
PHYSICAL REVIEW D, VOLUME 63, 064003
Calibrations and Fayyazuddin-Smith spacetimes
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We show that a class of spacetimes introduced by Fayyazuddin and Smith to describe intersecting M5-
branes admits a generalized Ka¨hler calibration. Equipped with this understanding, we are able to construct
spacetimes corresponding to further classes of calibratedp-brane world-volume solitons. We note that these
classes of spacetimes also describe the fields ofp-branes wrapping certain supersymmetric cycles of Calabi-
Yau manifolds.
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I. INTRODUCTION

The mathematical theory of calibrations@1# and certain
extensions thereof have proven to be quite useful in cla
fying the supersymmetric world-volume solitons@2,3# of
branes embedded in fixed supersymmetric spacetime b
grounds. Applications include smoothed intersections
branes in flat spacetime@4–9#, branes wrapping supersym
metric cycles of Calabi-Yau manifolds@10,11#, world-
volume solitons in AdS compactifications@12#, solitons in-
volving world-volume gauge fields that describe bran
ending on other branes@13–15#, and branes inp-brane
spacetime backgrounds@16#.

The calibrated branes in each of these applications h
so far been treated as test objects. In this paper we dem
strate that the calibration technology is also useful in und
standing the spacetime fields that result from treating th
world-volume solitons as charged, gravitating sources.
reason for this is quite simple. Consider the spacetime ge
etry generated by a supersymmetric world-volume solit
Based on the Bogomol’nyi-Prasad-Sommerfield~BPS! ‘‘no
force’’ properties of branes, it should be possible for a su
ably configured test brane embedded in this spacetime t
in equilibrium. The spacetime should therefore carry a c
brating form. Moreover, near infinity, this calibrating form
should approach the fixed background form that calibra
the original world-volume soliton. This situation holds, f
example, for the spacetime of a single planar M-brane@16#.1

Our starting point will be a class of supersymmet
spacetimes constructed by Fayyazuddin and Smith to
scribe the spacetime fields of M5-branes intersecting
3-branes@18#. A central ingredient in these spacetimes is
warped Kähler metric residing on the four relative tranver
directions of the intersecting brane configuration. The Ka¨hler
metric depends, as well, on the overall transverse coo
nates. The exact form of the Ka¨hler metric and the warp
factor are related to the M5-brane sources by a nonlin
field equation. We will see that these spacetimes indeed h

1It was also demonstrated in@17# that the BPS spike soliton of a
test D3-brane, describing a fundamental string ending on the br
can also be found when the test D3-brane is placed in a D3-b
spacetime background.
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calibrating forms of the appropriate type and that, equipp
with this understanding, one can construct similar spacetim
corresponding to other calibrated world-volume solitons. W
will refer to these different spacetimes collectively
Fayyazuddin-Smith~FS! spacetimes. We will focus here o
Kähler calibrations and correspondingly on FS spacetim
built around Kähler metrics. More generally, FS spacetim
will involve other metrics of reduced holonomy. We conje
ture that the spacetime fields of all calibrated world-volum
solitons will be of FS type.

Of course, it has proved to be quite difficult to constru
spacetimes corresponding to particular configurations of
calized intersections of branes@18–24#, as opposed to
smeared intersections~see @25# for a complete review!. It
was argued in@26# that this situation may reflect interestin
underlying physics. The world-volume effective field theo
description of the delocalization of certain brane inters
tions is related to the Coleman-Mermin-Wagner theorem
these cases, the dimensionality of the intersection is the
termining factor as to whether the localization of the clas
cal world-volume soliton persists in the supergravity so
tion. FS spacetimes should provide the appropri
supergravity setting to study these effects.

