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Black hole solutions in Euler-Heisenberg theory
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We construct static and spherically symmetric black hole solutions in the Einstein-Euler-HeiséfiBEjg
system which is considered as an effective action of a superstring theory. We consider electrically charged,
magnetically charged, and dyon solutions. We can solve analytically for the magnetically charged case. We
find that they have some remarkable properties about causality and black hole thermodynamics depending on
the coupling constant of the EH theoayandb, though they have a central singularity as in the Schwarzschild
black hole. We restrica>0 because it is natural if we think of EH theory as a low-energy limit of the
Born-Infeld (BI) theory. (i) For the magnetically charged case, whether or not the extreme solution exists
depends on the critical parametera.;. For a<ag;, there is an extreme solution as in the Reissner-
Nortstran (RN) solution. The main difference from the RN solution is that there appear solutions below the
horizon radius of the extreme solution and they existrtill-0. Moreover, fora>a.;;, there is no extreme
solution. For arbitrang, the temperature diverges in thg— 0 limit. (i) For the electrically charged case, the
inner horizon appears under some critical misigsand the extreme solution always exists. The lower limit of
the horizon radius decreases when the coupling constamtreases(iii) For the dyon case, we expect a
variety of properties because of the tetmsM,wFF‘”F"")2 which is peculiar to the EH theory. But their
properties are mainly decided by the combination of the paramatei®b. We show that solutions have
similar properties to the magnetically charged case i e O limit for a+8b=<0. Fora+8b>0, it depends
on the parameters,b.
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[. INTRODUCTION the dyon solution may have specific properties which can not

be seen in the electrically charged or magnetically charged

Recently, much attention has been paid to Born-Infeldcases. The thermodynamical properties of black holes are
(Bl) type of actions after its recognition as an effective @€ of the main topics in superstring theory after the discov-

; ; i f the microscopic origin of the black hole entr¢pg]
theory of superstring theorfl]. Moreover, since they de- €S0 copic of \ :
scribe the action of the brane, their importance has bee?nd the holographic principld.2]. It is worth noting that BI

; : : -_lype action also plays an important role in AdS conformal
increasing 2]. In this context, there have been some studie ield theory (CFT) correspondencél3]. Causality for the

tha't investigated black hole SO'P“O”S in the Einstein-Bl typeblack hole in the EEH system has already been investigated
actions[3]. Actually a new nonlinear electromagnetism was,. iy eira. But this is restricted to the black hole with elec-
prop(_)sed, Wh'(.:h produces a nonsmgula_r_ exact black hOI‘?ric charge, and the physical implications such as the stability
solution satisfying the weak energy conditiph5], and has ot the plack hole are not discussed. The stability of the black
distinct properties from Bardeen black hol@. But there  poje can be interpreted from thermodynamical properties es-
remam_subjects W'hICh should be manifested such as therm?ablished in Ref[14] and we refer to this by calling it a
dynamical properties. Here, we concentrate on the EH actiofyrning point method. Using thermodynamical variables, we
which was first proposed in 1936]. Though not so much can easily apply catastrophe theory to hairly black holes and
attention has been payed to it compared with the Bl actionthis is consistent with linear perturbation analysis and the
the EH action well approximates the supersymmetric systerturning point method15]. We are interested in the thermo-
of minimally coupled spin-1/2, -0 particles for appropriate dynamical properties of black holes in this system and the
parameter$8]. From the experimental aspect, this is a morerelation between causality and the stability of black holes.
accurate classical approximation of QED than Maxwell's This paper is organized as follows. In Sec. Il, we intro-
theory when fields have high intensit9]. duce basicAnsdze and the field equations in the EEH sys-
We investigate the black hole solutions in the Einstein-tem. In Sec. Ill, we investigate the thermodynamical proper-
Euler-HeisenbergEEH) system from following aspectgi)  ties of black holes with electric charge or magnetic charge.
The electric-magnetic dualityji) the black hole thermody- In Sec. IV, we investigate those of dyonic ones. In Sec. V,
namics,(iii ) the causality and stability of the black holes. As W& summarize the results and comment on future work.
for the electric-magnetic duality, it is already pointed out thatThroughout this paper we use unis-7=1. Notations and
though Bl action preserves this, EH action breaks it at th&lefinitions such as Christoffel symbols and curvature follow
higher order of the electromagnetic fielti0]. Thus black Misner-Thorne-Wheel€lr16].
hole solution with electric charge or magnetic charge will

