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Anisotropy dissipation in brane-world inflation
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We examine the behavior of an anisotropic brane-world in the presence of inflationary scalar fields. We
show that, contrary to naive expectations, a large anisotropy does not adversely affect inflation. On the
contrary, a large initial anisotropy introduces more damping into the scalar field equation of motion, resulting
in greater inflation. The rapid decay of anisotropy in the brane-world significantly increases the class of initial
conditions from which the observed universe could have originated. This generalizes a similar result in general
relativity. A unique feature of Bianchi type | brane-world cosmology appears to be that for scalar fields with
a large kinetic term the initial expansion of the Universe is quasi-isotropic. The Universe grows more aniso-
tropic during an intermediate transient regime until anisotropy finally disappears during inflationary expansion.
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I. INTRODUCTION are conducive to the advent of inflatideee alsd10]). In
this paper we address the kindred issue of anisotropic initial
Observations of galaxies, quasistellar objé@SO’9 and  conditions. We demonstrate that even very large initial an-
the cosmic microwave background appear to indicate that wgotropy cannot prevent brane-world inflation from occur-
live in a Universe which is remarkably uniform on very large ring, thus generalizing a previous result in general relativity
scales. Yet the homogeneity and isotropy of the universe ig—7]. On the contrary, for a large class of initial conditions,
difficult to explain within the standard relativistic framework the presence of an anisotropy actua'ﬂyreaseshe amount
since, in the presence of matter, the class of solutions to thef inflation. Thus a scalar field dominated universe can even-
Einstein equations which evolve towards a Friedmanny,qly jsotropise and inflate, even if its expansion was very
Robertson-WalkerFRW) universe is essentially a set of jnisotropic to begin with. A unique feature of brane cosmol-
measure zerpl]. The above statement is however only true o js that the effective equation of state at high densities

for space-times containing “normal” matter satisfying en- .an pecome ultra stiff. Consequently matter can overwhelm
ergy conditions which ensure th@) negative pressures can gnear for equations of state which are stiffer than dust, lead-

never grow so large as to dominate the energy densyy, nq to quasi-isotropic early expansion of the Universe in such
=|T;;|, and(ii) the sum of the principle pressures of the fluid gges.
must be non—negativé:i?’:lTii =0. The inflationary scenario,

based as it is on a form of matter which violates these energy
conditions, radically alters the above picture. Indeed, as dem-
onstrated if2-7], a large class of spacetimes both homog-

enize and isotropize under the influence of an effective cos- The 5-dimensionafbulk) field equations are
mological A term. Thus the inflationary scenario can

successfully generate a homogeneous and isotropic FRW-

like universe from initial conditions which, in the absence of Gag=k —AGag+ 8(Y){—N0ag+ Tagt], (1)
A, would have resulted in a universe far removed from the

one we live in today.

Recently there has been a great deal of interest in a COgyhere tildes denote the bulk generalization of standard gen-

mological scenario in which matter fields are confined to a . " ~5 ~ 3 ~
3-dimensional brane-world embedded in a higher dimen-eral relativity quantities, and” =8/M;, whereMy, is the

sional “bulk” space[8]. This higher-dimensional cosmology fundamental 5-dimensional Planck mass, which is typically

generalizes the standard Kaluza-Klein picture by allowingmUCh less than the effective Planck mass on the brihe,

_ 9 . . . .
the presence of large or even infinite non-compact extra di- 1.2<10' GeV. The brane is given in Gaussian normal

H A_ _ _ i
mensions. The issue of inflation on the brane was investi(—:oord'nateSX =(x*,y) by y=0, where x*=(t,x) are

gated in[9], where it was shown that on an FRW brane inspacetime coordinates on the brane. The brane tension is

5-dimensional anti—de Sitter space, extra-dimensional effec@1d 9ag=gag—NaNg is the induced metric on the brane,
with n, being the space-like unit normal to the brane.

Standard-model matter fields confined to the brane make up

Il. BRANE DYNAMICS

; B_
*Electronic address: roy.maartens@port.ac.uk the brane energy-momentum tE”ﬂB (with Tagn==0).
"Electronic address: varun@iucaa.ernet.in The bulk cosmological constant is negative, and is the
*Electronic address: saini@iucaa.ernet.in only 5-dimensional source of the gravitational field.
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The field equations induced on the brane are derived vian the brane, which carries Coulomb, gravito-magnetic and
an elegant geometric approach[irl], leading to new terms gravitational wave effects of the free gravitational field in the

that carry bulk effects onto the brane: bulk. The effective nonlocal energy flux on the brane,
~ _1.2 o
G,,=—AQ,,+ KT, +K*S,,~E,, . (2) Q=5 KN h & 4 gUP,
Here k2=87/M?2 and carries Coulomb and gravito-magnetic effects from the free
P gravitational field in the bulk.
K2 L The local and nonlocal bulk modifications may be con-
N=6=,, A=3k*(A+5K\?), (3)  solidated into an effective total energy-momentum tensor,
K
— 2—tot
Guv=—AQ,,TkT,,, (4)

