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We construct supergravity solutions that correspond toN Dp-branes coinciding withN̄ Dp-branes. We study
the physical properties of the solutions and analyze the supergravity description of tachyon condensation. We
construct an interpolation between the brane-antibrane solution and the Schwarzschild solution and discuss its
possible application to the study of non-supersymmetric black holes.
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I. INTRODUCTION

While a brane breaks half of the space-time supersym
try, the antibrane breaks precisely the other half of the
persymmetry. Thus, a system of a brane and anti-br
breaks together all the space-time supersymmetry. The
tem is not stable, however, since the brane and anti-b
attract each other. This can be understood as the appea
of a tachyon on the world-volume of the branes. It aris
from the open string stretched between the brane and
anti-brane and it is charged under the world-volume ga
groups. The decay of the system can be seen by the tac
rolling down to the minimum of its potential@1#. The phe-
nomenon of tachyon condensation is fairly well studied
now in the open string description@2–4#. It would be inter-
esting to ask how the phenomenon appears from the clo
string viewpoint. One of the aims of this paper is to constr
supergravity solutions that correspond toN Dp-branes coin-

ciding with N̄ Dp-branes~anti D-branes! and analyze the
supergravity description of tachyon condensation.

While type IIA ~type IIB! string theory has Bogomol’nyi-
Prasad-Sommerfield~BPS! D-branes of even~odd! dimen-
sions, they also admit non-BPS D-branes of odd~even! di-
mensions. These branes are not stable. They have
interpreted as the string theoretical analogues of sphale
in field theory@5#. The families of supergravity solutions tha
we will discuss contain also backgrounds that correspon
these branes. Stable non-BPS brane configurations are m
studied too@6–11#. However, we will not discuss supergra
ity backgrounds that correspond to these objects.
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Another motivation that we have for studying bran
antibrane solutions is to understand the relation betw
these solutions and the Schwarzschild black hole solu
~see, e.g.@12# for an early indication of such a connection
the context of five-dimensional black holes of type II
theory!, which may have possible applications in the study
non-supersymmetric black holes.

This paper is organized as follows. In Sec. II we descr
the supergravity solution that corresponds toN Dp-branes
coinciding with N̄ Dp-branes and its physical properties.
Sec. III we analyze the supergravity description of tachy
condensation. We will also discuss the issue of decoup
and open-closed string duality. In Sec. IV we describe a g
eral family of supergravity solutions that includes no
Poincare´-invariant world-volumes. In particular it contain
an interpolation between the brane-antibrane solution and
Schwarzschild solution. We discuss the possible applica
to the study of non-supersymmetric black holes. Section
contains a short discussion of the results.

We note that supergravity descriptions of smeared bra
antibrane configurations have been presented in@13#. We
will discuss in this paper the localized ones. Unstable bra
on AdS have been analyzed in@14#. Non-BPS D-brane solu-
tions in six-dimensional orbifolds were analyzed in@15#.

II. THE SUPERGRAVITY DESCRIPTION

In this section we will describe type II supergravity sol
tions that correspond toN Dp-branes coincident withN̄
Dp-branes and their physical properties.

A. The supergravity solution

The strategy for constructing such solutions will be t
following. We know that a brane-antibrane configurati
must have the full world-volume Poincare symmet
©2001 The American Physical Society08-1
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ISO(p,1).1 Furthermore, it should have rotational symme
SO(92p) in the 92p transverse directions. ForNÞN̄, the
system will also carry an appropriate Ramond-Ramond~RR!
charge.

We therefore look for the most general solution of type
A or B supergravity which possess the symmetry

S5ISO~p,1!3SO~92p!, ~1!

and carries charge under a RR field.2

The most general form of the metric, dilaton and RR-fie
consistent with the symmetry~1! is

ds25e2A(r )dxmdxm1e2B(r )~dr21r 2dV82p
2 !,

f5f~r !,

C(p11)5eL(r ) dx0`dx1` . . . `dxp. ~2!
ia

e
’

o

en

06400
I

We look for solutions of the form~2!, of type II A/B
supergravity Lagrangian, whose relevant part is given~in the
Einstein frame! by

S5
1

16pGN
10E d10xAgS R2

1

2
]Mf]Mf2

1

2 n!
ea fFn

2D ~3!

wherea5(52n)/2. The relation between the rankn of the
RR field strengthFn and the dimensionalityp of the brane
has been explained in footnote 2.

In Eq. ~2! and in the rest of the paper we represent te
dimensional coordinates byxM,M50, . . . ,9 and brane
world-volume coordinates ~including time! by xm,m
50,1, . . . ,p. We will denote the transverse coordinates
xi ,i 51, . . . ,92p or, alternatively, by the polar coordinate
r ,u1 , . . . ,u82p (r 2[xixi).

The equations of motion that follow from Eq.~3! for the
ansatz~2! are ~see, e.g.,@16,17#!
A91~p11!~A8!21~72p! A8B81
82p

r
A85

72p

16
S2,

B91~p11!A8B81
p11

r
A81~72p!~B8!21

1522p

r
B852

1

2

p11

8
S2,

~p11!A91~82p!B91~p11!~A8!21
82p

r
B82~p11!A8B81

1

2
~f8!25

1

2

72p

8
S2,

f91S ~p11!A81~72p!B81
82p

r Df852
a

2
S2,

~L8 eL1af2(p11)A1(72p)B r 82p!850, ~4!
where

S5L8 e(1/2)af1L2(p11)A. ~5!

The mathematical solution to this system of different
equations has already been presented in@17# ~a large number
of the solutions appeared earlier in@18#!. The solutions de-
pend on three parametersr 0 ,c1 ,c2 ~we have relabeledc3 of
@17# asc2, andk as2k) and are given by

1By contrast, a non-extremal Dp-brane breaksISO(p,1)
→ISO(p), which is expected of a finite temperature world-volum
field theory ~see Sec. IV!. Here I stands for ‘‘inhomogeneous,’
referring to the translational symmetries.

2Our convention for the RR field and potentials is as follows. F
electricp-branes~i.e. for p50,1,2), the RR field strength isFp12

[dC(p11). For magneticp-branes i.e. forp54,5,6, we interpret
C(p11) as the dual potential, and the RR field-strength will be giv
by F82p[e2(32p)f/2*( dC(p11)). For 3-branes (p53) the self-dual
field strength is given byF55(1/A2)(dC(4)1* dC(4)).
l

A~r !5
~72p!~32p!c1

64
h~r !2

72p

16
ln@cosh„k h~r !…

2c2 sinh„k h~r !…#,

B~r !5
1

72p
ln@ f 2~r ! f 1~r !#1

~p23!~p11!c1

64
h~r !

