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Energy localization invariance of tidal work in general relativity
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It is well known that when an external general relativiggtectric-type tidal field £ (t) interacts with the
evolving quadrupole momef,(t) of an isolated body the tidal field does work on the béttidal work” )—
i.e., it transfers energy to the body—at a rate given by the same formula as in Newtonian thébdy=
- %Ejkdek/dt. Thorne has posed the following question: In view of the fact that the gravitational interaction
energyE;, between the tidal field and the body is ambiguous by an ameuijtZ, is the tidal work also
ambiguous by this amount, and therefore is the forndN#/dt= —%Sjkdek/dt only valid unambiguously
when integrated over time scales long compared to thal;foto change substantially? This paper completes
a demonstration that the answenig dW/dt is notambiguous in this way. More specifically, this paper shows
that dW/dt is unambiguously given by- %Ejkdek/dt independently of one’s choice of how to localize
gravitational energy in general relativity. This is proved by explicitly computig/dt using various gravi-
tational stress-energy pseudotensEmstein, Landau-Lifshitz, Miter) as well as Bergmann’s conserved
guantities which generalize many of the pseudotensors to include an arbitrary function of position. A discus-
sion is also given of the problem of formulating conservation laws in general relativity and the role played by
the various pseudotensors.
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I. INTRODUCTION AND SUMMARY tivity, we consider the interaction between an isolated body
and a complicated “external universgthe precise defini-
For many gravitating two body systems in the universe tion of these terms will be discussed in Sec).llh the most
the primary means of energy transfer from one body to théamll_lar_cases, this external universe may simply refer to a
other is through tidal work. This work is accomplished 9ravitating body such as a star, a planet, or a black hole, that
through the gravitational interaction between the tidal fieldTPits around the isolated body. In such a system it has been
of one body and the mass multipole moments of the othep?OWn by Thome and Hart[d] that the total mass-enerdy

body. A simple example of this is the work that the moongfzth; isoIFaltedIbo.dythis ambiguouds byl an amou{m/]! th
does on the earth as it raises the ocean’s tides. Tidal work ig Zik¢ik» WNEr€Ly IS thé mass quadrupole moment of the

also dramatically evident in the moon lo, which gets heate Sg:éeql_ﬁgd%;gﬁ';nﬁi tnﬁ t'ﬁ:é ?ﬁédscgrgge ﬁxé?égﬂ)ﬁn;ﬁ as
as it travels in an elliptical orbit through Jupiter’s tidal gravi- . guity bny 9

. . . S ) - the ambiguity in the localization of energy in a gravitational
tational field. This heating is the cause of lo’s dramatic Vol-y4, e |t arises from the fact that there is no preferred way to
canism. In these cases it is clear that the tidal work is

> : ffocalize gravitational energy. This is true in Newtonian
physical observable and should in no way depend on one §ravitational theory as well as in general relatiig].

means of calculating it. . . This mass ambiguity shows up mathematically in the fact
The term “tidal heating” is often used in place of “tidal that the nonlinearity of Einstein’s equations could be ex-
work,” but is something of a misnomer. The net pected to produce a term &, Zy /r in the time-time com-
gravitational-energy that is transfered between two bOdie@onentgoo of the spacetime metric outside the basherer
interacting tidally does not necessarily go into heat. It mayis a radial coordinaje and one is free, mathematically, to
go into the energy needed to deform the bddg., raise a move this term or some arbitrary part of it into the mass
tide on i or it may go into the internal vibrational energy of M that appears in the standard equatig=—1+2M/r
the body. The net “tidal work” may also be negative, in + ...,
which case the phrase “tidal cooling” might be more appro- We can also understand this mass-energy ambiguity
priate. Throughout this paper we will take the terms “tidal physically in terms of the standard experiment by which the
heating” and “tidal work” to be equivalent and to mean the total mass-energi of a gravitating body is measured: the
net work done by an external tidal field on an isolated bodyapplication of the general relativistic version of Kepler's law
It seems evident that tidal work should be a “physicalto a test particle in orbit around the body. If the body is
observable;” i.e., the net energy-transfer from one body taspherical and isolated and the orbit is circular, the body’s
another should be a real, physical quantity and should nahass-energy is related to the orbit’s peribdas measured
depend on the mathematics that one uses to calculate thyy distant clocksand its radiug (defined to be its circum-
work that is done. ference divided by &) by M= (r3/G)(2#/T)?2. If the body
In calculating the tidal work for situations in general rela- is non-spherical, with various multipole moments including
the quadrupole moment, , then the moments perturb the
orbit; but if one makes the orbit as circular as those pertur-
*Present address: Department of Astronomy, Cornell Universitybations permit and measures the orbit’s average radius
Ithaca, NY 14853. then theM that appears in the monopoler 1part of the
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gravitational field is still given accurately, to first order imagine measuring the body’s total mass-endvijy(e.g., by

in the moments, by the relativistic Kepler lav using the relativistic version of Kepler's layvsThat mea-
=(r3/G)(2/T)2. The perturbations, being non-monopolar, sured mass-energy with tidal fiel@nomentarily gone can
disappear when averaged over the orbit. Similarly, if thebe regarded as the body’s self-eneff§yy (including rest
body is precisely spherical but is perturbed by a weak, exiass. This measured self-energy is unambiguous. Now, turn
ternal tidal field &, then accurate to first order in those the tidal field back on and allow the system to evolve nor-
perturbations we can still compuké by this averaged-radius Mally for some timeAt. Then, turn the tidal field off and
formula; again the perturbations average to zero over th&ake a second measurement of the body’s total mass-energy
orbit (provided that the timescale on which, changes is My in the same manner as before. The differeMe-M;

long compared to the orbital peripdHowever, if both a  between these two measurements is the change in the body’s
quadrupole moment;, and an external tidal field; are Sel-energyAEs. This is the work\ done by the tidal field
present simultaneously, then the prodégtZ;, is monopolar ~ 0N the isolated body. We can then conclude that, since these

in nature and has dimensions of mass; and correspondingfj}éasured changes in the body’s self energy are unambigu-
Keplers law with an average radius will givev  ous,dW/dt=dEgy/dt andW are also unambiguous.

