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Energy localization invariance of tidal work in general relativity
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It is well known that when an external general relativistic~electric-type! tidal field Ejk(t) interacts with the
evolving quadrupole momentIjk(t) of an isolated body the tidal field does work on the body~‘‘tidal work’’ !—
i.e., it transfers energy to the body—at a rate given by the same formula as in Newtonian theory:dW/dt5
2

1
2 EjkdIjk /dt. Thorne has posed the following question: In view of the fact that the gravitational interaction

energyEint between the tidal field and the body is ambiguous by an amount;EjkIjk , is the tidal work also
ambiguous by this amount, and therefore is the formuladW/dt52

1
2 EjkdIjk /dt only valid unambiguously

when integrated over time scales long compared to that forIjk to change substantially? This paper completes
a demonstration that the answer isno; dW/dt is not ambiguous in this way. More specifically, this paper shows
that dW/dt is unambiguously given by2 1

2 EjkdIjk /dt independently of one’s choice of how to localize
gravitational energy in general relativity. This is proved by explicitly computingdW/dt using various gravi-
tational stress-energy pseudotensors~Einstein, Landau-Lifshitz, Mo” ller! as well as Bergmann’s conserved
quantities which generalize many of the pseudotensors to include an arbitrary function of position. A discus-
sion is also given of the problem of formulating conservation laws in general relativity and the role played by
the various pseudotensors.

DOI: 10.1103/PhysRevD.63.064013 PACS number~s!: 04.20.Cv, 04.25.2g, 04.40.Dg, 04.70.2s
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I. INTRODUCTION AND SUMMARY

For many gravitating two body systems in the univer
the primary means of energy transfer from one body to
other is through tidal work. This work is accomplishe
through the gravitational interaction between the tidal fi
of one body and the mass multipole moments of the ot
body. A simple example of this is the work that the mo
does on the earth as it raises the ocean’s tides. Tidal wo
also dramatically evident in the moon Io, which gets hea
as it travels in an elliptical orbit through Jupiter’s tidal grav
tational field. This heating is the cause of Io’s dramatic v
canism. In these cases it is clear that the tidal work i
physical observable and should in no way depend on o
means of calculating it.

The term ‘‘tidal heating’’ is often used in place of ‘‘tida
work,’’ but is something of a misnomer. The n
gravitational-energy that is transfered between two bod
interacting tidally does not necessarily go into heat. It m
go into the energy needed to deform the body~i.e., raise a
tide on it! or it may go into the internal vibrational energy o
the body. The net ‘‘tidal work’’ may also be negative,
which case the phrase ‘‘tidal cooling’’ might be more appr
priate. Throughout this paper we will take the terms ‘‘tid
heating’’ and ‘‘tidal work’’ to be equivalent and to mean th
net work done by an external tidal field on an isolated bo

It seems evident that tidal work should be a ‘‘physic
observable;’’ i.e., the net energy-transfer from one body
another should be a real, physical quantity and should
depend on the mathematics that one uses to calculate
work that is done.

In calculating the tidal work for situations in general rel
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tivity, we consider the interaction between an isolated bo
and a complicated ‘‘external universe’’~the precise defini-
tion of these terms will be discussed in Sec. III!. In the most
familiar cases, this external universe may simply refer to
gravitating body such as a star, a planet, or a black hole,
orbits around the isolated body. In such a system it has b
shown by Thorne and Hartle@1# that the total mass-energyM
of the isolated body is ambiguous by an amountDM
;IjkEjk , whereIjk is the mass quadrupole moment of th
isolated body andEjk is the tidal field of the external uni
verse. This mass ambiguity has the same physical origin
the ambiguity in the localization of energy in a gravitation
wave: It arises from the fact that there is no preferred way
localize gravitational energy. This is true in Newtonia
gravitational theory as well as in general relativity@2#.

This mass ambiguity shows up mathematically in the f
that the nonlinearity of Einstein’s equations could be e
pected to produce a term;EjkIjk /r in the time-time com-
ponentg00 of the spacetime metric outside the body~wherer
is a radial coordinate!; and one is free, mathematically, t
move this term or some arbitrary part of it into the ma
M that appears in the standard equationg0052112M /r
1•••.

We can also understand this mass-energy ambig
physically in terms of the standard experiment by which
total mass-energyM of a gravitating body is measured: th
application of the general relativistic version of Kepler’s la
to a test particle in orbit around the body. If the body
spherical and isolated and the orbit is circular, the bod
mass-energy is related to the orbit’s periodT ~as measured
by distant clocks! and its radiusr ~defined to be its circum-
ference divided by 2p) by M5(r 3/G)(2p/T)2. If the body
is non-spherical, with various multipole moments includi
the quadrupole momentIjk , then the moments perturb th
orbit; but if one makes the orbit as circular as those per
bations permit and measures the orbit’s average radiur̄ ,
then theM that appears in the monopole 1/r part of the

y,
©2001 The American Physical Society13-1
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MARC FAVATA PHYSICAL REVIEW D 63 064013
gravitational field is still given accurately, to first orde
in the moments, by the relativistic Kepler lawM
5( r̄ 3/G)(2p/T)2. The perturbations, being non-monopola
disappear when averaged over the orbit. Similarly, if
body is precisely spherical but is perturbed by a weak,
ternal tidal fieldEjk , then accurate to first order in thos
perturbations we can still computeM by this averaged-radiu
formula; again the perturbations average to zero over
orbit ~provided that the timescale on whichEjk changes is
long compared to the orbital period!. However, if both a
quadrupole momentIjk and an external tidal fieldEjk are
present simultaneously, then the productEjkIjk is monopolar
in nature and has dimensions of mass; and correspondi
Kepler’s law with an average radius will giveM
1O(EjkIjk). Thus, one cannot measureM directly by Ke-
pler’s law. We shall discuss this mass ambiguity further
Sec. III.

Zhang@3# has used the Landau-Lifshitz pseudotensor~one
of an infinite number of ways to localize gravitational-fie
energy! to derive the expression

dW

dt
52

1

2
Ejk

dIjk

dt
~1!

for the rate at which a time-evolving tidal fieldEjk(t) does
work on a body with time-evolving quadrupole mome
Ijk(t). In view of the body’s mass ambiguityDM;EjkIjk ,
Zhang ~and also Thorne and Hartle@1#! asserted that the
work done should be ambiguous by an amount;DM , and
thus Eq. ~1! should instead be written asdW/dt
5^2 1

2 EjkdIjk /dt& and would be valid only when average
over timescales long enough forW to build up by an amoun
large compared toDM5EjkIjk . This occurs, for example, in
the long-term tidal heating of Io, during whichEjk and
dIjk /dt oscillate partially in phase with each other, produ
ing a cumulative work that goes into heat.

More recently Thorne@4#, while analyzing the effects o
tidal forces on the stability of relativistic stars, claimed
physical grounds that Zhang@3# and Thorne and Hartle@1#
were wrong: The ambiguityDM actually resides solely in
the energy of gravitational interactionEint between the body
and the external tidal field and not at all in the body’s s
energyEself ~i.e., the total mass-energy contained within t
volume of the body!, and correspondingly not at all in th
work done by the tidal field on the body,W5 ~change in
Eself); so the rate of work done is unambiguously and inst
taneously given bydW/dt52 1

2 EjkdIjk /dt.1

An operational variant of Thorne’s argument is this: Co
sider a body on which tidal work is being done by the int
action between its time-changing quadrupole momentIjk(t)
and some external time-changing tidal fieldEjk(t). One can
imagine, at any moment of time, turning off the tidal fie
while holding the body’s size and shape unchanged~to first
order in the tidal field!. With the tidal field gone, we can

1Thorne@4# needed this result as a key underpinning of his pr
that tidal coupling stabilizes a star against gravitational collaps
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imagine measuring the body’s total mass-energyMi ~e.g., by
using the relativistic version of Kepler’s laws!. That mea-
sured mass-energy with tidal field~momentarily! gone can
be regarded as the body’s self-energyEself ~including rest
mass!. This measured self-energy is unambiguous. Now, t
the tidal field back on and allow the system to evolve n
mally for some timeDt. Then, turn the tidal field off and
make a second measurement of the body’s total mass-en
M f in the same manner as before. The differenceM f2Mi
between these two measurements is the change in the bo
self-energyDEself. This is the workW done by the tidal field
on the isolated body. We can then conclude that, since th
measured changes in the body’s self energy are unamb
ous,dW/dt5dEself/dt andW are also unambiguous.

