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Born-Infeld theory and stringy causality
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Fluctuations around a nontrivial solution of Born-Infeld theory have a limiting speed given not by the
Einstein metric but the Boillat metric. The Boillat metric isS-duality invariant and conformal to the open string
metric. It also governs the propagation of scalars and spinors in Born-Infeld theory. We discuss the potential
clash between causality determined by the closed string and open string light cones and find that the latter
never lie outside the former. Both cones touch along the principal null directions of the background Born-
Infeld field. We consider black hole solutions in situations in which the distinction between bulk and brane is
not sharp such as space-filling branes and find that the location of the event horizon and the thermodynamic
properties do not depend on whether one uses the closed or open string metric. Analogous statements hold in
the more general context of nonlinear electrodynamics or effective quantum-corrected metrics. We show how
Born-Infeld action to second order might be obtained from higher-curvature gravity in Kaluza-Klein theory.
Finally we point out some intriguing analogies with Einstein-Schro¨dinger theory.
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I. INTRODUCTION

A striking feature of much recent work on open strin
states in string or M theory is the considerable insights
forded by the Born-Infeld@1# approximation. Reciprocally
string or M theory has provided a rationale for some of
hitherto mysterious and only partially understood proper
of this remarkable theory.

The existence of a limiting electric field strength, whic
was originally theraison d’etreof Born-Infeld theory, now
finds a dynamical justification in the increasingly copio
production of electrically charged open string states as
approaches the critical value@2#. More subtly, the electric-
magnetic duality symmetry of Born-Infeld theory, a nonli
ear generalization of Hodge duality first recognized
Schrödinger @3#, may be viewed as a special case ofS dual-
ity. In fact electric-magnetic duality is a special case of Bo
reciprocity @4#, a transformation which acts as a rotation
phase space (p,q)→(p cosu1qsinu,qcosu2psinu). In
nonlinear electrodynamics, the phase space variables m
be considered to beB andD5]L/]E, which are canonically
conjugate variables in the sense of the Poisson brackets1

$Bi~x!,D j~y!%P.B.52e i jk]kd~x2y!. ~1.1!

Born reciprocity applied to string theory gives rise toT du-
ality @5#. According to Hull and Townsend@6# T and S du-
ality are included in the more generalU-duality symmetry.
This leads naturally to the question of whether Born-Infe
theory is the only nonlinear electrodynamic theory admitt
electric-magnetic duality. It is not@7#.

Another striking feature of Born-Infeld theory is that
admits BIon solutions. These are exact solutions of the

*Email address: gwg1@damtp.cam.ac.uk
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1We use the convention$xi ,pj%P.B.5d j
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nonlinear theory with distributional sources with finite tot
energy. They can now be understood in terms of strings e
ing on D-branes@8,9#.

Schrödinger recognized yet another remarkable prope
of Born-Infeld theory: viewed as a nonlinear optical theo
Born-Infeld theory exhibits uncommon properties with r
spect to the scattering of light by light. He constructed ex
wave like solutions of the full nonlinear equations represe
ing light pulses with solitonic properties. They pass throu
one another without scattering@10,11#. This can be also un-
derstood from a string theory point of view@8#.

Some time after Shro¨dinger’s work it was realized that th
propagation of Born-Infeld fluctuations around a backgrou
solution has exceptional causal properties@12,13# and that
the theory also admits exact solutions exhibiting these exc
tional properties@14#. From the string theory perspective
this relates to the recent interest in open string theory i
constant background Kalb-Ramond potentialBmn and thus
with gauge theory in a flat non-commutative spacetime@15#.
The Kalb-Ramond potentialBmn appears in the Born-Infeld
action in the combinationFmn1Bmn and so from the Born-
Infeld point of view, a constantBmn field may be regarded a
a background solution of Born-Infeld theory. Some of t
open string states propagating around the constant b
groundBmn field may be identified~at least in the Abelian
case! with fluctuations of the Born-Infeld theory. Thus w
need to understand the causal structure of their propaga
It turns out that this is governed by a metric,Gmn5gmn

2BmagabBbn ,2 which differs from the usual spacetime me
ric gmn @15#. In fact we have two light-cones: the usual ligh
cone given bygmn which governs the propagation of close
string states such as the graviton and that given byGmn

2Bmn may be taken to stand for the background field or for t
constant Kalb-Ramond 2-form. In string language we are us
units in which 2pa851.
©2001 The American Physical Society06-1
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which governs the propagation of open string states suc
the Born-Infeld photon. In general, the former lies outs
the latter except in two privileged directions correspond
to the two principal null directions or eigenvectors of t
background two-form field. To put things provocativel
gravitons almost always travel faster than light.

One immediate consequence is that if the closed st
metric admits no closed timelike curves then neither will t
open string metric. Another obvious consequence is tha
the closed string metric contains an event horizon then
open string metric will also contain an event horizon whi
lies inside or on the closed string event horizon.

The comments in the last two paragraphs encode the
bal theme of this paper. Within many physical theories, t
non-conformal metric structures arise:

gmn and gmn1Smn , ~1.2!

where Smn is some symmetric two-tensor. Geometrica
they represent two sets of light-cones. Questions regar
causality or the existence of event horizons might then
come particularly subtle. It is our purpose to discuss s
issues in several contexts. For the aforementioned open
sus closed string theory causal structures, there is some
vantage in placing these properties in the general contex
nonlinear electrodynamic theories, just as in the case
electric-magnetic duality. Particularly so because a qu
separate strand of recent research has been concerned
analogues of black holes, closed timelike curves and circ
null-geodesics in nonlinear electrodynamics@16#. There is
also considerable interest in black holes in theories of n
linear electrodynamics coupled to Einstein gravity~some re-
cent references are@17#!.

In Sec. II we look at general nonlinear electrodynamics
a four-dimensional flat background. Hencegmn is the
Minkowski metric. The study of the propagation of fluctu
tions of the electromagnetic field in a given electromagne
background introduces naturally a second metric struct
the Boillat metricAmn

Boillat . We emphasize the special pro
erties of Born-Infeld theory in at least four senses: the e
tence of both electric-magnetic and Legendre duality and
absence of both birefringence and shocks.

In Sec. III, we specialize to the case when the electro
namics theory is Born-Infeld. One can deal with a gene
curved background. So the natural background geometr
described bygmn , the closed string metric. But open string
propagating in a nontrivial electromagnetic field or Kal
Ramond potential see a different metric: the open string m
ric Gmn , conformal toAmn

Boillat . We shall then see that if th
closed string metric is static and the Born-Infeld field is pu
electric or pure magnetic then the open string metric can
have a non-singular event horizon distinct from the o
given by the closed string metric, because on it the elec
field E must either equal its limiting value or the magne
field B must diverge. Note that the metricGmn is not invari-
ant, even up to a conformal factor, under Hodge dua
dBmn5!Bmn but, as we shall see, itis invariant up to a
conformal factor under electric-magnetic duality rotations
06400
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In Sec. IV we show that scalar and spinor fluctuatio
around a Born-Infeld background are governed by the o
string metric.

In Sec. V the bi-metric theme takes another perspect
Recently@18# examples have been given of how dimension
reduction can alter the causal structure of stringy black ho
Considering a trivial dilaton field, the relation between t
lower dimensional metricgmn and the higher dimensiona
one ĝmn is of the form~1.2!, with ĝmn5gmn1AmAn . With
this motivation, we look to higher-order Kaluza-Klei
theory. We notice that it is possible to obtain Born-Infe
theory to second order and still avoid ghosts, as long as
higher dimensional graviton is only excited along the co
pact dimensions. We similarly show that the effective theo
for QED, the Euler-Heisenberg theory, may be obtained
this fashion, and discuss some properties of the theory
tained by starting with an Einstein-Hilbert plus Gaus
Bonnet action in higher dimensions@19#. This gives an ap-
plication of the general concepts discussed in Sec. II.

In Sec. VI we start by reviewing the results of Sec.
considering the gravitational effects of the electromagne
background field. One is then led to consider besides
usual Einstein metricgmn an effective co-metric of the form
gmn1ARmn. Another possible origin for such effective me
ric is quantum renormalization of the propagator of test fie
in a fixed background. We then discuss the universality
black holes event horizons and thermodynamic propert
by applying a result derived in the context of quantum ren
malized metrics to the case of the Boillat metric f
nonlinear electrodynamics coupled to gravity.

In Sec. VII, we review an old attempt of Einstein an
Schrödinger to construct a unified theory of gravity and ele
tromagnetism~see @20# for original references!. One then
introduces a metric which has an antisymmetric part. T
symmetric partgmn and the inverse of the symmetric part
the inverse of the full metric,Amn

Eins-Schro have remarkable
similarities with the closed and open string metric, as fi
noticed by Boillat @21#. We discuss some exact solution
found by Papapetrou@22#.