+O(EjZ;)- Thus, one cannot measuké directly by Ke- It is possible to test Thorne’s claim in a manner based on
pler's law. We shall discuss this mass ambiguity further inthe following considerations: The self-energy, defined in the
Sec. lIl. above manner, will not change when the tidal figld(t)

Zhang[3] has used the Landau-Lifshitz pseudoterisme ~ changes, but the shape and size of the body are held fixed
of an infinite number of ways to localize gravitational-field and thencej is held fixed. This is just a restatement of the

energy to derive the expression fact that a force can do no work if there is no displacement.
However, if Z;, changes, withtj, held fixed, thenEg; can
dw 1 dZ, change. This means that the unambiguous tidal work must be
T Eik T (1) of the form dW/dt=dEg./dt=(some constanj &, dZ;/

dt. The interaction energy, by contrast, should have the form
. . . _ ) of a product of the instantaneous tidal field and quadrupole
for the rate at which a time-evolving tidal fielf(t) does g nent 50 its time rate of change should be a perfect time
work on a body with time-evolving quadrupole moment y iy ative dEy/dt=d/dt[ (some constanty £, Ty ]. The

Zx(1). In view of the body’s mass ?mbiguit&M~Sjr,](Ijk ,h body’s total massM must be the sum of its self-energy and
Zhang (and also Thorne and Hartle]) asserted that the " nortion of the interaction energy that resides inside and

work done should be ambiguous by an amowniM, and  hear the bodyi.e., within the orbit of the test particle that
thus Eq. (1) should instead be written asIW/dt o ,ses in applying Keplers third law to compute the

=(—3jdZ;, /dt) and would be valid only when averaged magg  therefore  dM/dt=dEe/dt-+dEq, /dt=dWdt
over timescales long enough @/ to build up by an amount +dE,/dt. If we expressdM/dt in the form
int/ dt.

large compared td M = &, Z;y . This occurs, for example, in
the long-term tidal heating of lo, during whick and dM a7
dZj/dt oscillate partially in phase with each other, produc- —=(consDX8-k—Jk+(c0nsn><
ing a cumulative work that goes into heat. dt o dt

More recently Thorng¢4], while analyzing the effects of
tidal forces on the stability of relativistic stars, claimed onthen the first term must béW/dt and the secondE;,;/dt.?
physical grounds that Zhar{@] and Thorne and Hartlgl]  If Thorne is correct in his claim thatW/dt is unambiguous
were wrong: The ambiguitAM actually resides solely in and that the total ambiguity adM/dt resides indE;,/dt,
the energy of gravitational interactidf),, between the body thenany computation ofdM/dt using any(general relativ-
and the external tidal field and not at all in the body’s selfistically acceptablelocalization of gravitational energy must
energyE.g (i.€., the total mass-energy contained within thegive —1/2 unambiguously for the coefficient of the first
volume of the body, and correspondingly not at all in the term, while different localizations should give different val-
work done by the tidal field on the bodyy= (change in ues for the coefficients of the second term.
E.erf); SO the rate of work done is unambiguously and instan- Purdu€[2] has carried out detailed calculationsddfl/dt
taneously given byW/dt=— % jkdek/dt.l in Newtonian theory using all possible localizations of the

An operational variant of Thorne’s argument is this: Con-gravitational energy and has found that, indeed, the first term
sider a body on which tidal work is being done by the inter-in Eq. (2) always has the coefficient 1/2 while the second
action between its time-changing quadrupole monfgyit) depends on the localization. Purdue has also verified that in
and some external time-changing tidal figlg(t). One can general relativity, if one uses the energy localization embod-
imagine, at any moment of time, turning off the tidal field ied in the Landau-Lifshitz pseudotensor, but performs gauge
while holding the body’s size and shape unchan@edirst  transformationginfinitesimal coordinate transformationsn
order in the tidal fielfl With the tidal field gone, we can the spacetime metric, the first coefficiefihat associated

d[&jkZi]

a @

Thorne[4] needed this result as a key underpinning of his proof 2After this paper was submitted, it came to the attention of the
that tidal coupling stabilizes a star against gravitational collapse. author that Mashhoofb] has derived an equation of this form.
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with dW/dt) remains always-1/2, while the secondthat TrY =0, (3
associated witll E;;/dt) changes with the changing gauge.

In this paper we shall complete this test of Thorne’swhere T#” is the symmetric energy-momentum tensor of
claim: We shall verify that, when one changes the generamatter that appears as a source term on the right-hand side of
relativistic energy localization by changing one’s choice ofthe Einstein field equations
pseudotensor, the first coefficient in Eg) remains always

—1/2 while the second changes and tkpartially) embodies GHY=8mTH". 4
terlgyammgumes present in localizing gravitational-field en_By matter we mean all fields with the exception of the gravi-

tational field.

As a foundation for demonstrating this we first discuss in o :
In general relativity Eq(3) is not an acceptable conser-

Sec. Il of this paper the problem of formulating covariant . o ; e
bap P 9 vation law as it is not a tensor equation valid in all reference

conservation laws in general relativity. This is an underlyingf ames. Instead we must use the covariant derivative in place
issue throughout this paper as the lack of an acceptablé -1NS einp

energy-momentum tensor for the gravitational field couldOf the partial derivative and our equation becomes

possibly be a source of ambiguity in the calculation of the TEV. =THY +TOTE 4 TRV — (5)

tidal work. We also discuss some of the various pseudoten- Y v 7 7

sors and conserved quantities that are used to descrignherel'#,, are the connection coefficients. From E8). we

gravitational-energy localization. can see that the mass-energy in matter fields is no longer
In Sec. Ill we discuss the assumptions that go into oulgonserved as energy can now be transfered between the mat-

calculation of the tidal work. A key issue is that our calcu-ter and the gravitational field. The quantity that is actually

lations are performed in théocal asymptotic rest frame conserved in the sense of E@) is someeffectiveenergy-

(LARF) of the body on which the work is being done. This momentum tenso” of matter plus gravitational fields

means we are able to formulate oraipproximateconserva_— which is given(in one variantby Eq.(20.18 of MTW [8] as
tion laws for our system. These laws are formulated in a

buffer zonewhere the gravity of the isolated body is weak THY=THV 4 thY, (6)

and the tidal field of the external universe is uniform. The

spacetime metric of this buffer zone is described in Secwhere t** is an energy-momentum pseudotensor for the

A, gravitational field. In other variants, some of which are en-
We then calculate the tidal work using the Einsteincountered below, Tgﬁvz(_g)nIZ(TwHM), where g

pseudotensaiSec. Il B) and review the calculation given by =deflg,4| andn is a positive intege?. For each of these

Purdue[2] using the Landau-Lifshitz pseudotens@®ec. & the equation*.,=0 can be rewritten as

II1C). In Sec. llID we perform the calculation using the °© "

pseudotensor of Mter [6], which is significantly different T4 =0, (7)

from the two previously mentioned pseudotensors, and in '

Sec. lllE we examine the calculation using the conservendT4¢ can be written as the divergence of some “superpo-

quantities found by Bergmanfv]. Bergmann's conserved tential” H*["”] that is antisymmetric in its last two indices
quantities generalize many of the pseudotensors, including:
those of Landau and Lifshitz, and Einstein. Each of these

calculations gives the same, standard resditv/dt= Thy=H~vol 8
—%Ejkdl'jk/dt for the tidal work, in agreement with
Thorne’s assertion. Square brackets indicate antisymmetry of the tensor when

Throughout this paper we adhere to the conventions ofhe enclosed indices are swapped. Notice that Bdfollows
Misner, Thorne, and WheeléMTW) [8]. Space-time indi- from Eqg.(8) by differentiation and symmetry.
ces are represented by Greek letters and spatial indices by As mentioned above”” is not a true tensor, but rather is
Latin letters. We use units whef@=c=1. The constant on apseudotensathat describes the localization of gravitational
the right-hand side of the Einstein field equationst+i§« energy-momentum. Th&t” is not a tensor is a fact inti-

and the Minkowski flat-space metrig,; has signature <, mately linked with Einstein’s equivalence principle. Since
+,+,+). we are always free to choose our coordinates in spacetime to
correspond to a freely falling frame where the acceleration
Il. CONSERVATION LAWS AND PSEUDOTENSORS vanishes at a point, we can equivalently choose a frame

where the gravitational field vanishes at that point. In such a

The formulation of covariant conservation laws has beerff@me all the components of " will likewise vanish at that
a problematic issue since general relativity's formulation inP0int (provided one is using Minkowski coordinajesiow-

1916. The issue has been addressed by a large number ®f€" in any other reference frame, there is no reason why all

authors and some continue to work on this problem.