have clear differences which should be clarified. Moreover, IIl. BASIC EQUATIONS

We take the following EEH action:
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where R is the scalar curvature,P=F*'F,, , Q
=€,,p,,F"*"FP7 and €' is a completely antisymmetric
unit tensor, which yields

wrpo— _
€vpo€ 41,

(2.2
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2
:
GM' = 5 (Fet Fryt Fay).

In Ref.[7], this corresponds to the weak field approximation

and the coupling constants are written as&
=he*/(360m°m?*), b=7he* (14407°m*), whereh, e, and

m are the Planck constant, electron charge, and electron
mass, respectively. From the present point of view, they

should be related to the inverse string tensignwhich re-
stricta>0 because of its correspondence to the Bl action i
the low-energy limit. As has been pointed out in Rf],

constructing a gravitational counterpart of the Bl action is
very difficult. Here, we adopt the Einstein-Hilbert action as a

first approximation. We can derive Einstein equations as
GL,=130,,(—P+aP?+bQ?)+2F ,\F)
—4aP(F ,\F)—8bQ(e,,sF"F)). (2.3

We consider the metric of static and spherically symmetric

ds?=—1f(r)e 2°Odt>+f(r) 1dr?+r2dQ2, (2.4

wheref(r)=1-2Gm(r)/r. We introduce the gauge poten-
tial A,, as

A,=[A(r),0,0Qcosd]. (2.5
Then, the Einstein equations are
2Gm’
~—% = FeFunFay, (2.6
2Gm" 2 |
— r2 +F5 f :_Fe_Fm_de, (27)

where’ representsi/dr. We used the abbreviations as

FeEeZ§(AI)2+ 63945(A’)4, (28)
Qn ., Qn
Q2
Fay=(96b—4a)e?’(A")2=7". (2.10
r

Subtracting Eq(2.6) from Egq. (2.7) yields d6/dr=0. We
require asymptotically flatness for the solution:

A(r)a—%, 8(r)—0, Gm(r)—const, (2.11)

asr—o, Thus we obtain=0. So we have only one inde-
pendent Einstein equation as

(2.12
The field equation is
4ar’(A")3+A'z(r)=Q,, (2.13
where
, Qx
z(r)=r-—4(a+8h) (2.19

r2

Mhis is third order algebraic equation f&' except forQ,

=0. For regularity at the horizony, we require

Gm(ry)=3ry, A(ry) <.

(2.1

Ill. BLACK HOLE SOLUTIONS WITH ELECTRIC OR
MAGNETIC CHARGE

In this section, we show the properties of black hole so-
lutions with magnetic or electric charge. First, we point out
‘that the zeroth and the first law of black hole thermodynam-
ics can be applicable even for nonlinear matter terms which
violate dominant energy condition though Smarr’s formula
cannot[17].

A. Magnetically charged case

In the cas&€).=0, we can solve equations analytically. In
this case, there remains orfiy, part in Eq.(2.12). Note that
Gm'’ can be negative which makes an intrinsic difference
from the Reissner-Nordstno (RN) solution. We can inte-
grate Eq.(2.12:

2

Gm=GM—%+a
2r

4
%
whereM is the gravitational mass of the black hole. Thus,
the horizon radius,, must satisfy
h(rp)=rg—2GMry+Qir—2aQy=0. (3.2
Since h(0)<0 andh(«)—co, the solution which satisfies

h(ry)=0 for ry>0 always exists.
From Eq.(3.2),

h 3 2 2
mzZrH(SrH—SGManLZQm). (3.3
So we can classify the number of the horizon as follows. For
L=(5GM)?—24Q%>0, if h([5GM+L]/6)<0 and
h([5GM—/L]/6)>0, there are three positive solutions,
which means that there are one outer horizon and two inner
horizons. If h([5GM+L]/6)=0 or h([5GM—/L]/6)
=0, there are two horizons. In other cases, there is only one
horizon.