We close with a discussion.

II. CAUSALITY IN NONLINEAR ELECTRODYNAMICS

A. Characteristics and effective geometry

We consider a general LagrangianL5L(x,y) depending
on the Lorentz invariantsx5 1

4 FmnFmn andy5 1
4 Fmn!Fmn.3

These are the only independent Lorentz invariants in f
spacetime dimensions. The energy momentum tenso
given by

Tmn52LxTmn
Maxwell1

1

4
Tgmn , ~2.1!

3We use a mainly minus metric signature and, contrary to Boi
and some other references who use the opposite sign we choosL to
have the standard sign such that for Maxwell theoryL52x. Sub-
scripts indicate partial differentiation.
6-2
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BORN-INFELD THEORY AND STRINGY CAUSALITY PHYSICAL REVIEW D63 064006
where the trace and the Maxwell energy-momentum ten
are given by

T[Tm
m524~L2xLx2yLy!,

Tmn
Maxwell52FmaFnbgab1xgmn . ~2.2!

Since bothTmn
Maxwell and gmn ~with mainly minus signa-

ture! satisfy the dominant energy condition, and the set
energy momentum tensors satisfying the dominant ene
condition is a convex cone, a sufficient requirement forTmn

to satisfy the dominant energy condition is thatLx,0 and
T>0. An argument of Hawking and Ellis@23# then shows
that propagation in the full non-linear theory is causal in
sense that if at time zero all fields vanish outside some c
pact set, then they will vanish outside the future of that s
In general one expects the fields to advance into empty s
with no background field at the speed of light and this e
pectation is supported by the observation~originally due to
Schrödinger@10#! that any solution of Maxwell’s linear elec
trodynamics with vanishing invariants,x5y50, will also be
an exact solution of nonlinear electrodynamics. Among s
so-called self-conjugate solutions are the usual plane w
solutions which have unit speed.

If a background field is present however these argume
require re-examination. One approach might be to look at
energy momentum tensor of the fluctuations. We shall no
this here but begin by considering thecharacteristics, which
by definition are hypersurfaces along whichweakdisconti-
nuities propagate. AssumingFmn to be discontinuous acros
the surfaceS(xm)5const, the characteristics are given
@24,12,13,25#

~TMaxwell
mn 1mgmn!]mS]nS50. ~2.3!

This has the form of a relativistic Hamilton-Jacobi equati
for massless particles with effective co-metricTMaxwell

mn

1mgmn, and whereS would be the action function. This
effective metric also governs the propagation of weak,
not necessarily discontinuous fluctuations around a ba
ground. Later we will turn to the propagation of shocks a
the behavior of fully non-linear fluctuations. The functio
m5m(x,y) satisfies

Ãm21m1v2Ã~x21y2!50, ~2.4!

where

Ã5
LxxLyy2Lxy

2

Lx~Lxx1Lyy!
, ~2.5!

and

v5
Lx1x~Lxx2Lyy!12yLxy

Lxx1Lyy

. ~2.6!

In the general case the characteristics exhibits
refrigence:m(x,y), which for convenience we parametriz
as m(x,y)5x1z6(x,y), can taketwo values, depending
upon the polarization state and the background field. T
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there are, in general, two metrics. The interpretation of
quantitiesz6 is that they correspond to critical electric fie
strengths above which the theory breaks down. For exc
tional theories the two values ofz6 coincide and there is a
single light-cone and no bi-refringence. Exceptional theor
fall into two classes. The first hasÃ50. This happens for
instance if the LagrangianL is independent ofy, which in-
cludes Maxwell’s theory as a special case. But not all th
ries with Ã50 are exceptional in this sense. In fact, a
though Eq.~2.4! still encodes relevant information for thi
case, it does not containall the information. One example
will be given in Sec. V.

For ÃÞ0, the only exceptional theory is Born-Infel
@12#. The latter is also very special in thatz6 is a constant
independent ofx andy. It is the only theory for which this is
true. We shall use units in which this constant is taken to
one.

The condition that the theory admit electric-magnetic d
ality rotations is rather weaker. It suffices thatB•E5D•H
@7#, which implies that the Lagrangian satisfy the first ord
Hamilton-Jacobi type equation

y~Lx
22Ly

2!22xLxLy5y. ~2.7!

The characteristics or wave surfaces may be thought o
null hypersurfaces of a metric whose null geodesics co
spond to therays. Note that the characteristics and the ra
depend only a conformal equivalence class of metrics,
fined by Eq.~2.3!. A particular choice of conformal repre
sentative used by Boillat, which we shall refer to as the Bo
lat metric and co-metric, is given by

Amn
Boillat5

1

Am22x22y2
~mgmn2Tmn

Maxwell! ~2.8!

CBoillat
mn 5

1

Am22x22y2
~mgmn1TMaxwell

mn !,

~2.9!

so that4 Ama
BoillatCBoillat

an 5dm
n . As we shall see in detail later, in

the case of Born-Infeld theory, the open-string metricGmn

and the Boillat metricAmn
Boillat are conformal.

Because

Amn
Boillat5

m2x

Am22x22y2
S gmn2

1

m2x
FmagabFbnD ,

~2.10!

the Boillat metric has a remarkable expression as a sor
square root:

4Throughout this paper all indices will be raised or lowered us
the usual Einstein or closed string metricgmn with the exceptionof
the open string metricGmn whose inverse is denoted byGmn in
accordance with string theory conventions.
6-3
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FIG. 1. Cones for the Einstein
geometry and effective geometr
describing the propagation of fluc
tuations in a nontrivial back-
ground Fmn field. If condition
~2.16! is obeyed,C1 is the Ein-
stein cone,C2 ~and C3 for the
non-exceptional case! the effec-
tive geometry cones. The cone o
the right represents the excep
tional degenerate case.
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ABoillat5
m2x

Am22x22y2

3S g1
1

Am2x
F D g21S g2

1

Am2x
F D .

~2.11!

It follows easily that

A2detAmn
Boillat5A2detgmn, ~2.12!

in other words, the Boillat metric and the spacetime me
induce the same volume element. The two principal null v
tors common to both cones are annihilated byg1F/Am2x
or by g2F/Am2x.

We record for later use that if the background Einst
metric g is flat, then up to the conformal facto
1/Am22x22y2 the Boillat metric is

~m2x!~dt22dx2!2E2dt21~E•dx!2

12E3B•dxdt2B2dx21~B•dx!2. ~2.13!

In the generic case, one may diagonalize the Boillat me
with respect to the usual spacetime metricgmn . This gives
the speeds of propagation of the fluctuations in the associ
inertial frame. In this frame the Poynting vectorE3H
52LxE3B vanishes. The velocities, i.e. the ratio of spac
like to timelike eigenvalues, turn out to be

S 1,
m2Ax21y2

m1Ax21y2
,
m2Ax21y2

m1Ax21y2D . ~2.14!

Thus in general there are two directions in which the Boill
cone touches the usual Einstein light-cone, correspondin
the first component of Eq.~2.14!. These are the principal nu
directions ofFmn . Note thatFmn and any duality rotation of
it have the same principal null directions. In Fig. 1, we re
resent the light cones for the effective plus Einstein geo
etry. The left cones illustrate the case with bi-refringence;
then have the Einstein plus two effective geometry con
For the causal case, the Einstein cone will beC1. All the
cones touch in two points, along the principal null directio
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of Fmn . The cones in the center of Fig. 1 illustrate the e
ceptional case~like the Born-Infeld or open string theor
case! where the effective geometry only possesses one l
cone.

It may happen that the two principal null directions coi
cide. This occurs if and only ifx505y. In this case the
metric takes the form

Amn
Boillat5gmn2 l ml n , ~2.15!

wherel m is parallel to the principal null direction. The cha
acteristic cone touches the Einstein cone along a single
erator. This degenerate case is illustrated for exceptio
theories in Fig. 1 right. For a generic electromagnetic fi
the principal null directions will coincide on a submanifo
of dimension~and also co-dimension! two, N. The comple-
mentM\N in the spacetime manifoldM, may not be sim-
ply connected. This gives rise to ambiguities in defining t
‘‘complexion’’ 1

2 arctany/x of the electromagnetic field. In
many ways, particularly if it is timelike,N behaves rather
like a cosmic string@26#.