If one considers a system without gravitational fields, as
in special relativity, then the differential conservation laws 3we will sometimes refer to scalars, vectors and tensors with fac-
for all matter and energy fields present are given by the fators of (—g)™? in front as scalar, vector and tensdensitiesof
miliar formula weight n.
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the components df“” should vanish. Since any tensor that 1

vanishes in one reference frame must vanish in all reference L£=T16- V=997 )07, — T, [7,). (12
frames, we can conclude that” is not a tensor but a

pseudotensor, and quantities calculated from it will depengEquation(11) then becomes

on the choice of one’s coordinate system. To make matters

worse,t*” is defined only up to a vanishing divergence, so aL

there are an infinity of expressions fgt” corresponding to ‘/__gE W= (99— 9apu= "L, (13

an infinite number of ways in which one can localize the ap

gravitational energy-momentum density. and again the Euler-Lagrange equations guarantee that

Despite their rather unpleasant nature in a theory so firmlx\/—_gEtMV)’V:o in vacuum and:%,” ,=0 where
rooted in the principle of general covariance, pseudotensors
have proved to be rather valuable calculational tools, espe- g%, = \/—_g(TM”+ et,”) (14
cially in gravitational-wave researdsee for exampl¢10]). _ . '
The reason is that, despite their noncovarianceTiecan ~ When matter is present. The tensor densiy,” is often
be used to compute covariant conserved quantities. For exeferred to as a “total energy-momentum complex;” it is the
ample, one can compute the total 4-momentum of a systerinstein variant of thé¢; discussed above.

that resides alone in asymptotically flat spacetime by the From Eq.(13) we arrive at an explicit expression for the
volume integral Einstein pseudotenst3]:

1
Pr= f T4 b, © Vet = o (s 35T o) (PV=0) = 6,"L).

(15
where d®x=dx*dx?dx® is a 3-volume element of constant
time. Even though the integrand depends highly on one’&ote that raising or lowering an index for this pseudotensor
choice of coordinate?* is a true vector that resides in the does not produce a symmetric quantity, so we are unable to
asymptotically flat region. form a conserved angular-momentum complex from it.

Using Gauss’ law and the antisymmetry properties of the It was shown by von Freud.4] that the Einstein complex

superpotential, it is also possible to express the 4-momentugan be written as the divergence of an antisymmetric “su-

as a surface integral: perpotential” ULF :
v__ [vo]
PM:J H,u[Oa'] UdSX: § H,u[Oj]nj dZS, (10) E‘Iﬂ _FU’u o (16)
where
where n; is the unit normal vector to the surfac It is
important to note that these integrals must be evaluated using Ul — _ 1 Guo [~ g(gF g™ —g7"gf)}
an asymptotically Lorentz coordinate systém. P 167 \—g LN

17

We can now form expressions for the covariant compo-

The first pseudotensor was formulated by Einstein inyents of the 4-momentum of an isolated system by means of
1916. The Einstein pseudotensor is often referred to as tths_(g) and (10):

“canonical” pseudotensor because it is derived using the

A. The Einstein pseudotensor

general formula for the energy-momentum tensor of a clas- _

sical field with Lagrangian densit§ and field variables;,, Pﬂ:f 2,0 d°= % U0, 2s, (18
which may be tensors of any rank. In flat spacetime this

general formula is given bysee, e.g., Goldsteifi2]), where the first integral is over the system’s entire volume,

and the second is over a closed surface near spatial infinity
(11) (in the as_ymptotically flat region of spaceti)nBecguse of
the peculiarities of the pseudotensor, the above integral can
) only be interpreted as the covariant components of an
and the Euler-Lagrange equations guarantee Tét,=0.  energy-momentum 4-vector if one is using coordinatés
In general .relat|V|ty, the field variables are the gompo_nents:(tixlyiz) in which the metricg,; asymptotically ap-
of the metric tensog,,,, and the Lagrangian density is given proaches the Minkowski flat metrig,; .
by To illustrate the coordinate dependent nature of the
pseudotensors, we provide two well known exampgfasn-
tioned by Mdler [6] and Anderson15]). If one were to
“However, it should be noted that Nahmad-Achar and Schuify ~ calculate the integraf gto® d3x for the Lorentz metriay, s
have devised a prescription for calculating pseudotensor-based cof 7,4, its value would be zero, the expected energy for a
served quantities for isolated systems in general relativity usingegion with no gravitational field. However, if we merely
coordinate systems with arbitrary asymptotic behavior. change to spherical coordinates, the value of this integral is

aL

w &nA,v

77A,,u,_£5

o
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infinite even though spacetime is flat. Similarly, evaluationMdller additionally restricts the form of,%, by requiring
of the integral for the Schwarzschild metric only yields thethe following conditions(see also Komaf16)):
massM if one uses coordinates such tigal; maps toz, (1) It must be identically conserveq;T,” ,=0.
asymptotically ag — . (2) The integral over some 3-volume of constant time of

Despite the restrictions on the use of this pseudotensor, i,g,zﬂ ¥ must produce the same resulis an asymptotically
has still led to the reliable prediction by Einstein that gravi- Lorentz coordinate systenas Eq.(18):
tational waves exist and carry a definite energy.

T °d3x:f 7,0 d3x. 26
B. The Landau-Lifshitz pseudotensor f M=u B (9

Landau and Lifshitz(LL) [9] were able to formulate a (3) uT,° and 4 T,” behave like scalar and vector densi-

symmetric pseudotensor, thus allowing the construction of &es under arbitrary changes of tspatial coordinatesteW
conserved total angular-momentum complex. Their con-

e = FJ (X34, X5 X5 » X3ew=X0ig- This allows one to change
?_%\;eg ;]?\:Zln E;ergy-momentum complétkeir variant of the coordinate system from say, Minkowski to spherical, but
eff

not to change the way one slices spacetime into space plus
time.

(4) Under linear transformations,,¥,” behaves like a
mixed second-rank tensor.

