PHYSICAL REVIEW D, VOLUME 63, 064008

Supergravity description of non-Bogomol’'nyi-Prasad-Sommerfield branes

Philippe Brax
Theory Division, CERN, CH-1211, Geneva 23, Switzerland
and Service de Physique Tireue, CEA, Gif sur Yvette, F-91191, France

Gautam Mandal
Theory Division, CERN, CH-1211, Geneva 23, Switzerland
and Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

Yaron OF
Theory Division, CERN, CH-1211, Geneva 23, Switzerland
(Received 2 October 2000; published 12 February 2001

We construct supergravity solutions that correspond Bp-branes coinciding witIh_JD_p-branes. We study
the physical properties of the solutions and analyze the supergravity description of tachyon condensation. We
construct an interpolation between the brane-antibrane solution and the Schwarzschild solution and discuss its
possible application to the study of non-supersymmetric black holes.

DOI: 10.1103/PhysRevD.63.064008 PACS nunifer04.65+e

[. INTRODUCTION Another motivation that we have for studying brane-
antibrane solutions is to understand the relation between
these solutions and the Schwarzschild black hole solution

While a brane breaks half of the space-time supersymmeésee, e.gf12] for an early indication of such a connection in
try, the antibrane breaks precisely the other half of the suthe context of five-dimensional black holes of type 1B
persymmetry. Thus, a system of a brane and anti-bran&€ory, which may have possible applications in the study of
breaks together all the space-time supersymmetry. The sy89n-supersymmetric black holes. _
tem is not stable, however, since the brane and anti-brane ThiS paper is organized as follows. In Sec. Il we describe
attract each other. This can be understood as the appeararfB§ Supergravity solution that correspondsNdDp-branes
of a tachyon on the world-volume of the branes. It arisescoinciding withN Dp-branes and its physical properties. In
from the open string stretched between the brane and theec. lll we analyze the supergravity description of tachyon
anti-brane and it is charged under the world-volume gauggondensatlon. We Wlll also_dlscuss the issue of d.ecoupllng
groups. The decay of the system can be seen by the tachy&fd open-closed string duality. In Sec. IV we describe a gen-
rolling down to the minimum of its potentidll]. The phe- eral family of supergravity solutions that includes non-

nomenon of tachyon condensation is fairly well studied byPo[n?arenlv?nang \;vorld—vt(r)llurtr)]es. In pt).%rtlcular :t t(.:oma'rc]jsth
now in the open string descriptid2—4]. It would be inter- an interpolation between the brane-antibrane soiution and the

%chwarzschild solution. We discuss the possible application

est'lng t'o ask.how the phenomenon appears from the CIOSP’[O the study of non-supersymmetric black holes. Section V
string viewpoint. One of the aims of this paper is to construct

. . ; contains a short discussion of the results.
supergravity solutions that correspondNdp-branes coin- We note that supergravity descriptions of smeared brane-

ciding with N Dp-branes(anti D-branep and analyze the antibrane configurations have been presented18]. We

supergravity description of tachyon condensation. will discuss in this paper the localized ones. Unstable branes
While type IIA (type 1IB) string theory has Bogomol'nyi- on AdS have been analyzed[it4]. Non-BPS D-brane solu-

Prasad-SommerfielBPS D-branes of everfodd dimen-  tions in six-dimensional orbifolds were analyzed[i5].

sions, they also admit non-BPS D-branes of gdden di-

mensions. These branes are not stable. They have been

interpreted as the string theoretical analogues of sphalerons Il. THE SUPERGRAVITY DESCRIPTION

in field theory[5]. The families of supergravity solutions that hi . il d ib . |

we will discuss contain also backgrounds that correspond to In this section we will describe type i ?“F’_ergrav't}/io u-

these branes. Stable non-BPS brane configurations are mufins that correspond t& Dp-branes coincident wittN

studied tod6—11]. However, we will not discuss supergrav- Dp-branes and their physical properties.

ity backgrounds that correspond to these objects.

A. The supergravity solution

*Email address: Philippe.Brax@cern.ch The strategy for constructing such solutions will be the
"Email address: gautam.mandal@cern.ch following. We know that a brane-antibrane configuration
*Email address: yaron.oz@cern.ch must have the full world-volume Poincare symmetry
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ISO(p,1).! Furthermore, it should have rotational symmetry

SO(9—p) in the 9—p transverse directions. Foi#N, the
system will also carry an appropriate Ramond-Ram(@rig)
charge.

We therefore look for the most general solution of type I S—

A or B supergravity which possess the symmetry

S=1S0(p,1) XSA(9—p), (1)

and carries charge under a RR fiéld.
The most general form of the metric, dilaton and RR-field
consistent with the symmetril) is

ds?=e?A0dx,dx“+e?®(dr?+r2dQ_ ),

¢=(r),
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We look for solutions of the form(2), of type Il A/B
supergravity Lagrangian, whose relevant part is giierihe
Einstein frame by

mf 1°xf(R——aM¢aM¢——ea¢F2 ©)

wherea=(5—n)/2. The relation between the ramkof the
RR field strengthF,, and the dimensionalitp of the brane
has been explained in footnote 2.

In Eq. (2) and in the rest of the paper we represent ten-
dimensional coordinates bx™,M=0,...,9 and brane
world-volume coordinates (including time by x*u

=0,1, ... p. We will denote the transverse coordinates by
xhi=1 ,9-p or, alternatively, by the polar coordinates
r,el,.. Gg_p(r =x'x").

The equations of motion that follow from E) for the

CP+D =AM dxONAdXIN ... AdXP. (2)  ansatz(2) are(see, e.9.[16,17)
|
8— 7-
A”+(p+l)(A’)2+(7—p)A’B’+—pA’=—16p82,
+1 — 1p+1
B"+(p+1)A'B'+pTA'+(7—p)(B')2+ pB’=—§pTSZ,
” ” 2 8_p 1 2 7 P 2
(P+1)A"+(8—p)B"+(p+1)(A") +——B '—(p+1A'B'+ 5 (¢) =5"g
a
¢"+| (p+1)A"+(7—p)B’ + ¢ =
(A' eA+a¢>f(p+l)A+(77p)Br87p)r=0’ (4)
|
where 7—p)(3—p)c
A(r)=(p)(—p)lh(r)——ln[cosr(k h(r))
S= A’ e(l2ad+A—(p+1)A (5) 64
—c,sinhk h(r))],

The mathematical solution to this system of differential
equations has already been presentdd # (a large number
of the solutions appeared earlier [ib8]). The solutions de-
pend on three parametarg,c,,C, (we have relabeled; of
[17] asc,, andk as —k) and are given by

By contrast, a non-extremal Dp-brane breakS§O(p,1)
—1S0O(p), which is expected of a finite temperature world-volume
field theory (see Sec. IY. Here | stands for “inhomogeneous,”
referring to the translational symmetries.

