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Further analysis of a cosmological model with quintessence and scalar dark matter

Tonatiuh Matos* and L. Arturo Uren˜a-López†
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We present the complete solution to a 95% scalar field cosmological model in which the dark matter is
modeled by a scalar fieldF with the scalar potentialV(F)5V0@cosh(lAk0F)21# and the dark energy is

modeled by a scalar fieldC, endowed with the scalar potentialṼ(C)5Ṽ0@sinh(aAk0C)#b. This model has
only two free parameters,l and the equation of statevC . With these potentials, the fine-tuning and cosmic
coincidence problems are ameliorated for both dark matter and dark energy and the model agrees with astro-
nomical observations. For the scalar dark matter, we clarify the meaning of a scalar Jeans length and then the
model predicts a suppression of the mass power spectrum for small scales having a wave numberk.kmin,F ,
wherekmin,F.4.5h Mpc21 for l.20.28. This last fact could help to explain the death of dwarf galaxies and
the smoothness of galaxy core halos. From this, all parameters of the scalar dark matter potential are com-
pletely determined. The dark matter consists of an ultralight particle, whose mass ismF.1.1310223 eV and
all the success of the standard cold dark matter model is recovered. This implies that a scalar field could also
be a good candidate the dark matter of the Universe.

DOI: 10.1103/PhysRevD.63.063506 PACS number~s!: 98.80.Cq, 95.35.1d
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I. INTRODUCTION

Observations of the luminosity-redshift relation of type
supernovae~SNIa! suggest that distant galaxies are movi
slower than predicted by Hubble’s law, implying an accel
ated expansion of the Universe@1#. These observations ope
the possibility of the existence of an energy componen
the Universe with a negative equation of statev,0, p
5vr being called dark energy. This component would
the currently dominant component in the Universe and
ratio relative to the whole energy would beVL;70%. The
simplest model for this dark energy is a cosmological c
stant (L), in which v521. The matter componentVM

;30% of the Universe decomposes itself into baryons, n
trinos, etc., and cold dark matter which is responsible for
formation of the structure in the Universe. Observations
dicate that stars and dust~baryons! represent something clos
to 0.3% of the whole matter of the Universe. The new m
surements of the neutrino mass indicate that neutrinos
tribute with the same quantity asdust. In other words,
say VM5Vb1Vn1•••1VDM;0.051VDM , where VDM
represents the dark matter part of the matter contributi
which has a value ofVDM;0.25. The value of the amount o
baryonic matter (;5%) is in agreement with the limits im
posed by nucleosynthesis~see, for example, Ref.@2#!. Then,
this model considers a flat universe (VL1VM'1) with
95% of unknown matter but which is of great importance
the cosmological level. Moreover, it seems to be the m
successful model fitting current cosmological observati
@3#.

However, from the theoretical point of view,L has some
problems. First, the initial conditions have to be set precis
at one part in 10120, that is, an extreme fine-tuning proble
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appears. Second, the cosmic coincidence: why is the cur
value of the energy density contribution of the cosmologi
constant of the same order than matter? Third, particle the
predicts a zero cosmological constant, why is it not ze
These problems can be ameliorated by quintessence,
model of a fluctuating, inhomogeneous scalar field~Q! roll-
ing down a scalar potentialV(Q) @4#. It is assumed that fla
models with VM50.3360.05 and a current value of th
equation of statevQ520.6560.07 (vQ can change along
the evolution of the Universe! are the most consistent wit
all observations@5#. However, there is not agreement abo
which scalar potentialV(Q) is the correct one. For instance
the pure exponential potential has been extensively analy
@6–11#. It is known that there is a solution which makes t
scalar energy density scales as the dominant background
that could help to ameliorate the fine-tuning problem. Als
there is another solution that could make the Universe
flate, in good accordance with SNIa observations. Moreov
in a scalar dominated universe, the scalar potential is ef
tively an exponential one@9#. But nucleosynthesis con
straints requireVQ<0.2, and then an exponential potenti
would never dominate the Universe@8#.

Another example is a special group of scalar potentia
named tracker solutions@4#. The cosmology for these poten
tials is the same and independent of a large range of in
conditions~about 100 orders of magnitude!, avoiding fine-
tuning. The equation of statevQ changes with time towards
21 @4,5#, and then it can dominate the evolution of the Un
verse at late times. A typical example is the pure inve
power-law potentialV(Q);Q2a (a.0) @4,6,12#. But the
predicted value for the current equation of state of the qu
tessence cannot be put in good accordance with supern
results @4#. The same problem arises with other inver
power-law-like potentials. Another possibility is the pote
tials proposed in Ref.@13#. They can solve the troubles state
above, but it is difficult to uniquely determine their free p
rameters.