1
p11

16
ln@cosh„k h~r !…2c2 sinh„k h~r !…#,

f~r !5
~72p!~p11!c1

16
h~r !1

32p

4
ln@cosh„k h~r !…

2c2 sinh„k h~r !…#,

eL(r )52h~c2
221!1/2

sinh„k h~r !…

cosh„k h~r !…2c2 sinh„k h~r !…
,

~6!

r
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where

f 6~r ![16S r 0

r D 72p

,

h~r !5 lnF f 2~r !

f 1~r !G ,
k56A2~82p!

72p
2

~p11!~72p!

16
c1

2,

h561. ~7!

The parameterh describes whether we are measuring
‘‘brane’’ charge or the ‘‘antibrane’’ charge of the system.

The parameters (r 0 ,c1 ,c2) appear as integration con
stants and as such they could be complex, describing a
dimensional space. However, the reality of the supergra
fields singles out three distinct three-dimensional subspa
I, II and III, as discussed in Appendix A. For the rest of o
paper, we will concentrate on the physical properties of
solution I where the above three parameters are all real
will comment on II and III in Appendix A. We also note tha
besides the three continuous parametersr 0 ,c1 and c2, our
solution has two additional discrete parameters: sgn(k),h.

The solution is invariant under three independentZ2
transformations which act on the space of the parameter

@m,c1 ,c2 ,sgn~k!,h#→@m,c1 ,2c2 ,2sgn~k!,2h#

@m,c1 ,c2 ,sgn~k!,h#→@2m,2c1 ,c2 ,2sgn~k!,h#

@m,c1 ,c2 ,sgn~k!,h#→@2m,2c1 ,2c2 ,sgn~k!,2h#

m[r 0
72p . ~8!

For convenience we will fix the aboveZ2’s by choosing
~a! the positive branch of the square root fork, namely

k5A2~82p!

72p
2

~p11!~72p!

16
c1

2, ~9!

~b!

c1>0. ~10!

The case of the instanton (pÄÀ1)

The solutions mentioned above also includep521. In
this case there is noA(r ); the metric, dilaton and the RR
potential are explicitly given by
06400
e

ix-
ty
es

e
e

ds25S f 2~r !

f 1~r ! D
1/4

~dr21r 2dV82p
2 !,

f5 lnFcoshS 3

2
h~r ! D2c2 sinhS 3

2
h~r ! D G ,

C(0)5eL(r )52h~c2
221!1/2

sinh„3
2 h~r !…

cosh„3
2 h~r !…2c2 sinh„3

2 h~r !…
,

~11!

where

f 6~r !5X12S r 0

r D 8C,
h~r !5 lnF f 2~r !

f 1~r !G . ~12!

An interesting point to note is that in this case the solut
depends only on two parametersr 0 ,c2 ~which are functions
of mass and charge!, consistent with Birkhoff’s theorem. The
extra parameterc1 does not appear. According to the inte
pretation in the next section it implies that there is
tachyon associated with this solution.

The neutral case~taken asc2521) is described by

ds25S f 2~r !

f 1~r ! D
1/4

~dr21r 2dV82p
2 !,

exp@f#5S f 2~r !

f 1~r ! D
3/2

. ~13!

Regarded as a IIB solution, this should be interpreted a
D(21)-D̄(21) pair. On the other hand, the same soluti
can alternatively be regarded as a IIA solution; in that cas
has a natural lift to eleven dimensions, given by the form

ds11
2 5exp@4f/3#dx10

2 1exp@2f/6#ds2. ~14!

It is easy to see that the eleven-dimensional metric beco
the Euclidean Schwarzschild metric

ds11
2 5S 12

M

r̃ 8D dx10
2 1

dr2

12
M

r̃ 8

1 r̃ 2dV9
2 ~15!

whereM54r 0
8 and r̃ 5r f 1

1/4. It has been pointed out in@5#
that this metric describes the non-BPS D-instanton of ty
IIA. 3 Thus, we see that Eq.~13!, regarded as a IIA solution
describes the non-BPS D-instanton. This is in keeping w
our later observations about non-BPS D-branes. The inte

3We thank Y. Lozano for a comment on this case.
8-3
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ing point here is that in the absence of the extra param
c1, the same neutral supergravity solution describes both
D(21) D̄(21) pair as well as the non-BPSD(21) brane.
This is presumably a consequence of our earlier observa
that there is no tachyon associated with this solution.

B. Physical properties

In @17# the physical interpretation of the above thre
parameter solution~6!,~7! was not presented. We will se
that it corresponds to brane-antibrane systems along
condensates.

In a brane-antibrane system, there are two obvious ph
cal parametersN andN̄ which are the numbers of branes a
antibranes respectively. In the above supergravity solu
too, there are two obvious physical parameters: the
charge Q and the Arowitt-Deser-Misner~ADM ! mass
MADM , which clearly depend onN and N̄. We will discuss
in Sec. III the brane interpretation of the third paramet
Before that, however, it will be useful to discussQ and
MADM in greater detail.

For convenience, we consider wrapping the spatial wo
volume directions on a torusTp of volumeVp ~this is always
possible, since the metric and other fields do not depend
these directions!. The RR chargeQ, defined by an appropri
ate surface integral over the sphere-at-infinity in the tra
verse directions~see, e.g.@16#!, is given by

Q52hNpr 0
72pkAc2

221, ~16!

where

Np[
~82p!~72p!v82pVp

128pGN
10

, ~17!

and vd52p (d11)/2/G„(d11)/2… is the volume of the unit
sphereSd. We have normalized the chargeQ such that the
BPS relation becomesMBPS5Q.

The ADM massM is defined, in terms of the Einstein
frame metric, by@19,20#4

g005211
16pGN

102pM

~82p!v82pr 72p
1higher order terms~18!

whereGN
102p5GN

10/Vp .
This gives us

M5Npr 0
72pF32p

2
c112c2kG . ~19!

Since the solution is generically non-BPS,M is different
from MBPS[Q. The mass difference is given by

4This definition differs from the one presented, e.g. in@16#, by an
overall factor.
06400
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DM[M2MBPS5Npr 0
72pF32p

2
c112k~c22Ac2

221!G .
~20!