With the further restriction that it not contain higher than
second order derivatives of the metric,/ Mo explicitly ex-
THr (20) hibits a unique energy-momentum complex with these prop-

Loy erties, and he shows that it can be written as the divergence

of the following antisymmetric superpotentig],[*!:

T =hel = (=) (T +{), (19

(whereh#l*?1 is defined belowand satisfies the usual prop-
erty

The explicit form oft{{” is long and complicated. It is given

by [vo]
ax 1 9
T == o= 5[V 0(9ua s~ 9up.)9"797"].
(—g)tl’=[Eq. (20.23 of MTW] @n MTH ax 8 dx pah Sub o
=[Eq.(96.9 of LL]. (22) The Mdler superpotentiaIXEf"] is related to the von

The LL superpotentiah#l”?! is related to that given by Freud superpotentill5, 16

von Freud by{15] X A=20lr =5, veulol 5 ouled o (28)

hulrel=[—ggrreulrl. (23) Like the Einstein pseudotensor, the/ Mo complex is not
symmetric and thus cannot be used to form conservation
The LL pseudotensor is related to the Einstein pseudoternaws for angular momentum. Moreover, unlike the com-
sor by the following formuld15]: plexes of Einstein and Landau-Lifshitz, the/ o complex
is not entirely quadratic in the first derivatives of the metric
(—t’'=(—9)g"et,”+(V—gg"?) ,sU,l*). (24  but has a term that is linear in the second derivatives of the
metric. As pointed out by Mgller hims€l6], this means that
As in the case with the Einstein pseudotensor, integrals of, <, ” will generallynotvanish in a local Lorentz frame with
the Landau-Lifshitz pseudotensor also produce strange rgro matter present. This will become an issue in Sec. IlI,
sults in curvilinear coordinate systems. Asymptotically Lor-when we use the ¥er complex to calculate the tidal work.
entz coordinates must again be used if one wants sensible

results. D. The Bergmann conserved quantities

Recognizing that conservation laws are related to the in-
variance properties of physical laws, and combining this with
The Mdler pseudotensoff6] is significantly different the fact that the equations of general relativity are invariant
from the two complexes mentioned above. In deriving hisunder arbitrary coordinate transformations, Bergmawh
pseudotensor Mker sought to eliminate the problem that the proposed that to each infinitesimal coordinate transformation
integral given in Eq(18) yields strange results if one con- there would correspond a conserved quantity. Making use of
verts to curvilinear coordinate systems. various identities, Bergmarii¥] constructs a relationship be-
To define his pseudotensor,/NMer makes use of the fact tween an arbitrary vector fielg” (which may be thought of
that one can always add a quant8y” to the Einstein com- as producing infinitesimal coordinate transformations on the
plex and still retain energy-momentum conservation, prometric) and the generatoiG” of these transformations:
vided thatS,” ,=0. The new total pseudotensor complex
(matter plus gravitational fieldswill thus have the form J-gG**sg,,+C? =0, (29

C. The Mdller pseudotensor

M =%, +S,". (250  where
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89,0= = (£,v T E0p). (30 There have also been efforts to find an energy-momentum
tensorfor the gravitational field. Shortly after relativity was
Bergmann choose€”=2\—gGr’¢, as a solution to Eq. formulated, Lorentz and Levi-Civita proposed that the Ein-
(29). However, one may always add an arbitrary curl fieldstein tensor G** be used as a gravitational energy-
vlrel to CP and still satisfy Eq(29). Bergmann chooses momentum tensor. This however, did not prove fruifful.
this curl such that the resulting expression contains no highgyost recently, Babak and GrishchiiR1] have shown that
than first derivatives of the metric. His final expression satwhen one formulates general relativity as a non-linear field

isfying Eq. (29) is theory in flat spacetime, then there exists an energy-
_ . o 1\l momentum tensor for the gravitational field that has all the
CH=287V=gG,*+(£7gU ™) . (3D nice properties one might wish. This energy-momentum ten-

Equation(31 i K d it sor is the Landau-Lifshitz pseudotensor with partial deriva-
quation(31) represents a weakly conserved quantity, meanses replaced by covariant derivatives with respect to the

ing that it satisfiegf‘vﬂzo whenever the vacuum field equa- f|at-background metric.
tions are satisfied G#"=0). The corresponding strong

conservation law i* ,=0, where Ill. CALCULATION OF THE TIDAL WORK

D“E(g"FUE,‘”])'VEC“—2\/—_9(30“5", (32 In calculating the tidal work, we consider a system con-
sisting of anisolatedbody that interacts with a complicated
as can be easily shown if we make use of the antisymmetrgxternal universe in theslow-motion approximation. The
of fUL**) and the commutativity of partial derivatives. bodly is isolated in the sense that the radius of curvaklio
From this strongly conserved quantity Bergmann con+the external universe and the length scélen which this
structs the 4-momentum in the same manner as we did frorsurvature changes must both be large when compared with
Eq. (9): the sizeR of the isolated bodyR/R<1 andR/L£<1. This
means that the external universe is not subjecting the isolated
PM:I D* d3x. (33) body_to very strong gravitational field@s would happen
e.g., in a neutron star and black hole close to mergad
that the tidal field of the external universe is nearly uniform

. s . [uv]
Using Gauss’ law and the antisymmetry @0;°", we can i, the region near the isolated body. By slow-motion, we

write the =0 component as a surface integral, mean that the time scatefor changes in the mass and cur-
‘ rent moments of the body and the tidal field of the external
pO= f# €U0, a2, (34)  universe are small compared to the size of the bdriy:

<1. If this were not the case, we would have to worry about
According to Bergmann, from the weakly ConserVedchanges in the mass-enerlylydue to gravitational radiation
’ and other higher-order effects. For detailed discussions of the

e —/"' . .
guantities C#, expressions equivalent to several of theconstraintsR/R<1, RIL<1, andR/r<1, and of various

pseudotensors can be derived by making specific choices f%rpproximations based on thefwhich we shall use below

a H {0 pu— a g
¢”. For example choosing”=k”, wherek” is a constant ~ cqq Thome and Hart[@] and the recent paper by Purds,
vector, yields the canonical Einstein expression contractea/hose analysis we are continuing

with k7, while settingé”=\—gg”?k, yields the Landau- Some examples of isolated, slow-motion bodies discussed

Lifs_hitz expre_ssion c_ontracted_ wiltf. We have been unable by Purdug2] include (i) a compact object such as a neutron
to find a similar choice that yields the Mer pseudotensor. - giar or black hole in a binary inspiraling system that is not
We believe that this is due to Bergmann’s choice of the curlyq ¢jose to merger; an@i) Jupiter's moon lo, which gets

field virel , containing no second derivatives of the metric. jiga|ly heated as it travels through Jupiter's tidal field in an
Recall that unlike most other pseudotensors, thélélaom- elliptical orbit.

plex contains second derivatives of the metric. Our calculation of the tidal work involves computing
_ _ dM/dt, the rate of change of the mass of an isolated body,
E. Other formulations of the conservation laws and then expressingM/dt in the form of Eq.(2) and read-

Aside from the method of using pseudotensors to formuing off the two coefficients. We use the multipole moment
late conservation laws in general relativity, there exist sevformalism discussed in Thorri@2], and Thorne and Hartle
eral other approaches as well. One of these is the method bt and treat gravity as a non-linear field theory in flat space-
quasilocalenergy, a covariant definition of energy that arisestime. The computation ofdM/dt is carried out as a
from a Hamiltonian formulation of general relativity. For a 2-dimensional surface integral of a pseudotensor in the
discussion of the equivalence of the quasilocal and pseudoPuffer zone”or local asymptotic rest fram@ ARF) of the
tensor approaches to gravitational energy-momentum, see
Chang, Nester, and Chga7]. In parallel with this present
research, Booth and Creightfh8] have calculated the tidal  S5ror an excellent discussion of the exchange that occurred be-
work using the Brown and Yorkl9] quasilocal energy ap- tween Einstein, Levi-Civita, Lorentz, and others concerning conser-
proach, and have arrived at the same result as we dedugetion laws and the prediction of gravitational waves, see the article
below using various pseudotensod$h/dt=— 3 ikdZ; /dt. by Cattani and De Mari§20].
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isolated bodyfsee Eq.(2.39 of Thorne and Hartl¢1] ]: ably our results can be generalized to higher order moments,
but we shall not attempt to do so here. Correspondingly, in
d_M: _ j; 10 425 (35) our analysis we shall consider (_)rM, ij andé&jy . _
dt ! Keep in mind that when we identify a mab&as in Eq.

