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Post-Newtonian approximation of the rigidly rotating disc of dust to arbitrary order
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Using the analytic, global solution for the rigidly rotating disc of dust as a starting point, an iteration scheme
is presented for the calculation of an arbitrary coefficient in the post-NewtdRidhapproximation of this
solution. The coefficients were explicitly calculated up to th® Pl level and are listed in this paper up to the
4" PN level. The convergence of the series is discussed and the approximation is found to be reliable even in
highly relativistic cases. Finally, the ergospheres are calculated at increasing orders of the approximation and
for increasingly relativistic situations.
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|. INTRODUCTION A= e 29 X (dp2+ de?) + p2de?] — e?V(dt+ade)? (1)

The study of a three-dimensional, arbitrarily rotating fluid in Weyl-Lewis-Papapetrou coordinate§he metric repre-
in general relativity cannot but rely on the use of numericalsents a stationary, axially symmetric spacetime and the three
computation for its results. An important step along the waymetric functionsU,k anda depend only o, ¢, the relativ-
toward a proper application of numerical methods and toistic parameter
ward an in-depth understanding of numerical results is the
rigorous consideration of a simpler, but related, problem. B ZQZPS?ZVO
Neugebauer and Meinel undertook this task in modeling a H= c2
uniformly rotating disc of dust. The corresponding analytic,
global solution to Einstein’s field equations, which wasand the coordinate radius of the disg The other quantities
worked out in the series of papdd, [2] and[3] by utilizing  appearing in Eq(2) are the constant angular velocify and
the “inverse scattering method” known from soliton theory, the “surface potential’Vo=U(p=0,,=0), which is closely
can be expressed using hyperelliptic integrals. related to the redshift at infinity. The relativistic parameier
In this paper, the above mentioned global solution will beruns from =0 in the Newtonian limit through tu=
used as a starting point from which to derive an iteration=4.62 . .. in theextreme Kerr limit. The four-velocity of a
scheme for the calculation of an arbitrary term in the postparticle in the disc has only two non-zero components:
Newtonian(PN) expansion of the solution. Such an expan-:e—Vo and u‘P:Qe_VO (both components are independent
sion amounts to the analytic analogue of numerical workof the radial coordinatg). As mentioned above, the metric
presented by Bardeen and Wagoriéi in a paper that depends on only two parameters, whence the profile for the
handles the rotating disc in great detail. _ surface mass density(p) cannot be chosen freely, but is
Given that the global solution for the uniformly rotating instead automatically determined by these parameters, i.e., a

disc of dust is known, the question arises as to why one,; ~ _~
would consider the problem using the PN approximation'.faISC chosen to have the valups=4 and po=po can have

The reasons are threefold. First, the complex nature of thBUt ON€ angular momentuthand but one total gravitational
solution leads to fairly long computing times, particularly if massM and the matter will needs be distributed according to
the relativistic parameter is to be varied. Using the PN o(p) as given by Eq(23) in [2].% A specific example of a
approximation, one could speed up calculations dramaticallynass density profile will be presented in Sec. IV B.
Secondly, one is presented the rare opportunity to check the The vacuum field equations are equivalent to the complex
accuracy of numerical work against its analytic analogueErnst equatior(see[5])

thus allowing one better to determine the limitations of these _ , U

numerical techniques. Lastly, since one can obtain an arbi- R(HAF=(VH)" with f=e+ib C)
trary term in the PN expansion, one can look at the conver- aU

2

4U
gence of the series for various applications and, moreover, __ :e
: -~ N and b, a;,, b, a, (4)
see if the approximation can be used to study relativistic ’ p coop
phenomena, where its validity is natpriori clear.
II. THE GLOBAL SOLUTION Units have been chosen in whiGhandc are equal to one, except

in Eq. (2), where the factor? was included to show explicitly the
The form of the metric to be used here is taken directlyrelation uoc 1/c? for reasons to be discussed in Sec. IV A.

from [1] and reads 20ne could just as easily have chosen to consider a disc of mass
M’ and angular momentud? and would then have been automati-
cally led to the values foj, pg and o(p) corresponding to this
*Email address: D.Petroff@tpi.uni-jena.de situation.
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The operatorsA and V in the above equation are three- tioned variable substitution was carried througB) The
dimensional. Taking into account boundary conditions on thalefinition for W, in this paper differs from that df3] by a
disc, an asymptotically flat solution can be found for thefactor u.

Ernst potentiaf, which suffices to determine all three metric  In discussing the Newtonian limit of the solution [if],
functions sincea can be found using Eq4) andk is related  Neugebauer and Meinel make note of the fact that the solu-
to the other two functions via a line integral as well. Thetions can be expanded in a power series

potentialf is given by the expression

_ ma(X(mM) =X (X(mM) —Xy)
In(f)= f 2X () Wy(m)

Fb(X(n) — X (X(n)—Xy) q
n

0 2X(n)Wy(n)

i H(X—X)(X—X5)
_f_. W dX (5
=l,+1,—15 ©)

with
W=W,W,, W,;=—(X—=¢/po)?+(plpo)?, 7)
i 2
W= i 2+ (1+X9)2, H:arCS|nm,:LTE1+X D
X1=— \/I_—M and X,= 1/ — H_—M (9)
M M

