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Scalar-tensor gravity in an accelerating universe
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We consider scalar-tensor theories of gravity in an accelerating universe. The equations for the background
evolution and the perturbations are given in full generality for any parametrization of the Lagrangian, and we
stress that apparent singularities are sometimes artifacts of a pathological choice of variables. Adopting a
phenomenological viewpoint, i.e., from the observations back to the theory, we show that knowledge of the
luminosity distance as a function of redshift up toz;122, which is expected in the near future, severely
constrains the viable subclasses of scalar-tensor theories. This is due to the requirement of positive energy for
both the graviton and the scalar partner. Assuming a particular form for the Hubble diagram, consistent with
present experimental data, we reconstruct the microscopic Lagrangian for various scalar-tensor models, and
find that the most reasonable ones are obtained if the universe is~marginally! closed.
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I. INTRODUCTION

Recently, there has been a lot of interest in cosmolog
solutions in the presence of a cosmological constant, w
the latter is significant compared to the present total ene
density of the universe. Indeed, the Hubble diagram base
observations of type Ia supernovae up to a redshiftz;1
seems to imply that our universe is presently accelera
@1,2#. These data, when combined with the observed loca
of the first acoustic peak of the cosmic microwave ba
ground~CMB! temperature fluctuations, favor a spatially fl
universe whose energy density is dominated by
‘‘cosmological-constant’’-like term. The flatness of the un
verse is corroborated by the latest Boomerang and Max
data @3,4#, in accordance with the inflationary paradigm
though a marginally closed universe is still allowed by t
position of the first acoustic~Doppler! peak atl;200. A
significant cosmological constant may help in resolving
dark matter problem — for dustlike matter alone obser
tions seem to implyVm;0.3 — and in reconciling flat cold
dark matter~CDM! models with observations in the frame
work of CDM models with a cosmological consta
(LCDM). Finally, a cosmological constant is an elegant w
to allow a high Hubble constant H0 with h
[H0 /(100 km s21 Mpc21)'0.65 and a sufficiently old
universet0.11 Gyr @5# ~see also, e.g.,@6# for a recent com-
prehensive review and references therein!.

Therefore, this interpretation, if confirmed by future o
servations, constitutes fundamental progress towards the
lution of the dark matter problem and the formation of larg
scale structure in the universe out of primordial fluctuatio
generated by some inflationary model. That is certainly w
makes it so appealing and gives it, maybe somehow pre
0556-2821/2001/63~6!/063504~20!/$15.00 63 0635
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turely, the status of new paradigm. A striking conseque
for our universe is then its present acceleration, for a la
range of equations of state@7#.

Of course, from the point of view of particle physics,
pure cosmological constant of the order of magnitudeL
'33102122c3/(\G), interpreted as the vacuum energy,
extremely problematic. This is why attempts were made
find some alternative explanation to the origin of the acc
eration under the form of some scalar fieldF ~sometimes
called quintessence@8#, ‘‘ L ’’ field, etc.! whose slowly vary-
ing energy density would mimic an effective cosmologic
constant. This is very reminiscent of the mechanism prod
ing the inflationary phase itself with the fundamental diffe
ence that this scalar field, which does not have to bea priori
the inflaton, is accelerating the expansion today, therefor
a much lower energy scale. This of course has problem
its own as this effective cosmological constant term star
dominating the universe expansion only in the very rec
past~the so-called ‘‘cosmic coincidence’’ problem!. Indeed,
the energy density of the fieldF must remain subdominan
at very early stages and come to dominate in the recent
only. Hence, specific evolution properties are required
meet these constraints and were indeed shown to hold
particular potentials, partly alleviating the problem of th
initial conditions. For inverse power-law potentials the e
ergy density of the scalar field was shown to decrease
rapidly than the background energy density so that it can
negligible in the early universe and still come to dominate
the recent past@9,8,10#. For exponential potentials@11,9#, the
scalar field energy density has the very interesting beha
that it tends to a fixed constant fraction of the total ene
density, these are the so-called ‘‘tracker solutions.’’ Henc
pure exponential potential is excluded if data confirm that
©2001 The American Physical Society04-1
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energy density of the scalar field is dominating today, as
fraction had to be small at the time of nucleosynthesis. S
tracking solutions alleviate significantly the problem of t
initial conditions. A slightly different potential is proposed
@12# and a classification of the scaling behavior of the sca
field for various potentials has been given in@13#. Hence,
though a minimally coupled scalar field is an attractive p
sibility, some degree of fine-tuning still remains in the p
rameters of the potential@13,14#.

If one admits that it is some minimally coupled sca
field which plays the role of an effective cosmological co
stant while gravity is described by general relativity, t
question immediately arises: What is the ‘‘right’’ potenti
U(F) of this scalar field? In a recent work by Starobins
@15#, the following ‘‘phenomenological’’ point of view was
adopted: Instead of looking for more or less well-motivat
models, such as the interesting possibilities discussed ab
it is perhaps more desirable to extract as much informa
as possible from the observations~a similar approach can
also be adopted to reconstruct the inflaton potential! in order
to reconstruct the scalar field potential, if the latter exists
all. Cosmological observations could then be used to c
strain the particle physics model in which this scalar field
supposed to originate. In the context of general relativ
plus a minimally coupled scalar field, it was shown that t
reconstruction ofU(F) can be implemented once the qua
tity DL(z), the luminosity distance as a function of redsh
is extracted from the observations@15,16#, something that is
expected in the near future.1 The SNAP~Supernovae Accel-
eration Probe! satellite will notably make measurements wi
an accuracy at the percent level up toz'1.7. Of course, in
this way only the recent past of our universe, up to redsh
z;122 ~for reference, we will push some of our simul
tions up to z;5), is probed and so the reconstruction
made only for the corresponding part of the potential. C
cial information is therefore gained on the microscopic L
grangian of the theory through relatively ‘‘low’’ redshift cos
mological observations.

