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General relativistic hydrodynamics in multiple coordinate systems
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In this paper, the general relativistic hydrodynamic equations of a thermally conducting, viscous and com-
pressible fluid in multiple coordinate systems are deduced in terms of the scheme developed by Damour, Sofel,
and Xu~DSX scheme!. Our paper is the first one to describe the hydrodynamic equations of a nonperfect fluid
in every local coordinate system at the first post-Newtonian approximation of Einstein’s theory of gravity. The
hydrodynamic equations in local coordinate systems are useful for calculating multipole moments of post-
NewtonianN-body problems in the DSX scheme. Therefore, this paper is a supplement to the DSX scheme in
some meaning. The corresponding PN thermodynamic equations in local coordinate systems are also repre-
sented. Lastly, some remarks on the possible applications are mentioned.
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I. INTRODUCTION

General relativistic hydrodynamics is an important subj
in classical general relativity@1–4#. The importance results
not only from a theoretical point of view, but also from th
practical application, such as compact stars, precise mea
ments in geophysics and cosmological problems. First o
post-Newtonian~1PN! hydrodynamics has been investigat
by many authors~e.g., Chandrasekhar@5#; Greenberg@6#;
Taub@2#; Blanchet, Damour, and Scha¨fer @7#; Will @8# et al.!.
But we should point out that most of the calculations are
one-global coordinate system, or we will call them one c
ordinate hydrodynamics. Only in very few cases@9# did
someone consider the hydrodynamic equations of a pe
fluid in a local coordinate system by means of match
technique@10#. As we know, the calculation of matchin
technique is quite long and complex. Until now, no one h
considered complete hydrodynamic equations of a non
fect fluid and corresponding thermodynamic equations
multiple coordinate systems. Multiple coordinate syste
meanN-local coordinate systems forN astronomical bodies
~or N different regions of fluid! and one-global coordinat
system. In some cases, for example in binary orN-body sys-
tems, stars in globular clusterset al., it is necessary to intro-
duce a local coordinate system for each object to calcu
local multipole moments@11#. That is the reason for this
paper.

Before 1991 no complete theory of astronomical ref
ence systems was available. Damour, Soffel, and Xu~DSX!
presented a new formalism for treating the gene
relativistic celestial mechanics of systems ofN arbitrarily
composed and shaped, weakly self-gravitating, rotating,
formable bodies@12–15#. This formalism is aimed at yield
ing a complete description, at the first post-Newtonian lev
of the global dynamics of suchN-body systems, the loca
gravitational structure of each body, and the way the exte
and internal problems fit together~‘‘a complete theory of
reference systems’’!. In the DSX scheme, there areN11
coordinate systems: one global coordinate systemxm

5(ct,xi) andN-local coordinate systemsXa5(cT,Xa). The
description of the metric tensorgmn in the global system with
0556-2821/2001/63~6!/064001~7!/$15.00 63 0640
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four metric potentials (w,wi) as functions ofxm; similarly, a
description ofGmn

A in eachA-frame moving of bodyA with
four potentialsWA,Wa

A also. Now we will briefly review the
content in the DSX scheme that we shall use later.

Since in the DSX scheme the equations of the grav
tional metric potentials are linear, the metric can be split

Wa
A5Wa

A
1

1W̄a
A , ~1.1!

where Wa
A

1

is the self-part,W̄a
A is the external part. The

self potentialsWa
A

1

are linearly related to the correspondin
Ath global contribution, i.e.,

wm
A5Ama

A Wa
A

1

1O~4,2!, ~1.2!

where we use the notationO(n)[O(c2n), and O(4,2)
meansO(4) corresponding tom50 andO(2) to m5a. The
external one is linearly related to the part of the global p
tentials generated by all the external bodies

w̄m
A5 (

BÞA
wm

B5Ama
A W̄a

A1Bm
A1O~4,2!, ~1.3!

whereAma
A are the components of the Jacobian matrix,Bm

A

are the inhomogeneous terms. By solving Einstein fi

equations we can getW a
A

1

, then

Wa
B

1

→wm
B→w̄m

A→W̄m
A5Aam

21~w̄m
A2Bm!. ~1.4!