A negative sign appearing before the root of a complex
guantity indicates that the real part is to be chosen to be

negative. What is meant by(m), X(n), Wy(m) andWy(n)
in Eq. (5) is that the variable substitution

o Jreosm [Fieosin)
M 7

is to be carried out. The endpoints of integratiop andn,,
can be determined from the Jacobi inversion problem

(10

J’ma dm +fnb dn (11)
=u
0 2X(M)Wi(m)  Jo 2X(n)Wy(n)
and
fma dm +f”b dn B 12
o 2Wy(m)  Jo 2Wy(n) °
with
_ i HdX doe i HXdX 13
u= —iW and v = —iT ( )

and where the path of integration in E@.3), as with the
integrall 5 in Eqg. (6), is along the imaginary axis. The above
equations, which can be found B8], differ from the ones
presented there in three way4d) The expression for Irf]
was manipulated algebraically, making use of E44), (12
and(13). (2) In each of the integralk, andl ,, the aforemen-

©

f:1+n§1 fou ("2 (14

such that the coefficients are elementary functions. The fol-
lowing section presents a method for determining these co-
efficients.

Ill. THE ITERATION SCHEME

A comparison of Eqs(10) and(9) shows that
X(m=0)=X; and X(n=0)=X, (15

hold. This suggests the rearrangement of Efj$) and(12)
to form

Jma X(m)—X2 jnb X(n)_X2 dn=ov—X

o 2X(mWi(m) ™ o 2X(mywy(m) 0T 2
(16)

Ma X(m)—Xl Np X(n)—Xl

Jo 2X (M)W, (m) fo X (M)W (n) 4170~ Xl
17

which serves to “decouple” the original equations. What is
meant here by decoupling, is that an iteration scheme for the
determination o, (or equivalentlyn,) as a power series in
u does not require the simultaneous consideration of two
equations in its ultimate step. Equati¢h6) yields up the
ultimate term form, and Eq.(17) for n,.

Expanding the integrands in Eq4.6) and(17) about the
pointsm=0 andn=_0, respectively, one is left with trivial
integrals

” My ) > n )

> aiJ m2dm+ >, cif bn2'dn=v—X2u (18)
=0 Jo i=1 Jo

- Mg . ” n .

> dif m2dm+ >, bif "nZidn=v—X.u. (19
=1 Jo i=0 Jo

Making use of the fact thah, andn, are both of the order
O(w),? one can derive the following iteration formulas:

3This follows from Eqs(18) and(19) along with the fact that the
coefficientsa; , b;, ¢;, andd, are all of the orde?(\/x), thatu
andv are of the orde(u?) and thatX,; andX, are of the order

O ).

064012-2
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1
Mo o0 (Vap?+ - o) = XUy p+ - -+ uu?)
3 5 2k—1 3
e Mac, 0 T e
13 25 Kelgk—-1 ™1 3
2k—1
oy 20
RS S T (20
and
1
Mo, = o | (V1™ + - F o) = Xy(Uap®+ -+ un™)
3 5 2k—1 3
b1 b Mo, Ma,_,
B e R
2k—1
I’T'lal
—o gy (21)

WheremElk and N, are defined by
Ma=mg, +O(p**1) and ny,=n, +O(u**") (22)
andu; as well asv; are defined below in E¢25).

It proves useful to augment the collection of integrals
andv by defining a third integral

i HX2dX

W (23

W:

Upon introducing the oblate spheroidal coordinatesnd »
p=poV(1+£)(1-7),

0=¢é<m,

{=poém,
(24)
—1lsy=<1
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B=1-(1+&)(1-p?)sir(g)— ¥’ tarf(g), (29
y=—(1+&)(1-»*)sir(g) - £ tarf(g) (30
and
(—2)M4!
N A D o

An expansion of the integralg andl, yields an expres-
sion in terms ofm,, andnbk.4 These can in turn be expressed
as a series i by expanding the coefficients, b;, c¢; and
d; about the poinju=0. The integral 5, which can be writ-
ten in the form

|3:W_(X1+XZ)U+XIXZU, (32)
can easily be converted into a power serieg.iby expand-
ing X; andX, about the poin=0. Thus a means of deter-
mining the coefficients,, of Eq. (14) and representing them
in terms ofu;, v;, andw; has been found.

IV. RESULTS

A. The Ernst potential

The first eight coefficients in the expansion of the Ernst
potential are

one can come up with very simple, closed-form expressions

for an arbitrary term in the series expansionsipf, andw
about the poinju=0

o o0

> vju? and W:Z w2,

_ 2j —
u=> uu?, v=
j=1 j=1 j=1

(25)
These expressions are given by
arccot¢) .
uj:aj—lf B*~*dg (26)
0
arccot() 2j—1
Uj:_fﬂaj—lfo tar(g) 5% ~*dg 27
arccot() X
Wj:aj—1J yp# dg (28)
0

with

fi=uy, (33
fo=—i2v,, (34)
1
f3:§U12_W11 (35
f i| V2uv,+ ! (36)
=—1 ujv —(=U1|,
4 V1 \/f 1
1
f5:U2+§U1+gU13_U1W1_012, (37)
iV2
fo=—=—[—3v,—24v,+8&nu,>
24
—24u,%v,— 120701 + 24v W, |, (39

