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Post-Newtonian approximation of the rigidly rotating disc of dust to arbitrary order
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Using the analytic, global solution for the rigidly rotating disc of dust as a starting point, an iteration scheme
is presented for the calculation of an arbitrary coefficient in the post-Newtonian~PN! approximation of this
solution. The coefficients were explicitly calculated up to the 12th PN level and are listed in this paper up to the
4th PN level. The convergence of the series is discussed and the approximation is found to be reliable even in
highly relativistic cases. Finally, the ergospheres are calculated at increasing orders of the approximation and
for increasingly relativistic situations.
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I. INTRODUCTION

The study of a three-dimensional, arbitrarily rotating flu
in general relativity cannot but rely on the use of numeri
computation for its results. An important step along the w
toward a proper application of numerical methods and
ward an in-depth understanding of numerical results is
rigorous consideration of a simpler, but related, proble
Neugebauer and Meinel undertook this task in modelin
uniformly rotating disc of dust. The corresponding analyt
global solution to Einstein’s field equations, which w
worked out in the series of papers@1#, @2# and@3# by utilizing
the ‘‘inverse scattering method’’ known from soliton theor
can be expressed using hyperelliptic integrals.

In this paper, the above mentioned global solution will
used as a starting point from which to derive an iterat
scheme for the calculation of an arbitrary term in the po
Newtonian~PN! expansion of the solution. Such an expa
sion amounts to the analytic analogue of numerical w
presented by Bardeen and Wagoner@4# in a paper that
handles the rotating disc in great detail.

Given that the global solution for the uniformly rotatin
disc of dust is known, the question arises as to why o
would consider the problem using the PN approximati
The reasons are threefold. First, the complex nature of
solution leads to fairly long computing times, particularly
the relativistic parameterm is to be varied. Using the PN
approximation, one could speed up calculations dramatica
Secondly, one is presented the rare opportunity to check
accuracy of numerical work against its analytic analog
thus allowing one better to determine the limitations of the
numerical techniques. Lastly, since one can obtain an a
trary term in the PN expansion, one can look at the conv
gence of the series for various applications and, moreo
see if the approximation can be used to study relativi
phenomena, where its validity is nota priori clear.

II. THE GLOBAL SOLUTION

The form of the metric to be used here is taken direc
from @1# and reads
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ds25e22U@e2k~dr21dz2!1r2dw2#2e2U~dt1adw!2 ~1!

in Weyl-Lewis-Papapetrou coordinates.1 The metric repre-
sents a stationary, axially symmetric spacetime and the th
metric functionsU,k anda depend only onr, z, the relativ-
istic parameter

m5
2V2r0

2e22V0

c2
~2!

and the coordinate radius of the discr0. The other quantities
appearing in Eq.~2! are the constant angular velocityV and
the ‘‘surface potential’’V0[U(r50,z50), which is closely
related to the redshift at infinity. The relativistic parameterm
runs fromm50 in the Newtonian limit through tom5m0
54.62 . . . in theextreme Kerr limit. The four-velocity of a
particle in the disc has only two non-zero components:ut

5e2V0 and uw5Ve2V0 ~both components are independe
of the radial coordinater). As mentioned above, the metri
depends on only two parameters, whence the profile for
surface mass densitys(r) cannot be chosen freely, but i
instead automatically determined by these parameters, i.
disc chosen to have the valuesm5m̃ and r05 r̃0 can have
but one angular momentumJ̃ and but one total gravitationa
massM̃ and the matter will needs be distributed according
s(r) as given by Eq.~23! in @2#.2 A specific example of a
mass density profile will be presented in Sec. IV B.

The vacuum field equations are equivalent to the comp
Ernst equation~see@5#!

R~ f !D f 5~¹ f !2 with f 5e2U1 ib ~3!

and b,r52
e4U

r
a,z , b,z5

e4U

r
a,r . ~4!

1Units have been chosen in whichG andc are equal to one, excep
in Eq. ~2!, where the factorc2 was included to show explicitly the
relationm}1/c2 for reasons to be discussed in Sec. IV A.

2One could just as easily have chosen to consider a disc of m
M 8 and angular momentumJ8 and would then have been automa
cally led to the values form, r0 and s(r) corresponding to this
situation.
©2001 The American Physical Society12-1
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The operatorsn and ¹ in the above equation are thre
dimensional. Taking into account boundary conditions on
disc, an asymptotically flat solution can be found for t
Ernst potentialf, which suffices to determine all three metr
functions sincea can be found using Eq.~4! andk is related
to the other two functions via a line integral as well. T
potentialf is given by the expression

ln~ f !5E
0

ma„X~m!2X1…„X~m!2X2…

2X~m!W1~m!
dm

1E
0

nb„X~n!2X1…„X~n!2X2…

2X~n!W1~n!
dn

2E
2 i

i H~X2X1!~X2X2!

W
dX ~5!

