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General relativistic hydrodynamics in multiple coordinate systems
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In this paper, the general relativistic hydrodynamic equations of a thermally conducting, viscous and com-
pressible fluid in multiple coordinate systems are deduced in terms of the scheme developed by Damour, Sofel,
and Xu(DSX schemg Our paper is the first one to describe the hydrodynamic equations of a nonperfect fluid
in every local coordinate system at the first post-Newtonian approximation of Einstein’s theory of gravity. The
hydrodynamic equations in local coordinate systems are useful for calculating multipole moments of post-
NewtonianN-body problems in the DSX scheme. Therefore, this paper is a supplement to the DSX scheme in
some meaning. The corresponding PN thermodynamic equations in local coordinate systems are also repre-
sented. Lastly, some remarks on the possible applications are mentioned.
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[. INTRODUCTION four metric potentials\¢,w;) as functions ok*; similarly, a
description ofow in eachA-frame moving of bodyA with

General relativistic hydrodynamics is an important subjectfour potentials\NA,WQ also. Now we will briefly review the
in classical general relativitjl—4]. The importance results content in the DSX scheme that we shall use later.
not only from a theoretical point of view, but also from the  Since in the DSX scheme the equations of the gravita-
practical application, such as compact stars, precise measutienal metric potentials are linear, the metric can be split as
ments in geophysics and cosmological problems. First order
post-Newtoniar{1PN) hydrodynamics has been investigated o
by many authorge.g., Chandrasekhdb]; Greenberg[6]; WA=W,+ W5, (1.9
Taub[2]; Blanchet, Damour, and Sctea [ 7]; Will [8] et al). .
But we should point out that most of the calculations are inwhere WA
one-global coordinate system, or we will call them one co- “
ordinate hydrodynamics. Only in very few casgy did self potentialsW” are linearly related to the corresponding
someone consider the hydrodynamic equations of a perfeéith global contribution, i.e.,
fluid in a local coordinate system by means of matching
technique[10]. As we know, the calculation of matching A A A
technique is quite long and complex. Until now, no one has w, = A, W, +0(4,2), 1.2
considered complete hydrodynamic equations of a nonper- ) _
fect fluid and corresponding thermodynamic equations infVhere we use the notatio®(n)=0(c""), and O(4,2)
multiple coordinate systems. Multiple coordinate systemdl€anso(4) corresponding tau=0 and®(2) to u=a. The
meanN-local coordinate systems fo# astronomical bodies €Xternal one is linearly related to the part of the global po-
(or N different regions of fluigd and one-global coordinate tentials generated by all the external bodies
system. In some cases, for example in binarjNdyody sys-

is the self-part,V_VZ\ is the external part. The
+

tems, stars in globular clustees al,, it is necessary to intro- V_Vﬁz E WﬁZAﬁaV_V§+ Bﬁ+ 0(4,2), (1.3
duce a local coordinate system for each object to calculate B#A
local multipole momentg11]. That is the reason for this

paper. where A%, are the components of the Jacobian matf,

Before 1991 no complete theory of astronomical refer-aré the inhomogeneous terms. By solving Einstein field
ence systems was available. Damour, Soffel, and X8X) equations we can gav”,, then
presented a new formalism for treating the general-
relativistic celestial mechanics of systems Nfarbitrarily + o
composed and shaped, weakly self-gravitating, rotating, de- WE—wE —Wh—Wh=A_ (W, —B,). (1.4
formable bodie§12—15. This formalism is aimed at yield- -
ing a complete description, at the first post-Newtonian levelFinally, we get external potentiaNﬁ in local coordinate
of the global dynamics of sucN-body systems, the local ’
gravitational structure of each body, and the way the extern
and internal problems fit togethéfa complete theory of
reference systemg! In the DSX scheme, there aié+ 1
coordinate systems: one global coordinate syst&fn
=(ct,x') andN-local coordinate system$*=(cT,X?). The coordinate system first. The self paM is determined by a
description of the metric tensgy,, in the global system with  set of mass- and spin-multipole momefige call themB-D

