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Further analysis of a cosmological model with quintessence and scalar dark matter
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We present the complete solution to a 95% scalar field cosmological model in which the dark matter is
modeled by a scalar field with the scalar potential/(®)= V[ coshfk,®)—1] and the dark energy is
modeled by a scalar field, endowed with the scalar potentfd(¥) = V[ sinh(a\ko¥)]#. This model has
only two free parameters, and the equation of staiey . With these potentials, the fine-tuning and cosmic
coincidence problems are ameliorated for both dark matter and dark energy and the model agrees with astro-
nomical observations. For the scalar dark matter, we clarify the meaning of a scalar Jeans length and then the
model predicts a suppression of the mass power spectrum for small scales having a wavekrkyhes ,
wherekpin p=4.5" Mpc™?! for A=20.28. This last fact could help to explain the death of dwarf galaxies and
the smoothness of galaxy core halos. From this, all parameters of the scalar dark matter potential are com-
pletely determined. The dark matter consists of an ultralight particle, whose mags=i4.1x 10~ > eV and
all the success of the standard cold dark matter model is recovered. This implies that a scalar field could also
be a good candidate the dark matter of the Universe.
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[. INTRODUCTION appears. Second, the cosmic coincidence: why is the current
value of the energy density contribution of the cosmological
Observations of the luminosity-redshift relation of type la constant of the same order than matter? Third, particle theory
supernovagSNIa) suggest that distant galaxies are movingpredicts a zero cosmological constant, why is it not zero?
slower than predicted by Hubble’s law, implying an acceler-These problems can be ameliorated by quintessence, the
ated expansion of the Univergg]. These observations open model of a fluctuating, inhomogeneous scalar fighl roll-
the possibility of the existence of an energy component iing down a scalar potential(Q) [4]. It is assumed that flat
the Universe with a negative equation of statecO, p mode!s with Q) =0.33£0.05 and a current value of the
— wp being called dark energy. This component would beSduation of stateng=—0.65-0.07 (wq can change along

the currently dominant component in the Universe and itdN€ évolution of the Univergeare the most consistent with
ratio relative to the whole energy would 6, ~70%. The all observationg5]. However, there is not agreement about

simplest model for this dark energy is a cosmological con-WhICh scalar potentiaV (Q) is the correct one. For instance,

stant (), in which w=—1. The matter componerf,, the pure exponential potential has been extensively analyzed

~30% of the Uni d itself into b [6—11]. It is known that there is a solution which makes the
o OTIh€ LINIVErse decomposes ItSEll into baryons, Neug. 4 energy density scales as the dominant background one,

trinos, etc., and cold dark matter which is responsible for th?hat could help to ameliorate the fine-tuning problem. Also,
formation of the structure in the Universe. Observations iNyhare is another solution that could make the Universe in-

dicate that stars and du#taryons represent something close fiate in good accordance with SNia observations. Moreover,
to 0.3% of the whole matter of the Universe. The new meain g scalar dominated universe, the scalar potential is effec-
surements of the neutrino mass indicate that neutrinos coflively an exponential ond9]. But nucleosynthesis con-
tribute with the same quantity adust In other words, straints requirelo<0.2, and then an exponential potential
say Qu=Qp+Q,+---+Qpy~0.05-Qpy, where Qpy  would never dominate the Univer§g].
represents the dark matter part of the matter contributions Another example is a special group of scalar potentials,
which has a value dfp~0.25. The value of the amount of named tracker solutiori#]. The cosmology for these poten-
baryonic matter {5%) is in agreement with the limits im- tials is the same and independent of a large range of initial
posed by nucleosynthesisee, for example, Ref2]). Then,  conditions(about 100 orders of magnitugdeavoiding fine-
this model considers a flat univers€)(+Qy~1) with  tuning. The equation of staie, changes with time towards
95% of unknown matter but which is of great importance at— 1 [4,5], and then it can dominate the evolution of the Uni-
the cosmological level. Moreover, it seems to be the mosterse at late times. A typical example is the pure inverse
successful model fitting current cosmological observationpower-law potentiaV(Q)~Q~ ¢ (a>0) [4,6,12. But the
[3]. predicted value for the current equation of state of the quin-
However, from the theoretical point of view, has some tessence cannot be put in good accordance with supernovae
problems. First, the initial conditions have to be set preciselyesults [4]. The same problem arises with other inverse
at one part in 15°, that is, an extreme fine-tuning problem power-law-like potentials. Another possibility is the poten-
tials proposed in Ref13]. They can solve the troubles stated
above, but it is difficult to uniquely determine their free pa-
*Email address: tmatos@fis.cinvestav.mx rameters.
"Email address: lurena@fis.cinvestav.mx On the other hand, we do not know the nature of the dark
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matter componenflp,,. The cold dark matter model with in Sec. IV we summarize the results and give some future
cosmological constarfdl CDM) agrees with the observations features to be investigated. For completeness, we will use
of large scale structure of the Universe, but cold dark matteprevious results already shown in R€f21,23 when neces-
overpredicts subgalactic structure and singular cores for thgary.