We note that FS spacetimes also provide the space
fields of branes wrapping supersymmetric cycles of Cala
Yau manifolds. To describe intersecting branes in otherw
empty spacetime, the 4 real dimensional Ka¨hler metric in the
original FS ansatz@18# is taken to be asymptotic to
4-dimensional flat space. However, if instead it is taken to
asymptotic to a Calabi-Yau metric, e.g. to a Ricci flat met
on K3, then the FS spacetimes@18# describe M5-branes
wrapping supersymmetric~1,1! cycles of K3.2 The spacetime
geometry of branes wrapping all of K3 has been shown
reflect very interesting underlying physics@28#. It seems
likely that FS spacetimes will provide a rich ground for fu
ther study in this context. If we take, for example, M2-bran
wrapping 2-cycles of compact Calabi-Yau 3-folds, then fro
the 5-dimensional viewpoint these will be black holes. D
mensionally reducing and keeping only the massless Kalu
Klein modes should give the black holes of@29–33#. The FS

e,
ne2See@27# for a recent related discussion of branes wrapping cyc
of K3.
©2001 The American Physical Society03-1
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spacetimes should provide the 11-dimensional lifts of th
spacetimes, including the nontrivial massive Kaluza-Kle
modes as well.

Finally, we note that another extension of the FS class
spacetimes to include branes ending on branes has rec
been given in@34#. We expect that these spacetimes may a
be usefully organized using calibration technology.
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II. CALIBRATIONS

We start with a brief and basic introduction to calibr
tions. Consider the action for ap-brane moving in a (D
11)-dimensional spacetime with metricGmn and

(p11)-form gauge potentialAm1 . . . mp11
:

Sp115E dp11sHA2detgab2
1

~p11!!
«a1 . . . ap11]a1

Xm1
•••]ap11

Xmp11Am1 . . . mp11J , ~1!
a
x-

s
ply

ll
ex-
on-

e

ex-

ate
a
t a
-
flat

n

wheresa with a50,1, . . . ,p are world-volume coordinates
Xm(s) gives the embedding of the brane in the backgrou
spacetime andgab5]aXm]bXnGmn is the induced metric on
the world volume. We will not consider here possible wor
volume gauge fields or couplings to additional spaceti
fields. To start, let us assume a flat background,Gmn

5hmn , Am1 . . . mp11
50, and consider static brane configur

tions. These will minimize the spatial volume of the bran
Calibrations are a mathematical technique for finding clas
of such minimal submanifolds. A calibration for
p-dimensional submanifold is ap-form f on the embedding
space that satisfies two properties:

~1! The calibrationf is a closed form

df50. ~2!

~2! The pullback off onto anyp-dimensional submanifold
S is always less than or equal to the induced volume form
the submanifold:

* f<«S . ~3!

It then follows via a simple argument that, if the inequal
~3! is saturated at every point on ap-dimensional submani
fold S, thenS minimizes volume within its homology class
AssumeS saturates the inequality~3! at every point. Pick a
closed (p21)-dimensional surfaceS in S, and withinScon-
tinuously deformS into a new submanifoldS8. The follow-
ing chain of equalities and inequalities then shows t
Vol(S)<Vol(S8):

Vol~S!5E
S
«S5E

S
* f5E

S8
* f1E

B
df

5E
S8

* f<E
S8

«S85Vol~S8!, ~4!

whereB is thep-dimensional region bounded byS andS8.

A. Kähler calibrations

The simplest examples of calibrating forms and the o
that will concern us below are the Ka¨hler calibrations. Start
with even dimensional flat space,D52n, with real Cartesian
d

-
e

.
es

n

t

s

coordinatesx1, . . . ,x2n. Choose a complex structure, i.e.
pairing of real coordinates into complex coordinates, for e
ample,

z15x11 ix2, . . . ,zn5x2n211 ix2n; ~5!

then, the Ka¨hler form is given by

v5dx1`dx21•••1dx2n21`dx2n

5
i

2
~dz1`dz̄11•••dzn`dz̄n!. ~6!

The formsf2k5vk/k can then be shown to be calibration
@1#. The corresponding calibrated submanifolds are sim
the complex submanifolds of real dimension 2k.