20ur convention for the RR field and potentials is as follows. For
electric p-branes(i.e. for p=0,1,2), the RR field strength B, ,
=dC®*Y, For magneticp-branes i.e. fop=4,5,6, we interpret
Cc(P*1) as the dual potential, and the RR field-strength will be given
by Fg_,=e~ G P#2x(dCP*1)), For 3-branesff= 3) the self-dual
field strength is given by = (1/1/2)(dCH+*dC).

1 (p—3)(p+1)cy
B(r) = 7= N[t (Nf.() ]+ ———gz——h(r)
1—61In[cosr(k h(r))—c, sinh(k h(r))],
airy= TP ) F P ropcostc i)
— ¢, sinh(k h(r))],
eA(”z—n(cg—l)l’z sinh(k h(r))

coshk h(r))—c, sinh(k h(r))’
(6)
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where 2 f_(r)\ ¥ s pin
d :(f+(r)) (dre+r dQS,p),
ro\ P
f:(r)Eli(_> ) 3 3
r é=In cosr{—h(r))—czsinr<—h(r)”,
2 2
h(r)=In f-(n) sinh(3 h(r))
fo(r)) CO=gMN= — p(c2— 1)1 2 ,
cost(3 h(r))—c, sinh(3 h(r))
o+ \/2(8—p) (P+1(7=p) , (11)
7-p 16 b
where
n==*1. (7) ro\®
fa(r)= 1—(70) ,
The parameter; describes whether we are measuring the
“brane” charge or the “antibrane” charge of the system. h(r)=In f_(r) (12)
The parametersrf,c,,C,) appear as integration con- fo(r))]

stants and as such they could be complex, describing a six-

dimensional space. However, the reality of the supergravityAn interesting point to note is that in this case the solution
fields singles out three distinct three-dimensional subspacetepends only on two parameterg c, (which are functions

[, Il and lll, as discussed in Appendix A. For the rest of our of mass and chargeconsistent with Birkhoff's theorem. The
paper, we will concentrate on the physical properties of theextra parametec; does not appear. According to the inter-
solution | where the above three parameters are all real; wpretation in the next section it implies that there is no
will comment on Il and Il in Appendix A. We also note that tachyon associated with this solution.

besides the three continuous parametgre,; and c,, our The neutral casé@aken asc,= —1) is described by
solution has two additional discrete parameters: ksgnf. "

The solution is invariant under three independeht 42— f_(r) (dr2+r2dQ? )
transformations which act on the space of the parameters fo(r) 8—p/

[#,C1,C2,59MK), 7]—[w,C1,—Cp, —SQMK), — 7]

312
f_(r)) . (13

ex =
(5
,C1,C2,sgrk), — i, —Cq,Cp,—sgn(k), . . .
Li,61.€2.59k), ] =~ e L2 gtk ] Regardeﬂ as a IIB solution, this should be interpreted as a
D(—1)-D(—1) pair. On the other hand, the same solution
[.€1,¢2,591K), 7]—[ = p, = €1, C,591K), = 7] can alternatively be regarded as a IIA solution; in that case it
has a natural lift to eleven dimensions, given by the formula

pw=rg". 8
dsi,=exf 4¢/3]dx5o+ exq — ¢/6]ds?. (14)

For convenience we will fix the abou,’s by choosing It is easy to see that the eleven-dimensional metric becomes
(a) the positive branch of the square root fgmamely the Euclidean Schwarzschild metric

dar? .
v +72dQ3 (15

1-—
r8

2(8— ) (7
k:\/(7_pp)_(p 1(6 P) 2 © 42, =

M 2
1_'}.“_8 XmO+

(b)

whereM =4r8 andr=r f¥*. It has been pointed out i5]
that this metric describes the non-BPS D-instanton of type

¢,=0. (10 IIA.2 Thus, we see that E¢13), regarded as a IIA solution,
describes the non-BPS D-instanton. This is in keeping with
The case of the instanton ¢p—1) our later observations about non-BPS D-branes. The interest

The solutions mentioned above also inclyagle —1. In
this case there is né(r); the metric, dilaton and the RR
potential are explicitly given by 3We thank Y. Lozano for a comment on this case.
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ing point here is that in the absence of the extra parameter 3_ p
¢4, the same neutral supergravity solution describes both the AM=M —Mgps=Npr P — Cit2k(c;—ve—1) |

D(—-1) D( 1) pair as well as the non-BP3(—1) brane.
This is presumably a consequence of our earlier observation (20)
that there is no tachyon associated with this solution.

In order to have a better understanding of the space of
B. Physical properties solutions represented by Ed$),(7), we now consider some

In [17] the physical interpretation of the above three-SPecial limiting cases.

parameter solutior{6),(7) was not presented. We will see _

that it corresponds to brane-antibrane systems along with The BPS case (N-0)

condensates. Since the BPS P-brane clearly respects the symmetry
In a brane-antibrane system, there are two obvious physt—l) it should be part of our solution space.

cal parameterdl andN which are the numbers of branes and ~ We recall[21] that the Op-brane solution is given by

antibranes respectively. In the above supergravity solution

too, there are two obvious physical parameters: the RR d2=f P78y dxt+ FPTDB {2+ 2402

charge Q and the Arowitt-Deser-Misner(ADM) mass P " P ( 5-p)

M apwm, Which clearly depend oh andN. We will discuss

in Sec. Il the brane interpretation of the third parameter.