In string theory, if a dilatonF is present, one distin-
guishes between the Einstein metricgmn and the~closed!-
string metrice22Fgmn . However both have the same~Ein-
stein! light-cone, i.e., they are conformal. This is because
dilaton is a state of the closed string. It seems therefore
least at the level of approximation we are considering, t
there are just two causal structures and two sets of cones
open and the closed. Of course from the strict string the
point of view one refers brane and the other to bulk pro
gation but we have in mind situations where the distinction
not sharp, such as for example in the case of space-fil
branes, or when considering gravitons confined to, or at le
moving parallel to, the surface of a brane. A sufficient co
dition that the Boillat-cone does not lie outside the us
Einstein light-cone, i.e. that the speeds never exceed uni
that bothm ’s must satisfy

m.Ax21y2[r . ~2.16!

In terms of the coefficients in Eq.~2.4! this requirement
readsv,2r , 21/(2r ),Ã,0. Specialized to the Born
Infeld case ~2.16! yields positive the quantity under th
square root in the Born-Infeld action.
6-4
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B. Wave surfaces and ether drift

Boillat @12# has calculated the wave-front produced
waves moving outwards from a point source with respec
an inertial frame in which the Poynting vectorE3H
52LxE3B does not vanish. If

w5
1

2
~E21B2!, a5Am1Ax21y2

m1w
,

b5Am2Ax21y2

m1w
, ~2.17!

andc5ab, so that 1.a>b.c, he finds that it is given by
the family of ellipsoids@in Cartesian coordinates (x,y,z)]

x2

a2 1
y2

b2 1
~z2tvdrift!

2

c2
5t2, ~2.18!

where the drift velocity is given by

vdrift5
E3B

m 1w
. ~2.19!

Since vdrift
2 5(12a2)(12b2), the drift velocity is always

less than one. Therefore, the presence of the backgro
electromagnetic field causes the drift of the origin of dist
bances and establishes preferred directions in spacetime
sense plays the role of ‘‘ether.’’

C. Convexity of the Hamiltonian function

The energy density or Hamiltonian densityT00 should be
considered as a functionH(D,B) of the canonically conju-
gate variables (D,B) @in the sense of Eq.~1.1!#. Their time
evolution is obtained by taking the curl of (H,2E) where
the constitutive relation (E,H)5(]H/]D,]H/]B) holds. In
other words (E,H) and (D,B) are related by a Legendr
transformation and in this sense one may regard the varia
(E,H) as canonically conjugate to the variables (D,B). Of
course this is a different sense of canonically conjugate t
that in which B and D are canonically conjugate. It is
covariant sense in which one thinks of the space of Fara
tensors Fmn ~possibly subject to the closure constra
] [mFnt]50) as the covariant configuration space rather th
the non-covariant configuration space of magnetic induc
fields B subject to the constraint divB50.

The Legendre transformation will be well defined and
vertible if and only if the Hamiltonian densityH(B,D) is a
convex function of its arguments. In other words the mat
of second derivatives or Hessian is positive definite. N
that in generalH may be defined only in a portion of th
six-dimensional space of possibleD and B’s and the Leg-
endre transform may only map into part of six-dimensio
space of possibleE andH ’s. Thus for example, in the cas
of Born-Infeld theory

H5A~11B2!~11D2!2~B•D!221, ~2.20!
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which is, in fact, defined for allB and D. However the in-
verse Legendre transformation is effected by means of
function

12A~12H2!~12E2!2~E•H!2, ~2.21!

which is defined only over the domain of (E,H) given by

E21H2,11~E3H!2. ~2.22!

Born-Infeld theory is one with the same constant upp
bound for both the electric~at zero magnetic field! and mag-
netic field strengths~at zero electric field!. Of course it
should be borne in mind that singling out a particular pair
variables is rather artificial. The underlying invariant ge
metric structure is the 12-dimensional symplectic vec
space with symplectic formdB•`dH1dD•`dE and a La-
grangian submanifold which defines the constitutive re
tions. If one wishes one may pass to a 13 dimensional c
tact manifold with contact formdL2D•dE1H•dE. Then
the constitutive relation provides a Legendre submanifo
which of course on projection onto theL coordinate gives
back the Lagrangian submanifold. One may instead perfo
a projection onto any pair of the 12 vector coordinates
obtain a ‘‘Gibbs surface’’ in a seven-dimensional spa
Picking for example the pair (E,B) the Gibbs surface is
given by

L512A12E21B22~B•E!2. ~2.23!

This is defined only in the domainD,R6 connected to the
origin for which det(g1F),0, that is E22B21(B•E)2

,1. Geometrically for example, to findE as a function ofD
andB one brings up a 6-plane parallel to theB axis whose
slope is given byD until it touches the Gibbs surface. Th
point of contact definesE. If the Gibbs surface is convex
there will be only one such contact point. This is illustrat
in Fig. 2.

Convexity will guarantee that all these projections a
well defined over the relevant domain and that the surf
has no folds for example as it would if the system exhibit

FIG. 2. The Gibbs surface is the Lagrangian function. Invert
the constitutive relations, to findE5E(B,D), corresponds to find-
ing theE coordinate of the contact point of the Gibbs surface w
a plane with slopeD along a line of constantB. Convexity is nec-
essary for the inverse constitutive relations to be well defined.
6-5
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G. W. GIBBONS AND C. A. R. HERDEIRO PHYSICAL REVIEW D63 064006
some sort of hysteresis phenomenon. For a general
linear electrodynamic theory the Hessian will only be po
tive definite over some domain in (B,D) space. Outside tha
domain the constitutive relation is just that: a relation rat
than a function.

The components of the Hessian are just the electric
mitivities and magnetic permeabilities. They govern the
havior of small disturbances around a background. Thus
background will be stable as long as the Hessian is pos
definite. The equations for small fluctuations will also
hyperbolic as long as the Hessian is positive definite@27#.

D. Shock waves and exceptionality

In Maxwell theory, in flat spaceE3,1, there exist traveling
wave solutions of the form

Fmn5 f ~S!Fmn
0 , ~2.24!

where f is an arbitrary function of its argument,S5n•x
2vt, and n is a constant unit 3-vector. For fixedn these
represent a train of parallel waves moving with unit speed
a fixed direction. The arbitrary functionf allows us to pick
the profile of the wave train arbitrarily. One may eve
choose it to be discontinuous. The amplitude of the wav
constant on a family of wave surfacesS5const which cor-
respond to a family of spacetime parallel null hyperplan
whose intersection with any surface of constant time give
family of parallel 2-planes inE3. Because they move at th
speed of light, wave trains cannot be brought to rest
means of a Lorentz transformation.

In nonlinear theories in flat space one may, by analo
adopt the ansatz

Fmn5Fmn
0
„f ~S!…, ~2.25!

whereFmn
0 will now in general depend on the arbitrary fun

tion f and where

S5n•x2v~n,S!t. ~2.26!

Now we get a family of hyperplanesS5const in E3,1 but
they are no-longer parallel, although their intersections w
any surface of constant time still gives a family of paral
2-planes inE3. The wave train therefore moves in a consta
direction but not with constant speed. They may slow do
or speed up in the sense that a hyperplane which pass
given point in space at a later time may have a smalle
greater speedv(n,S). The hyperplanes will thus in genera
intersect~see Fig. 3!. At these locations the ansatz brea
down. Neighboring hyperplanes will envelop a caustic h
persurface obtained by eliminatingS from the
equations

S5n•x2v~S!t, 152v8~S!t, ~2.27!

where 8 indicates differentiation with respect toS. Excep-
tional waves are those for which

v8~S!50. ~2.28!
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If all waves are exceptional, i.e. ifv850 ;S, then parallel
hyperplanes are possible. IfvÞ1 these can be brought to re
by means of a Lorentz transformation. One then has stat
ary solutions5 depending upon two arbitrary functionsf 1(z)
and f 2(z) of a single spatial coordinate,z say. We shall give
concrete examples in the next section for the Born-Inf
case.

To understand the physical significance of exceptional
in the sense of the absence of shock waves, one should
sider non-exceptional theories which do admit shock wav
As theories they are essentially incomplete. One needs e
physical assumptions to render the evolution beyond
shock. This typically may come from some underlying mo
fundamental theory. Thus the predictions of classical the
admitting shocks, or indeed other singularities, cannot
trusted in situations where they arise or are about to arise
this sense such theories ‘‘predict their own demise,’’ som
thing that is often said of classical general relativity. By co
trast a classical theory, such as Yang-Mills theory, for wh
the evolution of regular finite energy initial data remai
non-singular for all times@28# is certainly complete as a
theory, even though, because of quantum mechanics
does not trust every classical prediction. To check the r
ability of a classical prediction we must check to see how
might be effected by quantum effects. Generally speak
we expect classical Yang-Mills theory to be useful in t
weak coupling limit and when dealing with very massi
excitations such as magnetic monopoles.