[I 11I 22I 3 ~6!

with

W5W1W2 , W152A~X2z/r0!21~r/r0!2, ~7!

W25Am221~11X2!2, H5
arcsinh~m@11X2# !

p i
, ~8!

X152Ai 2m

m
and X25A2

i 1m

m
. ~9!

A negative sign appearing before the root of a comp
quantity indicates that the real part is to be chosen to
negative. What is meant byX(m), X(n), W1(m) andW1(n)
in Eq. ~5! is that the variable substitution

X52Ai cosh~m!

m
21 or X5A2 i cosh~n!

m
21

~10!

is to be carried out. The endpoints of integrationma andnb
can be determined from the Jacobi inversion problem

E
0

ma dm

2X~m!W1~m!
1E

0

nb dn

2X~n!W1~n!
5u ~11!

and

E
0

ma dm

2W1~m!
1E

0

nb dn

2W1~n!
5v ~12!

with

u5E
2 i

i HdX

W
and v5E

2 i

i HXdX

W
~13!

and where the path of integration in Eq.~13!, as with the
integralI 3 in Eq. ~6!, is along the imaginary axis. The abov
equations, which can be found in@3#, differ from the ones
presented there in three ways:~1! The expression for ln(f)
was manipulated algebraically, making use of Eqs.~11!, ~12!
and~13!. ~2! In each of the integralsI 1 andI 2, the aforemen-
06401
e
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tioned variable substitution was carried through.~3! The
definition for W2 in this paper differs from that of@3# by a
factor m.

In discussing the Newtonian limit of the solution in@3#,
Neugebauer and Meinel make note of the fact that the s
tions can be expanded in a power series

f 511 (
n51

`

f nm (n11)/2 ~14!

such that the coefficients are elementary functions. The
lowing section presents a method for determining these
efficients.

III. THE ITERATION SCHEME

A comparison of Eqs.~10! and ~9! shows that

X~m50!5X1 and X~n50!5X2 ~15!

hold. This suggests the rearrangement of Eqs.~11! and ~12!
to form

E
0

ma X~m!2X2

2X~m!W1~m!
dm1E

0

nb X~n!2X2

2X~n!W1~n!
dn5v2X2u,

~16!

E
0

ma X~m!2X1

2X~m!W1~m!
dm1E

0

nb X~n!2X1

2X~n!W1~n!
dn5v2X1u,

~17!

which serves to ‘‘decouple’’ the original equations. What
meant here by decoupling, is that an iteration scheme for
determination ofma ~or equivalentlynb) as a power series in
m does not require the simultaneous consideration of
equations in its ultimate step. Equation~16! yields up the
ultimate term forma and Eq.~17! for nb .

Expanding the integrands in Eqs.~16! and ~17! about the
points m50 andn50, respectively, one is left with trivia
integrals

(
i 50

`

aiE
0

ma
m2idm1(

i 51

`

ciE
0

nb
n2idn5v2X2u ~18!

(
i 51

`

diE
0

ma
m2idm1(

i 50

`

biE
0

nb
n2idn5v2X1u. ~19!

Making use of the fact thatma andnb are both of the order
O(m),3 one can derive the following iteration formulas:

3This follows from Eqs.~18! and~19! along with the fact that the
coefficientsai , bi , ci , anddi are all of the orderO(Am), that u
andv are of the orderO(m2) and thatX1 andX2 are of the order
O(1/Am).
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mak
5

1

a0
F ~v1m21•••1vkm

2k!2X2~u1m21•••1ukm
2k!

2a1

mak21

3

3
2a2

mak22

5

5
2•••2ak21

ma1

2k21

2k21
2c1

nbk21

3

3

2•••2ck21

nb1

2k21

2k21
G ~20!

and

nbk
5

1

b0
F ~v1m21•••1vkm

2k!2X1~u1m21•••1ukm
2k!

2b1

nbk21

3

3
2b2

nbk22

5

5
2•••2bk21

nb1

2k21

2k21
2d1

mak21

3

3

2•••2dk21

ma1

2k21

2k21
G ~21!

wheremak
andnbk

are defined by

ma5mak
1O~m2k11! and nb5nbk

1O~m2k11! ~22!

anduj as well asv j are defined below in Eq.~25!.
It proves useful to augment the collection of integralsu

andv by defining a third integral

w5E
2 i

i HX2dX

W
. ~23!

Upon introducing the oblate spheroidal coordinatesj andh

r5r0A~11j2!~12h2!, z5r0jh,
~24!

0<j,`, 21<h<1

one can come up with very simple, closed-form expressi
for an arbitrary term in the series expansions ofu, v, andw
about the pointm50

u5(
j 51

`

ujm
2 j , v5(

j 51

`

v jm
2 j and w5(

j 51

`

wjm
2 j .

~25!