On the other hand, we do not know the nature of the d
©2001 The American Physical Society06-1
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matter componentVDM . The cold dark matter model with
cosmological constant~LCDM! agrees with the observation
of large scale structure of the Universe, but cold dark ma
overpredicts subgalactic structure and singular cores for
halos of galaxies@14–16#. A scalar field model for dark mat
ter has created a great expectation for solving the problem
the nature of dark matter too@13,17–21#. A scalar field could
not only give the correct energy density for the required m
ter in galaxies to predict the rotation curves of stars, bu
has obtained the correct distribution of dark matter in gal
ies as well. Intriguingly, a natural solution is an exponen
scalar potential@17#. At the cosmological level, all attentio
has been put on the quadratic potentialF2 because of the
well-known fact that it behaves as pressureless matter du
its oscillations around the minimum of the potential@22#,
implying thatvF.0, for ^pF&5vF^rF&, just like cold dark
matter.

In a recent paper@23# we showed that the potential

Ṽ~C!5Ṽ0@sinh~aAk0C!#b

5H Ṽ0~aAk0C!b, uaAk0Cu!1

~Ṽ0/2b!exp~abAk0C!, uaAk0Cu@1
~1!

is a reliable model for dark energy because of its asympt
behaviors. On the other hand, a good model for dark ma
could be the potential@13,21#

V~F!5V0@cosh~lAk0F!21#

5H 1

2
mF

2 F21
1

24
l2mF

2 k0F4 ulAk0Fu!1,

~V0/2!exp~lAk0F! ulAk0Fu@1.

~2!

The mass of the scalar fieldF is defined asmF
2 5V9uF50

5l2k0V0. In this case, we deal with a massive scalar fie
In this paper, we give all the solutions to the model at

cosmological scale and focus our attention on the scalar
matter explicitly. In Sec. II we find the complete solutio
for a cosmology where the scalar fieldF is the dark matter
and the scalar fieldC is the dark energy. We divide th
evolution of the Universe in four stages: the radiation dom
nated~RD! era, but before the oscillations of the scalar fie
F, the radiation dominated era withF already acting as
standard cold dark matter, the matter dominated~MD! era,
and finally the dark energy dominated era. We will recov
the standard cosmological evolution of cold dark matter w
the quintessence potential~1!. In Sec. III we will analyze the
growing fluctuations of the scalar dark matter within the l
ear regime for the four stages of cosmological evoluti
From the equation of scalar fluctuations, we will determin
Jeans length for scalar dark matter and show that mo
larger than this Jeans length are growing modes. This
fact implies a cutoff in the mass power spectrum and we
fix all free parameters of the potential~2! by setting the cut-
off wave number to the desirable value suggested in the
erature. The dark energy fluctuations are not analyzed in
tail because it has been already done in the literature. Fin
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in Sec. IV we summarize the results and give some fut
features to be investigated. For completeness, we will
previous results already shown in Refs.@21,23# when neces-
sary.

II. SCALAR FIELD SOLUTIONS

Due to current observations of cosmic microwave ba
ground radiation~CMBR! anisotropy byBOOMERANG and
MAXIMA @24#, we will consider a flat, homogenous, and is
tropic universe. Thus we use the flat Friedmann-Roberts
Walker ~FRW! metric

ds252dt21a2~ t !$dr21r 2@du21sin2~f!df2#%, ~3!

wherea is the scale factor (a51 today! and we have setc
51. The components of the Universe are baryons, radiat
three species of light neutrinos, etc., and two minima
coupled and homogenous scalar fieldsF andC, which rep-
resent the dark matter and dark energy, respectively.
evolution equations for this Universe are

H2[S ȧ

a
D 2

5
k0

3
~r1rF1rC!, ~4!

F̈13HḞ1
dV~F!

dF
50, ~5!

C̈13HĊ1
dṼ~C!

dC
50, ~6!

ṙ13H~r1p!50, ~7!

wherek0[8pG andr ~p! is the energy density~pressure! of
radiation, plus baryons, plus neutrinos, etc. The scalar en
densities ~pressures! are rF5 1

2 Ḟ21V(F) @pF5 1
2 Ḟ2

2V(F)# and rC5 1
2 Ċ21Ṽ(C) @pC5 1

2 Ċ22Ṽ(C)#. Here
overdots denote the derivative with respect to the cosmol
cal time t.

The numerical values that will be used in the paper are
Hubble parameterH05100 h km s21 Mpc21 (H053.3
31024 h Mpc21 in units of c51) with h50.6560.1, the
current radiation energy densityV0gh252.48031025, the
current baryon energy densityV0Bh250.01960.0024, the
background temperatureT052.727760.002 K and the
amount of primordial heliumYHe50.24660.0014@25#. We
will consider three species of light neutrinos withV0n

5 7
8 (4/11)4/3V0g per species.

A. Radiation dominated „RD… era

We start the evolution of the Universe at the end of infl
tion, i.e., in the radiation dominated~RD! era. The initial
conditions are set such that (r iF ,r iC)<r ig .

Let us begin with the dark energy. For the potential~1! an
exact solution in the presence of nonrelativistic matter can
found @7,23#. The parameters of the potential are given b
6-2
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FURTHER ANALYSIS OF A COSMOLOGICAL MODEL . . . PHYSICAL REVIEW D 63 063506
a5
23vC

2A3~11vC!
,

b5
2~11vC!

vC
, ~8!

k0Ṽ05
3~12vC!