A further step is to generalize the same mechanism in
framework of scalar-tensor theories of gravity, sometim
called ‘‘generalized’’ ~or also ‘‘extended’’! quintessence
The usual minimally coupled models are certainly ruled
if, for example, it turns out that this component of the ene
density obeys an equation of statep5wr with w,21 (r
>0). Strangely enough, such an unexpected equation
state, which in itself implies new physics, is in fair agre
ment with the observations@18#. Also the inequality
dH2(z)/dz>3Vm,0H0

2(11z)2 must hold for a minimally
coupled scalar field@6#; hence its violation would force us t
consider more complicated theories, possibly scalar-ten
theories. There are also strong theoretical motivations. Th
theories, in which the scalar field participates in the grav
tional interaction, are the most natural alternatives to gen

1Actually, it is shown in Ref.@17# that the potentialU(F) can
already be reconstructed from present experimental data, alth
not yet very accurately.
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relativity ~GR!. Indeed, scalar partners to the graviton gene
cally arise in theoretical attempts at quantizing gravity or
unifying it with other interactions. For instance, in supe
string theory, a dilaton is already present in the supermul
let of the 10-dimensional graviton, and several other sca
fields ~called the moduli! also appear when performing
Kaluza-Klein dimensional reduction to our usual spaceti
~see, e.g., Chap. 14.5 of Ref.@19#!. Moreover, contrary to
other alternative theories of gravity, scalar-tensor theo
respect most of GR’s symmetries — conservation laws, c
stancy of~non-gravitational! constants, local Lorentz invari
ance~even if a subsystem is influenced by external mass!
— and they also have the capability of satisfying the we
equivalence principle~universality of free fall of laboratory-
size objects! even for a strictly massless scalar field. Neve
theless, they can describe many possible deviations f
GR, and their predictions have been thoroughly studied
various situations: solar-system experiments@20–22#,
binary-pulsar tests@20,21,23#, and gravitational-wave detec
tion @24,25#. Finally these scalar-tensor theories could pla
crucial role in the very early universe, for example in t
pre-big-bang inflationary model~see e.g.@26#!.

Thus, in this work we are investigating the possibility
have an accelerating universe in the context of scalar-te
theories of gravity instead of pure GR. This has indeed
tracted a lot of interest recently and such cosmological m
els have been studied and possibly confronted with obse
tions such as CMB anisotropies or the growth of ene
density perturbations~see for instance@27–37#!. However,
we emphasize once more that the central point of vi
adopted here, in analogy with Starobinsky@15#, is to con-
strain the model with theexperimentalknowledge of the
Hubble diagram up toz;122. This is precisely why use o
the redshiftz as basic variable is crucial for our purpos
Quantities such asH(z) are directly observable, in contras
to, say,2 H(t) or H(F). For instance, we have access
H(z) through direct measurement of the luminosity distan
as a function of redshift,DL(z). In a recent Letter@38#, it
was shown that knowledge of bothH(z) anddm(z) is suffi-
cient to reconstruct the full theory~again, in the range probe
by the data!. This means that we donot choose any specific
theory a priori, but instead we reconstruct whatever theo
possibly realized in nature.

As we will see, knowledge ofH(z) on its own, though
insufficient in order to fully reconstruct a scalar-tensor theo
unless one makes additional assumptions, turns out to
already very constraining when subclasses of models
considered. This is particularly interesting because it me
that cosmological observations at low redshifts implying
accelerated expansion might well give new constraints
scalar-tensor theories. We will show that this is indeed
case.

Throughout the paper, we use natural units for which\

gh

2The function H(t) can be obtained from knowledge ofH(z)
thanks to the relationt52*dz/@(11z)H(z)#, but the directly ob-
servable quantity isH(z).
4-2
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SCALAR-TENSOR GRAVITY IN AN ACCELERATING UNIVERSE PHYSICAL REVIEW D63 063504
5c51, and the signature (2111), together with the sign
conventions of@39#. In Sec. II, we introduce the genera
formalism of scalar-tensor theories of gravity and their d
ferent parametrizations. In Sec. III, we briefly review t
severe experimental restrictions imposed on these theo
today. In Sec. IV, we consider Friedmann-Robertson-Walk
~FRW! universes in the framework of scalar-tensor grav
and we give the equations for the different parametrizatio
In Sec. V, we review the full reconstruction problem. In Se
VI, we give a detailed study of subclasses of models, wh
are investigated using the background equations. Finally
Sec. VII, our results are summarized and discussed.

II. SCALAR-TENSOR THEORIES OF GRAVITY

We are interested in a universe where gravity is descri
by a scalar-tensor theory, and we consider the action@40#

S5
1

16pG*
E d4xA2g@F~F!R2Z~F!gmn]mF]nF

22U~F!#1Sm@cm ;gmn#. ~2.1!

Here, G* denotes the bare gravitational coupling const
@which differs from the measured one; see Eq.~3.5! below#,
R is the scalar curvature ofgmn , and g its determinant. In
Ref. @38#, we used different conventions~corresponding to
the choice 8pG* 51 in the above action!; here, the quantity
F(F) is dimensionless. This factorF(F) needs to be posi
tive for the gravitons to carry positive energy. The action
matterSm is a functional of some matter fieldscm and of the
metric gmn , but it does not involve the scalar fieldF. This
ensures that the weak equivalence principle is exactly s
fied.

The dynamics of the real scalar fieldF dependsa priori
on three functions:F(F), Z(F), and the potentialU(F).
However, one can always simplifyZ(F) by a redefinition of
the scalar field, so thatF(F) and Z(F) can be reduced to
only one unknown function. Two natural parametrizatio
are used in the literature:~i! the Brans-Dicke one, corre
sponding toF(F)5F and Z(F)5v(F)/F, and ~ii ! the
simple choiceZ(F)51 and F(F) arbitrary. This second
parametrization is however sometimes pathological.@The de-
rivatives of F can become imaginary in perfectly regul
situations; see the discussion about Eq.~5.6a! below.# In the
following, we will write the field equations in terms of th
two functionsF(F) andZ(F), so that any particular choic
can be recovered easily.

The variation of action~2.1! gives, straightforwardly,

F~F!S Rmn2
1

2
gmnRD

58pG* Tmn

1Z~F!S ]mF]nF2
1

2
gmn~]aF!2D

1¹m]nF~F!

2gmnhF~F!2gmnU~F!, ~2.2a!
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2Z~F!hF52
dF

dF
R2

dZ

dF
~]aF!212

dU

dF
, ~2.2b!

¹mTn
m50, ~2.2c!

where the matter energy-momentum tensor is defined
Tmn[(2/A2g) dSm /dgmn . The scalar-field equation~2.2b!
can of course be rewritten differently if one uses the trace
Eq. ~2.2a! to replace the curvature scalarR by its source, and
one gets the Brans-Dicke-like equation

2ÃhF58pG*
dF

dF
T2

dÃ

dF
~]aF!224U

dF

dF
12

dU

dF
F,

~2.3!

whereT[Tm
m , and where 2Ã[2ZF13(dF/dF)2 needs to

be positive for the scalar field to carry positive energy.@In
the Brans-Dicke representation whereF5F and Z
5v(F)/F, this factor 2Ã reduces to the well-known ex
pression 2v(F)13.# In the following, we will however use
the form~2.2b!, which will simplify considerably our calcu-
lations.

The above equations are written in the so-called Jor
frame ~JF!. Since in action ~2.1! matter is universally
coupled togmn , this ‘‘Jordan metric’’ defines the lengths an
times actually measured by laboratory rods and clo
~which are made of matter!. All experimental data will thus
have their usual interpretation in this frame. In particular,
observed Hubble parameterH and the measured redshiftsz
of distant objects are Jordan-frame quantities.