4 —W1U12_ 2U11)12

2 1 2
f7=_W2_Ul +—W1 +ﬂul 2

2

1 1 1 1
+ U P+ suP— Zu P+ §u13§2+ TN

2 3 3 (39

and

“One should be careful to choose the same sign for square roots in
I, andl, as were chosen upon expanding Edd) and(12).
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i\2 proximation, in which terms occur in pairs, the first of which
fg=— E[—24U13—301+ 24v,—8&nu S+ 48u,%0, is imaginary and of the orde®(1/c®™ %), meN, and the
second of which is real and of the ord®¢1/c>™). Note that
+30U,0 4, — 240 Wy — 48néugv 2 — 247%u, %0, f, represents the Newtonian limit, i.e., the first truly post-
Newtonian contribution is given bsn=2. Although the use
+24£%0,%0 1+ 480 U+ 32u, %0 — 16U té of the expressions;, v;, andw; provides a fairly succinct
notation for thef,, the coefficients still quickly become un-
—48w,Uyv; +48U30;]. (40) wieldy with increasingn. For example, the expression fby,

would fill approximately 30 pages.
Becauseu;, vj, andw; are all real quantities, one can see  When the full expressions fan,, v,, w; andw, are
immediately that the coefficients, are alternately real and substituted into Eqs(33), (35), (37) and (39), one obtains,
imaginary. Since the relativistic parameter is proportional tousing the abbreviation arccd)(= yx, the first four coeffi-
1/c?, this series clearly exhibits the structure of the PN ap-ients in the expansion &V, e?V=1+37_,f,,_u"

1= = S[(38x =36+ ) 7= Ex+ + 41
1= X X)n = Ex+E+x], (41)

1
fa= T2 [(54&*x2+ 1057ty — 10863y + 36£2 % — 1057 &3+ 90m €2y + 54E2 — 36¢x + 6y 2 — B5mé+ 9my)
T

+(— 3642 —90mE v+ T283y + 2482 %+ 90m 3 — T2 €2y — 3662 — 24y + 12x 2+ 42 E— 6y 2+ 642

+9méty— 1253)(— 12§2X2— 9w+ 67752)(4- 6%+ 126+ 6)(2— 3wé—3mx], (42
fs=~ o0 [(810%x>+9225m &%y ? — 3465 £y — 2430° x* + 810% x° — 184507 &% + 110257 &%y + 3465m°£°
+ 24304y — 4725724y — 16203 2+ 27062y 3+ 9225 €4 — 15900 &3y + 3375w 22— 81065+ 35702 &°
— 157522+ 81062y — 2706 2+ 303+ 4875 &% — 2670w & x + 135m x>+ 69372 & — 752y + 320m) 7°
+(— 81083 — 110257&8 %+ 4725w 8y + 24305 2+ 270¢% 3+ 220507 £% y — 9405 &% y? — 47252 5 — 2430y
+ 472572 &% — BA0E3 2+ 45062 3 — 110257 &%+ 13560m &3y — 1215m£2 %+ 81062 — 3150m2£3 4+ 675m2 €2y
+ 27062y — 4506 2+ 90) 3 — 4155m 2+ 690m £ x + 457 2 — 45726 — 452 ) p + (27068 3+ 3375 £8 2
— 157528y — 810652 — 450¢% 3 — 6750 &%y + 1215w &*y %+ 1575m2£°+ 810¢* y — 675m2 &4y + 900¢3 2+ 9062 ®
+3375m&* — 1980m &3y — 855w £2 2 — 27063+ 1502 €3+ 40572 £2 y — 45062 — 908 2+ 90y 3+ 7657 &2+ 630méy
—135mx?—315m2£+ 4512y ) 77 — 3068 3 — 1357 £8 2+ 7572 £8 y + 90£% ) 2+ 9064 3+ 270m %y + 45m €4 ¢ ?
— 75m2£5— 9064y — 4572 &4y — 18063y % — 9062y 2 — 1357 &%+ 135w &2y 2+ 3063+ 7072 £3 — 45m2 €2+ 9082y
+ 90 x%+ 30y — 45w &2 — 90méxy — 45m x %+ 1572 &+ 1572 ] (43
and
f7zm[(34ozog8 x*+1908900r£8 % — 196245728 2 — 13608F " x 3+ 4536Q:8 y* — 6756757348y — 57267007 2

+3013920r£8 3+ 39249072¢7 y — 32634012 £5 %+ 20412@% 2 — 13608G° x>+ 226804y *+ 6756 757°¢’
+5726700r£8y —1261260r3£8 ¢ — 71328607 £° x>+ 15447607 &% 3 — 19624572 £%+ 521850r°£°y — 13608&° ¥
+13608@&*y%— 17955072y % — 453603y 3+ 504062y * + 10360357 £° — 1908900r£° — 727650754y + 52239607 &4 ¢
— 256074073 y%+ 2721607&2 x>+ 34020@¢* — 195510724 — 45360 + 168294723y + 226802 2 — 4410072 £2

— 50403+ 420y* + 442365733 — 1105020r£3 — 1323007362 y + 11235007 &2y — 2373007 2+ 7140m )