Before that, however, it will be useful to discu§¥ and

M apwm in greater detail. o )
For convenience, we consider wrapping the spatial world- C$’ ) =—n5 (f —-1),

volume directions on a torus’® of volumeV/, (this is always

possible, since the metric and other fields do not depend on

¢— £(3-p)/4
e 1‘p ,

these directions The RR charg®), defined by an appropri- o
ate surface integral over the sphere-at-infinity in the trans- fp=1+ Y (21)
verse directiongsee, e.g[16]), is given by
Q=27N,r§ Pkycs—1, (16)  with ADM-massMp, and chargeQ given by
where Mpp=Q=puoN,. (22
_ (8=p)(7T—plwg_pV, This solution indeed exists in a “scaled neighborhood” of
Np= 1287GL0 ' 17D the point (,c1,C5)=(0,cp,*), defined by

and wy=27"Y2 ' ((d+1)/2) is the volume of the unit roP=e% [P,

sphereS?. We have normalized the char@esuch that the
BPS relation becomeldl gps= Q.

The ADM massM is defined, in terms of the Einstein- Ci=Co—
frame metric, by[19,20* "

8k 2
“(p+1(7-p)c’

167Gy PM _ c,
9oo= — 1+ ———————+higher order terms(18) Cp=—, (23
(8_[3)“’8—pr P €
whereGY P=GyIV,,. wherec,,=[32(8—p)/(p+1)(7—p)?]*? denotes the point
This gives us wherek=0. The second condition is better stated as
3- T
M= Npro_p Tpcl+ 2c5k]|. (19 k=e"k. (24)

Since the solution is generically non-BPB, is different The scaling is defined by the limét—0 such thar,,c, and

_ ; P k are fixed.
from Mgp<=Q. The mass difference is given b . .
8ps=Q g y It is easy to check that the solutig6) reduces to Eq21)
with
“This definition differs from the one presented, e.g[i6], by an O
overall factor. Mo=2CKry "=2CKr o " (29
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—_ (D
M, =|(N+N) M,

1
I Mg=2NM,

M=Q G

FIG. 1. TheM,c, plane for a given fixe®@+ 0. The BPS solu-
tion corresponds to the scaled neighborhood represented by the FIG. 2. The two-parameter space of solutions @0, as pa-
shaded circle. Path Il represents decay to a BPS D-brane of charg@metrized byM,c,. Path Il represents decay of the brane-antibrane

Q. configuration to flat space.

It is useful to consider the three-parameter space of solu- B (3—p)c,+4k
tions as parametrized byM,Q,c,. Figure 1 depicts a=(7-p) 32 '
the M,c; plane for a given fixed). The BPS solution cor-
responds to the scaled neighborhood represented by the 2 1 —3)c,— 4k
shaded circle. Other parts of the figure will be explained B.= s (P+1){(p—3)cy )),
later. =P 32

5o N 1
The Dp-Dp System (RN) r=16(7=P)(p+1)e1=4(3=p)k).
In this case the RR chardg@o(N—N) must vanish. Ac- (28)

cording to Eq.(16) this corresponds to the subspace
These represent the most general 2-parametgc{) so-

|co|=1. (26)  lution of type Il supergravity with no gauge field and
SQ(p,1) X SO9-p) symmetry.
We represent this subspace in Fig. 2. Consider for instance the cape=6. The solution reads
Now Eg. (26) impliesc,==*+1. As remarked in Sec. lll

below, the physically relevant choice f@>3 is c,=1, 2A_
while for p<3 it is c,=—1 (for p=3 the two choices are
physically equivalent To simplify the discussion we will

1—rolr (4k—3c4)/32
1+ rolr)

present the formulas in the rest of this sectiongor3; it is e?B=(1—rq/r)2t 7G4 4 /)2 7(8ca—4K)/32
straightforward to write down the formulas in the other
cases.

The solution now reads e?=

1—ro/r| (7o 120716
) (29

1+rgl/r
o2 (f_) " wherek= 4~ 7c7/16.

The Einstein metric has a curvature singularityr atr .
The scalar curvature in EqR9), e.g., goes as

_gB-¢B
T R ! (30)
et=(f_If,)", (r—rg)?*F-"
A The physical regime ig=r,. In the case of a single
e =0, (27) Dp-brane the curvature singularity is resolved by the appro-
priate inclusion of the brane degrees of freedom. We will
where discuss this issue in our case later on.
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For the specific value metric does represent the energy-momentum of the source
sitting at the curvature singularity. The reason our case is
c1=0, (3D different may have to do with the fact that we have a naked
singularity atr =r,; a computation of the Euclidean action
similar to that in[24] indeed shows that the action receives
1/4 contribution not only fronr =, but also fromr =r .

we get

e2A— Validity of the supergravity description

14+ — As we have mentioned aboysee Eq(30)], the curvature
typically becomes large near=r,. This implies that the
14 15/a solution near =r can receive corrections from higher cur-
2B_ ( 1— E) (1+ r ) vature terms in the low energy Lagrangian. However, as has
been demonstrated 23], it is possible to use the solution to
the leading-order supergravity equations to draw non-trivial
inferences. Furthermore some features of the solution do not
r depend on the precise details of the solution near the singu-
, (32 larity. In the comparison with the physics on the brane to
1+ — follow, we will mainly focus on these features.

which is the coincident D&6 solution[22,23 in isotropic [ll. TACHYON CONDENSATION
coordinates. In Fig. 2, this corresponds to the poMt,¢;)
:(Mo,O).