We also evaluate that what condition would be required to
exist an extreme solutiosm’ =1/2 leads to
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similar to the RN’s qualitatively. But below the mass corre-
sponding to the poinC is quite different from RN’s. The
temperature is finite but nonzero at the poBitThe curve
from C to B means that if we regard an inner horizon as an
event horizon, the “temperature” goes to zero whenap-
proaches the poir. If we apply the turning point method in
this case, the line below the poiftwould be unstable. So
we can regard this as unphysical. But :’derznzo.l, 1, this
method suggest that there is no stability change if we think in
the isolated system though thermodynamical properties are
: ] different in these two cases. The specific heat of the black
o L . . ] hole never changes fc&/Q%zl, while it changes twice at
M1 ' ' the pointsD andE for a/Q%=0.1. In all cases, the tempera-
P ture diverges fory—0. It is reasonable that higher order
FIG. 1. M-r, relation forQ,,/Il,=1 anda/Q3=0, 0.01, 2/27, curvature terms would change the results_ in this region. But
0.1, 1. The point#\ correspond to the extreme solutions. The Iineseven if we be“eV? Fhat_ th's system describes blac,k hole so-
betweenA to B, B to C correspond to outer inner horizon and inner !Utions correctly, it is difficult to observe the negative mass
inner horizon, respectively. We can see thgi=2QZ/27 divides  Plack holes since it will evaporate very quickly.
the properties qualitatively.

B. Electrically charged case

K(r)=r®-Qfr*+2aQy=0. 3.4 In this case, from Eq(2.13),
Thus 4ar?(A")3+A'r?=Q,, (3.6
K’'=2r3(3r?—2Q3). (3.5  which has only one real solution and two imaginary solu-

tions. The real solution is
So r=+2/3Q,, is a local minimum of K for r>0.

K(1/2/3Q,) =0 leads toa=(2/27)Q3=ac;, Which means — 2% 3324 91/3g2s3
that there is not an extreme solution @ a.;. A'(r)= 675 jxB1" : 3.7

We first show the relation between the gravitational mass
M and the horizorry for Q/lI,=1 anda/Qj=0, 0.01,

We used an abbreviation as
2/27, 0.1, 1(Fig. 1. I, is the Planck length. Faa/Q3 =0,

0.01, 2/27, there is an extreme soluti@he pointA). The B=9XQ,+ ’—12re+81xQ2 3.8
lines betweerA to B, B to C correspond to the outer inner ¢ ¢
horizon and the inner horizon, respectively. Note that below X(r)=4ar?, (3.9

the pointC, there are black hole solutions again. Iathn

=0.1, 1, there is not an extreme solution as we showed. Ifhere remains onlyF, part in Eq. (2.12 which shows

all cases,M —— for r,—0. We also show the gravita- Gm'=0. This is one of the main differences from the mag-

tional massM and the inverse temperatureT1felation in  netically charged case. We show that an extreme solution

Fig. 2. Above the mass corresponding to the pdinit is  zlways exists. If we tak&m' (ry)=1/2, A'(ry) is evalu-
ated from Eq.(2.12 as