Finally, we get external potentialW̄m
A in local coordinate

system ~of body! A from the self-potentialsWa
B

1

of every
local coordinate systemB. Then from Eq.~1.1! we get the
Wa

A in local coordinate systemsA. Therefore, to obtain
Wa

A we have to derive the self-potentials in each loc

coordinate system first. The self partWa
B

1

is determined by a
set of mass- and spin-multipole moments~we call themB-D
©2001 The American Physical Society01-1
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CHONGMING XU AND XUEJUN WU PHYSICAL REVIEW D63 064001
moments!, (ML
B ,SL

B), of bodyB, whereas the external influ
ence can be described by means of suitably defined
moments (GL ,HL).

The metric in the local coordinate systemA is written in
the form

G00
A 52expS 2

2WA

c2 D1O~6!, ~1.5!

G0a
A 52

4Wa
A

c3 1O~5!, ~1.6!

Gab
A 5dab expS 2WA

c2 D1O~4!. ~1.7!

Later we omit the labelA ~or B! on all quantities pertaining
to the local frame if it is unnecessary to point out the spe
coordinate system. In the DSX scheme we still do not kn
the time evolution of multipole moments, because it is d
pendent on the hydrodynamic equations of each body
some problems, like the coalescence of compact binary
tems @11#, the time evolution of multipole moments is o
considerable importance. From the definition of ma
multipole moments@12# and spin-multipole moments@14#
we need to know the time evolution ofS and Sa in each
local frame, which are defined by

S[
T001Tss

c2 , ~1.8!

Sa[
T0a

c
, ~1.9!

whereTab is stress-energy tensor. By means of the sour
S andSa, the Einstein field equations in the harmonic gau
can be written as

¹2W
1

2
1

c2

]2W
1

]T2 524pGS1O~4!, ~1.10!

¹2W
1

a524pGSa1O~2!.
~1.11!

The hydrodynamic equations~energy equation and Eule
equation! read

]

]T
S1

]

]Xa Sa5
1

c2

]

]T
Tbb2

1

c2 S
]

]T
W1O~4!,

~1.12!

]

]T F S 11
4W

c2 DSaG1
]

]Xb F S 11
4W

c2 DTabG
5Fa~T,Xa!1O~4!, ~1.13!

where
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Fa5SEa1
1

c2 BabS
b, ~1.14!

Ea5]aW1
4

c2 ]TWa , ~1.15!

Bab524~]aWb2]bWa!. ~1.16!

These equations are valid in every local coordinate syst
Even in global coordinate systems the form of equations
the same after replacingS, Sa, W, andWa by s, s i , w, and
wi .

In the original DSX papers, the sources are described
S and Sa, but the stress-energy tensorTab has not been
explicitly expressed byS,Sa and their derivatives, since
4-velocity has not been introduced. Therefore Eq.~1.12! and
Eq. ~1.13! cannot be used directly to calculate the time ev
lution of multipole moments, in this sense the DSX sche
is incomplete for the description of hydrodynamic problem
Why shall we discuss hydrodynamics in the DSX schem
There are two reasons for that: first, in this scheme the tra
formation properties of gravitational field variable~W and
Wa! are known. Second, all equations in every local coor
nate system as well as in global coordinate systems have
same form. That means if we write down any equation in o
local coordinate system, then we have it in every local co
dinate system and in the global coordinate system as w
Therefore it might be easier for us to use the DSX schem
the discussion of PN hydrodynamics in multiple coordina
systems.

In this paper, our symbols and signature follow the DS
scheme@12#. All the notations and convention are taken fro
the DSX scheme. Here we summarize the notations in t
scheme which we shall use in this paper. The signature i2
1 11, spacetime indices go from 0 to 3 and are denoted
greek indices, while spatial indices~1 to 3! are denoted by
latin indices. We use Einstein’s summation convention
both types of indices, whatever the position of repeated
dices. The ‘‘global’’ ~or ‘‘common view’’! coordinate sys-
tem used for describing the overall dynamics of the multi
coordinate systems will be denoted by (xm)[(ct,xi). By
contrast, each of the ‘‘local’’ coordinate systems, used
describing the internal dynamics of each body, will be d
noted by capital letters (Xa)[(cT,Xa). We shall distinguish
the second part of the latin alphabet~i,j,k,...! for global spa-
tial coordinate system from the first part of the latin alpha
~a,b,c,...! for local spatial coordinate system as done in t
DSX scheme. The symmetrization of indices will be deno
by round brackets@e.g.,V(a

