

These orbits bound the behavior of all orbits at each radius. /M

As described in Sec. Il it is simple to solve fof as a FIG. 1. Angular momentunt., for the most-bound and least-

function of radius, at least numerically. Doing so far  bound circular orbits, as functions of radius. The upper panel is for
=M, we find that there is a region stretchingrts 1.8M in a=0.99V, the lower fora=M.
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o ot T ZAMO measures the small body to have veloaitgnd en-

s=o0ss212 | ergy Epea=(1—0-0) Y?=y. This local energy isnot a

sl ~Z 096 | constant of the body’s motion. It is related to the conserved
‘ e energy by the formul@7]

2 0.97

E=aEpcat wzamol 25 (3.6

1.6 - . where

L/M

B \/ SA
“T N (1%ra?)2—a?A sin 62 @7

is the lapse function. Knowing the energy and the angular
momentum of the small body then tells us the body’s speed

v=+v-v as seen by the ZAMO.

Applying Eq. (3.6) shows that a body’s speed is smallest
in the most-bound orbit and highest in the least-bound orbit,
varying smoothly between the two. This is due to the drag-
1 15 2 ging of spacetime by the hole’s spin. Let us contrast the

r/M prograde and retrograde orbiis; 0° and.=180°. The pro-
grade orbit is moving “downstream”: part of the motion
Heeded to keep it in orbit is provided by the dragging of
inertial frames. It can orbit with relatively small velocity.

1.4

1.2 -

FIG. 2. The region of nearly horizon-skimming orbits for sev-
eral values of the spin. The solid lines correspond to least-boun

orbits, dotted lines to most-bound orbits. Notice that the region get ; R s
progressively smaller as the spin decreases fasaM, vanishing The retrograde orbit, by contrast, must “swim upstream™ it

altogether ata=a.;=0.95241M. However, the nearly horizon- MUSt overcome the dragging of inertial frames on top of the
skimming region remains fairly large at least through the vicinity of Motion needed to stay in orbit. It therefore is more energetic

a=0.998V1, which might apply to some astrophysical black holes. than the prograde orbit. The anglemoothly varies the orbit
between these extremes, so that largesrresponds to larger

E+[rISCO(aNHS)aernb1aNHS]: Ef[rISCO(aNHS)aLzmbvaNHS] energy(and I_arger speed . . .
The velocity of a body in a non-equatorial orbit has com-
3.4 ponents in both the and ¢ directions. The# component
[whereE.. denotes the two roots given in E(R.12]. The goes to zero, however, at the orbit's turning points
solution to this isayys/M =0.95242 ... . (Bmax, Omin)» When it reverses id. (Formulas for computing
Figure 2 illustrates the change to the NHS region as spi,,smin can be found in Refl9]; they are just the angles at
is varied, vanishing altogether whexys is reached. The which do/dr=0 [cf. Eq. (2.1b].) At these two points, the
size is still significant neaa=0.998V. This is interesting, velocity is purely along¢, and the body’s motion is fully
sincea=0.998V is probably the largest spin value that we gescribed by the componemt(;zz;-é;, (where é:b is the
can encounter in natufd0]. This opens the possibility that 4-component of the orthonormal basis that the ZAMO uses
NHS orbits may play a role in astrophysical processes.  to make measuremeitsEvaluating Eq(3.6) at fpaymin and
writing Ejoca=y gives a condition forvy at the turning
B. Nearly horizon skimming orbits as seen by a ZAMO points.

The NHS characteristioL,/d.>0 can be better under-  1he top panel of Fig. 3 shows(fmaqmin for the most-
stood by considering these orbits from the viewpoint of thebound and least-bound orbits at several interesting spins. As
zero angular momentum obsen'&@AMO) [7]. The ZAMO expected, bodies move quite a bit faster in the least-bound
is the observer that corotates with the coordinate systenPrPit than in the most-bound orbit. Perhaps more interest-

such that its angular velocity as seen at infinity is ingly, v becomes substantially smaller towards the inner-
most orbits. This is because of the “freezing” of physics
2aMr near the hole’s event horizon; see Héf| (particularly Secs.
wZAMO:(r2+a2)2_a2A Sing2" (3.5 IIC1 and IlIA4) for further discussion. Close to the horizon,

a body’s motion locks to the hole’s spin, and it is dragged

If one imagines spacetime to be dragged into a whirlpoolinto rigid corotation. This horizon locking causeg(r) to
like flow by the black hole’s rotation, then the ZAMO is the peak atr~1.5M: the “Keplerian” tendency of a body to
observer who simply rides along with the flown accor- move faster as it moves inward dominates at large r@d
dance with this viewpoint, Walfi22] calls the ZAMO the ymptoting to\/M/r in the weak fieldl, but is overwhelmed as
“locally non-rotating observer.y the body locks onto the horizon close to the hole.