It is possible to test Thorne’s claim in a manner based
the following considerations: The self-energy, defined in
above manner, will not change when the tidal fieldEjk(t)
changes, but the shape and size of the body are held fi
and thenceIjk is held fixed. This is just a restatement of th
fact that a force can do no work if there is no displaceme
However, if Ijk changes, withEjk held fixed, thenEself can
change. This means that the unambiguous tidal work mus
of the form dW/dt5dEself/dt5(some constant)3EjkdIjk /
dt. The interaction energy, by contrast, should have the fo
of a product of the instantaneous tidal field and quadrup
moment, so its time rate of change should be a perfect t
derivative dEint /dt5d/dt@(some constant)3EjkIjk#. The
body’s total massM must be the sum of its self-energy an
that portion of the interaction energy that resides inside
near the body~i.e., within the orbit of the test particle tha
one uses in applying Kepler’s third law to compute t
mass!, therefore dM/dt5dEself/dt1dEint /dt5dW/dt
1dEint /dt. If we expressdM/dt in the form

dM

dt
5~const!3Ejk

dIjk

dt
1~const!3

d@EjkIjk#

dt
, ~2!

then the first term must bedW/dt and the seconddEint /dt.2

If Thorne is correct in his claim thatdW/dt is unambiguous
and that the total ambiguity ofdM/dt resides indEint /dt,
then any computation ofdM/dt using any~general relativ-
istically acceptable! localization of gravitational energy mus
give 21/2 unambiguously for the coefficient of the fir
term, while different localizations should give different va
ues for the coefficients of the second term.

Purdue@2# has carried out detailed calculations ofdM/dt
in Newtonian theory using all possible localizations of t
gravitational energy and has found that, indeed, the first t
in Eq. ~2! always has the coefficient21/2 while the second
depends on the localization. Purdue has also verified tha
general relativity, if one uses the energy localization emb
ied in the Landau-Lifshitz pseudotensor, but performs ga
transformations~infinitesimal coordinate transformations! on
the spacetime metric, the first coefficient~that associated

f 2After this paper was submitted, it came to the attention of
author that Mashhoon@5# has derived an equation of this form.
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ENERGY LOCALIZATION INVARIANCE OF TIDAL . . . PHYSICAL REVIEW D 63 064013
with dW/dt) remains always21/2, while the second~that
associated withdEint /dt) changes with the changing gaug

In this paper we shall complete this test of Thorne
claim: We shall verify that, when one changes the gene
relativistic energy localization by changing one’s choice
pseudotensor, the first coefficient in Eq.~2! remains always
21/2 while the second changes and thus~partially! embodies
the ambiguities present in localizing gravitational-field e
ergy.

As a foundation for demonstrating this we first discuss
Sec. II of this paper the problem of formulating covaria
conservation laws in general relativity. This is an underlyi
issue throughout this paper as the lack of an accept
energy-momentum tensor for the gravitational field co
possibly be a source of ambiguity in the calculation of t
tidal work. We also discuss some of the various pseudo
sors and conserved quantities that are used to des
gravitational-energy localization.

In Sec. III we discuss the assumptions that go into
calculation of the tidal work. A key issue is that our calc
lations are performed in thelocal asymptotic rest frame
~LARF! of the body on which the work is being done. Th
means we are able to formulate onlyapproximateconserva-
tion laws for our system. These laws are formulated in
buffer zonewhere the gravity of the isolated body is wea
and the tidal field of the external universe is uniform. T
spacetime metric of this buffer zone is described in S
III A.

We then calculate the tidal work using the Einste
pseudotensor~Sec. III B! and review the calculation given b
Purdue @2# using the Landau-Lifshitz pseudotensor~Sec.
III C !. In Sec. III D we perform the calculation using th
pseudotensor of Mo” ller @6#, which is significantly different
from the two previously mentioned pseudotensors, and
Sec. III E we examine the calculation using the conser
quantities found by Bergmann@7#. Bergmann’s conserved
quantities generalize many of the pseudotensors, includ
those of Landau and Lifshitz, and Einstein. Each of th
calculations gives the same, standard resultdW/dt5
2 1

2 EjkdIjk /dt for the tidal work, in agreement with
Thorne’s assertion.

Throughout this paper we adhere to the conventions
Misner, Thorne, and Wheeler~MTW! @8#. Space-time indi-
ces are represented by Greek letters and spatial indice
Latin letters. We use units whereG5c51. The constant on
the right-hand side of the Einstein field equations is18p
and the Minkowski flat-space metrichab has signature (2,
1,1,1).

II. CONSERVATION LAWS AND PSEUDOTENSORS

The formulation of covariant conservation laws has be
a problematic issue since general relativity’s formulation
1916. The issue has been addressed by a large numb
authors and some continue to work on this problem.

If one considers a system without gravitational fields,
in special relativity, then the differential conservation law
for all matter and energy fields present are given by the
miliar formula
06401
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Tmn
,n50, ~3!

where Tmn is the symmetric energy-momentum tensor
matter that appears as a source term on the right-hand sid
the Einstein field equations

Gmn58pTmn. ~4!

By matter we mean all fields with the exception of the gra
tational field.

In general relativity Eq.~3! is not an acceptable conse
vation law as it is not a tensor equation valid in all referen
frames. Instead we must use the covariant derivative in p
of the partial derivative and our equation becomes

Tmn
;n5Tmn

,n1TsnGm
sn1TmsGn

sn50, ~5!

whereGm
sn are the connection coefficients. From Eq.~5! we

can see that the mass-energy in matter fields is no lon
conserved as energy can now be transfered between the
ter and the gravitational field. The quantity that is actua
conserved in the sense of Eq.~3! is someeffectiveenergy-
momentum tensorTeff

mn of matter plus gravitational fields
which is given~in one variant! by Eq.~20.18! of MTW @8# as

Teff
mn5Tmn1tmn, ~6!

where tmn is an energy-momentum pseudotensor for
gravitational field. In other variants, some of which are e
countered below, Teff

mn5(2g)n/2(Tmn1tmn), where g
5detigabi and n is a positive integer.3 For each of these
Teff

mn , the equationTmn
;n50 can be rewritten as

Teff,n
mn 50, ~7!

andTeff
mn can be written as the divergence of some ‘‘superp

tential’’ Hm[ns] that is antisymmetric in its last two indice
@9#:

Teff
mn5Hm[ns]

,s . ~8!

Square brackets indicate antisymmetry of the tensor w
the enclosed indices are swapped. Notice that Eq.~7! follows
from Eq. ~8! by differentiation and symmetry.