We recall some examples of calibrated surfaces@4,5# that
will be useful to keep in mind below. Our focus below wi
be with M2-branes and M5-branes and we frame the
amples in this context. First consider a static M2-brane c
figuration whose world volume lies entirely in the~1,2,3,4!
subspace of 10 dimensional flat space. We can then takD
54 above and the calibrating 2-formf5v5dx1`dx2
1dx3`dx4. Clearly, if the M2-brane lies either in the~1,2!
plane, or in the~3,4! plane, then the inequality~3! is satu-
rated and these are calibrated surface. A more nontrivial
ample is the family of complex curves

z1z25a2, ~7!

with a an arbitrary constant. These curves interpol
smoothly between the~1,2! and ~3,4! planes and represent
smoothed version of two static M2-branes intersecting a
point. The singular limita50 gives the pure orthogonal in
tersection of the two planes. If we added on 3 additional
spatial directions to the brane, then the curve~7! gives two
M5-branes intersecting on a 3-brane.

Now take D56 and consider the 4-form calibratio
f5 1

2 v`v. In terms of the real coordinates this is

f5dx1`dx2`dx3`dx41dx1`dx2`dx5`dx6

1dx3`dx4`dx5`dx6 . ~8!
3-2
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Clearly the~1,2,3,4!, ~1,2,5,6! and ~3,4,5,6! planes are ex-
amples of submanifolds calibrated byf, and complex sur-
faces exist that interpolate smoothly between these pla
Adding another spatial directionx7 to get M5-branes, there
will then be calibrated surfaces describing the smoothed
tersection of three 5-branes in the directions

~ t,1,2,3,4,x,x,7!

~ t,1,2,x,x,5,6,7!

~ t,x,x,3,4,5,6,7! ~9!

where thex’s are placeholders. Note that each pair of M
branes intersects on a 3-brane and that altogether they i
sect on a string.

B. Calibrations and spinors

The calibration technology applies in curved spaces
well. For example, ifv is now the Kähler form for an arbi-
trary Kähler space, then the formsf2k5vk/k are again cali-
brations and the calibrated submanifolds are again the s
complex submanifolds. In general the existence of calib
ing forms is tied to the property of reduced holonomy~see
e.g.@35#!. Reduced holonomy in turn is tied to the existen
of spinor fields having special properties.

For example, for anN complex dimensional Ka¨hler mani-
fold with metric gmn̄ , the holonomy group is
U(N),SO(2N). Covariantly constant spinors exist only
the Calabi-Yau case of vanishing Ricci tensor, for which
holonomy group is further reduced toSU(N). For a general
Kähler metric, though, there exists a pair of spinorse1 and
e2 transforming as singlets of the holonomy group. The
satisfy the relations

Gme15Gm̄e250, ~10!

from which follow the projection conditions

Gmn̄e656gmn̄e6 . ~11!

If we normalizee6
† e651, then the Ka¨hler form can be writ-

ten as

vab56 i e6
† Gabe6 . ~12!

The vanishing of the componentsvmn andvm̄n̄ follows from
the relations~10!, which also imply that only even dimen
sional forms with equal numbers of holomorphic and an
holomorphic indices can be built in this way. The covaria
derivatives ofe6 are given by

¹pe65]pe66
1

2
~Ē21]pĒ!e6 ,

¹ p̄e65] p̄e67
1

2
~E21] p̄E!e6 , ~13!

whereE andĒ are determinants of the complex frame fiel

En
m̂ and En̄

mC respectively, with the caret denoting flat spa
06400
s.

-

-
er-

s

of
t-

e

e

-
t

frame indices. For the Ricci flat case, these second te
vanish identically giving covariantly constant spinors.

C. Generalized calibrations

A certain amount of care is neccesary in applying t
calibration technology to find static solutions forp-branes in
curved spacetimes@16#, because even for a staticp-brane, the
time-time componentG00 of the spacetime metric enters th
p-brane effective action~1!. Assume that the embeddin
spacetime is static with timelike Killing vectorja

5(]/]x0)a. If we fix the static gauges05x0 for the coordi-
nates on the brane world volume, then theA2detgab term in
the brane action~1! includes a contribution fromg005G00,
called the redshift factor in@16#. This factor can be absorbe
by defining a new effective spatial metricĜab
5(2G00)

1/pGab wherea,b51, . . . ,D now run over only
spatial directions in the embedding space. We then have

A2detgab5Adetĝkl ~14!

wherek,l 51, . . . ,p are purely spatial world-volume indice
andĝkl is the spatial metric induced on the brane via emb
ding in the rescaled metricĜab defined above. If there are
additional spatial symmetry directions of the embedd
space that are shared by thep-brane configuration, then thes
can be handled in a similar manner@16# by appropriately
modifying the definitions ofĜab , Â and F̂.

