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Anisotropy dissipation in brane-world inflation
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We examine the behavior of an anisotropic brane-world in the presence of inflationary scalar fields. We
show that, contrary to naive expectations, a large anisotropy does not adversely affect inflation. On the
contrary, a large initial anisotropy introduces more damping into the scalar field equation of motion, resulting
in greater inflation. The rapid decay of anisotropy in the brane-world significantly increases the class of initial
conditions from which the observed universe could have originated. This generalizes a similar result in general
relativity. A unique feature of Bianchi type I brane-world cosmology appears to be that for scalar fields with
a large kinetic term the initial expansion of the Universe is quasi-isotropic. The Universe grows more aniso-
tropic during an intermediate transient regime until anisotropy finally disappears during inflationary expansion.
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I. INTRODUCTION

Observations of galaxies, quasistellar objects~QSO’s! and
the cosmic microwave background appear to indicate tha
live in a Universe which is remarkably uniform on very larg
scales. Yet the homogeneity and isotropy of the univers
difficult to explain within the standard relativistic framewo
since, in the presence of matter, the class of solutions to
Einstein equations which evolve towards a Friedma
Robertson-Walker~FRW! universe is essentially a set o
measure zero@1#. The above statement is however only tr
for space-times containing ‘‘normal’’ matter satisfying e
ergy conditions which ensure that~i! negative pressures ca
never grow so large as to dominate the energy density,T00
>uTi j u, and~ii ! the sum of the principle pressures of the flu
must be non-negative:( i 51

3 Tii >0. The inflationary scenario
based as it is on a form of matter which violates these ene
conditions, radically alters the above picture. Indeed, as d
onstrated in@2–7#, a large class of spacetimes both homo
enize and isotropize under the influence of an effective c
mological L term. Thus the inflationary scenario ca
successfully generate a homogeneous and isotropic F
like universe from initial conditions which, in the absence
L, would have resulted in a universe far removed from
one we live in today.

Recently there has been a great deal of interest in a
mological scenario in which matter fields are confined to
3-dimensional brane-world embedded in a higher dim
sional ‘‘bulk’’ space@8#. This higher-dimensional cosmolog
generalizes the standard Kaluza-Klein picture by allow
the presence of large or even infinite non-compact extra
mensions. The issue of inflation on the brane was inve
gated in@9#, where it was shown that on an FRW brane
5-dimensional anti–de Sitter space, extra-dimensional eff
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are conducive to the advent of inflation~see also@10#!. In
this paper we address the kindred issue of anisotropic in
conditions. We demonstrate that even very large initial
isotropy cannot prevent brane-world inflation from occu
ring, thus generalizing a previous result in general relativ
@4–7#. On the contrary, for a large class of initial condition
the presence of an anisotropy actuallyincreasesthe amount
of inflation. Thus a scalar field dominated universe can ev
tually isotropise and inflate, even if its expansion was ve
anisotropic to begin with. A unique feature of brane cosm
ogy is that the effective equation of state at high densi
can become ultra stiff. Consequently matter can overwh
shear for equations of state which are stiffer than dust, le
ing to quasi-isotropic early expansion of the Universe in su
cases.

II. BRANE DYNAMICS

The 5-dimensional~bulk! field equations are

G̃AB5k̃2@2L̃g̃AB1d~y!$2lgAB1TAB%#, ~1!

where tildes denote the bulk generalization of standard g
eral relativity quantities, andk̃258p/M̃p

3 , whereM̃p is the
fundamental 5-dimensional Planck mass, which is typica
much less than the effective Planck mass on the brane,Mp
51.231019 GeV. The brane is given in Gaussian norm
coordinatesxA5(xm,y) by y50, where xm5(t,xi) are
spacetime coordinates on the brane. The brane tensionl,
and gAB5g̃AB2nAnB is the induced metric on the brane
with nA being the space-like unit normal to the bran
Standard-model matter fields confined to the brane make
the brane energy-momentum tensorTAB ~with TABnB50).
The bulk cosmological constantL̃ is negative, and is the
only 5-dimensional source of the gravitational field.
©2001 The American Physical Society09-1
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The field equations induced on the brane are derived
an elegant geometric approach in@11#, leading to new terms
that carry bulk effects onto the brane:

Gmn52Lgmn1k2Tmn1k̃4Smn2Emn . ~2!

Herek258p/Mp
2 and

l56
k2

k̃4
, L5 1

2 k̃2~L̃1 1
6 k̃2l2!. ~3!

