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Black hole solutions in Euler-Heisenberg theory

Hiroki Yajima* and Takashi Tamaki†

Department of Physics, Waseda University, Shinjuku, Tokyo 169-8555, Japan
~Received 3 May 2000; published 12 February 2001!

We construct static and spherically symmetric black hole solutions in the Einstein-Euler-Heisenberg~EEH!
system which is considered as an effective action of a superstring theory. We consider electrically charged,
magnetically charged, and dyon solutions. We can solve analytically for the magnetically charged case. We
find that they have some remarkable properties about causality and black hole thermodynamics depending on
the coupling constant of the EH theorya andb, though they have a central singularity as in the Schwarzschild
black hole. We restricta.0 because it is natural if we think of EH theory as a low-energy limit of the
Born-Infeld ~BI! theory. ~i! For the magnetically charged case, whether or not the extreme solution exists
depends on the critical parametera5acrit . For a<acrit , there is an extreme solution as in the Reissner-
Nortström ~RN! solution. The main difference from the RN solution is that there appear solutions below the
horizon radius of the extreme solution and they exist tillr H→0. Moreover, fora.acrit , there is no extreme
solution. For arbitrarya, the temperature diverges in ther H→0 limit. ~ii ! For the electrically charged case, the
inner horizon appears under some critical massM0 and the extreme solution always exists. The lower limit of
the horizon radius decreases when the coupling constanta increases.~iii ! For the dyon case, we expect a
variety of properties because of the termb(emnrsFmnFrs)2 which is peculiar to the EH theory. But their
properties are mainly decided by the combination of the parametersa18b. We show that solutions have
similar properties to the magnetically charged case in ther H→0 limit for a18b<0. Fora18b.0, it depends
on the parametersa,b.

DOI: 10.1103/PhysRevD.63.064007 PACS number~s!: 04.70.2s, 04.40.2b, 95.30.Tg, 97.60.Lf
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I. INTRODUCTION

Recently, much attention has been paid to Born-Inf
~BI! type of actions after its recognition as an effecti
theory of superstring theory@1#. Moreover, since they de
scribe the action of the brane, their importance has b
increasing@2#. In this context, there have been some stud
that investigated black hole solutions in the Einstein-BI ty
actions@3#. Actually a new nonlinear electromagnetism w
proposed, which produces a nonsingular exact black h
solution satisfying the weak energy condition@4,5#, and has
distinct properties from Bardeen black holes@6#. But there
remain subjects which should be manifested such as the
dynamical properties. Here, we concentrate on the EH ac
which was first proposed in 1936@7#. Though not so much
attention has been payed to it compared with the BI act
the EH action well approximates the supersymmetric sys
of minimally coupled spin-1/2, -0 particles for appropria
parameters@8#. From the experimental aspect, this is a mo
accurate classical approximation of QED than Maxwe
theory when fields have high intensity@9#.

We investigate the black hole solutions in the Einste
Euler-Heisenberg~EEH! system from following aspects:~i!
The electric-magnetic duality,~ii ! the black hole thermody
namics,~iii ! the causality and stability of the black holes. A
for the electric-magnetic duality, it is already pointed out th
though BI action preserves this, EH action breaks it at
higher order of the electromagnetic field@10#. Thus black
hole solution with electric charge or magnetic charge w
have clear differences which should be clarified. Moreov
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the dyon solution may have specific properties which can
be seen in the electrically charged or magnetically char
cases. The thermodynamical properties of black holes
one of the main topics in superstring theory after the disc
eries of the microscopic origin of the black hole entropy@11#
and the holographic principle@12#. It is worth noting that BI
type action also plays an important role in AdS conform
field theory ~CFT! correspondence@13#. Causality for the
black hole in the EEH system has already been investiga
by Oliveira. But this is restricted to the black hole with ele
tric charge, and the physical implications such as the stab
of the black hole are not discussed. The stability of the bla
hole can be interpreted from thermodynamical properties
tablished in Ref.@14# and we refer to this by calling it a
turning point method. Using thermodynamical variables,
can easily apply catastrophe theory to hairly black holes
this is consistent with linear perturbation analysis and
turning point method@15#. We are interested in the thermo
dynamical properties of black holes in this system and
relation between causality and the stability of black holes