halos of galaxie§14—1§. A scalar field model for dark mat-

ter has created a great expectation for solving the problem of Il. SCALAR FIELD SOLUTIONS

the nature of dark matter tgd3,17—-21. A scalar field could . S

not only give the correct energy density for the required mat- Due to current observations of cosmic microwave back-
ter in galaxies to predict the rotation curves of stars, but iground radiation(CMBR) anisotropy byBOOMERANG and

has obtained the correct distribution of dark matter in galaxMAXIMA [24], we will consider a flat, homogenous, and iso-
ies as well. Intriguingly, a natural solution is an exponentialtropic universe. Thus we use the flat Friedmann-Robertson-
scalar potential17]. At the cosmological level, all attention Walker (FRW) metric

has been put on the quadratic potentlsl because of the s o ot )

well-known fact that it behaves as pressureless matter due to ~ ds*=—dt?+a%(){dr?+r’[d6*+sif(¢)d¢?’T}, (3

its oscillations around the minimum of the potentjaP], _

implying thatwg=0, for(pe)= wa(ps), just like cold dark wherea is the scale factorg=1 today and we have sat

matter. =1. The components of the Universe are baryons, radiation,
In a recent papei23] we showed that the potential three species of light neutrinos, etc., and two minimally
coupled and homogenous scalar fielelsand ¥, which rep-
V(W) =V [sinh ek, P)]? resent the dark matter and dark energy, respectively. The
evolution equations for this Universe are
Vo(akg¥)?, |a\koW| <1 " o
R a
(Vol2P)exp aByko¥), |ako¥|>1 H2E(5) Z%(p-l-pq)-l-p\l,), (4)
is a reliable model for dark energy because of its asymptotic
behaviors. On the other hand, a good model for dark matter . . dV((I))_
could be the potentigll3,21] P+3HO+ —7—=0, ©)
V(®)=Vo[costi\io®) —1] L duw
1 1 W+ 3HY + — =0, (6)
T2 B2 oy 2m2 4 Pl<1
_ ] 5ma®+ S0 m ko IMko®|<1, -
(Vol2)exp A Vio®) INko®|>1. p+3H(p+p)=0, @)

The mass of the scalar field is defined asn? =V"|,_, Wherexo=87G andp (p) is the energy densitjpressurgof
—\2k,V,. In this case, we deal with a massive scalar field.radiation, plus baryons, plus neutrinos, etc. The scalar energy
In this paper, we give all the solutions to the model at thedensities (pressures are pe=3P2+V(P) [py=3P?
cosmological scale and focus our attention on the scalar dark V(®)] and py= %«'y?JrT/(xp) [py= %«PZ—V(W)], Here
matter explicitly. In Sec. Il we find the complete solutions gverdots denote the derivative with respect to the cosmologi-
for a cosmology where the scalar field is the dark matter cal timet.
and the scalar field is the dark energy. We divide the  The numerical values that will be used in the paper are the
evolution of the Universe in four stages: the radiation domi-Hubble parameterH,=100 hkms!Mpc ! (H,=3.3
nated(RD) era, but before the oscillations of the scalar field x 10-4 hMpc ™! in units of c=1) with h=0.65+0.1, the
®, the radiation dominated era witlh already acting as current radiation energy densi@07h2=2_480>< 10°°, the
standard cold dark matter, the matter dominae®) era,  current baryon energy densif)ozh?=0.019+0.0024, the
and finally the dark energy dominated era. We will recovemackground temperaturdlo=2.7277-0.002 K and the
the standard cosmological evolution of cold dark matter withamount of primordial heliun ;.= 0.246+0.0014[25]. We

the quintessence potentid)). In Sec. Il we will analyze the il consider three species of light neutrinos wit,,
growing fluctuations of the scalar dark matter within the lin- — %(4/11)4/39(” per species.

ear regime for the four stages of cosmological evolution.
From the equation of scalar fluctuations, we will determine a
Jeans length for scalar dark matter and show that modes
larger than this Jeans length are growing modes. This last We start the evolution of the Universe at the end of infla-
fact implies a cutoff in the mass power spectrum and we cation, i.e., in the radiation dominatedRD) era. The initial

fix all free parameters of the potenti&) by setting the cut- conditions are set such thai§ , piv) <pi, -

off wave number to the desirable value suggested in the lit- Let us begin with the dark energy. For the potentialan
erature. The dark energy fluctuations are not analyzed in deexact solution in the presence of nonrelativistic matter can be
tail because it has been already done in the literature. Finallfound[7,23]. The parameters of the potential are given by

A. Radiation dominated (RD) era
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_ . dv
a= 3(0\1, , d=— dﬁ() (12)
2V3(1+ wy)
Following Ref.[22], from the time average in a period larger
B= 2(1+wy) ®) than a scalar oscillation but smaller than the Hubble time of
oy the quantity
~ 3(1-wy) [ Qoy|EHewier d(®@d) .
Kovozg oM QoyHZ, T =P%2+ DD, (13
2 Qoy

whereQ gy andQycpy are the current values of dark energy 't follows that

and dark matter, respectively, ar€0.6=wy=—0.9 is the dv

range for the current equation of state. With these values for (P2 = < q)_> ) (14)
the parametersa,8<0) the solution for the dark energy dd

(W) becomes a tracker one and is only reached at a matt
dominated epoch and the scalar field would begin to
dominate the expansion of the Universe after matter domin
tion. Before this, at the radiation dominated epoch, the scal
energy densitypy is frozen, strongly subdominant, and of 1
the same order as tod@23|. Then the dark energy contri- (pop)=ma(D?)+ gy\zm(zl,,(()(q%), (15)
bution can be neglected during this epoch.