These expressions are given by

uj5a j 21E
0

arccot(j)

b2 j 21dg ~26!

v j52jha j 21E
0

arccot(j)

tan2~g!b2 j 21dg ~27!

wj5a j 21E
0

arccot(j)

gb2 j 21dg ~28!

with
06401
s

b512~11j2!~12h2!sin2~g!2j2h2 tan2~g!, ~29!

g52~11j2!~12h2!sin2~g!2j2h2 tan2~g! ~30!

and

a j5
~22! j 11 j !

p~2 j 11!!!
. ~31!

An expansion of the integralsI 1 and I 2 yields an expres-
sion in terms ofmak

andnbk
.4 These can in turn be expresse

as a series inm by expanding the coefficientsai , bi , ci and
di about the pointm50. The integralI 3, which can be writ-
ten in the form

I 35w2~X11X2!v1X1X2u, ~32!

can easily be converted into a power series inm by expand-
ing X1 andX2 about the pointm50. Thus a means of deter
mining the coefficientsf n of Eq. ~14! and representing them
in terms ofuj , v j , andwj has been found.

IV. RESULTS

A. The Ernst potential

The first eight coefficients in the expansion of the Ern
potential are

f 15u1 , ~33!

f 252 iA2v1 , ~34!

f 35
1

2
u1

22w1 , ~35!

f 452 i FA2u1v11
1

A2
v1G , ~36!

f 55u21
1

2
u11

1

6
u1

32u1w12v1
2 , ~37!

f 65
iA2

24
@23v1224v218jhu1

3

224u1
2v1212u1v1124v1w1#, ~38!

f 752w22v1
21

1

2
w1

21
1

24
u1

42
1

2
w1u1

222u1v1
2

1
1

2
u1

21
1

3
u1

32
1

3
u1

3h21
1

3
u1

3j21u1u2 ~39!

and

4One should be careful to choose the same sign for square roo
I 1 and I 2 as were chosen upon expanding Eqs.~11! and ~12!.
2-3
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f 852
iA2

48
@224v1

323v1124v228jhu1
3148u1

2v1

130u1v1224v1w1248hju1v1
2224h2u1

2v1

124j2u1
2v1148v1u2132u1

3v1216u1
4jh

248w1u1v1148u1v2#. ~40!

Becauseuj , v j , andwj are all real quantities, one can se
immediately that the coefficientsf n are alternately real and
imaginary. Since the relativistic parameter is proportiona
1/c2, this series clearly exhibits the structure of the PN a
06401
o
-

proximation, in which terms occur in pairs, the first of whic
is imaginary and of the orderO(1/c2m21),mPN, and the
second of which is real and of the orderO(1/c2m). Note that
f 1 represents the Newtonian limit, i.e., the first truly po
Newtonian contribution is given bym52. Although the use
of the expressionsuj , v j , andwj provides a fairly succinct
notation for thef n , the coefficients still quickly become un
wieldy with increasingn. For example, the expression forf 24
would fill approximately 30 pages.

When the full expressions foru1 , v1 , w1 and w2 are
substituted into Eqs.~33!, ~35!, ~37! and ~39!, one obtains,
using the abbreviation arccot(j)5x, the first four coeffi-
cients in the expansion ofe2U, e2U511(n51

` f 2n21mn:
f 152
1

p
@~3j2x23j1x!h22j2x1j1x#, ~41!

f 35
1

12p2
@~54j4x21105pj4x2108j3x136j2x22105pj3190pj2x154j2236jx16x2255pj19px!h4

1~236j4x2290pj4x172j3x124j2x2190pj3272pj2x236j2224jx112x2142pj26px!h216j4x2

19pj4x212j3x212j2x229pj316pj2x16j2112jx16x223pj23px#, ~42!

f 552
1

180p3
@~810j6x319225pj6x223465p2j6x22430j5x21810j4x3218450pj5x111025pj4x213465p2j5

12430j4x24725p2j4x21620j3x21270j2x319225pj4215900pj3x13375pj2x22810j313570p2j3

21575p2j2x1810j2x2270jx2130x314875pj222670pjx1135px21693p2j275p2x1320p!h6

1~2810j6x3211025pj6x214725p2j6x12430j5x21270j4x3122050pj5x29405pj4x224725p2j522430j4x

14725p2j4x2540j3x21450j2x3211025pj4113560pj3x21215pj2x21810j323150p2j31675p2j2x

1270j2x2450jx2190x324155pj21690pjx145px2245p2j245p2x!h41~270j6x313375pj6x2

21575p2j6x2810j5x22450j4x326750pj5x11215pj4x211575p2j51810j4x2675p2j4x1900j3x2190j2x3

13375pj421980pj3x2855pj2x22270j31150p2j31405p2j2x2450j2x290jx2190x31765pj21630pjx

2135px22315p2j145p2x!h2230j6x32135pj6x2175p2j6x190j5x2190j4x31270pj5x145pj4x2

275p2j5290j4x245p2j4x2180j3x2290j2x32135pj41135pj2x2130j3170p2j3245p2j2x190j2x

190jx2130x3245pj2290pjx245px2115p2j115p2x# ~43!