This paper is organized as follows. In Sec. II, we intr
duce basicAnsätze and the field equations in the EEH sy
tem. In Sec. III, we investigate the thermodynamical prop
ties of black holes with electric charge or magnetic char
In Sec. IV, we investigate those of dyonic ones. In Sec.
we summarize the results and comment on future wo
Throughout this paper we use unitsc5\51. Notations and
definitions such as Christoffel symbols and curvature foll
Misner-Thorne-Wheeler@16#.

II. BASIC EQUATIONS

We take the following EEH action:

S5E d4xA2gF 1

16p S R

G
2P1aP21bQ2D G , ~2.1!
©2001 The American Physical Society07-1
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where R is the scalar curvature,P[FmnFmn , Q
[emnrsFmnFrs and emnrs is a completely antisymmetric
unit tensor, which yields

emnrsemnrs524!. ~2.2!

In Ref. @7#, this corresponds to the weak field approximati
and the coupling constants are written asa
5he4/(360p2m4), b57he4/(1440p2m4), whereh, e, and
m are the Planck constant, electron charge, and elec
mass, respectively. From the present point of view, th
should be related to the inverse string tensiona8 which re-
strict a.0 because of its correspondence to the BI action
the low-energy limit. As has been pointed out in Ref.@1#,
constructing a gravitational counterpart of the BI action
very difficult. Here, we adopt the Einstein-Hilbert action as
first approximation. We can derive Einstein equations as

Gmn5 1
2 gmn~2P1aP21bQ2!12FmlFn

l

24aP~FmlFn
l!28bQ~emzhqFzhFn

q!. ~2.3!

We consider the metric of static and spherically symmet

ds252 f ~r !e22d(r )dt21 f ~r !21dr21r 2dV2, ~2.4!

where f (r )[122Gm(r )/r . We introduce the gauge poten
tial Am , as

Am5@A~r !,0,0,Qm cosu#. ~2.5!

Then, the Einstein equations are

2
2Gm8

r 2
52Fe2Fm2Fdy , ~2.6!

2S 2Gm8

r 2
1

2

r
d8 f D 52Fe2Fm2Fdy , ~2.7!

where8 representsd/dr. We used the abbreviations as

Fe[e2d~A8!216ae4d~A8!4, ~2.8!

Fm[
Qm

2

r 4
22a

Qm
4

r 8
, ~2.9!

Fdy[~96b24a!e2d~A8!2
Qm

2

r 4
. ~2.10!

Subtracting Eq.~2.6! from Eq. ~2.7! yields dd/dr50. We
require asymptotically flatness for the solution:

A~r !→2
Qe

r
, d~r !→0, Gm~r !→const, ~2.11!

as r→`. Thus we obtaind50. So we have only one inde
pendent Einstein equation as
06400
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Gm85
r 2

2
~Fe1Fm1Fdy!. ~2.12!

The field equation is

4ar2~A8!31A8z~r !5Qe , ~2.13!

where

z~r ![r 224~a18b!
Qm

2

r 2
. ~2.14!

This is third order algebraic equation forA8 except forQe
50. For regularity at the horizonr H , we require

Gm~r H!5 1
2 r H , A~r H!,`. ~2.15!

III. BLACK HOLE SOLUTIONS WITH ELECTRIC OR
MAGNETIC CHARGE

In this section, we show the properties of black hole s
lutions with magnetic or electric charge. First, we point o
that the zeroth and the first law of black hole thermodyna
ics can be applicable even for nonlinear matter terms wh
violate dominant energy condition though Smarr’s formu
cannot@17#.