100

AR ' B i
I : A’(r )— ﬁ (3 1@
| ] " 2(3a)% '
I 4
- : T We introduced a dimensionless variaglas
~a I ]
—_ | ] 24a
rrkemerrreme T y= 1+ —- (3.1)
) rg
I -
|
0.01 ; Substituting Eq(3.10 into Eq. (3.7) derives
1.2 1.3 1.4 2
Qe(y - 1)
g(y)z(y—1>3’2+3<y—1>1’2——4(3a)1,2 =0
FIG. 2. M-1/T relation for the same parameters in Fig. 1. For (3.12
a<a, there is an extreme solution where the temperature is zero.
For arbitrarya, the temperature diverges in thg—0 limit. Thus,
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FIG. 4. M-r relation fora/Q%=0, 0.1, 1, 10. The causality
(b) changes at the poinB below which the inner horizon appears.
1 Though the lower limit of the horizon decreases as we takege,
3 the extreme solution always exists.
« RN
Y 1 in Fig. 3. Because its difference from the Maxwell field is
N particularly large near the event horizon, this makes a non-
;n o6 N ] trivial change for a small black hole. We can evaluate that
\\ for a¥2Q >r?
e 0.1\, Qe>r”,
13
o<
(Zr)2/3al/3' (313
. Differentiating Eq.(3.7) showsA”<0, soA’ monotonically
1 r/r 10 decreases as— . We investigate thél-ry andM-1/T re-
H lations for electrically charged black holes in Figs. 4 and 5,

. 2_ .

FIG. 3. Field distributions of black holes with electric charge for respectively. We taka/Q=0, 0.1, 1, 10. The poinA cor-
rn/lo=1, Q/l,=1, anda/Q2=0, 0.1, 1, 10[(a) r-m, (b) r-A"]. responds to the extreme solution and the cukie B shows
Because of the difference from Maxwell field at small scale, the@" INNer horizon. For finite, there exists an extreme solu-
resulting solution deviates from the RN black hole near the horizontion as we noted above and this approaches.te-0 for a

A’ monotonically decreases as-> as is easily shown. —o0, Thermodynamical properties are similar to the case for
the RN solution. The poinD corresponds to the point where
3 y Quy the specific heat changes and this is not equivalent to the
"(y)== - (3.13
g (y 2 (y_l)1/2 2(3a)1/2 60 [ I E . ; 1
Because ofy>1, the solution ofg’(y)=0 is y=y,=1 s0 | | L .
+27alQ%(>1). We can seg’(y)>0 for 1<y<y, and [ | i RN ]
g’ (y)<O0 for yp<y. So if we notice thag(1)=0 andg— a/(4)02=;_10 { ]
—oo(y—o), we find there is only one positive solution. So E el ! \ ]
we can conclude that there is one extremal black holafor =% [ D g
>0.

20 |

Electrically charged case has already been investigatet
previously[18]. The solution can be expressed using the hy-
pergeometric function. But we need numerical calculation to
investigate their detailed properties, particularly their ther-

10 F

0 L 1 1 1
modynamical properties. The inner horizon only appears for 0.9 : Ni'sl
black hole solutiorM <M, as he showedVl is P

T(1/4) 312 FIG. 5. M-1/T relation for the same parameters in Fig. 4. The
=== =& (3.19 extreme solution always exists where the temperature becomes 0.
2I'(3/2) (2a)v4 So theM-1/T relation is similar to the one for RN black hole. Note

] ] o . that the point where the sign of the specific heat changes does not
We first show the field distributions of the solutidi{&)r-m,  necessarily correspond to the poBiwhich suggests that the cau-

(b)r-A'] for ry/lp=1, Qc/1,=1, anda/Q§=O, 0.1, 1, 10 sality change will not be irrelevant to the stability change.

064007-4



BLACK HOLE SOLUTIONS IN EULER-HEISENBERG THEORY PHYSICAL REVIEW [B3 064007

(a)
\s_:
=
£
&
0.4 —\ -
\
. osl \ 1
<+ \ Q/Q=10"
=0l \ ]
\
0.1 \\ i
01 10 100
r/rH

FIG. 6. Field distributions of dyon black holes fo /1,=1,
a/Q%=1,b/Q3=-1, Qe/lp=1, ande/Ip=10’4, 1[@r-m, (b)
r-A’']. As we can see foQ,/l,=1 monotonically decreasing &f’
is broken andn’ <0 region appears which can be seen inithe
—0 limit unlessQ,,#0.