Now we study the behavior of the dark matter. For the
potential(2) we begin the evolution with large and negative
values of®, when the potential behaves as an exponential
one. It is found that the exponential potential makes the sca- )
lar field ® mimic the dominant energy density, that jg,  then, the equation of state reads
=pipa *. The ratio ofpy, to the total energy density [§,8] 1 (@4

(w¢>=§

eIraking only the quartic and quadratic term as a good ap-
aQroximation, the average energy density and pressure can be
a(?xpanded akl8]

1
(Po)=57M "M ro( D7), (16

17
Po 4

_4 (@) +(0%
Pyt Po N2

9

2KO

This solution is self-adjusting and it helps to avoid the ﬁne_Observe that at the beginning of scalar oscillations, when the

tuning problem of matter, too. Here there appears one restriduartic term is still the dominant one in the potential, the
tion due to nucleosynthesig] scalar field® behaves as radiation as the early exponential
behavior indicates. Once the quadratic potential dominates,

we find that(®*)=(3/2)(®?2)? and(p4)=2(V). The equa-

P _ 4 <0.2, (10)  tion of state then changes to
Py N°—4
1
. = , 18
acting on the parametar>/24. We shall cala* the scale (o) 16\/0<pq’> (18)

factor at the time whem\ Jk,®|~1, i.e., when the scalar _ _
potential (2) leaves the exponential behavior and enteringVith (we) going down to zero andpy) scaling as nonrela-

the scalar oscillations begin from Eq. (4)] polynomial behavior can also be seen in Réfl]. Now, we
would like the scalar fieldP to act as cold dark matter, in
5 2 order to recover all the successful features of the standard
VAc—4 a . . N . .
Hot= (a<a*), (11 ~ model. For this to be possible, we will first derive a relation
Ao 2VQ, between the parametery/{,\).

If the transition from radiation to matter occurs smoothly
whereH, is the current value of the Hubble parameter. This[as suggested by E¢L7)] ata=a*, then
result is the standard with an extra contribution due to the
scalar contributiorpg, to radiation. pio(@*) = pocpm(a*) . (19
Once the potential2) reaches its polynomial behaviap, o , , . )
oscillates so fast around the minimum of the potential thaf\diusting numerically and using E®) in the left-hand side
the Universe is only able to feel the average values of thé-HS) of Eq. (19), we find that

energy density and pressure in a scalar oscillation. During s [9 Q
the time of a scalar oscillation, the term of the cosmological a* ~ /_()\2_ 1( 0y ) (20)
expansion in Eq(5) can be neglected, and then we can write 7 Qocom
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On the other hand, now we ug@q)~pcpm in the right- a |3ew]l?
hand side(RHS) of Eq. (19). Thus, akoW =arccoth 1+ e : (29
Vo(N2ko®2)|ax ~ pocom(a*) 2. (21 po=poga 30 ow), (30)
Therefore, the required relation red@i ~ ~
a ds] VoV = aptanh Y a\k, V)V, (31)
17, o[Qocom 8 5 5 B
KoVo=3- (N =47 = 7] QocovHa. (22 \/K_OV”:[(ﬂ_1)tanh_2(a\/K—o‘I’)+1]azﬁE/a )
32

Notice thatV, depends on both current amounts of dark
matter and radiatioincluding light neutrinos and that we
can choosa to be the only free parameter of potentia). If

we taker=5, then we find the limit values

and it begins to be an important componexy is the scale
factor at the time of equivalence between matter and dark
energy

~1/(3wy)

QOM ’ (33)

koVo=10° Mpc?, (23 Ay =| g
ow

=>5X -1.3% — 26
My=5x 10> Mpc 3x1077 eV, (24) whereQ gy andQqy are the current amounts of matter and

dark energy, respectively. We find that 0.82(0.6)=ayy
=0.73(z~0.37) for —0.6=wyx=—0.9.
(wg)~10Ha=3_0, (26) é;crackfr solution |s. recognized because the funcﬁqn
=(VV")/(V')?>1 and is nearly constant over the possible
wherexc=mg? is the scalar Compton length. Now we can initial conditions[4]. From Eqs.(31),(32),
be sure thapg = pcpw and that we will recover the standard PR
cold dark matter evolution. Moreover, it turns out that the F=[1-p"+B ta”h?(“\/"—o‘y)]' (34)

scalar field® is an ultralight cold dark matter particle. thus T=2 if wy=—0.6 for the possible initial conditions

The dominant components of the Universe just after sca(—)<\P<MP. Therefore, the potentiall) has a tracker solu-

lar oscillations begin are matter and radiation just as in the. : ; '
standard model. Then, we can give the time evolution witr?'on' The time at which the scalar fielit depends upon

radiation and matter only faa>a*, obtaining |n|t!a! _condltlon_s, but the late time behavior is independent
of initial conditions over almost a range of 100 orders of
magnitude{4,23].