and

f 75
1

10080p4
@~34020j8x411908900pj8x32196245p2j8x22136080j7x3145360j6x42675675p3j8x25726700pj7x2

13013920pj6x31392490p2j7x2326340p2j6x21204120j6x22136080j5x3122680j4x41675675p3j7

15726700pj6x21261260p3j6x27132860pj5x211544760pj4x32196245p2j61521850p2j5x2136080j5x

1136080j4x22179550p2j4x2245360j3x315040j2x411036035p3j521908900pj52727650p3j4x15223960pj4x

22560740pj3x21272160pj2x3134020j42195510p2j4245360j3x1168294p2j3x122680j2x2244100p2j2x2

25040jx31420x41442365p3j321105020pj32132300p3j2x11123500pj2x2237300pjx217140px3
2-4
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210549p2j2116758p2jx21365p2x2145477p3j2107520pj135840px23675p3x!h81~245360j8x4

23013920pj8x31326340p2j8x21181440j7x311261260p3j8x19041760pj7x223220560pj6x32652680p2j7x

2219240p2j6x22272160j6x2130240j4x421261260p3j712134440p3j6x29041760pj6x17672560pj5x2

2619920pj4x31326340p2j61181440j5x1397320p2j5x2655200p2j4x2260480j3x3113440j2x413013920pj5

21714020p3j511058400p3j4x25683440pj4x1954240pj3x21122640pj2x32178080p2j4245360j4

1854952p2j3x2227640p2j2x2130240j2x2213440jx311680x42599172p3j311231440pj32370160pj2x

1147000p3j2x2156240pjx2111760px32249732p2j21169848p2jx210500p2x2240908p3j135840pj

135840px12100p3x217920p2!h61~22680j8x411544760pj8x32179550p2j8x2290720j7x3230240j6x4

2727650p3j8x24634280pj7x21619920pj6x31359100p2j7x1136080j6x21655200p2j6x2190720j5x3

25040j4x41727650p3j714634280pj6x21058400p3j6x21662360pj5x22594720pj4x32179550p2j6

21077300p2j5x290720j5x290720j4x21779940p2j4x2110080j3x3110080j2x41815850p3j521544760pj5

2396900p3j4x11464960pj4x1884520pj3x22196560pj2x31422100p2j4122680j4130240j3x2886620p2j3x

1146160p2j2x225040j2x2210080jx312520x41189630p3j32422520pj3225200p3j2x2289800pj2x

1130200pjx222520px31204330p2j2265100p2jx2630p2x21630p3j1630p3x!h41~25040j8x4

2272160pj8x3144100p2j8x2120160j7x3113440j6x41132300p3j8x1816480pj7x21122640pj6x3

288200p2j7x2227640p2j6x2230240j6x2240320j5x3210080j4x42132300p3j71147000p3j6x2816480pj6x

2186480pj5x21196560pj4x3144100p2j6120160j5x1367080p2j5x2146160p2j4x2140320j4x2120160j3x3

1272160pj52102900p3j515040pj4x125200p3j4x2302400pj3x2235280pj2x32139440p2j425040j4

213440j3x1140840p2j3x210080j2x2122680p2j2x211680x422660p3j3158800pj31105840pj2x

22520p3j2x135280pjx2211760px3228980p2j2224360p2jx14620p2x21420p3j1420p3x!h21420j8x4

17140pj8x321365p2j8x221680j7x321680j6x423675p3j8x221420pj7x2211760pj6x312730p2j7x

12520j6x2110500p2j6x215040j5x312520j4x413675p3j7121420pj6x22100p3j6x118900pj5x2

22520pj4x321365p2j6216310p2j5x21680j5x25040j4x22630p2j4x225040j3x321680j2x41875p3j5

27140pj51630p3j4x22520pj4x116380pj3x2111760pj2x315810p2j41420j411680j3x11190p2j3x

24620p2j2x212520j2x211680jx31420x42595p3j324620pj32420p3j2x213860pj2x213860pjx2

24620px311155p2j212310p2jx11155p2x21525p3j1525p3x#. ~44!

Calculating the appropriate line integrals, one can determine the remaining metric functionsa andk. Using the expansions

a5 (
n51

`

a2nm (2n11)/2 and e2k511 (
n51

`

K2n21mn, ~45!

one finds the expressions

a25
A2r0

4p
@12h2#@~15j4x215j3118j2x213j13x!h223j4x13j322j2x1j1x#, ~46!
064012-5
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a45
A2r0

72p2
@12h2#@~180j6x22360j5x1252j4x21180j42384j3x1108j2x21132j2224jx136x2264!h4

1~272j6x21144j5x1216j4x21135pj4x272j41360j2x22135pj31162pj2x2216j22144jx172x2

2117pj127px264!h2136j6x2272j5x236j4x2227pj4x136j4236j2x2127pj3

218pj2x136j2172jx136x219pj19px264#, ~47!