However, it is usually much clearer to analyze the eq
tions and the mathematical consistency of the solutions in
so-called Einstein frame~EF!, defined by diagonalizing the
kinetic terms of the graviton and the scalar field. This
achieved thanks to a conformal transformation of the me
and a redefinition of the scalar field. Let us callgmn* and w
the new variables, and define

gmn* [F~F!gmn , ~2.4a!

S dw

dF D 2

[
3

4 S d ln F~F!

dF D 2

1
Z~F!

2F~F!
, ~2.4b!

A~w![F21/2~F!, ~2.4c!

2V~w![U~F!F22~F!. ~2.4d!

Action ~2.1! then takes the form

S5
1

4pG*
E d4xA2g* S R*

4
2

1

2
g
*
mn]mw]nw2V~w! D

1Sm@cm ;A2~w!gmn* #, ~2.5!

whereg* is the determinant ofgmn* , g
*
mn its inverse, andR*

its scalar curvature. Note that the first term looks like t
action of general relativity, but that matter is now explicit
coupled to the scalar fieldw through the conformal facto
A2(w). Quantities referring to the Einstein frame will alway
4-3
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GILLES ESPOSITO-FARE`SE AND DAVID POLARSKI PHYSICAL REVIEW D 63 063504
have an asterisk~either in superscript or in subscript!, e.g.
¹m* and h* for the covariant derivative and th
d’Alembertian with respect to the Einstein metric. The ind
ces of Einstein-frame tensors will also be lowered and rai
with the Einstein metricgmn* and its inverseg

*
mn . The field

equations deriving from action~2.5! take the simple form

Rmn* 2 1
2 R* gmn* 58pG* Tmn* 12]mw]nw2gmn*

3~g
*
ab]aw]bw!22V~w!gmn* ,

~2.6a!

h* w524pG* a~w!T* 1dV~w!/dw,
~2.6b!

¹m* T
* n
m 5a~w!T* ]nw, ~2.6c!

where

a~w![
d ln A

dw
~2.7!

is the coupling strength of the scalar field to matter sour
@21#, and T* [gmn* T

*
mn is the trace of the matter energy

momentum tensorT
*
mn[(2/A2g* ) dSm /dgmn* in Einstein-

frame units. From its definition, one can deduce the rela
Tmn* 5A2(w)Tmn with its Jordan-frame counterpart.

Let us underline that the Cauchy problem is well posed
the Einstein frame@21#, because all the second-order deriv
tives of the fields are separated in the left-hand sides of E
~2.6!, whereas they are mixed in the JF equations~2.2!. Ac-
tion ~2.5! also shows that the helicity-2 degree of freedom
described by the fluctuations of the Einstein metricgmn*
~whose kinetic term is the standard Einstein-Hilbert on!,
and that the EF scalarw is the true helicity-0 degree o
freedom of the theory~since its kinetic term has the standa
form!. On the other hand, the fluctuations of the Jordan m
ric gmn actually describe amixingof helicity-2 and helicity-0
excitations, and the JF scalarF is related to the helicity-0
degree of freedom via the complicated relation~2.4b!, be-
cause its kinetic term in action~2.1! comes not only from the
naive contributionZ(F) (]mF)2 but also from the cross
term F(F) R. In conclusion, the mathematical consisten
of the theory should be analyzed in the Einstein frame,
that one can be sure that the Cauchy problem is well po
and that there are no discontinuities in the degrees of f
dom, no adynamical field or any negative-energy mode. O
should thus be able to write the action in the EF as in
~2.5!, notably with its negative sign for the scalar-field k
netic term, so thatw carry positive energy. If it happens tha
the transformation~2.4! is singular for particular values o
F, then Jordan-frame solutions may sometimes look reg
while they are actually singular in the EF, i.e., from a fie
theoretical viewpoint@a typical example is provided whe
F(F) vanishes#. Such singularities would correspond to
region of spacetime where the degrees of freedom canno
defined consistently, i.e., where the theory is actually
predictive. If the singularities are pointlike or linelike an
hidden behind an event horizon, the theory may still be c
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sidered as a viable one. On the other hand, if there exis
naked singular hypersurface@as this is generically the cas
whenF(F) vanishes#, one must discard the solution as u
physical. It should be noted that when the transformat
~2.4! happens to be singular, the opposite situation may
cur: an apparent singularity in the JF, whereas the EF form
lation is regular. In such a case, one must trust again the
result, since the field degrees of freedom behave in a con
tent way. The JF singularity is then just an artifact of t
parametrization chosen to write action~2.1!, and it does not
have any physical significance. In the following, we will s
that the JF is better suited than the EF for our cosmolog
study, but we will always check the consistency of our
sults by finally translating them in terms of Einstein-fram
quantities.

III. KNOWN EXPERIMENTAL CONSTRAINTS

The predictions of general relativity in weak-field cond
tions, and at present, are confirmed by solar-system exp
ments at the 0.04% level@41,42#. One should therefore
verify that the scalar-tensor models we are considering
presently close enough to Einstein’s theory.

If the scalar field is very massive~say, ifd2V/dw2 is large
with respect to the inverse of the astronomical unit!, its in-
fluence is exponentially small in solar-system experimen
even if it is strongly coupled to matter. This situation corr
sponds to the particular scalar-tensor model considere
Ref. @43# @namelyF(F)5F and Z(F)50 in action ~2.1!,
but assuming a large enough value ford2U/dF2]. Although
this situation is phenomenologically acceptable, it rema
somewhat problematic from a field theoretical viewpoi
since the massive scalar woulda priori desintegrate into
lighter ~matter! particles.~See however Ref.@43#, where a
range of scalar masses is shown to give negligible effect
the solar system although they remain much smaller than
electron mass.!

On the contrary, if the scalar mass is small with respec
the inverse solar-system distances, it must be presently
weakly coupled to matter for the theory to be consistent w
experimental data. At the first post-Newtonian order (1c2

with respect to the Newtonian interaction!, the deviations
from general relativity can be parametrized by two real nu
bers, which Eddington@44# denoted as (b21) and (g21).
In the present framework, they take the form@20–22#

g21522
a2

11a2 52
~dF/dF!2

ZF12~dF/dF!2 , ~3.1a!

b215
1

2

a2

~11a2!2

da

dw

5
1

4

F~dF/dF!

2ZF13~dF/dF!2

dg

dF
, ~3.1b!

where the first expressions are given in terms of the Einst
frame notation~2.5!–~2.7!, whereas the last ones correspo
to the Jordan-frame general representation~2.1!. To simplify,
4-4
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the second expression of Eq.~3.1b! has been written in term
of the derivative of Eq.~3.1a! with respect toF.