A. Magnetically charged case

In the caseQe[0, we can solve equations analytically.
this case, there remains onlyFm part in Eq.~2.12!. Note that
Gm8 can be negative which makes an intrinsic differen
from the Reissner-Nordstro¨m ~RN! solution. We can inte-
grate Eq.~2.12!:

Gm5GM2
Qm

2

2r
1a

Qm
4

5r 5
, ~3.1!

whereM is the gravitational mass of the black hole. Thu
the horizon radiusr H must satisfy

h~r H![r H
6 22GMrH

5 1Qm
2 r H

4 2 2
5 aQm

4 50. ~3.2!

Since h(0),0 and h(`)→`, the solution which satisfies
h(r H)50 for r H.0 always exists.

From Eq.~3.2!,

dh

drH
52r H

3 ~3r H
2 25GMrH12Qm

2 !. ~3.3!

So we can classify the number of the horizon as follows. F
L[(5GM)2224Qm

2 .0, if h(@5GM1AL#/6),0 and
h(@5GM2AL#/6).0, there are three positive solution
which means that there are one outer horizon and two in
horizons. If h(@5GM1AL#/6)50 or h(@5GM2AL#/6)
50, there are two horizons. In other cases, there is only
horizon.

We also evaluate that what condition would be required
exist an extreme solution.Gm851/2 leads to
7-2
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K~r ![r 62Qm
2 r 412aQm

4 50. ~3.4!

Thus

K852r 3~3r 222Qm
2 !. ~3.5!

So r 5A2/3Qm is a local minimum of K for r .0.
K(A2/3Qm)50 leads toa5(2/27)Qm

2 [acrit , which means
that there is not an extreme solution fora.acrit .

We first show the relation between the gravitational m
M and the horizonr H for Qm / l p51 and a/Qm

2 50, 0.01,
2/27, 0.1, 1~Fig. 1!. l p is the Planck length. Fora/Qm

2 50,
0.01, 2/27, there is an extreme solution~the pointA). The
lines betweenA to B, B to C correspond to the outer inne
horizon and the inner horizon, respectively. Note that be
the pointC, there are black hole solutions again. Fora/Qm

2

50.1, 1, there is not an extreme solution as we showed
all cases,M→2` for r H→0. We also show the gravita
tional massM and the inverse temperature 1/T relation in
Fig. 2. Above the mass corresponding to the pointA, it is

FIG. 1. M-r H relation forQm / l p51 anda/Qm
2 50, 0.01, 2/27,

0.1, 1. The pointsA correspond to the extreme solutions. The lin
betweenA to B, B to C correspond to outer inner horizon and inn
inner horizon, respectively. We can see thatacrit52Qm

2 /27 divides
the properties qualitatively.

FIG. 2. M-1/T relation for the same parameters in Fig. 1. F
a<acrit , there is an extreme solution where the temperature is z
For arbitrarya, the temperature diverges in ther H→0 limit.
06400
s
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similar to the RN’s qualitatively. But below the mass corr
sponding to the pointC is quite different from RN’s. The
temperature is finite but nonzero at the pointC. The curve
from C to B means that if we regard an inner horizon as
event horizon, the ‘‘temperature’’ goes to zero whenr H ap-
proaches the pointB. If we apply the turning point method in
this case, the line below the pointC would be unstable. So
we can regard this as unphysical. But fora/Qm

2 50.1, 1, this
method suggest that there is no stability change if we think
the isolated system though thermodynamical properties
different in these two cases. The specific heat of the bl
hole never changes fora/Qm

2 51, while it changes twice a
the pointsD andE for a/Qm

2 50.1. In all cases, the tempera
ture diverges forr H→0. It is reasonable that higher orde
curvature terms would change the results in this region.
even if we believe that this system describes black hole
lutions correctly, it is difficult to observe the negative ma
black holes since it will evaporate very quickly.

B. Electrically charged case

In this case, from Eq.~2.13!,

4ar2~A8!31A8r 25Qe , ~3.6!

which has only one real solution and two imaginary so
tions. The real solution is

A8~r !5
22331/3r 2121/3B2/3

62/3AxB1/3
. ~3.7!

We used an abbreviation as

B[9AxQe1A12r 6181xQe
2, ~3.8!

x~r ![4ar2. ~3.9!