As mentioned above,tmn is not a true tensor, but rather i
a pseudotensorthat describes the localization of gravitation
energy-momentum. Thattmn is not a tensor is a fact inti-
mately linked with Einstein’s equivalence principle. Sin
we are always free to choose our coordinates in spacetim
correspond to a freely falling frame where the accelerat
vanishes at a point, we can equivalently choose a fra
where the gravitational field vanishes at that point. In suc
frame all the components oftmn will likewise vanish at that
point ~provided one is using Minkowski coordinates!. How-
ever, in any other reference frame, there is no reason wh

3We will sometimes refer to scalars, vectors and tensors with
tors of (2g)n/2 in front as scalar, vector and tensordensitiesof
weight n.
3-3
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MARC FAVATA PHYSICAL REVIEW D 63 064013
the components oftmn should vanish. Since any tensor th
vanishes in one reference frame must vanish in all refere
frames, we can conclude thattmn is not a tensor but a
pseudotensor, and quantities calculated from it will depe
on the choice of one’s coordinate system. To make mat
worse,tmn is defined only up to a vanishing divergence,
there are an infinity of expressions fortmn corresponding to
an infinite number of ways in which one can localize t
gravitational energy-momentum density.

Despite their rather unpleasant nature in a theory so fir
rooted in the principle of general covariance, pseudoten
have proved to be rather valuable calculational tools, es
cially in gravitational-wave research~see for example@10#!.
The reason is that, despite their noncovariance, theTeff

mn can
be used to compute covariant conserved quantities. For
ample, one can compute the total 4-momentum of a sys
that resides alone in asymptotically flat spacetime by
volume integral

Pm5E Teff
m0 d3x, ~9!

whered3x5dx1dx2dx3 is a 3-volume element of constan
time. Even though the integrand depends highly on on
choice of coordinates,Pm is a true vector that resides in th
asymptotically flat region.

Using Gauss’ law and the antisymmetry properties of
superpotential, it is also possible to express the 4-momen
as a surface integral:

Pm5E Hm[0s]
,s d3x5 R Hm[0 j ]nj d2S, ~10!

where nj is the unit normal vector to the surfaceS. It is
important to note that these integrals must be evaluated u
an asymptotically Lorentz coordinate system.4

A. The Einstein pseudotensor

The first pseudotensor was formulated by Einstein
1916. The Einstein pseudotensor is often referred to as
‘‘canonical’’ pseudotensor because it is derived using
general formula for the energy-momentum tensor of a c
sical field with Lagrangian densityL and field variableshA ,
which may be tensors of any rank. In flat spacetime t
general formula is given by~see, e.g., Goldstein@12#!,

Tmn5
]L

]hA,n
hA,m2Ldmn ; ~11!

and the Euler-Lagrange equations guarantee thatTmn
,n50.

In general relativity, the field variables are the compone
of the metric tensorgmn , and the Lagrangian density is give
by

4However, it should be noted that Nahmad-Achar and Schutz@11#
have devised a prescription for calculating pseudotensor-based
served quantities for isolated systems in general relativity us
coordinate systems with arbitrary asymptotic behavior.
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L5
1

16p
A2ggab~Gg

abGs
gs2Gs

agGg
bs!. ~12!

Equation~11! then becomes

A2gEtm
n5S ]L

]gab,n
gab,m2dm

nLD , ~13!

and again the Euler-Lagrange equations guarantee
(A2gEtm

n) ,n50 in vacuum andETm
n

,n50 where

ETm
n5A2g~Tm

n1Etm
n! ~14!

when matter is present. The tensor densityETm
n is often

referred to as a ‘‘total energy-momentum complex;’’ it is th
Einstein variant of theTeff

mn discussed above.
From Eq.~13! we arrive at an explicit expression for th

Einstein pseudotensor@13#:

A2gEtm
n5

1

16p
„~Gn

ab2db
nGs

as!~gabA2g! ,m2dm
nL….

~15!

Note that raising or lowering an index for this pseudoten
does not produce a symmetric quantity, so we are unabl
form a conserved angular-momentum complex from it.

It was shown by von Freud@14# that the Einstein complex
can be written as the divergence of an antisymmetric ‘‘
perpotential’’ FUa

[bg] :

ETm
n5FUm

[ns]
,s ~16!

where

FUa
[bg]52

1

16p

gas

A2g
$2g~gbsggl2ggsgbl!% ,l .

~17!

We can now form expressions for the covariant comp
nents of the 4-momentum of an isolated system by mean
Eqs.~9! and ~10!:

Pm5E ETm
0 d3x5 R FUm

[0 j ]nj d2S, ~18!

where the first integral is over the system’s entire volum
and the second is over a closed surface near spatial infi
~in the asymptotically flat region of spacetime!. Because of
the peculiarities of the pseudotensor, the above integral
only be interpreted as the covariant components of
energy-momentum 4-vector if one is using coordinatesxm

5(t,x,y,z) in which the metric gab asymptotically ap-
proaches the Minkowski flat metrichab .

To illustrate the coordinate dependent nature of
pseudotensors, we provide two well known examples~men-
tioned by Mo” ller @6# and Anderson@15#!. If one were to
calculate the integral*Et0

0 d3x for the Lorentz metricgab
5hab , its value would be zero, the expected energy fo
region with no gravitational field. However, if we mere
change to spherical coordinates, the value of this integra

on-
g
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ENERGY LOCALIZATION INVARIANCE OF TIDAL . . . PHYSICAL REVIEW D 63 064013
infinite even though spacetime is flat. Similarly, evaluati
of the integral for the Schwarzschild metric only yields t
massM if one uses coordinates such thatgab maps tohab
asymptotically asr→`.

Despite the restrictions on the use of this pseudotenso
has still led to the reliable prediction by Einstein that gra
tational waves exist and carry a definite energy.

B. The Landau-Lifshitz pseudotensor

Landau and Lifshitz~LL ! @9# were able to formulate a
symmetric pseudotensor, thus allowing the construction
conserved total angular-momentum complex. Their c
served total energy-momentum complex~their variant of
Teff

mn) is given by

TLL
mn5hm[ns]

,s5~2g!~Tmn1tLL
mn!, ~19!

~wherehm[ns] is defined below! and satisfies the usual prop
erty

TLL
mn

,n50. ~20!

The explicit form oftLL
mn is long and complicated. It is given

by

~2g!tLL
mn5@Eq. ~20.23! of MTW# ~21!

5@Eq. ~96.9! of LL #. ~22!

The LL superpotentialhm[ns] is related to that given by
von Freud by@15#

hm[ns]5A2ggmr
FUr

[ns] . ~23!

The LL pseudotensor is related to the Einstein pseudo
sor by the following formula@15#:

~2g!tLL
mn5~2g!gmr

Etr
n1~A2ggmr! ,sFUr

[ns] . ~24!

As in the case with the Einstein pseudotensor, integral
the Landau-Lifshitz pseudotensor also produce strange
sults in curvilinear coordinate systems. Asymptotically Lo
entz coordinates must again be used if one wants sen
results.

C. The Mo” ller pseudotensor

The Mo” ller pseudotensor@6# is significantly different
from the two complexes mentioned above. In deriving
pseudotensor Mo” ller sought to eliminate the problem that th
integral given in Eq.~18! yields strange results if one con
verts to curvilinear coordinate systems.

To define his pseudotensor, Mo” ller makes use of the fac
that one can always add a quantitySm

n to the Einstein com-
plex and still retain energy-momentum conservation, p
vided thatSm

n
,n50. The new total pseudotensor compl

~matter plus gravitational fields! will thus have the form

MTm
n5ETm

n1Sm
n . ~25!
06401
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Mo” ller additionally restricts the form ofMTm
n by requiring

the following conditions~see also Komar@16#!:
~1! It must be identically conserved:MTm

n
,n50.

