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Fluctuations around a nontrivial solution of Born-Infeld theory have a limiting speed given not by the
Einstein metric but the Boillat metric. The Boillat metricSsduality invariant and conformal to the open string
metric. It also governs the propagation of scalars and spinors in Born-Infeld theory. We discuss the potential
clash between causality determined by the closed string and open string light cones and find that the latter
never lie outside the former. Both cones touch along the principal null directions of the background Born-
Infeld field. We consider black hole solutions in situations in which the distinction between bulk and brane is
not sharp such as space-filling branes and find that the location of the event horizon and the thermodynamic
properties do not depend on whether one uses the closed or open string metric. Analogous statements hold in
the more general context of nonlinear electrodynamics or effective quantum-corrected metrics. We show how
Born-Infeld action to second order might be obtained from higher-curvature gravity in Kaluza-Klein theory.
Finally we point out some intriguing analogies with Einstein-Sdimger theory.
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[. INTRODUCTION nonlinear theory with distributional sources with finite total
energy. They can now be understood in terms of strings end-
A striking feature of much recent work on open string ing on D-brane$8,9].
states in string or M theory is the considerable insights af- Schralinger recognized yet another remarkable property
forded by the Born-Infeld 1] approximation. Reciprocally, of Born-Infeld theory: viewed as a nonlinear optical theory,
string or M theory has provided a rationale for some of theBorn-Infeld theory exhibits uncommon properties with re-
hitherto mysterious and only partially understood propertiespect to the scattering of light by light. He constructed exact
of this remarkable theory. o ~wave like solutions of the full nonlinear equations represent-
The existence of a limiting electric field strength, which ing light pulses with solitonic properties. They pass through

was originally theraison d’etreof Born-Infeld theory, now o 2nother without scatterifg0,11. This can be also un-
finds a dynamical justification in the increasingly COpiO“Sderstood from a string theory point of vieig].

production of electrically charged open string states as one Some time after Shichnger's work it was realized that the

approaqhes th_e critical val@]. More subtly, the electnc_- propagation of Born-Infeld fluctuations around a background
magnetic duality symmetry of Born-Infeld theory, a nonlin- solution has exceptional causal propertiég,13 and that
ear generalization of Hodge duality first recognized by Pt properies, -

the theory also admits exact solutions exhibiting these excep-

Schralinger[3], may be viewed as a special caseSadual- ional ed 141 F h . h .
ity. In fact electric-magnetic duality is a special case of Borntona properties{14]. From the string theory perspective,

reciprocity [4], a transformation which acts as a rotation in this relates to the recent interest in open string theory in a
phase space p(q)— (p cosé+qsiné,qcosé—psind). In constant backgrou_nd Kalb-Ramond pote_nmj,, and thus
nonlinear electrodynamics, the phase space variables mightith gauge theory in a flat non-commutative spacetjts.

be considered to bB andD= dL/4E, which are canonically 1he Kalb-Ramond potenti@,,, appears in the Born-Infeld

conjugate variables in the sense of the Poisson brackets action in the combinatioir ,,+B,, and so from the Born-
Infeld point of view, a constari,,, field may be regarded as

{Bi(X),Dj(Y)}p.5.= — €ijicdkS(X—Y). (1.1 @ background solution of Born-Infeld theory. Some of the
open string states propagating around the constant back-

Born reciprocity applied to string theory gives risefaju-  9roundB,,, field may be identifiedat least in the Abelian
ality [5]. According to Hull and Townsengs] T and S du- case with fluctuations of the Born-Infeld theory. Thus we
ality are included in the more generakduality symmetry. need to understand the causal structure of their propagation.
This leads naturally to the question of whether Born-Infeld!t turnsa[c;ut that this is governed by a metriG,,,=g,.,
theory is the only nonlinear electrodynamic theory admitting~ Bra9""Bg,,~ which differsfrom the usual spacetime met-
electric-magnetic duality. It is ndf]. rcg,, _[15]. In fact we have two light-cones: thg usual light-
Another striking feature of Born-Infeld theory is that it CONe given by, which governs the propagation of closed
admits Blon solutions. These are exact solutions of the fulftfing states such as the graviton and that givenGy,

*Email address: gwgl@damtp.cam.ac.uk ZBW may be taken to stand for the background field or for the
"Email address: car26@damtp.cam.ac.uk constant Kalb-Ramond 2-form. In string language we are using
We use the conventiofx',pj}p g.= 9 . units in which 2ra’=1.
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which governs the propagation of open string states such as In Sec. IV we show that scalar and spinor fluctuations
the Born-Infeld photon. In general, the former lies outsidearound a Born-Infeld background are governed by the open
the latter except in two privileged directions correspondingstring metric.
to the two principal null directions or eigenvectors of the In Sec. V the bi-metric theme takes another perspective.
background two-form field. To put things provocatively, Recently{ 18] examples have been given of how dimensional
gravitons almost always travel faster than light. reduction can alter the causal structure of stringy black holes.
One immediate consequence is that if the closed stringonsidering a trivial dilaton field, the relation between the
metric admits no closed timelike curves then neither will thelower dimensional metrig,, and the higher dimensional
open string metric. Another obvious consequence is that ipneg is of the form(1.2), with g,,,=g,,+A,A,. With
the closed string metric contains an event horizon then thenis “motivation, we look to higher-order Kaluza-Klein
open string metric will also contain an event horizon whichtheory. We notice that it is possible to obtain Born-Infeld
lies inside or on the closed string event horizon. theory to second order and still avoid ghosts, as long as the
The comments in the last two paragraphs encode the glyigher dimensional graviton is only excited along the com-
bal theme of this paper. Within many physical theories, twopact dimensions. We similarly show that the effective theory

non-conformal metric structures arise: for QED, the Euler-Heisenberg theory, may be obtained in
this fashion, and discuss some properties of the theory ob-
9., and g,,+S,,, (1.2 tained by starting with an Einstein-Hilbert plus Gauss-

Bonnet action in higher dimensiof&9]. This gives an ap-
plication of the general concepts discussed in Sec. Il.

where S, is some symmetric two-tensor. Geometrically |n Sec. VI we start by reviewing the results of Sec. Il
they represent two sets of light-cones. Questions regardingonsidering the gravitational effects of the electromagnetic
causality or the existence of event horizons might then bepackground field. One is then led to consider besides the
come particularly subtle. It is our purpose to discuss suclisual Einstein metrig,, an effective co-metric of the form
issues in several contexts. For the aforementioned open veg~»+ AR*”. Another possible origin for such effective met-
sus closed string theory causal structures, there is some af is quantum renormalization of the propagator of test fields
vantage in placing these properties in the general context qf a fixed background. We then discuss the universality of
nonlinear electrodynamic theories, just as in the case ofjack holes event horizons and thermodynamic properties,
electric-magnetic duality. Particularly so because a quitgyy applying a result derived in the context of quantum renor-
separate strand of recent research has been concerned Wifalized metrics to the case of the Boillat metric for
analogues of black holes, closed timelike curves and circulafonlinear electrodynamics coupled to gravity.
null-geodesics in nonlinear electrodynamids$]. There is In Sec. VII, we review an old attempt of Einstein and
also considerable interest in black holes in theories of nonschralinger to construct a unified theory of gravity and elec-
linear electrodynamics coupled to Einstein grayggme re-  tromagnetism(see[20] for original references One then
cent references afd7]). introduces a metric which has an antisymmetric part. The

In Sec_. I'we look at general nonlinear eIectrodynamics iNsymmetric parg,, and the inverse of the symmetric part of
a four-dimensional flat background. Henag,, is the the inverse of the full metricAS"S " have remarkable
Minkowski metric. The study of the propagation of fluctua- gimjlarities with the closed and open string metric, as first

tions of the electromagnetic field in a given electromagnetiGgticed by Boillat[21]. We discuss some exact solutions
background introduces naturally a second metric structurgsyng by Papapetrof22].

the Boillat metricA%"'" . We emphasize the special prop-  we close with a discussion.

erties of Born-Infeld theory in at least four senses: the exis-

tence of both electric-magnetic and Legendre duality and the

absence of both birefringence and shocks. 1. CAUSALITY IN NONLINEAR ELECTRODYNAMICS
In Sec. lll, we specialize to the case when the electrody- A. Characteristics and effective geometry

namics theory is Born-Infeld. One can deal with a general . . .

curved background. So the natural background geometry is We consider a ge.neraI_LFgrangliaﬁ:L(x,_yz depen;jlr;g

described byg,,, , the closed string metric. But open strings on the Lorentz mvarl_antz— iFuF andy—_ ZF#.V*F .'