The ZAMO examines orbits in its local neighborhood. Consider next the orbit's angular momentum. The
This allows it to interpret the motion of a body in a strong- ZAMO seesL, as the product of a radius of gyratien and
field orbit with special relativistic formulas. For instance, thea locally measured azimuthal momentyry [7]:
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FIG. 3. The azimuthal velocity and momentum at theurning FIG. 4. The radius of gyrations = circumference@maymin) /27
points of an orbiting compact body, as seen by a ZAMO. The topfor the most-bound orbitdotted curve and least-bound orbisolid
panel displays ; for the most-bound orbitdotted curvgand least-  curve). Notice thatw barely varies for the least-bound orbit over
bound orbit(solid curve at several spin values; the bottom panel thjs range. This is essentially because the chang®,igymi, com-

likewise displayspj . As expected, a body in the least-bound orbit pensates for the change in radius such that the circumference of the
moves substantially faster than a body in the most-bound orbitieast-bound orbit remains roughly constant.

Notice that the motion becomes slower as the IS@@ innermost

orbit) is approached. This is because the ISCO is close to the horEhanges such that the circumference of the ZAMO's orbit at
zon at these spin values. Orbits that come close to the horizorbr, . remains nearly constant.

become locked to the rotation of the black hole. This close to the maSXi/EI(?eL is iust the product of the curves shown in Fias. 3
horizon, locking is substantial. This locking is reponsible for the and 4 an;z/ ur{usual fgatures in the behaviot pfust arigel
peaks in these functions: moving inward along a sequence of orbit?mm f,eatures inp;, andw. Considering these two figures

a body first orbits more quickly, but then slows as its motion locks . . . b mb.
to the spin. The momentum peak is magnifiedte the different W€ immediately see why NHS orbits hatg’>L7": the

vertical scales in the two panglsbecause pj=yv;=v (1 least-bound orbit has so much more linear momentum than
—v3y~2 the most-bound orbit that it compensates for its smaller ra-
¢ dius of gyration. The linear momentum is so much larger, in
3.8 turn, because the most-bound orbit is strongly locked to the
spin of the black hole. The least-bound orbit is also locked
for r very close tor,sco. However, it does not lock as
strongly: being so energetic, the least-bound orbit only locks
as the very innermost orbits are approached. Hence, NHS
orbits exist because very close orbits are forced to move in

L=wps=wyv;.

The y factor causep, to be even more strongly peaked than
v, see the lower panel of Fig. 3.

The radius of gyration is a purely geometric quantity. It is
just the circumference of the ZAMO'’s constantconstant)

orbit, divided by 2r: rigid corotation with the event horizon.
1 (2« IV. APPLICATION: EVOLUTION UNDER
® = C( Omaxmin [27m= 7 f . VI ga(T's Omaximin) d¢p GRAVITATIONAL-WAVE EMISSION

I B e As discussed in the Introduction, binary systems consist-
(r*+a%)"—a%A sin frmagmin_, ing of a small body spiraling into a massive black hole are
= Omaximin- (3.9 g y spiraing D
r?+a%cos64,.,min max/min one of the more anticipated sources of gravitational waves
for space-based detectors such as LISA. The NHS region is
This function is plotted in Fig. 4. There are no surprises herestill rather large fora=0.998M (cf. Fig. 2), indicating that
In the most-bound orbitw increases monotically with or- there might be plenty of time for the properties of NHS or-
bital radius, asymptoting toat large radius. The least-bound bits to influence the gravitational-wave signal of these
orbit is more interestinge is smaller(not surprising, since it  sources.
is a tilted orbi} and is nearly flat as a function of radius, at  In the extreme mass ratio, radiation reaction should oper-
least over the range of NHS orbits. This near flatness is duate adiabatically. In other words, the timescale for
to the orbit’s increasing tiltd,40min Of the least-bound orbit  gravitational-wave emission to change an orbiting body’s pa-
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rameters K, E, L,, Q) should be significantly longer than an o e et A
orbital period:T,,/ Tew<1. (More careful discussion of this 40 t= 052869?2& _
point can be found in Ref9].) Because the change in these - ]
constants is very slow, the body’'s motion is well- i | 1.=75.760429 days |
approximated as geodesic over small time intervals. Itis thusg t = 1718299 days .
useful to regard the body’s true, radiatively evolving trajec- go 30 R 7
tory as motion through a sequence of geodesic orbits. Fog | t = 32.65811 days |
circular orbits, we regard the body’s inspiral trajectory as the , 1
evolution of its radius and inclination angle. 2 a0 | t = 48.57597 days ]
A simple argument shows that a body spiraling through § | .
the NHS region should behave rather differently from a body g | t = 62.51723 days i
spiraling through “normal” orbits. At a given moment, a % [ |
circular orbit can be represented as a point on thé§ = 10 t = 73.61597 days =~ |
plane. For example, a point on either the top or the bottom& [ { = 80.10113 days i
panels of Fig. 1 lying between the most-bound and least- L .
bound orbit curves represents a physically allowed orbit. Ra- r t = 81.99966 days ]
diation reaction will tend to drive this point downward and to L _
the left in this figure: gravitational-wave emission shrinks an N T T B
object’s radius and reducés . For a “normal” orbit, as in 1 1.2 14 1.6 1.8 2