The above observation implies that fof#0 we get a
generalization of the coincident DB6 solution. We will

In the following, we will interpret the 3-parameter family
of supergravity solutions as a bound stateNoDp-branes

coincident WithﬁD_p-branes, together with a vacuum expec-
argue in the next section that the parametgis related to  (@tio value(VEV) v of the tachyon condensate. The three
the “VEV” ® of (the zero momentum mode of théae open parameters,,c,,C, Will be argued to correspond to various
string tachyon arising from open strings stretched betweefombinations of the three paramet&tN,v.

the D6 andD6 (and more generally betweenpDand Dp)

branes. The Sen solution corresponds to the particular case A. (T) in supergravity

where the tachyon VEV is zero. _
A system ofN Dp-branes on top oN Dp-branes has a

Other cases 0AM=0 tachyon arising from the open string stretched between the
Dp-branes and th@_p-branes. The tachyom transforms in

the (N,N) [and T* in (N,N)] representation of th&(N)
M=Q (33 xU(N) gauge group. Consider first the caée N (the neu-

tral casg. The cases that are studied most BreN=1. In
this case the tachyon is a complex fieldl,T*) that trans-

_ 2 forms in the (1;-1)®(—1,1) representation of th&J(1)
(3=p)f2ey +2k(c, = ez~ 1) =0. S U(1) gauge group of the world-volume theory. The brane
This solution(represented by, =c, in Figs. 1,3 is nonsu- system is unstable_ dug to the ta_chyon. Thze tachyon has a
persymmetric. Indeed, there is a range of the paramétees POtential V(T) which is a function of [T[%. The Dp-
Figs. 1,2 in which Dp-branes configuration is expected to decay into the closed

string (type Il) vacuum. Such a decay into the vacuum is
M<Q. (35 conjectured to happen through the process of tachyon con-
densation in which the zero-momentum mode of the tachyon
These solutions cannot correspond to physical states of stringets a specific VEV. In particular, it is conjectured that at the
theory (for Q=0, these correspond to negative ADM mass minimum of the tachyon potential, denoted [y =T,, the

This implies that we expect additional contribution to thetotal energy of the system actually vanishes:

ADM mass formula, coming perhaps from a better under-

standing of the curvature singularity @& r. In the case of E=V(To)+2Mp,=0, (36)

BPS D-branes or the fundamental string the ADM mass for-

mula as found by the asymptotic behavior of the Einsteir\,\,here|\/|Dp is the mass of a P-brane. Equatior(36) has
been established numerically to a very high accuracy via
open string field theory3]. WhenN>1 it was argued i8]

SWe actually consider generically off-shell values of the tachyon.that at the minimum of the potential all the eigenvalues of
The issue of why we may have supergravity solutions correspondafe equal. In the following we will denote (Y Tr(TT*) by
ing to an off-shell tachyon is discussed in Sec Ill A. |T|2.

Clearly, from Eq.(20) we can have

if we have
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Let us ask ourselves how the above phenomenon appeal
from the viewpoint of closed string theory. We concentrate
on the neutral case firstQ=0) and on the charged case M M
later. There are two ways of looking at the problem:

(a) Real-time The physical decay process in terms of the

brane(open string variables in which the tachyon rolls down n
to its minimum is time-dependent. The supergravity back- 2NM§: : 2N M,
ground of such a time-dependent brane configuration is na | \
ively expected to be time-dependént. ‘ .

(b) Path-in-configuration-spaceOne can alternatively ;
view the decay as a one-parameter path in the open strin \IC

configuration space, which for our purposes here is the spac P € !
of values of|T|. Except at the two extremities of the path
(|T|=0,Ty), the other values dfT| are not at an extremum
of V(T) and is therefore off-shell. Let us ask how such a
path would appear in the closed string description. Let us
imagine doing an experiment in which gravitons and other
massless closed string probes are scattered off the brane- (@) ()
antibrane system for various values |3 as|T| is varied FIG. 3. ADM mass(for a fixedr,>0) as a function ofa) c;
from 0 toT,. We will assumehere that such an experiment gnq(p) |T|.

makes sense with off-shell values of the tachydn. prin-

ciple one can imagine coupling closed string degre_e_s of free- _[3-p 2(8=p) (p+1)(7-p) 12

dom to the off-shell tachyon through, e.g., the modified DBIM =Nr P 5 C1 e 16 (o ,
action appropriate to brane-antibrane systems. The super- P

gravity solution away from the brane will have the same (39
symmetry as the brane-antibrane system, namely (EQ. o )

However, the metric and other fields must reflect the extraét US ask whether the the qualitative behaviorMfas a
parametel| T|. We will try to argue that the one-parameter function ofc, in Eq. (38) agrees W|th _the. right hand side of
deformation represented loy in our solution corresponds to _IE_q- (37) for some appropriate identification betweenand
this |T|. :

V\|/e| begin by asking whether we see in the supergravity Comment on branchess explained in Appendix A, the
description an analogue of the tachyon potential. The obvidependence of the ADM mass op depends on the specific
ous supergravity counterpart of the total eneEgfiEq. (36))] branch of the solution. In the following we will f|ng thgt it is
of the brane-antibrane system is the ADM mék®). For the  for the branchl, . for p>3 (and|__ for p<3)” which

suggested identification to be correct we should have lends to a tachyon irjterpretation. Later on we will briefly
comment on the possible interpretation of the other branches.

Once we choose the appropriate branch of the supergrav-
M=V(T)+2NME), (37 ity solution, the qualitative behavior & as a function ot
(at a fixedry) is given by Fig. 3.
where byM® we mean the ADM mass for a singlepp ~ Consider first the casp=6. Whenc,=0 we have the
brane. The supergravity solution in question here is thé&oincident D6-D6solution[22,23. The ADM mass(38) for
2-parameter family (27) of solutions parametrized by P=6.C1=0 is M=4N,ro. We will argue in Sec. Il B that
(ro.C1). Since the left hand side of E437) is the ADM  this mass coincides with

mass(19), viz. M=2NM§). (39

This implies thatV(T)=0 atc,=0; since the tachyon po-
SWe remark, though, that the exterior geometry of a pulsatingtential vanishes only af =0 [26], we conclude that
spherically symmetric star is given by the static Schwarzschild so-
lution, thanks to Birkhoff's theorem. It is not inconceivable, there- T=0 at c;=0. (40)

fore, to have a time-dependent brane configuration with a static . . . L
supergravity background for>r,. In such a case the time- As we will see, the last equation is valid for all This will

dependence could presumably be discerned at the level of high#MPly that the subspace of our three-parameter solution de-
mass modes of the closed strifigee[25] for a similar analysis ~fined byc; =0 represents p-Dp branes with zero value of
where the supergravity background of a BPS state does not see thiee tachyorjT|, that is, brane-antibrane configurations which
“polarization” of the state, although the higher closed string modessit at the maximum of the tachyon potential.
see it)

"Coupling on-shell bulk degrees of freedom to off-shell brane
degrees of freedom is also familiar from AdS conformal field theory 8For p=3 andQ=0 I, and|__ are physically indistinguish-
(CFM). able.