2 S V0M

V0C
D (11vC)/vC

V0CH0
2 ,

whereV0C andV0CDM are the current values of dark energ
and dark matter, respectively, and20.6>vC>20.9 is the
range for the current equation of state. With these values
the parameters (a,b,0) the solution for the dark energ
(C) becomes a tracker one and is only reached at a m
dominated epoch and the scalar fieldC would begin to
dominate the expansion of the Universe after matter dom
tion. Before this, at the radiation dominated epoch, the sc
energy densityrC is frozen, strongly subdominant, and
the same order as today@23#. Then the dark energy contri
bution can be neglected during this epoch.

Now we study the behavior of the dark matter. For t
potential~2! we begin the evolution with large and negati
values ofF, when the potential behaves as an exponen
one. It is found that the exponential potential makes the s
lar field F mimic the dominant energy density, that is,rF

5r iFa24. The ratio ofrF to the total energy density is@7,8#

rF

rg1rF
5

4

l2
. ~9!

This solution is self-adjusting and it helps to avoid the fin
tuning problem of matter, too. Here there appears one res
tion due to nucleosynthesis@8#,

rF

rg
5

4

l224
,0.2, ~10!

acting on the parameterl.A24. We shall calla* the scale
factor at the time whenulAk0Fu'1, i.e., when the scala
potential ~2! leaves the exponential behavior and enter
into the polynomial one. The time evolution for RD befo
the scalar oscillations begin is@from Eq. ~4!#

H0t5
Al224

l

a2

2AV0g

~a<a* !, ~11!

whereH0 is the current value of the Hubble parameter. T
result is the standard with an extra contribution due to
scalar contributionrF to radiation.

Once the potential~2! reaches its polynomial behavior,F
oscillates so fast around the minimum of the potential t
the Universe is only able to feel the average values of
energy density and pressure in a scalar oscillation. Du
the time of a scalar oscillation, the term of the cosmologi
expansion in Eq.~5! can be neglected, and then we can wr
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F̈52
dV

dF
. ~12!

Following Ref.@22#, from the time average in a period large
than a scalar oscillation but smaller than the Hubble time
the quantity

d~FḞ!

dt
5Ḟ21FF̈, ~13!

it follows that

^Ḟ2&5 K F
dV

dF L . ~14!

Taking only the quartic and quadratic term as a good
proximation, the average energy density and pressure ca
expanded as@18#

^rF&.mF
2 ^F2&1

1

8
l2mF

2 k0^F
4&, ~15!

^pF&.
1

24
l2mF

2 k0^F
4&, ~16!

then, the equation of state reads

^vF&5
1

3

^F4&

8

l2k0

^F2&1^F4&

. ~17!

Observe that at the beginning of scalar oscillations, when
quartic term is still the dominant one in the potential, t
scalar fieldF behaves as radiation as the early exponen
behavior indicates. Once the quadratic potential domina
we find that^F4&5(3/2)^F2&2 and^rF&52^V&. The equa-
tion of state then changes to

^vF&5
1

16V0
^rF&, ~18!

with ^vF& going down to zero and̂rF& scaling as nonrela-
tivistic matter@22#. A detailed analysis of the solution of th
polynomial behavior can also be seen in Ref.@11#. Now, we
would like the scalar fieldF to act as cold dark matter, in
order to recover all the successful features of the stand
model. For this to be possible, we will first derive a relati
between the parameters (V0 ,l).

If the transition from radiation to matter occurs smooth
@as suggested by Eq.~17!# at a5a* , then

r iF~a* !24'r0CDM~a* !23. ~19!

Adjusting numerically and using Eq.~9! in the left-hand side
~LHS! of Eq. ~19!, we find that

a* 'A3 9

1.7
~l224!21S V0g

V0CDM
D . ~20!
6-3
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On the other hand, now we use^rF&'rCDM in the right-
hand side~RHS! of Eq. ~19!. Thus,

V0^l
2k0F2&ua* 'r0CDM~a* !23. ~21!

Therefore, the required relation reads@21#

k0V0.
1.7

3
~l224!3S V0CDM

V0g
D 3

V0CDMH0
2 . ~22!

Notice that V0 depends on both current amounts of da
matter and radiation~including light neutrinos! and that we
can choosel to be the only free parameter of potential~2!. If
we takel>5, then we find the limit values

k0V0>106 Mpc22, ~23!

mF>53103 Mpc21'3310226 eV, ~24!

llC5~k0V0!21/2<1 kpc, ~25!

^vF&;10214a23→0, ~26!

wherelC5mF
21 is the scalar Compton length. Now we ca

be sure thatrF5rCDM and that we will recover the standar
cold dark matter evolution. Moreover, it turns out that t
scalar fieldF is an ultralight cold dark matter particle.