064012-4
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—1054972¢2+ 1675872& y — 1365m2 2+ 4547 3£ — 1075207 & + 35840m y — 36 75m° ) n8+ (— 453608 y*
—30139207£8) 3+ 3263407282+ 18144G " x 3+ 1261260r°3£8y + 9041760r¢” v 2 — 32205607 £8 2 — 65268072¢ ¥
—21924072£8y%— 27216Q5 2+ 30240 y* — 1261260737 + 21344401 £5y — 9041760r &8y + 76725607 £° 2
—6199207&*y 3+ 32634072£5+ 18144G° y + 39732072 &%y — 6552007264 2 — 6048Q:3 3 + 1344Q2y* + 30139207 £°
— 17140207365+ 105840073 &%y — 56834407 &%y + 9542407 &3 % + 12264072 )2 — 1780807264 — 453604

+ 854952723y — 2276401° 2 x>+ 3024Q% 2y % — 1344Q: 3+ 1680y * — 599172733+ 1231440r£3— 3701607£% )

+ 147000732y — 1562407& 2+ 11760m 3 — 24973272£2 4+ 16984872 ¢y — 1050072y 2 — 4090873 £ + 35840m ¢
+35840r y + 21003y — 1792072) 75+ (2268Q8 y* + 1544760 &8 3 — 17955072 £8 2 — 907207 3 — 302408y *

— 7276507368y — 4634280r¢” 2+ 619920782+ 35910072¢ 7 y + 136088 y 2+ 655200728 2+ 9072Q:° 2

— 50404 4+ 7276503 ¢7 + 46342801 &8y — 105840073 £8y — 16623607 £° 2 — 594720742 — 17955072 £°

— 1077300725y — 9072Q5 y — 907204 2+ 77994072 £% >+ 1008Q:3 3 + 10082 y* + 8158507 £° — 1544760r &£°
—39690073&%y + 14649607 &%y + 884520732 — 1965607£2 ) 3+ 4221007264+ 226804 + 302403y — 88662072 £3 ¢
+ 1461607262 y*— 504062 % — 1008 x>+ 2520¢*+ 1896307343 — 4225207 &3 — 25200m°£2y — 28980072 ¢

+ 1302007 &y % — 2520m x 3+ 2043307242 — 651002 y — 63072 x>+ 630736+ 6307y ) 7 + (— 50408 4

— 272160783+ 441002 £8?+ 2016Q " x 3+ 13440y + 1323007r3¢8 y + 8164807¢ " y 2+ 1226407¢% 2
—88200m2¢" y — 2276407252 — 3024Q:5 2 — 40320° 3 — 1008Q%* y*— 132300737 + 14700073 £8y — 8164807 £8 ¢
—1864807£°y %+ 19656074y + 441007268+ 2016Q° y + 36708072 &%y — 1461607264 2+ 4032042 + 20163 2
+2721607£°— 1029007354 5040 &4y + 25200m3 ¢4y — 3024007 £3 y % — 35280m £2 2 — 13944072 £ — 5040¢*

— 134403y + 140840723y — 10082 * + 226802 &2 2+ 1680y * — 2660m°£3+ 58800 £3+ 10584072y

— 2520732+ 35280m & y°— 11760m 2 — 28980m2 2 — 24360m2 £ x + 4620m2 x>+ 42073 £+ 42073y ) ? + 42068 x4
+7140m 83— 1365m2¢8 2 — 1680y 3 — 16808 y* — 36 75m¢8 y — 21420m¢” x> — 117608y 3+ 2730m2&

+ 252082+ 105002 &8 2+ 50405 3+ 252064y * + 36757 3¢ + 21420m €8y — 2100738y + 18900 £° 2

— 2520 &% 3 — 1365268 — 16310m2 &5y — 168Q° y — 50406% % — 6302 &4 2 — 504063 3 — 16802y * + 87573 ¢°

— 714075+ 630384y — 2520m &y + 16380m &3 2+ 11760 &2 3+ 581072 &4+ 4206 + 168063 y + 1190m2 &3

— 46202 E% )+ 25202 2+ 1680 3+ 420y * — 595733 — 4620m &3 — 42073 €2y — 13860m €2y — 138607 £ )2

— 4620 3+ 115572£2+ 2310m2E y + 115572 >+ 525w £+ 5257 x . (44)

Calculating the appropriate line integrals, one can determine the remaining metric furecadk. Using the expansions

] )

a= z a2n/~‘v(2n+l)/2 and e*=1+ E Kaon—1u", (45
n=1 n=1
one finds the expressions
V2po 2 4 3 2 2_ sk 3 2
2= [1= 77I[(15"x — 1567+ 186 — 136+ 3x) " — 3¢ + 367~ 287y + £+ x], (46)
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_ \/EPO

 72m2
+ (= 72£8%%+ 14465+ 2166% %+ 1357 &4y — 7264+ 36062 )2 — 135m£3+ 162w £% y — 21652 — 1446 + T2 2
—117mE+ 277y — 64) p°+ 368y 2 — 7265y — 36E% 2 — 2T E4 y + 3664 — 36¢2 )%+ 2T &S
— 187 &2y+ 3662+ 726y + 36y%+ 9mé+ 9y — 64], 47

a, [1— 7?][(1808y2— 3605y + 25264y 2+ 18064 — 3843 + 10862 2+ 13262 — 24¢ x + 362 — 64) *