Classical general relativity is known to admit singulariti
as a consequence of gravitational collapse. Only for w
data do we expect non-singular evolution for all time@29#.
There exist fully nonlinear non-singular solutions of gene
relativity depending upon two arbitrary functions propag
ing at unit speed. These are the pp-waves. They may
generalized to propagate in an anti–de Sitter backgro
@30#. In some ways AdS is analogous to a backgroundB
field. But pp-waves wave-fronts in AdS are null hypersu
faces of the AdS metric. This is in contrast with Born-Infe
theory and other nonlinear electrodynamical theories, wh
there are plane wave solutions traveling in some non-

5We say stationary rather than static because the Poynting ve
may not vanish.

FIG. 3. Family of hyperplanes describing the propagation
wave fronts. If the hyperplanes intersect~right figure! the theory
will be singular. Regularity~left figure! arises for exceptional theo
ries only, like Born-Infeld, which have no shock formation.
6-6
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background spacetime at a slower speed. Again, by con
with Born-Infeld theory, the collision of two pp-waves give
rise to a spacetime singularity@31#. Such waves definitely
cannot pass through one another. In this respect Born-In
theory resembles Yang-Mills theory more than it does g
eral relativity@28#. One is tempted to speculate that it may
a complete classical theory. Even if this is so, any of
classical predictions is subject to quantum correction un
there is some reason, such as supersymmetry, for belie
that the quantum corrections vanish.

E. Covariant Legendre transformation

We introduce here a dual notation via the fieldsPmn and
Nmn[!Pmn . This notation has the advantage of maki
Legendre self-duality of Born-Infeld theory manifest.

In the dual notation, the field equations ofany nonlinear
theory of electrodynamics are

¹mPmn50, ~2.29!

or, in form language,d!P50, where the fieldPmn is defined
by

dL52 1
2 PmndFmn . ~2.30!

Pmn coincides withFmn for Maxwell’s theory. In general it
reads

Pmn52~LxFmn1Ly!Fmn!. ~2.31!

The components ofPmn are justD and H. Using this two-
form, the energy-momentum tensor can be cast in a fo
identical toTmn

Maxwell

Tmn52PmagabFnb2gmnL. ~2.32!

The formulation of the theory in terms ofPmn is dual to the
Fmn formulation in the sense of a Legendre transformati
In fact if one takes the Legendre transform with respect tL̂
by

L̂52 1
2 PmnFmn2L, ~2.33!

one has

dL̂52 1
2 FmndPmn, ~2.34!

in analogy to Eq.~2.30!. For the special case of a pure
electric configuration in flat space,L̂ is the ordinary Hamil-
tonian. Introducing the Hodge dual fieldNmn[!Pmn , and
defining s[ 1

4 NmnNmn52 1
4 PmnPmn and t[ 1

4 !NmnNmn

52 1
4 Pmn!Pmn then the theory is specified by givingL̂ as a

function of s and t. Then we have

Fmn5L̂sPmn1L̂ t!Pmn . ~2.35!

The energy momentum in tensor in terms of the dual v
ables follows from Eqs.~2.33! and ~2.35!:
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Tmn5L̂sTmn
Maxwell@P#2gmn~sL̂s1tL̂ t2L̂ !,

Tmn
Maxwell@P#52PmagabPnb2sgmn . ~2.36!

Sufficient conditions for the dominant energy condition
hold are

L̂s.0, sL̂s1tL̂ t2L̂>0. ~2.37!

In the case of Born-Infeld theory one hast52y by electric-
magnetic duality invariance and expressing alsox in terms of
(s,t) one gets

2L̂512A112s2t2 ⇔ L~Fmn!52L̂~Nmn!.
~2.38!

For Legendre self-dual theories like Born-Infeld, the equ
tions describing propagation of perturbations~2.3!, ~2.4!,
will have exactly the same form in terms of the variabl
(x,y) as they do in terms of the variables (s,t).

III. BORN-INFELD OR STRING THEORY

A. Open and closed string metrics

The open string metricGmn is usually obtained as follows
@15#.6 One starts with the matrixg1F whose components
are gmn1Fmn . Then one inverts to obtain a matrix wit
components

S 1

g1F
D mn

5Gmn1umn, ~3.1!

whereGmn is symmetric andumn is antisymmetric. LetGmn

be the inverse ofGmn, i.e.GamGmb5da
b . Calculation reveals

that

Gmn5~G21!mn5„~g2F !21g~g1F !21
…

mn, ~3.2!

which is conformal to the inverse of Eq.~2.11! specialized to
the Born-Infeld case. Then one checks that

Gmn5gmn2FmagabFbn . ~3.3!

A slightly more involved calculation shows that

umn52
1

112x2y2 ~Fmn2y!Fmn!52
1

A112x2y2
Pmn,

~3.4!

where Pmn is the dual Maxwell field in the sense of Eq
~2.30!. In verifying Eq.~3.4! the following four dimensional
matrix identities are useful~where1 stands for the identity
matrix!:

g21Fg21!F52y1, ~3.5!

6We will always useFmn for the gauge field, but it might represen
the Kalb-Ramond potentialBmn .
6-7
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g21Fg21F2g21!Fg21!F522x1, ~3.6!

and hence

~g21F2yg21!F !S g21F1
1

y
g21!F D 52~112x2y2!1.

~3.7!

Comparing Eq.~3.3! with Eq. ~2.8! one sees that the ope
string metric is equal, up to a conformal factor, to the Boil
metric governing the propagation of fluctuations around
Born-Infeld background:

Gmn5A112x2y2Amn
Boillat . ~3.8!

Relations~3.8! and~3.4! translate the stringy quantitiesGmn

and umn into pure nonlinear electrodynamics language,
the metric describing fluctuations around a fixed backgro
and the dual Maxwell field.

An essential requirement on the causal structure defi
by the open string metric is to be invariant under electr
magnetic duality rotations. To examine this we recall that
stress tensor of Born-Infeld theory, which is known to
invariant @7#, is given by

gmn2TBorn-Infeld
mn 5

2

A2detg

]A2det~g1F !

]gmn

. ~3.9!

But

dA2det~g1F !5
1

2
A2det~g1F !S 1

g1F
D mn

dgmn .

~3.10!

Thus

gmn2TBorn-Infeld
mn 5

A2det~g1F !

A2detg
Gmn. ~3.11!

Since the left hand side of Eq.~3.11! is invariant so is the
right hand side. Notice that the scal
A2det(g1F)/A2detg is not invariant but its change
merely induces a conformal transformation inGmn and hence
in Gmn , preserving the causal structure. It is worthwhile n
ticing that the right hand side of Eq.~3.11! coincides with the
Boillat co-metric

gmn2TBorn-Infeld
mn 5CBoillat

mn , ~3.12!

which is therefore completely invariant under electr
magnetic duality rotations. It is easily seen from Eq.~2.12!
that the determinant of both sides of Eq.~3.12! equals
detgmn. Thus we get the remarkable result that

det~dn
m2TBorn-Infeldn

m !51. ~3.13!

In the next subsections we illustrate the results above
analyzing the geometries seen by open strings in several
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cial cases. We use the simplest exact solutions to Born-In
theory: plane wave solutions and spherically symmetric
lutions.

B. Exact plane wave solutions

Boillat @32,33# found an exact stationary solution to Born
Infeld theory given in terms of two arbitrary functionsf 1,2 of
only one of the Cartesian coordinates, sayz, with an electric
field and a magnetic induction given by

E5cosha i1„cosha sinhb f 1~z!2sinha f 2~z!…k,
~3.14!

B5„cosha f 2~z!2sinha sinhb f 1~z!…i

2coshb f 1~z!j1sinhak,

where a,b are arbitrary constants. The magnetic field a
electric induction are easily obtained via the constitutive
lations. The two Lorentz-invariants are

22x512 f 1
22 f 2

2 , y5 f 2 , ~3.15!

so that the Born-Infeld Lagrangian equals 12u f 1u. The
Poynting vectorP5E3H is given by

2u f 1uP5~ f 1
2cosha sinh 2b22 f 1f 2sinha coshb!i

1„2 f 1f 2sinhb cosh 2a

2sinh 2a~ f 1
2sinh2b1 f 2

211!…j

22 cosha coshb f 1k. ~3.16!

One might wonder if these stationary solutions may be in
preted as domain wall solutions. That is can one choose
asymptotic values of the arbitrary functionsf 1 and f 2 so as
to interpolate between two stable ‘‘ground states’’? O
would then expect to have a static family of domain wal
that is, a nontrivial solution for which the Poynting vect
would be zero. However, this is not allowed byPz in Eq.
~3.16!: f 1 would need to be zero for which caseD,H blow
up. Therefore one finds no domain walls, just as in Ma
well’s theory.