propagating in a nontrivial electromagnetic field or Kalb- These_are th_e only independent Lorentz invariants in fou_r

Ramond potential see a different metric: the open string metgpacetg)me dimensions. The energy momentum tensor is

fic G,,,, conformal toAB%"12t e shall then see that if the 9'V€" %Y

closed string metric is static and the Born-Infeld field is pure 1

electric or pure magnetic then the open string metric cannot T,=— LXTI"ijW"‘"+ ~T0u,, (2.2

have a non-singular event horizon distinct from the one 4

given by the closed string metric, because on it the electric

field E must either equal its limiting value or the magnetic

field B must diverge. Note that the meti@&,, is not invari- 3We use a mainly minus metric signature and, contrary to Boillat
ant, even up to a conformal factor, under Hodge dualityand some other references who use the opposite sign we cheose
6B,,=*B,, but, as we shall see, it invariant up to a have the standard sign such that for Maxwell thelory —x. Sub-
conformal factor under electric-magnetic duality rotations. scripts indicate partial differentiation.
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where the trace and the Maxwell energy-momentum tensathere are, in general, two metrics. The interpretation of the

are given by quantities{ . is that they correspond to critical electric field
strengths above which the theory breaks down. For excep-
T=T,=—4(L—xLyLy), tional theories the two values d@f. coincide and there is a
Maswell B single light-cone and no bi-refringence. Exceptional theories
T =~ FuaF g +Xxg,, . (22 fall into two classes. The first has=0. This happens for

. Maxwell . . . . instance if the Lagrangiah is independent of, which in-
Since bothT "™ and g,,, (with mainly minus signa-  ¢,,jes Maxwell's theory as a special case. But not all theo-

ture) satisfy the dominant energy condition, and the set Ofies with w=0 are exceptional in this sense. In fact, al-

energy momentum tensors satisfying the dominant energy,, ,qh £q.(2.4) still encodes relevant information for this

condition is a convex cone, a sufficient requirementy 456 it does not contaial the information. One example
to satisfy the dominant energy condition is thgt<0 and i pe given in Sec. V.

T=0. An argument of Hawking and Elli23] then shows For w#0, the only exceptional theory is Born-Infeld

that propagation in the full non-linear theory is causal in thery 51 The Jatter is also very special in that is a constant
sense that if at time zero all fields vanish outside some ConTndependent ok andy. It is the only theory for which this is
pact set, then they will vanish outside the future of that sety e "\we shall use units in which this constant is taken to be
In general one expects the fields to advance into empty spa¢g,o

with no background field at the speed of light and this ex- g condition that the theory admit electric-magnetic du-
pectation is supported by the observationiginally due ©o i rotations is rather weaker. It suffices tHatE=D-H

Schralinger[10]) that any solution of Maxwell's linear elec- [7], which implies that the Lagrangian satisfy the first order
trodynamics with vanishing invariants=y =0, will also be 145 milton-Jacobi type equation

an exact solution of nonlinear electrodynamics. Among such

so-called self-conjugate solutions are the usual plane wave 2_12y_ _

solutions which have unit speed. ylLimby) —axbdy=y. @7
If a background field is present however these arguments

require re-examination. One approach might be to look at th

energy momentum tensor of the fluctuations. We shall not d

this here but begin by considering thkaracteristics which

The characteristics or wave surfaces may be thought of as
Aull hypersurfaces of a metric whose null geodesics corre-
%pond to theays Note that the characteristics and the rays

= . ” _ depend only a conformal equivalence class of metrics, de-
by.(Ijefmmon are hypersur'faces along .whmh'eakdlsconu- fined by Eq.(2.3). A particular choice of conformal repre-
nuities propagate. Assumirig,, to be dls_co_ntlnuous across gentative used by Boillat, which we shall refer to as the Boil-
the surfaceS(x*)=const, the characteristics are given by |5t metric and co-metric. is given by

[24,12,13,2% '

(Tll\jlgxweu"‘ ,U«gMV)O"P,Sé’VSIO. (2.3) A}B;?}illat: - L : Z(MQW—T,'\fixwen) (2.9
This has the form of a relativistic Hamilton-Jacobi equation Vo =Xy
for massless particles with effective co-metriG,, el
+ug””, and whereS would be the action function. This 1
effective metric also governs the propagation of weak, but Choilat™= CR) 2(#9” "+ Thiawel)
not necessarily discontinuous fluctuations around a back- pHomXETY

ground. Later we will turn to the propagation of shocks and (2.9

the behavior of fully non-linear fluctuations. The function

1= i(x.y) satisfies so that A2 Cgl.= 5. . As we shall see in detail later, in

the case of Born-Infeld theory, the open-string me@ig,

wul+ pt+ w—w(x2+y?) =0, (2.4  and the Boillat metricA>%"*" are conformal.
Because
where
- 1
Lubyy— L2y ABoilat____H X F qofF
T=—), 2. wy 555 gp,v_ . ,uag Bv |
Ly(Lxxt I—yy) 29 VMZ_XZ_YZ LR
(2.10
and
the Boillat metric has a remarkable expression as a sort of
Lyt X(Lxx— Lyy)+2y Lxy square root:
w= . (2.6
LyxTLyy

In the general case the characteristics exhibits bi- “Throughout this paper all indices will be raised or lowered using
refrigence: u(x,y), which for convenience we parametrize the usual Einstein or closed string metg, with the exceptiorf
as u(x,y)=x+{.(x,y), can taketwo values depending the open string metri&,, whose inverse is denoted by*” in
upon the polarization state and the background field. Thuaccordance with string theory conventions.
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EINSTEIN PLUS EFFECTIVE GEOMETRIES

PRINCIPAL NULL

PRINCIPAL NULL DIRECTIONS

DIRECTIONS

BI-REFRINGENCE EXCEPTIONAL CASE
ABoiIIat: p—x
/MZ _ X2 _ y2
1 ) 1( 1
X| g+ Flg | g— Fl.
VM —X VM —X
(2.11
It follows easily that
Boillat _
V- detnBol=/— de,,,, (2.12

in other words, the Boillat metric and the spacetime metri
induce the same volume element. The two principal null vec
tors common to both cones are annihilatedgoyF//u— X
orbyg—F/Ju—x.

We record for later use that if the background Einstein
metric g is flat, then up to the conformal factor

1/ u?—x%—y? the Boillat metric is
(m—x)(dt?—dx?)— E2dt?+ (E- dx)?

+2EXB-dxdt—B?dx*+ (B-dx)%.  (2.13

C

FIG. 1. Cones for the Einstein
geometry and effective geometry
describing the propagation of fluc-
tuations in a nontrivial back-
ground F,, field. If condition
(2.1 is obeyed,C1 is the Ein-
stein cone,C2 (and C3 for the
non-exceptional casethe effec-
tive geometry cones. The cone on
the right represents the excep-
tional degenerate case.

DEGENERATE PRINCIPAL
NULL

DIRECTION

DEGENERATE CASE

. The cones in the center of Fig. 1 illustrate the ex-
ceptional casdlike the Born-Infeld or open string theory
case where the effective geometry only possesses one light
cone.

It may happen that the two principal null directions coin-
cide. This occurs if and only ik=0=y. In this case the
metric takes the form

AN =g, ,—1,l,, (2.19
wherel , is parallel to the principal null direction. The char-
acteristic cone touches the Einstein cone along a single gen-

erator. This degenerate case is illustrated for exceptional
theories in Fig. 1 right. For a generic electromagnetic field

the principal null directions will coincide on a submanifold
of dimension(and also co-dimensiortwo, . The comple-
ment M\ in the spacetime manifold1, may not be sim-
ply connected. This gives rise to ambiguities in defining the
“complexion” sarctary/x of the electromagnetic field. In
many ways, particularly if it is timelike behaves rather
like a cosmic strind26].