_ \/EPO

144073

ag [1— 7?][(1296Q8 3+ 7875w &8y % — 45045728y — 3888Q 2+ 2592Q:° 3 — 15750 ¢ y + 15300 £8y 2

+4504572¢" + 3888Q:5 y — 9702072 £8y — 6480Q° 2+ 17280 ¥ 3+ 78757 £8 — 25350m &%y + 9450m £y % — 1296 G¢°

+8200572£°+ 51840y — 66150m2 &%y — 302403 2+ 480062y 2+ 10050m £* — 11850m &3y + 1620m &2 > — 1296 Q3

+ 4281972 &3+ 1296Q2y — 14700m2 €2y — 4320 x>+ 480y 3+ 32757 &2 — 2250m &y — 4057 %+ 5619m2 £ — 52572y

+1280m) %+ (— 1296Q:8 3 — 7425m &8 2+ 5197572 £8 y + 388807 y?— 8640y 2+ 14850m¢” y — 81007 £8 2

—5197572¢" — 3888Q5 y + 94500m2 8y + 3024 ° 2 + 115204y 2 — 74257 £8+ 11250m &%y — 6304y 2+ 1296Q:°

—7717572¢5— 34560y + 472502 &% y — 158403y 2+ 864062y 2 — 3150m &% — 4530m &3y + 540m €22+ 12963

— 26145723+ 432062y + 4500m2 £y — 7200 2 + 1440y + 4335 &2 — 930m £ x + 4957 y 2 — 225726 — 22572 ¢

—640m) p*+ (432083 + 2025 £8 % — 14175728y — 1296Q " 2 — 28808 2 — 40507 &7 y + 1980 £8y 2+ 1417572¢7

+1296Q:% y — 18900m2£8y + 14406° 2 — 57606 3+ 2025 ¢85 — 26 10m &0y + 4590m &4 2 + 141 75m2£° — 4320¢°

— 3375724+ 5760 v + 129603 2 + 28802 3+ 6304 — 990 &3y + 5580m £2 2 — 432063 — 9072 £3+ 1350m2£%

— 720062y — 1440 y %+ 1440y 3 — 3375w &2 — 2430m & + 9457 x> — 7202 ¢ — 640m) ° — 48068 3+ 4057 £8 2

+ 52572 £8y + 144067 %+ 9608y 3 — 810m&” y + 900 £8 2 — 5252 &7 — 14408 y + 30072 €8y — 14405 2+ 40577 £°

—1530m &%y — 450mé4y 2 — 12572 £5+ 48065 — 2252 ¢4y — 14403 2 — 96062 3+ 630 &4+ 907 &3y — 540m €2y 2

+ 2202 &3+ 48063 + 144062 — 3072 €2y + 1440 x> + 480y 3+ 4057 £2+ 810m £y + 4057 2 — 3072 £ — 30m? y — 6407 ],
(48)

K]_:O, (49)

1
Ke=— o 11w’ JHO&" "~ 188 + 108X °+ 98~ Ly + X+ 4) m° — £X*+ 28— 28X~ - 26x—x*+4],
a

(50

1
Ks=— 18 [1— 7?I[(456°x%— 90&°x + 63" x>+ 45¢1 — 96E°x + 27¢% %+ 332 — 6Ex + 9x°— 16) 7

71_2
+(—186°x?+ 3667y + 545 )~ 18¢% + 9067y ® — 547 — 36¢ x + 18y ° — 16) 7° + 9¢°x P~ 18¢°y — 9&*x?
+9¢4— 982y %+ 982+ 186y +9x%— 16] (51)

and
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1
Ky=— (1= o I[(7290" "~ 72485m7¢"x*~ 29160+ 1620Q°x + 14490r° y — 16020r°¢x" + 4374%"

—5508Q° 3+ 10620 y* — 7245m2£5+ 2721072 6%y — 2916Q° y — 103502 &4y 2+ 6804Q* 2 — 2844033

+ 180024+ 72906 — 1119072 &% + 1493472 £3 ¢ — 356403 y — 16202 £2 > + 264602 2 — 2520 x 3+ 90y *

+ 64802 — 53892 £2+ 1734w £y — 1008Q y — 4572 2+ 720y ° — 2562+ 1440 78+ (— 89108y *+ 87757282
+ 356407 3 — 2124Q:5y* — 17550m2¢ y + 2250028 2 — 5346Q5 2 + 6444%¢° 2 — 16020 y* + 877572 &8
—29070m? &%y + 3564Q°y + 17730m2£% y? — 6588Q%* 2+ 3348Q: 3 — 396¢% y* — 8910¢* + 65702 £*
—1389072&3y + 234003y + 45002 £2 2 — 174602 2+ 4680 3 — 270y * — 72062 + 49572 £2 — 930m2 £y — 1440y
+ 49572 % — 720> — 89672 + 1440 n*+ (17108 y*— 157572 &8y 2 — 6840 x 3+ 54008y *+ 3150m2¢ " x