There remains onlyFe part in Eq. ~2.12! which shows
Gm8>0. This is one of the main differences from the ma
netically charged case. We show that an extreme solu
always exists. If we takeGm8(r H)51/2, A8(r H) is evalu-
ated from Eq.~2.12! as

A8~r H!5
~y21!1/2

2~3a!1/2
. ~3.10!

We introduced a dimensionless variabley as

y5A11
24a

r H
2

. ~3.11!

Substituting Eq.~3.10! into Eq. ~3.7! derives

g~y![~y21!3/213~y21!1/22
Qe~y221!

4~3a!1/2
50.

~3.12!

Thus,
o.
7-3
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g8~y!5
3

2

y

~y21!1/2
2

Qey

2~3a!1/2
. ~3.13!

Because ofy.1, the solution ofg8(y)50 is y5y051
127a/Qe

2(.1). We can seeg8(y).0 for 1,y,y0 and
g8(y),0 for y0,y. So if we notice thatg(1)50 andg→
2`(y→`), we find there is only one positive solution. S
we can conclude that there is one extremal black hole foa
.0.

Electrically charged case has already been investig
previously@18#. The solution can be expressed using the
pergeometric function. But we need numerical calculation
investigate their detailed properties, particularly their th
modynamical properties. The inner horizon only appears
black hole solutionM,M0 as he showed.M0 is

M05
G~1/4!

2G~3/2!

Qe
3/2

~2a!1/4
. ~3.14!

We first show the field distributions of the solutions@(a)r -m,
(b)r -A8] for r H / l p51, Qe / l p51, anda/Qe

250, 0.1, 1, 10

FIG. 3. Field distributions of black holes with electric charge f
r h / l p51, Qe / l p51, anda/Qe

250, 0.1, 1, 10@~a! r-m, ~b! r-A8].
Because of the difference from Maxwell field at small scale,
resulting solution deviates from the RN black hole near the horiz
A8 monotonically decreases asr→` as is easily shown.
06400
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in Fig. 3. Because its difference from the Maxwell field
particularly large near the event horizon, this makes a n
trivial change for a small black hole. We can evaluate t
for a1/2Qe@r 2,

A8;
Qe

1/3

~2r !2/3a1/3
. ~3.15!

Differentiating Eq.~3.7! showsA9,0, soA8 monotonically
decreases asr→`. We investigate theM-r H andM-1/T re-
lations for electrically charged black holes in Figs. 4 and
respectively. We takea/Qe

250, 0.1, 1, 10. The pointA cor-
responds to the extreme solution and the curveA to B shows
an inner horizon. For finitea, there exists an extreme solu
tion as we noted above and this approaches tor H→0 for a
→`. Thermodynamical properties are similar to the case
the RN solution. The pointD corresponds to the point wher
the specific heat changes and this is not equivalent to

e
.

FIG. 4. M-r H relation for a/Qe
250, 0.1, 1, 10. The causality

changes at the pointB below which the inner horizon appear
Though the lower limit of the horizon decreases as we takea large,
the extreme solution always exists.

FIG. 5. M-1/T relation for the same parameters in Fig. 4. T
extreme solution always exists where the temperature become
So theM-1/T relation is similar to the one for RN black hole. Not
that the point where the sign of the specific heat changes does
necessarily correspond to the pointB which suggests that the cau
sality change will not be irrelevant to the stability change.
7-4



is
th

av
tr
a

tie

.
ion

se.

. So

r
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point B. So there is no relation between the point which
relevant to the causality change and the point at which
specific heat changes.

IV. DYON BLACK HOLE

As we showed above, the properties of black holes h
very different aspects, depending on whether it has elec
charge or magnetic charge. In this section, one of the m
purposes is to survey how thermodynamical proper
change when we change theQm /Qe ratio or the coupling
constantsa, b. In this case, from Eq.~2.13!, the three solu-
tions are expressed as

A8~r !5
22331/3z121/3B2/3

62/3AxB1/3
, ~4.1!