(35), we are only doing so in an approximate sense. This is
whered®S;=n;rd() is the surface element of a 2-sphéi¢  because the mass, momentum, and angular momentum only
in the buffer zone that encloses a voluteand has unit  have precisely defined values in an asymptotically flat space-
normaln; and solid angled(). This buffer zone is a region time. As our spacetime is onlgcally asymptotically flat, the
that surrounds the isolated body but is far enough away thajonservation laws only givapproximatevalues of the mass,
gravity in it can be considered weak. At the same time, it ismomentum, and angular momentum in the buffer zone where
close enough to the body that the tidal field of the externakpacetime ispproximatelyasymptotically flat.
universe appears homogeneous. The buffer zone can be de-In particular, as we discussed in Sec. |, there is an ambi-
scribed more precisely2] as the region wher@/L<1,  guity in the mas of the isolated bodAM ~Z; &k . If Zj,
rR<1, andM/r<1, r being the radial distance from the s oscillating in time, then this ambiguity is of the same order
isolated body. The rate of change of mass-energy through thgs the amount of energy that is transfered between the iso-
surfacedV is dM/dt, andM is the total mass-energy inside lated body and the external universe by tidal work during
V. Note that our analysis is thus valid even for a stronglyone period of oscillation. We can understand this ambiguity
gravitating body such as a black hole, provided there exists more clearly by examining the time-time part of the metric in
buffer region around it where gravity is weak, the externalthe buffer zond2]:
curvature is nearly uniform, and the spacetime curvature is

not changing too rapidly. 2M X3P X
For the purposes of our discussion and to the order that Joo=—1+ T+3Iab o —EapX®°+ -,
our calculations are valid, there are only three relevant pa- (37)

rameters that characterize the spacetime:

(1) The total mass-energyl of the isolated body.

(2) The quadrupole momeri of the isolated body,
which, in the limit of weak gravity, is given by

wherer is the distance from the center of the isolated body as
measured in its local asymptotic rest frame. We have omitted
terms involving higher order mass and tidal multipole mo-
1 ments(e.g., octupole moments,; and&) and also terms
7 :f (PXij— 3 5J-kr2)d3x. (36) that are products oi, Z;,, and&j, which result from the
nonlinearities of the Einstein field equations. One of these

(3) The tidal field of the external universe is given by nonlinear terms has the form

Ex= RJOkO, whereR,, 4,5 is the Riemann tensor of the exter- T.€
nal universe. 8gog~
Note that bothZ;, and & are symmetric and trace free r

tensors that reside in the buffer zone, and that we are using

coordinates that are as Lorentz as possillith respect to  which has the same form asvldr, that is, (monopoley/,

the physical metric throughout the buffer zone; i.eg,;  and which has a coefficient that is gauge dependent. The

= NaptO(M/r)+0O(ZIr3) +O(&r?). TheseZ;, and&;, are  similarity in structure betweeM/r and (Z;&j)/r implies

spatially constant in the buffer region but they may dependhat it is possible to move portions of the gauge-dependent

on time. term given in Eq(38) into or out of the M/r term. One can
The body has additional multipole moments: the curreninterpret this as meaning that the madghat one reads off

quadrupole momens),, the mass octupole momef,, the metric is ambiguous by an amount on the order of

etc; and the external universe has additional tidal fields

of “magnetic-type” (Bjy,...) and “electric-type” AM~Zy & - (39

(& - -+ ), seee.g., Thorne and Hartlgl]. These moments

and tidal fields can couple to each other to produce tidal Purdue[2] shows that this ambiguity is also present in

work: dW/dt~ B dSj /dt & &y dZj, /dt & - 21n some  Newtonian theory in the form of an ambiguous gravitational

situations these contributions ¢dA/dt might be larger than interaction-energy inside and near the body. More specifi-

the one, dW/dt~ & dZ; /dt, that we are studying, but typi- cally: The total mass-enerds, enclosed in the volum&

cally the mass quadrupole will dominate. In this paper wecan be expressed in Newtonian theory as

restrict ourselves to the mass quadrupole term, whether or

not it dominates the tidal work, because we are seeking to Ey=Eseirt Eet Eint (40)

discuss an issue of principle first raised by Thorne and Hartle

[1]: the non-ambiguity of thej, dZ;, /dt tidal work. Presum- \\hereE_is the isolated body’s self-energwhich depends
on the body’s rest-mass and internal energy density distribu-
tions), E. is the external field energy inside the volurie
®Here, the symbol “&” means “plus terms of the form...”; see (which depends only on the external tidal figlg), andE;y
Thorne and Hartlé1]. is the interaction energy insidé and is given by

(38
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We impose separate gauge conditions on the limgar
Zikik - (41)  and quadratik, parts of the metric. The linear part of the
metric has been calculated by Zhaf&] in the de Donder

Here the coefficient depends on one’s choice of Newtonian 98uge and is used by Purd{] in her analysis. The de
energy-localization. For examplsee Purdug2]), the choice Donder gauge in linear ordeis given by the condition that
=0 localizes all of the gravitational energy in the field, soh*” ,=0, whereh”" is the trace reversed metric perturba-
that the total gravitational energy is given by a volume inte-tion:
gral of (Vd)?/(8) (which should be familiar from electro-
staticg. Alternatively, the choicer=1/2 localizes the gravi- YLy 1 wvp 43)
tational energy entirely in the matter, so the total- 2 T
gravitational energy is given by a volume integral gf®.
Herep is the mass density, so clearly it vanishes outside thén terms of the metric perturbatidm,; we can write this as
material of a gravitating body. the condition

From Eq.(40) we can see that a Newtonian calculation of
dE,/dt (which is analogous to our general-relativistic calcu- v :} ho (44)
lation of dM/dt) will include a term that is the total time 20
derivative of the interaction termE;,. Our general-
relativistic calculation will also have an interaction term of whereh is the trace oh
this same form, where the coefficient in front depends on the
energy-localization scheme. In the Newtonian case, Purdue h=h,*= 7" h,z. (45)
shows that, despite the ambiguity dE;/dt, the rate of
change of the body’s self-energlEg.;/dt is given unam-
biguously by the tidal work formula dEgg/dt
= —%Ejkdek/dt. Our general relativistic analysis will pro-
duce this same conclusion.