+1026Q:°% 2 — 5580m2 &8 2 — 97205 3+ 59404y * — 1575725+ 33907265y — 6840 % y — 3240y 2 — 29702 4 ?
— 46803y 3+ 25202 4+ 17106% + 2190724 + 140403 y + 1410m2£3 y + 1620m2£2 2 — 990062 > — 1800 x 2
+270y*— 648062 — 855m2¢2+ 10080 y — 27072 £ x + 5852y 2 — 720y % — 1440 89672) 1% — 90£8 x4+ 4572 £8 )2
+360¢7 y3— 3600y — 9072 ¢ y — 5408 2 + 5402 €8y 2+ 36065 2 — 54084 y 4 + 452 €5 — 5702 &5y + 360¢%y
+1080* 2 — 907242 — 360633 — 36062 4 — 9064 + 307264 — 18003 y — 15072 €3y — 18022 2+ 900¢2 2

— 36083 — 90y*+ 72062+ 4052 £2 + 1440 x + 8102 £ x + 40572 2+ 720y % — 1440- 89672]. (52

Equations(41)—(52) provide the full metric up to and including the ord@(u?).
Making use of the metric functions, one can furthermore find the series expansion for other quantities of interest:

ZV 1, 161 6 1), .
e0=1-ptsu 9 24 Tla T glH +O(n?), (53
1 1 1 1 81 1
_- - 32, — 52, © T B /7 9/2
Qpo=5v2Vu—7V2u®*+ 2u +2ﬁ( 5 2 1p T 0K (54)
and
/Q:\/Eﬂ\/;+ _7\/5773+} V27 2, 163\27° 7 \2° 3 ﬁn+ﬁn_\/§n5 512
Ip 2 12 2 4 2" T\ago 2 48 2 32 .2 .4 & ¥

+

+( 9 27 163 V29> 7 V29° 597'\2

- . - 1117 p'N2 7 7°\2 1\29° 2529 .,
128 2 1920 2 128 2 36 4

13440 2 12 4 4 4 36 4

+O(u%?). (55)

Related to the fact that the first fodiy can be calculated by Bardeen and Wagoner were compared with E§8)—
without making use of the Jacobi inversion problem,(36) and found to be in agreement. Using the knowledge that
Bardeen and Wagoner were able to determine thef@jn  these first coefficients are correct, a further twefyehave
Taking into account that the relativistic parameter used irbeen proved correct by Showing that they Satisfy the Ernst
said paper is somewhat differehthe coefficients calculated equation up to the relevant order. The further eight coeffi-

cients that were explicitly calculated could not undergo the
same test due to computer limitations, but were calculated
5Bardeen and Wagoner chose to use the relativistic paranyeter USing the same iteration scheme, whence their correctness is
defined byy=1—eVo. The series forms of the functions=y(r)  all but certain. For more details sg@.

and = u(y) can be calculated using the functivig= V() (See While a direct comparison of the PN expansion of the
[2]) and are listed up to the ordefd(u*d) and O(y*?), respec- Ernst potential to the numerical results of Bardeen and Wag-
tively, in [6]. oner is not feasible for an arbitrary point in space, various
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FIG. 1. The ratio of consecutive real and imaginary coefficients
from the expansion of taken at a point=0, %=23/5 in the disc.
The solid line represents the real coefficients and the dotted line the
imaginary coefficients.

guantities in the disc can be compared quite readily. In par-
ticular, the analytical version of Table 2[id] was drawn up,
presenting the series for the square of the linear velogtty, p/po
for some particle of the disc as measured in the locally non- o
rotating frame of reference. It turns out that the numerical_. FIG. 2. The rad_ual distribution of the proper surfa_ce mass den-
. . h . sity for u=3 at different orders of the PN approximation. The

results, which are listed to the55dGeC|m_al place, are per- curves were created by employing the approximation up to the or-
fectly correct up to the orde®(y>).” As is to be expected, yqr @ O(u??), (b) O(u*¥3), (©) O™, (d) O(u??), and (e)

the e)fpansion coefficients differ more and more from the(’)(,u%’z). The curve(f) was created by evaluating the exact solution
analytic values as one moves to higher orders of the seriegumerically to extremely high accuracy.

The last entry in Table 2 of4] deviates from the analytic
result by approximately 25%. In all however, the numerical
results in Bardeen and Wagoner are highly accurate and sel- As could have been expected right from the outset, the
dom differ from the analytic ones by more than a fraction ofconvergence of the PN approximation depends to a great
a percent. extent on position, i.e., on the coordinatesnd ». For ex-

B. Convergence

TABLE I. The Ernst potentiaf according to a numerical evaluation of the exact solution in comparison
with the results of the PN approximatiébold-faced up to the orde(.?>? for various points in space and
three values ofu.

u=1/2 u=3 M= o
=112, 0.772 687 415 —0.281 941 980 —0.861419 387
n=1/2 —0.022 438 224 —0.352 810399 —0.684924 117
0.772 687 415 —0.281941 981 —0.861 419898
—0.022 438 2214 —0.352 810 399 —0.684 924 396
On the axis 0.820 284 295 0.127 426 794 0
=1, =1 —0.032540 154 —0.560 328316 —i
0.820 284 295 0.127 409 032 —0.006 959 726
—0.032 540 154 —0.560 315 954 —0.997 783811
In the disc 0.675 204 587 —0.626 305 938 —1.304 973284
£=0, 7=3/5 —0.041 948129 —0.409 718 317 —0.616 799 888