~2! The integral over some 3-volume of constant time
MTm

n must produce the same results~in an asymptotically
Lorentz coordinate system! as Eq.~18!:

E MTm
0 d3x5E ETm

0 d3x. ~26!

~3! MT0
0 and MT0

n behave like scalar and vector dens
ties under arbitrary changes of thespatial coordinates,xnew

j

5F j (xold
1 ,xold

2 ,xold
3 ), xnew

0 5xold
0 . This allows one to change

the coordinate system from say, Minkowski to spherical,
not to change the way one slices spacetime into space
time.

~4! Under linear transformations,MTm
n behaves like a

mixed second-rank tensor.
With the further restriction that it not contain higher tha

second order derivatives of the metric, Mo” ller explicitly ex-
hibits a unique energy-momentum complex with these pr
erties, and he shows that it can be written as the diverge
of the following antisymmetric superpotentialxm

[ns] :

MTm
n5

]xm
[ns]

]xs 52
1

8p

]

]xs @A2g~gma,b2gmb,a!gnbgsa#.

~27!

The Mo” ller superpotentialxm
[ns] is related to the von

Freud superpotential@15,16#:

xm
[ns]52FUm

[ns]2dm
n

FUr
[rs]1dm

s
FUr

[rn] . ~28!

Like the Einstein pseudotensor, the Mo” ller complex is not
symmetric and thus cannot be used to form conserva
laws for angular momentum. Moreover, unlike the co
plexes of Einstein and Landau-Lifshitz, the Mo” ller complex
is not entirely quadratic in the first derivatives of the met
but has a term that is linear in the second derivatives of
metric. As pointed out by Møller himself@6#, this means that
MTm

n will generallynot vanish in a local Lorentz frame with
no matter present. This will become an issue in Sec.
when we use the Mo” ller complex to calculate the tidal work

D. The Bergmann conserved quantities

Recognizing that conservation laws are related to the
variance properties of physical laws, and combining this w
the fact that the equations of general relativity are invari
under arbitrary coordinate transformations, Bergmann@7#
proposed that to each infinitesimal coordinate transforma
there would correspond a conserved quantity. Making us
various identities, Bergmann@7# constructs a relationship be
tween an arbitrary vector fieldjs ~which may be thought of
as producing infinitesimal coordinate transformations on
metric! and the generatorsCr of these transformations:

A2gGmndgmn1Cr
,r[0, ~29!

where
3-5
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dgmn52~jm;n1jn;m!. ~30!

Bergmann choosesCr52A2gGrsjs as a solution to Eq.
~29!. However, one may always add an arbitrary curl fie
V[rs]

,s to Cr and still satisfy Eq.~29!. Bergmann choose
this curl such that the resulting expression contains no hig
than first derivatives of the metric. His final expression s
isfying Eq. ~29! is

C̄m52jsA2gGs
m1~js

FUs
[mn] ! ,n . ~31!

Equation~31! represents a weakly conserved quantity, me
ing that it satisfiesC̄m

,m50 whenever the vacuum field equ
tions are satisfied (Gmn50). The corresponding stron
conservation law isDm

,m50, where

Dm[~js
FUs

[mn] ! ,n[C̄m22A2gGs
mjs, ~32!

as can be easily shown if we make use of the antisymm
of FUs

[mn] and the commutativity of partial derivatives.
From this strongly conserved quantity Bergmann co

structs the 4-momentum in the same manner as we did f
Eq. ~9!:

Pm5E Dm d3x. ~33!

Using Gauss’ law and the antisymmetry ofFUs
[mn] , we can

write them50 component as a surface integral,

P05 R js
FUs

[0 j ]nj d2S. ~34!

According to Bergmann, from the weakly conserv
quantities C̄m, expressions equivalent to several of t
pseudotensors can be derived by making specific choice
js. For example choosingjs5ks, whereks is a constant
vector, yields the canonical Einstein expression contrac
with ks, while settingjs5A2ggsaka yields the Landau-
Lifshitz expression contracted withks. We have been unabl
to find a similar choice that yields the Mo” ller pseudotensor
We believe that this is due to Bergmann’s choice of the c
field V[rs]

,s containing no second derivatives of the metr
Recall that unlike most other pseudotensors, the Mo” ller com-
plex contains second derivatives of the metric.

E. Other formulations of the conservation laws

Aside from the method of using pseudotensors to form
late conservation laws in general relativity, there exist s
eral other approaches as well. One of these is the metho
quasilocalenergy, a covariant definition of energy that aris
from a Hamiltonian formulation of general relativity. For
discussion of the equivalence of the quasilocal and pseu
tensor approaches to gravitational energy-momentum,
Chang, Nester, and Chen@17#. In parallel with this presen
research, Booth and Creighton@18# have calculated the tida
work using the Brown and York@19# quasilocal energy ap
proach, and have arrived at the same result as we de
below using various pseudotensors:dW/dt52 1

2 EjkdIjk /dt.
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There have also been efforts to find an energy-momen
tensorfor the gravitational field. Shortly after relativity wa
formulated, Lorentz and Levi-Civita proposed that the E
stein tensor Gmn be used as a gravitational energ
momentum tensor. This however, did not prove fruitfu5

Most recently, Babak and Grishchuk@21# have shown that
when one formulates general relativity as a non-linear fi
theory in flat spacetime, then there exists an ener
momentum tensor for the gravitational field that has all
nice properties one might wish. This energy-momentum t
sor is the Landau-Lifshitz pseudotensor with partial deriv
tives replaced by covariant derivatives with respect to
flat-background metric.

III. CALCULATION OF THE TIDAL WORK

In calculating the tidal work, we consider a system co
sisting of anisolatedbody that interacts with a complicate
external universe in theslow-motion approximation. The
body is isolated in the sense that the radius of curvatureR of
the external universe and the length scaleL on which this
curvature changes must both be large when compared
the sizeR of the isolated body:R/R!1 andR/L!1. This
means that the external universe is not subjecting the isol
body to very strong gravitational fields~as would happen
e.g., in a neutron star and black hole close to merger! and
that the tidal field of the external universe is nearly unifo
in the region near the isolated body. By slow-motion, w
mean that the time scalet for changes in the mass and cu
rent moments of the body and the tidal field of the exter
universe are small compared to the size of the body:R/t
!1. If this were not the case, we would have to worry abo
changes in the mass-energyM due to gravitational radiation
and other higher-order effects. For detailed discussions of
constraintsR/R!1, R/L!1, andR/t!1, and of various
approximations based on them~which we shall use below!,
see Thorne and Hartle@1# and the recent paper by Purdue@2#,
whose analysis we are continuing.

Some examples of isolated, slow-motion bodies discus
by Purdue@2# include~i! a compact object such as a neutr
star or black hole in a binary inspiraling system that is n
too close to merger; and~ii ! Jupiter’s moon Io, which gets
tidally heated as it travels through Jupiter’s tidal field in
elliptical orbit.