Using the upper bounds on (g21) from solar-system
measurements@41#, we thus get the constraint

2a0
2'~ZF!0

21 ~dF/dF!0
2,431024, ~3.2!

where an index 0 means the present value of the corresp
ing quantity. On the other hand, the experimental bounds
(b21) cannot be used to constrain the derivative (da/dw)0

appearing in Eq.~3.1b!, since it is multiplied by a factora0
2

consistent with 0. Because of nonperturbative strong-fi
effects, binary-pulsar tests are however directly sensitive
this derivative, i.e., to the ratio24(b21)/(g21). In a ge-
neric class of scalar-tensor models, Refs.@23,25# have ob-
tained the bound

~da/dw!0.24.5. ~3.3!

From action~2.1!, one can naively define Newton’s grav
tational constant as the inverse factor of the curvature sc
R:

GN[G* A25G* /F. ~3.4!

However,GN does not have the same physical meaning
Newton’s gravitational constant in GR. Indeed, the act
Newtonian force measured~in Cavendish-type experiments!
between two close test massesm1 and m2 is of the form
Geffm1m2 /r 2, where the effective gravitational consta
reads@20–22#

Geff[G* A2~11a2!5
G*
F S 2ZF14~dF/dF!2

2ZF13~dF/dF!2D .

~3.5!

The contributionG* A2 is due to the exchange of a gravito
between the two bodies, whereasG* A2a25G* (dA/dw)2

comes from the exchange of a scalar particle between th
Of course, when the distance between the bodies beco
larger than the inverse mass of the scalar field, its influe
becomes negligible and one getsGeff'GN . Note that as
usual, the last expression in Eq.~3.5!, in terms of Jordan-
frame notation, is much more complicated than its Einste
frame counterpart. In the particular Brans-Dicke represe
tion, F5F and Z5v(F)/F, it however reduces to the
simpler ~and well-known! form Geff5G* F21(2v
14)/(2v13).

The experimental bound~3.2! shows that the present va
ues ofGeff andGN differ by less than 0.02%. However, the
cana priori differ significantly in the past. It should be note
that the experimental limit on the time variation of the gra
tational constant,uĠeff /Geffu,6310212 yr21 @42#, doesnot

imply any constraint on 2Ȧ/A52Ḟ/F. Indeed,Geff can be
almost constant even ifA ~or F) varies significantly. A
simple example is provided by Barker’s theory@45#, in
which A(w)5cosw: One gets Geff5G* (cos2w1sin2w)
5G* , which is strictly constant independently of the tim
variations ofA„w(t)…. Nevertheless, as pointed out in@38#,
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under reasonable cosmological assumptions, one can d
Geff'GN with ;10% accuracy up to redshiftsz;1.

IV. SCALAR-TENSOR COSMOLOGY

The equations derived in this section generalize those
our previous paper@38# in several ways. First, we use th
most general representation~2.1! of the theory, instead of the
simpler choiceZ51 that was made in@38#. Second, we take
into account a possible spatial curvature of the univer
which will be an interesting possibility in our studies of Se
VI below. Third, we write the equations for an arbitrary pre
sure of the perfect fluid describing matter in the univer
This will not be useful for our reconstruction program of th
following sections, as matter can be assumed to be sim
dustlike for the redshiftsz&5 that we will consider, but
these general equations may be interesting for further cos
logical studies of earlier epochs of the universe. Finally,
comment on the Einstein-frame version of these equatio
which are mathematically simpler, but actually more difficu
to use for our purpose.

A. Background

We consider a FRW universe whose background metri
the Jordan frame is given by

ds252dt21a2~ t !dl2, ~4.1a!

dl25
dr2

12kr 21r 2~du21sin2u df2!,

~4.1b!

where k521, 0, or 1 for spatially open, flat, or close
universes respectively. The scalar fieldF ~or w, in the EF! is
also assumed to depend only on time. Since the relation
tween the EF and JF is given byds25A2(w)ds

*
2 @see Eqs.

~2.4!#, our universe is still of the FRW type in the EF, wit
ds

*
2 52dt

*
2 1a

*
2 (t* )dl2 and

dt5A~w!dt* , a5A~w!a* . ~4.2!

In the following, matter will be described by a perfect flui
and we will write its energy-momentum tensor as

Tmn5~r1p!umun1pgmn5A22 Tmn*

5A22@~r* 1p* !um* un* 1p* gmn* #, ~4.3!

whereum5dxm/udsu and u
*
m 5dxm/uds* u are the spacetime

components of the four-dimensional unit velocity of matt
in JF and EF units respectively. As we are interested i
FRW background, the spatial componentsui and ui* ( i
51,2,3) all vanish. From Eq.~4.3!, we deduce the relation
between the matter density and pressure in both frames

r* 5A4 r, p* 5A4 p. ~4.4!

The background equations in the JF follow from Eq
~2.2a!–~2.2c!, and read
4-5



n

ee

l p
ar
m
-

a

-
-
-
th

e,
hi
ng
a

s

he
ide,

a-
in

n-
EF
rva-
li-

JF,
lly
is
at
lat-

al
the

q.
a

nd
ou-

r-

it
a

GILLES ESPOSITO-FARE`SE AND DAVID POLARSKI PHYSICAL REVIEW D 63 063504
3FS H21
k

a2D58pG* r1
1

2
ZḞ223HḞ1U, ~4.5a!

22FS Ḣ2
k

a2D58pG* ~r1p!1ZḞ21F̈2HḞ,

~4.5b!

Z~F̈13HḞ!53
dF

dF S Ḣ12H21
k

a2D2
dZ

dF

Ḟ2

2

2
dU

dF
, ~4.5c!

ṙ13H~r1p!50, ~4.5d!

whereH[d(ln a)/dt, and an overdot denotes differentiatio
with respect to the Jordan-frame timet. As usual, if p/r
[w5const, Eq. ~4.5d! is trivially integrated as r
}a23(11w) ~and in particularr}a23 for dustlike matter!.
Equation~4.5c! is actually a consequence of the other thr
and we will not need it in the following.

Since these equations correspond to the most genera
rametrization~2.1! of scalar-tensor theories, many particul
cases are easily recovered. For instance, the case of a
mally coupled scalar field@15# is obtained for constant val
ues ofF andZ ~say,F51 andZ58pG* ), and the particular
model considered in@43# is recovered immediately forF
5F andZ50.

The corresponding background equations in the EF
very similar to those in general relativity. They follow from
Eq. ~2.6a!, and read

3S H
*
2 1

k

a
*
2 D 58pG* r* 1S dw

dt*
D 2

12V~w!, ~4.6a!