We assume thatA is chosen so thatA=0. Extra-
dimensional corrections to the Einstein equations on thavhere
brane are of two forms: firstly, the matter fields contribute

local quadratic energy-momentum corrections via the tensor ToOl_T ES _ig
S.», and secondly, there are nonlocal effects from the free S
gravitational field in the bulk, transmitted via the projection

€,, of the bulk Weyl tensor. The matter corrections are'he effective total energy density, pressure, anisotropic
given by stress and energy flux aj&2]
S éTaaTuv_ %TﬂaTav—'— iguv[?’TaBTaB_ (T, p=pl 1+ i) + G—U 5)
_— . S . 2\ N’
and are significant at high energies, i@z \. The projec- KA
tion of the bulk Weyl tensor is o
p
~ Ol=p+_—(p+2p)+—, 6
Ex5=Cacapn®n®, pPU=ptor(p+2p) a (6)
which is symmetric and traceless and without components 6
orthogonal to the brane, so thaf,gn®=0 and &g o= (7)

v 4 v
—&,,9a“gs” asy—0. et

The Weyl tensorf:ABCD represents the free, nonlocal 6
gravitational field in the bulk, i.e., the part of the field that is A= 29, (8)
not directly determined at each point by the energy- K<

momentum tensor at that. poin.t. The local part Of_ the bulk  The prane energy-momentum tensor separately satisfies
gravitational field is the Einstein tens@,g, which is de-  the conservation equations,'T,,=0. The Bianchi identi-

termined locally via the bulk field equatiori$). Thus&,,  ties on the brane imply that the projected Weyl tensor obeys
transmits nonlocal gravitational degrees of freedom from thehe constraint

bulk to the brane, including tidafor Coulomb, gravito-
magnetic and transverse traceldgsavitational wave ef-
fects.

If u* is the 4-velocity comoving with mattegwhich we
assume is a perfect fluid or minimally-coupled scalar jield This shows how nonlocal bulk effects are sourced by local
the nonlocal term has the form of a radiative energy-bulk effects, which include spatial gradients and time deriva-
momentum tensail2]: tives; evolution and inhomogeneity in the matter fields can
generate nonlocal gravitational effects in the bulk, which
backreact on the brane. The brane energy-momentum tensor
and the consolidated effective energy-momentum tensor are
both conserved separately. These conservation equations, as
where h,,=g,,+u,u, projects into the comoving rest- well as the brane field equations and Bianchi identities, are
space. Here given in covariant form if12]. We are interested here in the

1 ey particular case of a Bianchi type | brane geometry, the sim-
U=—5KNE Uk plest anisotropic generalization of an FRW brane geometry.

62
V”S#VZTV“SW. 9)

-6
SMVZK[U(UMUV'F %hﬂ,v)_'—P/LV—’_ QMU,,'F QVU/L]’

is an effective nonlocal energy density on the brambich

need not be positiyearising from the free gravitational field lll. ANISOTROPIC BRANE

in the bulk. It carries Coulomb-type effects from the bulk A Bjanchi type | brane has the induced metric
onto the brane. There is an effective nonlocal anisotropic

stress ds?=—dt?+ R2(t)(dx)?, (10)
Puv=—8&"N[h,*h,P—3h*Ph, 1,4 and is covariantly characterized by
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D,f=0, A,=0=0,, Q,=0, wa=0, (11 brane metric withi/=0 leads to a physical 5-dimensional
bulk metric. This would have to be done numericaltiie
where D, is the projected covariant spatial derivatifeis  bulk metric for a Bianchi brane-world is not knoyyrand is
any physically defined scalah,, is the 4-accelerationy, is  a topic for further investigation.
the vorticity, andR7,, is the Ricci tensor of the 3-surfaces  Equation(16) may be integrated after contracting it with
orthogonal tou”. (Note that in the coordinates of E(LO), the shear, to give
we haveu,=—4,°% h =0, and D,f=46,'4;f.)