0.675 204 587
—0.041948 129

—0.626 305 488
—0.409 718 090

—1.304 859 086
—0.616 728 538

5The results concerning? were calculated using the parametein order to facilitate the comparison to the

work of Bardeen and Wagoner.
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TABLE Il. The Ernst potentiaf for =3 at the poinE=1, »=1 according to the PN approximation and

PHYSICAL REVIEW D63 064012

the Padeapproximant for different orders of the serigs. 2" row, 2" column of the previous table

(4™ O™ O™ O™ O™
PN 0.150938555  0.127710083  0.12654923%  0.12762718#  0.127 409 032
0.564 116 348 0.556 936 45D 0.561 010 096 0.560 281 87i7 0.560 315 95¢4
Pade  0.140716023  0.127381473  0.127426866°  0.127426794  0.127426 794

0.562 426 68i7

0.560314 13b

0.560328 31D

0.560 328 316

0.560 328 316

ample, on the rim of the disc itself, the Ernst potential IS||m
given by the analytic expressidn= 1— w/2, whereas in gen-
eral, the potential is given by an infinite seriesun Plots
similar to that of Fig. 1 strongly indicate that the series con-
verges for spatial infinity §—«) and has a radius of con- holds.
vergence of precisely., in this limit. Evaluations of the In Fig. 1 one sees that the series converges quite quickly
series at variougarbitrary) points in space indicate, more- for this point on the disc, thdt, plays a fairly important role,
over, that it converges everywhere. The series tends to cofput that f3 and higher coefficients contribute little to the
verge quite quickly for small#|, but rather erratically for potential. The fact that the ratio of consecutive coefficients
| 7| nearing 1 ¢7= =1 corresponds to the axis of symmetry of the series is negative means that these coefficients alter-
The Padeapproximant, which represents a truncated sehate sign, so that one always has an upper and lower bound
ries via a rational polynomial expression, proves to be @n the value fofthe real and imaginary parts)df Note that
highly advantageous alternative to the series, in particular ifiot all points in space exhibit such clear convergence as that
the original series converges slowly, erratically or not at all.of Fig. 1.
Using this approximant, the erratic convergence of the PN Not only does the applicability of the series depend upon
expansion for the Ernst potential near the axis or the particuthe point in space that is chosen, but of course upon the value
larly slow convergence of the dimensionless quanfity,  of u as well. It goes without saying that the PN approxima-
can be largely circumvented. Frequent use of the Rgue tion reflects the full field equations fairly accurately for small
proximant was made in the work of Bardeen and Wagonevalues of u, but we shall see further, as did Bardeen and
[4]. In this paper however, sparing use of it is made so as tdVagoner much to their surprise, that the approximation can
better concentrate on the PN expansion itself, but a comparbe utilized to great benefit even in many highly relativistic
son of the Padapproximant to the standard PN series can besituations.
found in Table II. Let it be mentioned that the proper surface Looking at Table I, one can see that the PN approxima-
mass densityFig. 2) and the ergospheréBigs. 3 and #can  tion of order®(u?>?) returns values fof that are correct to
be found to extremely high accuracy using the Paggrox-  at least 9 decimal places at=1/2 (the numerically evalu-
imant. A general discussion of the Paajgproximant can be ated potential, determined using the analytic solution, is cor-
found in[7] and a consideration of its use in the PN expan-rect at least as far as it is given in Table The highly
sion in[8]. relativistic caseu=3 can be handled more than satisfacto-
In Fig. 1, the ratio of consecutive coefficients from therily by the PN approximation, whereby the potential on the
real and imaginary parts of the Ernst potential has been plo@axis is valid to only four decimal places. The accuracy of the
ted to illustrate the convergence of the series for a choseseries approximation is astonishingly high even for the limit
point in space. In order to have a measure for the leading.— u,.” Although the results on the axis are reasonably
terms of the expansion, we todk to be 1 andf _; to bei. good in this limit (accurate to within 1% one can obtain
Note that the series is guaranteed to converge at a givemuch more accurate results using the Pag@roximant.
value of u, say u=uc, so long as the condition Table Il provides a comparison of the valuefdbr a point

wlfn+1/fn,1|<1/,uc is met. Thus the series always

converges in the Newtonian limit— 0 and converges in the
limit w—uo so long as lim__[f,.1/fq-1[<1/pe~0.21

0.1
ad (>

—-0.1 g

0.1
e (D

—0.1 g

0.1 -
ag (>

—0.1 d

<o

p

<o

p

o

Qp

0.5

FIG. 3. The ergospheres as calculated using thedd', and 13' PN approximation fow=2. The outline represents the curve along
which e?V is zero and should be thought of rotated about the axis of symmetry. The inside of the resulting torus-like figure of revolution is
then the ergosphere.