Finally, if the spacetime has a nonzero (p11)-form
gauge potentialAm1 . . . mp11

, then a static brane configuratio
will satisfy equations of motion involving the correspondin
field strength. An appropriately generalized definition
calibrating forms taking this additional force into accou
was given in @12,16#. The modification required is quite
simple. Condition~2! becomes

df5F̂ ~15!

whereF̂5dÂ and Âa1 . . . ap
5A0a1 . . . ap

. Therefore the cali-

brating formf is equal to the reduced gauge potentialÂ up
to a gauge transformation. This new condition then yield
chain of equalities and inequalities similar to Eq.~4!, show-
ing that if a static surface saturates the calibration bound t
it minimizes the action~1!.

D. M2-brane spacetime

The planar M2-brane itself provides a good example o
spacetime with a generalized calibrating form@16#:

ds25H22/3~2dt21dx1
21dx2

2!1H11/3~dx3
21•••1dx10

2 !,

At125cH21, ~16!

wherec561. For a static test M2-brane in this backgrou
the effective spatial metric and gauge potential defined ab
are given by
3-3
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dŝ25H21~dx1
21dx2

2!1dx3
21•••1dx10

2 , Â125cH21.
~17!

As discussed in@16#, test M2-branes will then be calibrate
by the form

f5cH21dx1`dx21v' , ~18!

where v' is an arbitrary Ka¨hler form on the transvers
space, equivalent to a choice of complex structure in
transverse space. The calibrating formf is then gauge
equivalent to the gauge potentialÂ and Eq.~15! is satisfied.
The calibrated surfaces are complex surfaces with respe
the associated almost complex structure obtained by rai
one index onfkl using the rescaled metric~17!. Note that the
warp factorH then drops out.

III. FAYYAZUDDIN-SMITH SPACETIMES

The original FS spacetimes@18# described M5-branes in
tersecting on 3-branes. Here we start with the related M
brane FS spacetimes studied in@23#. The metric and gauge
potential for these are given by

ds25H22/3~2dt212gmn̄dzmdzn̄!1H11/3~dabdxadxb!

Atmn̄5 icH21gmn̄ , c561. ~19!

Here zm with m51,2 are complex coordinates on a 4 real
dimensional Ka¨hler manifoldM anda,b55, . . . ,10 are in-
dices for the 6-dimensional transverse space. The Ka¨hler
metric gmn̄ on M is allowed to depend on the transver
coordinatesxa as well as on position inM; i.e., it can be
written asgmn̄5]m] n̄K(zp,z̄q,xa) with K a Kähler potential
depending on the transverse coordinates. The warp factH
is also allowed to depend on both position inM and position
in the transverse space. Note that the Ka¨hler metricgmn̄ at a
fixed transverse position is not required to be Ricci flat.

We present a detailed review of the supersymmetry c
ditions in order to correct a mistake in the form of the resu
stated in@18,23# that has obstructed a better understanding
this class of spacetimes. The supersymmetry condition
D511 supergravity takes the form¹̂Ae50, where

¹̂Ae5¹Ae1
1

288
~GA

BCDE28dA
BGCDE!FBCDEe, ~20!

and (A,B, . . . ) are D511 indices. The supercovariantl
constant spinors of the FS spacetimes~19! satisfy the projec-
tion conditions

Gm̂n̂̄e5adm̂nCe, a561,

G t̂e5 ibe, b561 ~21!

where careted indices are frame indices and the signs o
two projections are correlated with the sign of the gau
potential by the relationabc521. The first projection con-
dition is just the standard projection~11! onto singlets of the
06400
e

to
ng

-

-
s
f

or

he
e

U(2) holonomy group of the Ka¨hler metric gmn̄ at fixed
transverse position. The combination of the two projectio
reduces the fraction of supersymmetry preserved to 1/4.