ﬁystem (of body) A from the self-potentialdV® of every
4ocal coordinate systerB. Then from Eq.(1.1) we get the
W% in local coordinate system#. Therefore, to obtain
W, we have to derive the self-potentials in each local
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momenty, (ME,SP), of body B, whereas the external influ- 1 .
. ) ) . Fe=3E,+ = B,2", (1.19
ence can be described by means of suitably defined tidal c
moments G, ,H,).
The metric in the local coordinate systefns written in
the form 4
E.= 0 ,W+ = d7W,, (1.15
2WA ¢
Goo= —exp( -7 |+ o). (15
Bab: _4( &aWb— &bWa). (11@
A AW
GOa:——Cg—+O(5), (1.6 _ o _
These equations are valid in every local coordinate system.
WA Even in global coordinate systems the form of equations is
i a 1
GA = 5abeXP< = )+O(4). 1.7 we same after replaciny, 2, W, andW, by o, ¢', w, and
|

In the original DSX papers, the sources are described by
Later we omit the labef (Or B) on all quantities pertaining > and Ea' but the stress-energy tensﬂjf‘ﬁ has not been

to the local frame if it is unnecessary to point out the speciakxplicitly expressed by,32 and their derivatives, since a
coordinate system. In the DSX scheme we still do not knows-yelocity has not been introduced. Therefore @12 and

the time evolution of multipole moments, because it is deEq_ (1.13 cannot be used directly to calculate the time evo-
pendent on the hydrodynamic equations of each body. Ition of multipole moments, in this sense the DSX scheme
some problems, like the coalescence of compact binary syss incomplete for the description of hydrodynamic problems.
tems[11], the time evolution of multipole moments is of why shall we discuss hydrodynamics in the DSX scheme?
considerable importance. From the definition of massThere are two reasons for that: first, in this scheme the trans-
multipole momentg12] and spin-multipole momentsl4]  formation properties of gravitational field variabfév and

we need to know the time evolution & and%® in each  W?) are known. Second, all equations in every local coordi-
local frame, which are defined by nate system as well as in global coordinate systems have the
same form. That means if we write down any equation in one

— T4 T (1.9 local coordinate system, then we have it in every local coor-

c? ' dinate system and in the global coordinate system as well.

Therefore it might be easier for us to use the DSX scheme in

o TO2 the discussion of PN hydrodynamics in multiple coordinate
0= ¢ (1.9 systems.

In this paper, our symbols and signature follow the DSX

whereT*# is stress-energy tensor. By means of the source§chemé12]. All the notations and convention are taken from
S and3.?, the Einstein field equations in the harmonic gaugethe DSX scheme. Here we summarize the notations in their

can be written as scheme which we shall use in this paper. The signature is
+ ++, spacetime indices go from 0 to 3 and are denoted by

+ greek indices, while spatial indicés to 3 are denoted by
o1 W latin indices. We use Einstein’s summation convention for
VW= 7 —5z=—4nGX+ 0(4), (.10 poth types of indices, whatever the position of repeated in-

dices. The “global” (or “common view”) coordinate sys-
. tem used for describing the overall dynamics of the multiple
V2W,= —47G32+ 0(2). coordinate systems will be denoted by“j=(ct,x'). By
(1.12) contrast, each of the “local” coordinate systems, used for
describing the internal dynamics of each body, will be de-
The hydrodynamic equatiorienergy equation and Euler noted by capital letters{*)=(cT,X). We shall distinguish

equation read the second part of the latin alphaligjk,...) for global spa-
tial coordinate system from the first part of the latin alphabet
d g L, 1o _ 14 (a,b,g...) for local spatial coordinate system as done in the
Tt A T @2y o), DSX scheme. The symmetrization of indices will be denoted

(112 by round bracketge.g., V@ =3 (V2 ,+V® )] In the fol-
lowing discussion on hydrodynamics, we consider a “simple

J AW 9 A fluid” in each body as usudl16], certainly in a different
5T (1+ ?2-) 28+ it ?2-) TP body (or a different regiona different simple fluid could be
taken. By a so-called simple fluid we mean the chemical
=F¥T,X3+0(4), (1.13  composition of the fluid is fixed uniquely by two thermody-
namic variables: the total number density of baryorasnd
where the entropy per baryor. We can express the stress-energy
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tensorT2® in terms of3,,32 (4 functions and their deriva-
tives at the 1-PN level for a nonperfect fluid. Then we write