2
3

a*

d2a*
dt

*
2 54pG* ~r* 13p* !12S dw

dt*
D 2

22V~w!, ~4.6b!

where H* [d(ln a* )/dt* is the Einstein-frame Hubble pa
rameter. It is obvious from Eq.~4.6b! that a vanishing poten
tial V(w) implies d2a* /dt

*
2 ,0, so that the universe is de

celerating in the Einstein frame. However, because of
relation a5A(w)a* @see Eq.~4.2!#, the observed~Jordan-
frame! expansion rateä may be positive even in this cas
and we will see concrete examples in Sec. VI A below. T
is an important point to remember: Although we are looki
for cosmological FRW backgrounds whose expansion is
celerating, the sign ofd2a* /dt

*
2 is a priori not fixed.

The scalar-field equation of motion in the EF follow
from Eq. ~2.6b!, and reads

d2w

dt
*
2

13H*
dw

dt*
1

dV~w!

dw
524pG* a~w!~r* 23p* !.

~4.7!
06350
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It is also similar to the usual Klein-Gordon equation, with t
notable difference of a source term on the right-hand s
with the coupling strengtha(w) defined in Eq.~2.7! above.

It is tempting to tackle our problem in the EF as the equ
tions are simpler and we can rely on experience gained
general relativity. However, a crucial difficulty that we e
counter is that all physical quantities which appear in the
background equations are not those that come from obse
tions. Moreover, the behavior of matter in the EF is comp
cated by the relations~4.4!: Instead of the simple power law
r}a23 for dustlike matter in the JF, one getsr* 5A4r
}Aa

*
23 in the EF, whereA„w(a* )… can havea priori any

shape. To avoid these problems, we will thus work in the
and show that the ‘‘reconstruction’’ program can equa
well be implemented, like in general relativity, although it
mathematically very different. We will nevertheless check
the end the consistency of the solutions obtained by trans
ing them in terms of EF quantities.

B. Perturbations

We now consider the perturbations in the longitudin
gauge. For this problem, we will restrict our discussion to
case of a spatially flat FRW universe (k50), and write the
JF and EF metrics as

ds252~112f!dt21a2~122c!dx2, ~4.8a!

ds
*
2 52~112f* !dt21a

*
2 ~122c* !dx2.

~4.8b!

In the EF, the perturbation equations deriving from E
~2.6a! are strictly the same as in general relativity plus
minimally coupled scalar field. One thus finds notablyf*
5c* . On the other hand, the equations for scalar-field a
matter perturbations are modified by the matter-scalar c
pling, proportional toa(w) in Eqs.~2.6b! and ~2.6c!.

For our purpose, it will be more useful to write the pe
turbation equations in the~physical! JF. Let us define the
gauge invariant quantity3

dm[
dr

r1p
13Hv, ~4.9!

wherev is the matter peculiar velocity potential~such that
dum52]mv is the perturbation of the four-dimensional un
velocity um). We now work in Fourier space, and assume
spatial dependence exp(ik•x), with k[uku. The conservation
equations of matter~2.2c! give

ḋm52
k2

a2
v13

d~c1Hv !

dt
, ~4.10a!

f5 v̇1
p

r
~2Hv2dm!. ~4.10b!

3Note that our definition differs from the quantityem introduced in
@46#: em5(11p/r)dm .
4-6
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On the other hand, the Einstein equations~2.2a! give

c5f1dF/F, ~4.11a!

2F~ ċ1Hf!1Ḟf

58pG* ~r1p!v1ZḞ dF

1dḞ2H dF, ~4.11b!

23Ḟḟ2S 2
k2

a2 F2ZḞ213HḞ Df

58pG* ~r1p!dm1S k2

a2 26H223
Ḟ2

F2D dF

1dU1ZḞdḞ13HZḞ dF

1
1

2
dZ Ḟ213

Ḟ

F
dḞ. ~4.11c!

Note thatfÞc in the JF, in contrast to the correspondin
problem in general relativity or in the EF. Equation~4.11a! is
actually an obvious consequence of the relation betweengmn*
andgmn , Eq. ~2.4a!, and of the fact thatf* 5c* . Finally,
Eq. ~2.2b! yields the equation for the dilaton fluctuation
dF:

dF̈1S 3H1
d ln Z

dF
Ḟ D dḞ1F k2

a2 23~Ḣ12H2!
d

dF S 1

Z

dF

dF D
1

d

dF S 1

Z

dU

dF D1
d2ln Z

dF2

Ḟ2

2 GdF

5F k2

a2 ~f22c!23~ c̈14Hċ1Hḟ !G 1

Z

dF

dF

1~3ċ1ḟ !Ḟ22
f

Z

dU

dF
. ~4.12!

In the particular representationZ51 used in Ref.@38#, this
equation reduces to the simpler form

dF̈13H dḞ1F k2

a2 23~Ḣ12H2!
d2F

dF21
d2U

dF2GdF

5F k2

a2 ~f22c!23~ c̈14Hċ1Hḟ !G dF

dF

1~3ċ1ḟ !Ḟ22f
dU

dF
. ~4.13!

V. RECONSTRUCTION PROBLEM

The reconstruction of the potentialU(F) was shown in
@15# to be possible in the framework of general relativ
plus a minimally coupled scalar field, theL field or quintes-
sence, provided the Hubble diagram@and thus alsoH(z)]
can be extracted from the observations. An essential dif
06350
r-

ence arises when one deals with scalar-tensor theories:
have to reconstruct two unknown functions instead of o
hence we need to extract two quantities~as functions of the
redshiftz[a0 /a21) from the observations. Actually, in th
minimally coupled case, knowledge of the luminosity d
tanceDL and of the clustering of matterdm , both as func-
tions of z, provides two independent ways to reconstruct
scalar field potential@15#.4 In our case, both quantities ar
necessary and the reconstruction itself is significantly m
complicated.

The present section generalizes our previous results
Ref. @38#, not only by considering the most general para
etrization ~2.1! of scalar-tensor theories and by taking in
account the possible spatial curvature of the universe,
also by discussing particular cases that were excluded in
reference. From now on, we will restrict our discussion
the case of a pressureless perfect fluid (p505p* ), because
all matter in the universe will be assumed to be simply d
tlike, of course besides that part needed to account for
present accelerated expansion~i.e., the scalar field in the
present framework!.

A. Background

The first step of the reconstruction program is the same
in general relativity, since it is purely kinematical and do
not depend on the field content of the theory: If the lumino
ity distanceDL is experimentally determined as a function
the redshiftz, one can deduce the quantityH(z) from the
relation

1

H~z!
5S DL~z!

11z D 8F11Vk,0S H0DL~z!