In string theory, if a dilatond is present, one distin-
guishes between the Einstein metgg, and the(closed-
string metrice”*g,,,. However both have the santEin-

In the generic case, one may diagonalize the Boillat metrigtein light-cone, i.e., they are conformal. This is because the

with respect to the usual spacetime metyig,. This gives

dilaton is a state of the closed string. It seems therefore, at

the speeds of propagation of the fluctuations in the associatddast at the level of approximation we are considering, that

inertial frame. In this frame the Poynting vect@XxH
—L,EXB vanishes. The velocities, i.e. the ratio of space-
like to timelike eigenvalues, turn out to be

peCHY? Xty

AN+ oy

(2.14

there are just two causal structures and two sets of cones: the
open and the closed. Of course from the strict string theory
point of view one refers brane and the other to bulk propa-
gation but we have in mind situations where the distinction is
not sharp, such as for example in the case of space-filling
branes, or when considering gravitons confined to, or at least
moving parallel to, the surface of a brane. A sufficient con-
dition that the Boillat-cone does not lie outside the usual

Thus in general there are two directions in which the Boillat-Einstein light-cone, i.e. that the speeds never exceed unity is

cone touches the usual Einstein light-cone, corresponding
the first component of Eq2.14). These are the principal null
directions off,, . Note thatF,,, and any duality rotation of

it have the same principal null directions. In Fig. 1, we rep-
resent the light cones for the effective plus Einstein geom

Bhat bothu’'s must satisfy

w>\x2+y?=r. (2.16

etry. The left cones illustrate the case with bi-refringence; wdn terms of the coefficients in Eq2.4) this requirement
then have the Einstein plus two effective geometry conesceads w<-—r, —1/(2r)<w<0. Specialized to the Born-

For the causal case, the Einstein cone will®@&. All the
cones touch in two points, along the principal null directions

Infeld case(2.16 yields positive the quantity under the
square root in the Born-Infeld action.
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B. Wave surfaces and ether drift L

Boillat [12] has calculated the wave-front produced by
waves moving outwards from a point source with respect to
an inertial frame in which the Poynting vectdexH
=—L,EXB does not vanish. If

GIBBS
SURFACE
! 2, R2 pENXHy? SLOPE=D
w=—(E“+B%), a= _—
2 mtw
- - V e
m—VX°+y B
b=\ ——"7"— (2.17 CONTACT POINT DEFINING E

+w

a FIG. 2. The Gibbs surface is the Lagrangian function. Inverting

andc=ab, so that a=b>c, he finds that it is given by the constitutive relations, to fine=E(B,D), corresponds to find-
the family of ellipsoidgin Cartesian coordinatexy,z)] ing the E coordinate of the contact point of the Gibbs surface with

a plane with slop® along a line of constar. Convexity is nec-
X2 . y? ) (Z2—tvgrin)? 2 218 essary for the inverse constitutive relations to be well defined.

2 2 ' :

as b c? which is, in fact, defined for alB and D. However the in-

verse Legendre transformation is effected by means of the

where the drift velocity is given by function

EXB

Varin=———" (2.19 1-V(1-H)(1-E?)—(E-H)?, (2.21)
Y
) 5 ) ) ) o which is defined only over the domain oE(H) given by
Since vgi=(1—a“)(1—b?), the drift velocity is always
less than one. Therefore, the presence of the background E2+H?<1+(EXH)2. (2.22
electromagnetic field causes the drift of the origin of distur-

bances and establishes preferred directions in spacetime; inB@rn-infeld theory is one with the same constant upper
sense plays the role of “ether.” bound for both the electri@t zero magnetic fie)dand mag-

netic field strengthgat zero electric field Of course it
should be borne in mind that singling out a particular pair of
variables is rather artificial. The underlying invariant geo-

The energy density or Hamiltonian densify, should be  metric structure is the 12-dimensional symplectic vector
considered as a functiod (D,B) of the canonically conju-  space with symplectic forrdB-/AdH+dD-/\dE and a La-
gate variables[,B) [in the sense of E¢(1.1)]. Their ime  grangian submanifold which defines the constitutive rela-
evolution is obtained by taking the curl oH(—E) where  tions. If one wishes one may pass to a 13 dimensional con-
the constitutive relation&,H)=(dH/dD,dH/dB) holds. In  tact manifold with contact forndL—D-dE+H-dE. Then
other words E,H) and O,B) are related by a Legendre the constitutive relation provides a Legendre submanifold,
transformation and in this sense one may regard the variablgghich of course on projection onto tHe coordinate gives
(E,H) as canonically conjugate to the variablés,B). Of  back the Lagrangian submanifold. One may instead perform
course this is a different sense of canonically conjugate thag projection onto any pair of the 12 vector coordinates to
that in whichB and D are canonically conjugate. It is a obtain a “Gibbs surface” in a seven-dimensional space.
covariant sense in which one thinks of the space of Faradagicking for example the pairH,B) the Gibbs surface is
tensors F,, (possibly subject to the closure constraint given by
d1.F,7=0) as the covariant configuration space rather than
the non-covariant configuration space of magnetic induction L=1— \/1_ E2+B?—(B-E)2. (2.23
fields B subject to the constraint dd~ 0.

The Legendre transformation will be well defined and in- This is defined only in the domaid C R® connected to the
vertible if and only if the Hamiltonian densityf(B,D) is a  origin for which det+F)<O0, that is E2—B?+(B-E)?
convex function of its arguments. In other words the matrix<1. Geometrically for example, to finfl as a function oD
of second derivatives or Hessian is positive definite. Noteand B one brings up a 6-plane parallel to tBeaxis whose
that in generaH may be defined only in a portion of the slope is given byD until it touches the Gibbs surface. The
six-dimensional space of possiblz and B's and the Leg- point of contact defineg. If the Gibbs surface is convex
endre transform may only map into part of six-dimensionalthere will be only one such contact point. This is illustrated
space of possibl& andH ’s. Thus for example, in the case in Fig. 2.
of Born-Infeld theory Convexity will guarantee that all these projections are

well defined over the relevant domain and that the surface
H=/(1+B?)(1+D?) —(B-D)?—1, (2.20  has no folds for example as it would if the system exhibited

C. Convexity of the Hamiltonian function
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some sort of hysteresis phenomenon. For a general Norrmmz
linear electrodynamic theory the Hessian will only be posi-
tive definite over some domain iB(D) space. Outside that
domain the constitutive relation is just that: a relation rather
than a function.

The components of the Hessian are just the electric per
mitivities and magnetic permeabilities. They govern the be-
havior of small disturbances around a background. Thus the
background will be stable as long as the Hessian is positive ™
definite. The equations for small fluctuations will also be
hyperbolic as long as the Hessian is positive defiffg.

CAUSTIC

AN

NO SHOCKS

SHOCKS SPACE

FIG. 3. Family of hyperplanes describing the propagation of
wave fronts. If the hyperplanes intersedght figure the theory
will be singular. Regularityleft figure) arises for exceptional theo-
ries only, like Born-Infeld, which have no shock formation.

D. Shock waves and exceptionality

In Maxwell theory, in flat spac&3?, there exist traveling

wave solutions of the form If all waves are exceptional, i.e. if’ =0 VS, then parallel

hyperplanes are possible.df# 1 these can be brought to rest
by means of a Lorentz transformation. One then has station-
ary solutions depending upon two arbitrary functioffig(z)
andf,(z) of a single spatial coordinate,say. We shall give
nconcrete examples in the next section for the Born-Infeld
case.

0
uv?

F.=f(SF (2.29
where f is an arbitrary function of its argumeng§=n-x
—vt, andn is a constant unit 3-vector. For fixad these
represent a train of parallel waves moving with unit speed i

a fixed direction. The arbitrary functiohallows us to pick . - . .
the profile of the wave train arbitrarily. One may even . To understand the physical significance of exceptionality,
choose it to be discontinuous. The amplitude of the wave idl) the sense of the absence of shock waves, one should con-

constant on a family of wave surfac&s= const which cor- sider non-exceptional theories which do admit shock waves.
respond to a family of spacetime parallel null hyperplaneéA‘S theories they are essentially incomplete. One needs extra

whose intersection with any surface of constant time gives
family of parallel 2-planes i3, Because they move at the

speed of light, wave trains cannot be brought to rest b

means of a Lorentz transformation.