Our calculation of the tidal work involves computin
dM/dt, the rate of change of the mass of an isolated bo
and then expressingdM/dt in the form of Eq.~2! and read-
ing off the two coefficients. We use the multipole mome
formalism discussed in Thorne@22#, and Thorne and Hartle
@1#, and treat gravity as a non-linear field theory in flat spa
time. The computation ofdM/dt is carried out as a
2-dimensional surface integral of a pseudotensor in
‘‘buffer zone’’or local asymptotic rest frame~LARF! of the

5For an excellent discussion of the exchange that occurred
tween Einstein, Levi-Civita, Lorentz, and others concerning cons
vation laws and the prediction of gravitational waves, see the art
by Cattani and De Maria@20#.
3-6
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isolated body@see Eq.~2.3a! of Thorne and Hartle@1# #:

dM

dt
52 R t0 j d2Sj , ~35!

whered2Sj5njr
2dV is the surface element of a 2-sphere]V

in the buffer zone that encloses a volumeV and has unit
normalnj and solid angledV. This buffer zone is a region
that surrounds the isolated body but is far enough away
gravity in it can be considered weak. At the same time, i
close enough to the body that the tidal field of the exter
universe appears homogeneous. The buffer zone can b
scribed more precisely@2# as the region wherer /L!1,
r /R!1, andM /r !1, r being the radial distance from th
isolated body. The rate of change of mass-energy through
surface]V is dM/dt, andM is the total mass-energy insid
V. Note that our analysis is thus valid even for a stron
gravitating body such as a black hole, provided there exis
buffer region around it where gravity is weak, the extern
curvature is nearly uniform, and the spacetime curvatur
not changing too rapidly.

For the purposes of our discussion and to the order
our calculations are valid, there are only three relevant
rameters that characterize the spacetime:

~1! The total mass-energyM of the isolated body.
~2! The quadrupole momentIjk of the isolated body,

which, in the limit of weak gravity, is given by

Ijk5E S rxjxk2
1

3
d jkr 2Dd3x. ~36!

~3! The tidal field of the external universe is given b
Ejk5Rj 0k0, whereRabgd is the Riemann tensor of the exte
nal universe.

Note that bothIjk and Ejk are symmetric and trace fre
tensors that reside in the buffer zone, and that we are u
coordinates that are as Lorentz as possible~with respect to
the physical metric! throughout the buffer zone; i.e.,gab
5hab1O(M /r )1O(I/r 3)1O(Er 2). TheseIjk andEjk are
spatially constant in the buffer region but they may depe
on time.

The body has additional multipole moments: the curr
quadrupole momentSjk , the mass octupole momentIjkl ,
etc; and the external universe has additional tidal fie
of ‘‘magnetic-type’’ (Bjk , . . . ) and ‘‘electric-type’’
(Ejkl , . . . ), seee.g., Thorne and Hartle@1#. These moments
and tidal fields can couple to each other to produce t
work: dW/dt;BjkdSjk /dt & EjkldIjkl /dt & ••• .6 In some
situations these contributions todW/dt might be larger than
the one,dW/dt;EjkdIjk /dt, that we are studying, but typi
cally the mass quadrupole will dominate. In this paper
restrict ourselves to the mass quadrupole term, whethe
not it dominates the tidal work, because we are seeking
discuss an issue of principle first raised by Thorne and Ha
@1#: the non-ambiguity of theEjkdIjk /dt tidal work. Presum-

6Here, the symbol ‘‘&’’ means ‘‘plus terms of the form...’’; se
Thorne and Hartle@1#.
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ably our results can be generalized to higher order mome
but we shall not attempt to do so here. Correspondingly
our analysis we shall consider onlyM, Ijk , andEjk .

Keep in mind that when we identify a massM as in Eq.
~35!, we are only doing so in an approximate sense. Thi
because the mass, momentum, and angular momentum
have precisely defined values in an asymptotically flat spa
time. As our spacetime is onlylocally asymptotically flat, the
conservation laws only giveapproximatevalues of the mass
momentum, and angular momentum in the buffer zone wh
spacetime isapproximatelyasymptotically flat.

In particular, as we discussed in Sec. I, there is an am
guity in the massM of the isolated bodyDM;IjkEjk . If Ijk
is oscillating in time, then this ambiguity is of the same ord
as the amount of energy that is transfered between the
lated body and the external universe by tidal work duri
one period of oscillation. We can understand this ambigu
more clearly by examining the time-time part of the metric
the buffer zone@2#:

g005211
2M

r
13I ab

xaxb

r 5 1•••2E abx
axb1•••,

~37!

wherer is the distance from the center of the isolated body
measured in its local asymptotic rest frame. We have omi
terms involving higher order mass and tidal multipole m
ments~e.g., octupole momentsIjkl andEjkl) and also terms
that are products ofM, Ijk , andEjk which result from the
nonlinearities of the Einstein field equations. One of the
nonlinear terms has the form

dg00;
IjkEjk

r
~38!

which has the same form as 2M /r , that is, (monopole)/r ,
and which has a coefficient that is gauge dependent.
similarity in structure betweenM /r and (IjkEjk)/r implies
that it is possible to move portions of the gauge-depend
term given in Eq.~38! into or out of the 2M /r term. One can
interpret this as meaning that the massM that one reads off
the metric is ambiguous by an amount on the order of

DM;IjkEjk . ~39!

Purdue@2# shows that this ambiguity is also present
Newtonian theory in the form of an ambiguous gravitation
interaction-energy inside and near the body. More spec
cally: The total mass-energyEV enclosed in the volumeV
can be expressed in Newtonian theory as

EV5Eself1Ee1Eint , ~40!

whereEself is the isolated body’s self-energy~which depends
on the body’s rest-mass and internal energy density distr
tions!, Ee is the external field energy inside the volumeV
~which depends only on the external tidal fieldEjk), andEint
is the interaction energy insideV and is given by
3-7
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Eint5S 21a

10 DIjkEjk . ~41!

Here the coefficienta depends on one’s choice of Newtonia
energy-localization. For example~see Purdue@2#!, the choice
a50 localizes all of the gravitational energy in the field,
that the total gravitational energy is given by a volume in
gral of (¹F)2/(8p) ~which should be familiar from electro
statics!. Alternatively, the choicea51/2 localizes the gravi-
tational energy entirely in the matter, so the tot
gravitational energy is given by a volume integral of1

2 rF.
Herer is the mass density, so clearly it vanishes outside
material of a gravitating body.

From Eq.~40! we can see that a Newtonian calculation
dEV /dt ~which is analogous to our general-relativistic calc
lation of dM/dt) will include a term that is the total time
derivative of the interaction termEint . Our general-
relativistic calculation will also have an interaction term
this same form, where the coefficient in front depends on
energy-localization scheme. In the Newtonian case, Pur
shows that, despite the ambiguity ofdEint /dt, the rate of
change of the body’s self-energydEself/dt is given unam-
biguously by the tidal work formula dEself/dt
52 1

2 EjkdIjk /dt. Our general relativistic analysis will pro
duce this same conclusion.

A. Metric in the buffer zone

In our calculation we will consider general relativist
gravity not as a geometric phenomenon involving the cur
ture of spacetime, but rather as a non-linear field theory
flat spacetime. We treat the field variables~the metric com-
ponentsgab) as a perturbative expansion in some dime
sionless parameter« which is actually the gravitation con
stant,G51 in our system of units. Thus, terms ofO(«) are
linear perturbations around flat spacetime; terms ofO(«2)
are quadratic, etc. All raising and lowering of indices is do
with the flat Minkowski metrichab .

Our three parametersM, Ijk , andEjk can all be consid-
ered linear in«. In our calculation of the tidal work, it is
clear from the form of Eq.~2! that we may also need t
consider terms in the metric that are quadratic in«, as such
terms may go asIjkEjk . We thus expand the metric up t
quadratic order:

gab5hab1«hab1«2kab , ~42!

wherehab contains terms that are linear inM, Ijk , Ejk , and
their time derivatives, whilekab contains terms that ar
products of any two of those three quantities and their fi
time derivatives~for exampleMI, İI, IE, ĖĖ, etc.!. Any
terms that are cubic or higher in the perturbation expansio«
cannot contribute to the tidal work~which is itself of order
«2) and can be discarded at any point in the calculation.