A8~r !5
~16 iA3!x

22/331/3AxB1/3
2

~17 iA3!B1/3

24/332/3Ax
. ~4.2!

In this case,

FIG. 6. Field distributions of dyon black holes forr H / l p51,
a/Qe

251, b/Qe
2521, Qe / l p51, andQm / l p51024, 1 @~a! r-m, ~b!

r-A8]. As we can see forQm / l p51 monotonically decreasing ofA8
is broken andm8,0 region appears which can be seen in ther H

→0 limit unlessQmÞ0.
06400
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B59AxQe1A12z3181xQe
2. ~4.3!

Note that for 12z3181xQe
2>0, the only real solution is

Eq. ~4.1!. For a18b.0, becausez can be negative for a
small r, 12z3181xQe

2,0 is possible only near the horizon
But even in that case, there is only one positive solut
~4.1!. We should take a positive solution becausez eventu-
ally becomes positive for large values ofr. So we take Eq.
~4.1! in any case.

We can classify solutions in ther H→0 limit three types
as follows.

~I! If a18b50, A8(r ) approach Eq.~3.15! for a1/2Qe
@r 2, which is the same as in the electrically charged ca
On the contrary, Eq.~2.12! approaches

Gm8;2a
Qm

4

r 6
, ~4.4!

which has same form as in the magnetically charged case
the characteristic feature of smallr H is like that of the mag-
netically charged case.

FIG. 7. ~a! M-r H , ~b! M-1/T relations for dyon black holes fo
a/Qe

251, b/Qe
2521, ~i.e., a18b,0) Qe / l p51, and Qm / l p

51024,1. It seems that solutions in ther H→0 limit only exist for
Qm / l p51. But it is not true.
7-5
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For a18bÞ0, we can see its nature if we rewrite E
~4.1! as

A85
A1

32A2
3

62/3AxB1/3~A1
21A1A21A2

2!
, ~4.5!

where

A1[21/3B2/3, A2[2331/3z. ~4.6!

~II ! For a18b,0, we can evaluate

A1
32A2

3536QeAxB, ~4.7!

which showsA8}r 2 in the r→0 limit. So we can conclude
that if (a18b)<0, Eq.~2.12! has same asymptotically form
~4.4! in the r H→0 limit as in the magnetically charged cas

~III ! For a18b.0, there existsr 5r 0 below which
12z3181Qe

2x,0 is satisfied. For a while we considerr
,r 0 case. Then we can evaluate

A1
32A2

35224z3, ~4.8!

which showsA8}r 22 in the r→0 limit. So we can not con-
clude whether or not solutions in ther H limit exists. It de-
pends ona, b as we see below.

Next, we show the field distributions in Fig. 6~a! r-m, 6~b!
r-A8 for a/Qe

251, b/Qe
2521, ~i.e., a18b,0), r H / l p51,

Qe / l p51, andQm / l p51024, 1. Monotonically decrease o
A8 is broken andm8,0 region is specific forQm / l p51
contrary to the case forQm / l p51024. But they are universa
in the r H→0 limit unlessQmÞ0 as is shown above.

We also studiedr H and 1/T relations in terms ofM for the
above three cases. We first show those fora18b,0 in Figs.
7~a! and 7~b!, respectively. We fixed the parametersa/Qe

2

51, b/Qe
2521, Qe / l p51, and Qm / l p51024, 1. For

Qm / l p51, we can easily see specific properties of the m
netically charged case though forQm / l p51024 we cannot.
But it is not true. Even forQm / l p51024, there exist solu-
tions in ther H→0 limit where the temperature diverges a
M→2`. They are clear from Fig. 8 which is a magnific

FIG. 8. Magnification of Fig. 7~a! which shows that there exis
solutions in ther H→0 limit even forQm / l p51024.
06400
.
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tion of Fig. 7~a!.
We show corresponding diagrams fora18b>0 in Figs.