a65
A2r0

1440p3
@12h2#@~12960j8x317875pj8x2245045p2j8x238880j7x2125920j6x3215750pj7x115300pj6x2

145045p2j7138880j6x297020p2j6x264800j5x2117280j4x317875pj6225350pj5x19450pj4x2212960j5

182005p2j5151840j4x266150p2j4x230240j3x214800j2x3110050pj4211850pj3x11620pj2x2212960j3

142819p2j3112960j2x214700p2j2x24320jx21480x313275pj222250pjx2405px215619p2j2525p2x

11280p!h61~212960j8x327425pj8x2151975p2j8x138880j7x228640j6x3114850pj7x28100pj6x2

251975p2j7238880j6x194500p2j6x130240j5x2111520j4x327425pj6111250pj5x2630pj4x2112960j5

277175p2j5234560j4x147250p2j4x215840j3x218640j2x323150pj424530pj3x1540pj2x2112960j3

226145p2j314320j2x14500p2j2x27200jx211440x314335pj22930pjx1495px22225p2j2225p2x

2640p!h41~4320j8x312025pj8x2214175p2j8x212960j7x222880j6x324050pj7x11980pj6x2114175p2j7

112960j6x218900p2j6x11440j5x225760j4x312025pj622610pj5x14590pj4x2114175p2j524320j5

23375p2j4x15760j4x112960j3x212880j2x31630pj42990pj3x15580pj2x224320j3290p2j311350p2j2x

27200j2x21440jx211440x323375pj222430pjx1945px22720p2j2640p!h22480j8x31405pj8x2

1525p2j8x11440j7x21960j6x32810pj7x1900pj6x22525p2j721440j6x1300p2j6x21440j5x21405pj6

21530pj5x2450pj4x22125p2j51480j52225p2j4x21440j3x22960j2x31630pj4190pj3x2540pj2x2

1220p2j31480j311440j2x230p2j2x11440jx21480x31405pj21810pjx1405px2230p2j230p2x2640p#,

~48!

K150, ~49!

K352
1

2p2
@12h2#@~9j4x2218j3x110j2x219j2214jx1x214!h22j4x212j3x22j2x22j222jx2x214#,

~50!

K552
1

18p2
@12h2#@~45j6x2290j5x163j4x2145j4296j3x127j2x2133j226jx19x2216!h4

1~218j6x2136j5x154j4x2218j4190j2x2254j2236jx118x2216!h219j6x2218j5x29j4x2

19j429j2x219j2118jx19x2216# ~51!

and
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K752
1

720p4
@12h2#@~7290j8x427245p2j8x2229160j7x3116200j6x4114490p2j7x216020p2j6x2143740j6x2

255080j5x3110620j4x427245p2j6127210p2j5x229160j5x210350p2j4x2168040j4x2228440j3x3

11800j2x417290j4211190p2j4114934p2j3x235640j3x21620p2j2x2126460j2x222520jx3190x4

16480j225389p2j211734p2jx210080jx245p2x21720x22256p211440!h61~28910j8x418775p2j8x2

135640j7x3221240j6x4217550p2j7x122500p2j6x2253460j6x2164440j5x3216020j4x418775p2j6

229070p2j5x135640j5x117730p2j4x2265880j4x2133480j3x323960j2x428910j416570p2j4

213890p2j3x123400j3x14500p2j2x2217460j2x214680jx32270x42720j21495p2j22930p2jx21440jx

1495p2x22720x22896p211440!h41~1710j8x421575p2j8x226840j7x315400j6x413150p2j7x

110260j6x225580p2j6x229720j5x315940j4x421575p2j613390p2j5x26840j5x23240j4x222970p2j4x2

24680j3x312520j2x411710j412190p2j4114040j3x11410p2j3x11620p2j2x229900j2x221800jx3

1270x426480j22855p2j2110080jx2270p2jx1585p2x22720x2214402896p2!h2290j8x4145p2j8x2

1360j7x32360j6x4290p2j7x2540j6x21540p2j6x21360j5x32540j4x4145p2j62570p2j5x1360j5x

11080j4x2290p2j4x22360j3x32360j2x4290j4130p2j421800j3x2150p2j3x2180p2j2x21900j2x2

2360jx3290x41720j21405p2j211440jx1810p2jx1405p2x21720x2214402896p2#. ~52!

Equations~41!–~52! provide the full metric up to and including the orderO(m4).
Making use of the metric functions, one can furthermore find the series expansion for other quantities of interest:

e2V0512m1
1

2
m22

16

9

1

p2
m31S 16

9p2 2
1

8Dm41O~m5!, ~53!