The dominant components of the Universe just after s
lar oscillations begin are matter and radiation just as in
standard model. Then, we can give the time evolution w
radiation and matter only fora.a* , obtaining

H0t5
2

3

a(3/2)

AV0M

A11
agM

a S 1

2
2

agM

a D
1

~a* !(3/2)

3AV0M

A11
agM

a*
S 2

agM

a*
21D

1
Al224

l

~a* !2

A2V0g

, ~27!

where

agM5
V0g

V0M
~28!

is the scale factor at the time of radiation-matter equivalen
agM'3.331024 (z'3000). The standard case is recover
if a* →0 (l→`) anda* ,agM for l>5, that is, the tran-
sition occurs before radiation-matter equality.

B. Matter dominated „MD … era

During this time, the scalar fieldF continues oscillating
and behaving as nonrelativistic matter and there is a ma
dominated era just like that of the standard model. Sho
after matter completely dominates the evolution of the U
verse, the scalar fieldC reaches its tracker solution, Eq.~8!
and @23#
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aMC
D 3vCG1/2

, ~29!

rC5r0Ca23(11vC), ~30!

Ak0Ṽ85ab tanh21~aAk0C!Ṽ, ~31!

Ak0Ṽ95@~b21!tanh22~aAk0C!11#a2bṼ,
~32!

and it begins to be an important component.aMC is the scale
factor at the time of equivalence between matter and d
energy

aMC5S V0M

V0C
D 21/(3vC)

, ~33!

whereV0M andV0C are the current amounts of matter an
dark energy, respectively. We find that 0.62(z'0.6)>aMC

>0.73(z'0.37) for 20.6>vC>20.9.
A tracker solution is recognized because the functionG

5(ṼṼ9)/(Ṽ8)2.1 and is nearly constant over the possib
initial conditions@4#. From Eqs.~31!,~32!,

G5@12b211b21tanh2~aAk0C!#, ~34!

thus G>2 if vC<20.6 for the possible initial conditions
0,C,M P . Therefore, the potential~1! has a tracker solu-
tion. The time at which the scalar fieldC depends upon
initial conditions, but the late time behavior is independe
of initial conditions over almost a range of 100 orders
magnitude@4,23#.

We can integrate Eq.~4!, and then the time evolution fo
matter and dark energy only~neglecting radiation! reads
@7,23#

H0t5
2

3~11vC!

a(3/2)(11vC)

AV0C

3 2F1F1

2
,
b

4
,
b14

4
;2S a

aMC
D 3vCG , ~35!

where 2F1 is the hypergeometric function. By analytica
continuation, it can be shown that@26#

2F1~u,v,w;z!5~12z!2u
2F1S u,w2v,w;

z

z21D . ~36!

If a!aMC in Eq. ~35!, then

H0t→ 2

3~11vC!

a(3/2)

AV0M
2F1S 1

2
,1,

b

4
11;1D . ~37!

Using Eq.~8!, it follows that

2F1S 1

2
,1,

b

4
11;1D511vC , ~38!

and therefore,
6-4
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H0t→ 2

3

a3/2

AV0M

. ~39!

Let us try to give a complete solution for the time in th
presence of radiation, matter, and dark energy. Taking
account the limit value~39!, we can stick up the solution
~27! and ~35!. Then, the complete time evolution fora.a*
~including theC dominated era! can be written as

H0t5
2

3~11vC!

a(3/2)(11vC)

AV0C
F11S a

aMC
D 3vCG21/2

3 2F1S 1

2
,1,

b14

4
;

~a/aMC!3vC

11~a/aMC!3vC
D

3A11
agM

a S 1

2
2

agM

a D2
2

3

~a* !3/2

AV0M

3A11
agM

a*
S 1

2
2

agM

a*
D 1

Al224

l

~a* !2

2AV0g

.

~40!

C. Scalar field C dominated „CD… era

At this time, the scalar fieldC is the dominant componen
of the Universe and the scalar potential~1! is effectively an
exponential one@9,23#. The time evolution becomes

H0t5
2

3~11vC!

a(3/2)(11vC)

AV0C

, ~41!

thus the scalar fieldC drives the Universe into a power-law
inflationary stage (a;tp,p.1). Note that usual tracker so
lutions do not have this late exponential behavior. Also,
tracker equation of state usually changes toward21 once
the scalar field dominates finishing the latter as a cosmol
cal constant@4#. But the scalar equation of statevC will
never change its tracker value and for potential~1! there is
no solution withvC521 either@23#.

A complete numerical solution for the energy densit
r ’s and the dimensionless density parametersV ’s up to date
are shown in Figs. 1 and 2, respectively. The results ag
with the solutions found in this section. It can be seen t
Eq. ~22! makes the scalar fieldF behave quite similar to the
standard cold dark matter model once the scalar oscillat
begin and the required contributions of dark matter and d
energy are the observed ones@21,23#.

