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We show that a class of spacetimes introduced by Fayyazuddin and Smith to describe intersecting M5-
branes admits a generalized ler calibration. Equipped with this understanding, we are able to construct
spacetimes corresponding to further classes of calibadecne world-volume solitons. We note that these
classes of spacetimes also describe the fieldstmfanes wrapping certain supersymmetric cycles of Calabi-
Yau manifolds.
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[. INTRODUCTION calibrating forms of the appropriate type and that, equipped
with this understanding, one can construct similar spacetimes
The mathematical theory of calibratiofi$] and certain  corresponding to other calibrated world-volume solitons. We
extensions thereof have proven to be quite useful in classwill refer to these different spacetimes collectively as
fying the supersymmetric world-volume solitog,3] of  Fayyazuddin-SmitfFS) spacetimes. We will focus here on
branes embedded in fixed supersymmetric spacetime backahler calibrations and correspondingly on FS spacetimes
grounds. Applications include smoothed intersections obuilt around Kéler metrics. More generally, FS spacetimes
branes in flat spacetim—9|, branes wrapping supersym- will involve other metrics of reduced holonomy. We conjec-
metric cycles of Calabi-Yau manifold$10,11, world- ture that the spacetime fields of all calibrated world-volume
volume solitons in AdS compactificatio$2], solitons in-  solitons will be of FS type.
volving world-volume gauge fields that describe branes Of course, it has proved to be quite difficult to construct
ending on other branefl3-15, and branes inp-brane spacetimes corresponding to particular configurations of lo-
spacetime background&6]. calized intersections of brangsl8-24, as opposed to
The calibrated branes in each of these applications havemeared intersectionsee[25] for a complete reviey It
so far been treated as test objects. In this paper we demowas argued if26] that this situation may reflect interesting
strate that the calibration technology is also useful in underunderlying physics. The world-volume effective field theory
standing the spacetime fields that result from treating thesdescription of the delocalization of certain brane intersec-
world-volume solitons as charged, gravitating sources. Théions is related to the Coleman-Mermin-Wagner theorem. In
reason for this is quite simple. Consider the spacetime geonthese cases, the dimensionality of the intersection is the de-
etry generated by a supersymmetric world-volume solitontermining factor as to whether the localization of the classi-
Based on the Bogomol'nyi-Prasad-Sommerfid@PS “no cal world-volume soliton persists in the supergravity solu-
force” properties of branes, it should be possible for a suittion. FS spacetimes should provide the appropriate
ably configured test brane embedded in this spacetime to Igupergravity setting to study these effects.
in equilibrium. The spacetime should therefore carry a cali- We note that FS spacetimes also provide the spacetime
brating form. Moreover, near infinity, this calibrating form fields of branes wrapping supersymmetric cycles of Calabi-
should approach the fixed background form that calibratecYau manifolds. To describe intersecting branes in otherwise
the original world-volume soliton. This situation holds, for empty spacetime, the 4 real dimensionahka metric in the
example, for the spacetime of a single planar M-brir@.!  original FS ansatz[18] is taken to be asymptotic to
Our starting point will be a class of supersymmetric 4-dimensional flat space. However, if instead it is taken to be
spacetimes constructed by Fayyazuddin and Smith to deasymptotic to a Calabi-Yau metric, e.g. to a Ricci flat metric
scribe the spacetime fields of M5-branes intersecting o®n K3, then the FS spacetimgd8] describe M5-branes
3-braneq18]. A central ingredient in these spacetimes is awrapping supersymmetrid,1) cycles of K3% The spacetime
warped Kaler metric residing on the four relative tranverse geometry of branes wrapping all of K3 has been shown to
directions of the intersecting brane configuration. Thélka reflect very interesting underlying physi¢28]. It seems
metric depends, as well, on the overall transverse coordiikely that FS spacetimes will provide a rich ground for fur-
nates. The exact form of the 'Kker metric and the warp ther study in this context. If we take, for example, M2-branes
factor are related to the M5-brane sources by a nonlineawnrapping 2-cycles of compact Calabi-Yau 3-folds, then from

field equation. We will see that these spacetimes indeed havbe 5-dimensional viewpoint these will be black holes. Di-
mensionally reducing and keeping only the massless Kaluza-