In order to have a better understanding of the space
solutions represented by Eqs.~6!,~7!, we now consider some
special limiting cases.

The BPS case (N̄Ä0)

Since the BPS Dp-brane clearly respects the symmet
~1!, it should be part of our solution space.

We recall@21# that the Dp-brane solution is given by

ds25 f p
~p27!/8dxmdxm1 f p

(p11)/8~dr21r 2dV82p
2 !,

ef5 f p
(32p)/4 ,

C01 . . .p
(p11) 52h

1

2
~ f p

2121!,

f p511
m0

r 72p
, ~21!

with ADM-massMDp and chargeQ given by

MDp5Q5m0Np . ~22!

This solution indeed exists in a ‘‘scaled neighborhood’’
the point (r 0 ,c1 ,c2)5(0,cm ,`), defined by

r 0
72p5e1/2r̄ 0

72p ,

c15cm2e
8k̄ 2

~p11!~72p!cm
,

c25
c̄2

e
, ~23!

wherecm5@32(82p)/(p11)(72p)2#1/2 denotes the point
wherek50. The second condition is better stated as

k5e1/2k̄. ~24!

The scaling is defined by the limite→0 such thatr̄ 0 ,c̄2 and
k̄ are fixed.

It is easy to check that the solution~6! reduces to Eq.~21!
with

m052c2kr0
72p52c̄2k̄ r̄ 0

72p . ~25!
8-4
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It is useful to consider the three-parameter space of s
tions as parametrized byM ,Q,c1. Figure 1 depicts
the M ,c1 plane for a given fixedQ. The BPS solution cor-
responds to the scaled neighborhood represented by
shaded circle. Other parts of the figure will be explain
later.

The Dp-Dp System (NÄN̄)

In this case the RR chargeQ}(N2N̄) must vanish. Ac-
cording to Eq.~16! this corresponds to the subspace

uc2u51. ~26!

We represent this subspace in Fig. 2.
Now Eq. ~26! implies c2561. As remarked in Sec. III

below, the physically relevant choice forp.3 is c251,
while for p,3 it is c2521 ~for p53 the two choices are
physically equivalent!. To simplify the discussion we will
present the formulas in the rest of this section forp.3; it is
straightforward to write down the formulas in the oth
cases.

The solution now reads

e2A5S f 2

f 1
D a

,

e2B5 f
2

b2 f
1

b1 ,

ef5~ f 2 / f 1!g,

eL50, ~27!

where

FIG. 1. TheM ,c1 plane for a given fixedQÞ0. The BPS solu-
tion corresponds to the scaled neighborhood represented by
shaded circle. Path II represents decay to a BPS D-brane of ch
Q.
06400
u-

he
d

a5~72p!S ~32p!c114k

32 D ,

b65
2

72p
7S ~p11!~~p23!c124k!

32 D ,

g5
1

16
„~72p!~p11!c124~32p!k….

~28!

These represent the most general 2-parameter (r 0 ,c1) so-
lution of type II supergravity with no gauge field an
SO~p,1! 3 SO~9-p! symmetry.

Consider for instance the casep56. The solution reads

e2A5S 12r 0 /r

11r 0 /r D
(4k23c1)/32

,

e2B5~12r 0 /r !217(3c124k)/32~11r 0 /r !227(3c124k)/32,

ef5S 12r 0 /r

11r 0 /r D
(7c1112k)/16

~29!

wherek5A427c1
2/16.

The Einstein metric has a curvature singularity atr 5r 0.
The scalar curvature in Eq.~29!, e.g., goes as

R;
1

~r 2r 0!21b2
. ~30!

The physical regime isr>r 0. In the case of a single
Dp-brane the curvature singularity is resolved by the app
priate inclusion of the brane degrees of freedom. We w
discuss this issue in our case later on.

the
rge

FIG. 2. The two-parameter space of solutions forQ50, as pa-
rametrized byM ,c1. Path II represents decay of the brane-antibra
configuration to flat space.
8-5
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For the specific value

c150, ~31!

we get

e2A5S 12
r 0

r

11
r 0

r

D1/4

,

e2B5S 12
r 0

r D 1/4S 11
r 0

r D 15/4

,

ef5S 12
r 0

r

11
r 0

r

D 3/2

, ~32!

which is the coincident D6-D6 solution@22,23# in isotropic
coordinates. In Fig. 2, this corresponds to the point (M ,c1)
5(M0,0).

The above observation implies that forc1Þ0 we get a
generalization of the coincident D6-D6 solution. We will
argue in the next section that the parameterc1 is related to
the ‘‘VEV’’ 5 of ~the zero momentum mode of the! the open
string tachyon arising from open strings stretched betw
the D6 andD6 ~and more generally between Dp and Dp)
branes. The Sen solution corresponds to the particular
where the tachyon VEV is zero.

Other cases ofDMÄ0

Clearly, from Eq.~20! we can have

M5Q ~33!

if we have

~32p!/2c112k~c22Ac2
221!50. ~34!

This solution~represented byc15ce in Figs. 1,2! is nonsu-
persymmetric. Indeed, there is a range of the parameters~see
Figs. 1,2! in which

M,Q. ~35!

These solutions cannot correspond to physical states of s
theory~for Q50, these correspond to negative ADM mas!.

This implies that we expect additional contribution to t
ADM mass formula, coming perhaps from a better und
standing of the curvature singularity atr 5r 0. In the case of
BPS D-branes or the fundamental string the ADM mass
mula as found by the asymptotic behavior of the Einst

5We actually consider generically off-shell values of the tachy
The issue of why we may have supergravity solutions correspo
ing to an off-shell tachyon is discussed in Sec III A.
06400
n

se
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metric does represent the energy-momentum of the so
sitting at the curvature singularity. The reason our case
different may have to do with the fact that we have a nak
singularity atr 5r 0; a computation of the Euclidean actio
similar to that in@24# indeed shows that the action receiv
contribution not only fromr 5`, but also fromr 5r 0.

Validity of the supergravity description

As we have mentioned above@see Eq.~30!#, the curvature
typically becomes large nearr 5r 0. This implies that the
solution nearr 5r 0 can receive corrections from higher cu
vature terms in the low energy Lagrangian. However, as
been demonstrated in@23#, it is possible to use the solution t
the leading-order supergravity equations to draw non-triv
inferences. Furthermore some features of the solution do
depend on the precise details of the solution near the sin
larity. In the comparison with the physics on the brane
follow, we will mainly focus on these features.