Given the projections~21!, the supersymmetry condition
then impose a relation between the warp factorH and the
complex determinant of the Ka¨hler metric g5g11̄g22̄
2g12̄g21̄ . In @23#, and originally in@18# for the M5-brane
case, this relation is given asH5g. However, this is not
precisely correct, as the following argument shows. T
form of the FS ansatz~19! is preserved by holomorphic co
ordinate transformations on the Ka¨hler manifold that do not
depend on the transverse coordinates:

z8m5z8m~zp!. ~22!

Under these transformations the warp factorH is invariant,
but the determinantg is transformed tog85g f f̄ where f is
holomorphic. Hence the conditionH5g is not covariant un-
der the transformations~22!.

In order to determine the correct conditions, we write o
the requirements that each of the components of¹̂Ae50
reduce to after having applied the projection conditions~21!:

A5t:]alogH2]alogg50

A5p:]pe1H S 1

6
1

a

4D ]plogH2
a

2
]plog ĒJ e50

A5 p̄:] p̄e1H S 1

6
2

a

4D ] p̄logH1
a

2
] p̄logEJ e50

A5a:]ae1H 1

6
]alogH1

a

4
]alogE2

a

4
]alog ĒJ e50.

~23!

One can check that the whole set of equations can be so
provided that

]alogH5]alogg

]m] n̄logH5]m] n̄logg. ~24!

It is worth noting that the second condition involves t
Kähler metric at fixed transverse position through its Ric
tensorRmn̄52]m] n̄g, which transforms as a tensor und
the coordinate transformations~22!. These new relations ar
then covariant under the holomorphic coordinate transform
tions ~22!. These conditions imply that the general form
the relation betweenH andg is given by

g5H f f̄ , ~25!

wheref (zm) is a holomorphic function of the complex coo
dinates and is independent of the transverse coordinatesxa.
We then find using Eq.~25! that the supercovariantly con
stant spinors are then given by

e5~E/ f !2(1/61a/4)~Ē/ f̄ !2(1/62a/4)e0 , ~26!
3-4
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wheree0 is a constant spinor satisfying the projections~21!.
The supercovariantly constant spinors are invariant under
coordinate transformations~22!.

All spacetimes of the form~19! satisfying the relations
~24! are supersymmetric. However, we have not yet impo
the gauge field equations of motion. For the FS spaceti
~19!, these reduce to the equations

2]m] n̄H1dab]a]bgmn̄50, ~27!

which are covariant with respect to the holomorphic coor
nate transformations~22!.3 Combining the gauge field equa
tion of motion ~27! with the condition~25! gives a set of
coupled nonlinear equations that has proved difficult
solve. Solutions have been given in the M5-brane case in
near horizon limit@18,36,37# and to first order in the far field
limit @23#.

The gauge field equation of motion~27! can be rewritten
as an equation for the Ricci tensor of the Ka¨hler metricRmn̄
at fixed transverse position, giving

Rmn̄5
~]mH !~] n̄H !

H2
1

1

2H
dab]a]bgmn̄ . ~28!

It is worth noting that given the correct relation~25! between
g and H, the standard supersymmetric supergravity va
now solve the field equations. Ifgmn̄ is Ricci flat and inde-
pendent of the transverse coordinates, then one can ch
complex coordinates so thatg51 everywhere. TakingH
5g51 then clearly gives a solution of Eq.~28!. Performing
a holomorphic coordinate transformation as in Eq.~22! on
this spacetime yieldsg5 f f̄ , with f holomorphic, andH
51, which is still obviously a solution to Eq.~28!. However,
if we instead also changeH, so that as in@18# H5g5 f f̄ ,
then the spacetime no longer solves Eq.~28!. In this case, by
referring to Eq.~19!, we see that the gauge potential h
nonzero field strength. These spacetimes correspond to
trivial configurations of M2-brane sources. This is consist
because these spacetimes are not related by coordinate
formations to the the original Ricci flat vacuum spacetim