064008-7



PHILIPPE BRAX, GAUTAM MANDAL, AND YARON OZ

Let us now consider small deformations away fram
=0. SinceV(T) is known to be a function only dfT|?, we
expect the ADM mass, and hencg to be a function of T|?
too. For small deformations, we can write

ci=al|T|?+Db|T|*+---. (41)

Clearlya>0. It is easy to see that the behavior of the ADM

massM as a function of T| [Fig. 3(b)] qualitatively matches
the behavior oV(|T|) nearT=0.

Tachyon condensation

PHYSICAL REVIEW D 63 064008

In the absence of a decoupling lintés we will discuss in
Sec. Il A) it may not be possible to determine the exact
functions mentioned in Eq42) or Eq.(43) and therefore to
know any more about the nature \6{T) than what we have
already presented here. In any case, if an analysis of brane
degrees of freedom is expected to removelhe 0 region,
presumably the formulas for the mass will change.

In summary, we see that a path exigiath Il in Fig. 2 in
our space of solutions which describes the floWTdffrom 0
to Ty and the behavior of the ADM mad4 along this path
matches the qualitative features\ofT).

The other branches

In Fig. 3(b) we have not plotted the ADM mass in the
whole range of| T| because Eq(41) is valid only nearT
=0. The question then is whether our solution can describ
the full double-well potentiaV(T). In other words, can we

describe the process of tachyon condensation all the way t8utright unphysical. This leavds _ for p=3 andl , , for
the vacuum? ' - o

<3. i = -
In Fig. 2, vacuum is represented by any point in the Iinep 3. In this branch(except forp=3) for small deforma

In the above we have discussed only the brainch (see
EAppendix A for notation for p=3 andl __ for p<3. ltis
easy to see that the behavior of the branches,l , _ are

N ! . - . tions of ¢, away from zero,M initially rises beyond the
M=0. Any path connecting the poinM,,C,=0) to this combined rest mass of the brane-antibrane system and then

falls again. This seems puzzling since Eg&7) does not al-
low such an increase in the energy of the system. We should
recall however that when the vev of the tachyon field is zero

line (e.g. path | or path )Itherefore in principle represents a
family of supergravity solutions corresponding to a flow of

|T| from |T|=0 to|T|=T,.

To know what the actual path is, we need to have a mor

precise knowledge of mappirigiore detailed than Eq41)]

between the open string variablds,(T|) to the supergravity
variables (y,cq). Assuming that suc
smooth and invertible, the generic form will be

ro=T1(N,|T|?), c;=To(N,|T|?)
(42)

N=§1(ro,01), |T|=§2(ro,01)-

These can alternatively be stated as a may,|T|)
—>(M,C1):

M=f3(N,|TI?), ci=F(N,|T|?)
(43

N=g1(M,cy), |T|=02(M,cy).
Of course Eqs(42),(43) should be consistent with E¢41)
nearT=0 (we need to consider the coefficierdd, ... to

be functions ofry or N).
The path | in Fig. 2 corresponds, in terms of E42), to

ro=F1(N) andc;=f,(|T|?. This path corresponds to the

plot Fig. 3a) of M as a function oft; at fixed . It has the
unphysical feature that it does not stopMt&=0 and goes
down to the domain oM <O0.

Path Il in Fig. 2 requires the functiorﬁ,z (or the func-

h maps exist and are

%he world-volume gauge group is not broken. That means

that we are allowed to have other condensates such as a
gluon condensate. This can increase the energy of the sys-
tem. An estimate of such an increase can be obtained from
the modified Dirac-Born-InfeldDBI) action[27]

S= —Tpf dP*loe V(T)

X \Jde{ G +2ma’ (Fij+ 4, Td;T)]. (44)

The interpretation of the,; deformation(for p#3) in these
branches could therefore be in terms of a gluon condensate.
However, it remains a mystery in that case why there is

no such phenomenon fgr=3 (since the branches, , and

| __ appear to be identicaland (b) why the ADM mass
starts to decrease after a while.

Non-BPS D-branes

Since we are only discussing the tachyon condensate in
terms of a real quantityT| we are left with the possibility
that our supergravity solution may represent a real tachyon
as well. Recall that a real tachyon characterizes the non-BPS
Dp branes, i.ep odd for IIA andp even for IIB, which are
obtained from the P-Dp-brane system by a{1)"t projec-
tion. So the natural question arises: which brane system does
the supergravity solution describe. It is plausible that in the

tions f1 ;) to be necessarily a function of two variables. In neutral case the solution describes both. In both cases the
other words, the flow ofT| from O to T, should mean here background has no RR charge, and one expects the full
that bothr, andc, should change appropriately to take the SQ(p,1)XSQ(9—p) symmetry. The solution27) is the

solution to the point I,c,)=(0,c,,,). The nice feature of

this path is that it automaticallgndsat the flat space solu-
tion, sincec; cannot go beyond,, [actually there is another

branch of solutionbranch I, Appendix A for ¢;>c,,, but
it can be shown that the ADM mass increasesdpe c,].

most general one that satisfies these conditions. The question
is whether the ADM mass of a non-BPS brdméth or with-

out tachyon occurs in these solutions. We recall that the
tension of non-BPS Dp branéfor N=1) is related to the
tension of the [P-Dp-brane system by M onaps
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=(1/\/§)MDP,D—p, reflecting a bound system. Fbir>1 too, We consider the static force between g-Dp-branes

the tension of the non-BPS Dp brane sysMﬁ}‘?,_BPSShould system and a P-brane probe(respectively aD_p-brane

be less than that of the combined rest maBHvéDlg of the  probe at a distance. This can be computed in two ways:

brane-antibrane system. Since the values of ADM mass dis- (a) From supergravity,

cussed in the context of E¢37) range all the way from

2NM(D13 to 0, we see that in a suitable range of parameters 1 N -

the solution(27) does have ADM masses that can be fitted to Sprobe= — g |p+1f dPlo(e 4G+ Cp+1) (49
s's