2+«
10

int=

To the order we should need in the slow-motion approxi-
mation(neglecting second and higher order time derivajives
and ignoring higher order multipole moments
(Zixi » Sjk» €k » Bjk» etc), the linear part of the metric is
given in Cartesian coordinates and de Donder gauge, accu-
A Metric in the buffer zone rate toO(e) in the buffer zone, by3]

In our calculation we will consider general relativistic M ijXixj o
gravity not as a geometric phenomenon involving the curva- hoo=—2¢=2—-+3—7 —&ixx, (46)
ture of spacetime, but rather as a non-linear field theory in r
flat spacetime. We treat the field variablglse metric com- )
ponentsg,z) as a perturbative expansion in some dimen- he A:_ZIjaXa_ LY
sionless parameter which is actually the gravitation con- 0 r3 21
stant,G=1 in our system of units. Thus, terms Of ¢) are (47)
linear perturbations around flat spacetime; termsO¢&?)
are quadratic, etc. All raising and lowering of indices is done M
with the flat Minkowski metricz,,z . hij=—2® 5= §;; ZT+3

Our three parametend, Z;,, and & can all be consid- r

ered linear ine. In our calculation of the tidal work, it is . . :
clear from the form of Eq(2) that we may also need to where® is a scalar potential analogous to that of Newtonian

consider terms in the metric that are quadratie jras such ~ 9ravity andA; is a vector potential that has no Newtonian

: log.
terms may go ag;&jx. We thus expand the metric up to analo . . -
quadratic order: This metric, by virtue of the de Donder gauge conditions

and the approximations mentioned above, satisfies the fol-
Uup= Nap+ehap™ 82kaﬁ. (42) lowing relations, which we shall use in our calculations be-
low:

¢ aybyj i a2
abxxx+2181axr,

Iinin i
s XX | (49

whereh,; contains terms that are linear M, 7, , &, and
their time derivatives, whilek,, contains terms that are Ajo=0, (49)
products of any two of those three quantities and their first

time derivatives(for exampleMZ, 7Z, Z&, &€, etc). Any Ajj=—40,, (50
terms that are cubic or higher in the perturbation expansion ”
cannot contribute to the tidal worlwvhich is itself of order Nue”=0, (51)
¢?) and can be discarded at any point in the calculation. "

Since the mass quadrupole momgptand the tidal field h ,7=0. (52

& are spatially uniform in the buffer zone, the spatial gra-

dients of these functions vanish. Furthermore, sif\eel/r,

the slow-motion approximation allows us to ignore all sec- “The general de Donder condition is given by” ,=0, where
ond and higher order time derivatives Bf and &y . g"'=\—gg"".
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To compute the quadratic part of the metkg, one  Applying the de Donder gauge constraifdgl), we see that
would have to solve the second order Einstein field equathe first and second and the seventh and eighth terms cancel
tions. It turns out that for the pseudotensors we are consideach other.
ering, a suitable choice of gauge will make the direct calcu- From Eq.(58) we see that we only need to evaluate the
lation of k,s; unnecessary. This specific gauge will be gty terms. These terms evalute
discussed later.

Other formulas that will be useful in the calculations that I j:i A
follow are given below, accurate up to ordet: 9elo' =77 PP, (60
g*h=n*P—eh*P+e2n*vh F— 2k P, (53)  Using Eq.(46) we see that
af =5.9+0 83 , 54 15 L XaXpXeXgXi 3 . XgXpX
9779, Y (e7) ( ) (I),ch,j ZZ Zabgcd% - E Ijagbc%
—g=del(g,z) =1+eh+ 1 e?(h>~h*fh,z)+&%k,  (55) 3 XaXpX
«, « 1 . a C
2 5 Zanbjc— 5 (61)
wherek is the trace ok, z. Taylor expanding Eq55) about  Note that we have ignored terms that go IM&M, MZ, M&,
e, we also have, accurate to ordef, IM, IZ, EM, and &€ as they do not contribute to the tidal
1 1 1 1 1 work. That these terms do not contribute is apparent if one
[~g=1+ = ch+= 82(_ h2— = h*Ph 4|+ = &%k, considers that the tidal work must arise due to a coupling
2 2 \4 2 2 between the mass multipole moments of the isolated body

(56)  and the tidal field of the external universe. This, combined
1 1 with dimensional considerations, implies that only terms of

——=1——¢h+ 1 82(1 h2+ 1 heBh ) 1 &2k the formZ& andZ€ can contribute taW/dt. Also we do not
\/—_9 2 2 4 2 “F)2 worry about spatial indices being up or down since we are
(57)  using Cartesian coordinates.

We must now evaluate the surface integral given in Eq.
58). Note that keeping our calculations accurate to oeder
justifies our setting the factor of —g on the left-hand side
of Eq. (60) to unity. To perform the surface integrals over the
terms in Eq.(61), we first note that since the multipole mo-

We wish to calculate the integral given by Eg5) for the ~ ments do not vary spatially in the buffer region, they can be
rate of change of mass-energy of the isolated body using theulled out of the integrals. The surface integrals that remain

We are now ready to compute the tidal work using various(
pseudotensors.

B. Calculation of tidal work using the Einstein pseudotensor

Einstein pseudotensgr geto) : are all of the form
d™m .
o % \/—gEtOJnjrde, (58) NaNpNe . . . N, dQY, (62

wheren;=x;/r is the unit normal to a surface lying in the Where Na=X,/r is a component of a unit radial vector.
buffer zone at some radius anddQ is the solid angle on Evaluating such integralgsee Sec. IIB of Thorng22]) we
that surface. If we look at the form af—get,,” given by Eq. finally arrive at

(15), we can see that in order to obtain an expression that is dM 1 d7 d/3
accurate up to order? we only need to expand the metric to - —-_Z .k_Jk + _(_ TiEix
ordere. This means that we can ignore all terms appearing in dt 2 7% dt  dt]10
Egs.(42), (53)—(57) that go ase?. Equation(15) thus takes
the form(in a general gauge

. (63

We can identify the second term in the equation above as
the analog of the Newtonian interaction-energy given by Eq.
&2 (1 1 (41) where the Einstein pseudotensor localization corre-

\/—_gEtM”=F[§ h, =7 h,h"=he? h, sponds to the choice=1. That this term is in fact the de-
m rivative of an interaction-energy term is apparent if one con-

1 1 1 siders that the interaction enerdy, between an isolated
t3 h“B,Mhaﬁ'V—Z h,Mh'V+§ h ,h* , body and the external universe must depend only on the
instantaneous fields and can only be given by a product
1 1 1 ~Zjk&k - The rate of change of this interaction energy must

- 6#V(§ h h?® ,— 7 h h?Y— > h*?*h

ay,o

+ E haovh _ (59 8part of this calculation was performed using the tensor algebra
4 any packagesRTENSORII[23].
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then be a perfect differential. Also, a term that goes like Using the metric given by Eq42) in Eq. (27), we arrive

~7, & could not contribute to the tidal heating since noat the form of the Mder total energy-momentum pseudot-
work is done if the isolated body does not charjgst as no  €Nnsor, correct up to order, in a general gauge:
work is done if a force is exerted but no displacement re- Y o b - o b S
sults; see Sec. | for further discussion. Thesepfacts indicate” 8% = (N7 =N, )+ 8K, K
that the first term in Eq(63) is the tidal work while the 1
second term is the rate of change of the interaction energy + > sz(h,,,h,["”+hhﬂ”,v”—h,ghﬂv'”
between the external universe and the body; cf. (EJ.