In nonlinear theories in flat space one may, by analogy

adopt the ansatz

F.=Fo,(f(9), (2.25

whereFﬁV will now in general depend on the arbitrary func-
tion f and where
S=n-x—v(n,S)t. (2.26

Now we get a family of hyperplaneS=const in E3! but
they are no-longer parallel, although their intersections wit

any surface of constant time still gives a family of parallel

2-planes inti®. The wave train therefore moves in a constan
direction but not with constant speed. They may slow dow
or speed up in the sense that a hyperplane which passe

given point in space at a later time may have a smaller o

greater speed(n,S). The hyperplanes will thus in general

intersect(see Fig. 3 At these locations the ansatz breaks

down. Neighboring hyperplanes will envelop a caustic hy
persurface obtained by eliminatingS from the
equations

S=n-x—v(S)t, 1=-v'(9t, (2.27

where ' indicates differentiation with respect @& Excep-
tional waves are those for which

v'(S)=0. (2.28

ghysical assumptions to render the evolution beyond the
Shock. This typically may come from some underlying more
fundamental theory. Thus the predictions of classical theory
yadmitting shocks, or indeed other singularities, cannot be
trusted in situations where they arise or are about to arise. In
this sense such theories “predict their own demise,” some-
thing that is often said of classical general relativity. By con-
trast a classical theory, such as Yang-Mills theory, for which
the evolution of regular finite energy initial data remains
non-singular for all timed28] is certainly complete as a
theory, even though, because of quantum mechanics one
does not trust every classical prediction. To check the reli-
ability of a classical prediction we must check to see how it
might be effected by quantum effects. Generally speaking,
we expect classical Yang-Mills theory to be useful in the

hWeak coupling limit and when dealing with very massive

excitations such as magnetic monopoles.

t Classical general relativity is known to admit singularities

fS a consequence of gravitational collapse. Only for weak

data do we expect non-singular evolution for all tifi29)].

ere exist fully nonlinear non-singular solutions of general
relativity depending upon two arbitrary functions propagat-
ing at unit speed. These are the pp-waves. They may be
generalized to propagate in an anti—de Sitter background
[30]. In some ways AdS is analogous to a backgro@d
field. But pp-waves wave-fronts in AdS are null hypersur-
faces of the AdS metric. This is in contrast with Born-Infeld
theory and other nonlinear electrodynamical theories, where
there are plane wave solutions traveling in some non-flat

SWe say stationary rather than static because the Poynting vector
may not vanish.
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background spacetime at a slower speed. Again, by contrast T, =L Ml pi_g (sl +tl,—L)

with Born-Infeld theory, the collision of two pp-waves gives py. TS Twy prATTS L R

rise to a spacetime singularifB1]. Such waves definitely TMaxweII[P]Z —P,.g%P 5~ (2.36
ma v, /I .

cannot pass through one another. In this respect Born-Infeld #”

theory resembles Yang-Mills theory more than it does gensyfficient conditions for the dominant energy condition to
eral relativity[ 28]. One is tempted to speculate that it may benpg|d are

a complete classical theory. Even if this is so, any of its

classical predictions is subject to quantum correction unless Ls>0, slg+tl,—L=o0. (2.37)
there is some reason, such as supersymmetry, for believing
that the quantum corrections vanish. In the case of Born-Infeld theory one hizs —y by electric-
magnetic duality invariance and expressing algoterms of
E. Covariant Legendre transformation (s,t) one gets
We introduce_ here a_dual notation via the fieRls, and_ —[=1-V1+2s-t2 = L(F )= ~L(N ).
N,,=*P,,. This notation has the advantage of making # " (2.39

Legendre self-duality of Born-Infeld theory manifest.
In the dual notation, the field equations arfiy nonlinear  For Legendre self-dual theories like Born-Infeld, the equa-
theory of electrodynamics are tions describing propagation of perturbatiot3), (2.4),
v will have exactly the same form in terms of the variables
V,.P*=0, (2.29 (x,y) as they do in terms of the variables, ).

or, in form languagegdx P= 0, where the field*” is defined

by Ill. BORN-INFELD OR STRING THEORY
A. Open and closed string metrics

= _ ilpwr
dL 2PHdF,, . (230 The open string metriG,,, is usually obtained as follows

[15]. One starts with the matrig+F whose components

P, coincides withF ,, for Maxwell's theory. In general it are g,,+F,,. Then one inverts to obtain a matrix with

reads

components
Puv=—(LF+LyxF ). (2.3) 1\ mv
. . . —| =G*"+ 67, (3.1
The components oP,, are justD andH. Using this two- g+F
form, the energy-momentum tensor can be cast in a form
identical toT;",f'i‘X""e” whereG*" is symmetric and¥*” is antisymmetric. LeG,,
be the inverse o6+, i.e.G,,G*#= 8% . Calculation reveals
T.=—PL.9%F,z—0,.L. (2.32  that
The formulation of the theory in terms &, is dual to the G*'=(G H*"=((g—F) 'g(g+F)"H*", (3.2

F ., formulation in the sense of a Legendre transformation.

. . - which is conformal to the inverse of E(2.11) specialized to
In fact if one takes the Legendre transform with respedt to the Born-Infeld case. Then one checks that

by

. GLv=9ur—Fua9™Fp,. (3.3

L=—ipPwF, L, (2.33 S

A slightly more involved calculation shows that
one has
1 1
{=_1 v o' =— ———— (FF'—yxFF) = — ———P*",
dL=—3F,,dP*", (2.39 1+2X—y2( y ) m
(3.9

in analogy to Eq.(2.30. For the special case of a purely

electric configuration in flat spacé, is the ordinary Hamil-  where P#” is the dual Maxwell field in the sense of Eq.
tonian. Introducing the Hodge dual fied,,=xP,,, and  (2.30. In verifying Eq.(3.4) the following four dimensional
defining SE%N””NW= —%P’“’PMV and tE%*N‘“’NW matrix identities are usefuwhere 1 stands for the identity
=—3P#"xP,, then the theory is specified by givingas a ~ matrix:
function of s andt. Then we have N 1

g "Fg *F=-yl, (3.5

Fo=LPu,+LxP,,. (2.3

The energy momentum in tensor in terms of the dual vari- ®we will always use- ,, for the gauge field, but it might represent
ables follows from Eqs(2.33 and (2.35: the Kalb-Ramond potentids ,, .
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g Fg 'F—g xFg xF=-2x1, (3.6

and hence

1
(glF—ygl*F)( g F+ —gl*F) =—(1+2x—y?)1.
y
3.7

Comparing Eq.(3.3 with Eq. (2.8) one sees that the open
string metric is equal, up to a conformal factor, to the Boillat
metric governing the propagation of fluctuations around a

Born-Infeld background:
G, = V1+2x—y?Ao"".

Relations(3.8) and(3.4) translate the stringy quantitiés,, ,

(3.9

PHYSICAL REVIEW 3 064006

cial cases. We use the simplest exact solutions to Born-Infeld
theory: plane wave solutions and spherically symmetric so-
lutions.

B. Exact plane wave solutions

Boillat [32,33 found an exact stationary solution to Born-
Infeld theory given in terms of two arbitrary functiofg, of
only one of the Cartesian coordinates, gawith an electric
field and a magnetic induction given by

E=coshai+ (cosha sinhB f1(z) —sinha f5(2))k,

(3.19
B=(cosha f,(z) —sinha sinhBf(2))i

—coshg f4(2)j +sinhak,

and 0, into pure nonlinear electrodynamics language, i.eWhere a, are arbitrary constants. The magnetic field and
the metric describing fluctuations around a fixed backgroun@l€ctric induction are easily obtained via the constitutive re-

and the dual Maxwell field.

An essential requirement on the causal structure defined
by the open string metric is to be invariant under electric-
magnetic duality rotations. To examine this we recall that the
stress tensor of Born-Infeld theory, which is known to be

invariant[7], is given by

2 N —detf(g+F)

g'uv_-I—'lEsfcl;rn—lnfeId:\/Teg é’g,uv 3'9)
But
J = i
oV—de(g+F)=—-V—de(g+F)|——| 4&9,,.
(g )2 (g )g+F Ouv
(3.10
Thus
V—de(g+F)
gMV_ngm—lnfeld:—G#V' (3'1])

\—deg

lations. The two Lorentz-invariants are
—2x=1—f3—12, (3.15

so that the Born-Infeld Lagrangian equals- fif,|. The
Poynting vectoiP=EXH is given by

y:f21

2|f,|P=(f2cosha sinh 28— 2f,f,sinha coshp)i
+(2f,f,sinhB cosh 2x
—sinh 2a(f2sint? B+ 3+ 1))j

— 2 cosha coshgf k. (3.19

One might wonder if these stationary solutions may be inter-
preted as domain wall solutions. That is can one choose the
asymptotic values of the arbitrary functiofg and f, so as

to interpolate between two stable “ground states”? One
would then expect to have a static family of domain walls,
that is, a nontrivial solution for which the Poynting vector
would be zero. However, this is not allowed By in Eq.
(3.16: f, would need to be zero for which cafgeH blow

up. Therefore one finds no domain walls, just as in Max-

Since the left hand side of E¢3.11) is invariant so is the well's theory.

right hand side. Notice that  the

scalar

By performing a Lorentz transformation on E(.14),

J—det@@+F)/\/—deg is not invariant but its change one gets the general fully nonlinear sub-luminal plane wave

merely induces a conformal transformatiorGrt” and hence

solution. It presents no shocks, in accordance to Sec. IID,

in G,,,, preserving the causal structure. It is worthwhile no-since it propagates with constant speed. In general we do not

ticing that the right hand side of EB.11) coincides with the
Boillat co-metric

(3.12

MV __ T MY (MY
g TBorn—InfeId_ CBoillat ’

expect superposition to hold in nonlinear electrodynamics
and therefore such plane waves propagating on top of some
background solution should not solve the equations of mo-
tion anymore. However, the plane waves obtained by boost-
ing Eqg. (3.149 may be superimposed to a background field

which is therefore completely invariant under electric-and still yield a solution to Born-Infeld, as shown [ih4].

magnetic duality rotations. It is easily seen from E2.12)
that the determinant of both sides of E(R.12 equals
deg*”. Thus we get the remarkable result that

de( 5':/['_ TBom-InfeIcﬁ/) =1. (3.13

In the next subsections we illustrate the results above by
analyzing the geometries seen by open strings in several spe-

Therein a background magnetic field along the x-axis and
electric field along the y-axis are consider&d: Bi, E=Ej
so thatEX B= — EBK. If we set

—EB+ V1-E?+B?