Since the mass quadrupole momentIjk and the tidal field
Ejk are spatially uniform in the buffer zone, the spatial g
dients of these functions vanish. Furthermore, since] t;1/t,
the slow-motion approximation allows us to ignore all se
ond and higher order time derivatives ofIjk andEjk .
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We impose separate gauge conditions on the linearhab
and quadratickab parts of the metric. The linear part of th
metric has been calculated by Zhang@3# in the de Donder
gauge and is used by Purdue@2# in her analysis. The de
Donder gauge in linear order7 is given by the condition tha
h̄mn

,n50, whereh̄mn is the trace reversed metric perturb
tion:

h̄mn[hmn2
1

2
hmnh. ~43!

In terms of the metric perturbationhab we can write this as
the condition

hmn
,n5

1

2
h,m, ~44!

whereh is the trace ofhab :

h5ha
a5habhab . ~45!

To the order we should need in the slow-motion appro
mation~neglecting second and higher order time derivativ!
and ignoring higher order multipole momen
(Ijkl , Sjk , Ejkl , Bjk , etc.!, the linear part of the metric is
given in Cartesian coordinates and de Donder gauge, a
rate toO(«) in the buffer zone, by@3#

h00[22F52
M

r
13

I i j x
ixj

r 5
2E i j x

ixj , ~46!

h0 j[Aj522
İjaxa

r 3
2

10

21
Ėabx

axbxj1
4

21
Ėjaxar 2,

~47!

hi j 522Fd i j 5d i j S 2
M

r
13

I i j x
ixj

r 5
2E i j x

ixj D , ~48!

whereF is a scalar potential analogous to that of Newton
gravity andAj is a vector potential that has no Newtonia
analog.

This metric, by virtue of the de Donder gauge conditio
and the approximations mentioned above, satisfies the
lowing relations, which we shall use in our calculations b
low:

Aj ,050, ~49!

Aj , j524F ,0 , ~50!

hmn,s
s50, ~51!

h,s
s50. ~52!

7The general de Donder condition is given bygmn
,n50, where

gmn5A2ggmn.
3-8
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To compute the quadratic part of the metrickab one
would have to solve the second order Einstein field eq
tions. It turns out that for the pseudotensors we are con
ering, a suitable choice of gauge will make the direct cal
lation of kab unnecessary. This specific gauge will b
discussed later.

Other formulas that will be useful in the calculations th
follow are given below, accurate up to order«2:

gab5hab2«hab1«2haghg
b2«2kab, ~53!

gabggb5dg
a1O~«3!, ~54!

2g5det~gab!511«h1
1

2
«2~h22habhab!1«2k, ~55!

wherek is the trace ofkab . Taylor expanding Eq.~55! about
«, we also have, accurate to order«2,

A2g511
1

2
«h1

1

2
«2S 1

4
h22

1

2
habhabD1

1

2
«2k,

~56!

1

A2g
512

1

2
«h1

1

2
«2S 1

4
h21

1

2
habhabD 2

1

2
«2k.

~57!

We are now ready to compute the tidal work using vario
pseudotensors.

B. Calculation of tidal work using the Einstein pseudotensor

We wish to calculate the integral given by Eq.~35! for the
rate of change of mass-energy of the isolated body using
Einstein pseudotensorA2gEt0

j :

dM

dt
52 R A2gEt0

jnj r
2dV, ~58!

wherenj5xj /r is the unit normal to a surface lying in th
buffer zone at some radiusr, anddV is the solid angle on
that surface. If we look at the form ofA2gEtm

n given by Eq.
~15!, we can see that in order to obtain an expression tha
accurate up to order«2 we only need to expand the metric
order«. This means that we can ignore all terms appearin
Eqs.~42!, ~53!–~57! that go as«2. Equation~15! thus takes
the form ~in a general gauge!:

A2gEtm
n5

«2

16p H 1

2
h,mhna

,a2
1

4
h,mh,n2hab

,mhn
a,b

1
1

2
hab

,mhab
,n2

1

4
h,mh,n1

1

2
h,ahan

,m

2dm
nS 1

2
h,ghga

,a2
1

4
h,gh,g2

1

2
has,ghag,s

1
1

4
has,ghas,gD J . ~59!
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Applying the de Donder gauge constraints~44!, we see that
the first and second and the seventh and eighth terms ca
each other.

From Eq.~58! we see that we only need to evaluate t
Et0

j terms. These terms evaluate8 to

A2gEt0
j5

1

4p
F ,0F , j . ~60!

Using Eq.~46! we see that

F ,0F , j5
15

4
IabĖcd

xaxbxcxdxj

r 7 2
3

2
IjaĖbc

xaxbxc

r 5

2
3

2
İabEjc

xaxbxc

r 5 . ~61!

Note that we have ignored terms that go likeMṀ , ṀI, ṀE,
İM , İI, ĖM , and ĖE as they do not contribute to the tida
work. That these terms do not contribute is apparent if o
considers that the tidal work must arise due to a coupl
between the mass multipole moments of the isolated b
and the tidal field of the external universe. This, combin
with dimensional considerations, implies that only terms
the formİE andIĖ can contribute todW/dt. Also we do not
worry about spatial indices being up or down since we
using Cartesian coordinates.

We must now evaluate the surface integral given in E
~58!. Note that keeping our calculations accurate to order«2

justifies our setting the factor ofA2g on the left-hand side
of Eq. ~60! to unity. To perform the surface integrals over th
terms in Eq.~61!, we first note that since the multipole mo
ments do not vary spatially in the buffer region, they can
pulled out of the integrals. The surface integrals that rem
are all of the form

R nanbnc . . . np dV, ~62!

where na5xa /r is a component of a unit radial vecto
Evaluating such integrals~see Sec. IIB of Thorne@22#! we
finally arrive at

dM

dt
52

1

2
Ejk

dIjk

dt
1

d

dt S 3

10
IjkEjkD . ~63!

We can identify the second term in the equation above
the analog of the Newtonian interaction-energy given by E
~41! where the Einstein pseudotensor localization cor
sponds to the choicea51. That this term is in fact the de
rivative of an interaction-energy term is apparent if one co
siders that the interaction energyEint between an isolated
body and the external universe must depend only on
instantaneous fields and can only be given by a prod
;IjkEjk . The rate of change of this interaction energy mu

8Part of this calculation was performed using the tensor alge
packageGRTENSORII @23#.
3-9
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MARC FAVATA PHYSICAL REVIEW D 63 064013
then be a perfect differential. Also, a term that goes l
;IjkĖjk could not contribute to the tidal heating since
work is done if the isolated body does not change~just as no
work is done if a force is exerted but no displacement
sults!; see Sec. I for further discussion. These facts indic
that the first term in Eq.~63! is the tidal work while the
second term is the rate of change of the interaction ene
between the external universe and the body; cf. Eq.~2!.

C. Calculation of tidal work using the Landau-Lifshitz
pseudotensor

The calculation of the tidal work using the Landa
Lifshitz pseudotensor is very similar to that for the Einste
pseudotensor shown above. This calculation was perfor
by Purdue@2# and we will only summarize her results her

Since the Landau-Lifshitz pseudotensor, like the Einst
pseudotensor, is quadratic in the first derivatives of the m
ric, one only needs to expandgab to first order in«. We thus
only need to consider the linear part of the metrichab when
evaluating the integral in Eq.~58! @whereA2gEtm

n is re-
placed by (2g)tLL

mn].
Evaluating this integral and keeping only terms that co

tribute to the tidal work~in the same manner as the previo
section!, Purdue arrives at

dM

dt
52

1

2
Ejk

dIjk

dt
1

d

dt S 2
1

10
IjkEjkD . ~64!

We notice that changing the energy localization scheme f
that of Einstein to that of Landau-Lifshitz has simp
changed the coefficient of the second term, which we ag
identify as the derivative of the interaction energy. Note t
the Landau-Lifshitz localization scheme is analogous to
choice ofa523 in the Newtonian interaction term. We als
see that the tidal work term@the first term in Eq.~64!# has
remained unaffected.