We assume thatL̃ is chosen so thatL50. Extra-
dimensional corrections to the Einstein equations on
brane are of two forms: firstly, the matter fields contribu
local quadratic energy-momentum corrections via the ten
Smn , and secondly, there are nonlocal effects from the f
gravitational field in the bulk, transmitted via the projectio
Emn of the bulk Weyl tensor. The matter corrections a
given by

Smn5 1
12 Ta

aTmn2 1
4 TmaTa

n1 1
24 gmn@3TabTab2~Ta

a!2#,

and are significant at high energies, i.e.,r*l. The projec-
tion of the bulk Weyl tensor is

EAB5C̃ACBDnCnD,

which is symmetric and traceless and without compone
orthogonal to the brane, so thatE ABnB50 and EAB
→EmngA

mgB
n asy→0.

The Weyl tensorC̃ABCD represents the free, nonloc
gravitational field in the bulk, i.e., the part of the field that
not directly determined at each point by the energ
momentum tensor at that point. The local part of the b
gravitational field is the Einstein tensorG̃AB , which is de-
termined locally via the bulk field equations~1!. ThusEmn

transmits nonlocal gravitational degrees of freedom from
bulk to the brane, including tidal~or Coulomb!, gravito-
magnetic and transverse traceless~gravitational wave! ef-
fects.

If um is the 4-velocity comoving with matter~which we
assume is a perfect fluid or minimally-coupled scalar fiel!,
the nonlocal term has the form of a radiative energ
momentum tensor@12#:

Emn5
26

k2l
@U~umun1 1

3 hmn!1Pmn1Qmun1Qnum#,

where hmn5gmn1umun projects into the comoving rest
space. Here

U52 1
6 k2l E mnumun

is an effective nonlocal energy density on the brane~which
need not be positive!, arising from the free gravitational field
in the bulk. It carries Coulomb-type effects from the bu
onto the brane. There is an effective nonlocal anisotro
stress

Pmn52 1
6 k2l@hm

ahn
b2 1

3 habhmn#Eab
06350
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on the brane, which carries Coulomb, gravito-magnetic a
gravitational wave effects of the free gravitational field in t
bulk. The effective nonlocal energy flux on the brane,

Qm5 1
6 k2l hm

aE abub,

carries Coulomb and gravito-magnetic effects from the f
gravitational field in the bulk.

The local and nonlocal bulk modifications may be co
solidated into an effective total energy-momentum tenso

Gmn52Lgmn1k2Tmn
tot , ~4!

where

Tmn
tot 5Tmn1

6

l
Smn2

1

k2Emn .

The effective total energy density, pressure, anisotro
stress and energy flux are@12#

r tot5rS 11
r

2l D1
6U
k4l

, ~5!

ptot5p1
r

2l
~r12p!1

2U
k4l

, ~6!

pmn
tot 5

6

k4l
Pmn , ~7!

qm
tot5

6

k4l
Qm . ~8!

The brane energy-momentum tensor separately sati
the conservation equations,¹nTmn50. The Bianchi identi-
ties on the brane imply that the projected Weyl tensor ob
the constraint

¹mEmn5
6k2

l
¹mSmn . ~9!

This shows how nonlocal bulk effects are sourced by lo
bulk effects, which include spatial gradients and time deri
tives; evolution and inhomogeneity in the matter fields c
generate nonlocal gravitational effects in the bulk, whi
backreact on the brane. The brane energy-momentum te
and the consolidated effective energy-momentum tensor
both conserved separately. These conservation equation
well as the brane field equations and Bianchi identities,
given in covariant form in@12#. We are interested here in th
particular case of a Bianchi type I brane geometry, the s
plest anisotropic generalization of an FRW brane geome

III. ANISOTROPIC BRANE

A Bianchi type I brane has the induced metric

ds252dt21Ri
2~ t !~dxi !2, ~10!

and is covariantly characterized by
9-2
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Dm f 50, Am505vm , Qm50, Rmn* 50, ~11!

where Dm is the projected covariant spatial derivative,f is
any physically defined scalar,Am is the 4-acceleration,vm is
the vorticity, andRmn* is the Ricci tensor of the 3-surface
orthogonal toum. ~Note that in the coordinates of Eq.~10!,
we haveum52dm

0, hm050, and Dm f 5dm
i] i f .!

The conservation equations@12# reduce to

ṙ1Q~r1p!50, ~12!

U̇1 4
3 QU1smnPmn50, ~13!

DnPmn50, ~14!

where an overdot denotesun¹n , Q is the volume expansion
rate, andsmn is the shear. Introducing the directional Hubb
parametersHi5Ṙi /Ri and the mean expansion factora

5(R1R2R3)1/3, one getsQ[3H53ȧ/a[( iHi .
There is no evolution equation forPmn , reflecting the fact

that in general the equations do not close on the brane,
one needs bulk equations to determine brane dynam
There are bulk degrees of freedom whose impact on
brane cannot be predicted by brane observers.