PHYSICAL REVIEW D63 064001

From Egs.(2.1)—(2.6), it is obvious that the stress-energy

tensorfw includes onlyu, and their derivatives plus sev-

down the hydrodynamic equations in multiple coordinateera| scalar functionsk, 3.k, €,p,7,... which are determined
systems. As a special example we express the formulas forigy the physical property of material. Normally, they are de-
perfect fluid explicitly. With these equations and some thertined in the rest frame of an observer comoving with an
modynamic onesthe equation of state, the equation of heatelement of the fluid. As usual treatment, 3, andk can be

transfer and so gpwe can obtain the time evolution of the
multipole moments in principle. Therefore in one sense, ou

considered as constant in a certain region. In the extreme
tondition (e.g., neutron starthey are functions of tempera-

work is a supplement of the DSX scheme. In Sec. Il, Weyyre and pressure, also of space-time.

derived the PN hydrodynamic equations of a nonperfect fluid - since we hope to express the hydrodynamic equations in
in multiple systems. The corresponding thermodynamiceach local coordinate system, we first express the stress-
equations and the completeness of the whole picture of hyenergy tensof*# in a local coordinate system. As we know

drodynamics are discussed in Sec. Ill. Finally, we give
brief discussion in Sec. IV. In the Appendix, the main physi-
cal quantities are represented by meansXgE? without
4-velocity.

Il. GENERAL RELATIVISTIC HYDRODYNAMIC
EQUATION FOR NONPERFECT FLUID

Many years ago, we already knew the general expressio?ag: cUUB +
of T8 for a thermally conducting, viscous and compressible

fluid in a global coordinate systefi6,6,4

- 1 _ 2
TMV:euMuﬁphW—§,Behw—)\crw+?qwuv), (2.1

wherep is the isotropic pressurey, is the 4-velocity(u”
=dx*/dr, u“uM=—c2), € is the density of total mass-

a)\,ﬁ,k,e,p,T,H are scalarsu, ,a

wNy,0,,.q, are four-
dimension vectors or tensors in the global coordinate system,
in local coordinate system they are substituted by
Uy AaiNag 045,Q, Without changing the physical mean-
ing. Then the stress-energy tensor in local coordinate sys-
tems reads

1 2
ph*A— §ﬂ6haﬁ_)\gaﬁ+ EZQ(auﬂ), (2.9

where we raise the indices by means of project operator,
since we have similar equations as E2}.7) in local coordi-
nate systems.

In the following part, we will expresg, A,, o*#, Q* by
means ofe, p, 7, \, B, k, W, W and three-dimensional ve-
locity V& Then we express andV? in terms ofZ, 22, p, 7,

energy(including rest mass, thermal energy, compressionak, 8, andk. Finally, the stress-energy tensof” are pre-
energy, and so 9nhere the density means the total masssented by means &, 2, W, W%, p, 7, \, B, andk. At first
energy contained in a unit three-dimensional volume of theglance we might doubt why*? can be expressed &, 32

rest frame,, is the shear tensor

o 1 1
O up=Unt ?awuy)—gehw, (2.2
where
szgﬂfl— Ezuﬂuy (2.3

is the project operaton =0 is the coefficient of shear vis-
cosity, 8=0 is the coefficient of bulk viscosity,

O=u*., (2.9
is the expansion scalag,, is the heat flux vector
— 1
q,=—kh, Iﬁ;?ﬂv , (2.5

whereu,=d+u,,, k=0 is the coefficient of thermal conduc-
tivity, 7' is the temperature and

a,=u,.,u” (2.6
is the 4-acceleration. It is easy to prove that
h,u"'=o,u"=a,u’=q,u"=0. (2.7

and their derivatives, sincE*? have 10 components, bit
and>2 only 4. In factT*# are not only expressed By and
32, but also by their derivatives. As we know, the stress-
energy tensor of nonperfect fluid can be expressed by
4-velocity and its derivativegg]. Therefore if we can estab-
lish the relation betweeb® and, 32 in 1-PN level, it is
not difficult to expressT*? by means of%, 32 and their
derivatives.