_ hhﬂv,og)+82(ho—a,ohﬂv,a+ haahﬂv‘ag

C. Calculation of tidal work using the Landau-Lifshitz —h?* Jh,"—h7®h,, ,*+h"E h, g7
pseudotensor s 8 s
g 14 o 14 g
+h""h, 5 ,7—h"’ ;h,7 ;—h"Ph ). (65

The calculation of the tidal work using the Landau- #po

Lifshitz pseudotensor is very similar to that for the Einsteinis \ve work in de Donder gauge to linear order we can use

pseudotensor shown above. This calculation was performegqs_(46)_(48) for h_.. However. we still do not know the
by Purdue{2] and we will only summarize her results here. ¢y of k 5. B ’

Since the andau—Lifshit; pseut_jotensqr, Ii.ke the Einstein Fortunately, we can make use of the vacuum Einstein
pseudotensor, is quadratic in the first derivatives of the metgq 4 equations
ric, one only needs to expamg ; to first order ine. We thus
only negd to cop3|der the linear part of the metrglcf:g yvhen Ruy=T%,, =T+ T 8, ~T T8, =0
evaluating the integral in E(58) [where y—ggt,” is re- (66)
placed by g)t{{].

Evaluating this integral and keeping only terms that con-o solve for the derivatives &,z as they appear in E¢65).
tribute to the tidal work(in the same manner as the previous Specifically: If we substitute the metri@d2) in Eq. (66) we

section, Purdue arrives at can expand the Ricci tensor in powerseof
dMm 1  dZ, d 1 RMrn 2R(2) 2R K=
jk eR}[h]+e°R)7[hh]+&“R)%k]=0, (67)
W___Egjkw—}_m(_ﬂ)zjkgjk). (64) n " "

where the superscript on tl‘l%‘;z means that the indicated
. . L piece of the Ricci tensor contains only terms of orelérThe
We notice that changing the energy localization scheme o in the brackets indicate that the part of the Ricci tensor
that of Einstein to that of Landau-Lifshitz has simply i, question contains terms that go like the indicated multiple
changed the coefficient of the second term, which we agailf the metric piece K, or k.z) and its derivatives.

identify as the_ de_rivative pf the interaction_energy. Note thatEquations(?O) and(71) make this clear. We now require that
the Landau-Lifshitz localization scheme is analogous to gy,o yacuum field equations vanish in each ordes of
choice ofa= —3 in the Newtonian interaction term. We also '

see that the tidal work terrfthe first term in Eq.(64)] has RMh]=0 (69)
remained unaffected. w '

RZIhh]+RZ)[k]=0. (69
D. Calculation of tidal work using the Mdller pseudotensor ] ] . ] . ]
The first of these equations yields the linearized vacuum field

We shall now perform the calculation afM/dt once equations:

again, this time making use of the /Mer pseudotensor.
Since we are working in the vacuum buffer zone where he
TH#"=0, we can use EQq(27) as the expression for the

energy-momentum pseudotensor of the gravitational fieldyhjle in the second69) one can solve foRZ)[k] to give
Note that Eq.(27) is actually the total conserved complex "

y,va+hav,ya_h V,aa_h,/u/:o! (70)

"

that we would use if non-gravitational fields were alsoyge L yge ) a_y
m,va v,pa mv, 2

present.

If we examine closely the form of Eq27) we will find =h* h,, ,+h*hg, ,,+h* hg,
that unlike the two previous pseudotensors discussed, the +haoh _hee B —heoh
Mdller complex has a term that is linear in the second de- ov,pe oo wy.oa
rivatives of the metric perturbations. This means that we will 1
not only have terms Iikda“ﬁ'#haﬁ” but will also have terms 3 i o e L P > h’ﬁhﬂﬁy

like h,” ;" andk,” ;. This means that it is important that

we expand the metric up to quadratic ordersinas these 1 1

terms that are linear in the second derivatives of the metric 3 hgh? ,+ > h gh,,f+hg, “h,.*
perturbation are actually quadraticérand will thus contrib-

ute to the calculation of the tidal work. —hﬁyvahﬂﬁ'a. (71
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We can now use Ed71) to substitute for thé, ; terms that
appear in Eq(65), if we pick a gauge for thé,; such that

ka,u,,VdJr kav,;wz_ k,u,V,aa_ k,,uV: k,uo—,vtr_ k/.LV,(TU . (72)
This is easily done if we choose the gauge
kva,a: k,v . (73)

We can now use Eqg71) and (73) along with the de
Donder gauge conditions and E@51) and(52) to simplify
the Mdler pseudotenso(65) into the form:

v 1 v 1 v 1 vB aop Vv
—8myT, =5 h g hh = S h L gh e heth,y L,

1
~3 h**"n .y ,—h*hyg " (79
Inserting Eqs(46)—(48) for h,z, we obtaiff
—8myTgl=—2D j4—8D ;D (— 120D ;5. (75

Expanding this expression and ignoring terms in the sam

manner as Eq(61), we plug into the integral

M

W— - § MTOjnjl’de, (76)

and arrive at

d™m .

Gt = M-Ik, (77
where theM term comes from the- 2® ;, term in EQ.(75),
which in turn arises from the fact that the/NMo pseudoten-

PHYSICAL REVIEW D 63 064013

dM_ 1, dT,

at - 2% g (78

Note that in the case of the Mer pseudotensor, the perfect
differential term that represents the interaction energy van-
ishes. This serves to support our intuition that the interaction
term is simply a mathematical artifact of our choice of en-
ergy localization and that the tidal work is in fact uniquely
given by Eq.(1). Comparison with Eq(41) implies that the
Mdller pseudotensor corresponds to a Newtonian energy lo-
calization given bya=—2.

E. Calculation of tidal work using the Bergmann conserved
quantities

To further confirm our intuition about the tidal work, we
can calculatelM/dt using the Bergmann conserved quanti-
ties given by Eq(32). However, before we do this, we must
determine the form of the arbitrary vector figffl, on which
the momentum densit# depends. This form must be such
that the integral34) gives

PO=e¢M+0(e?), (79

the mass-energyl plus terms of ordee? which arise from
the fact that the surface of integrati@W lies in the buffer
zone, where spacetime is oritycally asymptotically flat.
ComputingP? via Eq. (34) first involves calculating the
von Freud superpotenti@l?) in terms of the metric expan-
sion given by Eq(42). After a rather laborious computation,

sor contains a piece linear in the second derivatives of theve find the von Freud superpotential in general gauge and to

metric. Equation77) can then be written as

quadratic order in the metric perturbation:

—16m Ul = 2{(5,°h 7= 8,/ P) + (8, = 8,Ph™ )+ (h, " #—h,F7)}

1 1 1
+82) 5 N8P = 8,700+ 5 (8,70 = 5,807 )+ 5 h(h, " #=h, B 7) +(h ™ he,  —hPh7, )

2

+h (8,7 = 5,Ph"™) + h* ( 8,Ph7P \ — 8,7 )+ h* )\ ( 8,Pn7P—5,7nPr) + (hﬁ”hap'y— h”’hap'ﬁ)

R 8NP B— 3 P08,k Y= 8, 7KP) + (8, KN = 8,5k 1) + (KB =K A7) |

(80)

As in the case of the Mier pseudotensor, we have terms that are linear in the derivatives &f,theFor our calculation
of dM/dt below, we will find that these terms may again be expressed in terms bf,thley the same choice of gauge as we
used in the previous section, Ed3). However, we cannot do this for our present calculatioP®fFortunately, this will not
be a problem since we only wish to show tfét reduces to the mass-enenyyplus terms of ordes?. Sincek, is of order
2 it is not necessary to include the terms contairkpg in our calculation of the surface integral in E4). This is also true
of the terms in Eq(80) that are products df,,z; and its derivatives. We therefore only need concern ourselves with the first
six terms in Eq(80) (those linear irh,; and its derivativelsas only these terms could conceivably affetat orderes.