Vr05
1

2
A2Am2

1

4
A2m3/21

1

16
A2m5/21

1

2
A2S 2

8

9

1

p2
1

1

16D m7/21O~m9/2! ~54!

and

sP /V5
A2hAm

p2
1S 2

7

12

A2h3

p2
1

1

4

A2h

p2 D m3/21S 163

480

A2h5

p2
2

7

48

A2h3

p2
2

3

32

A2h

p2
1

A2h

p4
2

A2h5

p4 D m5/2

1S 2
9

128

A2h

p2
1

163

1920

A2h5

p2
1

7

128

A2h3

p2
2

59

36

h7A2

p4
1

1117

13440

h7A2

p2
2

7

12

h3A2

p4
2

1

4

A2h5

p4
1

25

36

A2h

p4 D m7/2

1O~m9/2!. ~55!
m

i

hat

nst
ffi-
the
ted
ss is

he
ag-
us

er
Related to the fact that the first fourf n can be calculated
without making use of the Jacobi inversion proble
Bardeen and Wagoner were able to determine them in@4#.
Taking into account that the relativistic parameter used
said paper is somewhat different,5 the coefficients calculated

5Bardeen and Wagoner chose to use the relativistic parametg
defined byg512eV0. The series forms of the functionsg5g(m)
andm5m(g) can be calculated using the functionV05V0(m) ~see
@2#! and are listed up to the ordersO(m12) and O(g12), respec-
tively, in @6#.
06401
,

n

by Bardeen and Wagoner were compared with Eqs.~33!–
~36! and found to be in agreement. Using the knowledge t
these first coefficients are correct, a further twelvef n have
been proved correct by showing that they satisfy the Er
equation up to the relevant order. The further eight coe
cients that were explicitly calculated could not undergo
same test due to computer limitations, but were calcula
using the same iteration scheme, whence their correctne
all but certain. For more details see@6#.

While a direct comparison of the PN expansion of t
Ernst potential to the numerical results of Bardeen and W
oner is not feasible for an arbitrary point in space, vario
2-7
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D. PETROFF AND R. MEINEL PHYSICAL REVIEW D63 064012
quantities in the disc can be compared quite readily. In p
ticular, the analytical version of Table 2 in@4# was drawn up,
presenting the series for the square of the linear velocity,v2,
for some particle of the disc as measured in the locally n
rotating frame of reference. It turns out that the numeri
results, which are listed to the 5th decimal place, are per
fectly correct up to the orderO(g5).6 As is to be expected
the expansion coefficients differ more and more from
analytic values as one moves to higher orders of the se
The last entry in Table 2 of@4# deviates from the analytic
result by approximately 25%. In all however, the numeri
results in Bardeen and Wagoner are highly accurate and
dom differ from the analytic ones by more than a fraction
a percent.

FIG. 1. The ratio of consecutive real and imaginary coefficie
from the expansion off taken at a pointj50, h53/5 in the disc.
The solid line represents the real coefficients and the dotted line
imaginary coefficients.
06401
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B. Convergence

As could have been expected right from the outset,
convergence of the PN approximation depends to a g
extent on position, i.e., on the coordinatesj andh. For ex-

s

he

FIG. 2. The radial distribution of the proper surface mass d
sity for m53 at different orders of the PN approximation. Th
curves were created by employing the approximation up to the
der ~a! O(m9/2), ~b! O(m13/2), ~c! O(m17/2), ~d! O(m21/2), and ~e!
O(m25/2). The curve~f! was created by evaluating the exact soluti
numerically to extremely high accuracy.
ison
d

e

TABLE I. The Ernst potentialf according to a numerical evaluation of the exact solution in compar
with the results of the PN approximation~bold-faced! up to the orderO(m25/2) for various points in space an
three values ofm.

m51/2 m53 m5m0

j51/2,
h51/2

0.772 687 415
20.022 438 224i

0.772 687 415
À0.022 438 224i

20.281 941 980
20.352 810 399i
À0.281 941 981
À0.352 810 399i

20.861 419 387
20.684 924 117i
À0.861 419 898
À0.684 924 396i

On the axis
j51, h51

0.820 284 295
20.032 540 154i

0.820 284 295
À0.032 540 154i

0.127 426 794
20.560 328 316i

0.127 409 032
À0.560 315 954i

0
2i
À0.006 959 726
À0.997 783 811i

In the disc
j50, h53/5

0.675 204 587
20.041 948 129i

0.675 204 587
À0.041 948 129i

20.626 305 938
20.409 718 317i
À0.626 305 488
À0.409 718 090i

21.304 973 284
2 0.616 799 888i
À1.304 859 086
À0.616 728 538i

6The results concerningv2 were calculated using the parameterg in order to facilitate the comparison to th
work of Bardeen and Wagoner.
2-8
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TABLE II. The Ernst potentialf for m53 at the pointj51, h51 according to the PN approximation an
the Pade´ approximant for different orders of the series~cf. 2nd row, 2nd column of the previous table!.