The 4-velocityU“=dX*/d7 can be expressed to require
order as

1 1
U=c 1+? vv+§v2 +0(3), (2.9
VauO a VZ
ud= =Vi+ — W+ — +0(4),
(2.10

where V& and V are the three-dimension velocity and its
value. First we calculate the expansion scalar and get

=%,

_[;Va+ LoV W+V2 +30|W+1 d V2 +0(4

“aa e\ W T3 aT T2 aT (4).
(2.11)

064001-3



CHONGMING XU AND XUEJUN WU

The components of 4-acceleratidy), (AC,EUD[;BUB) take
the form

1 d 1 X
Ap=UggUP=—— —V?+ SWpVP+0(3),

2cdT
(2.12
s dva
Aa=U, pUP == W, +0(2). (2.13
The shear tensor turns out
1/1 1

%= ?(EVZ’CVC— §v2v0,C +0(4), (2.14

Oa 1 (a 1 c b
o :E \Y ’b)_gﬁabv e \Y +O(3), (215

ab (a 1 (o 1 1 2
g :V ’b)_gﬁabv ,C+? EV _W

dV(aVb) 15 dv?
T 6 % gT

VOREEPRY:
,b) abV ¢

X
3

1 1
+ 5 V2 eV - S VAVEVE

> +0(4).

(2.19

The components of the project operats? are given by

2

h00= §+O(4), (2.17

a

Oa V l a 2 4 a
h =F+FV (2W+V )_FW +0(5), (2.18

avb
+ 7 + 0(4)

2W

hab= 5ab( 1-= (2.19

Then the heat fluQ“ can be written as

Q%= —kh%

1. k .
Tp+ 3 TUp) == VPT,+0(3),
(2.20

Qaz—khaﬁ(T I )
BT 2V

k(d
= KT, ?(d—T(w )~ W T~ 2WT,a) +0O(4).
(2.21)

The stress-energy tensor then can be deduced as

PHYSICAL REVIEW D63 064001

TO=c2e+ (2W+V?) e+ O(2), (2.22

€VA(2W+V2) +pVa— V@ VP

1
T =ceVi+

+0(3), (2.23

1
— S (B MVAVE KT,

1
T2b=eVaV/P+ps,,— 3(B—N) SapVC .

1
—\V@ 4 2| 2w+ VZ)vayP

1
—2pWé,p+ pVAVP+ 3(B=2)8ap

X

ve [w 1V2 1dV2
. 2 2 dT

! vaybye (1v2 W)
—§(B—>\) A

(a

1 dVv
XV(ayb) + Esz(aVb)-i-

b)
dTV}

dw o
~ Bay g~ 2KT oV

+0O(4). (2.24)

As we mentioned already, in the DSX scheme all equations

in different coordinate systems have the same form, therefore

Egs. (2.22—(2.24) are valid also in the global coordinate
system(only need to change capital letters to small lefters
According to the definition of sourcE andX' [Egs. (1.8
and(1.9)], we get

S=e+ Elz-[ze(wwz) +3p— VY, ]+ 0(4),
(2.25

Sa=y\a

1 2 1 d
e+ 7| €2WH+V?)+p= 2 (B-MV4
N e K
— VOV - 2Tt O4). (2.26

From Egs.(2.25), (2.26) and considering PN approximation,
we can get the expressions of three-dimension veldéity
and e by means off, 22, p, \, B8, k, and7 as

21

k
’d)+ ET,aﬂL 0(4),

va=

32 1 (3939 2p 2B+\
Sl A S >
A Sd/3@
c232\y

+ (2.27
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1 ds.d >d we mentioned before, for a “simple fluid” only the number
€=3— 2 23| W+ 7 +3p ,3( ) densityn and the entropy per baryadetermine the whole
d composition of the fluid. Therefore equations of state are
+ . :
0(4) (2.28 T=T(n,s), 3.1
We also can rewrite the expressionssf, 6, A%, o*#, Q¢,
and TP by means o, 32 instead ofe andV? (to see in the p=p(n,s). 3.2

Appendix).
SubstitutingT*# into evolution equations, then the hydro-
dynamic equations for nonperfect fluid in local coordinate

The number density satisfies the law of baryon conserva-
tion (nU%).,=0, i.e.,

system turns out dn  dn 1 ( ds d )
. . - = o= 1+—2 W+—(7 +O(4)
S . &Ea_ 1 {zzdzd Ezdzd o 0 EW dr dT Cc 2 3
aT axa 2| s sz "9PTh — —nuU%=—no. (3.3
+0(4), (2.29 By means ofs, we may define the entropy 4-vector as
J 4\W J 4\W Se— o @
e ~lsa ~Tlgab nsU*+Q%/7, (3.9
aT| |1 cz)2 toxe| (1T CZ)T }
4 S* satisfies PN equation of heat transfer
=39,W+ ;[zaTwa—zb(aawb—abwa)]+0(4), 1 K 1
(2.30 7S ;a=§/3‘0 Ao 50 +_Th T,+ EZTAa)(Tﬁ
where3 =g3/4T et al, T2 is shown in Eq(2.24) [a com- + EZTAB)- (3.5
c