11z D 2G21/2

, ~5.1!

where the prime denotes the derivative with respect toz. The
large square brackets contain a corrective factor involv
the present energy contributionVk,0[2k/(a0

2H0
2) of the

spatial curvature of the universe. It was not written explici
in Refs. @6,15#, which focused their discussions on the fla
space case (Vk,050), but it is a straightforward conse
quence of Eqs.~23!–~25! of Ref. @6#. Since present experi
mental data suggest thatuVk,0u is small, the flat-space
expression for 1/H(z)5@DL(z)/(11z)#8 is a priori a good
approximation anyway. Note that even if one uses the ex
equation~5.1!, it reduces to the flat-space expression foz
50 @becauseDL(0)50], and thereforeH0 is always known
without any ambiguity. To determineH(z) precisely at
higherz, one then needs to know bothDL(z) andVk,0 .

By eliminating ZḞ2 from the background equation
~4.5a! and ~4.5b!, we then obtain the equation

4More precisely, to reconstruct the potentialU(F) without any
ambiguity in the minimally coupled case, one needs to know b
DL(z) and the present energy density of dustlike matterVm,0 , or
bothdm(z) and the present value of the Hubble constantH0. In our
general scalar-tensor case, we need to know the two funct
DL(z) anddm(z), but no independent measurement ofVm,0 or H0

is necessary.
4-7
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F̈15HḞ12S Ḣ13H21
2k

a2 DF58pG* r12U, ~5.2!

which, when rewritten in terms of the redshiftz, gives the
fundamental equation

F91F ~ ln H !82
4

11zGF8

1F 6

~11z!2
2

2

11z
~ ln H !824S H0

H D 2

Vk,0GF

5
2U

~11z!2H2
13~11z!S H0

H D 2

F0Vm,0 . ~5.3!

As before, an index 0 means the present value of the co
sponding quantity, and we use again the notationf 8
[d f /dz. In this equation,Vm,0[8pG* r0 /(3F0H0

2) stands
for the present energy density of dustlike matter relative
the critical density«crit[3H0

2/8pGN,0 . To simplify, this
critical density is defined in terms of the present value
Newton’s gravitational constant~3.4!, GN,05G* /F0, in-
stead of the effective gravitational constant~3.5! actually
measured in Cavendish-type experiments. Indeed, so
system experiments tell us that their present values diffe
less than 0.02%, as discussed in Sec. III.~Note in passing
that by changing the value ofG* , one can always setF0
51 without loss of generality.!

In conclusion, we are left with a non-homogeneous s
ond order differential equation for the functionF(z), a situ-
ation very different from that prevailing in general relativit
However, the right-hand side also depends on the unkn
potentialU(z), so that this equation does not suffice to fu
reconstruct the microscopic Lagrangian of the theory. As
will show in Sec. VI below, it can nevertheless be used fo
systematic study of several scalar-tensor models, prov
one of the two unknown functions is given~or a functional
dependence between them is assumed!. This can be useful as
we do not expect a simultaneous release of data yield
H(z) anddm(z). We will see that such a study already yiel
powerful constraints on the family of theories which are
able.

On the other hand, ifdm(z) is also experimentally deter
mined, and if we assume a spatially flat FRW unive
(Vk50), we will see in the next subsection~Sec. V B! that
the value ofVm,0 as well as the functionF(z) can be ob-
tained independently ofU(z). Equation ~5.3! then gives
U(z) in an algebraic way from our knowledge ofH(z),
F(z) andVm,0 .

Let us now assume that bothF(z) andU(z) are known,
either because one of them was given from theoretical n
ralness assumptions or becausedm(z) has been experimen
tally determined with sufficient accuracy. We will also a
sume that bothVm,0 and Vk,0 are known. It is then
straightforward to reconstruct the various functions ofF en-
tering the microscopic Lagrangian~2.1!. In the Brans-Dicke
representation, one hasF5F; therefore the knowledge o
F(z) andU(z) suffices to reconstruct the potentialU(F) in
06350
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a parametric way. However, to fully determine the theo
one also needs to knowv(F)5FZ(F) or, equivalently, an
equation giving thez dependence ofZ. On the other hand, in
the simpler representationZ51 and F(F) unknown, we
need an equation giving thez dependence ofF to reconstruct
F(F) andU(F) parametrically. These two cases, as well
any other possible parametrization of the theory, are sol
thanks to Eq.~4.5b! above, which reads in terms of the re
shift,

Z F8252F92F ~ ln H !81
2

11zGF8

12F ~ ln H !8

11z
2S H0

H D 2

Vk,0GF
23~11z!S H0

H D 2

F0Vm,0 ~5.4!

or, equivalently,

1

2
Z F8252

3F8

11z
1

3F

~11z!223FS H0

H D 2

Vk,0

2
U

~11z!2H223~11z!S H0

H D 2

F0Vm,0 .

~5.5!

In the Z51 representation,F(z)2F0 is thus obtained by a
simple integration. In the Brans-Dicke representation, on
other hand,v(z) is given by analgebraicequation in terms
of H(z), F(z)5F(z), and their derivatives.

It is rather obvious but anyway important to note that
the microscopic Lagrangian~2.1! can be reconstructed in th
JF, it can also be directly obtained in the EF, Eq.~2.5!. This
allows us to check the mathematical consistency of
theory and, notably, if the helicity-0 degree of freedomw
always carries positive energy. One can also verify that
function A(w) defining the coupling of matter to the scal
field is well defined and, notably, single valued. Finally, t
second derivative of the potentialV(w) also gives us the sign
of the square of the scalar mass, and negative values w
strongly indicate an instability of the model. These importa
features cannot easily be checked in the JF, because the
of Z(F) in Eq. ~2.1! is not directly related to the positivity o
the scalar-field energy~see below!, and also because the se
ond derivative ofU(F) does not give the precise value of i
squared mass.@As shown by Eq.~2.4d!, the helicity-0 degree
of freedomw may have a mass,d2V(w)/dw2Þ0, even if
U(F) is strictly constant, providedF(F) varies.#

Let us thus assume thatH(z), Vm,0 andVk,0 are known,
and thatF(z) andU(z) were reconstructed as above. Equ
tion ~2.4c! then givesA(z)5F21/2(z), i.e., the Einstein-
frame coupling factorA as a function of theJordan-frame
redshiftz ~which is the redshift we observe!. Combining now
Eq. ~2.4b! with Eq. ~5.4!, we get

S dw

dzD 2

5
3

4 S F8

F D 2

1
ZF82

2F
~5.6a!
4-8
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5
3

4 S F8

F D 2

2
F9

2F
2F1

2
~ ln H !81

1

11zG F8

F
1

~ ln H !8

11z

2S H0

H D 2

Vk,02
3

2
~11z!S H0

H D 2 F0

F
Vm,0 ~5.6b!

or also, not eliminating the potentialU,

S dw

dzD 2

5
3

4 S F8

F D 2

2
3F8

~11z!F
1

3

~11z!223S H0

H D 2

Vk,0

2
U

~11z!2FH223~11z!S H0

H D 2 F0

F
Vm,0 . ~5.7!