The current age of the Universe can be calculated fr
Eq. ~40! with a51. Thus, 1.09>H0t0>4.02 for 20.6
>vC>20.9. The age of the Universe could be (15<t0
<60)3109 yr, irrespective of the value ofl. We recovered
the standard cosmological evolution and then we can see
potentials~1!,~2! are reliable models of dark energy and da
matter in the Universe.
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III. LINEAR PERTURBATION THEORY

In this section, we analyze the perturbations of the sp
due to the presence of the scalar fieldsF,C using analytical
approximations. First, we consider a linear perturbation
the space given byhi j . We will work in the synchronous
gauge formalism, where the line element isds25a2@2dt2

1(d i j 1hi j )dxidxj #. The equations for perturbations in thek

space (kW5kk̂) are @27#

hi j ~xW ,t!5E d3keikW•xWH k̂i k̂ jh~kW ,t!

1S k̂i k̂ j2
1

3
d i j D6h~kW ,t!J , ~42!

k2h2
1

2

ȧ

a
ḣ54pGa2dT0

0 , ~43!

FIG. 1. Evolution of the energy densitiesr i vs a: rg ~dot-dashed
curve!, rDM ~dashed-curve!, rb ~solid-curve!, and rC ~dotted-
curve!; with vC520.7.

FIG. 2. Evolution of the dimensionless density parameters
the scale factora with V0M50.30: LCDM ~solidcurves! and
CFDM for two values of l56 ~dashed curves!, l58 ~dotted
curves!. The equation of state for the dark energy isvC520.8.
6-5
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k2h54pGa2~r1p!u, ~44!

ḧ12
ȧ

a
ḣ22k2h528pa2dTi

i , ~45!

ḧ16ḧ12
ȧ

a
~ ḣ16ḣ !22k2h

5224pGa2~r1p!s, ~46!

whereh is the trace of the metric perturbationshi j , dTn
m is

the perturbation to the momentum-energy tensor, and n
overdots denote derivatives with respect to conformal timet.
The velocityu and shears perturbations are defined as

~r1p!u[ ik jdTj
0 , ~47!

~r1p!s[2S kikj2
1

3
d i j DS j

i , ~48!

S j
i [Tj

i 2
1

3
d j

i Tk
k . ~49!

The density contrast (d[dr/r) which accounts for the den
sity relative to the homogeneus cosmological energy den
andu for perfect fluids are governed by

ḋ52~11v!S u1
ḣ

2
D 23

ȧ

a S dp

dr
2v D d, ~50!

u̇52
ȧ

a
~123v!u2

v̇

11v
u1

dp/dr

11v
k2d2k2s.

~51!

The evolution equations with the unperturbed FRW me
~4!–~7! in terms of the conformal time are

H 25
k0

3
a2~r1rF1rC!, ~52!

F̈12HḞ1a2
dV~F!

dF
50, ~53!

C̈12HĊ1a2
dṼ~C!

dC
50, ~54!

ṙ13H~r1p!50, ~55!

H being the conformal Hubble factor. The scalar energy d

sities are rF5(1/2a2)Ḟ21V(F) and rC5(1/2a2)Ċ2

1Ṽ(C). The scalar pressures arepF5(1/2a2)Ḟ22V(F)

and pC5(1/2a2)Ċ22Ṽ(C). The solutions to these equa
tions are those already found in the previous section w
written as functions of the scale factora.
06350
w

ty

c

-

n

A. Scalar perturbations

We must add the perturbed equations for the scalar fie
F(t)→F(t)1f(k,t) andC(t)→C(t)1c(k,t) @4,8#

drF5
1

a2
Ḟḟ1V8f,

dpF5
1

a2
Ḟḟ2V8f,

~rF1pF!uF5
1

a2
Ḟk2f, ~56!

drC5
1

a2
Ċċ1Ṽ8c, ~57!

dpC5
1

a2
Ċċ2Ṽ8c,

~rC1pC!uC5
1

a2
Ċk2c,

with the evolution equations for the perturbations

f̈12Hḟ1k2f1a2V9f1
1

2
Ḟḣ50, ~58!

c̈12Hċ1k2c1a2Ṽ9c1
1

2
Ċḣ50. ~59!

Here, primes are derivatives with respect to the unpertur
scalar fieldsF and C, respectively. Before we solve thes
equations, we must first analyze the meaning of a sc
Jeans length.

B. Damping of the scalar power spectrum

Recalling the results for the average scalar pressure
energy density@Eqs.~15!,~16!#, the velocity of sound in the
scalar fluidF is

vs
25

1

8V0
^rF&;10214a23. ~60!

The velocity of sound decreases rapidly to zero asvF does.
As suggested in the literature, we could define an effec
Jeans length@13,18,28#,

LJ5ApA vs
2

G^r&
5p~k0V0!21/2, ~61!

from which we obtainLJ<3.14 kpc. Therefore, we can ex
pect that the scalar field fluctuations produce only comp
stellar objects bigger than this Jeans length. In a first
proximation, this model could explain the suppression
subgalactic structure@13#. Also, it is likely that the quantity
6-6
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r c5(k0V0)21/2 could be important at galactic scale@21#.
But, in order to have a good estimate of the real Jeans len
we need to analyze the fluctuation equations. We will fi
that Eq.~61! is only an approximation to the real thing.

It is known that scalar perturbations can only grow if t
k2 term in Eqs.~58!,~59! is subdominant with respect to th
second derivative of the scalar potential, that is, ifk
,aAV9 @29#. Let us analyze the scalar dark matter case.