Ui_ -

1+B?

1-E?

EB=+\1-E2+B2
3.17)
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one checks that plane waves traveling in the z-direction caword. In [8] they were called Blons. For the electrically
be superimposed to the background field. The waves can dtharged Blon of Born-Infeld theory we find the open string
so in two polarization states, with the electric and magnetianetric to be

field given by .
(eb)=(v+j,—1)fj(z—vt) for the parallel polarization r

state. ” Ao —— (A= dr) —r2(deP+sirPodd?). (3.2
(e,b)=(v.i,j)f, (z—v.t) for the perpendicular polariza- 1+r

tion state,

The scattering of null geodesics is most conveniently repre-
where f; and f, are arbitrary functions of their argument. sented as geodesics of the optical metric

Note that there is a net drift in theedirection 4

1+r
1 EB S ica=dr?+ = (d6?+sinfad¢?), (3.29
UdriﬁZE(v++v—)= (3.18

1+B2’
which is easily seen to admit a 2-sphere of circular geodesics

in agreement with Eq2.19. This drift effect may be under- atr=1 surrounding an infinite redshift infinite area naked
stood as a consequence of Lorentz-invariancB?# E? and  singularity at finite proper distance situatedrat0. Such
one performs a Lorentz boost with velocity=E/B one may geodesics correspond to null geodesics of BR4).
pass to a frame in which the electric field vanishes and the The open string metric for the magnetically charged bion
magnetic field becomes equalBg= JVBZ—EZ. Now the ve- s different:
locity vg in this frame is symmetric with respect to reversing

the z-direction and is given by !

1
dsg o= dt?—dr?—

(d6?+sirfed¢?). (3.26

2
r
1
Vo= . (319 . . . . .
/—1 n Bg However the optical metrics are identical and in fact the two

metrics are conformally related.

This example may be generalized to any static configura-
tion in Minkowski spacetime. By static one means that the
Poynting vector vanishes, so tHaK B=0. The open string

U*uvg metric is then also static and given by
V.= . 3.2
T 1*uv, (3.20 ds5pe= (1-E?)dt?—dx?+ (E- dx)?—B2dx?+ (B- dx)%.

L 3.2

If E2>B? one may reduce the magnetic field to zero. The (327
electric field in the de-boosted frame will ligy= E?— B? Since|E|<1 we haveGy=0, moreoveiGy,=0 implies that
andvy=+1— Eoz. In these two cases the open string metrics|E|=1. Thus any static event horizon of the Boillat metric

One may check that. , vy andu satisfy the usual relative
velocity addition formula

are[using Eq.(2.13], which is not an event horizon of the Einstein metric must be
) singular, just as in the case of a single bion solution.
dS5pe= dt?—dX?— (1+B§)(dy’+d7®)  (3.20) Now consider what happens if the closed string magric
d ceases to be flat but remains static. One has
an
Goo=9oo+ FioFj0d" = gool 1+2X). (3.28

ds5oe= (1-E§)(dt?—dy?) —dx?—dZ.  (3.22
Clearly, as long ag>—1/2 the sign ofGy, is determined
entirely by the sign ofggy. Thus unless the electric field
reaches the critical value, there can be no open-string static

(3.23 event horizon which is not also a closed string event horizon.

' This result is really obvious from the viewpoint of

electric-magnetic duality because we could instead have con-

which illustrates invariance of the open string metric up to asidered a purely magnetic field. In this case

conformal factor under the discrete electric-magnetic duality

transformation B,D) — (—D,B). The general metric may be Goo= Yoo (329

obtained using a Lorentz transformation.

In terms of the electric inductioB the latter is

1
dS5pe= —— (dt2—dy?) —dx?—d 2,
1+D3

and the magnetic field has no effect on that part of the metric
which governs the location of event horizons. Actually, these
results do not depend upon the detailed form of the open

Non-linear electrodynamic theories typically admit staticstring metric obtained from Born-Infeld theory, nor upon
finite energy solutions with distributional sources. Becauseelectric-magnetic duality. They hold quite generally, as may
they have sources and also ha\adbeit mild singularities, be seen directly from the general express{arl3 for the
these solutions are not solitons in the usual sense of thmetric. At an event horizon we need

C. Blons and other static solutions
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E2=¢. . (3.30 Expanding around a backgrouiidfield and retaining only
quadratic terms inp we get theS-duality invariant expres-
That is the electric field attains its limiting value at which sion
point the theory breaks down.

1
-~ _ 4 _ v
D. The Boillat metric and Blonic scattering S=Sg* 2f d*xV — 9 Chgiard 49, ¢ (4.2

In this subsection we apply the fore-going theory to the
problem of scattering off the supersymmetric Blon or spikeSg, is the usual Born-Infeld action. Therefore, as expected,
solution of the Dirac-Born-Infeld equations of motig8,9].  scalar perturbations propagate according to the characteris-
This has been the subject of a number of detailed studéss tics of the open string metric.
[34,35 and references therginPhysically the solution rep-
resents a fundamental string attached to a D-brane. It is static
and the transverse displacement of the brane is given by a
scalar fieldg(x). The metricg induced on the brane is thus ~ Consider a general Dirac action of the form

B. Spinors

ds?=dt?— (dx)2—(V ¢-dx)2. (3.3 [ —
Sngf d4x,u(\lfyaa“BVB\If+ cen), 4.3
Using the Bogomol'nyi conditions
E=+Véo, (3.32 whereu is a scalar densityg””=(a)*” are the components
of a contravariant second rank tensor which need be neither
where symmetric or antisymmetric and the ellipsis denotes other
possible terms in fermions but with no derivatives.
V24=0, (3.33 The gamma matricey generate the Clifford algebra as-

sociated with the closed string metic
the induced metric becomes
{Yvaﬁ}ZZQQB' (44)
ds?=dt?— (dx)?— (E- dx)>. (3.3
The characteristics of this system are easily seen to be given

The open string metric then becomes by the co-metric

dt? » .
ds5 o= —— — (dx)2, (3.39 a“tg,gal”’, (4.5
1+E2

which are the components afga. Note that we could re-
This metric generates the same classical scattering as thgite the action as
Lagrangian(77) of [35]. In the case of a single SUSY Blonic

spike we get i B
, sngf d*xu(WIeV W+ ..), (4.6
r
dS5per= (m) dt?—dr2—r2(d6?+sirf6d ¢?).
(3.36 where
All the information about the classical scattering is now con- “=ygal”. (4.7

tained inG,,, .
In the case of Born-Infeld theory, it is natural to take
IV. OTHER SPINS =(g+B) ™%, in which case use of Eq3.2 shows that the
characteristics as determined by E4.5 are given by the
Born-Infeld actions may be extended to include scalargpen string metric. Moreover, the gamma matrices intro-

and spinors. In this section we shall investigate the charaauced in Eq.(4.7) generate the Clifford algebra associated
teristics of these fields around a background condtdigld.  with the metrica'ga

A. Scalars {T* P} =2a""g,zaP". (4.9
The Born-Infeld action with a single scalar field reads
For the Born-Infeld case this is the open string Clifford al-
= Ay (] — _ = — gebra.
S_f d'x(V detgy,) J detQ,, +F = 9,49, 8)). Consider the Born-Infeld-Volkov-Akulov action which
(4.7 arises when one supersymmetrizes the Born-Infeld action;
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SDBIVA: J d4X( \ _de(guy)_ \/_ de(g/.LV+ F/.w+ B,uv_ aﬂ¢av¢+lq_,7;¢v Vqr)) (49)