The EF scalarw is thus also known as a function of th
Jordan-frameredshiftz ~up to an additive constantw0 which
can be chosen to vanish without loss of generality!, and one
can reconstructA(w) in a parametric way. Similarly, the EF
potential V(w), Eq. ~2.4d!, can be reconstructed from ou
knowledge ofF(z), U(z) andw(z).

Sincew describes the actual helicity-0 degree of freed
of the theory, this field must carry only positive energy e
citations, and (dw/dz)2 must be positive. On the other han
the tensor and scalar degrees of freedom are mixed in the
and the positivity of energy does not imply thatZF82 should
always be positive. Actually, Eq.~5.6a! shows that it can
become negative when34 (ln F)82 happens to be larger tha
w82, which can occur in perfectly regular situations.~We
will see an explicit example in Sec. VI A below.! This un-
derlines that the parametrizationZ51 can sometimes be sin
gular: The derivatives ofF may become purely imaginar
although the scalar degree of freedomw is well defined. On
the other hand, the Brans-Dicke representation is well
haved (F82 remains always positive!, and the positivity of
the energy simply implies the well-known inequalityv(F)
>2 3

2 . Actually, the particular valuev52 3
2 is also singular,

as it corresponds to an infinite coupling strengtha5(2v
13)21/2 between matter and the helicity-0 degree of fre
dom w. The domain for which theZ51 parametrization is
pathological although the theory remains consistent sim
corresponds to2 3

2 ,v(F),0, or uau.1/A3.

B. Perturbations

Although the perturbations will not be used in Sec.
below, we emphasize that the phenomenological reconst
tion of the full microscopic Lagrangian can be implement
without any ambiguity if fluctuations are taken into accou
For completeness, we review now this part of our progra
We assume that bothH(z) and the matter density perturba
tion dm(z) are experimentally determined with enough acc
racy, and as in Sec. IV B above, we focus our discussion
the case of a spatially flat FRW universe (Vk50). We also
assume that matter is dustlike (p50), and the perturbation
equations of Sec. IV B are thus simplified. In particular, E
~4.10b! reduces to the mere identityf5 v̇.

We consider comoving wavelengthsl[a/k much shorter
~for recent times! than the Hubble radiusH21, and also
shorter than the inverse mass of the scalar field:
06350
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k2/a2@max~H2,A22ud2V/dw2u!. ~5.8!

Two different reasonings can now be used to reach the s
conclusions. The first one, explained in Ref.@38#, consists in
taking the formal limit k→` in the various perturbation
equations. Then, the leading terms are either those con
ing dm or those multiplied by the large factork2/a2. One
also needs to consider only the growing adiabatic mode
Eq. ~4.12!, for which udF̈u!k2a22udFu.

The other reasoning needs a simpler~but a priori stron-
ger! hypothesis. One assumes that the logarithmic time
rivative of any quantity, sayf, is at most of orderH: u ḟ u
&uH f u. Physically, this means that the expansion of the u
verse is driving the time evolution of every physical qua
tity. Then the hypothesisk2/a2@H2 suffices to derive
straightforwardly all the following approximations.

Note that both reasonings correspond in fact to the sa
physical situation of a weakly coupled light scalar field.
the case of a strongly coupled but very massive scalar~see
the second paragraph of Sec. III!, the equations cannot b
approximated as shown below, and the time evolution
density fluctuations does not follow the same law. For
stance, in the particular model considered in Ref.@43#, one
always finds a strong clustering of the scalar field at sm
scales. Indeed, this model corresponds to the choiceF5F
andZ50 in action~2.1!, and Eq.~4.12! can then be rewritten
as (d2U/dF2)dF5(k2/a2)(f22c)23(c̈14Hċ1Hḟ)
22f(dU/dF). Therefore, even if the scalar field is ver
massive (d2U/dF2 large!, one finds that it is anyway
strongly clustered for comoving wavelengthsa/k shorter
than the inverse mass, i.e., in the formal limitk→`. Al-
though this isa priori not forbidden by observations o
gravitational clustering, since the inverse mass must be m
smaller than the astronomical unit in this model, this is an
way an indication of its probable instability. We will no
consider such heavy scalar fields any longer in this pa
and we now come back to the class of weakly coupled lig
scalar models, which are the most natural alternatives to g
eral relativity.

Setting B[c1Hv and making use of Eq.~4.10b!, one
can write Eq.~4.10a! as

d̈m12H ḋm1
k2

a2 f53B̈16HḂ'0, ~5.9!

where the right-hand side is negligible with respect to ea
separate term of the left-hand side because of the above
potheses. Note that Eq.~5.9! just reproduces the standar
evolution equation for matter perturbations. Using E
~4.13!, we also arrive at

dF'~f22c!
dF/dF

Z
'2f

FdF/dF

ZF12~dF/dF!2 ,

~5.10!

where the second equality is a consequence of Eq.~4.11a!. In
the case of GR plus a minimally coupled scalar field, o
finds thatdF}k22f in the limit k→`, so that the scalar
field is not gravitationally clustered at small scales@15#. This
4-9
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is in agreement with the observational fact that the dark m
ter described by theL term should remain unclustered up
comoving scalesR;10h21(11z)21 Mpc ~where we recall
that h21[100H0

21 km s21 Mpc21). On the other hand, in
our scalar-tensor framework, Eq.~5.10! shows that the scala
field is clustered at arbitrarily small scales, but only weak
because the derivativeudF/dFu is experimentally known to
be small@see the solar-system constraint~3.2! and the limit
a2&0.1 justified in @38# for redshiftsz&1]. The class of
models we are considering, involving a light scalar fie
weakly coupled to matter, is thus also in agreement w
observations of gravitational clustering.

Finally, still under the above hypotheses, Eq.~4.11c! im-
plies

22
k2

a2 Ff'8pG* r dm1
k2

a2

dF

dF
dF. ~5.11!

Remembering the definition~3.5! for Geff , and using Eq.
~5.10! above, Eq.~5.11! can be recast into a form whic
exhibits its physical content:

k2

a2 f'24pGeffrdm . ~5.12!

Poisson’s equation is thus simply modified by the subst
tion of Newton’s constantG by Geff , the effective gravita-
tional constant between two close test masses. This con
sion was also reached in@37#, but only for Brans-Dicke
theory with a constant parameterv, while we have derived it
for an arbitrary~light! scalar-tensor theory. As discussed
Sec. III above, expression~3.5! is valid only if the distance
between the test masses is negligible with respect to the
verse scalar mass. The physical reason why this expres
appears in Poisson’s equation~5.12! is just that we are work-
ing in the short wavelength limit~5.8!: The frequency of the
waves we are considering is so large that the scalar fi
behaves as if it were massless.