The conservation equation$2] reduce to 3 632 .
f a#vawle (Hi-H)?’=—., X=0. (19
. =
pt+0O(p+p)=0, (12
- ) We now substitute into Eq17) to obtain the generalized
U+3z0U+ad*"P,,=0, (13 Friedmann equation for the Bianchi type | brafwith A
D"P,,=0, (14)
) ) K2 p 22
where an overdot denotesV,, O is the volume expansion H2=?p 1+ N +¥, (20

rate, andr ,, is the shear. Introducing the directional Hubble

parametersH;=R;/R; and the mean expansion factar When X =0, this recovers the equation for an FRW brane

=(R;R,R3)", one get® =3H=3a/a=3H;. [14]. Whenp/A—0, we recover the equation for a Bianchi
There is no evolution equation f@?,,, reflecting the fact  type | model in general relativitj13].

that in general the equations do not close on the brane, and

one needs bulk equations to determine brane dynamics.

There are bulk degrees of freedom whose impact on the

brane cannot be predicted by brane observers. The evolution equation for a minimally coupled scalar
The generalized Raychaudhuri equation on the bfa8e field confined to the brane is

becomegwith A=0)

IV. INFLATION ON THE ANISOTROPIC BRANE

- h+3Hp+V'($)=0. 21
O+102+04g,,+1x?(p+3p) ¢ $+V'(9) (21)

6L The energy density and pressure are, respectively,

p

=~ 3Kk3(2p+3p) -~ 5, (15
? Nk P=Pxint Ppots P=Pkin— Ppots (22)

vyhere the gengral relativistic case i§ r_ecovered Whgn thﬁ/herepkm=§¢2 andppot=V(qS). SettingS, =0 in Eq.(20),

right-hand side is set to zero. The vanishingRjf, leads via e see that the extra-dimensional terms act to increase the

the Gauss-Codazzi equations on the brane to Hubble rate, and hence the damping experienced by the sca-
lar field as it rolls down its potential. Thus for a FRW brane,

o +00. = —P s (16) inflation at high energiesp(>\) proceeds at a higher rate
rr KV kN than the corresponding rate in general relativity. This intro-
duces important changes to the dynamics of the early Uni-
o , 5 2p2 12U verse[9,10,14, and accounts for an increase in the ampli-
—350°+ 0", +2kp=—«k NN (17 tude of scalaf9] and tensor15] fluctuations at Hubble-

crossing, and for a change to the evolution of large-scale

The presence of the nonlocal bulk tengdy, on the right density perturbations during _”jﬂat'd%]j _ _
of Eq. (16) means that we cannot simply integrate to find the The condition for inflation i>0, which is equivalent to
shear as in general relativitisee[13]). However, we can 0O+ $02>0. By Eq.(15), with /=0, this gives
circumvent this problem in a special case: when the nonlocal

energy density vanishes or is negligible, i.e., 1 2

1+p/N

YAz
e

: (23

2p+)\)
ptA

w
U=0. (18) 3 3x?p

This assumption is often made in the case of FRW branesyherew=p/p. When the shear vanishes, this reduces to the
and in that case, it leads to a conformally flat bulk geometrycondition for FRW brane inflation given if®]; if p/A— oo,

[14]. When Eq.(18) holds, then the conservation equation we havew< —3%, while the general relativity conditiow

(13) implies o#"P,,,=0. This consistency condition implies < —1 is recovered ap/\—0. For the Bianchi type | brane,

a conditon on the evolution ofp,,, ie., o*'P,,  the condition becomes

=6P*"P,,/k*\, as follows from Eq(16). Since there is no

evolution equation fofP,, on the brang12], this is consis- B }(ZP‘L)\
pt+A

W
tent on the brane. However, we would need to check that the 3

432
~KkZabp(1+p/In)

(29)
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FIG. 1. This figure shows the evolution of the three components
contributing to the effective energy density, whes %mq&z. The
Universe evolves front=t, anda=1, with initial conditionséﬁ
=-10"° ¢=3, p/A=5 and pghea=1; We takem=10"° (M,
=1 is assumexd The kinetic term initially plunges under the influ-

ence of the shear and rises after the shear stops dominating “?ﬁﬂuenced by the value of the initial anisotropy; a larger

Qynamlcs of the Universe. The oscillating phase at the end of 'nflaVaIue ofS causes a more rapid decay of the kinetic term and
tion shows up as the dense patch at the right of the plot.

therefore results in an earlier onset of inflation.

FIG. 2. The evolution of the dimensionless shear parameter
Qghea= 02/6H? is shown as a function of time for the model in Fig.