,b)5
1
2 (Va

,b1Vb
,a)#. In the fol-

lowing discussion on hydrodynamics, we consider a ‘‘simp
fluid’’ in each body as usual@16#, certainly in a different
body ~or a different region! a different simple fluid could be
taken. By a so-called simple fluid we mean the chemi
composition of the fluid is fixed uniquely by two thermod
namic variables: the total number density of baryonsn and
the entropy per baryons. We can express the stress-ener
1-2
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GENERAL RELATIVISTIC HYDRODYNAMICS IN . . . PHYSICAL REVIEW D63 064001
tensorTab in terms ofS,Sa ~4 functions! and their deriva-
tives at the 1-PN level for a nonperfect fluid. Then we wr
down the hydrodynamic equations in multiple coordina
systems. As a special example we express the formulas
perfect fluid explicitly. With these equations and some th
modynamic ones~the equation of state, the equation of he
transfer and so on!, we can obtain the time evolution of th
multipole moments in principle. Therefore in one sense,
work is a supplement of the DSX scheme. In Sec. II,
derived the PN hydrodynamic equations of a nonperfect fl
in multiple systems. The corresponding thermodynam
equations and the completeness of the whole picture of
drodynamics are discussed in Sec. III. Finally, we give
brief discussion in Sec. IV. In the Appendix, the main phy
cal quantities are represented by means ofS,Sa without
4-velocity.

II. GENERAL RELATIVISTIC HYDRODYNAMIC
EQUATION FOR NONPERFECT FLUID

Many years ago, we already knew the general expres
of T̄ab for a thermally conducting, viscous and compressi
fluid in a global coordinate system@16,6,4#

T̄mn5eumun1ph̄mn2
1

3
buh̄mn2ls̄mn1

2

c2 q(mun) , ~2.1!

where p is the isotropic pressure,um is the 4-velocity~um

[dxm/dt, umum52c2!, e is the density of total mass
energy~including rest mass, thermal energy, compressio
energy, and so on!, here the density means the total ma
energy contained in a unit three-dimensional volume of
rest frame,s̄mn is the shear tensor

s̄mn5u~m;n!1
1

c2 a(mun)2
1

3
uh̄mn , ~2.2!

where

h̄mn[gmn1
1

c2 umun ~2.3!

is the project operator,l>0 is the coefficient of shear vis
cosity,b>0 is the coefficient of bulk viscosity,

u5um
;m ~2.4!

is the expansion scalar,qm is the heat flux vector

qm52kh̄m
nS T,n1

1

c2 Tu̇nD , ~2.5!

whereu̇m[]Tum, k>0 is the coefficient of thermal conduc
tivity, T is the temperature and

am[um;nun ~2.6!

is the 4-acceleration. It is easy to prove that

hmnun5s̄mnun5anun5qnun50. ~2.7!
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From Eqs.~2.1!–~2.6!, it is obvious that the stress-energ
tensorT̄mn includes onlyum and their derivatives plus sev
eral scalar functions:l,b,k,e,p,T,... which are determined
by the physical property of material. Normally, they are d
fined in the rest frame of an observer comoving with
element of the fluid. As usual treatment,l, b, andk can be
considered as constant in a certain region. In the extre
condition ~e.g., neutron star!, they are functions of tempera
ture and pressure, also of space-time.

Since we hope to express the hydrodynamic equation
each local coordinate system, we first express the str
energy tensorTab in a local coordinate system. As we kno
l,b,k,e,p,T,u are scalars.um ,am ,h̄mn ,s̄mn ,qm are four-
dimension vectors or tensors in the global coordinate syst
in local coordinate system they are substituted
Ua ,Aa ,hab ,sab ,Qa without changing the physical mean
ing. Then the stress-energy tensor in local coordinate s
tems reads

Tab5eUaUb1phab2
1

3
buhab2lsab1

2

c2 Q(aUb), ~2.8!

where we raise the indices by means of project opera
since we have similar equations as Eq.~2.7! in local coordi-
nate systems.