Klein modes should give the black holes[@9—-33. The FS

1)t was also demonstrated [17] that the BPS spike soliton of a
test D3-brane, describing a fundamental string ending on the brane,
can also be found when the test D3-brane is placed in a D3-brane®See[27] for a recent related discussion of branes wrapping cycles
spacetime background. of K3.
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spacetimes should provide the 11-dimensional lifts of these Il. CALIBRATIONS
spacetimes, including the nontrivial massive Kaluza-Klein
modes as well. We start with a brief and basic introduction to calibra-

Fina”y, we note that another extension of the FS class O{ions_ Consider the action for a_brane moving in a D
spacetimes to include branes ending on branes has recently1).dimensional spacetime with metricG and
v

been given if34]. We expect that these spacetimes may aIS(h)+ 1)-form gauge potentiah
Mg -

be usefully organized using calibration technology. g1’
|
S,.1= | dPTlai \—detg,,— —1 ar---8pr1g XHL...9,  XHp+iA @
p+17" o Jab (p+1)|8 a; api1 Myt
|
whereo?® with a=0,1, . .. p are world-volume coordinates, coordinatesc?, ... x?". Choose a complex structure, i.e. a

X#(o) gives the embedding of the brane in the backgroundgairing of real coordinates into complex coordinates, for ex-
spacetime and,,=d,X*d,X"G,,, is the induced metric on ample,

the world volume. We will not consider here possible world- 11 o 0 one1 e on

volume gauge fields or couplings to additional spacetime ZZ=XTHIXE, L =X A IXT ®)
fields. To start, let us assume a flat backgrou,, ; o

= Muws Ay .y, =0, and consider static brane configura- then, the Kaler form is given by

tions. These will minimize the spatial volume of the brane.
Calibrations are a mathematical technique for finding classes
of such minimal submanifolds. A calibration for a
p-dimensional submanifold is gform ¢ on the embedding
space that satisfies two properties:

(1) The calibration¢ is a closed form

w=dX1/\dX2+ e +dX2n_1/\dX2n

i _ _
=§(dzl/\dzl+---dzn/\dzn). (6)

The forms¢,,= w*/k can then be shown to be calibrations
[1]. The corresponding calibrated submanifolds are simply

(2) The pullback of¢ onto anyp-dimensional submanifold the complex submanifolds of real dimensiok. 2

>, is always less than or equal to the induced volume form on . We recall some exampk_as of calibrated surfdeeS] that .
the submanifold: will be useful to keep in mind below. Our focus below will

be with M2-branes and M5-branes and we frame the ex-
*p<es. 3) amples in this context. First consider a static M2-brane con-
figuration whose world volume lies entirely in tti&,2,3,9
It then follows via a simple argument that, if the inequality SUPspace of 10 dimensional flat space. We can thenlake
(3) is saturated at every point onpadimensional submani- =4 above and the calibrating 2-formp=w=dx;/\dx,
fold 3, thenS minimizes volume within its homology class. +dXs/\dxs. Clearly, if the M2-brane lies either in th@,2)
AssumeS saturates the inequalifg) at every point. Pick a Plane, or in the(3,4) plane, then the inequaliti8) is satu-
closed p— 1)-dimensional surfacin 3, and withinS con- rated a_nd these are calibrated surface. A more nontrivial ex-
tinuously deform into a new submanifol&’. The follow- ~ @mple is the family of complex curves
ing chain of equalities and inequalities then shows that 5
Vol(2)<Vol(3'): 2)2,=a”, (7)

dep=0. )

_ e N with a an arbitrary constant. These curves interpolate
Vol(%)= 282_ s ¢= s/ ¢+ Bd¢ smoothly between thél,2) and(3,4) planes and represent a
smoothed version of two static M2-branes intersecting at a

_ *¢<f —Vol(S 4 point. The singular limitwe=0 gives the pure orthogonal in-
s T 2,82’_ ol(x"), ) tersection of the two planes. If we added on 3 additional flat
spatial directions to the brane, then the cu(vegives two
whereB is the p-dimensional region bounded R andX’.  M5-branes intersecting on a 3-brane.