In the absence oB,¢ and A fields this reduces to the Tgr o the second set of light cones will be outside both
Volkov-Akulov action[36]. Expanding to quadratic order in the first set of cones and the Einstein light cones. The former
fermions gives a spinor action of the for@,, with «  result was pointed out ifi39] while the latter appears to

= /—det(g+B) anda=(g+B) *. Thus, as one might have confirm the pathological properties of this theory, in that
anticipated, the fermions characteristic cone is also given bgome fluctuations are tachyonic with respect to the Einstein

the open string metric. metric. Presumably these fluctuations can carry negative en-
ergy.
C. Gravitons We shall return to this theory in Sec. VII. Before doing so

It is not clear whether gravitons propagating in an exter Ve should recall that Einstein-Scliiager theory appears to

nal B field would have their characteristics modified, sinceirgaAk |r:jv?r|arr1](;e under .ﬂ;]e gt;':luge ltrgnsfé)rmat(ljﬁn.»B
these are closed string modes and propagate on the bulk. and for this reason it has been claimed to admit nega-
However, in the light of the fact that we now believe that Ve energy statef20].

gravity can be localized on the brafd7], one might be D. Gravitinos?

cisely this happens in Einstein-ScHioger theory. This is a br
unified theory in which the usual symmetric Einstein metric
is replaced by an arbitrary X4 (or more generally imn
spacetime dimensions amxn) tensor fielda which we
write suggestively as

ane. However if such a theory exists and the gravitino
propagation is affected by a backgrouadield then there is
an obvious suggestion for the characteristics.

V. NONLINEAR ELECTRODYNAMICS FROM  U(1)
(@Y p=2us=Gup+ Bug. 4.10 KALUZA-KLEIN THEORY

Kaluza-Klein theory stems from the fact that the Ricci

Lichnerowicz and Maurer-Tisofi38,39 showed that some escalar for the D+ 1) dimensional ansatz

of the small fluctuations have characteristics given by th
symmetric part of the co-metric, i.@*"=GE!  schror N
striking analogy to the open string or Born-Infeld case.
Therefore the properties of these characteristics are the same _
as the ones presented in Secs. Il and Ill. However, the theorig R= —x, i.e., the Maxwell Lagrangian. Herds® is the
exhibits a kind of bi-refringence, due to the existence of aD-dimensional Minkowski metric angdthe coordinate along
second set of(co-)cones for small fluctuations, given by the extra dimension. It is known, however, that the trunca-

ds?=ds’+ (dy+A,dx*)?, (5.0

[39]' tion of Kaluza-Klein theory to pure electromagnetism is not
consistent. In fact, considering a trivial scalar field implies

del,gs , Xx=const via the scalar equation of motion. We will not be
ng”v—@éms-smm (41D concerned about this point in what follows, but rather study

some properties of the electrodynamical theory that arises
from considering the lowest order ia’ tree level string
theory corrections to the Einstein-Hilbert action in dimen-
sions higher than four. Full study of such Kaluza-Klein
theory must be performed by considering also gravitational
and scalar excitations.

With the ansatZ5.1) the curvature invariants of second
order inD+1 dimensions aréexcluding a possible Chern-

grr+TEY (4.12  Simons term

Eins-Schro

If we defineTE! .schroPY an expression similar to E3.11)
replacingG*” by G/« .schio@Nd F by B, our two co-metrics
are conformal to, respectively

MV __ T MY
g TEins-Schro

deg,;s
2\ k1
( de(gaﬂ+Bal8)

Just as in the Bl case the first set of light cones will lie inside
the Einstein cones. But because of the opposite sign in

R2=x2,

RunRYN=x2+3d,F P, F“+ 1F , F F , sF P~
(5.2
"We would like to thank M. Clayton for poining out to us the . .
existence of this second light cone. RunpoRMNPO=6X2+§F , F"F ,gFPH+ 3 ,F , ,0"FH.

064006-11



G. W. GIBBONS AND C. A. R. HERDEIRO PHYSICAL REVIEW 3 064006

The most general parity conserving term quadratic in the  perturbations of the gravitational field shows that ghost can-

curvature is then cellation requiresR? to enter the combinatiotb.3) as
RunpgRMNPO+aRy RN +bR? Q,=RynpoRMNPR— 4Ry RN+ R?
) 5+2a p 4D1
— va 1 A A
(6+a+b)x+ FuF"FogF :ZRMNABRPQCDnMNPQnABCD_ (5.7)
4+a . o . o
+—— 3, F 0 FE (5.3 n is the Levi-Civita tensor, not density. This is the Gauss-
4

Bonnet combination. The last equality, which holds in four

o dimensions where the four-formy is the volume form,
where the dots stand for total derivatives. Hence, the termghows it is the second Euler density, a topological term in

with derivatives of the field strength in E¢G.2) cancel(up  four dimensions but dynamical in higher dimensions. We
to total derivativep in the combination RyypoRYNP?  recall that the first Euler density, topological in two dimen-
— 4Ry, RMN, thus avoiding ghosts in the propagation of thesions but dynamical in higher is just the Ricci scalar:
electromagnetic field. Actions with such derivative terms

have nevertheless been considered in the past, as in the 201

Bopp-Podolsky actiofi40]. We will require the cancellation Q;=R=—Ry"B7"N9rg. (5.9

of ghosts and therefore consider the dimensional reduction of 2

an action of the type ] ) . )
The last equality holds in two dimensions, where the two-

1 form # is the volume form. The Gauss-Bonnet combination
S= —j dD*lﬁ\/é is usually referred to as describing the first order string
167Cp 1 theory corrections to general relativif¢2]. The first order

(in ") stringy gravitational action can then be written ex-
clusively in terms of Euler densitigthat does not seem to be
(5.9 the case already at third order

X(AR+Y(§MNPQARMNPQ_ 4§MNARMN+ bARz))

Specializing to D=4, where one can use the identity
F . F"°F 4 gFP#=8x?+4y?, we get the Lagrangian S(l)z—f dD+1§<\/—_§](Ql+ YQ,), (5.9
167TGD+1
Lik=—X+Y((b—1)x2—32y?). (5.5
with Yeca'. ThatS™) is the correct effective action relies on
One notices the absence of ay parity breaking term to this two arguments. Matching the amplitude for the scattering of

order. In principle one could bring such term into the theorythree on-shell gravitons in bosonic closed string theory only
by including a Chern-Simons term. D+ 1=5, two such fixes the éMNPQ)Z term; the Ryy)? andR? do not contrib-

possible terms are ute to the on-shell amplitude. These are fixed by the no-ghost
requirement, since one does not see any ghosts in the string

S Jtr( Rag/\RBAX), or spectrum. I_3ut for purely electromagnetic.excitatio.ns within a

Kaluza-Klein context, the no-ghost requirement is more re-

laxed and makes sense to consider an arbitRcoeffi-
= | tr(Rag/\RBAWLE), 56  clent
Scs f (Rag/\Re o) ©9 In non-covariant language, the Gauss-Bonnet Lagrangian

_ _ _is described by
for some one form fielcK, or using the one form connection

w. The second and most natural possibility gives, however, Loe=2(E?—B2—3Y(E-B)?). (5.10
terms of order higher than the ones considered,ip . For

the first possibility, the most natural choice X¥fis as being
dual to the fiber directio@/ dy; then the first possibility con-
tributes only to the ghosts. Hence we will not consider them The constitutive relations are very simple and easily in-

Properties of Gauss-Bonnet electromagnetism

anymore. vertible. E andH may be expressed in terms BfandD as

By arranging the constantsandY in Eq. (5.5, one can
recover several interesting cases which analyze in the follow- 3Y(B-D)
ing subsections. E=D+ ———

1-3YB?
A. Gauss-Bonnet electromagnetism 5

This theory is obtained fob=1 [19] (see also earlier —B+ 3Y(B-D) 3Y(B-D) (5.11)

work in [41]). As pointed out in42], an analysis for linear 1-3YB? 1-3YB?
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It follows from the constitutive relations th&-E#D-H. 9Y?2
Therefore this theory does not admit electric-magnetic dual- X (b-B)%(D-B)?+ ——————(D-B)
ity. 2(1-3YB?)?
The Hamiltonian becomes X[4(D-b)(B-b)+4(B-d)(B-b)+(D-B)b?].
(5.1
1
Hog==(E2+B?—3Y(E-B)?)
2 Again, for vanishing magnetic induction both eigenvalues

will be positive if and only if the electric field is smaller than
(5.12 Eq. (5.14.