According to the solution given above for potential~2!,
the behavior forkF5aAV9 is

kF~a!5H 2H0A V0g

l224
la21 ~a,a* !,

mFa ~a* <a!,

~62!

with a minimum value given by

kmin,F5mFa* .1.3lAl224
V0CDM

AV0g

H0 , ~63!

and then forl>5, kmin,F>0.375 Mpc21 ~see Fig. 3!. There
are no scalar perturbations fork.mF , that is, bigger than
kF today. Thisk corresponds to scales smaller than 1.2 k
~here l55). They must have been completely erased.
addition, modes whichmF.k.kmin,F must have been
damped during certain periods of time determined by

2H0lA V0g

l224
k,a,

k

mF
. ~64!

From this, we conclude that the scalar power spectrum oF
will be damped fork.kmin,F with respect to the standar
case. Also, in Fig. 3 we can see that the Hubble wave n
ber kH is greater thankF until a little aftera* . This means
that the Jeans length~65! is well within the Hubble horizon
for most of the time and the scalar fluctuations can fo
structures at scales smaller than the Hubble lengthH21.

Therefore, the real Jeans length must be

FIG. 3. Evolution of the Hubble wave numberkH ~solid-curve!
and the scalar wave numberskF ~dashed curve! and kC ~dotted
curve!.
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LJ~a!52pkmin,F
21 , ~65!

and it is a universal constant because it is completely de
mined by the mass of the scalar field particle.LJ is not only
proportional to the quantity (k0V0)21/2, as suggested by th
approximation in Eq.~61!, but also the time when scala
oscillations start~represented bya* ) is important, as it was
suspected in Ref.@13#.

On the other hand, the wave numberkC5aAṼ9 is always
out of the Hubble horizon, meaning only structures at lar
scales thanH21 can be formed by the scalar fluctuationsc.
Instead of a minimum, there is a maximumkmax,C
;1023 Mpc21. All scalar perturbations of the dark energ
which k.1023 Mpc21 must have been completely erase
Perturbations withk<1023 Mpc21 have started to grow
only recently~see Fig. 3!. For a more detailed analysis of th
dark energy fluctuations, see Refs.@29,30#.

C. Scalar power spectrum forF

In this subsection, we will find some analytical approx
mated solutions to Eq.~58!, having in mind the Jeans Lengt
~65!, that is, we will analyze Eq.~58! only for modesk
,kmin,F .

We can have some physical insight into the previous d
ferential equations if we write the evolution equatio
~43!,~45! in the form

d

dt
~aḣ!5k0a3~dT0

02dTj
j !. ~66!

Then we can change this into

d

dt
~aḣ!13aH 2F2Vgdg1Vbdb1VFdFS 113

dpF

drF
D

1VCdCS 113
dpC

drC
D G50, ~67!

whereV i5r i /rT , rT5(3H 2)/(k0a2). For perfect fluids, it
happens that (dp/dr)5vs

2'v. For scalar fields, we canno
identify vs

2'v in general and so we have explicitly writte
(dpF,C /drF,C).

We can see easily that the dominant background com
nent of the Universe is the dominant term in the different
equation~67!, too. Thus, we can use the standard results
the fluctuations during certain stages of the cosmolog
evolution. Also, it is worth mentioning that all perturbe
quantities can be written in terms of the trace of the me
perturbationsh, then it is enough to have a solution for i
See Refs.@27,31# for the other equations required and how
solve them.

1. aËa* : Radiation dominated era

During the RD era, the scalar energy densityrF evolves
as a perfect fluid with constant equations of statevF51/3
~remember that the exponential potential mimics the do
nant energy!. For the scalar fieldF we have
6-7
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k0a2rF5
12

l2
H 2, ~68!

Ak0Ḟ5A4

3
a2k0rF5

4

l
H,

a2V852HAk0Ḟ52
4

l

H 2

k0
, ~69!

a2V954H 2.

SinceH5t21 and radiation dominates Eq.~67!, h evolves as
in the standard case,ḣ5Ct for modes out the Hubble hori
zon, andḣ5Ct21 for modes inside the Hubble horizon@32#
~for detailed calculus with the exponential potential, see R
@8#!, whereC5const.

Having a5t, the evolution equation~58! for a mode out
of the Hubble horizon can be written@see Eq.~69!#

f̈1
2

t
ḟ1

4

t2
f52

2C

Ak0l
. ~70!

Thus, the growing solution forf is

Ak0f~t!52
C

5l
t2, ~71!

where we can recover the result2(1/2)h5dCDM

5(5l/4)Ak0f @8#. Here,dCDM would be the standard CDM
density contrast. This leads to

dF5
4

15
dCDM , ~72!

that is, the scalar density contrastdF evolves as the standar
one but with smaller amplitude. Note that this result is ind
pendent ofl. This result can also be obtained from Eq.~50!
with

dpF

drF
53,vF5

1

3
, ~73!

where we can observe that the scalar fieldF does not behave
completely as perfect fluid.