M= (koVo)  Y?<1 kpc, (25)

(3/2)
Hot= 22 1+ aVM/E_ am We can integrate Eq4), and then the time evolution for
3 JQom alz2z a matter and dark energy onlfneglecting radiation reads
(3/2) / [7.23
(a*) a'yM ayM )
+ 1+ 2—-—1 (3/2)(1+ wy)
3 /QOM a* \ a* Hot= 2 a v
3(1+ w\p) NO)
L4 @)? - o
—l 3&)\1}
N 20, 1B p+a [ a
0y X 2F]_ 2 ) 4 ’ 4 [} aM\I, , (35)
where ) ] . ]
where ,F, is the hypergeometric function. By analytical
Qo continuation, it can be shown thg26]
am=g (28)
Qowm

z
2Fl(u,v,w;z)z(l—z)“2F1<u,w—v,w;—). (36
is the scale factor at the time of radiation-matter equivalence,
a,m~3.3¥X 10 * (z=3000). The standard case is recovered
if a*—0 (A—=) anda*<a,y for A=5, that is, the tran-
sition occurs before radiation-matter equality. 5 232)

If a<ayy in Eq. (35), then

B
Hot— Fiz,1-+1;1]. 3
B. Matter dominated (MD) era ° 3(1+ wy) \/QOMZ 1<2 4 87
During this time, the scalar field continues oscillating  Using Eq.(8), it follows that

and behaving as nonrelativistic matter and there is a matter
dominated era just like that of the standard model. Shortly B
after matter completely dominates the evolution of the Uni- 2F1(§’1’Z+ 1;1) =ltoy, (38)
verse, the scalar fiel reaches its tracker solution, E@®)
and[23] and therefore,
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312 1x10%0
(39

N

a
Hot—> a

w
%‘
2

1x10'3 Fs

. . . . 1x1010F
Let us try to give a complete solution for the time in the X

presence of radiation, matter, and dark energy. Taking intc 199000 |
account the limit valug39), we can stick up the solutions «
(27) and (35). Then, the complete time evolution far-a* 1
(including the¥ dominated eracan be written as

1x10°95F

2 a(3/2)(1+‘”\l/) a Bwy]—1/2 1x10-10F
Hot=
0 3(1+ wq,) ‘/QO\P apmy s . . . . . .
1x10 -06 -05
1x10 1x10 0.0001 0.001 0.01 0.1 1
R (alayy)3v ) a
XZ 1| A1+, ;
Bwy
277 4 1+ (alayy)® FIG. 1. Evolution of the energy densitipsvs a: p., (dot-dashed
%1\3/2 curve, ppy (dashed-curve p, (solid-curve, and py (dotted-
am(l am| 2(@) P =
A1+ 2 - curve; with wy=-0.7.
al\2 a 3 VQom
Ill. LINEAR PERTURBATION THEORY
au/l a YA\2—4 (a*)? _ . .
% 1+ ﬂ(__ 7"") + @) . In this section, we analyze the perturbations of the space
a* |2 a* A 2\Qy, due to the presence of the scalar fieflelsV' using analytical

(40) approximations. First, we consider a linear perturbation of
the space given by;; . We will work in the synchronous
gauge formalism, where the line elementdis’=a?[ —d7?

C. Scalar field ¥ dominated (¥ D) era +(&;;+h;;)dx'dx']. The equations for perturbations in tke

At this time, the scalar fielt¥ is the dominant component SPace k=kKk) are[27]
of the Universe and the scalar potential is effectively an
exponential ong¢9,23]. The time evolution becomes hij(i T):f dakeik.x‘kikjh(lz, 7

2 a(3/2)(1+ W)
(41)

Hot= )
T 3(TH ey 0oy -

w| =

Kk -

5”)617(I2,7)], (42)

thus the scalar fiel drives the Universe into a power-law , 1la. 0
inflationary stage 4~tP,p>1). Note that usual tracker so- k®n—5 Sh=4mGa’ Ty, (43
lutions do not have this late exponential behavior. Also, the
tracker equation of state usually changes towartl once 1
the scalar field dominates finishing the latter as a cosmologi-
cal constant4]. But the scalar equation of statey will
never change its tracker value and for potentialthere is
no solution withwy = —1 either[23]. 07 |
A complete numerical solution for the energy densities 4|
p’s and the dimensionless density paramefeis up to date
are shown in Figs. 1 and 2, respectively. The results agrefo"
with the solutions found in this section. It can be seen that 04
Eqg. (22) makes the scalar field behave quite similar to the 03 |
standard cold dark matter model once the scalar oscillation:

05

begin and the required contributions of dark matter and dark 02T
energy are the observed orfe4,23. R
The current age of the Universe can be calculated from ¢ b= : : - <
Eg. (40) with a=1. Thus, 1.08Ht,=>4.02 for —0.6 PAOTE - IA0TE 000010001 00101 !
=wy=—0.9. The age of the Universe could be &8 a
<60)x 10° yr, irrespective of the value of. We recovered FIG. 2. Evolution of the dimensionless density parameters vs

the standard cosmological evolution and then we can see th@fe scale factora with Qg =0.30: ACDM (solidcurve$ and
potentials(1),(2) are reliable models of dark energy and dark wdDM for two values of A\=6 (dashed curvés A=8 (dotted
matter in the Universe. curves. The equation of state for the dark energywig=—0.8.
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k277:4’7TG az(p_|_ D)o, (44) A. Scalar perturbations

We must add the perturbed equations for the scalar fields
D(7)—>D(1)+ Pk, 7) and W (7) =V (7)+ ¥(k,7) [4,8]

. a. _
h+25h—2k277= —8ma?sT], (45)
1. .
_ opp=—PPp+V'g,
.. . a . . a
h+677+25(h+677)—2k277
1. .
=—247Ga’(p+p)o, (46) 5p¢=;¢>¢—v b,

whereh is the trace of the metric perturbatiohg, 6T/ is 1.

the perturbation to the momentum-energy tensor, and now (po+ pq))g(p:_zq)k%, (56)
overdots denote derivatives with respect to conformal time a

The velocity @ and sheawr perturbations are defined as

1.. -
(p+p)o=ikisT?, (47) Opy= WYV, (57)
= | kK 1 [ 1.
(p+plo=—|kikj— 3 2, (48) 5pq,:_2q,¢_§'/rl/j,
a
Ei-ETi-—E(Si-TE. (49 1.
b3 (Pw+pw)9\1r:;‘1’k2¢,

The density contrastd= dp/p) which accounts for the den- , . )
sity relative to the homogeneus cosmological energy density/ith the evolution equations for the perturbations
and 6 for perfect fluids are governed by

. . 1..
o+ 2HP+K2p+aV" p+ 5Ph=0, (58)
o=—(1+ 0+h 32 o 5 50
——( a)) E_aé_p_w s ( ) ) . ~ 1.
J+ 2HY+K2y+a?V" g+ 5¥h=0. (59
— 5p/5p k2 k2
0=—7(1-30)0—- 70+ ~k'o-Ko. Here, primes are derivatives with respect to the unperturbed

(51) scalar fieldsd and W, respectively. Before we solve these
equations, we must first analyze the meaning of a scalar
The evolution equations with the unperturbed FRW metricJeans length.
(4)—(7) in terms of the conformal time are
B. Damping of the scalar power spectrum

H?= %aZ(erpq)erw), (52 Recalling .the results for the average scalar pressure and
energy densityEgs.(15),(16)], the velocity of sound in the
scalar fluid® is

. . ,dV(®)
d+2HD+a i =0, (53 1
vi=——(pe)~10"*a"3, (60)
8V,
\P+2H\if+a2dv(q,)= , (54) The velocity of_sound_decreases rapidly to z_erouq,sdoes. _
dw As suggested in the literature, we could define an effective
Jeans length13,18,28,
p+3H(p+p)=0, (55) o2
. L,= S — \Vi —1/2' 61
H being the conformal Hubble factor. The scalar energy den- =7 G{p) m(koVo) (62)

it — 2 2 — 2 2
smNes are pe=(1/227) @7+ V(®) and pq,2—(12/2a A from which we obtain_ ;=<3.14 kpc. Therefore, we can ex-
+V(¥). The scalar pressures apy=(1/227)P°—V(P)  pect that the scalar field fluctuations produce only complex
and py = (1/2a?)¥2—V(¥). The solutions to these equa- stellar objects bigger than this Jeans length. In a first ap-
tions are those already found in the previous section wheproximation, this model could explain the suppression of
written as functions of the scale factar subgalactic structurgl3]. Also, it is likely that the quantity
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re=(xoVo) Y2 could be important at galactic scaj@i]. Ly(a)=27k L, (65)
But, in order to have a good estimate of the real Jeans length, ’
we need to analyze the fluctuation equations. We will findang it is a universal constant because it is completely deter-
that Eq.(61) is only an approximation to the real thing.  mined by the mass of the scalar field partidlg.is not only

It is known that scalar perturbations can only grow if the proportional to the quantityu,V,) Y2 as suggested by the
k? term in Egs.(58),(59) is subdominant with respect to the approximation in Eq.(61), but also the time when scalar

second derivative of the scalar potential, that is,Kif oscillations startrepresented bg*) is important, as it was
<a\V” [29]. Let us analyze the scalar dark matter case. syspected in Ref13].