III. TACHYON CONDENSATION

In the following, we will interpret the 3-parameter famil
of supergravity solutions as a bound state ofN Dp-branes
coincident withN̄ Dp-branes, together with a vacuum expe
tatio value~VEV! v of the tachyon condensate. The thr
parametersr 0 ,c1 ,c2 will be argued to correspond to variou
combinations of the three parametersN,N̄,v.

A. ŠT‹ in supergravity

A system ofN Dp-branes on top ofN̄ Dp-branes has a
tachyon arising from the open string stretched between
Dp-branes and theDp-branes. The tachyonT transforms in
the (N,N̄) @and T* in (N̄,N)] representation of theU(N)
3U(N̄) gauge group. Consider first the caseN5N̄ ~the neu-
tral case!. The cases that are studied most areN5N̄51. In
this case the tachyon is a complex field (T,T* ) that trans-
forms in the (1,21)% (21,1) representation of theU(1)
3U(1) gauge group of the world-volume theory. The bra
system is unstable due to the tachyon. The tachyon ha
potential V(T) which is a function of uTu2. The Dp-
Dp-branes configuration is expected to decay into the clo
string ~type II! vacuum. Such a decay into the vacuum
conjectured to happen through the process of tachyon c
densation in which the zero-momentum mode of the tach
gets a specific VEV. In particular, it is conjectured that at t
minimum of the tachyon potential, denoted byuTu5T0, the
total energy of the system actually vanishes:

E5V~T0!12MDp50, ~36!

where MDp is the mass of a Dp-brane. Equation~36! has
been established numerically to a very high accuracy
open string field theory@3#. WhenN.1 it was argued in@8#
that at the minimum of the potential all the eigenvalues ofT0
are equal. In the following we will denote (1/N)Tr(TT* ) by
uTu2.

.
d-
8-6
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Let us ask ourselves how the above phenomenon app
from the viewpoint of closed string theory. We concentra
on the neutral case first (Q50) and on the charged cas
later. There are two ways of looking at the problem:

~a! Real-time. The physical decay process in terms of t
brane~open string! variables in which the tachyon rolls dow
to its minimum is time-dependent. The supergravity ba
ground of such a time-dependent brane configuration is
ively expected to be time-dependent.6

~b! Path-in-configuration-space. One can alternatively
view the decay as a one-parameter path in the open s
configuration space, which for our purposes here is the sp
of values ofuTu. Except at the two extremities of the pa
(uTu50,T0), the other values ofuTu are not at an extremum
of V(T) and is therefore off-shell. Let us ask how such
path would appear in the closed string description. Let
imagine doing an experiment in which gravitons and ot
massless closed string probes are scattered off the br
antibrane system for various values ofuTu as uTu is varied
from 0 to T0. We will assumehere that such an experime
makes sense with off-shell values of the tachyon.7 In prin-
ciple one can imagine coupling closed string degrees of f
dom to the off-shell tachyon through, e.g., the modified D
action appropriate to brane-antibrane systems. The su
gravity solution away from the brane will have the sam
symmetry as the brane-antibrane system, namely Eq.~1!.
However, the metric and other fields must reflect the ex
parameteruTu. We will try to argue that the one-paramet
deformation represented byc1 in our solution corresponds t
this uTu.

We begin by asking whether we see in the supergra
description an analogue of the tachyon potential. The ob
ous supergravity counterpart of the total energyE @Eq. ~36!!#
of the brane-antibrane system is the ADM mass~19!. For the
suggested identification to be correct we should have

M5V~T!12NMDp
(1) , ~37!

where byM (1) we mean the ADM mass for a single Dp
brane. The supergravity solution in question here is
2-parameter family ~27! of solutions parametrized b
(r 0 ,c1). Since the left hand side of Eq.~37! is the ADM
mass~19!, viz.

6We remark, though, that the exterior geometry of a pulsat
spherically symmetric star is given by the static Schwarzschild
lution, thanks to Birkhoff’s theorem. It is not inconceivable, ther
fore, to have a time-dependent brane configuration with a st
supergravity background forr .r 0. In such a case the time
dependence could presumably be discerned at the level of hi
mass modes of the closed string~see @25# for a similar analysis
where the supergravity background of a BPS state does not se
‘‘polarization’’ of the state, although the higher closed string mod
see it.!

7Coupling on-shell bulk degrees of freedom to off-shell bra
degrees of freedom is also familiar from AdS conformal field the
~CFT!.
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M5Npr 0
72pF32p

2
c11S 2~82p!

72p
2

~p11!~72p!

16
c1

2D 1/2G ,
~38!

let us ask whether the the qualitative behavior ofM as a
function of c1 in Eq. ~38! agrees with the right hand side o
Eq. ~37! for some appropriate identification betweenc1 and
T.

Comment on branches. As explained in Appendix A, the
dependence of the ADM mass onc1 depends on the specifi
branch of the solution. In the following we will find that it i
for the branchI 11 for p.3 ~and I 22 for p,3)8 which
lends to a tachyon interpretation. Later on we will briefl
comment on the possible interpretation of the other branc

Once we choose the appropriate branch of the superg
ity solution, the qualitative behavior ofM as a function ofc1
~at a fixedr 0) is given by Fig. 3.

Consider first the casep56. Whenc150 we have the
coincident D6-D6̄solution@22,23#. The ADM mass~38! for
p56,c150 is M54Npr 0. We will argue in Sec. III B that
this mass coincides with

M52NMDp
(1) . ~39!

This implies thatV(T)50 at c150; since the tachyon po
tential vanishes only atT50 @26#, we conclude that

T50 at c150. ~40!

As we will see, the last equation is valid for allp. This will
imply that the subspace of our three-parameter solution
fined byc150 represents Dp-Dp branes with zero value o
the tachyonuTu, that is, brane-antibrane configurations whi
sit at the maximum of the tachyon potential.

g
-

ic

er

the
s

y 8For p53 andQ50 I 11 and I 22 are physically indistinguish-
able.