By performing a Lorentz transformation on Eq.~3.14!,
one gets the general fully nonlinear sub-luminal plane wa
solution. It presents no shocks, in accordance to Sec. I
since it propagates with constant speed. In general we do
expect superposition to hold in nonlinear electrodynam
and therefore such plane waves propagating on top of s
background solution should not solve the equations of m
tion anymore. However, the plane waves obtained by bo
ing Eq. ~3.14! may be superimposed to a background fie
and still yield a solution to Born-Infeld, as shown in@14#.
Therein a background magnetic field along the x-axis a
electric field along the y-axis are considered:B5Bi, E5Ej
so thatE3B52EBk. If we set

v65
2EB6A12E21B2

11B2
5

12E2

EB6A12E21B2
,

~3.17!
6-8
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BORN-INFELD THEORY AND STRINGY CAUSALITY PHYSICAL REVIEW D63 064006
one checks that plane waves traveling in the z-direction
be superimposed to the background field. The waves ca
so in two polarization states, with the electric and magne
field given by

(e,b)5(v6j ,2 i) f i(z2v6t) for the parallel polarization
state,

(e,b)5(v6i,j ) f'(z2v6t) for the perpendicular polariza
tion state,

where f i and f' are arbitrary functions of their argumen
Note that there is a net drift in thez direction

vdrift5
1

2
~v11v2!52

EB

11B2 , ~3.18!

in agreement with Eq.~2.19!. This drift effect may be under
stood as a consequence of Lorentz-invariance. IfB2.E2 and
one performs a Lorentz boost with velocityu5E/B one may
pass to a frame in which the electric field vanishes and
magnetic field becomes equal toB05AB22E2. Now the ve-
locity v0 in this frame is symmetric with respect to reversi
the z-direction and is given by

v05
1

A11B0
2

. ~3.19!

One may check thatv6 , v0 andu satisfy the usual relative
velocity addition formula

v65
u6v0

16uv0

. ~3.20!

If E2.B2 one may reduce the magnetic field to zero. T
electric field in the de-boosted frame will beE05AE22B2

andv05A12E0
2. In these two cases the open string metr

are @using Eq.~2.13!#,

dsopen
2 5dt22dx22~11B0

2!~dy21dz2! ~3.21!

and

dsopen
2 5~12E0

2!~dt22dy2!2dx22dz2. ~3.22!

In terms of the electric inductionD0 the latter is

dsopen
2 5

1

11D0
2
~dt22dy2!2dx22dz2, ~3.23!

which illustrates invariance of the open string metric up to
conformal factor under the discrete electric-magnetic dua
transformation (B,D)→(2D,B). The general metric may b
obtained using a Lorentz transformation.

C. BIons and other static solutions

Non-linear electrodynamic theories typically admit sta
finite energy solutions with distributional sources. Becau
they have sources and also have~albeit mild! singularities,
these solutions are not solitons in the usual sense of
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word. In @8# they were called BIons. For the electrical
charged BIon of Born-Infeld theory we find the open stri
metric to be

dsopen
2 5

r 4

11r 4
~dt22dr2!2r 2~du21sin2udf2!. ~3.24!

The scattering of null geodesics is most conveniently rep
sented as geodesics of the optical metric

dsoptical
2 5dr21

11r 4

r 2 ~du21sin2udf2!, ~3.25!

which is easily seen to admit a 2-sphere of circular geode
at r 51 surrounding an infinite redshift infinite area nak
singularity at finite proper distance situated atr 50. Such
geodesics correspond to null geodesics of Eq.~3.24!.

The open string metric for the magnetically charged b
is different:

dsopen
2 5dt22dr22

11r 4

r 2 ~du21sin2udf2!. ~3.26!

However the optical metrics are identical and in fact the t
metrics are conformally related.

This example may be generalized to any static configu
tion in Minkowski spacetime. By static one means that t
Poynting vector vanishes, so thatE3B50. The open string
metric is then also static and given by

dsopen
2 5~12E2!dt22dx21~E•dx!22B2dx21~B•dx!2.

~3.27!

SinceuEu<1 we haveG00>0, moreoverG0050 implies that
uEu51. Thus any static event horizon of the Boillat metr
which is not an event horizon of the Einstein metric must
singular, just as in the case of a single bion solution.

Now consider what happens if the closed string metricg
ceases to be flat but remains static. One has

G005g001Fi0F j 0gi j 5g00~112x!. ~3.28!

Clearly, as long asx.21/2 the sign ofG00 is determined
entirely by the sign ofg00. Thus unless the electric field
reaches the critical value, there can be no open-string s
event horizon which is not also a closed string event horiz

This result is really obvious from the viewpoint o
electric-magnetic duality because we could instead have c
sidered a purely magnetic field. In this case

G005g00, ~3.29!

and the magnetic field has no effect on that part of the me
which governs the location of event horizons. Actually, the
results do not depend upon the detailed form of the o
string metric obtained from Born-Infeld theory, nor upo
electric-magnetic duality. They hold quite generally, as m
be seen directly from the general expression~2.13! for the
metric. At an event horizon we need
6-9
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E25z6 . ~3.30!

That is the electric field attains its limiting value at whic
point the theory breaks down.

D. The Boillat metric and BIonic scattering

In this subsection we apply the fore-going theory to t
problem of scattering off the supersymmetric BIon or sp
solution of the Dirac-Born-Infeld equations of motion@8,9#.
This has been the subject of a number of detailed studies~see
@34,35# and references therein!. Physically the solution rep
resents a fundamental string attached to a D-brane. It is s
and the transverse displacement of the brane is given
scalar fieldf(x). The metricg induced on the brane is thu

ds25dt22~dx!22~“f•dx!2. ~3.31!

Using the Bogomol’nyi conditions

E56“f, ~3.32!

where

“

2f50, ~3.33!

the induced metric becomes

ds25dt22~dx!22~E•dx!2. ~3.34!

The open string metric then becomes

dsopen
2 5

dt2

11E2
2~dx!2. ~3.35!

This metric generates the same classical scattering as
Lagrangian~77! of @35#. In the case of a single SUSY BIoni
spike we get

dsopen
2 5S r 4

11r 4D dt22dr22r 2~du21sin2udf2!.

~3.36!

All the information about the classical scattering is now co
tained inGmn .

IV. OTHER SPINS

Born-Infeld actions may be extended to include scal
and spinors. In this section we shall investigate the cha
teristics of these fields around a background constantB field.

A. Scalars

The Born-Infeld action with a single scalar field reads

S5E d4x„A2det~gmn!2A2det~gmn1Fmn2]mf]nf!….

~4.1!
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Expanding around a backgroundF-field and retaining only
quadratic terms inf we get theS-duality invariant expres-
sion

S.SBI1
1

2
E d4xA2gCBoillat

mn ]mf]nf. ~4.2!

SBI is the usual Born-Infeld action. Therefore, as expect
scalar perturbations propagate according to the charact
tics of the open string metric.

B. Spinors

Consider a general Dirac action of the form

SD5
i

2
E d4xm~C̄gaaab

“bC1••• !, ~4.3!

wherem is a scalar density,amn5(a)mn are the components
of a contravariant second rank tensor which need be nei
symmetric or antisymmetric and the ellipsis denotes ot
possible terms in fermions but with no derivatives.

The gamma matricesg generate the Clifford algebra as
sociated with the closed string metricg

$ga ,gb%52gab . ~4.4!

The characteristics of this system are easily seen to be g
by the co-metric

aamgababn, ~4.5!

which are the components ofatga. Note that we could re-
write the action as

SD5
i

2
E d4xm~C̄Ga¹aC1••• !, ~4.6!

where

Ga5gbaba. ~4.7!

In the case of Born-Infeld theory, it is natural to takea
5(g1B)21, in which case use of Eq.~3.2! shows that the
characteristics as determined by Eq.~4.5! are given by the
open string metric. Moreover, the gamma matrices int
duced in Eq.~4.7! generate the Clifford algebra associat
with the metricatga

$Ga,Gb%52aamgababn. ~4.8!

For the Born-Infeld case this is the open string Clifford a
gebra.

Consider the Born-Infeld-Volkov-Akulov action which
arises when one supersymmetrizes the Born-Infeld actio
6-10
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SDBIVA5E d4x„A2det~gmn!2A2det~gmn1Fmn1Bmn2]mf]nf1 i C̄gm“nC!…. ~4.9!
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In the absence ofB,f and A fields this reduces to the
Volkov-Akulov action@36#. Expanding to quadratic order i
fermions gives a spinor action of the formSD , with m
5A2det(g1B) anda5(g1B)21. Thus, as one might hav
anticipated, the fermions characteristic cone is also given
the open string metric.