plete representation with substitutie@ndV?@ by Eqs.(2.27)
and (2.28 is given in Appendix Eq(A13)]. Therefore we . . .
now have hygrodynamiggquationg of nonperfect fluid in IO_The PN equation of heat transfer in local coordinate systems
cal coordinate systems. In principle we can write down hy—Of the DSX scheme has an explicit form:
drodynamic equations in any local coordinate system and ds ds
global coordinate systems with the same form in the DSX”Td—T—anT
scheme. Then the time evolution BFD moments can be
calculated out. 1 5 a \a

When A=B=k=0, Egs.(2.29 and (2.30 turn to the =3 (B=NO"HNVEVE 5+ kT aa
equations of perfect fluid, they read

1
W+ —v2)

1+ !
c? 2

1
: += x[zva,bv<a,b)(w+ §V2>
S+3a= (22d2d_22d2d+3 SW|+0(4
,a_CZ 2 22 p—= ( ) e dw lva vaa VC 2V(a V(a
(2.33 VAT 2 "
Jd 4\W J 4\W 1 dva dve
R - a -
Gl CZ)E Tl 1t Cz) +§xv2,av2 +k 27(dT w,a)+7<ﬁ)a
(zazb I A zw)
~ S22t 52| TP e +(VAT,) 1+|V dT) —2w7,aa—7w,aa”
4
=30,W+ EZ[E ITW,—3P(9,Wy— d,W,) ]+ O(4). +0(4), (3.6)

(232 whereV? is expressed in Eq2.27).
Sometimes Navier-Stokes equatiam;T#*,,=0) is also

These are the PN hydrodynamic equations of perfect fluid Ir2:onsidered as a thermohydrodynamic equation. It is equiva-

a local coordinate system. lent to Egs.(2.29 and (2.30
At the end of this section we will point out equations as a
ll. PN THERMODYNAMIC EQUATIONS whole to be close. For 1-PN nonperfect fluid in every local

IN THE DSX SCHEME . .
coordinate syster, we have 44 functionss, 32, WA, W4,

The hydrodynamic equations are incomplete without dish®?, 6, A,,, Tap, Q% V2, p, 7, n, s, and 3 coefficientss, \,
cussion of the corresponding thermodynamic equations. Ak. Normally 8, A, andk are determined by solid state physics
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which is beyond our discussion. We just have 10 differentialence Foundation(19873008 and 19835040The authors
equations, 2 algebraic equations, qnd 32 definitions anthank Professor T. Damour, Professor M. Soffel, and

relations of function to fit 44 functionsi®, WA satisfy 1-PN  Professor R. Maartens for helpful discussions.
Einstein field equations with harmonic condition E¢k10),

(1.11); 3, 32 satisfy 1 PN hydrodynamic equations Egs. APPENDIX
(2.29, (2.30; n ands satisfy the law of baryon conservation o _
[Eq. (3.3)] and equation of heat transfgq. (3.6)]; p and T In the DSX scheme, 4-velocity is not introduced. There-

satisfy two algebraic equations of stdteq. (3.1) and Eq. fore if we want to express our discussion on hydrodynamic
(3.2]; h*®, 6, A, o.5, Q% andV? are defined by Egs. equations with the symbols in the DSX scheme only, we
(2.17—(2.19, Eq. (2.11), Egs. (2.12, (2.13, Egs.(2.14—  have to reexpress®, 6, A,, o*#, Q%, T*# by means oft
(2.16), Egs.(2.20, (2.21), and Eq.(2.27) which are 32 defi- andX? without velocity, which we are giving in this appen-
nitions or relations corresponding to 32 functions. dix.