FIG. 3. ADM mass~for a fixed r 0.0) as a function of~a! c1

and ~b! uTu.
8-7
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Let us now consider small deformations away fromc1
50. SinceV(T) is known to be a function only ofuTu2, we
expect the ADM mass, and hencec1, to be a function ofuTu2
too. For small deformations, we can write

c15auTu21buTu41•••. ~41!

Clearlya.0. It is easy to see that the behavior of the AD
massM as a function ofuTu @Fig. 3~b!# qualitatively matches
the behavior ofV(uTu) nearT50.

Tachyon condensation

In Fig. 3~b! we have not plotted the ADM mass in th
whole range ofuTu because Eq.~41! is valid only nearT
50. The question then is whether our solution can desc
the full double-well potentialV(T). In other words, can we
describe the process of tachyon condensation all the wa
the vacuum?

In Fig. 2, vacuum is represented by any point in the l
M50. Any path connecting the point (M0 ,c150) to this
line ~e.g. path I or path II! therefore in principle represents
family of supergravity solutions corresponding to a flow
uTu from uTu50 to uTu5T0.

To know what the actual path is, we need to have a m
precise knowledge of mapping@more detailed than Eq.~41!#
between the open string variables (N,uTu) to the supergravity
variables (r 0 ,c1). Assuming that such maps exist and a
smooth and invertible, the generic form will be

r 05 f̃ 1~N,uTu2!, c15 f̃ 2~N,uTu2!

~42!

N5g̃1~r 0 ,c1!, uTu5g̃2~r 0 ,c1!.

These can alternatively be stated as a map (N,uTu)
→(M ,c1):

M5 f 1~N,uTu2!, c15 f 2~N,uTu2!

~43!

N5g1~M ,c1!, uTu5g2~M ,c1!.

Of course Eqs.~42!,~43! should be consistent with Eq.~41!
nearT50 ~we need to consider the coefficientsa,b, . . . to
be functions ofr 0 or N).

The path I in Fig. 2 corresponds, in terms of Eq.~42!, to
r 05 f̃ 1(N) and c15 f̃ 2(uTu2). This path corresponds to th
plot Fig. 3~a! of M as a function ofc1 at fixed r0. It has the
unphysical feature that it does not stop atM50 and goes
down to the domain ofM,0.

Path II in Fig. 2 requires the functionsf̃ 1,2 ~or the func-
tions f 1,2) to be necessarily a function of two variables.
other words, the flow ofuTu from 0 to T0 should mean here
that bothr 0 andc1 should change appropriately to take t
solution to the point (M ,c1)5(0,cm). The nice feature of
this path is that it automaticallyendsat the flat space solu
tion, sincec1 cannot go beyondcm @actually there is anothe
branch of solution~branch II, Appendix A! for c1.cm , but
it can be shown that the ADM mass increases forc1.cm].
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In the absence of a decoupling limit~as we will discuss in
Sec. III A! it may not be possible to determine the exa
functions mentioned in Eq.~42! or Eq. ~43! and therefore to
know any more about the nature ofV(T) than what we have
already presented here. In any case, if an analysis of b
degrees of freedom is expected to remove theM,0 region,
presumably the formulas for the mass will change.

In summary, we see that a path exists~path II in Fig. 2! in
our space of solutions which describes the flow ofuTu from 0
to T0 and the behavior of the ADM massM along this path
matches the qualitative features ofV(T).

The other branches

In the above we have discussed only the branchI 11 ~see
Appendix A for notation! for p>3 andI 22 for p,3. It is
easy to see that the behavior of the branchesI 21 ,I 12 are
outright unphysical. This leavesI 22 for p>3 and I 11 for
p,3. In this branch~except forp53) for small deforma-
tions of c1 away from zero,M initially rises beyond the
combined rest mass of the brane-antibrane system and
falls again. This seems puzzling since Eq.~37! does not al-
low such an increase in the energy of the system. We sho
recall however that when the vev of the tachyon field is z
the world-volume gauge group is not broken. That mea
that we are allowed to have other condensates such
gluon condensate. This can increase the energy of the
tem. An estimate of such an increase can be obtained f
the modified Dirac-Born-Infeld~DBI! action @27#

S52TpE dp11se2fV~T!

3Adet@Gi j 12pa8~Fi j 1] iT] jT!#. ~44!

The interpretation of thec1 deformation~for pÞ3) in these
branches could therefore be in terms of a gluon condens
However, it remains a mystery in that case why~a! there is
no such phenomenon forp53 ~since the branchesI 11 and
I 22 appear to be identical!, and ~b! why the ADM mass
starts to decrease after a while.

Non-BPS D-branes

Since we are only discussing the tachyon condensat
terms of a real quantityuTu we are left with the possibility
that our supergravity solution may represent a real tach
as well. Recall that a real tachyon characterizes the non-B
Dp branes, i.e.p odd for IIA andp even for IIB, which are
obtained from the Dp-Dp-brane system by a (21)FL projec-
tion. So the natural question arises: which brane system d
the supergravity solution describe. It is plausible that in
neutral case the solution describes both. In both cases
background has no RR charge, and one expects the
SO(p,1)3SO(92p) symmetry. The solution~27! is the
most general one that satisfies these conditions. The que
is whether the ADM mass of a non-BPS brane~with or with-
out tachyon! occurs in these solutions. We recall that t
tension of non-BPS Dp branes~for N51) is related to the
tension of the Dp-Dp-brane system by Mnon-BPS
8-8
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SUPERGRAVITY DESCRIPTION OF NON- . . . PHYSICAL REVIEW D 63 064008
5(1/A2)MDp2Dp, reflecting a bound system. ForN.1 too,
the tension of the non-BPS Dp brane systemMnon-BPS

(N) should
be less than that of the combined rest mass 2NMDp

(1) of the
brane-antibrane system. Since the values of ADM mass
cussed in the context of Eq.~37! range all the way from
2NMDp

(1) to 0, we see that in a suitable range of parame
the solution~27! does have ADM masses that can be fitted
M5Mnon-BPS

(N) 1Ṽ(T) whereṼ(T) is the potential for the rea
tachyon in this case. This implies that one can use the su
gravity solution presented here in appropriate ranges of
rameters to describe non-BPS branes as well; the distinc
between which system~brane-antibrane or non-BPS bran!
one has at hand is likely to depend on the near-core geom
which could depend on higher-curvature corrections.

The charged case: QÅ0

In this case we expect the relation

M5~N1N̄!MDp
(1)1V~T!, ~45!

whereMDp
(1) denotes the ADM mass for a single Dp brane.