C. Gravitons

It is not clear whether gravitons propagating in an ext
nal B field would have their characteristics modified, sin
these are closed string modes and propagate on the
However, in the light of the fact that we now believe th
gravity can be localized on the brane@37#, one might be
tempted to speculate that under some circumstances
should happen. If that is the case the obvious guess for
characteristics would be the open string metric. Indeed p
cisely this happens in Einstein-Schro¨dinger theory. This is a
unified theory in which the usual symmetric Einstein met
is replaced by an arbitrary 434 ~or more generally inn
spacetime dimensions ann3n) tensor field a which we
write suggestively as

~a21!ab5aab5gab1Bab . ~4.10!

Lichnerowicz and Maurer-Tison@38,39# showed that some
of the small fluctuations have characteristics given by
symmetric part of the co-metric, i.e.a(mn)[GEins-Schro

mn , in
striking analogy to the open string or Born-Infeld cas
Therefore the properties of these characteristics are the s
as the ones presented in Secs. II and III. However, the the
exhibits a kind of bi-refringence, due to the existence o
second set of~co-!cones for small fluctuations, given b
@39#7

2
detgab

det~gab1Bab!
gmn2GEins-Schro

mn . ~4.11!

If we defineTEins-Schro
mn by an expression similar to Eq.~3.11!

replacingGmn by GEins-Schro
mn andF by B, our two co-metrics

are conformal to, respectively

gmn2TEins-Schro
mn ,

S 2A detgab

det~gab1Bab!
21D gmn1TEins-Schro

mn . ~4.12!

Just as in the BI case the first set of light cones will lie ins
the Einstein cones. But because of the opposite sign

7We would like to thank M. Clayton for poining out to us th
existence of this second light cone.
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TEins-Schro
mn , the second set of light cones will be outside bo

the first set of cones and the Einstein light cones. The form
result was pointed out in@39# while the latter appears to
confirm the pathological properties of this theory, in th
some fluctuations are tachyonic with respect to the Eins
metric. Presumably these fluctuations can carry negative
ergy.

We shall return to this theory in Sec. VII. Before doing
we should recall that Einstein-Schro¨dinger theory appears to
break invariance under the gauge transformationB→B
1dA and for this reason it has been claimed to admit ne
tive energy states@20#.

D. Gravitinos?

This is a short subsection because as yet we have no
sistent supergravity brane solution and thus as far as
know no consistent theory of a gravitino propagating on
brane. However if such a theory exists and the gravit
propagation is affected by a backgroundB field then there is
an obvious suggestion for the characteristics.

V. NONLINEAR ELECTRODYNAMICS FROM U„1…
KALUZA-KLEIN THEORY

Kaluza-Klein theory stems from the fact that the Ric
scalar for the (D11) dimensional ansatz

dŝ25ds21~dy1Amdxm!2, ~5.1!

is R̂52x, i.e., the Maxwell Lagrangian. Hereds2 is the
D-dimensional Minkowski metric andy the coordinate along
the extra dimension. It is known, however, that the trun
tion of Kaluza-Klein theory to pure electromagnetism is n
consistent. In fact, considering a trivial scalar field impli
x5const via the scalar equation of motion. We will not b
concerned about this point in what follows, but rather stu
some properties of the electrodynamical theory that ar
from considering the lowest order ina8 tree level string
theory corrections to the Einstein-Hilbert action in dime
sions higher than four. Full study of such Kaluza-Kle
theory must be performed by considering also gravitatio
and scalar excitations.

With the ansatz~5.1! the curvature invariants of secon
order inD11 dimensions are~excluding a possible Chern
Simons term!

R̂25x2,

R̂MNR̂MN5x21 1
2 ]bFa

b]mFam1 1
4 FmnFnaFabFbm,

~5.2!

R̂MNPQR̂MNPQ56x21 5
8 FmnFnaFabFbm1]aFms]aFms.
6-11
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The most general parity conserving term quadratic in the
curvature is then

R̂MNPQR̂MNPQ1aR̂MNR̂MN1bR̂2

5~61a1b!x21
512a

8
FmnFnaFabFbm

1
41a

4
]aFmn]aFmn1•••, ~5.3!

where the dots stand for total derivatives. Hence, the te
with derivatives of the field strength in Eq.~5.2! cancel~up
to total derivatives! in the combination R̂MNPQR̂MNPQ

24R̂MNR̂MN, thus avoiding ghosts in the propagation of t
electromagnetic field. Actions with such derivative term
have nevertheless been considered in the past, as in
Bopp-Podolsky action@40#. We will require the cancellation
of ghosts and therefore consider the dimensional reductio
an action of the type

S5
1

16pGD11
E dD11x̂Aĝ

3„R̂1Y~R̂MNPQR̂MNPQ24R̂MNR̂MN1bR̂2!….

~5.4!

Specializing to D54, where one can use the identi
FmnFnaFabFbm58x214y2, we get the Lagrangian

LKK52x1Y~~b21!x22 3
2 y2!. ~5.5!

One notices the absence of anxy parity breaking term to this
order. In principle one could bring such term into the theo
by including a Chern-Simons term. InD1155, two such
possible terms are

SCS5Etr~R̂AB`R̂C
B`X!, or

SCS5E tr~R̂AB`R̂C
B`ŵD

C!, ~5.6!

for some one form fieldX, or using the one form connectio
ŵ. The second and most natural possibility gives, howev
terms of order higher than the ones considered inLKK . For
the first possibility, the most natural choice ofX is as being
dual to the fiber direction]/]y; then the first possibility con-
tributes only to the ghosts. Hence we will not consider th
anymore.

By arranging the constantsb andY in Eq. ~5.5!, one can
recover several interesting cases which analyze in the foll
ing subsections.

A. Gauss-Bonnet electromagnetism

This theory is obtained forb51 @19# ~see also earlier
work in @41#!. As pointed out in@42#, an analysis for linear
06400
s

the
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y

r,

-

perturbations of the gravitational field shows that ghost c
cellation requiresR̂2 to enter the combination~5.3! as

V25R̂MNPQR̂MNPQ24R̂MNR̂MN1R̂2

5

4D1

4
R̂MN

ABR̂PQ
CDhMNPQhABCD . ~5.7!

h is the Levi-Civita tensor, not density. This is the Gaus
Bonnet combination. The last equality, which holds in fo
dimensions where the four-formh is the volume form,
shows it is the second Euler density, a topological term
four dimensions but dynamical in higher dimensions. W
recall that the first Euler density, topological in two dime
sions but dynamical in higher is just the Ricci scalar:

V15R̂5

2D1

2
R̂MN

ABhMNhAB . ~5.8!

The last equality holds in two dimensions, where the tw
form h is the volume form. The Gauss-Bonnet combinati
is usually referred to as describing the first order str
theory corrections to general relativity@42#. The first order
~in a8) stringy gravitational action can then be written e
clusively in terms of Euler densities~that does not seem to b
the case already at third order!:

S(1)5
1

16pGD11
E dD11x̂A2ĝ~V11YV2!, ~5.9!

with Y}a8. ThatS(1) is the correct effective action relies o
two arguments. Matching the amplitude for the scattering
three on-shell gravitons in bosonic closed string theory o
fixes the (R̂MNPQ)2 term; the (R̂MN)2 andR̂2 do not contrib-
ute to the on-shell amplitude. These are fixed by the no-gh
requirement, since one does not see any ghosts in the s
spectrum. But for purely electromagnetic excitations within
Kaluza-Klein context, the no-ghost requirement is more
laxed and makes sense to consider an arbitraryR̂2 coeffi-
cient.

In non-covariant language, the Gauss-Bonnet Lagrang
is described by

LGB5 1
2 ~E22B223Y~E•B!2!. ~5.10!

Properties of Gauss-Bonnet electromagnetism

The constitutive relations are very simple and easily
vertible.E andH may be expressed in terms ofB andD as

E5D1
3Y~B•D!

123YB2
B,

H5B1
3Y~B•D!

123YB2
D1S 3Y~B•D!

123YB2 D 2

B. ~5.11!
6-12
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It follows from the constitutive relations thatB•EÞD•H.
Therefore this theory does not admit electric-magnetic du
ity.

The Hamiltonian becomes

HGB5
1

2
„E21B223Y~E•B!2

…

5
1

2 S D21B21
3Y~B•D!2

123YB2 D . ~5.12!