M=M®MN o« V(T) whereV(T) is the potential for the real

non-BP

tachyon in this case. This implies that one can use the SUPefghereG,, = e#'2gy\ represents the string frame metric cor-

gravity solution presented here in appropriate ranges of pa- ) . o i
rameters to describe non-BPS branes as well; the distinctiornesr)Ondlng to the solutiof6) and G s its pull-back to the

between which systerfbrane-antibrane or non-BPS brane World-volume. For a [p (respectivelyDp) probe, we use the

one has at hand is likely to depend on the near-core geometHPPEr (respectively lowersign. _
which could depend on higher-curvature corrections. Subtracting the flat space DBI part, and keeping only the
leading term in the t/expansion we get

The charged case: &0

: . \%
In this case we expect the relation Sorobe= ok—P
gdlE™

7-p
[9) (Co7Ve5—1). (49)

r
M=(N+N)MS+V(T), (45)
(b) By a string theory computation,
whereM{) denotes the ADM mass for a singlep[brane. o
The analysis of the binding energy in the next section once (DpDp |exp(— BH)|Dp) (50
again suggests that =0 corresponds to the point where the
tachyon potential vanishes, which we expect to be for vanwhere the states are regarded as boundary states constructed
ishing tachyon field. The discussion of tachyon condensatiout of closed-string oscillatoréWe consider here the case of
is similar to the neutral case. Again path Il in Fig. 1 is morethe Dp-probe first) At weak coupling and fokT)=0, the
physical than path | because the former ends at the BPS poibbundary state on the left is given by
and does not go to the regiovi<Q. The qualitative behav- o o
ior of M along this path again matches the qualitative fea- (DpDp |=(Dp|®(Dp|. (51
tures of a tachyon potential which has a local maximum at
[T|=0 and a minimum at|T|=T, where we denote We will assume that Eq51) can be used for computation of
(LN)Tr(TT*) by |T|? (we assume that all the eigenvalues ofthe leading term in the f./expansion for large distances
TT* are the same, namel%, at the minimum. We expect when (T)=0 (see[28,29 for earlier work on connection
that at the minimum/(T)=[|N—W|—(N+ﬁ)]M(Dlg. betvyeen boundary states and classica}l solutidBmice the
static force between two branes vanishes, the computa-
B. Dp-brane probes and binding energy tion (b) then reduces, dﬂ—>:0’ to
In the last section we mentioned th®(T)=0 corre- {D_p|exp(—,8H)|Dp>. (52)
sponds tac;=0. We derive this in the present section.
We will consider the general 3-parameter solution paramThjs |atter can be computed at large distances from super-
etrized by €o,C1,C2). Let us define the binding energy of gravity, by the DBI action of a P-brane probe in the back-
the Dp-Dp-branes solution to be ground of aDp-brane:

Eg=(N+N)ME)—M, (46) , 1 L 9
o o %m;__Tﬁf& oe #\E+CctP+D], (53
whereM is given by Eq.(19) and My represents the rest Osls

mass of a single p-brane(or Dp-brang, given by Eq.(22)

with the scale parametgry=u$?, which depends om,,  Where the metric, dilaton and the RR potential are now ob-

andp, the dimensionality of the brane. tained from Eq.(21), with uo=NuS". We get, again after
In view of Eq.(37), subtracting the flat space DBI part, and keeping only the
leading term in the /expansion,
Eg=—V(T). (47)
. . — ’ Vp N'LL(Ol)
A straightforward comparison betweeN ¢ N)Mp, and Spmbfm T | (54
S's

M of Eqg. (19) is hampered by the fact that we do not knaw
priori the relation between the two parameteygnd u that . _
characterize the respective solutioi® and (21). We will ~ This result holds for the p-probe. For theDp-probe we
find this relation by the following strategy. need to replac&l— N in the above expression.
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Matching Egs.(49) and(54) leads to
Nuf=krd P(c,+\co—1),

Nu§H=Kri P(c,—\c3—1). (55)
From this we deduce that
Q=Npuf (N=N) (56)
and
wD(N+N)=2kr] Pc,. (57)

Using Egs.(19), (22) and(55) we can find the zero of the

binding energy(46) of the Dp—D_p bound state. We get

3-p
— G-

Eg=0=Npr{P (58)

Clearly Eg vanishes at;=0. In view of the identification

(47), this implies that
€, =0=V(T)=0, (59)

as promised in the last section. Note that
(@ If we putc;=0 in Eq.(19) we indeed geM =Mp,

PHYSICAL REVIEW D 63 064008

__FIG. 4. The scattering potentiaf(r) for gravitons on -
Dp-branes.

the frequency of the scattered graviton. The potential poses
no barrier for the gravitons sent from infinity to reach the
=r, and their absorption cross section does not vaffish.
The absence of a decoupling of the closed strings from the
open strings prevents us from making a precise correspon-
dence between the field theory on the-Dp-branes world-
volume and the supergravity background. This suggests that

+ Mgy, consistent with the vanishing of the binding energy.there is also a limitation on the quantitative understanding of

(Q Equations(56) and(57) give us essentialliN — N and

the tachyon condensation process by using only the open

N-+N in terms of the supergravity parameters in the subString description. More precisely, for quantitative properties

spacec;=0.

(c) The expression for the total ma&s’) matches exactly

with the BPS mas§25) (recall that at the BPS poirﬁz 0).

C. Open-closed string duality
In the spirit of the AdS-CFT corresponder(¢er a review

whose analysis requires a string coupling which does not
satisfy gs<1, the interaction with the closed string modes
should not be neglected.

The singularity of the supergravity solution atrg is
time-like. Having such a singularity of the classical geometry
which we can reach at a finite proper time, there is the natu-
ral question whether it is resolved quantum mechanically.

see[30)), it is natural to ask whether we can apply a decou-One criterion 33] is the existence of a self-adjoint Laplacian.
pling limit [31] of the brane modes from the bulk modes to This can still be the case even if the metric is geodesically
the supergravity description of thepEDp-branes system. incomplete. The requirement is the existence of a non-
Typically for Dp-branes this is a low energy limit with the Normalizable solution of the wave equation. This criterion is
resulting background being the near-horizon metric. In thesatisfied by our geometry. To see that we consider the
present case, the closest analogue of the near horizon metk@Place equation in the form

is some suitably scaled neighborhoodrefr,. However, it

is easy to see that for the neutral soluti@Y) there is no
such region which by itself is a solution of the supergravity

field equations. Also, we cannot find an appropriate rescaling
that keeps a metric finite iy units asd — 0. This means that The equatiorA¢ =\ ¢ takes the form
the interactions between the open and closed strings remain

relevant.