the top panel of Fig. 1, the body is pushed toward less-bounc Orbital radius r/M

be'ts, Increasing. This behavior was predlct_ed by _Weak- FIG. 5. The evolution of radius and inclination angle for a small
field calculations|8,15] and was recently confirmed in the o4y inspiraling through the NHS region. The small body pas
strong field[9]. The evolution is in the opposite direction -1 Mo, the large black hole hasi=1°M, and spin a
inside the NHS region — radiation emission pushes the body- 9.99avi. The inclination angle decreases in this region, opposite
toward the sequence of most-bound orbits, so thate-  to the usual behavior. The amount of decrease is, however, rather
creases. small.[The gap at the end of the inspiral trajectories f6120° is
Decreasing inclination angle could have important consebecause of computational limitations: it is computationally expen-
qguences for the gravitational-wave signal. Inclined circularsive to generate a very dense mesh ai/(lt,d./dt) data close to
orbits emit waves characterized by harmonics @f,  the ISCO]
=27IT, andQ),=2m/T, (whereT is the period of a full
range of¢ motion, andT, is the period off motion [9].  for most trajectories is significant. The number of orbits
Roughly speaking, th@ motion modulates the gravitational around the spin axis of the black hole by the body varies
waveform. The waves emitted by a body in an equatoriafrom N,=73000 for the inspiral beginning at=0° to N
orbit, on the other hand, depend only O, — there is no =400 for the inspiral beginning at=40°. The number of
motion in ¢, so the amplitudes o), harmonics vanish. As gravitational-wave cycles is roughly proportionalNg,, in-
the orbiting body moves toward the equatorial plane, thelicating that waves from the NHS region could contribute
importance of theQ), harmonics decreases, simplifying the substantially to a measured signal. The inspiral duration
waveform. Observing such simplification would be a clearscales withM?/u, and the number of orbits with/u.
signal that the small body is evolving toward the equatorialThese quantities should be of interesting magnitude for a
plane. reasonably wide range of masses, at least for spin
A rigorous analysis of NHS evolution requires a radiation=0.998V. (As the spin of the black hole is dialed down to
reaction formalism good deep in the strong field. Such aa=ayys, the NHS orbits lose significance and inspiral
formalism, specialized to the adiabatic evolution of circularthrough them becomes irrelevanGravitational waves pro-
orbits, is given in Ref[9]. The code described there solves duced in the NHS region will form a significant part of the
the Teukolsky equatiofiL1] to calculate the flux oE andL, data measured from inspirals into rapidly rotating black
to infinity and down the event horizon. It then applies theholes.
proof that circular orbits remain circuléchanging only their Figure 5 also indicates that the signature of NHS inspiral
radius and inclination anglavhen they evolve adiabatically is not very large. Although does decrease, as expected, the
under radiation emissiofl4—1g to compute the change in degree of decrease is quite small. For the inspirals shown, the
Q. From this information, it is simple to obtain the change inlargest change in is for the trajectory that starts at
r and.. By computingdr/dt andd./dt at a large number of =25°: the final inclination ist=23.8°. The change’.
points, it is not difficult to compute the inspiral trajectory =1.2° is a rather paltry effect, not at all a robust signature of
followed by a body that starts in an inclined, circular orbit. the strong field.
An algorithm and code for computing such trajectories will It seems that the unique signature of orbital evolution
be presented at a later d4tsS]. through the NHS region is not likely to be of observational
Figure 5 shows some trajectories in the NHS region forinterest. Before dismissing the idea entirely, let us speculate
the inspiral of a M, compact body into a M Kerr  for a moment on how eccentricity might affect this conclu-
black hole. The hole has spar0.998M. The inspiral time  sion. Using a weak-field radiation reaction force, Ryan has
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calculated the leading order evolution of the parameters of ahorizon, a less-bound orbit moves quite a bit faster than a
inclined, eccentric orbit of a Kerr black hole due to highly bound orbit, not locking to the hole’s spin until the
gravitational-wave emissiofl5]. His results indicate that very innermost orbits are reached. This effect is shown in
the eccentricitye can significantly magnify the rate at which Fig. 3.