For modes inside the Hubble horizon, the equation to
solved is

f̈1
2

t
ḟ1

4

t2
f52

2C

Ak0l

1

t2
. ~74!

The general solution is of the form

Ak0f~t!52
C

2l
5const, ~75!

and thendF5(C/6)5const. The modes inside the Hubb
horizon do not grow during RD.
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2. a*Ëa: Radiation and matter dominated eras

Once the scalar fieldF begins to oscillate, it happens tha
V95mF

2 . Recalling thatk,kmin,F,a2V9, Eq. ~58! can be
written as

f̈12Hḟ1a2mF
2 f1

1

2
Ḟḣ50. ~76!

The scalar perturbationf oscillates with the same frequenc
as the unperturbedF. Following the previous section, if we
take the time average of the quantity

d~Fḟ!

dt
5Ḟḟ1Ff̈ ~77!

we obtain

^Ḟḟ&52^Ff̈&. ~78!

The second and fourth terms of Eq.~76! are almost constan
during the time of a scalar oscillation. Then,

^Ff̈&'2^a2mF
2 Ff&52^a2V8f&. ~79!

Therefore, we find that

^dpF&

^drF&
5

^Ḟḟ&2^a2V8f&

^Ḟḟ&1^a2V8f&
'0. ~80!

It is now convenient to rewrite Eq.~76! in the same form as
Eq. ~50!:

dḞ13HdFS ^dpF&

^drF&
2

^pF&

^rF& D52S 11
^pF&

^rF& D ḣ

2
. ~81!

Therefore, witĥ vF& going to zero@Eq. ~18!# it follows that

dF5dCDM . ~82!

Due to its oscillations around the minimum, the scalar fie
F changes to a complete standard CDM and so do its
turbations. All the standard growing behavior for modesk
,kmin,F is recovered and preserved until today by poten
~2!. In Fig. 4, a numerical evolution ofd[dr/r is shown
compared with the standard CDM case@21#. The results
~72!,~82! agree with the numerical solution. The numeric
evolution for the density contrasts was done using
amended version ofCMBFAST @31#.

In Fig. 5 we can seed2 at a redshiftz550 from a com-
plete numerical evolution using the amended version ofCMB-

FAST. We also observe a sharp cutoff in the processed po
spectrum at small scales when compared to the stan
case, as was argued above. This suppression could ex
the smooth cores of dark halos in galaxies and a less num
of dwarf galaxies@15#.

At this point, we would like to mention some coinc
dences between some results in Ref.@20# in which a qua-
dratic potential is used with the results of this section. In t
reference, it is argued that the Jeans length is the de Bro
6-8
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wavelength at the ground state of the particle in the grav
tional potential well and that the power spectrum is s
pressed relative to the CDM case. We see before that mo
the interesting properties of potential~2! as dark matter are
due to its polynomial behaviorF2. Then, it is not strange
that, in our case, the mass power spectrum is also relate
the CDM case by~see Ref.@20#!

PF~k!.S cosx3

11x8D 2

PCDM~k!, ~83!

but usingx5(k/kmin,F) with kmin,F being the wave numbe
associated to the Jeans length~65!. The difference with re-
spect to the case treated in Ref.@20# is that the relevant time
scale is that when scalar oscillations start and not tha
radiation-matter equality.

If we take a cutoff of the mass power spectrum atk
54.5 h Mpc21 @15#, we can fix the value of parameterl.
Using Eq.~63!, we find that

FIG. 4. Evolution of the density contrasts for baryonsdb , stan-
dard cold dark matterdCDM and scalar dark matterdF vs the scale
factor a taking V0M50.30 for the models given in Fig.~3!. The
modes shown arek50.1 Mpc21 ~top! and k51.031025 Mpc21

~bottom!.
06350
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l.20.28,

V0.~3.0310227MPl.36.5 eV!4, ~84!

mF.9.1310252MPl.1.1310223 eV,

whereMPl51.2231019 GeV is the Planck mass. All param
eters of potential~2! are now completely determined and w
have the right cutoff in the mass power spectrum.

3. Scalar fieldC dominated era

For completeness, we will draw some general features
the evolution of fluctuations during the dark energy dom
nated era. At this era, the scalar fieldC now dominates both
the evolution of the Universe and the differential equati
~67!. We do not worry aboutF anymore, because its pe
turbed solution continues beingdF52(1/2)h due to its os-
cillations around the minimum of the potential. The sca
energyrC evolves as a perfect fluid with equation of sta
vC due to the effective exponential behavior of potential~1!.
Then,

Ċ5A11vCAa2rC, ~85!

Ṽ5
12vC

2
rC , ~86!

Ṽ85A3~11vC!Ṽ, ~87!

Ṽ953~11vC!Ṽ. ~88!

Since the scalar fieldC dominates the evolution of the Uni
verse, it is straightforward that

a2rC5
3H 2

k0
, ~89!