&Zgb

= —Ad. 60

Py ¢ (60)
pﬂﬁp(p(?pd)):)\d’, (612)

Another manifestation of this issue is the form of the po-

tential V(r) for a graviton scattered on thepED_p-branes.

The potential is depicted in Fig. 4. Nea#r it goes like
—1/(r —ro)? while at infinity it approaches- w? wherew is

%The casep=3 is subtle and we extrapolated the result to this
value ofp from the other values. An alternative way would presum-

ably be to use some other probe.

where B=2p—15+2(7—p)((3—p)c,/8+k/2) and p=r
—r,. Definingz= A p* A2 we get

!

. ¢
T e

$=0. (62

1% 0or a similar but detailed analysis sE&2].
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Dp The two-parameter subspace, (c3) =[(3—p)/2(7—p),

— 2] corresponds to the blagkbrane solutions df21]. This
has already been identified jA7]. In Fig. 5, this is repre-
sented by the arm AB of the triangle. Recall that the black
p-branes are parametrized by their charge and rtexgsva-
lently r . ,r_, the outer and inner horizohsNote that the
BPS D-brane can be reached as a limit along the arm BA,
like it can be reached along CA, although thevalues char-
acterizing these two arms are different. It is likely that there
are continuous families of solutions between BA and CA
(corresponding to differents values which can reach the
BPS solution under a limiting procedure.

The three-parameter subspace defined |y=1 de-
scribes the most general spherically symmetric solution with
no gauge fields. This is represented by the arm BC of the
triangle. It is well-known that the neutral limit of the black

FIG. 5. The most general spherically symmetric solution of typep-brane (point B) corresponds to the Schwarzschild black
Il theories. hole in 10-p dimensions K TP, assuming a wrapped

p-brang. On the other hand, as discussed at great length in
This has Bessel function solutions behaving like 1 angl In this paper, the neutral limit of the arm AC corresponds to the
The norm of the lattef dppp 2 diverges. coincident brane-antibrane solutions. The arm BC therefore
provides interpolating solutions which connect the brane-

antibrane solution to the Schwarzschild solution.
It is clear that there is a rather rich phase structure in Fig.

In this section we will briefly describe the most general5. Parts of this diagram have obvious decoupling limits and
p-brane solution of type Il string theory in which we relax dual field theory descriptions. It would be interesting to chart
the requirement of Poincareinvariance in the out these parts completel@4].

(p+1)-dimensional world-volume. In other words, we ask Interpolations similar to the arm BC are of paramount
ourselves about the most general solution which respects theportance to the study of the D1-D5 system and the five-
symmetry dimensional black holg¢35]. It has been found that CFT
descriptions seem to work in some contexts for non-rotating
§'=SQA(p)XSA9—p). (63  Barados-Teitelboim-ZenellBTZ) black holes which are the
analogues of Schwarzschild black holes in Ad8n inter-
Clearly the previous 3-parameter solution already respectgolatlon of such a solution to a brane-antibrane solution of

this symmetry and hence should be part of this most gener&!® D1-D5 system would shed light on both brane-antibrane
family of solutions. The modified ansatz for the Einsteindynamics and nonsupersymmetric black holes.

Schwarzschild Dp-Dp

IV. THE FOUR-PARAMETER SOLUTION

metric is It has been pointed out HB6] that the equations of mo-
tion of the above system are identical to those of a Toda
_ oA _f 2, m molecule. It is tempting to construct a “mini-superspace”
ds’=exp2A(r))(~ f(r)dt* + dx,dx™) kind of model for this space based on Toda dynamics.
+exp(2B(r))(dr?+r2dQf_), (64)
where we split the world-volume index as Om=1, . . . p. V. DISCUSSION

The ansatz for the dilaton and the gauge potential remain the In this paper we constructed localized supergravity solu-

same as in Eq.2). . . i T
The equations of motion for this ansatz have been WrittergIons corresponding to bound states\oDp-branes coincid

down in Appendix B. Once again the mathematical solution"9 with N Dp-branes _forp=_0,1, ... ,6and non-BPS

of the differential equations has been worked oUlif] (see ~ D-Pranes of oddeven dimensions of type lIA(type IIB)

[18] for earlier work on many of these solutionsVe write ~ Sing theory.™ We constructed these by looking for the

the explicit solution in Appendix B for completeness andMOSt general solution of type Il A-B supergravitin the

discuss here some salient physical featses Fig. 5. presence of a single RR gauge fielahich respect world-
The general solution has 4 independent parameter\éomme Poincare invariance and rotational invariance in the

(Fo.C1,C0,C3). The Poincarénvariant 3-parameter subspace transverse directions. Contrary to the naive expectation that

di(s)(,:uls'sezd i?1 lthe previous sections corresponds; 0. In the solution should have only two parameters corresponding

Fig. 5 this is schematically represented by the arm AC of the

triangle ABC.c3#0 breaks world-volume Poincare invari-

ance. The casep=—1 has been mentioned separately in Sec. II.
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to the charge and the mass, we found that the most general Branch &
solution has one extra parameter. We found that in the physi-

cally relevant branch there are two special values of the extra [ 8—p
parameter at which the ADM mass respectively coincides c;e(0cp), Cp= m
with (a) the combined rest mass of the branes and antibranes, P P
and(b) the mass of the BPS configurationf- N branes:?