Since Eq.(2.4) reduces to Eq(5.15, which has a unique
solution for x one might think that Gauss-Bonnet electro-
ifmagnetism admits no bi-refringence. However, as discussed

in Sec. ll, whenw in Eq. (2.4) vanishes, the information

3Y(B-D)?
D2+B24 ———

1-3YB?

The dominant energy condition for the theory is obeyed

Y <0. Hence the first expression for the Hamiltonian showé(Eontalned in Eq(2.4) might be incomplete. As shown 9]

the energy is positive, whereas the one in terms of the Cathis theory exhibits bi-refringence, with one cone given by

nonically conjugate variableB and D imposes no upper- ; : D
bounc on the magnud of e magnet.ndueton. Howl® Pal e Wil Eale 19 anc e secon conciong
ever, the expressions f@ andD in terms ofE andH, Fig. 1 is the one to bear in mind, but now, the Minkowski
light cone is degenerate; it represents both the background
3Y(E-H) . geometry and one of the effective geometries describing the

B=H propagation of fluctuations.

1+3YE?
3Y(E-H) 3Y(E-H) 2 B. The Born-Infeld theory to second order
—E- 1+3YE?2 * 1+3YE2| (5.13 TheBorn-Infeldcase Lxk= L g'?), b=—1/2. The action

matches the Born-Infeld action to second order. To match
do constrain the value of the electric field to be bounded b)}he consta_ntsY with 5 one must remember that n the
Kaluza-Klein ansatz one should replasg— (A, where{ is
a constant with dimension lengtfwe are using quantum

2_ units, I.e.,c=A=1). If we write downLg, as
gt (514  units, ie,c=A=1). If we write downt

3Y]|

1
Another way to see this is by using our analysis of Sec. II. EB':E( V=g- V- detg,,+BFu.)), (517
For the Gauss-Bonnet electromagnetic the@y) becomes
1
the constants match as
=X——, 5.1
7 3y (5.19
4

from where we can read immediately the limiting field value B2=— SYZL (5.18
(5.14), in agreement with the discussion followin@.4). 167Gs’ '

What happens to the light cones in this limit? Considering
B=0, we see from Eq(2.149 that the Boillat light cone
collapses in the two non-principal directions, manifesting thewhereL is the perimeter of the compact dimensi@onstant
breakdown of the theory. Moreover, beyond such limit, thesince we considered a trivial dilatpn
causality inequality(2.16 is violated.
Yet another manifestation of the limiting electric field can
be seen by studying the convexity of the Hamiltonian func- C. The Euler-Heisenberg action
tion, as discussed in Sec. Il C. The latter property is equiva- The Euler-Heisenbergase, Lk = Ley, b=1/7. This is

sional quadratic forntof the variables, d): The constanY should then be

Y AL 28a?
167Gs 135m;

3Y
b?+d?+ ————[(D-b)?+(B-d)2+2(b-d)(D-B) (5.19
1-3YB?
3
+2(D-b)(B-d)] + ————= . .
(1-3YB?)3 wherea is the fine structure constant.
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VI. METRIC INDEPENDENCE OF BLACK HOLE for some coefficient®\. In the case of scalars these give an
PROPERTIES effective metric of the forn{6.2). In the case of spinors the
discussion given in Sec. IV B applies. In the notation used

In this section we consider the propagation of quctuation§here one has

of fields (including the electromagnejidn curved back-
grounds. Our main theme will be that even though there may A
be more than one metric present in theory, many properties a*f=g*P+ —RA (6.5
of black holes and their thermodynamic behavior are metric 2
invariant. In this sense we find that the event horizon and its :
properties have a universality which goes beyond the univerz-ind from Eq.(4.9 it follows that
sality implied by the equivalence principle. A2
Ohtoctive= "7+ AR* + — R *R*. (6.6
A. Causality and the strong energy condition 4

The presence of gravity as a background field is expecteth perturbative calculations one neglects the last third term.
to induce changes in the propagation of electromagnetic flucfhe second was computed by Ohkuwa within the Weinberg-
tuations, in the same way a background electromagnetic fiel@alam mode[44] yielding
does. In fact the former is a consequence of the latter via the
Einstein equations. Let us start by using the Boillat metric 11 e’hi
presented in Sec. Il to ask when such propagation is causal. A=— 2 M2 sirPoocd (6.7)

The Boillat co-metric(2.9) is conformal to 1927 Mysint owc

T where 6y, is the Weinberg angle anil,y is the W-boson
(p—x)L,—yLy+L)g""— ( T;w__gw) . (6. mass® SinceA is negative the effective cones lie outside the
2 Einstein cone. Physically however it is not clear that this
implies the neutrino speeds faster than light, because the ap-
From now on in this section we assume thas the Einstein  proximation of retaining only first derivatives in the effective
metric, rather than some conformal multiple, such as thexction may break down.
closed string metric. This is because we wish to assume that The case of photons is more complex and it involves the
the Einstein equations hold. Then the Boillat co-metric isRiemann tensof45].°
conformal to Work on the causality properties of such effective metrics
([46] and references thergiruncovered a striking result
Ohttecive= 0"+ AR*”, (6.2 which is also relevant in the context of non-linear electrody-
namics.
whereR*” is the Ricci tensor and If the Einstein metriog contains a stationary event hori-
zonH with null generator$, and the weak energy condition
1 hoIds,T“BIQIBBO, then Hawking has shown that restricted
SWGNA:(X_M)LX'I'yLy_L- (6.3 to'H

o N . . R“ﬁlalﬁ=0. (6.9
If T,, satisfies the strong energy condition and the Einstein
equations hold, therR“ﬁpapBBO for all co-vectors lying It follows that
inside or on the Einstein co-cone. ThusAi&0, the Boillat
co-cone lies outside or on the Einstein co-cone. Passing back Oefectivd ol g=0- (6.9
to the original Einstein and Boillat cones, remembering that ) ) )
duality reverses inclusions we see that the strong energy corfhus the null generator of the horizon lies on the effe(_:tlve_
dition together with the requirement that=0 is a sufficient ~ C0-COne. Passing to.the dual space we see that the Einstein
condition that the Boillat cone lies inside the Einstein cone0ne and the effective cone actually touch along the null

In these circumstances small disturbances travel no fastgenerator of the horizon. In the case that0 the effective
than gravitons. cone will touch from the inside. This makes the existence of

another effective event horizon outside the Einstein event
horizon unlikely.
This “touching theorem” shows that the concept of an
Before discussing the even horizon given by the co-metri@bsolute event horizon is more “absolute” than one might
(6.2 it seems worth recalling that quantum mechanical ef-
fects renormalize the propagation equations in a background—
gravitational field. For scalarg$ and spinorsy, additional
terms appear in the effective action of the form

B. Stationary event horizons and the touching theorem

8Notice that the different sign if44] is due to the opposite con-
vention for the Riemann tensor.
A iA It maybe of interest to note that if one has as many scalar as
—R“Br?aqﬁﬁp(ﬁ, —R“ﬁlﬂyaVﬁtﬂ, (6.4) spinor degrees of freedom with the sam.e mass. going around the
2 2 loop then the Drummond-Hathrell correction vanishes.
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NULL GENERATOR OF THE properties of a black hole immersed in an external magnetic
- EVENT HORIZON field according to Einstein-Maxwell theory. The main point
we wish to make is that the thermodynamic properties of the
black hole are unaffected by the magnetic field passing
...... BOILLAT LIGHT-CONE through it. This is perhaps not unexpected if one believes
(DASHED) that the thermodynamics has its origin in microscopic de-
grees of freedom whose number and nature are essentially
unchanged by external fields. To be concrete the metric is

[48]
* EINSTEIN LIGHT-CONE oM dr2
(SOLID) ds’=A(r,0)%| —| 1- —|dt?+ ———+r%d¢?
r 2M
1——
r
CYLINDER = EVENT HORIZON +A(r,0) " 2r2sirRod ¢2, (6.10

FIG. 4. The touching theorem. ) )
whereM is the analogue of the ADM mass for asymptoti-

have thought. After all because quantum fluctuations will incally Melvin boundary conditions and

general affect different particles differently and because the

effective metric they see clearly depends upon their cou- A(r,0)=1+ ;B3r2sirfe. (6.11
plings one might have imagined that in quantum theory dif- )

ferent particles would have different effective event hori- The Hawking temperaturé,, and the area of the event ho-
zons, in contradiction with the classical equivalencelizon Ay are easily seen to be the same as for the Schwarz-
principle. However we have seen that to the order we havéhild solution. For some other comments on “non-
been working this is not so. All particles see the same everffommutative black holes” sef@t9].