Now take D=6 and consider the 4-form calibration

A Kahler calibrations ¢=3w/\w. In terms of the real coordinates this is

The simplest examples of calibrating forms and the ones b= dx;/\dx\dxg/\dx,+ dx A d X\ dxs/\dX,
that will concern us below are the Kker calibrations. Start ! 2 3 4 ! 2 > 6

with even dimensional flat spad@=2n, with real Cartesian +dxz/\dXx,/\dx5/\dXg. (8)
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Clearly the(1,2,3,9, (1,2,5,6 and (3,4,5,6 planes are ex- frame indices. For the Ricci flat case, these second terms
amples of submanifolds calibrated Iy, and complex sur- vanish identically giving covariantly constant spinors.

faces exist that interpolate smoothly between these planes.
Adding another spatial directiox’ to get M5-branes, there
will then be calibrated surfaces describing the smoothed in-

C. Generalized calibrations

tersection of three 5-branes in the directions A certain amount of care is neccesary in applying the
calibration technology to find static solutions febranes in
(t,1,2,3,4%,%,7) curved spacetimdd4. 6], because even for a stafidbrane, the
time-time componenGg of the spacetime metric enters the
(t,1,2X,X,5,6,7 p-brane effective action(1). Assume that the embedding
spacetime is static with timelike Killing vectoré?
(t,x,%,3,4,5,6,7 9 =(al9x%2. If we fix the static gauge-’=x° for the coordi-

nates on the brane world volume, then tfe detg,;, term in
the brane actioril) includes a contribution fronggy= Gqg.,
alled the redshift factor ifL6]. This factor can be absorbed

by defining a new effective spatial metrloGaB
=(—Gp) ™G, Wherea,f=1, ... D now run over only

spatial directions in the embedding space. We then have
The calibration technology applies in curved spaces as

where thex’s are placeholders. Note that each pair of M5-
branes intersects on a 3-brane and that altogether they inter
sect on a string.

B. Calibrations and spinors

well. For example, ifw is now the Kéaler form for an arbi- V—detg,,= Vdetgy (14)
trary Kahler space, then the forms,,= »"/k are again cali-
brations and the calibrated submanifolds are again the set Wherek I=1, ... p are purely spatial world-volume indices

complex submanifolds. In general the existence of callbratand is the spatial metric induced on the brane via embed-
ing forms is tied to the property of reduced holonolsge i P

e.g.[35]). Reduced holonomy in turn is tied to the existenceding in the rescaled metrié «p defined above. If there are
of spinor fields having special properties. additional spatial symmetry directions of the embedding

For example, for alN complex dimensional Kaler mani- ~ SPace that are shared by thxdrane configuration, then these
fold with metric g,-, the holonomy group is ¢an be handled in a similar mannkk6] by appropriately
U(N)CSO(2N). Covariantly constant spinors exist only in modifying the definitions of5,,5, A andF.
the Calabi-Yau case of vanishing Ricci tensor, for which the Finally, if the spacetime has a nonzerp+1)-form
holonomy group is further reduced 8U(N). For a general ~gauge potentiah, gy then a static brane configuration
Kahler metric, though, there exists a pair of spinersand  will satisfy equations of motion involving the corresponding
e_ transforming as singlets of the holonomy group. Thesefield strength. An appropriately generalized definition of

satisfy the relations calibrating forms taking this additional force into account
was given in[12,16. The modification required is quite
[me,=Tne_=0, (100 simple. Condition(2) becomes
from which follow the projection conditions .
do=F (15
I'in€+=*0gmn€=+ - (11
If we normalizee! . =1, then the Khler form can be writ- whereF =dA andA,, . --ap:AO% -ap Therefore theA cali-
ten as brating form¢ is equal to the reduced gauge potenfialip
4 to a gauge transformation. This new condition then yields a
wap=Fi€e lgpes . (12)  chain of equalities and inequalities similar to Ed), show-

ing that if a static surface saturates the calibration bound then

The vanishing of the componenig,, and wy, follows from it Hinimizes the actior(1).