In the following part, we will expressu, Aa , sab, Qa by
means ofe, p, T, l, b, k, W, Wa and three-dimensional ve
locity Va. Then we expresse andVa in terms ofS, Sa, p, T,
l, b, and k. Finally, the stress-energy tensorTab are pre-
sented by means ofS, Sa, W, Wa, p, T, l, b, andk. At first
glance we might doubt whyTab can be expressed byS, Sa

and their derivatives, sinceTab have 10 components, butS
andSa only 4. In factTab are not only expressed byS and
Sa, but also by their derivatives. As we know, the stres
energy tensor of nonperfect fluid can be expressed
4-velocity and its derivatives@6#. Therefore if we can estab
lish the relation betweenUa and S, Sa in 1-PN level, it is
not difficult to expressTab by means ofS, Sa and their
derivatives.

The 4-velocityUa5dXa/dt can be expressed to requir
order as

U05cF11
1

c2 S W1
1

2
V2D G1O~3!, ~2.9!

Ua5
VaU0

c
5Va1

Va

c2 S W1
V2

2 D1O~4!,

~2.10!

where Va and V are the three-dimension velocity and i
value. First we calculate the expansion scalar and get

u5U ;m
m

5
]Va

]Xa 1
1

c2 F]Va

]Xa S W1
V2

2 D13
dW

dT
1

1

2

d

dT
V2G1O~4!.

~2.11!
1-3
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The components of 4-accelerationAa (Aa[Ua;bUb) take
the form

A05U0;bUb52
1

2c

d

dT
V21

1

c
W,bVb1O~3!,

~2.12!

Aa5Ua,bUb5
dVa

dT
2W,a1O~2!. ~2.13!

The shear tensor turns out

s005
1

c2 S 1

2
V2

,cV
c2

1

3
V2Vc

,cD1O~4!, ~2.14!

s0a5
1

c S V(a
,b)2

1

3
dabV

c
,cDVb1O~3!, ~2.15!

sab5V(a
,b)2

1

3
dabV

c
,c1

1

c2 F S 1

2
V22WD

3S V(a
,b)2

1

3
dabV

c
,cD1

dV(a

dT
Vb)2

1

6
dab

dV2

dT

1
1

2
V2

,~bVa)2
1

3
VaVbVc

,cG1O~4!. ~2.16!

The components of the project operatorhab are given by

h005
V2

c2 1O~4!, ~2.17!

h0a5
Va

c
1

1

c3 Va~2W1V2!2
4

c3 Wa1O~5!, ~2.18!

hab5dabS 12
2W

c2 D1
VaVb

c2 1O~4!. ~2.19!

Then the heat fluxQa can be written as

Q052kh0bS T,b1
1

c2 TU̇bD52
k

c
VbT,b1O~3!,

~2.20!

Qa52khabS T,b2
1

c2 TU̇bD
52kT,a2

k

c2 S d

dT
~TVa!2W,aT22WT,aD1O~4!.

~2.21!

The stress-energy tensor then can be deduced as
06400
T005c2e1~2W1V2!e1O~2!, ~2.22!

T0a5ceVa1
1

c FeVa~2W1V2!1pVa2lV(a
,b)V

b

2
1

3
~b2l!VaVc

,c2kT,aG1O~3!, ~2.23!

Tab5eVaVb1pdab2
1

3
~b2l!dabV

c
,c

2lV(a
,b)1

1

c2 H e~2W1V2!VaVb

22pWdab1pVaVb1
1

3
~b2l!dab

3FVc
,cS W2

1

2
V2D2

1

2

dV2

dT G
2

1

3
~b2l!VaVbVc

,c2lF S 1

2
V22WD

3V(a
,b)1

1

2
V2

,~aVb)1
dV(a

dT
Vb)G

2bdab

dW

dT
22kT,~aVb)J 1O~4!. ~2.24!