D. Calculation of tidal work using the Mo” ller pseudotensor

We shall now perform the calculation ofdM/dt once
again, this time making use of the Mo” ller pseudotensor
Since we are working in the vacuum buffer zone whe
Tmn50, we can use Eq.~27! as the expression for th
energy-momentum pseudotensor of the gravitational fi
Note that Eq.~27! is actually the total conserved comple
that we would use if non-gravitational fields were al
present.

If we examine closely the form of Eq.~27! we will find
that unlike the two previous pseudotensors discussed,
Mo” ller complex has a term that is linear in the second
rivatives of the metric perturbations. This means that we w
not only have terms likehab

,mhab
,n but will also have terms

like hm
s

,s
n andkm

s
,s

n . This means that it is important tha
we expand the metric up to quadratic order in« as these
terms that are linear in the second derivatives of the me
perturbation are actually quadratic in« and will thus contrib-
ute to the calculation of the tidal work.
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Using the metric given by Eq.~42! in Eq. ~27!, we arrive
at the form of the Mo” ller total energy-momentum pseudo
ensor, correct up to order«2, in a general gauge:

28pMTm
n5«~hm

s
,s

n2hm
n

,s
s!1«2~km

s
,s

n2km
n

,s
s!

1
1

2
«2~h,shm

s,n1hhm
s

,s
n2h,shm

n,s

2hhm
n

,s
s!1«2~hsa

,shm
n

,a1hsahm
n

,as

2hsa
,shma

,n2hsahma,s
n1hnb

,shmb
,s

1hnbhmb,s
s2hnb

,shm
s

,b2hnbhm
s

,bs!. ~65!

If we work in de Donder gauge to linear order we can u
Eqs.~46!–~48! for hab . However, we still do not know the
form of kab .

Fortunately, we can make use of the vacuum Einst
field equations

Rmn5Ga
mn,a2Ga

ma,n1Ga
baGb

mn2Ga
bnGb

ma50
~66!

to solve for the derivatives ofkab as they appear in Eq.~65!.
Specifically: If we substitute the metric~42! in Eq. ~66! we
can expand the Ricci tensor in powers of«:

«Rmn
(1)@h#1«2Rmn

(2)@hh#1«2Rmn
(2)@k#50, ~67!

where the superscript on theRmn
(n) means that the indicate

piece of the Ricci tensor contains only terms of order«n. The
terms in the brackets indicate that the part of the Ricci ten
in question contains terms that go like the indicated multi
of the metric piece (hab or kab) and its derivatives.
Equations~70! and~71! make this clear. We now require tha
the vacuum field equations vanish in each order of«:

Rmn
(1)@h#50, ~68!

Rmn
(2)@hh#1Rmn

(2)@k#50. ~69!

The first of these equations yields the linearized vacuum fi
equations:

ha
m,na1ha

n,ma2hmn,a
a2h,mn50, ~70!

while in the second~69! one can solve forRmn
(2)@k# to give

ka
m,na1ka

n,ma2kmn,a
a2k,mn

5has
,ahsm,n1hashsm,na1has

,ahsn,m

1hashsn,ma2has
,ahmn,s2hashmn,sa

2
1

2
has

,nhsa,m2hashsa,mn2
1

2
h,bhm

b
,n

2
1

2
h,bhn

b
,m1

1

2
h,bhmn

,b1hbn
,ahma

,b

2hbn
,ahm

b
,a . ~71!
3-10
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We can now use Eq.~71! to substitute for thekab terms that
appear in Eq.~65!, if we pick a gauge for thekab such that

ka
m,na1ka

n,ma2kmn,a
a2k,mn5km

s
,ns2kmn,s

s . ~72!

This is easily done if we choose the gauge

kn
a

,a5k,n . ~73!

We can now use Eqs.~71! and ~73! along with the de
Donder gauge conditions and Eqs.~51! and ~52! to simplify
the Mo” ller pseudotensor~65! into the form:

28pMTm
n5

1

2
h,m

n1
1

4
hh,m

n2
1

2
h,mbhnb1hashs

n
,ma

2
1

2
has,nhas,m2hashas,m

n . ~74!

Inserting Eqs.~46!–~48! for hab , we obtain8

28pMT0
j522F , j 028F , jF ,0212FF , j 0 . ~75!

Expanding this expression and ignoring terms in the sa
manner as Eq.~61!, we plug into the integral

dM

dt
52 R MT0

jnj r
2dV, ~76!

and arrive at

dM

dt
52Ṁ2İjkEjk , ~77!

where theṀ term comes from the22F , j 0 term in Eq.~75!,
which in turn arises from the fact that the Mo” ller pseudoten-
sor contains a piece linear in the second derivatives of
metric. Equation~77! can then be written as
06401
e

e

dM

dt
52

1

2
Ejk

dIjk

dt
. ~78!

Note that in the case of the Mo” ller pseudotensor, the perfec
differential term that represents the interaction energy v
ishes. This serves to support our intuition that the interact
term is simply a mathematical artifact of our choice of e
ergy localization and that the tidal work is in fact unique
given by Eq.~1!. Comparison with Eq.~41! implies that the
Mo” ller pseudotensor corresponds to a Newtonian energy
calization given bya522.

E. Calculation of tidal work using the Bergmann conserved
quantities

To further confirm our intuition about the tidal work, w
can calculatedM/dt using the Bergmann conserved quan
ties given by Eq.~32!. However, before we do this, we mus
determine the form of the arbitrary vector fieldjs, on which
the momentum densityDm depends. This form must be suc
that the integral~34! gives

P05«M1O~«2!, ~79!

the mass-energyM plus terms of order«2 which arise from
the fact that the surface of integration]V lies in the buffer
zone, where spacetime is onlylocally asymptotically flat.

ComputingP0 via Eq. ~34! first involves calculating the
von Freud superpotential~17! in terms of the metric expan
sion given by Eq.~42!. After a rather laborious computation
we find the von Freud superpotential in general gauge an
quadratic order in the metric perturbation:
e

first
216pFUa
[bg]5«$~da

bh,g2da
gh,b!1~da

ghbl
,l2da

bhgl
,l!1~ha

g,b2ha
b,g!%

1«2H 1

2
h~da

bh,g2da
gh,b!1

1

2
h~da

ghbl
,l2da

bhgl
,l!1

1

2
h~ha

g,b2ha
b,g!1~hglhb

a,l2hblhg
a,l!

1h,l~da
ghbl2da

bhgl!1hl
r~da

bhgr
,l2da

ghbr
,l!1hl

r,l~da
bhgr2da

ghbr!1~hbrhar
,g2hgrhar

,b!

1hkr~da
ghkr,b2da

bhkr,g!1~da
bk,g2da

gk,b!1~da
gkbl

,l2da
bkgl

,l!1~ka
g,b2ka

b,g!J . ~80!

As in the case of the Mo” ller pseudotensor, we have terms that are linear in the derivatives of thekab . For our calculation
of dM/dt below, we will find that these terms may again be expressed in terms of thehab by the same choice of gauge as w
used in the previous section, Eq.~73!. However, we cannot do this for our present calculation ofP0. Fortunately, this will not
be a problem since we only wish to show thatP0 reduces to the mass-energyM plus terms of order«2. Sincekab is of order
«2 it is not necessary to include the terms containingkab in our calculation of the surface integral in Eq.~34!. This is also true
of the terms in Eq.~80! that are products ofhab and its derivatives. We therefore only need concern ourselves with the
six terms in Eq.~80! ~those linear inhab and its derivatives! as only these terms could conceivably affectP0 at order«.