IV. CALIBRATIONS AND NEW M-BRANE SPACETIMES

We now want to look at the FS spacetimes from the po
of view of calibrations. The perspective we gain will prov
useful in finding FS spacetimes for other types of M-bra
world-volume solitons. It is straightforward to check that t
FS spacetimes~19! discussed above have generalized c
brating forms in the sense defined in@12,16#. The effective
spatial metric and gauge potential seen by a static M2-br
probe are

3D511 supergravity can be coupled to M-brane sources by c
bining the bulk supergravity action with the M2-brane and M
brane Born-Infeld actions. For M2-brane sources, the resulting
rent contribution to the right-hand side of Eq.~27! is given in@23#.
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dŝ252H21gmn̄dzmdzn̄1dabdxadxb

Âmn̄5 icH21gmn̄ , c561. ~29!

The corresponding generalized calibrating 2-form is given

f5cH21vM1v' , ~30!

where vM5 igmn̄dzm`dzn̄ is the Kähler form associated
with the metricgmn̄ , andv' is an arbitrary Ka¨hler form on
the transverse space. The calibrated surfaces are com
surfaces with respect to the almost complex structure
tained by raising one index onf. Note that the warp factor
H again drops out from the almost complex structure.

What can we learn from this structure that will be use
in constructing FS spacetimes for other types of wor
volume solitons? The FS spacetimes~19! arise in two difer-
ent physical contexts. In@23#, the FS spacetimes were con
sidered to be generated by static M2-brane sources lying
nontrivial holomorphic curves in a 4 dimensional subspac
of D510 flat space. The Ka¨hler metricgmn̄ was taken to be
flat near infinity in the transverse space. A second appl
tion is to take the Ka¨hler manifoldM to be K3 and letting
the Kähler metricgmn̄ approach a Ricci flat K3 metric nea
infinity. The FS spacetimes then describe M2-branes wr
ping ~1,1! cycles of K3. In each of these cases the origin
source branes were calibrated by the corresponding Ka¨hler
forms of these supersymmetric vacua. The warped Ka¨hler
form f in Eq. ~30! approaches the corresponding vacuu
Kähler form near infinity, since as we have argued aboveH
must approach unity near infinity.

We conjecture that a similar structure will hold for spac
times corresponding to other calibrated world-volume so
tons. For Ka¨hler calibrated solitons, we expect to find an F
spacetime built around a Ka¨hler metric, with a gauge poten
tial simply related to the original calibrating form. For an
other type of calibrated world-volume soliton, we would e
pect to find an FS spacetime built around a general cur
space that admits this type of calibration. For special L
grangian solitons, for example, we would expect an
spacetime built around a Ricci flat Ka¨hler metric. For a soli-
ton calibrated by an exceptional calibration, we expect
find an FS spacetime built by a warped construction aroun
space with the corresponding reduced holonomy. Below,
give results for Ka¨hler calibrated solitons. We will return to
the other cases in future work.

A. New M2-brane spacetimes

The most straightforward generalization of the FS co
struction is to increase the number of dimensions of
Kähler manifold, maintaining the same basic form of the
spacetimes~19!. For e.g. a 3 complex dimensional space th
would correspond to 1/8 supersymmetric, smoothed inters
tions of 3 M2-branes or to M2-branes wrapping~1,1! cycles
of Calabi-Yau 3-folds. Setting the complex dimension to
N, we make the ansatz

ds252H22Adt212H22Bgmn̄dzmdzn̄1H2C~dabdxadxb!

Atmn̄5 icH21gmn̄ , c561 ~31!

-

r-
3-5
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where now the complex coordinatesm,n51, . . . ,N and the
transverse coordinatesa,b51, . . . ,1022N. The nontrivial
possibilities areN52,3,4,5. These spacetimes describe
ther 1/2N supersymmetric smoothed intersections of M
branes in otherwise empty spacetime or to M2-branes w
ping ~1,1! cycles of Calabi-Yau N-folds.

We find that these spacetimes preserve 1/2N supersymme-
try, if the exponents are given by

A5
1

3
~N21!, B5

1

6
~42N!, C5

1

6
~N21! ~32!

andH, gmn̄ related in general as in Eq.~25!.4 The superco-
variantly constant spinors are given by

e5~E/ f !2[(N21)/61a/4]~Ē/ f̄ !2[(N21)/62a/4]e0 , ~33!

wheree0 is a constant spinor satisfying the projection co
ditions ~21!. The source free equations of motion again
duce to Eq.~27!.