The dominant energy condition for the theory is obeyed
Y,0. Hence the first expression for the Hamiltonian sho
the energy is positive, whereas the one in terms of the
nonically conjugate variablesB and D imposes no upper
bound on the magnitude of the magnetic induction. Ho
ever, the expressions forB andD in terms ofE andH,

B5H2
3Y~E•H!

113YE2
E,

D5E2
3Y~E•H!

113YE2
H1S 3Y~E•H!

113YE2 D 2

E, ~5.13!

do constrain the value of the electric field to be bounded

E25
1

3uYu
. ~5.14!

Another way to see this is by using our analysis of Sec.
For the Gauss-Bonnet electromagnetic theory~2.4! becomes

m5x2
1

3Y
, ~5.15!

from where we can read immediately the limiting field val
~5.14!, in agreement with the discussion following~2.4!.
What happens to the light cones in this limit? Consider
B50, we see from Eq.~2.14! that the Boillat light cone
collapses in the two non-principal directions, manifesting
breakdown of the theory. Moreover, beyond such limit, t
causality inequality~2.16! is violated.

Yet another manifestation of the limiting electric field ca
be seen by studying the convexity of the Hamiltonian fun
tion, as discussed in Sec. II C. The latter property is equ
lent to the positive-definiteness of the following six dime
sional quadratic form~of the variablesb, d):

b21d21
3Y

123YB2
@~D•b!21~B•d!212~b•d!~D•B!

12~D•b!~B•d!] 1
27Y3

~123YB2!3
06400
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3~b•B!2~D•B!21
9Y2

2~123YB2!2
~D•B!

3@4~D•b!~B•b!14~B•d!~B•b!1~D•B!b2#.
~5.16!

Again, for vanishing magnetic induction both eigenvalu
will be positive if and only if the electric field is smaller tha
Eq. ~5.14!.

Since Eq.~2.4! reduces to Eq.~5.15!, which has a unique
solution for m one might think that Gauss-Bonnet electr
magnetism admits no bi-refringence. However, as discus
in Sec. II, whenÃ in Eq. ~2.4! vanishes, the information
contained in Eq.~2.4! might be incomplete. As shown in@19#
this theory exhibits bi-refringence, with one cone given
the Boillat cone with Eq.~5.15! and the second coinciding
with the Minkowski light cone. So, the middle illustration i
Fig. 1 is the one to bear in mind, but now, the Minkows
light cone is degenerate; it represents both the backgro
geometry and one of the effective geometries describing
propagation of fluctuations.

B. The Born-Infeld theory to second order

TheBorn-Infeldcase,LKK5L BI
(2), b521/2. The action

matches the Born-Infeld action to second order. To ma
the constantsY with b one must remember that in th
Kaluza-Klein ansatz one should replaceAm→zAm wherez is
a constant with dimension length~we are using quantum
units, i.e.,c5\51). If we write downLBI as

LBI5
1

b2
„A2g2A2det~gmn1bFmn!…, ~5.17!

the constants match as

b252
3Yz4L

16pG5

, ~5.18!

whereL is the perimeter of the compact dimension~constant
since we considered a trivial dilaton!.

C. The Euler-Heisenberg action

The Euler-Heisenbergcase,LKK5LEH , b51/7. This is
the effective action to QED due to one-loop corrections@43#.
The constantY should then be

Yz4L

16pG5

52
28a2

135me
4

, ~5.19!

wherea is the fine structure constant.
6-13
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VI. METRIC INDEPENDENCE OF BLACK HOLE
PROPERTIES

In this section we consider the propagation of fluctuatio
of fields ~including the electromagnetic! in curved back-
grounds. Our main theme will be that even though there m
be more than one metric present in theory, many proper
of black holes and their thermodynamic behavior are me
invariant. In this sense we find that the event horizon and
properties have a universality which goes beyond the uni
sality implied by the equivalence principle.

A. Causality and the strong energy condition

The presence of gravity as a background field is expec
to induce changes in the propagation of electromagnetic fl
tuations, in the same way a background electromagnetic
does. In fact the former is a consequence of the latter via
Einstein equations. Let us start by using the Boillat me
presented in Sec. II to ask when such propagation is cau
The Boillat co-metric~2.9! is conformal to

„~m2x!Lx2yLy1L…gmn2S Tmn2
T

2
gmnD . ~6.1!

From now on in this section we assume thatg is the Einstein
metric, rather than some conformal multiple, such as
closed string metric. This is because we wish to assume
the Einstein equations hold. Then the Boillat co-metric
conformal to

geffective
mn 5gmn1ARmn, ~6.2!

whereRmn is the Ricci tensor and

1

8pGNA
5~x2m!Lx1yLy2L. ~6.3!

If Tmn satisfies the strong energy condition and the Eins
equations hold, thenRabpapb>0 for all co-vectors lying
inside or on the Einstein co-cone. Thus ifA>0, the Boillat
co-cone lies outside or on the Einstein co-cone. Passing b
to the original Einstein and Boillat cones, remembering t
duality reverses inclusions we see that the strong energy
dition together with the requirement thatA>0 is a sufficient
condition that the Boillat cone lies inside the Einstein co
In these circumstances small disturbances travel no fa
than gravitons.

B. Stationary event horizons and the touching theorem

Before discussing the even horizon given by the co-me
~6.2! it seems worth recalling that quantum mechanical
fects renormalize the propagation equations in a backgro
gravitational field. For scalarsf and spinorsc, additional
terms appear in the effective action of the form

A

2
Rab]af]bf,

iA

2
Rabc̄ga¹bc, ~6.4!
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for some coefficientsA. In the case of scalars these give
effective metric of the form~6.2!. In the case of spinors the
discussion given in Sec. IV B applies. In the notation us
there one has

aab5gab1
A

2
Rab ~6.5!

and from Eq.~4.5! it follows that

geffective
mn 5gmn1ARmn1

A2

4
Ra

mRan. ~6.6!

In perturbative calculations one neglects the last third te
The second was computed by Ohkuwa within the Weinbe
Salam model@44# yielding

A52
11

192p2

e2\

MW
2 sin2uWc3

, ~6.7!

where uW is the Weinberg angle andMW is the W-boson
mass.8 SinceA is negative the effective cones lie outside t
Einstein cone. Physically however it is not clear that th
implies the neutrino speeds faster than light, because the
proximation of retaining only first derivatives in the effectiv
action may break down.

The case of photons is more complex and it involves
Riemann tensor@45#.9

Work on the causality properties of such effective metr
~@46# and references therein! uncovered a striking resul
which is also relevant in the context of non-linear electrod
namics.

If the Einstein metricg contains a stationary event hor
zonH with null generatorsl a and the weak energy conditio
holds,Tabl al b>0, then Hawking has shown that restricte
to H

Rabl al b50. ~6.8!

It follows that

geffective
ab l al b50. ~6.9!

Thus the null generator of the horizon lies on the effect
co-cone. Passing to the dual space we see that the Ein
cone and the effective cone actually touch along the n
generator of the horizon. In the case thatA>0 the effective
cone will touch from the inside. This makes the existence
another effective event horizon outside the Einstein ev
horizon unlikely.

This ‘‘touching theorem’’ shows that the concept of a
absolute event horizon is more ‘‘absolute’’ than one mig

8Notice that the different sign in@44# is due to the opposite con
vention for the Riemann tensor.

9It maybe of interest to note that if one has as many scala
spinor degrees of freedom with the same mass going around
loop then the Drummond-Hathrell correction vanishes.
6-14
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BORN-INFELD THEORY AND STRINGY CAUSALITY PHYSICAL REVIEW D63 064006
have thought. After all because quantum fluctuations will
general affect different particles differently and because
effective metric they see clearly depends upon their c
plings one might have imagined that in quantum theory d
ferent particles would have different effective event ho
zons, in contradiction with the classical equivalen
principle. However we have seen that to the order we h
been working this is not so. All particles see the same ev
horizon ~see Fig. 4!. In other words, the concept of a blac
hole remains universal in the quantum theory.

C. The surface gravity and the universality
of the Hawking temperature

As well as the location of the event horizon one might a
whether the thermodynamic properties, such as the temp
ture, are universal. Because more than one metric is
volved, this is not immediately obvious. In the case of sta
solutions, the simplest way of obtaining the surface gravitk
and hence the Hawking temperatureTH5k/(2p) is by set-
ting t5A21t,t real and calculating the periodb5(TH)21

52p/k required to remove the potential conical singular
at the horizon. It is clear that there will be no conical sing
larity in one metric if and only if there is no conical singu
larity in the other metric. Thus we get the same periodb for
both metrics.