It seems close for every local coordinate system, but that According to Eqs(2.9), (2.10, and(2.27), the 4-velocity
is not true, because in thg equati+ons of Secs. Il and Il thergan be represented as

areW” andW5, but notW” andW5. As we mentioned in

bs' b
Sec. |, to geW andW, we have to knowV/® andW? in all U%c=1+ iz W E 2_2) +0(4), (A1)
other local coordinate systerhsee Eq.(1.4)]. If there areN c 2 X
local coordinate systems, we havexdM functions and 44
XN equations and definitions. Therefore the equations as a Vvayo 32 1(3 x93 2p
whole are close. Although equations are complex, if we ua= TS 1+C7 5 ST <
know the boundary conditions and initial conditions, we
could calculate these equations numerically. In principle, the 28+ (3d A Sd/3(d K T
1 PN hydrodynamic problem of a simple fluid Mrmultiple — ’B—(E— + = 2—2(2— +—= =2
coordinate systems could be solved. 3% X/ ] o2, et %
+0(4). (A2)

IV. CONCLUSION

(1) In this paper it is the first time to present hydrody-
namic equations of a thermally conducting, viscous, an
compressible fluid in every local coordinate system. We are 9:(

dThen the expansion scaldrreads
38 N 1 Ea> ( 32"2“’) ZEaEd(Ed)
not only writing the hydrodynamic equations in every local a ¢ a a
coordinate system formally, but we also clearly know the

s s Whasr Tzl
relations of W and W, between different local coordinate dw 39/d 39 [32 2B+\ (3¢
systems by means of the theory of reference system in the +Sﬁ+§ ars + 32 2p— 3 |y
DSX schemd12]. &

(2) T*# can be expressed by four functiofis and 3%) sd/s( k
and their derivatives. Then the evolution equation& pF 2 +A gz(?) } + (gfa +0(4). (A3)
in the DSX scheme is a complete set. Therefore, the time )l a
dependent mass-multiple momentsl (T) and spin-
multipole momentsS, (T) in the DSX scheme can be nu- The components of acceleration are
merically calculated out from the evolution equation, equa-
tion of state, physical properties of material, and the above- sd 4 /sd
mentioned relations and definitions. In that meaning our A =—(W __(_
work is a supplement of the DSX scheme. O e\ dT Y

(3) We would like to say some words about the possible
applications of our work. In the problem of coalescence of d a
compact binarie$11], we can calculate PN spin and quad- .= _(_) —W ,+0(2). (A5)
rupole moments and their time derivatives by means of the a7l X ’
hydrodynamic equations in each local coordinate system in
the coalescing process. Besides this, we might consider thghe shear tensar,; can be expressed as
PN influence of a globular cluster on binary systems. As we
know, the Newtonian influence of globular cluster on binary
systems is considered already as a tidal force. Certainly the 00_ iz

PN influence must be very small, but it should exist. 7 ¢

,a

,a

)+ O(3), (A4)

39(z9 32 139
3( ) +0(4),  (A6)

3/ 3 33"
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ab (E(a) 15 ot 1(3@d (Eb)) 3(2"2"2("") 6 333P (E(a) N (2 23+)\0 E(a}
o =\ — 5 03  J=| < = - A - ~ e
), 3 e AT T 20 3% ) 3 s? 2y 3 )37,
2 A2 2‘3) 3d | L dw
+§5abw‘9+§ g ? d+ E + ? +5abﬁ +0(4). (A8)
' (@ by :b)
The heat fluxQ® can be written as
0= kT > O3 A9
Q=-¢ by T (3), (A9)
a=—k7T K ( d (Tza) TW ,—2WT 4 Al
Q - ,a_EZ d_T ? - a ,a +O( ) ( 0)

Substituting above quantities in®*? and considering\, B, k, as constants, finally the stress-energy tensor can be
represented b, %2, W, p \, 8, k, and7 as

dyd
T®=c?3 - E; —3p+p

3

+0(2), (A11)
d

T%=c3?, (A12)

axy'b (a

1
ab__ _ _ _ N
1= 2 +p5ab 3(,3 )\)5ab0 )\< 2

ST T WL
b EZ p?__ ab T §B ab _?2_

o) S 5 ) )
o 22|l s) Ve ) Uy e T e ety
) (a A1y :b)

{(2(3(2"20‘ 2p 2B+\

B IR S
3@ (3P w 2 9323 [T,
A 3 +5abﬁ+§5abwa+§?+ 5 +0(4). (A13)
,d ,b)

When\=B8=k=0 Egs.(A11)—(A13) return to the stress-energy tensor of a perfect fluid. Substitdiifginto Eqgs.(2.29
and(2.30, we have the equations for a perfect fljiEgs. (2.31) and (2.32].
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