1. The shear decreases monotonically as the Universe expands and
isotropises.

From Egs.(20) and (24), one might naively expect the
presence of shear to be detrimental to inflation sific&q. V. CONCLUSIONS

(24) implies that a more negative equation of state is neces- Our results illustrated in Figs. 1 and 3 show the kinetic,

sary to accelerate the Universe in the presence of shear, a gt ; ; o ;
- I . ential and anisotropy energy densities plotted as functions
(i) Eq. (20) suggests that a large initial value of the anlsot—B Py 9y P

305 6 . A of time. The associated dimensionless shear parameter
rOPY pspear= 3%/ k°@°> p,, might, by dominating the expan- () hea= 02/6H? is shown in Figs. 2 and 4, and the expansion
sion dynamics of the early Universe, prevent inflation fromfaztg"‘r’ is shown in Fig. 5 :

occurring. A closer examination of the situation however re-
veals both these arguments to be flawed. From Exf3.and o
(21), we see that the presence of expansion anisotropy

(sheay acts in a manner which is actualgpnduciveto in-

flation. For a Bianchi type | brane, the shear anisotropy term |
in Eg. (20) reinforces the increase of the Hubble rate. A | Pshear
larger value of initial shear dampens the kinetic energy of the 0
scalar field, allowing the inflationary condition, E@4), to

be reached earlier. The important role played by anisotropy
is illustrated by considering the worst case scenario for in-
flation whenpy,= ¢2/2> Ppoi= V(). If we assume that the
Universe was initially very anisotropic, so that its expansion
rate was dominated by the shear term, we get

Pxin

Log(p)

-10

ad(t)~ad+33(t—ty).

Consequently, at early times,

-15

Pshean pkinw(t_to)iz- (25

This estimate is confirmed by numerical integratitsee t/tP

Figs. 1-3. Remarkably, we find that anisotropy always dis-

appears within a fixed interval of time, no matter what its FIG. 3. Same as Fig. 1, but with a larger initial value of the field
initial value (compard 4]). The decrease in kinetic energy is velocity, ¢=—10"2 and p/» =5x 10°.
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) ) ) FIG. 5. The evolution of the scale factor with time is shown for
FIG. 42' -”2“_3 evolution of the dimensionless shear parametefhe model in Fig. 3. The curves shown in increasing amplitude from
Qghea= 0°/6H” is shown as a function of time for the model in Fig. pottom to top correspond t@) 3 =0, 1/2=0 (the general rela-
3. We find that the early and late-time expansion of the Universe i?ivity case, (b) =0, /A=10°and(c) =1, /2 =10. We
isotropic, but the shear term dominates during an intermediate ansee that the effect of both the extra-dimensional term and cosmic

isotropic stage. shear is to produce more inflation.

We find that the influence of anisotropy on the kinetic relative to the shear ter?/a®. [Within the framework of

energy is particularly strong £2/a®x?> g2 initially. In this ~ Scalar field models this corresponds ¢§>2V(¢).] The
case the kinetic term drops to a very small value, then risefact that the density effectively grows faster tham®Lfor

after the anisotropy has disappeared, gradually approachirVg§1>0 is a uniquely brane effect. Within the framework of
its asymptotic slow-roll value eneral relativity such behavior is clearly impossible since it

would demand an ultra-stiff equation of state>1. The

N (M. 2 expansion of the early Universe is therefore characterized by
d=—V'I3H = $P=—— _P) (26)  three successive expansion epochs during which the Bianchi
3w\ ¢ type | model experiencds) initial quasi-isotropic expansion:

a?/H?—0t—0, (i) transient anisotropy dominated regime:
We assume here that the potential has the simple “chaotic’s?/H2~1, and (iii) anisotropy dissipation:o?/H?>— 0,

form V=3m2¢?, for which the standard inflationary slow- — . These three stages are illustrated in Fig. 4. For smaller
roll condition is ¢?~m?M /16>, Comparing with Eq(26),  values of¢? (corresponding tav<0), stage(i) is absent and
we find that dependence am? has been replaced in the the shear decreases monotonically from a large initial value
brane scenario by/¢?2. Thus the kinetic energy does not (see Fig. 2
remain constant but gradually increases as the field ampli- The decay of shear and the accompanying isotropization
tude decreases during slow-roll. We find that the decay off the Universe significantly increases the class of initial
anisotropy is generically accompanied by a correspondin§onditions from which the present Universe could have
decrease in the kinetic energy of the scalar field. This effeceriginated.
leads to greater inflatiofsee Fig. 5.

Examining Eq.(20) closely, we find that the effective
equation of state of matter wher»\ is weg=2w+1. Con- We would like to thank Alexei Starobinsky and Alexey
sequently for matter witthw=p/p>0 the approach to the Toporenskij for helpful comments which led to improve-
initial singularity is matter dominated and not shear domi-ments in the manuscript. Discussions with Naresh Dadhich
nated, due to the predominance of the matter tpf2\?>  are also acknowledged.
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