As we mentioned already, in the DSX scheme all equati
in different coordinate systems have the same form, there
Eqs. ~2.22!–~2.24! are valid also in the global coordinat
system~only need to change capital letters to small letter!.
According to the definition of sourceS and S i @Eqs. ~1.8!
and ~1.9!#, we get

S5e1
1

c2 @2e~W1V2!13p2bVd
,d#1O~4!,

~2.25!

Sa5VaFe1
1

c2 S e~2W1V2!1p2
1

3
~b2l!Vd

,dD G
2

l

c2 V,b)
~a Vb2

k

c2 T,a1O~4!. ~2.26!

From Eqs.~2.25!, ~2.26! and considering PN approximation
we can get the expressions of three-dimension velocityVa

ande by means ofS, Sa, p, l, b, k, andT as

Va5
Sa

S F11
1

c2 XSdSd

S2 1
2p

S
2

2b1l

3S S Sd

S D
,d
CG

1
l

c2

Sd

S2 S S (a

S D
,d)

1
k

c2S
T,a1O~4!, ~2.27!
1-4
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GENERAL RELATIVISTIC HYDRODYNAMICS IN . . . PHYSICAL REVIEW D63 064001
e5S2
1

c2 F2SS W1
SdSd

S2 D13p2bS Sd

S D
,d
G

1O~4!. ~2.28!

We also can rewrite the expressions ofUa, u, Aa, sab, Qa,
andTab by means ofS, Sa instead ofe andVa ~to see in the
Appendix!.

SubstitutingTab into evolution equations, then the hydro
dynamic equations for nonperfect fluid in local coordina
system turns out

]S

]T
1

]Sa

]Xa 5
1

c2 F2SdṠd

S
2

ṠSdSd

S2 13ṗ2bu̇2SẆG
1O~4!, ~2.29!

]

]T F S 11
4W

c2 DSaG1
]

]Xb F S 11
4W

c2 DTabG
5S]aW1

4

c2 @S]TWa2Sb~]aWb2]bWa!#1O~4!,

~2.30!

whereṠ[]S/]T et al., Tab is shown in Eq.~2.24! @a com-
plete representation with substitutinge andVa by Eqs.~2.27!
and ~2.28! is given in Appendix Eq.~A13!#. Therefore we
now have hydrodynamic equations of nonperfect fluid in
cal coordinate systems. In principle we can write down h
drodynamic equations in any local coordinate system
global coordinate systems with the same form in the D
scheme. Then the time evolution ofB-D moments can be
calculated out.

When l5b5k50, Eqs. ~2.29! and ~2.30! turn to the
equations of perfect fluid, they read

Ṡ1S ,a
a 5

1

c2 S 2ṠdSd

S
2

ṠSdSd

S2 13ṗ2SẆD 1O~4!,

~2.31!

]

]T F S 11
4W

c2 DSaG1
]

]Xb F S 11
4W

c2 D
3XSaSb

S S 11
ScSc

S2c2 1
2p

Sc2D1pdabS 12
2W

c2 D CG
5S]aW1

4

c2 @S]TWa2Sb~]aWb2]bWa!#1O~4!.

~2.32!

These are the PN hydrodynamic equations of perfect flui
a local coordinate system.

III. PN THERMODYNAMIC EQUATIONS
IN THE DSX SCHEME

The hydrodynamic equations are incomplete without d
cussion of the corresponding thermodynamic equations.
06400
-
-
d
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s

we mentioned before, for a ‘‘simple fluid’’ only the numbe
densityn and the entropy per baryons determine the whole
composition of the fluid. Therefore equations of state are

T5T ~n,s!, ~3.1!

p5p~n,s!. ~3.2!

The number densityn satisfies the law of baryon conserv
tion (nUa) ;a50, i.e.,

dn

dt
5

dn

dT F11
1

c2 XW1
1

2 S SdSd

S2 D CG1O~4!

52nU;a
a 52nu. ~3.3!

By means ofs, we may define the entropy 4-vector as

Sa5nsUa1Qa/T, ~3.4!

Sa satisfies PN equation of heat transfer

T Sa
;a5

1

3
bu21lsabsab1

k

T habS T,a1
1

c2 TAaD S T,b

1
1

c2 TAbD . ~3.5!