the relations(10), which also imply that only even dimen-
sional forms with equal numbers of holomorphic and anti-

holomorphic indices can be built in this way. The covariant D. M2-brane spacetime
derivatives ofe.. are given by The planar M2-brane itself provides a good example of a
1 spacetime with a generalized calibrating fofh®]:
— T E-19 E)
Vper=dpexL5(E"9pE) €, ds?=H 23 —dt?+ dx2+dx2) + HV3(dx+ - - - +dxZy),
_ 1 Ag,=cH™ ! (16)
Ve =dpes 5 (ELpE) e 1y Auz !

wherec=*1. For a static test M2-brane in this background
whereE andE are determinants of the complex frame fields the effective spatial metric and gauge potential defined above
Em and Ef respectively, with the caret denoting flat spaceare given by
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d%2=H‘1(dx§+dx§)+dx§+ o +dx§0, Alzch—l_ u(2) holonomy_ group of the _Nagr metric g, at fi?<ed.
(17) transverse posmc_)n. The combination of the two projections
reduces the fraction of supersymmetry preserved to 1/4.
As discussed if16], test M2-branes will then be calibrated  Given the projection$21), the supersymmetry conditions
by the form then impose a relation between the warp fadtband the
complex determinant of the 'Kéer metric g=g,1057
p=cH 'dxNdx+ o, , (18 —g,39,7. In[23], and originally in[18] for the M5-brane
. . , case, this relation is given @d=g. However, this is not
where o, is an arbitrary Kaler form on the transverse nrecisely correct, as the following argument shows. The
space, equivalent to a cho_|ce c_)f comple_x structure in they . of the ES ansatt19) is preserved by holomorphic co-
transverse space. The calibrating forgn is then gauge . ginate transformations on the Kar manifold that do not
equivalent to the gauge potentialand Eq.(15) is satisfied.  depend on the transverse coordinates:
The calibrated surfaces are complex surfaces with respect to

the associated almost complex structure obtained by raising Z=z'MzP). (22)
one index ong,, using the rescaled metri¢7). Note that the
warp factorH then drops out. Under these transformations the warp fadtbis invariant,
but the determinang is transformed ta’ =gf?wheref is
ll. FAYYAZUDDIN-SMITH SPACETIMES holomorphic. Hence the conditidd=g is not covariant un-

The original FS spacetimg48] described M5-branes in- der the transformatlo.nSZZ). . .
tersecting on 3-branes. Here we start with the related M2- In order to determine the correct conditions, we write out
brane FS spacetimes studied[28]. The metric and gauge the requirements that each of the componentsVgé=0

potential for these are given by reduce to after having applied the projection conditi¢#is:
dSZZ H —2/3( _ dt2+ ZQmFdZde”) +H +1/3( 5adeadXB) A=t:(?alog H— (?alog g= 0
Amn=iCH gy, C=*1. (19 A=p:d e+ %"‘Z &plogH—gaplog E]ezo
Here z™ with m=1,2 are complex coordinates1@ 4 real
dimensional Kaler manifold M anda,8=5, ... ,10 are in- _ 1 a a
dices for the 6-dimensional transverse space. Thbleta ~ A=P:dpet |5~ Z)@HOQH“‘ 2 plog E]€=0
metric g,,, on M is allowed to depend on the transverse
coordinatesx® as well as on position inV1; i.e., it can be 1 a a )
written asgmn= dmdnK (z°,29,x%) with K a Kahler potential A=aid,et [E(MOQ H+ 7 dalogE— 7d,log E) €=0.
depending on the transverse coordinates. The warp fattor (23)

is also allowed to depend on both positiontti and position
in the transverse space. Note that thenkéa metricgmpata  One can check that the whole set of equations can be solved
fixed transverse position is not required to be Ricci flat.  provided that