Accordilng to the solutign given above for potent{a), On the other hand, the wave numiigr=a R is always
the behavior foike =a V" is out of the Hubble horizon, meaning only structures at larger

scales tharH ~* can be formed by the scalar fluctuatiofis
2H / Qo ra~l (a<a*), Instgad of a minimum, there i.s a maximurkyaxy
kKp(a)= N2— (62 ~10"2 Mpc L. All scalar perturbations of the dark energy
which k>10"2 Mpc™! must have been completely erased.
Perturbations withk<10"3 Mpc™! have started to grow

with a minimum value given by only recently(see Fig. 3. For a more detailed analysis of the
dark energy fluctuations, see R€ff29,30.

Mmgpa (a*=<a),

‘Q’OCDM

_ - NZ_4--0CDM

Kmina=Mpa* =13 yA“—4 o Ho, (63 C. Scalar power spectrum for ®
Y

In this subsection, we will find some analytical approxi-
and then fol\=5, Kyins=0.375 Mpc * (see Fig. 3 There  mated solutions to Eq58), having in mind the Jeans Length
are no scalar perturbations far>mg , that is, bigger than (65, that is, we will analyze Eq(58) only for modesk
ke today. Thisk corresponds to scales smaller than 1.2 kpc< Kemin -

(here A\=5). They must have been completely erased. In  We can have some physical insight into the previous dif-
addition, modes whichmg>k>Kp,e must have been ferential equations if we write the evolution equations

damped during certain periods of time determined by (43),(45) in the form
QO}/ k d . 3 0 :
_ — (ah)=kqga3(86Ty— oT)). 66
2H\ \/)\2_4k<a<m®. (64) et )= Ko (6T i) (66)

From this, we conclude that the scalar power spectrudh of Then we can change this into
will be damped fork>Kkpne With respect to the standard

case. Also, in Fig. 3 we can see that the Hubble wave num- d . 2 oPg
berky is greater thark, until a little aftera*. This means d—T(ah)+3aH 20,8, + Qpp T Qo l+35p¢
that the Jeans lengil65) is well within the Hubble horizon 5
for most of the time and the scalar fluctuations can form Py

+ +3— | |=
structures at scales smaller than the Hubble lehgh. Qudy|1 35p\p 0. (67)

Therefore, the real Jeans length must be
whereQ,=p;/pt, pr=(3H?)/(ka?). For perfect fluids, it

10000 ' ' ' ' ' R happens that&p/ 6p) =v2~w. For scalar fields, we cannot
, identify uimw in general and so we have explicitly written
100k ] (0P, w/0pa,w)-

We can see easily that the dominant background compo-
nent of the Universe is the dominant term in the differential
equation(67), too. Thus, we can use the standard results for
the fluctuations during certain stages of the cosmological

............................................ evolution. Also, it is worth mentioning that all perturbed
0.0001 | quantities can be written in terms of the trace of the metric

0.01

k Mpc™h

perturbationsh, then it is enough to have a solution for it.
See Refs[27,3]] for the other equations required and how to
solve them.

1x10°%

1x10°%8 . . . o )
1x10%  1x10%° 00001 0.001  0.01 0.1 1 1. a<a*: Radiation dominated era

a During the RD era, the scalar energy dengity evolves

FIG. 3. Evolution of the Hubble wave numblkey (solid-curve ~ as a perfect fluid with constant equations of statg=1/3
and the scalar wave numbeks, (dashed curyeand ky (dotted ~ (remember that the exponential potential mimics the domi-
curve. nant energy. For the scalar fieldb we have
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12 2. a*<a: Radiation and matter dominated eras

2 _ 2
Ko pop= PH ' (68) Once the scalar field begins to oscillate, it happens that
V'=mj . Recalling thatk<knm,o<a?V", Eq. (58) can be

2 4 written as
i 2
Vo= V3@ kope=yH,

. . 1..
b+2Hp+a’m3 ¢+ dh=0. (76)
2 2
2v'=—HJK—<b=—fH— (69)
a 0 N ko' The scalar perturbation oscillates with the same frequency
as the unperturbed. Following the previous section, if we
a’V"'=4H?2. take the time average of the quantity
SinceH= 7! and radiation dominates E(7), h evolves as d(dep) . . )
in the standard casé=Cr for modes out the Hubble hori- 4, Lot Pe (77)

zon, anch=C7~! for modes inside the Hubble horiz$a2]
(for detailed calculus with the exponential potential, see Refwe obtain
[8]), whereC=const. . .
Havinga= 7, the evolution equatior68) for a mode out (Pp)=—(D ). (78)

of the Hubble horizon can be writtdsee Eq.(69)]
The second and fourth terms of E@6) are almost constant

2 4 2C during the time of a scalar oscillation. Then,
p+—p+ —p=— : (70 .
T 7 ko (D h)~—(a>mZd )= —(a’V' ). (79
Thus, the growing solution fo# is Therefore, we find that
C A\ / A2\
Vkod(7)=— 572, (71) (9pg) (P)—(a’V'¢) 0 (80)