FIG. 7. (a) M-ry, (b) M-1/T relations for dyon black holes for
a/Q3=1, b/Qi=-1, (i.e., a+8b<0) Q./l,=1, and Qu/l,
=10"41. It seems that solutions in thig—0 limit only exist for
Qm/l,=1. But it is not true.

point B. So there is no relation between the point which is B=9XxQe+ 122°+81x Q5. (4.3
relevant to the causality change and the point at which the
specific heat changes. Note that for 123+ 81xQZ=0, the only real solution is
Eqg. (4.1). For a+8b>0, because can be negative for a
IV. DYON BLACK HOLE smallr, 1223+ 81xQ§<0 is possible only near the horizon.

. But even in that case, there is only one positive solution
As we showed above, the properties of black holes haves 1) we should take a positive solution becauseventu-

very different aspects, depending on Whether it has eIectr?g||y becomes positive for large values nfSo we take Eq.
charge or magnetic charge. In this section, one of the maify 1) jn any case.

purposes is to survey how thermo_dynamlcal propemes We can classify solutions in the,—0 limit three types
change when we change ti,,/Q. ratio or the coupling g5 follows.

constants, b. In this case, from Eq(2.13, the three solu- () If a+8b=0, A'(r) approach Eq(3.19 for a¥?Q
tions are expressed as ' y

On the contrary, Eq(2.12 approaches

—2% 31/32+ 21/382/3
A'(r)= 6253 /x B ’ (4.2) 4
Gm' ~-a—¢, (4.9
r
Ao (1+iy3)x  (17i/3)B 4o
(n= 223318 [ygl3 043323 [y 4.2 which has same form as in the magnetically charged case. So
the characteristic feature of smal} is like that of the mag-
In this case, netically charged case.
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FIG. 8. Magnification of Fig. ® which shows that there exist
solutions in thery—0 limit even forQp,/1,=10"*,

100

For a+8b+#0, we can see its nature if we rewrite Eq.
(4.1 as so L
, A AS wy b el
623 XBYY(AZ+ A A +AY) ' ~a
where or
_ ~1/3n2/3 — 1/ [ ]
A=213B28  A,=2x3Y3%, (4.6) 2010 2-0.125 /
(I) For a+8b<0, we can evaluate A f" ‘ ‘ ‘
00.5 1 1.5 2 2.5 3
Ad—A3=36Q,\/xB, (4.7) Ml

which showsA’r? in ther —0 limit. So we can conclude  FiG. 9. () M-r,, (b) M-LTT relations for dyon black holes for

that if (a+8b)<0, Eq.(2.12 has same asymptotically form a/Q2=1, b/Q2=-0.125, 0.1, 0, 0.1, Q./1,=1, and Q,/l,

(4.4) in thery— 0 limit as in the magnetically charged case. =1. For b/Q2=—-0.125, — 0.1, these figures are almot indistin-
(1) For a+8b>0, there existsr=ry below which guishable for these two cases and resemble those for the magneti-

1223+ 81Q§x<0 is satisfied. For a while we consider cally charged case. But fd/Q2=0, 0.1 they resemble those for

<r, case. Then we can evaluate the electrically charged case.

3_ A3 3 tion of Fig. 7a).

Ar—Ao= 242, 4.8 We sh%wncz)rresponding diagrams fat- 8b=0 in Figs.
which showsA’«r 2 in ther—0 limit. So we can not con- 9(@ and db), respectively. We fixed the parametetQ;
clude whether or not solutions in thre, limit exists. It de- =1, b/Q3=—0.125(i.e., a+8b=0), 0.1, 0, 0.1,Qc/I,
pends org, b as we see below. =1, ande/Ip:l. For b/Q(ZE: —0.125,—0.1, it is almost