O(m9/2) O(m13/2) O(m17/2) O(m21/2) O(m25/2)

PN 0.150 938 5552
0.564 116 343i

0.127 710 0832
0.556 936 459i

0.126 549 2312
0.561 010 096i

0.127 627 1872
0.560 281 877i

0.127 409 0322
0.560 315 954i

Padé 0.140 716 0232
0.562 426 687i

0.127 381 4732
0.560 314 135i

0.127 426 8662
0.560 328 310i

0.127 426 7942
0.560 328 316i

0.127 426 7942
0.560 328 316i
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ample, on the rim of the disc itself, the Ernst potential
given by the analytic expressionf 512m/2, whereas in gen-
eral, the potential is given by an infinite series inm. Plots
similar to that of Fig. 1 strongly indicate that the series co
verges for spatial infinity (j→`) and has a radius of con
vergence of preciselym0 in this limit. Evaluations of the
series at various~arbitrary! points in space indicate, more
over, that it converges everywhere. The series tends to
verge quite quickly for smalluhu, but rather erratically for
uhu nearing 1 (h561 corresponds to the axis of symmetry!.

The Pade´ approximant, which represents a truncated
ries via a rational polynomial expression, proves to be
highly advantageous alternative to the series, in particula
the original series converges slowly, erratically or not at
Using this approximant, the erratic convergence of the
expansion for the Ernst potential near the axis or the part
larly slow convergence of the dimensionless quantityVr0
can be largely circumvented. Frequent use of the Pade´ ap-
proximant was made in the work of Bardeen and Wago
@4#. In this paper however, sparing use of it is made so a
better concentrate on the PN expansion itself, but a comp
son of the Pade´ approximant to the standard PN series can
found in Table II. Let it be mentioned that the proper surfa
mass density~Fig. 2! and the ergospheres~Figs. 3 and 4! can
be found to extremely high accuracy using the Pade´ approx-
imant. A general discussion of the Pade´ approximant can be
found in @7# and a consideration of its use in the PN expa
sion in @8#.

In Fig. 1, the ratio of consecutive coefficients from t
real and imaginary parts of the Ernst potential has been p
ted to illustrate the convergence of the series for a cho
point in space. In order to have a measure for the lead
terms of the expansion, we tookf 0 to be 1 andf 21 to be i.
Note that the series is guaranteed to converge at a g
value of m, say m5mc , so long as the condition
06401
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lim
n→`

u f n11 / f n21u,1/mc is met. Thus the series alway

converges in the Newtonian limitm→0 and converges in the
limit m→m0 so long as lim

n→`
u f n11 / f n21u,1/m0'0.21

holds.
In Fig. 1 one sees that the series converges quite qui

for this point on the disc, thatf 1 plays a fairly important role,
but that f 3 and higher coefficients contribute little to th
potential. The fact that the ratio of consecutive coefficie
of the series is negative means that these coefficients a
nate sign, so that one always has an upper and lower bo
on the value for~the real and imaginary parts of! f. Note that
not all points in space exhibit such clear convergence as
of Fig. 1.

Not only does the applicability of the series depend up
the point in space that is chosen, but of course upon the v
of m as well. It goes without saying that the PN approxim
tion reflects the full field equations fairly accurately for sm
values ofm, but we shall see further, as did Bardeen a
Wagoner much to their surprise, that the approximation
be utilized to great benefit even in many highly relativis
situations.

Looking at Table I, one can see that the PN approxim
tion of orderO(m25/2) returns values forf that are correct to
at least 9 decimal places atm51/2 ~the numerically evalu-
ated potential, determined using the analytic solution, is c
rect at least as far as it is given in Table I!. The highly
relativistic casem53 can be handled more than satisfac
rily by the PN approximation, whereby the potential on t
axis is valid to only four decimal places. The accuracy of t
series approximation is astonishingly high even for the lim
m→m0.7 Although the results on the axis are reasona
good in this limit ~accurate to within 1%!, one can obtain
much more accurate results using the Pade´ approximant.
Table II provides a comparison of the value off for a point
g
lution is

n

FIG. 3. The ergospheres as calculated using the 6th, 8th, and 12th PN approximation form52. The outline represents the curve alon
which e2U is zero and should be thought of rotated about the axis of symmetry. The inside of the resulting torus-like figure of revo
then the ergosphere.

7It should be noted thatr0 tends to zero in this limit. The extreme Kerr metric is obtained forr21z2Þ0, whereas the analytic solutio
shows that finite values forj, as considered here, lead to a different~not asymptotically flat! spacetime~see@9#!. The PN approximation, on
the other hand, erroneously yields an asymptotically flat spacetime in this limit, at least so long as the series is finite.
2-9
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FIG. 4. The ergospheres as calculated using the 6th, 8th, and 12th PN approximation form53. The outline represents the curve alon
which e2U is zero and should be thought of rotated about the axis of symmetry. The inside of the resulting torus-like figure of revo
then the ergosphere.
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along the axis returned by the PN series to that of the ‘
agonal’’ Pade´ approximant, whereby diagonal is meant
indicate the approximant for which the polynomial in th
numerator is of the same order as the polynomial in the
nominator. The values in this table should be compared
the ‘‘exact’’ value found in the cell of the 2nd column and
2nd row of Table I. It turns out that the values returned by t
Padéapproximant are so accurate as to provide a viable
ternative to numerical methods for all practical purpose8