(Bpa) (D p)+(a2V' ¢)
where we can recover the result-(1/2)h= 6cpm Iti . : :
t te Eq7 th f
= (5M/4) koo [8]. Here,Scpy would be the standard CDM é(;s (r;%\)/y convenient to rewrite Eq76) in the same form as
density contrast. This leads to ' '
h 81
5 (8D

(oPw)  (Pa)
<5Pc1>> <P<13>

S¢+3H e + (e}

that is, the scalar density contra%f evolves as the standard Therefore, with(wy) going to zerdEq. (18)] it follows that
one but with smaller amplitude. Note that this result is inde- Se=38 (82)
pendent ofn. This result can also be obtained from E§0) ¢ reom

with Due to its oscillations around the minimum, the scalar field
s & changes to a complete standard CDM and so do its per-
Pe _ (73 turbations. All the standard growing behavior for modes
opo <Kkmina is recovered and preserved until today by potential
where we can observe that the scalar fibldoes not behave f:%)r.nlr?arlzelg. vii,tha tl;]uemsetral‘cr:ﬂ;(;/ Oggﬁﬂn g@ff/q-ﬁz ?ngtns
completely as perfect fluid. _ _ (72),(82) agree with the numerical solution. The numerical
For modes inside the Hubble horizon, the equation 0 b&ygytion for the density contrasts was done using an
solved is amended version afMBFAST [31].
In Fig. 5 we can se&? at a redshifiz=50 from a com-

4 _ ( 1 (Pa)
S0 :1_55CDM , (72

1
31wq>:§1

Eﬁ*‘ E¢+ i¢: _ 2C i (74) plete numerical evolution using the amended versiooMs-
T 7 Vkoh 72 FAST. We also observe a sharp cutoff in the processed power
spectrum at small scales when compared to the standard
The general solution is of the form case, as was argued above. This suppression could explain

the smooth cores of dark halos in galaxies and a less number
C of dwarf galaxied15].
\/K_O(ﬁ(T)——K—COﬂSt, (75 At this point, we would like to mention some coinci-
dences between some results in H&0] in which a qua-
and thendg,=(C/6)=const. The modes inside the Hubble dratic potential is used with the results of this section. In that
horizon do not grow during RD. reference, it is argued that the Jeans length is the de Broglie
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10000 T T T T 1000

1000 F 100 L

100 f
10 ¢

10 |
1k

%=} 1F %
0.1+
0.1
oo1 L 001 £
0.001 0.001 |
0.0001 L L L L 0.0001 1 L L L Lo
1x10°0%6 1x10% 00001 0.001 0.01 0.1 1109 00001 0001 0.01 0.1 1
(a) a k (h/Mpc)
0,01 . . : . . FIG. 5. Power spectrum at a redshi#t=50: ACDM (solid-
’ curve, and®CDM with A=5 (dashed-curyeand \ =10 (dotted-
0.001 F curve. The normalization is arbitrary.
0.0001 |
1x109% A=20.28,
1X10'06 -
w  1x109 | Vp=(3.0x10 >"Mp=36.5 eV)* (84)
1x10°%
10 Mp=9.1X10 M p=1.1x10"2 eV,
x L
1x10710 1 whereM p;=1.22x 10'° GeV is the Planck mass. All param-
1x10°11 eters of potentia(2) are now completely determined and we
X102 , , , , , have the right cutoff in the mass power spectrum.
1x10°%  1x10%5  0.0001  0.001 0.01 0.1 1
(b) a 3. Scalar field¥ dominated era

For completeness, we will draw some general features of
dard cold dark mattebcpy, and scalar dark mattef, vs the scale the evolution Of fluctuations durlr_lg the dark energy domi-
factor a taking Qg =0.30 for the models given in Fig3). The nated era..At this era, th.e scalar f|eldnow_ domm_ates both
modes shown ar&=0.1 Mpc ! (top) and k=1.0x10"5 Mpc ! the evolution of the Universe and the differential gquat|on
(bottor). (67). We do not worry aboutb anymore, because its per-
turbed solution continues beingy, = — (1/2)h due to its os-
cillations around the minimum of the potential. The scalar
energypy evolves as a perfect fluid with equation of state
due to the effective exponential behavior of poten(ial

n,

FIG. 4. Evolution of the density contrasts for baryafis stan-

wavelength at the ground state of the particle in the gravita
tional potential well and that the power spectrum is su-
pressed relative to the CDM case. We see before that most (ﬁ‘:’
the interesting properties of potgnti(éﬂ) as dark matter are €
due to its polynomial behaviob<. Then, it is not strange .
that, in our case, the mass power spectrum is also related to V= 1+ wy\a’py, (89
the CDM case bysee Ref[20])

1- Wy
2 Py, (86)

3\ 2 V=

COoX
Pq)(k):( 1+x8> Pcom(k), (83

V'=\3(1+wy)V, (87

but usingx= (k/Kmine) With knine being the wave number S Y
associated to the Jeans lengf®). The difference with re- Vi=3(1t o)V, (88)
spect to the case treated in RE0] is that the relevant time
scale is that when scalar oscillations start and not that
radiation-matter equality.