The generalized Raychaudhuri equation on the brane@12#
becomes~with L50)

Q̇1 1
3 Q21smnsmn1 1

2 k2~r13p!

52 1
2 k2~2r13p!

r

l
2

6U
k2l

, ~15!

where the general relativistic case is recovered when
right-hand side is set to zero. The vanishing ofRmn* leads via
the Gauss-Codazzi equations on the brane to

ṡmn1Qsmn5
6

k2l
Pmn , ~16!

2 2
3 Q21smnsmn12k2r52k2

r2

l
2

12U
k2l

. ~17!

The presence of the nonlocal bulk tensorPmn on the right
of Eq. ~16! means that we cannot simply integrate to find t
shear as in general relativity~see @13#!. However, we can
circumvent this problem in a special case: when the nonlo
energy density vanishes or is negligible, i.e.,

U50. ~18!

This assumption is often made in the case of FRW bran
and in that case, it leads to a conformally flat bulk geome
@14#. When Eq.~18! holds, then the conservation equatio
~13! impliessmnPmn50. This consistency condition implie
a condition on the evolution ofPmn , i.e., smnṖmn

56P mnPmn /k2l, as follows from Eq.~16!. Since there is no
evolution equation forPmn on the brane@12#, this is consis-
tent on the brane. However, we would need to check that
06350
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brane metric withU50 leads to a physical 5-dimension
bulk metric. This would have to be done numerically~the
bulk metric for a Bianchi brane-world is not known!, and is
a topic for further investigation.

Equation~16! may be integrated after contracting it wit
the shear, to give

smnsmn[(
i 51

3

~Hi2H !25
6S2

a6 , Ṡ50. ~19!

We now substitute into Eq.~17! to obtain the generalized
Friedmann equation for the Bianchi type I brane~with L
505U):

H25
k2

3
rS 11

r

2l D1
S2

a6 . ~20!

When S50, this recovers the equation for an FRW bra
@14#. Whenr/l→0, we recover the equation for a Bianc
type I model in general relativity@13#.

IV. INFLATION ON THE ANISOTROPIC BRANE

The evolution equation for a minimally coupled scal
field confined to the brane is

f̈13Hḟ1V8~f!50. ~21!

The energy density and pressure are, respectively,

r5rkin1rpot, p5rkin2rpot, ~22!

whererkin5 1
2 ḟ2 andrpot5V(f). SettingS50 in Eq. ~20!,

we see that the extra-dimensional terms act to increase
Hubble rate, and hence the damping experienced by the
lar field as it rolls down its potential. Thus for a FRW bran
inflation at high energies (r.l) proceeds at a higher rat
than the corresponding rate in general relativity. This int
duces important changes to the dynamics of the early U
verse@9,10,14#, and accounts for an increase in the amp
tude of scalar@9# and tensor@15# fluctuations at Hubble-
crossing, and for a change to the evolution of large-sc
density perturbations during inflation@16#.

The condition for inflation isä.0, which is equivalent to
Q̇1 1

3 Q2.0. By Eq. ~15!, with U50, this gives

w,2
1

3 S 2r1l

r1l D2S 2

11r/l Dsmnsmn

3k2r
, ~23!

wherew5p/r. When the shear vanishes, this reduces to
condition for FRW brane inflation given in@9#; if r/l→`,
we havew,2 2

3 , while the general relativity conditionw
,2 1

3 is recovered asr/l→0. For the Bianchi type I brane
the condition becomes

w,2
1

3 S 2r1l

r1l D2
4S2

k2a6r~11r/l!
. ~24!
9-3
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From Eqs.~20! and ~24!, one might naively expect the
presence of shear to be detrimental to inflation since~i! Eq.
~24! implies that a more negative equation of state is nec
sary to accelerate the Universe in the presence of shear
~ii ! Eq. ~20! suggests that a large initial value of the anis
ropy rshear53S2/k2a6@rf might, by dominating the expan
sion dynamics of the early Universe, prevent inflation fro
occurring. A closer examination of the situation however
veals both these arguments to be flawed. From Eqs.~20! and
~21!, we see that the presence of expansion anisotr
~shear! acts in a manner which is actuallyconduciveto in-
flation. For a Bianchi type I brane, the shear anisotropy te
in Eq. ~20! reinforces the increase of the Hubble rate.
larger value of initial shear dampens the kinetic energy of
scalar field, allowing the inflationary condition, Eq.~24!, to
be reached earlier. The important role played by anisotr
is illustrated by considering the worst case scenario for
flation whenrkin5ḟ2/2@rpot5V(f). If we assume that the
Universe was initially very anisotropic, so that its expans
rate was dominated by the shear term, we get

a3~ t !'a0
313S~ t2t0!.