The analysis of the binding energy in the next section o
again suggests thatc150 corresponds to the point where th
tachyon potential vanishes, which we expect to be for v
ishing tachyon field. The discussion of tachyon condensa
is similar to the neutral case. Again path II in Fig. 1 is mo
physical than path I because the former ends at the BPS p
and does not go to the regionM,Q. The qualitative behav-
ior of M along this path again matches the qualitative f
tures of a tachyon potential which has a local maximum
uTu50 and a minimum atuTu5T0 where we denote
(1/N)Tr(TT* ) by uTu2 ~we assume that all the eigenvalues
TT* are the same, namelyT0

2, at the minimum!. We expect

that at the minimumV(T)5@ uN2N̄u2(N1N̄)#MDp
(1) .

B. Dp-brane probes and binding energy

In the last section we mentioned thatV(T)50 corre-
sponds toc150. We derive this in the present section.

We will consider the general 3-parameter solution para
etrized by (r 0 ,c1 ,c2). Let us define the binding energy o
the Dp-Dp-branes solution to be

EB5~N1N̄!MDp
(1)2M , ~46!

whereM is given by Eq.~19! and MDp
(1) represents the res

mass of a single Dp-brane~or Dp-brane!, given by Eq.~22!
with the scale parameterm05m0

(1) , which depends ongstr

andp, the dimensionality of the brane.
In view of Eq. ~37!,

EB52V~T!. ~47!

A straightforward comparison between (N1N̄)MDp and
M of Eq. ~19! is hampered by the fact that we do not knowa
priori the relation between the two parametersr 0 andm0 that
characterize the respective solutions~6! and ~21!. We will
find this relation by the following strategy.
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We consider the static force between a Dp-Dp-branes
system and a Dp-brane probe~respectively aDp-brane
probe! at a distancer. This can be computed in two ways:

~a! From supergravity,

Sprobe52
1

gsl s
p11E dp11s~e2fAĜ6Cp11! ~48!

whereGMN5ef/2gMN represents the string frame metric co
responding to the solution~6! and Ĝ is its pull-back to the
world-volume. For a Dp ~respectivelyDp) probe, we use the
upper~respectively lower! sign.

Subtracting the flat space DBI part, and keeping only
leading term in the 1/r expansion we get

Sprobe52k
Vp

gsl s
p11 S r 0

r D 72p

~c27Ac2
221!. ~49!

~b! By a string theory computation,

^DpDp uexp~2bH !uDp& ~50!

where the states are regarded as boundary states constr
out of closed-string oscillators.~We consider here the case o
the Dp-probe first.! At weak coupling and for̂ T&50, the
boundary state on the left is given by

^DpDp u5^Dpu ^ ^Dp u. ~51!

We will assume that Eq.~51! can be used for computation o
the leading term in the 1/r expansion for large distancesr,
when ^T&50 ~see @28,29# for earlier work on connection
between boundary states and classical solutions!. Since the
static force between two Dp-branes vanishes, the comput
tion ~b! then reduces, at̂T&50, to

^Dpuexp~2bH !uDp&. ~52!

This latter can be computed at large distances from su
gravity, by the DBI action of a Dp-brane probe in the back
ground of aDp-brane:

Sprobe8 [2
1

gsl s
p11E dp11s@e2fAĜ1C(p11)#, ~53!

where the metric, dilaton and the RR potential are now
tained from Eq.~21!, with m05N̄m0

(1) . We get, again after
subtracting the flat space DBI part, and keeping only
leading term in the 1/r expansion,

Sprobe8 5
Vp

gsl s
p11 S 2

N̄m0
(1)

r 72p D . ~54!

This result holds for the Dp-probe. For theDp-probe we
need to replaceN̄→N in the above expression.
8-9
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PHILIPPE BRAX, GAUTAM MANDAL, AND YARON OZ PHYSICAL REVIEW D 63 064008
Matching Eqs.~49! and ~54! leads to

Nm0
(1)5kr0

72p~c21Ac2
221!,

N̄m0
(1)5kr0

72p~c22Ac2
221!. ~55!

From this we deduce that

Q5Npm0
(1)~N2N̄! ~56!

and

m0
(1)~N1N̄!52kr0

72pc2 . ~57!

Using Eqs.~19!, ~22! and~55! we can find the zero of the
binding energy~46! of the Dp-Dp bound state. We get

EB505Npr 0
72pF32p

2
c1G . ~58!

Clearly EB vanishes atc150.9 In view of the identification
~47!, this implies that

c150⇒V~T!50, ~59!

as promised in the last section. Note that
~a! If we put c150 in Eq. ~19! we indeed getM5MDp

1MDp, consistent with the vanishing of the binding energ
~b! Equations~56! and~57! give us essentiallyN2N̄ and

N1N̄ in terms of the supergravity parameters in the s
spacec150.

~c! The expression for the total mass~57! matches exactly
with the BPS mass~25! ~recall that at the BPS pointN̄50).

C. Open-closed string duality

In the spirit of the AdS-CFT correspondence~for a review
see@30#!, it is natural to ask whether we can apply a deco
pling limit @31# of the brane modes from the bulk modes
the supergravity description of the Dp-Dp-branes system
Typically for Dp-branes this is a low energy limit with th
resulting background being the near-horizon metric. In
present case, the closest analogue of the near horizon m
is some suitably scaled neighborhood ofr 5r 0. However, it
is easy to see that for the neutral solution~27! there is no
such region which by itself is a solution of the supergrav
field equations. Also, we cannot find an appropriate resca
that keeps a metric finite inl s units asl s→0. This means tha
the interactions between the open and closed strings rem
relevant.

Another manifestation of this issue is the form of the p
tential V(r ) for a graviton scattered on the Dp-Dp-branes.
The potential is depicted in Fig. 4. Nearr 5r 0 it goes like
21/(r 2r 0)2 while at infinity it approaches2v2 wherev is

9The casep53 is subtle and we extrapolated the result to t
value ofp from the other values. An alternative way would presu
ably be to use some other probe.
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the frequency of the scattered graviton. The potential po
no barrier for the gravitons sent from infinity to reach ther
5r 0 and their absorption cross section does not vanis10

The absence of a decoupling of the closed strings from
open strings prevents us from making a precise corresp
dence between the field theory on the Dp-Dp-branes world-
volume and the supergravity background. This suggests
there is also a limitation on the quantitative understanding
the tachyon condensation process by using only the o
string description. More precisely, for quantitative propert
whose analysis requires a string coupling which does
satisfy gs!1, the interaction with the closed string mod
should not be neglected.