¢ changes: As an inspiraling body’s inclination decreases, the modu-
lation of its gravitational waveform by th@ motion de-
ﬂ =(1—e2)‘7’2( 14 Eez+ 3—7e4)% (4.1 creases. Measuring this decreasing modulation could be an
dt| ., 24 96~ Jdt|__,° observational hallmark of the Kerr strong field. Unfortu-

nately, at the moment the most mature formalism for com-
This relation is derived under the assumption thatM, so  puting the effects of gravitational radiation reaction on the
there is no reason to believe it holds in the NHS region.orbits of small bodies can only tackle the evolution of circu-
However, it could be indicative of the effect that eccentricity lar, inclined orbits. In this restricted case, the total change in
has in the strong field. Notice that as eccentricity varies oveinclination angle as a body evolves through the NHS region
the range &e<0.8 (a reasonable range for sources thatis quite small — at most, the orbital inclination changes by
LISA is likely to measurg[23,24)), the factor magnifying about 1-2 degrees. Although | have not examined the effect
d./dt increases from 1 to about 100. One can speculate thaf this change on the waveform, it is hard to imagine it will
d./dt will be magnified by a similar factofat least to order be particularly marked.
of magnitude under strong-field radiation reaction. At this It is extremely unlikely that realistic extreme mass ratio
time, there is no way to tell. Hopefully, strong-field radiation inspirals will be circular. When such binaries initially form,
reaction program$19,20 will be able to model the evolu- their eccentricities are likely to be rather close t¢17,18],
tion of generic Kerr orbits soon. If this speculation provesand remain significant by the time that the binary enters the
correct, then the gravitational-waves emitted by inspiralsensitivity band of LISA. Weak field calculations suggest
through the NHS region will contain a very strong signaturethat the rate by which the inclination angle changes might be

of the Kerr metric strong field. magnified by a rather large factor. If we take the leading
order results at face valjef. Eq.(4.1)], the change might be
V. CONCLUSION so strong that the orbit is driven nearly into the equatorial
plane.

The I’eSU|t Of th|S ana|ySiS iS SomeWhat equivocal. | haVe Because the NHS region iS so deep in the Strong f|e|d,
shown that the “horizon skimming” orbits found by Wilkins - however, it is a mistake to infer too much from leading order
are a subgroup of a larger family of orbits, the “nearly ho- effects. Further progress will require a scheme to calculate
rizon skimming” orbits existing around any black hole with ragjation reaction in the strong field fgenericKerr orbits
spin a=0.95241M. The signature characteristic of these __ grpjts that are inclined and eccentric. This may require
NHS orbits is that, at fixed orbital radius, te@omponent of  |ocal radiation reaction forcefd9], or a clever scheme for
orbital angular momentum increases as the orbit's ilt in-extracting the change in the Carter constant from the radia-
creases, in opposition to the “normal” behavior. This hastjon flux [20]. The fact that observations might be able to

the consequence that radiation emission, which carries anggetect a strong signature of the Kerr strong field will hope-
lar momentum away from the orbit, tends to drive the systemjyly motivate future progress.

into an equatorial orbit — the system'’s inclination angée
creasegather than increases.

The fact that radiation emission drives these orbits toward
the equator is a consequence of the motion of bodies in the This work grew out of a more general program to com-
strong field of Kerr black holes. As a body spirals in from pute waveforms and radiation reaction sequences from ex-
large radius, its orbital speed initially increases, in accortreme mass ratio circular orbit inspirals. That work, in turn,
dance with Keplerian intuition that a body in a circular orbit has benefited greatly from conversations with Lior Burko,
of radiusr has a speed=M/r. As the body gets very Curt Cutler, Dan Kennefick, Sam Finn, Lee Lindblom, Sterl
close to the black hole, however, its dynamics become domiPhinney, and Kip Thorne. The packag@THEMATICA was
nated by the nearness of the hole’s event horizon. All physiused to aid some of the calculations; all plots were produced
cal processes become “locked” to the hole as the horizon isising the packagem. This research was supported by NSF
approached. Eventually the motion of orbiting bodies syn-Grant AST-9731698 and NASA Grants NAG5-7034 and
chronizes with the hole’s spin. The least-bound orbit doesNAGW-4268 at Caltech, and NSF Grant PHY-9907949 at
not lock as quickly as the most-bound orbit: close to thethe ITP.
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