Consequently, at early times,

rshear, rkin;~ t2t0!22. ~25!

This estimate is confirmed by numerical integration~see
Figs. 1–3!. Remarkably, we find that anisotropy always d
appears within a fixed interval of time, no matter what
initial value ~compare@4#!. The decrease in kinetic energy

FIG. 1. This figure shows the evolution of the three compone
contributing to the effective energy density, whenV5

1
2 mf2. The

Universe evolves fromt5tp and a51, with initial conditionsḟ
521025, f53, r/l55 and rshear51; we takem51025 (Mp

51 is assumed!. The kinetic term initially plunges under the influ
ence of the shear and rises after the shear stops dominatin
dynamics of the Universe. The oscillating phase at the end of in
tion shows up as the dense patch at the right of the plot.
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influenced by the value of the initial anisotropy; a larg
value ofS causes a more rapid decay of the kinetic term a
therefore results in an earlier onset of inflation.

V. CONCLUSIONS

Our results illustrated in Figs. 1 and 3 show the kinet
potential and anisotropy energy densities plotted as funct
of time. The associated dimensionless shear param
Vshear5s2/6H2 is shown in Figs. 2 and 4, and the expansi
factor is shown in Fig. 5.

ts

the
-

FIG. 2. The evolution of the dimensionless shear param
Vshear5s2/6H2 is shown as a function of time for the model in Fig
1. The shear decreases monotonically as the Universe expand
isotropises.

FIG. 3. Same as Fig. 1, but with a larger initial value of the fie

velocity, ḟ521022 andr/l553105.
9-4
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We find that the influence of anisotropy on the kine
energy is particularly strong ifS2/a6k2@ḟ2 initially. In this
case the kinetic term drops to a very small value, then r
after the anisotropy has disappeared, gradually approac
its asymptotic slow-roll value

ḟ.2V8/3H ⇒ ḟ2.
l

3p S Mp

f D 2

. ~26!

We assume here that the potential has the simple ‘‘chao
form V5 1

2 m2f2, for which the standard inflationary slow
roll condition isḟ2.m2Mp

2/16p2. Comparing with Eq.~26!,
we find that dependence onm2 has been replaced in th
brane scenario byl/f2. Thus the kinetic energy does no
remain constant but gradually increases as the field am
tude decreases during slow-roll. We find that the decay
anisotropy is generically accompanied by a correspond
decrease in the kinetic energy of the scalar field. This ef
leads to greater inflation~see Fig. 5!.

Examining Eq.~20! closely, we find that the effective
equation of state of matter whenr@l is weff52w11. Con-
sequently for matter withw5p/r.0 the approach to the
initial singularity is matter dominated and not shear dom
nated, due to the predominance of the matter termr2/2l2

FIG. 4. The evolution of the dimensionless shear param
Vshear5s2/6H2 is shown as a function of time for the model in Fi
3. We find that the early and late-time expansion of the Univers
isotropic, but the shear term dominates during an intermediate
isotropic stage.
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relative to the shear termS2/a6. @Within the framework of
scalar field models this corresponds toḟ2.2V(f).# The
fact that the density effectively grows faster than 1/a6 for
w.0 is a uniquely brane effect. Within the framework
general relativity such behavior is clearly impossible since
would demand an ultra-stiff equation of state,w.1. The
expansion of the early Universe is therefore characterized
three successive expansion epochs during which the Bia
type I model experiences~i! initial quasi-isotropic expansion
s2/H2→0,t→0, ~ii ! transient anisotropy dominated regim
s2/H2;1, and ~iii ! anisotropy dissipation:s2/H2→0,t
→`. These three stages are illustrated in Fig. 4. For sma
values ofḟ2 ~corresponding tow,0), stage~i! is absent and
the shear decreases monotonically from a large initial va
~see Fig. 2!.

The decay of shear and the accompanying isotropiza
of the Universe significantly increases the class of init
conditions from which the present Universe could ha
originated.
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FIG. 5. The evolution of the scale factor with time is shown f
the model in Fig. 3. The curves shown in increasing amplitude fr
bottom to top correspond to~a! S50, 1/2l50 ~the general rela-
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see that the effect of both the extra-dimensional term and cos
shear is to produce more inflation.
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