Now, let us make a guess as to the form of the vector §é&|dn whichD* depends. A volume integral of BergmaniD$
[or the equivalent surface integral of E@4)] will reduce to Eq.(79) only if the form of £ is properly constrained. If our
spacetime were precisely asymptotically flat, we would exgécto be asymptoticallythe timelike Killing vector field,
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E7—alat+O(1/r). Since our spacetime is not asymptotically flat but dobally asymptotically flat, it is reasonable to expect
that £7 is locally asymptotically Killing, by which we mean that it can be written as the sum of a timelike veStor,plus
deviationsZ?, from this timelike vector that are due to the fact that the spacetime is not flat:

£7= 867+, (81

As for the form of{“, we can construct a quantity which is the most general vector field tifat @mensionally correct
and(b) constructed only out of the parameters that characterize our spacetime in the slow-motion approxihalipns;,
and their first time derivatives. Such a vector field has the following fiomordere):

TaXaXo  LapXaX .
abrSa b+ d abrf b4 €€ apXaXp T T EapXaXpl (82

. M
§°=aM+bT+c

Mx,  Mxy N  LapXaXpXk 4 TapXaXpX kIaan TaiXa EapXaXpXk

=g 7 th— +i— 5 5 k= = m— +NE X aXp Xkt 0EaiXal + PEarXal 2,
(83
|
where the coefficienta throughp are real-valued constants. o) 1 N 1 N
Using this prescription, we are now able to evalugfe —16meU s =5 b o= 2 h G h 4 8,40 hy,

Our result reduces to E@79) as required. We thus see that
the surface integral34) does indeed give the mass as the

only O(e) term, plus terms 0O (&2) that arise from the facts —hy, h#PN > h*#h,,
that our spacetime iBcally asymptotically flat and that we
evaluateP® on the 2-surfac@) that lies at some finite in —6,“h" *"h,, . (87)

the buffer zone.

Now we wish to compute the tidal workdP%dt or
dM/dt. Taking a time derivative of Eq:33) and applying Evaluating the components we need for the first integral in
Gauss’ law, we easily arrive at the expression Eq. (85), we find®

dm vy g2
G?=‘§<€Au>yd%- 84 (R —
U= 4 P od ;. (88)

Plugging Eq.(81) into Eq. (84) allows us to write

dM _ _ If we expand this expression as we did in E61), keeping
r TR jg FUR d%s - é (¢7eUl |, d?s;. only terms that can possibly contribute to the tidal wéte
(85)  products ofZ& andZ¢), and evaluate the first integral in Eq.
(85), we have

Let us now think carefully about what terms we actually
need to calculate in these integrals. If we examine the first
integral in Eq.(85) we realizecomparing with Eq(80)] that B é Ul g2 - — 1 e %Jr 3 E(I- £
all of the terms in the integrand are of ordet and can FE0 v 2 kgt T 10 dt Tikeik:
therefore contribute to the tidal work. However, we again (89
have the problem that we do not know the explicit form of
Kos. Fortunately, if we expand the terms ipUl*)) , that
depend ork,; and apply the gauge condition of EJ3), we One should note that this is precisely what we obtained using

find that these terms reduce to the Einstein pseudotensEq. (63)], and indeed, the left-
hand side of Eq(89) is the surface integral that one would
(K75 —k* 7). (86)  obtain by substituting E¢(16) into Eq. (58).

We must now evaluate the second integral in &%) to
Comparison with Eq(72) shows that this is the same situa- see if it will contribute to the tidal work. The computation of
tion encountered with the KMier pseudotensor. We can thus this integral is made much simpler if we realize tifdtis
use Eq.(71) to express the first integrand in E&5) entirely  linear in e. Since the tidal work is quadratic in we only
in terms ofh,; and its derivatives, just as we did in the have to concern ourselves with the piece Aflf”) that is
previous section. Applying de Donder gauge and a faidinear ine. Applying de Donder gauge to the linear piece of
amount of algebraic manipulation we arrive at Eq. (80) we can write the second integral in E&5) as
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, 1 1 1 , of energy localization in Newtonian theory. We have shown
- fﬁ (g7euly dZS,:E fﬁ > g ohr= > g’ h! that this energy localization invariance carries over into the
general relativistic description. In addition, the work of
+£7 (h,"1—h ") d?s, Booth and Creightofi18], carried out simultaneous with our
3 own, supports the conclusions of Purdue and ourselves
+0(e%), (90) through an independent, though equivalent, approach using

where we have applied Eq&1) and (52). A few pages of quasilocal energy techniques.

o - ; One of the main motivations for this paper was to
algebra, and again ignoring terms that cannot contribute tq e ;
) . strengthen the arguments used by Thddigin his analysis
the tidal work, reduces this to

of the stability of neutron stars against radial collapse in-
d duced by an external tidal field. The motivation for Thorne’s
a(fjkgjk). paper was to refute the claims of Wilson, Mathews, and Mar-
91) ronetti[ 24] regarding the “star-crushing” effect seen in their
numerical simulations of binary neutron stars. We believe
Combining Eqs(89) and(91) we finally arrive at an ex- that our analysis has strengthened Thorne’s arguments. Ironi-
pression ford M/dt in terms of the products that can contrib- cally, Thorne and [25] now have reason, based oarrent

- %(g” ull* | d2s= P
Fro Jw 25157 5

ute to the tidal work 7€ and Z&): quadrupole tidal coupling, to support the “star-crushing” ef-
t 2 fects observed by Wilson and Mathey&6] in their revised
dM 1 dZy (3 2 simulations.
a9t - 2% g Tl1ot 150t 58/ g Fikin)- This analysis has only been concerned with the tidal work

(92) involving a mass quadrupole moment interacting with an
electric-type, quadrupolar tidal field in the slow motion ap-
We can now see conclusively that changing the energproximation. It seems quite likely that this energy localiza-
localization has no effect on the tidal work term and merelytion and gauge invariance of tidal work can be extended to
changes the coefficient in front of the arbitrary interaction-higher order multipolar couplings. We will leave the demon-
energy term. stration of this for the future.

IV. CONCLUSIONS
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