0.5 0.5

"It should be noted thai, tends to zero in this limit. The extreme Kerr metric is obtaineddd# {°+# 0, whereas the analytic solution
shows that finite values faf, as considered here, lead to a differamit asymptotically flatspacetimegsee[9]). The PN approximation, on
the other hand, erroneously yields an asymptotically flat spacetime in this limit, at least so long as the series is finite.
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FIG. 4. The ergospheres as calculated using the8", and 1" PN approximation forw=3. The outline represents the curve along
which e?V is zero and should be thought of rotated about the axis of symmetry. The inside of the resulting torus-like figure of revolution is
then the ergosphere.

along the axis returned by the PN series to that of the “di-One such phenomenon, the ergosphere, dramatically high-
agonal” Padeapproximant, whereby diagonal is meant to lights differences between the Newtonian and Einsteinian
indicate the approximant for which the polynomial in the theory. An ergosphere is a region in which the Killing vector
numerator is of the same order as the polynomial in the deeharacterizing the stationary nature of the spacetime be-
nominator. The values in this table should be compared t@omes spacelikéhe metric functiore?V is negative in this

the “exact” value found in the cell of the™ column and  region so that nothing can remain still relative to an ob-
an row of Table I. It turns out that the values returned by theserver at inﬁnity_everything is dragged a|0ng by the rota-
Padeapproximant are so accurate as to provide a viable alon of the disc.

ternative to numerical methods for all practical purpdses. Figures 3 and 4 depict the ergosphere for two values of

Using Table Il one can see, moreover, that the nature of the,q ca\cylated for three different orders of the PN approxi-
convergence of the Pa@dgproximation is more uniform and mation (please se¢10] for a comparison with ergospheres

hence more predictable than that of the PN approximationr : : : ;
. . n valuating the analyti lution numericall®n
Thus one could have come up with a good estimate for theOu d by evaluating the analytic solution numericali@ne

accuracy of the Padealues in the table, but not for the PN can gfe n Fig. 3 -that.the grggsphere;fch, as given by
values. The PN value of ordaP(u2Y3), for example, is the 6" PN approximation, is mgh on corrept, so that higher
scarcely more accurate than that of ord¥u’¥? whereas order terms serve only to refine fine detall_s. In the case of
the corresponding Padelues have won a further 8 decimal =3, however(Fig. 4) one can see marked improvement as
places of accuracy. As a rule of thumb, it appears one cafn® moves toward higher orders of the approximation.
rely on the Pad@pproximant to gain one decimal place of ~AS u increases, the ergosphere moves closer and closer to
accuracy for each increase gf in the order of the polyno- the axis of rotation where the PN approximation is no longer
mial. reliable. This, compounded with the fact that the increasingly
A pictorial impression of the convergence of the PN se-poor convergence of the dimensionless quartilfy, as u
ries can be gleaned from Fig. 2. The proper surface mas3earsu, results in scaling problems, leads one to assume
density op, which can be calculated fronop=ceV "k  that the PN approximation is ill-suited for rendering the er-
whereo is given by Eq.(23) of [2], is divided by() to give  goshpere for values oft approachinguy. Due to the ex-
a dimensionless quantity and plotted as a function of théreme accuracy of the Padproximant however, one can
normalized radiusp/p,. A discussion of the curve itself, indeed divine the nature of the ergospheres even in this limit.
which lies outside the scope of this paper, can be found in
[4]. What is of interest here is the way in which the curves V. CONCLUSION
approach the curvé). Although the tendency to converge ) . )
can be seen quite clearly, the discrepancy between c(gves |t Was possible, due to the existence of an analytic, global
and (f) is fairly large. This is primarily due to the slow con- Solution for the axially symmetric, stationary, rigidly rotating
vergence of the dimensionless quanty,. For example, disc of_dust, to come up_W|th an iteration ;che_me to ca_lculate
the PN approximation of orde®(25? returns a value of an arbltra.ry coefficient in the PN approximation of this so-
approximately 0.220 instead of 0.213 fap, at =3 and at Iutlo.n. This work amounts to the analytic analogue_ of nu-
u=4.5 the PN approximation yields the grossly erroneou erical quk pUb“ShEd by Bardeen a}nd Wagpner in 1971.
value of 1.46 as compared with the correct value, 1.01Ehe explicit calculation of the expansmtn coefficients of the
X 10~7. With the Padeapproximant, this problem vanishes rnst potential was carried out to the™L PN level [i.e.,

25/ ;
and the curves for the proper surface mass density are indig('u 9] 1t wms out that_ the numerical results from
tinguishable from the exact curves even at the otdgu®?). ardeen and Wagoner are highly accurate for lower orders of
the expansion and remain quite good even for higher orders.

The supposition that the PN approximation could be used
for many highly relativistic situations was confirmed for the
The results of Table I, i.e., the fact that the PN approxi-disc of dust, and the very accurate renderings of the ergo-
mation returns a highly accurate value foeven in very spheres obtained using the PN approximation attest to the
relativistic situations, justify the use of this approximation fact that physically meaningful, relativistic phenomena can
even for the consideration of purely relativistic phenomenabe studied in some cases using tools tailored to other appli-
cations(i.e., to the consideration of the Newtonian regime
It turns out that the position in space to be considered con-
8However, asu— uo, One has to be careful for large tributes significantly to the convergence of the PN approxi-

C. Ergospheres
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mation, but not to the convergence of the correspondinghe Padeapproximation methods. If one is careful to take
Padeapproximant. It was found that the PN approximation isinto account its limitations, one can use the PN approxima-
unreliable for largew in the neighborhood of the axis of tion to great advantage for quick and accurate calculations
rotation even when the approximation is quite accurate elseand is bolstered in the opinion that approximation methods
where for the same value qf, and it can be made highly can sometimes be extended to applications outside their
accurate for all points in space at all valuesuwoby applying  priori guaranteed region of validity.
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