If we take a cutoff of the mass power spectrumkat 372
=4.5hMpc™* [15], we can fix the value of parametar a%py= i (89)
Using Eq.(63), we find that Ko

§ince the scalar field> dominates the evolution of the Uni-
0 L .
verse, it is straightforward that
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H (71— 7)1, (90)

- 1+3wq>

wherer,, is the size of the event horizon 7.,) [27]. Since

PHYSICAL REVIEW D63 063506

the cosmic coincidence is ameliorated. Its late exponential
behavior drives the Universe into a power-law inflationary
stage, in good accordance with supernovae results. Neverthe-
less, a fine-tuning problem remains in determining the pa-

we are interested in possible growing modes, we will contameters of the potential. Also, we do not know about a

sider Eq.(59) only in the casek’<a?V". The evolution
equationg59),(67) become

Y W D h

y+2B +C + = =0, (91
R T 2 ey O Y
) h ¥ ¥
h+B +4D -E =0, (92
o P T &
where the constant coefficients are
B= 2 93
- 143wg’ (03
9 2 2
C=§(1—wq,)B , (94
D=3(1+ wy)B, (95
3
E= 5\/3(1+wq,)(1—wq,)|32. (96)
The scalar fields were normalized in units«f 2. We can

try solutions of the formh=hg(7—7..)", = ho(7— 7)™,
where the values afn are the solutions to the equation

mm(m—1)+2Bm+C][(m—1)+B]= ?(4Dm— E)
97)

with an obvious solutiom=0 and two complex roots . The

other real root givean>0 if —0.6<wy=<-—0.9. For in-
stance, if wy=-0.6, m={7.83,0.835-3.2,0.835-3.2}.

Then, all of the solutions are decaying ones. This result is n
surprising because by this time the Universe has already e’
tered in an inflationary stage. Then, we conclude that pertu
bations in the linear regime will be suppressed by the acce

erated expansion of the Universe.

IV. CONCLUSIONS

fundamental theory that could predict this kind of potential.
However, quintessence models with an expectation value of
the field of the order of the Planck mass can be considered
within supergravity[ 33].

On the other hand, we have modeled the cosmological
dark matter using another scalar field with a cosh scalar
potential. As we have shown in this work, the solutions
found alleviate the fine-tuning problem for cold dark matter,
too. Once the scalar field begins to oscillate around the
minimum of its potential2), we can recover the evolution of
a standard cold dark matter model because the dark matter
density contrast is also recovered in the required amount. It
should be noticed that the resulfabout growing density
perturbationsare independent of the parameters of potential
(2). Thus, the predicted angular and power spectrums in the
linear regime are those already shown in Hef3]. These
spectrums are subject only to the imprint of the scalar poten-
tial (2).

We also find an important difference with respect to the
standard dark matter model. Analyzing the fluctuation equa-
tions, we clarified the meaning of a Jeans length for this
model: it is related to the mass of the scalar particle and to
the time when scalar oscillations start. This Jeans length pro-
vokes the suppression in the power spectrum for small scales
that could explain the smooth core density of galaxies and
the dearth of dwarf galaxies. Up to this point, the model has
only one free parameter. However, if we suppose that the
scale of suppression ik=4.5" Mpc, then\~20.28, and
then all parameters are completely fixed. From this, we
found thatV,=(36.5 eV) and the mass of the ultralight
scalar particle is mp=1.1x10"2® eV. The quantity
(koVo) Y2 or the scalar masmy, could play an important
role in galaxies, possibly appearing in the observed constant

ggore density of dark halosee Refs[16,21]). This last fact
ould be a signature of the parameters of the dark matter
rpotentiaI(Z) as it has been shown that an exponential poten-
|t_ial appears when analyzing scalar dark matter at the galactic
level [17]. Further investigation will be published elsewhere.

Some questions could arise here: How good is @8)?
Why does(),, also appear? A possible answer could be that,
in fact, the potential2) can be written

We have developed most of the interesting features of a
95% scalar-nature cosmological model. The interesting im-

plications of such a model are direct consequences of the

scalar potential$l),(2).

N 2
sim{?ﬁotb) } . (98

Vo[ CosHA Vio®) —1]=2V,

On one hand, we have modeled the dark energy of the

Universe using a scalar field with a sthpotential[23]. This

potential has the advantage that at early times it is & purghen, the potential2) is another sinh-like potential. Observe

inverse power-law oné/(¥)~W¥ ¢, thus the cosmology at the similarity between Eg22) and the last of Eq98), the
late times is extremely insensitive to initial conditions, re-last one being a generic solution of sinh-like potentfalks
ducing the fine-tuning. Th& solution is only reached dur- They both involved the previous dominant component. It is
ing a matter dominated phase of the Universe, thus the exighis singular feature that make us think about a cosmic coin-
tence of a current dark energy dominated epoch is naturatidence of matter. Therefore, it would be clear that after a
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radiation-dominated era, a matter-dominated era must ap-

PHYSICAL REVIEW D 63 063506
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