In the caseN=N (zero RR chargethe point(b) represents
flat space. The casd=N is extensively studied from the

CZE(_OO11)U(1IOO)

=r’~P R
point of view of open strings living on the brane-antibrane #=lo "<
system, and we recognized the solutigas and (b) as the
n==1. (A1)

supergravity background corresponding to the maximum and
the minimum of the tachyon potential. This lead us to inter-
pret the extra parameter in our solution as the supergravityve will assume in this section that we have already fixed the
manifestation of an expectation value of the tachyon. WeZ, symmetries(8) of the solution by implementing Egs.
matched the qualitative behavior of the ADM mass as a funct9),(10). For branch |, the remaining choices of signs are best
tion of this extra parameter with the behavior of the tachyordiscussed by thinking of four sub-branches, depending on
potential V(T). The identification of the extra parameter aswhether the signs ofc(z,,u,ErZ,_p) are++,+—,—+ and
the tachyon may appear somewhat surprising from the point — respectively. We denote these bs, ,I1, _,I_,,1__
of view of open string field theory where any of the massiverespectively(each of these will also contaip=*). The
string states also could be excited. While it cannot be ruledormulas for the ADM mass and charge for branch | is given
out that our interpretation is not unique, it is interesting toby Eqgs.(19),(16). Explicitly
note that many of the open string field theory computations
can be explicitly understood solely in terms of the tachyon 13-p 2(8—p) (p+1)(7—p)
mode(see, e.g., the recent wofR7]). M=Nrgs P 5 C1t2 2\/ 7" 16

We noticed the absence of a decoupling of the bulk closed P

ci

strings from the brane-antibrane open strings. This means
that the interactions between the open and closed strings (=2 NP \/2(8— p) (P+1)(7—p) 2 ZT
main relevant and suggets that there is also a limitation on Kol '

7-p 16 V2
the quantitative understanding of the tachyon condensation (A2)
process by using only the open string description.

We briefly discussed a more generdbur-parameter  The behavior of these functions depends on the sigrs, of
space of solutions in which we assume only rotational invari-and x. We find that it is the branch, . for p=3,4,5,6
ance in the spatial directions on the world-volume. Thiswhich lends to a tachyon interpretatidSec. Ill). For p
space includes brane-antibrane pairs, BPS D-branes, theQ,1,2,3itisl__.
black p-branes of[21] and Schwarzschild black holes. The  Branch II:
detailed understanding of this four-parameter space in terms

of brane variables is an outstanding problem. cre(c,,)=k=—ik K

B \/_ 2(8-p)  (P+1)(7-P) ,
ACKNOWLEDGMENTS 7-p 16 1
We would like to thank A. Kumar and P. Townsend for -
discussions. Cc,=IiCy,CoeR
,uzrg’pe R
APPENDIX A: REAL SECTIONS OF THE SUPERGRAVITY n==*1. (A3)
SOLUTION

) The mass and charge for this branch read
As remarked in the text, the three parameters€;,c,)

characterizing the supergravity solutig®),(7) appear as in-

tegration constants in the solution of differential equation5|\/|=[\|prg‘p ——0C

and as such could be complex. However, this would generi- 2

cally make the metric, dilaton and gauge field also complex. . \/ 28-p) (pr1)(7-p)
2\ —

3-p

We find that there are three distinct 3-dimensional domains
of (rg,cq,C,), described below as branches I, Il and I,
where the supergravity fields remain real.

2
7-p 6 4

28— )7 -
szanrg-P\/ (7_pp)_(p ;; P) 2 et

2For N>N; for N<N these will beN— N antibranes. (A4)
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Branch lIL: 3—
. M=Nprg‘p[Tpcl
C1=iC1, Cle R+
o~ o~ 2(8=p) (p+1)(7—p) ~
C2:|C2, CzeR +202\/ 7_p + 16 (C1)2
=P _i7, 7
u=ro "=—ip, peR 2(8— +1)(7—p) ~
Q=2yN,r o/ 2P LR e
n==+1. (A5) P
The mass and charge for this branch read XV(cp)?+1. (A6)

APPENDIX B: DETAILS OF THE 4-PARAMETER SOLUTION
The equations of motion that follow from E(B) for the ansatZ64) are

8—p 1 7—
A"+ (p+1)(A)2+(7T-p)A'B'+ — A"+ = (Inf) A'= —— S,
r 2 16
8—p 1 1 1 8—p| 7-
A”+(p+1)(A’)2+(7—p)A’B’+TA’+§(Inf)”+§(Inf)’ (d+1)A'+5(|nf)'+(7—p)|3’+T =1—682,
p+1 , 1 1\ 15-2p 1p+1_,
B"+(p+1)A'B'+ —— A +(7—p)(B")2+ =(Inf)'|B"+ —| + B'=—-—8%
r 2 r r 2 8
8—p 1 1 1 17-p
dA"+(8—p)B"+(p+1)(A" )2+ ——B' —(p+1)A'B' +5(Inf)"+ —((Inf)" )2 +5(¢')?=5 —4— S,
r 2 4 2 2 8
8—p 1 a_,
"+ (p+1)A'+(7—p)B'+T+§(|nf)' ¢'=—§s,
A '
(lez eA+a¢—(p-¢—1)A+(7—p)Br8—p> :0, (Bl)
where
_ = A(12)ag+A—-dA
s—fl/2 ell/2a : (B2)

The solutions[17] depend on four parameterg,c;,C,,C3 (we have interchanged the labeds,cs for convenience,
compared td17]), and are given by

f(r):efcah(r),

A(r)=

_ _ n)2 _
(732p) (3 ] pcl+ ( 1+ _{(;?7_p;))(:3) h(r)— 71—6pln[cosr(k h(r))—c, sinh(k h(r))],

1 (p—3) p p+1 .
B(r)—ﬂln[f_(r)f+(r)]+ oa (p+1)cl—Tcg h(r)+Fln[cosr(kh(r))—czsmr‘(kh(r))],

(7—p)
16

(p+1)ci— Tpc3) h(r)+ ?In[cosf(k h(r))—c, sinh(k h(r))],

$(r)=

) sinh(k h(r))

rN— _ 2_ /
et 7(c3—1)" coshk h(r))—c, sinhk h(r))’ >
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where

[P
ft(r)=1—(7) '

f_(r)
h(r)=In ,
M=o
2(8—p) 1/3-p 7-p \? 7
2_ _ 24 = _ 2
K= A 4( 2 GTTg G "1
n=+1. (B4)

The parameter; describes whether we are measuring the “brane” charge or the “antibrane” charge of the system.
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