We present a detailed review of the supersymmetry con-

ditions in order to correct a mistake in the form of the results d,logH=4,logg
stated i 18,23 that has obstructed a better understanding of
this class of spacetimes. The supersymmetry condition for dmdnlogH = d,,d-logg. (24)

D =11 supergravity takes the forfM,e=0, where

It is worth noting that the second condition involves the
Kahler metric at fixed transverse position through its Ricci
tensorR = — dmdn0, which transforms as a tensor under
the coordinate transformatioi(®2). These new relations are
and (A,B,...) areD=11 indices. The supercovariantly then covariant under the holomorphic coordinate transforma-
constant spinors of the FS spacetini&d) satisfy the projec- tions (22). These conditions imply that the general form of

L 1
VAEZVAE+§8(FECDE_852FCDE)FBCDE€, (20)

tion conditions the relation betweehl andg is given by
[Me—as™e, a=:+1, g=HfT, (25
Tle= ibe, b==+1 (21) wheref(z™) is a holomorphic function of the complex coor-

dinates and is independent of the transverse coordix&tes
where careted indices are frame indices and the signs of th&/e then find using Eq(25) that the supercovariantly con-
two projections are correlated with the sign of the gaugestant spinors are then given by
potential by the relatiombc= —1. The first projection con- o
dition is just the standard projectidfil) onto singlets of the e=(E/f) (Worad) gy~ (A6-ald) ¢ (26)

064003-4



CALIBRATIONS AND FAYYAZUDDIN-SMITH SPACETIMES PHYSICAL REVIEW D 63 064003

wheree, is a constant spinor satisfying the projectiq@g). d2=2H ~1g,-dz"d 245 dx?dxB
The supercovariantly constant spinors are invariant under the mn “p
coordinate transformation2). Apn=icH g, c==*1. (29

All spacetimes of the forn{19) satisfying the relations _ _ o o
(24) are supersymmetric. However, we have not yet imposed he corresponding generalized calibrating 2-form is given by
the gauge field equations of motion. For the FS spacetimes a1
(19), these reduce to the equations p=CcH "oytao., (30

where w \=igmndz"/\dz" is the Kaler form associated
20mdpH + 67340 g9mn=0, (27 with the metricg,;, andw, is an arbitrary Kaler form on

the transverse space. The calibrated surfaces are complex
which are covariant with respect to the holomorphic coordi-surfaces with respect to the almost complex structure ob-
nate transformation€22).> Combining the gauge field equa- tained by raising one index of. Note that the warp factor
tion of motion (27) with the condition(25) gives a set of H again drops out from the almost complex structure.
coupled nonlinear equations that has proved difficult to \what can we learn from this structure that will be useful
solve. Solutions have been given in the M5-brane case in thﬁ] Constructing FS Spacetimes for other types of world-
near horizon limif18,36,37 and to first order in the far field yglume solitons? The FS spacetini@$) arise in two difer-
limit [23]. ent physical contexts. If23], the FS spacetimes were con-

The gauge field equation of motid@7) can be rewritten  sidered to be generated by static M2-brane sources lying on a

as an equation for the Ricci tensor of thet#@& metricR,,,  nontrivial holomorphic curvesnia 4 dimensional subspace
at fixed transverse position, giving of D=10 flat space. The Kaer metricg,,, was taken to be
flat near infinity in the transverse space. A second applica-
tion is to take the Khaler manifold M to be K3 and letting
the Kanler metricg,,, approach a Ricci flat K3 metric near
infinity. The FS spacetimes then describe M2-branes wrap-
ping (1,1 cycles of K3. In each of these cases the original
source branes were calibrated by the correspondinigeka
forms of these supersymmetric vacua. The warpétléta
form ¢ in Eq. (30) approaches the corresponding vacuum
°R&hler form near infinity, since as we have argued abéVe,
must approach unity near infinity.