horizon (see Fig. 4. In other words, the concept of a black )

hole remains universal in the quantum theory. VII. EINSTEIN-SCHRO DINGER THEORY

It is well known that there are many similarities between
Born-Infeld theory and the Einstein-Schlinger theory of
gravity. In Sec. IVC we discussed that the characteristics

As well as the location of the event horizon one might askand therefore the causal structure relevant for fluctuations is
whether the thermodynamic properties, such as the temperanalogous to the one for the open string. We now specialize
ture, are universal. Because more than one metric is inthe discussion to some black hole solutions found by Papa-
volved, this is not immediately obvious. In the case of staticpetrou.
solutions, the simplest way of obtaining the surface gravity ~ The connection in this theory is not the usual Levi-Civita
and hence the Hawking temperatiig= «/(27) is by set-  connection, but rather computed from the relation
ting t=/— 17,7 real and calculating the perigfl=(T,) *
=2/ k required to remove the potential conical singularity Aapu— gl p—aal =0 (7.9

at the horizon. It is clear that there will be no conical singu- o o )
larity in one metric if and only if there is no conical singu- 1N€ notation is the one of Sec. IVC. The Ricci tensor is

larity in the other metric. Thus we get the same peyibfbr computed by an expression formally identical to the one in
both metrics. general relativity, but has both a symmetric pi€gz and

If the timelike Killing vector, which is of course a Killing @n antisymmetric on&,4 . In analogy to t[]e du?l II}\]/IaxweII
vector of both metrics, is normalized to have unit magnitudg€nsor introduced in Sec. Il E we defii*"=(a)'“". The
at infinity with respect the Einstein metric, then this calcula-vacuum field equations read
tion yields the temperature in Einstein units as judged by _ B _
closed observers at infinity. If a background dilaténis Rap=0. d5(B*)=0, Ryrap), =0 (7.2)
non-zero then this must be rescaled to get the temperature Whe contravariant second rank tensor densiy-”

closed string units. Similarly if the background Kalb- — /—dem IP*’. These are similar to the usual Einstein

Ramond field is non-vanishing we must rescale to get theequations, equation of motion and Bianchi identities in non-

temperature in open string units. For previous work on the; . . . .
universality of the thermodynamic properties of black ho|e§|near electrodynamics, provided one thinksFof, as being

in generally covariant theories including arbitrary higher de_analogous Ry, - We will avoid the issue of positivity of

O . energy in this theory.
rivative interactions sep7]. It is perhaps worth remarking that every Ricci flattier

metric including Calabi-Yau spaces, provides a Euclidean
solution to this theory. In fact, ifj is Kahler, choosing foiB

One stimulus for this work is the current activity on phys- a multiple of the Kaler form, which is covariantly constant,
ics in an externaB field. It is worth recalling therefore the the Levi-Civita connection of will solve Eqg.(7.1). Hence

C. The surface gravity and the universality
of the Hawking temperature

D. Black hole in a magnetic field in Einstein-Maxwell theory
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G e 9" and so there is no ambiguity as to which (a™ 1), dx“dx"= dt?
metric to use. For the analogous phenomenon in Born-Infeld
theory sed49]. dr?

The last comment is not true in general. Spherically sym- - Te—fz(dﬂerSinz@d(ﬁz)
metric solutions were found by Papapetf@2], correspond- ( 1— N)
ing to “electrically” and “magnetically” charged spheri- r

cally symmetric objects. The most general electrical solution -
reads +Bgresinod6/\d¢. (7.6

all equations of motion are obeyed. For these solutions ( 2MGy
1_

r

The Einstein-Schidinger metric then becomes

QZ

2M Gy 2MG
-1 v_ o _ 2 N
(@™ %), dxHdx"=| 1+ " (1 ] dt dSéins-Schroz<l_ r dt2
B dr? dr?
( 2MGN) _( 2MGN)
1- 1—
r r

(P S Odd?) + SdtAdr, ~(1+BYridesitadss). (7.7
' The physical meaning of the two form in E¢¢.6) is not
(7.3 clear. It is spherically symmetric and of constant magnitude.
It is striking that the metric has a similar form to that of Eq.
(3.21). The location of the horizon and the surface gravity
A short calculation reveals that are independent d@, and indeed the —t metric is identical
to that of a Schwarzchild black hole.

ds2 - ( 1— 2G\M ) dt2 VIIl. CONCLUSIONS
ins-Schro—

The background geometry determined by a gravitational
dr2 theory might not be the relevant one seen by fluctuations of
some test field. This is true even at the classical level, but
quantum effects can also renormalize the geometry describ-
ing the propagation of fluctuations. One quite interesting ex-
ample of such distinction was uncovered in work on string
—r2(d6?+sirf6d¢?). (7.4 propagation in a backgrourl field [15]: in this setup open

and closed string fluctuations move, in general, at different
velocities. Gravitons and Born-Infeld photons see different

It is striking that some of our previous findings concerninglight cones. The discussion in Secs. Il and IIl shows that the
the invariance under the change of metric of the black holdatter causal structure is the Boillat causal structure, studied

properties still hold in this theory. For example, in generallong ago in the context of non-linear electrodynamics. More-

cony. Tor v o ) -
the causal structure @fand GESSe" differ but both agree  OVer. the6”” parameter describing the non-commutativity of
about the location of the event horizan-2GyM and its spacetime in the duality established[itb] is just the dual

surface gravity which is Maxwell tensor of Born-Infeld theory.
The open string metric is intrinsically connected to the
Born-Infeld action, as we showed in Sec. IV by including
1 ( Q2 ) scalars and fermions in a Born-Infeld type action, and show-

QZ
1+ —
r4

2GM
1_
r

(7.5 ing the characteristics are determined by the open string met-
ric. At this point a question requires more thorough under-
standing. In the context of string theory, the Born-Infeld
action describes brane dynamics. The brane world scenario

Note, while the area of the event horizon is given by themotivated by[37] tries to bind gravitons to the brane. The

same formula in terms of the mass as it is in the Schwarzdifficulty is, of course, that gravitons are closed rather than

child solution, a black hole witlQ+#0 is hotter than the open string modes. But if this program is successful, either

Schwarzchild hole with the same mass. The hotter temperdhe brane graviton sees different light cones from the other

ture is ascribable to the fact that the factor{®?/r*) ingo,  Spin brane fields or, if it is governed by the open string

is blue-shifting rather than redshifting. metric, the question arises to what effective field theory de-
A magnetic solution found by Papapetrou reads scribes such gravitons. The Einstein-Sclinger theory

K= 1+ 7
4GyM 16GyM
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seems to have exactly the characteristics we would then béolating the equivalence principle. Gravitational bi-
looking for. But it seems to suffer from instabiliti¢20]. refringence and dispersion effects might also be present, al-

In Sec. V we looked at higher order gravity and Kaluza-though the latter seem only to occur at even higher order in
Klein theory. To lowest order ia’, the abelian truncation of a' [50].

the effective open string theorfMaxwell’'s theory is ob- In Sec. VI we made use of a result know in the literature
tained by Kaluza-Klein compactification of the effective as the “touching theorem” to show that the propagation of

closed string theoryEinstein’s gravity. But this does not fluctuations in non-linear electrodynamics coupled to gravity

o will see a universal event horizon and black hole tempera-
seem to hold to the next order i': the Gauss-Bonnet con- yre Such comment also holds for one-loop corrected propa-

tribution to the effective closed string theory gives upongators in curved spacetime. In this way black holes do not
Kaluza-Klein reduction what we named as “Gauss-Bonnekeem to “leak.” We also noticed that similar invariance is

electromagnetism," distinct from both the EuIer-Heisenbergseen for a black hole immersed in a magnetic field in
theory and the Born-Infeld theory to this ord8rWe re-  Einstein-Maxwell theory. It would perhaps be interesting to
marked however that for purely electromagnetic excitations|ook explicitly at such black holes in a “Melvin Universe”
the no-ghost requirement is weaker and by an appropriat®or the case of non-linear electrodynamics.

choice of couplings one can obtain the latter two theories to
this order. It would be interesting to consider also the full
Kaluza-Klein theory, with all excitations present. Thiswould 5 \w.G. thanks Michael Green, Koji Hashimoto and
give non-minimal gravitational-electromagnetic couplings,Richard Kerner for helpful discussions. We would also like
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