If the timelike Killing vector, which is of course a Killing
vector of both metrics, is normalized to have unit magnitu
at infinity with respect the Einstein metric, then this calcu
tion yields the temperature in Einstein units as judged
closed observers at infinity. If a background dilatonF is
non-zero then this must be rescaled to get the temperatu
closed string units. Similarly if the background Kalb
Ramond field is non-vanishing we must rescale to get
temperature in open string units. For previous work on
universality of the thermodynamic properties of black ho
in generally covariant theories including arbitrary higher d
rivative interactions see@47#.

D. Black hole in a magnetic field in Einstein-Maxwell theory

One stimulus for this work is the current activity on phy
ics in an externalB field. It is worth recalling therefore the

FIG. 4. The touching theorem.
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properties of a black hole immersed in an external magn
field according to Einstein-Maxwell theory. The main poi
we wish to make is that the thermodynamic properties of
black hole are unaffected by the magnetic field pass
through it. This is perhaps not unexpected if one belie
that the thermodynamics has its origin in microscopic d
grees of freedom whose number and nature are essen
unchanged by external fields. To be concrete the metri
@48#

ds25L~r ,u!2S 2S 12
2M

r
D dt21

dr2

12
2M

r

1r 2du2D
1L~r ,u!22r 2sin2udf2, ~6.10!

whereM is the analogue of the ADM mass for asympto
cally Melvin boundary conditions and

L~r ,u!511 1
4 B0

2r 2sin2u. ~6.11!

The Hawking temperatureTH and the area of the event ho
rizon AH are easily seen to be the same as for the Schw
child solution. For some other comments on ‘‘no
commutative black holes’’ see@49#.

VII. EINSTEIN-SCHRÖ DINGER THEORY

It is well known that there are many similarities betwe
Born-Infeld theory and the Einstein-Schro¨dinger theory of
gravity. In Sec. IV C we discussed that the characteris
and therefore the causal structure relevant for fluctuation
analogous to the one for the open string. We now specia
the discussion to some black hole solutions found by Pa
petrou.

The connection in this theory is not the usual Levi-Civ
connection, but rather computed from the relation

aab,m2anbGam
n 2aanGmb

n 50. ~7.1!

The notation is the one of Sec. IV C. The Ricci tensor
computed by an expression formally identical to the one
general relativity, but has both a symmetric pieceR(ab) and
an antisymmetric oneR[ab] . In analogy to the dual Maxwel
tensor introduced in Sec. II E we definePmn5(a) [mn] . The
vacuum field equations read

R(ab)50, ]b~Pab!50, R
†@ab],m‡

50. ~7.2!

The contravariant second rank tensor densityPmn

5A2deta21Pmn. These are similar to the usual Einste
equations, equation of motion and Bianchi identities in no
linear electrodynamics, provided one thinks ofFmn as being
analogous toR[mn] . We will avoid the issue of positivity of
energy in this theory.

It is perhaps worth remarking that every Ricci flat Ka¨hler
metric including Calabi-Yau spaces, provides a Euclide
solution to this theory. In fact, ifg is Kähler, choosing forB
a multiple of the Ka¨hler form, which is covariantly constan
the Levi-Civita connection ofg will solve Eq. ~7.1!. Hence
6-15
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all equations of motion are obeyed. For these soluti
GEins-Schro

mn }gmn and so there is no ambiguity as to whic
metric to use. For the analogous phenomenon in Born-In
theory see@49#.

The last comment is not true in general. Spherically sy
metric solutions were found by Papapetrou@22#, correspond-
ing to ‘‘electrically’’ and ‘‘magnetically’’ charged spheri-
cally symmetric objects. The most general electrical solut
reads

~a21!mndxmdxn5S 11
Q2

r 4 D S 12
2MGN

r
D dt2

2
dr2

S 12
2MGN

r
D

2r 2~du21sin2udf2!1
Q

r 2 dt`dr.

~7.3!

A short calculation reveals that

dsEins-Schro
2 5S 12

2GNM

r
D dt2

2
dr2

S 11
Q2

r 4 D S 12
2GNM

r
D

2r 2~du21sin2udf2!. ~7.4!

It is striking that some of our previous findings concerni
the invariance under the change of metric of the black h
properties still hold in this theory. For example, in gene
the causal structure ofg andGmn

Eins-Schro differ but both agree
about the location of the event horizonr 52GNM and its
surface gravity which is

k5
1

4GNM
S 11

Q2

16GNM4D . ~7.5!

Note, while the area of the event horizon is given by t
same formula in terms of the mass as it is in the Schwa
child solution, a black hole withQÞ0 is hotter than the
Schwarzchild hole with the same mass. The hotter temp
ture is ascribable to the fact that the factor (11Q2/r 4) in g00
is blue-shifting rather than redshifting.

A magnetic solution found by Papapetrou reads
06400
s
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~a21!mndxmdxn5S 12
2MGN

r
D dt2

2
dr2

S 12
2MGN

r
D 2r 2~du21sin2udf2!

1B0r 2sinudu`df. ~7.6!

The Einstein-Schro¨dinger metric then becomes

dsEins-Schro
2 5S 12

2MGN

r
D dt2

2
dr2

S 12
2MGN

r
D

2~11B0
2!r 2~du21sin2udf2!. ~7.7!

The physical meaning of the two form in Eq.~7.6! is not
clear. It is spherically symmetric and of constant magnitu
It is striking that the metric has a similar form to that of E
~3.21!. The location of the horizon and the surface grav
are independent ofB0 and indeed ther 2t metric is identical
to that of a Schwarzchild black hole.

VIII. CONCLUSIONS

The background geometry determined by a gravitatio
theory might not be the relevant one seen by fluctuations
some test field. This is true even at the classical level,
quantum effects can also renormalize the geometry desc
ing the propagation of fluctuations. One quite interesting
ample of such distinction was uncovered in work on stri
propagation in a backgroundB field @15#: in this setup open
and closed string fluctuations move, in general, at differ
velocities. Gravitons and Born-Infeld photons see differe
light cones. The discussion in Secs. II and III shows that
latter causal structure is the Boillat causal structure, stud
long ago in the context of non-linear electrodynamics. Mo
over, theumn parameter describing the non-commutativity
spacetime in the duality established in@15# is just the dual
Maxwell tensor of Born-Infeld theory.

The open string metric is intrinsically connected to t
Born-Infeld action, as we showed in Sec. IV by includin
scalars and fermions in a Born-Infeld type action, and sho
ing the characteristics are determined by the open string m
ric. At this point a question requires more thorough und
standing. In the context of string theory, the Born-Infe
action describes brane dynamics. The brane world scen
motivated by@37# tries to bind gravitons to the brane. Th
difficulty is, of course, that gravitons are closed rather th
open string modes. But if this program is successful, eit
the brane graviton sees different light cones from the ot
spin brane fields or, if it is governed by the open stri
metric, the question arises to what effective field theory
scribes such gravitons. The Einstein-Schro¨dinger theory
6-16
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seems to have exactly the characteristics we would then
looking for. But it seems to suffer from instabilities@20#.

In Sec. V we looked at higher order gravity and Kaluz
Klein theory. To lowest order ina8, the abelian truncation o
the effective open string theory~Maxwell’s theory! is ob-
tained by Kaluza-Klein compactification of the effectiv
closed string theory~Einstein’s gravity!. But this does not
seem to hold to the next order ina8: the Gauss-Bonnet con
tribution to the effective closed string theory gives up
Kaluza-Klein reduction what we named as ‘‘Gauss-Bon
electromagnetism,’’ distinct from both the Euler-Heisenbe
theory and the Born-Infeld theory to this order.10 We re-
marked however that for purely electromagnetic excitatio
the no-ghost requirement is weaker and by an appropr
choice of couplings one can obtain the latter two theories
this order. It would be interesting to consider also the f
Kaluza-Klein theory, with all excitations present. This wou
give non-minimal gravitational-electromagnetic coupling

10We remark that the Born-Infeld theory to second order does
coincide with the Euler Heisenberg theory, which might be p
zling. But at least in the supersymmetric case they do coincid
this order@7#.
s.
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violating the equivalence principle. Gravitational b
refringence and dispersion effects might also be present
though the latter seem only to occur at even higher orde
a8 @50#.

In Sec. VI we made use of a result know in the literatu
as the ‘‘touching theorem’’ to show that the propagation
fluctuations in non-linear electrodynamics coupled to grav
will see a universal event horizon and black hole tempe
ture. Such comment also holds for one-loop corrected pro
gators in curved spacetime. In this way black holes do
seem to ‘‘leak.’’ We also noticed that similar invariance
seen for a black hole immersed in a magnetic field
Einstein-Maxwell theory. It would perhaps be interesting
look explicitly at such black holes in a ‘‘Melvin Universe’
for the case of non-linear electrodynamics.
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