(M) (3H)

mn

1
v +55 6“3 40 sGmn- (28)

It is worth noting that given the correct relati¢25) between
g and H, the standard supersymmetric supergravity vacu
now solve the field equations. tf,,, is Ricci flat and inde-
pendent of the transverse coordinates, then one can cho
complex coordinates so that=1 everywhere. TakingH

=g=1 then clearly gives a solution Of.EqZB)' Performing We conjecture that a similar structure will hold for space-
a holomorphic coordinate transformation as in £2@) on ;o4 corresponding to other calibrated world-volume soli-
this spacetime yieldg=ff, with f holomorphic, andH  tons, For Kaler calibrated solitons, we expect to find an FS
=1, which is still obviously a solution to E§28). However,  gpacetime built around a’Kéer metric, with a gauge poten-

if we instead also changd, so that as if18] H=g=ff, tial simply related to the original calibrating form. For an-
then the spacetime no longer solves E2§). In this case, by other type of calibrated world-volume soliton, we would ex-
referring to Eqg.(19), we see that the gauge potential haspect to find an FS spacetime built around a general curved
nonzero field strength. These spacetimes correspond to nogpace that admits this type of calibration. For special La-
trivial configurations of M2-brane sources. This is consistengrangian solitons, for example, we would expect an FS
because these spacetimes are not related by coordinate traspacetime built around a Ricci flat Ker metric. For a soli-
formations to the the original Ricci flat vacuum spacetime. ton calibrated by an exceptional calibration, we expect to
find an FS spacetime built by a warped construction around a
space with the corresponding reduced holonomy. Below, we
give results for Kaler calibrated solitons. We will return to

. ._the other cases in future work.
We now want to look at the FS spacetimes from the point

of view of calibrations. The perspective we gain will prove
useful in finding FS spacetimes for other types of M-brane
world-volume solitons. It is straightforward to check that the ~ The most straightforward generalization of the FS con-
FS spacetime$19) discussed above have generalized cali-struction is to increase the number of dimensions of the
brating forms in the sense defined[it2,16). The effective ~Kahler manifold, maintaining the same basic form of the FS

spatial metric and gauge potential seen by a static M2-brangacetimes19). For e.g. a 3 complex dimensional space this
probe are would correspond to 1/8 supersymmetric, smoothed intersec-

tions of 3 M2-branes or to M2-branes wrappifigl) cycles
of Calabi-Yau 3-folds. Setting the complex dimension to be

3 _ N, we make the ansatz
D =11 supergravity can be coupled to M-brane sources by com-

bining the bulk supergravity action with the M2-brane and M5- d2= _H—2Adt2+2H—ZBg ﬂzmdzﬁ—l— H2C(5 dxadxﬁ)
brane Born-Infeld actions. For M2-brane sources, the resulting cur- mn ap
rent contribution to the right-hand side of Eg7) is given in[23]. Amn=icH gqn, c=*1 (31

IV. CALIBRATIONS AND NEW M-BRANE SPACETIMES

A. New M2-brane spacetimes
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where now the complex coordinatesn=1, ... N and the Aymms=CH Y(GmOrs— ImTm), C=*1 (34
transverse coordinates, =1, ...,10-2N. The nontrivial

possibilities areN=2,3,4,5. These spacetimes describe eiwherem,n=1, ... 3, anda,8=1,2,3. We find that super-
ther 1/2' supersymmetric smoothed intersections of M2-symmetry(a) requires the projection conditions

branes in otherwise empty spacetime or to M2-branes wrap-

ping (1,1 cycles of Calabi-Yau N-folds. rmﬁfzaHZBgmﬁe, a==+1
We find that these spacetimes preservé' EZpersymme-
try, if the exponents are given by 'Ye=bH?e, b=+1 (35)

with bc=—1; (b) fixes the values of the exponents to be
A=B=1/6 andC=1/3; and(c) imposes the general relation
(25) betweenH andg,,;. The source free gauge field equa-
andH, g, related in general as in Eq5).* The superco- tions of motion again reduce to ER7). We find that the
variantly constant spinors are given by supercovariantly constant spinors are given by