The singularity of the supergravity solution atr 5r 0 is
time-like. Having such a singularity of the classical geome
which we can reach at a finite proper time, there is the na
ral question whether it is resolved quantum mechanica
One criterion@33# is the existence of a self-adjoint Laplacia
This can still be the case even if the metric is geodesic
incomplete. The requirement is the existence of a n
normalizable solution of the wave equation. This criterion
satisfied by our geometry. To see that we consider
Laplace equation in the form

]2f

]t2
52Af. ~60!

The equationAf5lf takes the form

rb]r~r]rf!5lf, ~61!

where b52p21512(72p)((32p)c1/81k/2) and r5r
2r 0. Definingz5Alr (12b)/2 we get

f91
f8

z
1

4

~12b!2
f50. ~62!

-
10For a similar but detailed analysis see@32#.

FIG. 4. The scattering potentialV(r ) for gravitons on Dp-
Dp-branes.
8-10
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SUPERGRAVITY DESCRIPTION OF NON- . . . PHYSICAL REVIEW D 63 064008
This has Bessel function solutions behaving like 1 and lnr.
The norm of the latter*drrr22 diverges.

IV. THE FOUR-PARAMETER SOLUTION

In this section we will briefly describe the most gene
p-brane solution of type II string theory in which we rela
the requirement of Poincare´ invariance in the
(p11)-dimensional world-volume. In other words, we a
ourselves about the most general solution which respects
symmetry

S85SO~p!3SO~92p!. ~63!

Clearly the previous 3-parameter solution already resp
this symmetry and hence should be part of this most gen
family of solutions. The modified ansatz for the Einste
metric is

ds25exp„2A~r !…„2 f ~r !dt21dxmdxm
…

1exp„2B~r !…~dr21r 2dV82p
2 !, ~64!

where we split the world-volume indexm as 0,m51, . . . ,p.
The ansatz for the dilaton and the gauge potential remain
same as in Eq.~2!.

The equations of motion for this ansatz have been writ
down in Appendix B. Once again the mathematical solut
of the differential equations has been worked out in@17# ~see
@18# for earlier work on many of these solutions!. We write
the explicit solution in Appendix B for completeness a
discuss here some salient physical features~see Fig. 5!.

The general solution has 4 independent parame
(r 0 ,c1 ,c2 ,c3). The Poincare´-invariant 3-parameter subspac
discussed in the previous sections corresponds toc350. In
Fig. 5 this is schematically represented by the arm AC of
triangle ABC. c3Þ0 breaks world-volume Poincare invar
ance.

FIG. 5. The most general spherically symmetric solution of ty
II theories.
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The two-parameter subspace (c1 ,c3)5@(32p)/2(72p),
22# corresponds to the blackp-brane solutions of@21#. This
has already been identified in@17#. In Fig. 5, this is repre-
sented by the arm AB of the triangle. Recall that the bla
p-branes are parametrized by their charge and mass~equiva-
lently r 1 ,r 2 , the outer and inner horizons!. Note that the
BPS D-brane can be reached as a limit along the arm
like it can be reached along CA, although thec3 values char-
acterizing these two arms are different. It is likely that the
are continuous families of solutions between BA and C
~corresponding to differentc3 values! which can reach the
BPS solution under a limiting procedure.

The three-parameter subspace defined byuc2u51 de-
scribes the most general spherically symmetric solution w
no gauge fields. This is represented by the arm BC of
triangle. It is well-known that the neutral limit of the blac
p-brane ~point B! corresponds to the Schwarzschild bla
hole in 102p dimensions (3Tp, assuming a wrapped
p-brane!. On the other hand, as discussed at great lengt
this paper, the neutral limit of the arm AC corresponds to
coincident brane-antibrane solutions. The arm BC theref
provides interpolating solutions which connect the bra
antibrane solution to the Schwarzschild solution.

It is clear that there is a rather rich phase structure in F
5. Parts of this diagram have obvious decoupling limits a
dual field theory descriptions. It would be interesting to ch
out these parts completely@34#.

Interpolations similar to the arm BC are of paramou
importance to the study of the D1-D5 system and the fi
dimensional black hole@35#. It has been found that CFT
descriptions seem to work in some contexts for non-rotat
Bañados-Teitelboim-Zenelli~BTZ! black holes which are the
analogues of Schwarzschild black holes in AdS3. An inter-
polation of such a solution to a brane-antibrane solution
the D1-D5 system would shed light on both brane-antibra
dynamics and nonsupersymmetric black holes.

It has been pointed out by@36# that the equations of mo
tion of the above system are identical to those of a To
molecule. It is tempting to construct a ‘‘mini-superspace
kind of model for this space based on Toda dynamics.

V. DISCUSSION

In this paper we constructed localized supergravity so
tions corresponding to bound states ofN Dp-branes coincid-
ing with N̄ Dp-branes for p50,1, . . . ,6 @and non-BPS
D-branes of odd~even! dimensions of type IIA~type IIB!
string theory#.11 We constructed these by looking for th
most general solution of type II A-B supergravity~in the
presence of a single RR gauge field! which respect world-
volume Poincare invariance and rotational invariance in
transverse directions. Contrary to the naive expectation
the solution should have only two parameters correspond

11The casep521 has been mentioned separately in Sec. II.

e
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PHILIPPE BRAX, GAUTAM MANDAL, AND YARON OZ PHYSICAL REVIEW D 63 064008
to the charge and the mass, we found that the most gen
solution has one extra parameter. We found that in the ph
cally relevant branch there are two special values of the e
parameter at which the ADM mass respectively coincid
with ~a! the combined rest mass of the branes and antibra
and~b! the mass of the BPS configuration ofN2N̄ branes.12

In the caseN5N̄ ~zero RR charge! the point~b! represents
flat space. The caseN5N̄ is extensively studied from the
point of view of open strings living on the brane-antibra
system, and we recognized the solutions~a! and ~b! as the
supergravity background corresponding to the maximum
the minimum of the tachyon potential. This lead us to int
pret the extra parameter in our solution as the supergra
manifestation of an expectation value of the tachyon.
matched the qualitative behavior of the ADM mass as a fu
tion of this extra parameter with the behavior of the tachy
potentialV(T). The identification of the extra parameter
the tachyon may appear somewhat surprising from the p
of view of open string field theory where any of the mass
string states also could be excited. While it cannot be ru
out that our interpretation is not unique, it is interesting
note that many of the open string field theory computatio
can be explicitly understood solely in terms of the tachy
mode~see, e.g., the recent work@37#!.