9~a! and 9~b!, respectively. We fixed the parametersa/Qe
2

51, b/Qe
2520.125 ~i.e., a18b50), 20.1, 0, 0.1,Qe / l p

51, andQm / l p51. For b/Qe
2520.125, 20.1, it is almost

indistinguishable in this diagram though the electric field h
a different limit for r H→0 in these two cases. We can s
that the character is similar to the magnetically charged c
But for b/Qe

250, 0.1, we can see a character similar to t
electrically charged case, i.e., solutions below an extre
solution do not exist. The curve below the pointsA is a
sequence of inner horizons. We also investigated those
variousQe /Qm ratio which suggest that whether or not s
lutions in ther H→0 limit exist depends only ona, b. Thus if
we believe that this system is realistic, the coupling consta
decide the final fate of black holes.

V. CONCLUSION AND DISCUSSION

We note our conclusions and future work. We investig
black hole solutions in the EEH system for electrica

FIG. 9. ~a! M-r H , ~b! M-1/T relations for dyon black holes fo
a/Qe

251, b/Qe
2520.125, 20.1, 0, 0.1, Qe / l p51, and Qm / l p

51. For b/Qe
2520.125, 20.1, these figures are almot indistin

guishable for these two cases and resemble those for the mag
cally charged case. But forb/Qe

250, 0.1 they resemble those fo
the electrically charged case.
7-6
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BLACK HOLE SOLUTIONS IN EULER-HEISENBERG THEORY PHYSICAL REVIEW D63 064007
charged, magnetically charged and dyonic solutions. T
have remarkable thermodynamical properties.

~i! For the magnetically charged case, the properties of
black holes change qualitatively fora5acrit . There is an
extreme solution only fora<acrit . There are solutions in the
r H→0 limit for arbitrary a and the temperature diverges
this limit.

~ii ! For the electrically charged case which was analy
previously, though the lower limit of the horizon becom
small as we takea to be large, the final state of the black ho
when we consider the evaporating process is similar to
RN one. The causality change has also already been po

FIG. 10. M-r H relations for~a! magnetically charged case,~b!
electrically charged case which correspond to Figs. 1 and 4, res
tively. The pointsU show that theaP2 term becomes dominan
compared withP term belowU.
06400
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out, i.e., the inner horizon appears only forM,M0, as we
confirmed it. But the pointM5M0 is not relevant to the
change of the stability if we apply the turning point metho

~iii ! As for the dyon case, we showed that there exi
solutions in ther H→0 limit for a18b<0 and approach the
magnetically charged case. Fora18b.0, our results sug-
gest that whether or not solutions in ther H→0 limit exists
depends only ona andb not on theQm /Qe ratio except for
vanishingQm or Qe .

We should discuss the validity of our solutions since t
EH action is a low-energy approximation of the BI actio
from the point of view of the string theory. We estimated t
condition where the contribution fromP is larger than that
from aP2 ~or bQ2) in Eq. ~2.6!. For the magnetically
charged case, this is evaluated asr H.(2aQm

2 )1/4. We show
theM-r H relation in Fig. 10~a! and plotted the pointU below
which this condition is violated. This shows that our sol
tions are justified until they reach the extreme solutions~if
they have extreme!. But if there is no extreme solution, th
validity of the solutions are violated before they reach ne
tive mass solution. For the electrically charged case, thi
evaluated asr H.(2aQe

2/9)1/4. We show theM-r H relation in
Fig. 10~b! which shows that though this condition is violate
before solutions become extreme for largea, it is well satis-
fied by large in our parameter range. Dyonic black hole f
lows these two cases.

We now comment on what happens below the pointsU
actually. Though we considered the Einstein-Hilbert act
as a gravitational part, it is important to generalize to thi
higher order curvature corrections. It may be interesting
think about black hole solutions in the action which gener
ize the EH action to preserve supersymmetry@19#. Our solu-
tions have pathological properties like the negative grav
tional mass. There may exist mechanisms which prev
such properties as in Ref.@20#. Another concern we have i
to think about black hole solutions including cosmologic
term, because its importance is recognized both in obse
tional and in theoretical perspectives.
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