1 1 1
A=3(N-1), B=Z(4-N), C=x(N-1) (32

e=(E/f)~[(N-D/6+aia] (E/f)~(N-1/6-aial . (33 e=(E/f)~(W12rald) ()~ (1/12-ald) (36)

where e, is a constant spinor satisfying the projection con-Whereeg is a constant spinor satisfying the projection con-
ditions (21). The source free equations of motion again re-ditions (35). _ . .
duce to Eq(27). FoIIO\ivmg [16], we introduce a rescaled effective spatial

The effective spatial metric and gauge potential for testmetric ds® for test M5-branes that are both static and trans-
M2-branes embedded in these spacetimes again have tkaionally invariant in they direction. The appropriate rescal-
form given in Eq.(29). This implies that the warped Kéer  ing is ék|=(—Gnny)l/4Gk|, wherek,| run over all direc-
forms ¢ in Eq. (30) are again generalized calibrating forms tions except,y. The 1/4 power arises because these factors
for test M2-branes. are now shared by the remaining 4 spatial dimensions of the
brane. This yields

B. New M5-brane spacetimes

2oy 12 MA N 1 120 442 2 2
A more nontrivial application of our strategy is to start ds’=2H mrdZ7dZ"+ HEH dXg +dxg+dxgg). 37
with world-volume solitons calibrated by the square of the

Kahler form ¢=3w/\w. Since this requires that the spatial P : : :

dimension of the brane be at least 4, in the context of Mlh;ewfegbi;a?gfjmgogptr:z Lh(:}%igglr? r]‘]orbn)*( the expressign

theory we will be looking at M5-branes. These spacetimes

again will have two physical settings. One could start with 12 +1/2

smoothed intersections of M5-branes that share a common @=CH ot H g/ \dxs. (38)

string [4,5] in otherwise empty space as in the discussio

above Eq.(9). Alternatively, one can start with M5-branes

wrapping a(2,2) cycle of a Calabi-Yau manifold, leaving a 1

string in the remaining noncompact directions. d=-H Yo /Nyt cwy/\dxg/\dxg (39
We build an FS ansatz similar to E1) that reflects 2

these new physical settings. In particular, the calibratinq ) ) , ,

form ¢=1w/\w of the world-volume soliton is built into the 'S 92uge equivalent to the effective spatial gauge potential

6-form gauge potential. Consider the 1/8 supersymmetrié\ijki=Auyijki - This can be seen by using the closure property

case, corresponding ta 3 complex dimensional space. Ac- Of the Kahler metricg ;.

cordingly, let

Mhe resulting form

— V. CONCLUSION
ds’=H2?A(—dt*+dy?) +2H ?8g,, dz"d2"
We have conjectured that the spacetime fieldp-bfane
+HZ(5,5dx*dx?) world-volume solitons are spacetimes of the FS type. We
have seen that thinking of FS spacetimes in terms of calibra-
tions is useful both in understanding their structure and in
“Note that for N=1 the exponents in Eq(32) yield flat ~ 9enerating new examples. In this paper we have focused on
Minkowski spacetime. This seems puzzling because the a@tz Kahler calibrations. As discussed above, we plan to investi-
should cover the original M2-brane spacetitié). It turns out that ~ gate further examples in future work.
the supersymmetry conditiq0) can also be satisfied by taking the
Kahler metricg,,;, in Eq. (31) to be flat, so that the relatior(&4) ACKNOWLEDGMENTS
betweeng andH no longer hold. The original M2-brane spacetimes
are recovered in this way foN=1. For N>1 one recovers the We thank Robert Bryant and Don Marolf for helpful con-
intersecting M2-brane spacetimes[88] in this way. versations.
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