The PN equation of heat transfer in local coordinate syste
of the DSX scheme has an explicit form:

nT ds

dt
5nT ds

dT F11
1

c2 S W1
1

2
V2D G

5
1

3
~b2l!u21lVa

,bV(a
,b)1kT,aa

1
1

c2 H lF2Va
,bV(a

,b)S W1
1

2
V2D

12Va
,a

dW

dT
2

1

2
Va

,bVbVa
,cV

c12V(a
,b)

dV(a

dT
Vb)

1
1

8
lV2

,aV2
,aG1kF2T,aS dVa

dT
2W,aD1T S dVa

dT D
,a

1~VaT,a! ,T1S Va
dT
dT D

,a

22WT,aa2T W,aaG J
1O~4!, ~3.6!

whereVa is expressed in Eq.~2.27!.
Sometimes Navier-Stokes equation (hm

aTmv
;n50) is also

considered as a thermohydrodynamic equation. It is equ
lent to Eqs.~2.29! and ~2.30!.

At the end of this section we will point out equations as
whole to be close. For 1-PN nonperfect fluid in every loc

coordinate systemA, we have 44 functions:S, Sa, WA
1

, Wa
A

1

,
hab, u, Aa , sab , Qa, Va, p, T, n, s, and 3 coefficients:b, l,
k. Normallyb, l, andk are determined by solid state physi
1-5
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CHONGMING XU AND XUEJUN WU PHYSICAL REVIEW D63 064001
which is beyond our discussion. We just have 10 differen
equations, 2 algebraic equations, and 32 definitions

relations of function to fit 44 functions:WA
1

, Wa
A

1

satisfy 1-PN
Einstein field equations with harmonic condition Eqs.~1.10!,
~1.11!; S, Sa satisfy 1 PN hydrodynamic equations Eq
~2.29!, ~2.30!; n ands satisfy the law of baryon conservatio
@Eq. ~3.3!# and equation of heat transfer@Eq. ~3.6!#; p andT
satisfy two algebraic equations of state@Eq. ~3.1! and Eq.
~3.2!#; hab, u, Aa , sab , Qa, and Va are defined by Eqs
~2.17!–~2.19!, Eq. ~2.11!, Eqs. ~2.12!, ~2.13!, Eqs. ~2.14!–
~2.16!, Eqs.~2.20!, ~2.21!, and Eq.~2.27! which are 32 defi-
nitions or relations corresponding to 32 functions.

It seems close for every local coordinate system, but
is not true, because in the equations of Secs. II and III th

areWA andWa
A , but notWA

1

andWa
A

1

. As we mentioned in

Sec. I, to getW andWa we have to knowWB
1

andWa
B

1

in all
other local coordinate systems@see Eq.~1.4!#. If there areN
local coordinate systems, we have 443N functions and 44
3N equations and definitions. Therefore the equations a
whole are close. Although equations are complex, if
know the boundary conditions and initial conditions, w
could calculate these equations numerically. In principle,
1 PN hydrodynamic problem of a simple fluid inN-multiple
coordinate systems could be solved.

IV. CONCLUSION

~1! In this paper it is the first time to present hydrod
namic equations of a thermally conducting, viscous, a
compressible fluid in every local coordinate system. We
not only writing the hydrodynamic equations in every loc
coordinate system formally, but we also clearly know t
relations ofW and Wa between different local coordinat
systems by means of the theory of reference system in
DSX scheme@12#.

~2! Tab can be expressed by four functions~S and Sa!
and their derivatives. Then the evolution equations ofS, Sa

in the DSX scheme is a complete set. Therefore, the t
dependent mass-multiple momentsML(T) and spin-
multipole momentsSL(T) in the DSX scheme can be nu
merically calculated out from the evolution equation, equ
tion of state, physical properties of material, and the abo
mentioned relations and definitions. In that meaning
work is a supplement of the DSX scheme.