We noticed the absence of a decoupling of the bulk clo
strings from the brane-antibrane open strings. This me
that the interactions between the open and closed string
main relevant and suggets that there is also a limitation
the quantitative understanding of the tachyon condensa
process by using only the open string description.

We briefly discussed a more general~four-parameter!
space of solutions in which we assume only rotational inv
ance in the spatial directions on the world-volume. T
space includes brane-antibrane pairs, BPS D-branes,
black p-branes of@21# and Schwarzschild black holes. Th
detailed understanding of this four-parameter space in te
of brane variables is an outstanding problem.
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APPENDIX A: REAL SECTIONS OF THE SUPERGRAVITY
SOLUTION

As remarked in the text, the three parameters (r 0 ,c1 ,c2)
characterizing the supergravity solution~6!,~7! appear as in-
tegration constants in the solution of differential equatio
and as such could be complex. However, this would gen
cally make the metric, dilaton and gauge field also comp
We find that there are three distinct 3-dimensional doma
of (r 0 ,c1 ,c2), described below as branches I, II and I
where the supergravity fields remain real.

12For N.N̄; for N,N̄ these will beN̄2N antibranes.
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Branch I:

c1P~0,cm!, cm5A 82p

8~p11!~72p!

c2P~2`,1!ø~1,̀ !

m[r 0
72pPR

h561. ~A1!

We will assume in this section that we have already fixed
Z2 symmetries~8! of the solution by implementing Eqs
~9!,~10!. For branch I, the remaining choices of signs are b
discussed by thinking of four sub-branches, depending
whether the signs of (c2 ,m[r 0

72p) are11,12,21 and
22 respectively. We denote these asI 11 ,I 12 ,I 21 ,I 22

respectively~each of these will also containh56). The
formulas for the ADM mass and charge for branch I is giv
by Eqs.~19!,~16!. Explicitly

M5Npr 0
72pF32p

2
c112c2A2~82p!

72p
2

~p11!~72p!

16
c1

2G
Q52hNpr 0

72pA2~82p!

72p
2

~p11!~72p!

16
c1

2Ac2
221.

~A2!

The behavior of these functions depends on the signs oc2
and m. We find that it is the branchI 11 for p53,4,5,6
which lends to a tachyon interpretation~Sec. III!. For p
50,1,2,3 it isI 22 .

Branch II:

c1P~cm ,`!⇒k52 i k̃,k̃

5A2
2~82p!

72p
1

~p11!~72p!

16
c1

2

c25 i c̃2 ,c̃2PR

m[r 0
72pPR

h561. ~A3!

The mass and charge for this branch read

M5Npr 0
72pF32p

2
c1

12c2A2
2~82p!

72p
1

~p11!~72p!

16
c1

2G
Q52hNpr 0

72pA2~82p!

72p
2

~p11!~72p!

16
c1

2A~ c̃2!211.

~A4!
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Branch III:

c15 i c̃1 , c̃1PR1

c25 i c̃2 , c̃2PR

m[r 0
72p52 i m̃, m̃PR

h561. ~A5!

The mass and charge for this branch read
06400
M5Npr 0
72pF32p

2
c1

12c2A2~82p!

72p
1

~p11!~72p!

16
~ c̃1!2G

Q52hNpr 0
72pA2~82p!

72p
1

~p11!~72p!

16
~ c̃1!2

3A~ c̃2!211. ~A6!
APPENDIX B: DETAILS OF THE 4-PARAMETER SOLUTION

The equations of motion that follow from Eq.~3! for the ansatz~64! are

A91~p11!~A8!21~72p! A8B81
82p

r
A81

1

2
~ ln f !8 A85

72p

16
S2,

A91~p11!~A8!21~72p! A8B81
82p

r
A81

1

2
~ ln f !91

1

2
~ lnf !8S ~d11!A81

1

2
~ ln f !81~72p!B81

82p

r D5
72p

16
S2,

B91~p11!A8B81
p11

r
A81~72p!~B8!21

1

2
~ ln f !8S B81

1

r D1
1522p

r
B852

1

2

p11

8
S2,

dA91~82p!B91~p11!~A8!21
82p

r
B82~p11!A8B81

1

2
~ ln f !91

1

4
„~ ln f !8…21

1

2
~f8!25

1

2

72p

8
S2,

f91S ~p11!A81~72p!B81
82p

r
1

1

2
~ ln f !8Df852

a

2
S2,

S L8

f 1/2
eL1af2(p11)A1(72p)B r 82pD 8

50, ~B1!

where

S5
L8

f 1/2
e(1/2)af1L2dA. ~B2!

The solutions@17# depend on four parametersr 0 ,c1 ,c2 ,c3 ~we have interchanged the labelsc2 ,c3 for convenience,
compared to@17#!, and are given by

f ~r !5e2c3h(r ),

A~r !5
~72p!

32 S 32p

2
c11S 11

~32p!2

8~72p! D c3D h~r !2
72p

16
ln@cosh„k h~r !…2c2 sinh„k h~r !…#,

B~r !5
1

72p
ln@ f 2~r ! f 1~r !#1

~p23!

64 S ~p11!c12
32p

4
c3D h~r !1

p11

16
ln@cosh„k h~r !…2c2 sinh„k h~r !…#,

f~r !5
~72p!

16 S ~p11!c12
32p

4
c3D h~r !1

32p

4
ln@cosh„k h~r !…2c2 sinh„k h~r !…#,

eL(r )52h~c2
221!1/2

sinh„k h~r !…

cosh„k h~r !…2c2 sinh„k h~r !…
, ~B3!
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where

f 6~r ![16S r 0

r D 72p

,

h~r !5 lnF f 2~r !

f 1~r !G ,
k25

2~82p!

72p
2c1

21
1

4 S 32p

2
c11

72p

8
c3D 2

2
7

16
c3

2,

h561. ~B4!

The parameterh describes whether we are measuring the ‘‘brane’’ charge or the ‘‘antibrane’’ charge of the system.
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