Using Table II one can see, moreover, that the nature of
convergence of the Pade´ approximation is more uniform an
hence more predictable than that of the PN approximat
Thus one could have come up with a good estimate for
accuracy of the Pade´ values in the table, but not for the P
values. The PN value of orderO(m21/2), for example, is
scarcely more accurate than that of orderO(m13/2) whereas
the corresponding Pade´ values have won a further 8 decim
places of accuracy. As a rule of thumb, it appears one
rely on the Pade´ approximant to gain one decimal place
accuracy for each increase ofAm in the order of the polyno-
mial.

A pictorial impression of the convergence of the PN s
ries can be gleaned from Fig. 2. The proper surface m
density sP , which can be calculated fromsP5seU2k

wheres is given by Eq.~23! of @2#, is divided byV to give
a dimensionless quantity and plotted as a function of
normalized radiusr/r0. A discussion of the curve itself
which lies outside the scope of this paper, can be found
@4#. What is of interest here is the way in which the curv
approach the curve~f!. Although the tendency to converg
can be seen quite clearly, the discrepancy between curve~e!
and~f! is fairly large. This is primarily due to the slow con
vergence of the dimensionless quantityVr0. For example,
the PN approximation of orderO(m25/2) returns a value of
approximately 0.220 instead of 0.213 forVr0 at m53 and at
m54.5 the PN approximation yields the grossly erroneo
value of 1.46 as compared with the correct value, 1
31027. With the Pade´ approximant, this problem vanishe
and the curves for the proper surface mass density are in
tinguishable from the exact curves even at the orderO(m9/2).

C. Ergospheres

The results of Table I, i.e., the fact that the PN appro
mation returns a highly accurate value forf even in very
relativistic situations, justify the use of this approximatio
even for the consideration of purely relativistic phenome

8However, asm→m0, one has to be careful for largej.
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One such phenomenon, the ergosphere, dramatically h
lights differences between the Newtonian and Einstein
theory. An ergosphere is a region in which the Killing vect
characterizing the stationary nature of the spacetime
comes spacelike~the metric functione2U is negative in this
region! so that nothing can remain still relative to an o
server at infinity—everything is dragged along by the ro
tion of the disc.

Figures 3 and 4 depict the ergosphere for two values om
and calculated for three different orders of the PN appro
mation ~please see@10# for a comparison with ergosphere
found by evaluating the analytic solution numerically!. One
can see in Fig. 3 that the ergosphere form52, as given by
the 6th PN approximation, is nigh on correct, so that high
order terms serve only to refine fine details. In the case
m53, however,~Fig. 4! one can see marked improvement
one moves toward higher orders of the approximation.

As m increases, the ergosphere moves closer and clos
the axis of rotation where the PN approximation is no long
reliable. This, compounded with the fact that the increasin
poor convergence of the dimensionless quantityVr0 as m
nearsm0 results in scaling problems, leads one to assu
that the PN approximation is ill-suited for rendering the e
goshpere for values ofm approachingm0. Due to the ex-
treme accuracy of the Pade´ approximant however, one ca
indeed divine the nature of the ergospheres even in this li

V. CONCLUSION

It was possible, due to the existence of an analytic, glo
solution for the axially symmetric, stationary, rigidly rotatin
disc of dust, to come up with an iteration scheme to calcu
an arbitrary coefficient in the PN approximation of this s
lution. This work amounts to the analytic analogue of n
merical work published by Bardeen and Wagoner in 19
The explicit calculation of the expansion coefficients of t
Ernst potential was carried out to the 12th PN level @i.e.,
O(m25/2)#. It turns out that the numerical results from
Bardeen and Wagoner are highly accurate for lower order
the expansion and remain quite good even for higher ord

The supposition that the PN approximation could be u
for many highly relativistic situations was confirmed for th
disc of dust, and the very accurate renderings of the er
spheres obtained using the PN approximation attest to
fact that physically meaningful, relativistic phenomena c
be studied in some cases using tools tailored to other ap
cations~i.e., to the consideration of the Newtonian regim!.
It turns out that the position in space to be considered c
tributes significantly to the convergence of the PN appro
2-10
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mation, but not to the convergence of the correspond
Padéapproximant. It was found that the PN approximation
unreliable for largem in the neighborhood of the axis o
rotation even when the approximation is quite accurate e
where for the same value ofm, and it can be made highly
accurate for all points in space at all values ofm by applying
l

06401
g

e-

the Pade´ approximation methods. If one is careful to tak
into account its limitations, one can use the PN approxim
tion to great advantage for quick and accurate calculati
and is bolstered in the opinion that approximation metho
can sometimes be extended to applications outside thea
priori guaranteed region of validity.
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