~3! We would like to say some words about the possi
applications of our work. In the problem of coalescence
compact binaries@11#, we can calculate PN spin and qua
rupole moments and their time derivatives by means of
hydrodynamic equations in each local coordinate system
the coalescing process. Besides this, we might consider
PN influence of a globular cluster on binary systems. As
know, the Newtonian influence of globular cluster on bina
systems is considered already as a tidal force. Certainly
PN influence must be very small, but it should exist.
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APPENDIX

In the DSX scheme, 4-velocity is not introduced. The
fore if we want to express our discussion on hydrodynam
equations with the symbols in the DSX scheme only,
have to reexpressUa, u, Aa , sab, Qa, Tab by means ofS
andSa without velocity, which we are giving in this appen
dix.

According to Eqs.~2.9!, ~2.10!, and~2.27!, the 4-velocity
can be represented as

U0/c511
1

c2 S W1
1

2

SbSb

S2 D1O~4!, ~A1!

Ua5
VaU0

c
5

Sa

S F11
1

c2 X32 SdSd

S2 1W1
2p

S

2
2b1l

3S S Sd

S D
,d
CG1

l

c2

Sd

S2 S S (d

S D
,a)

1
k

c2

T,a

S

1O~4!. ~A2!

Then the expansion scalaru reads

u5SSa

S D
,a

1
1

c2 HSSa

S D
,a
SW1

3

2

SdSd

S2 D1 2SaSd

S2 SSd

S D
,a

13
dW

dT
1

Sd

S S d

dT

Sd

S D1FSa

S2 X2p2
2b1l

3 S Sd

S D
,d
CG

,a

1lFSd

S2 S S (d

S D
,a)

G
,a

1S k

S
T,aD

,a
J 1O~4!. ~A3!

The components of acceleration are

A05
Sd

cS
XW,d2

d

dT S Sd

S D C1O~3!, ~A4!

Aa5
d

dT S Sa

S D2W,a1O~2!. ~A5!

The shear tensorsab can be expressed as

s005
1

c2

Sd

S F S Sd

S D
,a

Sa

S
2

1

3

Sd

S
uG1O~4!, ~A6!

s0a5
1

c F S S (a

S D
,d)

Sd

S
2

1

3

Sa

S
uG1O~3!, ~A7!
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sab5S S (a

S D
,b)

2
1

3
dabu1

1

c2 H S (a

S

d

dT S Sb)

S D1
3

2 S SdSdS (a

S3 D
,b)

2
u

3

SaSb

S2 2WS S (a

S D
,b)

1F S 2p2
2b1l

3
u D S (a

S2 G
,b)

1
2

3
dabWu1

l

2 FSd

S
XS S (a

S D
,d

1S Sd

S D
,~a

CG
,b)

1kS T,~a

S D
,b)

1dab

dW

dT J 1O~4!. ~A8!

The heat fluxQa can be written as

Q052
k

c
T,b

Sb

S
1O~3!, ~A9!

Qa52kT,a2
k

c2 X d

dT S T Sa

S D2T W,a22WT,aC1O~4!. ~A10!

Substituting above quantities intoTab and consideringl, b, k, as constants, finally the stress-energy tensor can
represented byS, Sa, W, p, l, b, k, andT as

T005c2S2
SdSd

S
23p1bS Sa

S D
,d

1O~2!, ~A11!

T0a5cSa , ~A12!

Tab5
SaSb

S
1pdab2

1

3
~b2l!dabu2lS S (a

S D
,b)

1
1

c2 H 2pS SaSb

S2 2dabWD1
SaSbSdSd

S3 1
2

3
buS dabW2

SaSb

S2 D
2lFS S (a

S S SdSd

S2 1
2p

S
2

2b1l

3S
u D C

,b)

1
l

2 XSd

S2 F S Sd

S D
,~a

1S S (a

S D
,d
GC

,b)

1S S (a

S D
,b)

S SdSd

2S2 2WD1
S (a

S S d

dT

Sb)

S D
2

S (a

S2 S Sb)

S D
,d

Sd1dab

dW

dT
1

2

3
dabWu1

u

3

SaSb

S2 1kS T,(a

S D
,b)

GJ 1O~4!. ~A13!

Whenl5b5k50 Eqs.~A11!–~A13! return to the stress-energy tensor of a perfect fluid. SubstitutingTab into Eqs.~2.29!
and ~2.30!, we have the equations for a perfect fluid@Eqs.~2.31! and ~2.32!#.
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