Now, let us make a guess as to the form of the vector fieldjs, on whichDm depends. A volume integral of Bergmann’sD0

@or the equivalent surface integral of Eq.~34!# will reduce to Eq.~79! only if the form of js is properly constrained. If our
spacetime were precisely asymptotically flat, we would expectjs to be asymptoticallythe timelike Killing vector field,
3-11
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js→]/]t1O(1/r ). Since our spacetime is not asymptotically flat but onlylocally asymptotically flat, it is reasonable to expe
that js is locally asymptotically Killing, by which we mean that it can be written as the sum of a timelike vector,d0

s , plus
deviationszs, from this timelike vector that are due to the fact that the spacetime is not flat:

js5d0
s1zs. ~81!

As for the form ofzs, we can construct a quantity which is the most general vector field that is~a! dimensionally correct
and~b! constructed only out of the parameters that characterize our spacetime in the slow-motion approximation:M, Ijk , Ejk
and their first time derivatives. Such a vector field has the following form~to order«):

z05aṀ1b
M

r
1c

Iabxaxb

r 5 1d
İabxaxb

r 4 1eEabxaxb1 f Ėabxaxbr , ~82!

zk5g
Mxk

r 2 1h
Ṁxk

r 2 1 i
Iabxaxbxk

r 6 1 j
İabxaxbxk

r 5 1k
Iakxa

r 4 1 l
İakxa

r 3 1m
Eabxaxbxk

r
1nĖabxaxbxk1oEakxar 1pĖakxar 2,

~83!
.

at
he

lly
fir

in
o

a-
s

e
fa

l in

.

ing

ld

f

of
where the coefficientsa throughp are real-valued constants
Using this prescription, we are now able to evaluateP0.

Our result reduces to Eq.~79! as required. We thus see th
the surface integral~34! does indeed give the mass as t
only O(«) term, plus terms ofO(«2) that arise from the facts
that our spacetime islocally asymptotically flat and that we
evaluateP0 on the 2-surface]V that lies at some finiter in
the buffer zone.

Now we wish to compute the tidal work,dP0/dt or
dM/dt. Taking a time derivative of Eq.~33! and applying
Gauss’ law, we easily arrive at the expression

dM

dt
52 R ~js

FUs
[ j n] ! ,n d2Sj . ~84!

Plugging Eq.~81! into Eq. ~84! allows us to write

dM

dt
52 R FU0

[ j n]
,n d2Sj2 R ~zs

FUs
[ j n] ! ,n d2Sj .

~85!

Let us now think carefully about what terms we actua
need to calculate in these integrals. If we examine the
integral in Eq.~85! we realize@comparing with Eq.~80!# that
all of the terms in the integrand are of order«2 and can
therefore contribute to the tidal work. However, we aga
have the problem that we do not know the explicit form
kab . Fortunately, if we expand the terms in (FUs

[mn] ) ,n that
depend onkab and apply the gauge condition of Eq.~73!, we
find that these terms reduce to

~kn
s,n

m2km
s,n

n!. ~86!

Comparison with Eq.~72! shows that this is the same situ
tion encountered with the Mo” ller pseudotensor. We can thu
use Eq.~71! to express the first integrand in Eq.~85! entirely
in terms of hab and its derivatives, just as we did in th
previous section. Applying de Donder gauge and a
amount of algebraic manipulation we arrive at
06401
st

f

ir

216pFUs
[mn]

,n5
1

2
h,lhml

,s2
1

4
h,sh,m1ds

mhlr,nhrn,l

2hlr,shmr,l1
1

2
hlr,mhlr,s

2ds
mhkr,nhkr,n . ~87!

Evaluating the components we need for the first integra
Eq. ~85!, we find8

FU0
[ j n]

,n52
1

4p
F ,0F , j . ~88!

If we expand this expression as we did in Eq.~61!, keeping
only terms that can possibly contribute to the tidal work~the
products ofİE andIĖ), and evaluate the first integral in Eq
~85!, we have

2 R FU0
[ j n]

,n d2Sj52
1

2
Ejk

dIjk

dt
1

3

10

d

dt
~IjkEjk!.

~89!

One should note that this is precisely what we obtained us
the Einstein pseudotensor@Eq. ~63!#, and indeed, the left-
hand side of Eq.~89! is the surface integral that one wou
obtain by substituting Eq.~16! into Eq. ~58!.

We must now evaluate the second integral in Eq.~85! to
see if it will contribute to the tidal work. The computation o
this integral is made much simpler if we realize thatzs is
linear in «. Since the tidal work is quadratic in« we only
have to concern ourselves with the piece ofFUa

[bg] that is
linear in«. Applying de Donder gauge to the linear piece
Eq. ~80! we can write the second integral in Eq.~85! as
3-12
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2 R ~zs
FUs

[ j n] ! ,n d2Sj5
1

16p R 1

2
z j

,nh,n2
1

2
zn

,nh, j

1zs
,n~hs

n, j2hs
j ,n! d2Sj

1O~«3!, ~90!

where we have applied Eqs.~51! and ~52!. A few pages of
algebra, and again ignoring terms that cannot contribute
the tidal work, reduces this to

2 R ~zs
FUs

[ j n] ! ,n d2Sj5S 2

15
c1

3

5
eD d

dt
~IjkEjk!.

~91!

Combining Eqs.~89! and ~91! we finally arrive at an ex-
pression fordM/dt in terms of the products that can contri
ute to the tidal work (İE andIĖ):

dM

dt
52

1

2
Ejk

dIjk

dt
1S 3

10
1

2

15
c1

3

5
eD d

dt
~IjkEjk!.

~92!

We can now see conclusively that changing the ene
localization has no effect on the tidal work term and mer
changes the coefficient in front of the arbitrary interactio
energy term.

IV. CONCLUSIONS

This paper completes a demonstration that the tidal w
caused by the interaction of an isolated body’s quadrup
momentIjk with the electric-type tidal fieldEjk of an exter-
nal universe is unambiguous, despite the ambiguity in
definition of the massM of such a system. Purdue@2# dem-
onstrated that a gauge change does not lead to any ambi
in the tidal work in general relativity, nor does one’s choi
f

,

06401
to

y
y
-

k
le

e

ity

of energy localization in Newtonian theory. We have sho
that this energy localization invariance carries over into
general relativistic description. In addition, the work
Booth and Creighton@18#, carried out simultaneous with ou
own, supports the conclusions of Purdue and ourse
through an independent, though equivalent, approach u
quasilocal energy techniques.

One of the main motivations for this paper was
strengthen the arguments used by Thorne@4# in his analysis
of the stability of neutron stars against radial collapse
duced by an external tidal field. The motivation for Thorne
paper was to refute the claims of Wilson, Mathews, and M
ronetti@24# regarding the ‘‘star-crushing’’ effect seen in the
numerical simulations of binary neutron stars. We belie
that our analysis has strengthened Thorne’s arguments. Ir
cally, Thorne and I@25# now have reason, based oncurrent
quadrupole tidal coupling, to support the ‘‘star-crushing’’ e
fects observed by Wilson and Mathews@26# in their revised
simulations.

This analysis has only been concerned with the tidal w
involving a mass quadrupole moment interacting with
electric-type, quadrupolar tidal field in the slow motion a
proximation. It seems quite likely that this energy localiz
tion and gauge invariance of tidal work can be extended
higher order multipolar couplings. We will leave the demo
stration of this for the future.
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