The effective spatial metric and gauge potential for t
M2-branes embedded in these spacetimes again have
form given in Eq.~29!. This implies that the warped Ka¨hler
forms f in Eq. ~30! are again generalized calibrating form
for test M2-branes.

B. New M5-brane spacetimes

A more nontrivial application of our strategy is to sta
with world-volume solitons calibrated by the square of t
Kähler form f5 1

2 v`v. Since this requires that the spati
dimension of the brane be at least 4, in the context of
theory we will be looking at M5-branes. These spacetim
again will have two physical settings. One could start w
smoothed intersections of M5-branes that share a com
string @4,5# in otherwise empty space as in the discuss
above Eq.~9!. Alternatively, one can start with M5-brane
wrapping a~2,2! cycle of a Calabi-Yau manifold, leaving
string in the remaining noncompact directions.

We build an FS ansatz similar to Eq.~31! that reflects
these new physical settings. In particular, the calibrat
form f5 1

2 v`v of the world-volume soliton is built into the
6-form gauge potential. Consider the 1/8 supersymme
case, corresponding to a 3 complex dimensional space. A
cordingly, let

ds25H22A~2dt21dy2!12H22Bgmn̄dzmdzn̄

1H2C~dabdxadxb!

4Note that for N51 the exponents in Eq.~32! yield flat
Minkowski spacetime. This seems puzzling because the ansatz~31!
should cover the original M2-brane spacetime~16!. It turns out that
the supersymmetry condition~20! can also be satisfied by taking th
Kähler metricgmn̄ in Eq. ~31! to be flat, so that the relations~24!
betweeng andH no longer hold. The original M2-brane spacetim
are recovered in this way forN51. For N.1 one recovers the
intersecting M2-brane spacetimes of@38# in this way.
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Atymn̄rs̄5cH21~gmn̄grs̄2gms̄grn̄!, c561 ~34!

wherem,n51, . . . 3, anda,b51,2,3. We find that super
symmetry~a! requires the projection conditions

Gmn̄e5aH2Bgmn̄e, a561

G tye5bH2Ae, b561 ~35!

with bc521; ~b! fixes the values of the exponents to b
A5B51/6 andC51/3; and~c! imposes the general relatio
~25! betweenH andgmn̄ . The source free gauge field equ
tions of motion again reduce to Eq.~27!. We find that the
supercovariantly constant spinors are given by

e5~E/ f !2(1/121a/4)~Ē/ f̄ !2(1/122 a/4)e0 , ~36!

wheree0 is a constant spinor satisfying the projection co
ditions ~35!.

Following @16#, we introduce a rescaled effective spat
metric dŝ2 for test M5-branes that are both static and tra
lationally invariant in they direction. The appropriate resca
ing is Ĝkl5(2GttGyy)

1/4Gkl , wherek,l run over all direc-
tions exceptt,y. The 1/4 power arises because these fact
are now shared by the remaining 4 spatial dimensions of
brane. This yields

dŝ252H21/2gmn̄dzmdzn̄1H1/2~dx8
21dx9

21dx10
2 !.

~37!

The calibrating form is then given by the expressionf
5 1

2 v`v in terms of the Hermitian form

v5cH21/2vM1H11/2dx8`dx9 . ~38!

The resulting form

f5
1

2
H21vM`vM1cvM`dx8`dx9 ~39!

is gauge equivalent to the effective spatial gauge poten
Âi jkl 5Atyi jkl . This can be seen by using the closure prope
of the Kähler metricgmn̄ .

V. CONCLUSION

We have conjectured that the spacetime fields ofp-brane
world-volume solitons are spacetimes of the FS type.
have seen that thinking of FS spacetimes in terms of calib
tions is useful both in understanding their structure and
generating new examples. In this paper we have focused
Kähler calibrations. As discussed above, we plan to inve
gate further examples in future work.
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