FIG. 5. Power spectrum at a redshiftz550: LCDM ~solid-
curve!, andFCDM with l55 ~dashed-curve! andl510 ~dotted-
curve!. The normalization is arbitrary.
6-9
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H5
2

113vF
~t2t`!21, ~90!

wheret` is the size of the event horizon (t→t`) @27#. Since
we are interested in possible growing modes, we will co
sider Eq. ~59! only in the casek2!a2Ṽ9. The evolution
equations~59!,~67! become

c̈12B
ċ

~t`2t!
1C

c

~t`2t!2
1

D

2

ḣ

~t`2t!
50, ~91!

ḧ1B
ḣ

~t`2t!
14D

ċ

~t`2t!
2E

c

~t`2t!2
50, ~92!

where the constant coefficients are

B5
2

113vF
, ~93!

C5
9

2
~12vC

2 !B2, ~94!

D5A3~11vC!B, ~95!

E5
3

2
A3~11vC!~12vC!B2. ~96!

The scalar fields were normalized in units ofk0
21/2. We can

try solutions of the formh5h0(t2t`)m, c5c0(t2t`)m,
where the values ofm are the solutions to the equation

m@m~m21!12Bm1C#@~m21!1B#5
Dm

2
~4Dm2E!

~97!

with an obvious solutionm50 and two complex roots . The
other real root givesm.0 if 20.6<vC<20.9. For in-
stance, if vC520.6, m5$7.83,0.83513.2i ,0.83523.2i %.
Then, all of the solutions are decaying ones. This result is
surprising because by this time the Universe has already
tered in an inflationary stage. Then, we conclude that per
bations in the linear regime will be suppressed by the ac
erated expansion of the Universe.

IV. CONCLUSIONS

We have developed most of the interesting features o
95% scalar-nature cosmological model. The interesting
plications of such a model are direct consequences of
scalar potentials~1!,~2!.

On one hand, we have modeled the dark energy of
Universe using a scalar field with a sinhb potential@23#. This
potential has the advantage that at early times it is a p
inverse power-law one,Ṽ(C);C2a, thus the cosmology a
late times is extremely insensitive to initial conditions, r
ducing the fine-tuning. TheC solution is only reached dur
ing a matter dominated phase of the Universe, thus the e
tence of a current dark energy dominated epoch is natu
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the cosmic coincidence is ameliorated. Its late exponen
behavior drives the Universe into a power-law inflationa
stage, in good accordance with supernovae results. Neve
less, a fine-tuning problem remains in determining the
rameters of the potential. Also, we do not know abou
fundamental theory that could predict this kind of potenti
However, quintessence models with an expectation valu
the field of the order of the Planck mass can be conside
within supergravity@33#.

On the other hand, we have modeled the cosmolog
dark matter using another scalar fieldF with a cosh scalar
potential. As we have shown in this work, the solutio
found alleviate the fine-tuning problem for cold dark matt
too. Once the scalar fieldF begins to oscillate around th
minimum of its potential~2!, we can recover the evolution o
a standard cold dark matter model because the dark m
density contrast is also recovered in the required amoun
should be noticed that the results~about growing density
perturbations! are independent of the parameters of poten
~2!. Thus, the predicted angular and power spectrums in
linear regime are those already shown in Ref.@23#. These
spectrums are subject only to the imprint of the scalar pot
tial ~1!.

We also find an important difference with respect to t
standard dark matter model. Analyzing the fluctuation eq
tions, we clarified the meaning of a Jeans length for t
model: it is related to the mass of the scalar particle and
the time when scalar oscillations start. This Jeans length
vokes the suppression in the power spectrum for small sc
that could explain the smooth core density of galaxies a
the dearth of dwarf galaxies. Up to this point, the model h
only one free parameterl. However, if we suppose that th
scale of suppression isk54.5h Mpc, then l'20.28, and
then all parameters are completely fixed. From this,
found thatV0.(36.5 eV)4 and the mass of the ultraligh
scalar particle is mF.1.1310223 eV. The quantity
(k0V0)21/2 or the scalar massmF could play an important
role in galaxies, possibly appearing in the observed cons
core density of dark halos~see Refs.@16,21#!. This last fact
could be a signature of the parameters of the dark ma
potential~2! as it has been shown that an exponential pot
tial appears when analyzing scalar dark matter at the gala
level @17#. Further investigation will be published elsewher

Some questions could arise here: How good is Eq.~22!?
Why doesV0g also appear? A possible answer could be th
in fact, the potential~2! can be written

V0@cosh~lAk0F!21#52V0FsinhS l

2
Ak0F D G2

. ~98!

Then, the potential~2! is another sinh-like potential. Observ
the similarity between Eq.~22! and the last of Eqs.~8!, the
last one being a generic solution of sinh-like potentials@7#:
They both involved the previous dominant component. It
this singular feature that make us think about a cosmic co
cidence of matter. Therefore, it would be clear that afte
6-10
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radiation-dominated era, a matter-dominated era must
pear. Moreover, after a matter-dominated era, a dark ene
dominated era must appear, too. Summarizing, a mode
the Universe where the dark matter and energy are of sc
nature can be realistic and could explain most of the
served structures and features of the Universe.
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