Next, we show the field distributions in Fig(e r-m, 6(b)  indistinguishable in this diagram though the electric field has
r-A’ for a/ngl, b/ng -1, (i.e.,a+8b<0), ry/l,=1, a different limit forr;—0 in these two cases. We can see
Qe/l,=1, andQ,/1,= 1074, 1. Monotonically decrease of that the character is similar to the magnetically charged case.
A’ is broken andm’<0 region is specific forQy/I,=1 But for b/QﬁzO, 0.1, we can see a character similar to the
contrary to the case fd@mllpzlo*“. But they are universal €lectrically charged case, i.e., solutions below an extreme
in ther;—0 limit unlessQ,,#0 as is shown above. solution do not exist. The curve below the poimsis a

We also studied,, and 1T relations in terms ok for the ~ sequence of inner horizons. We also investigated those for
above three cases. We first show thosesfer8b< 0 in Figs. ~ VvariousQ./Qp ratio which suggest that whether or not so-
7(a) and Kb), respective|y_ We fixed the parameta@g |Ut|0nS.|n therH—>Q limit EX|S't depgnds Only oa, b Thus if
=1, b/Q?=—1, Q./l,=1, and Q,/I,=10"% 1. For We believe that this system is realistic, the coupling constants
Qm/l,=1, we can easily see specific properties of the magdecide the final fate of black holes.
netically charged case though fQx,/l,= 10 % we cannot.
But it is not true. Even foan/Ip:10*4, there exist solu-
tions in thery— 0 limit where the temperature diverges and  We note our conclusions and future work. We investigate
M— —oo. They are clear from Fig. 8 which is a magnifica- black hole solutions in the EEH system for electrically

V. CONCLUSION AND DISCUSSION
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out, i.e., the inner horizon appears only fdr<M,, as we
confirmed it. But the pointM =M, is not relevant to the
change of the stability if we apply the turning point method.

(iii) As for the dyon case, we showed that there exists
solutions in thery—0 limit for a+8b=<0 and approach the
magnetically charged case. Far-8b>0, our results sug-
gest that whether or not solutions in thg— 0 limit exists
depends only o andb not on theQ,,/Q, ratio except for
vanishingQ,, or Q..

We should discuss the validity of our solutions since the
EH action is a low-energy approximation of the Bl action
from the point of view of the string theory. We estimated the
condition where the contribution froR is larger than that
from aP? (or bQ? in Eq. (2.6). For the magnetically
charged case, this is evaluatedras>(2aQ?%)Y%. We show
the M-r, relation in Fig. 10a) and plotted the point) below
which this condition is violated. This shows that our solu-
tions are justified until they reach the extreme soluti@ihs
they have extreme But if there is no extreme solution, the
validity of the solutions are violated before they reach nega-
tive mass solution. For the electrically charged case, this is
evaluated asy, > (2aQZ/9)"%. We show theM-r, relation in
Fig. 10b) which shows that though this condition is violated
before solutions become extreme for lagyet is well satis-
fied by large in our parameter range. Dyonic black hole fol-
lows these two cases.

We now comment on what happens below the polits
actually. Though we considered the Einstein-Hilbert action
as a gravitational part, it is important to generalize to think
higher order curvature corrections. It may be interesting to

electrically charged case which correspond to Figs. 1 and 4, respefdink about black hole solutions in the action which general-

tively. The pointsU show that theaP? term becomes dominant
compared withP term belowU.

ize the EH action to preserve supersymméfr§]. Our solu-
tions have pathological properties like the negative gravita-
tional mass. There may exist mechanisms which prevent

charged, magnetically charged and dyonic solutions. Theguch properties as in R4R0]. Another concern we have is

have remarkable thermodynamical properties.

to think about black hole solutions including cosmological

(i) For the magnetically charged case, the properties of theerm, because its importance is recognized both in observa-

black holes change qualitatively fa=a;. There is an
extreme solution only foa<a;. There are solutions in the
ry— 0 limit for arbitrary a and the temperature diverges in
this limit.

tional and in theoretical perspectives.
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