Combining Eq.~5.9! with Eq. ~5.12!, we now arrive at our
final evolution equation fordm :

d̈m12H ḋm24pGeff r dm'0. ~5.13!

In terms of the redshiftz, this reads

H2 dm9 1S ~H2!8

2
2

H2

11zD dm8

'
3

2
~11z!H0

2 Geff~z!

GN,0
Vm,0 dm . ~5.14!

Provided we can extract from observation both physi
quantitiesH(z) and dm(z) with sufficient accuracy, the ex
plicit reconstruction of the microscopic Lagrangian is o
tained in the following way. Starting from Eq.~5.14! and
using the fact thattoday Geff,0 and GN,0 differ by less than
0.02%, Eq.~5.14! evaluated at present gives us the cosm
logical parameterVm,0 with the same accuracy. Then, retur
ing to Eq.~5.14! for arbitraryz, we getGeff(z)5p(z), where
p(z) is a known function of the observablesH(z), dm(z),
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and their derivatives. Using now Eq.~5.4! and expression
~3.5! for Geff , we get a nonlinear second order different
equation forF(z), which can be solved for givenF0 andF08
@one can always setF051 without loss of generality, while
F08 is constrained by Eq.~3.2!#. After we have foundF(z),
we can plug it into Eq.~5.3! to determineU(z) in an alge-
braic way. The final step is explained in the previous subs
tion, above Eq.~5.4!, for the various possible parametriza
tions of action ~2.1!: In the Z51 parametrization,F(z)
2F0 is obtained by a simple integration of Eq.~5.4!, while
in the Brans-Dicke parametrization@F(F)5F#, v(z) is
given algebraically by the same equation~5.4!. This enables
us to reconstructF(F) @or v(F)] andU(F) as functions of
F2F0 for that range corresponding to the data.

Actually, for sufficiently low redshiftsz&1, Eq. ~5.14!
can be simplified without losing too much accuracy. Inde
as shown in Ref.@38#, the square of the matter-scalar co
pling strengtha, Eq. ~2.7!, is at most of order 10% for such
redshifts. Moreover, under reasonable assumptions, m
smaller values ofa2 are generically predicted in scala
tensor theories@27,28#. Therefore,Geff andGN differ by less
than;10% for redshiftsz&1, and Eq.~5.14! can be used to
obtainGeff /GN,0'GN /GN,05F0 /F with the same accuracy
The interest of this simplification is thatF(z) is now given
by analgebraicequation. In the Brans-Dicke representatio
all the steps of the reconstruction program are thus algeb
Eq. ~5.3! giving U(z) and Eq.~5.4! giving v(z). The only
non-algebraic step is the final parametric reconstruction
U(F) andv(F).

Let us end this section by a few comments on the obs
vational accuracy which will be needed for this reconstru
tion program to be implemented. First, Eq.~5.14! allows us
to reconstructF(z) only if dm8 and dm9 are both determined
with enough accuracy. Moreover, the second derivative
this reconstructedF(z) is needed in Eq.~5.3! to obtainU(z).
Therefore, the actual reconstruction of the potential depe
a priori on the fourth derivative ofdm(z), so that extremely
clean data seem to be necessary. However, the situatio
better than this naive derivative counting suggests. Inde
the above estimates fora2 show thatF(z) does not vary
much on the redshift interval 0<z&1. Therefore, the first
two terms of Eq.~5.3!, involving F8 andF9, are expected to
be negligible with respect to the third one involvingF. A
noisy experimental determination ofdm-(z) and dm99(z) is
thus not a serious difficulty for our reconstruction progra
On the other hand, clean enough data are still neede
determineF(z) from Eq.~5.14!, usingdm(z) and its first two
derivatives. Before such clean data are available, it will
sufficient to verify that Eq.~5.14! is consistent with a slowly
varying F(z). In the next section, we will show that inter
esting theoretical constraints can anyway be obtained w
out knowing at all the density fluctuationdm(z), but using
only the luminosity distanceDL(z) and consistency argu
ments within particular subclasses of scalar-tensor mode

VI. CONSTRAINTS FROM AN ACCELERATING
UNIVERSE

In Ref. @17#, a fit of presently known supernovae even
has been performed to obtain the luminosity distanceDL(z)
4-10
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up to redshiftsz;1, of course still with large uncertainties
Although this is not yet sufficient to constrain serious
scalar-tensor models, we can expect clean data onDL(z) in
the near future from additional supernova events and, a
way, earlier than for the density perturbationsdm(z). The
SNAP satellite will in particular observe thousands of sup
nova events up toz'1.7. In this section, we will concentrat
on the theoretical constraints that can be extracted f
knowledge ofDL(z) alone and, therefore, ofH(z) using Eq.
~5.1!. We will thus only use the results of Sec. V A abov
Since knowledge of this function does not suffice to fu
reconstruct the microscopic Lagrangian~2.1!, we will need
additional assumptions on one of the functions it involv
eitherF ~or Z, depending on the parametrization! or the po-
tentialU. One may also assume a functional relation betw
F andU ~for instanceU}FM as in Ref.@47#!.

To emphasize as clearly as possible what kind of c
straints can be imposed on scalar-tensor theories, we
consider the worst situation for them. Let us assume that
observed functionH(z) will be exactly given by Eq.~4.5a!
for k50, F5F51, andU5L[3H0

2VL,0 :

~H/H0!25VL,01Vm,0~11z!3. ~6.1!

Of course, such an observation woulda priori call for the
following standard interpretation: Gravity is correctly d
scribed by general relativity, and we live in a flat univer
filled with dustlike matter and a cosmological constant, w
corresponding present energy densities~relative to the criti-
cal density! Vm,0 andVL,0 . However, for our purpose, Eq
~6.1! should just be considered as kinematical. It tells us h
the universe expands with redshiftz, but we are free to as
sume that the dynamics of the expansion is governed b
scalar-tensor theory. Therefore,Vm,0 andVL,0 are here mere
parameters, whose names refer to their physical significa
in the framework of GR. Of course, one should not forg
that they do not have the same interpretation within sca
tensor theories.

For our numerical applications, we will further take th
present estimates based on combined CMB fluctuations
supernovae observations~they will be determined more ac
curately by future experiments!:

VL,0'0.7, Vm,0'0.3. ~6.2!

For these numerical values, Eq.~6.1! is consistent with the
presently available luminosity distanceDL(z) up to z;1.
Actually the best-fit universe, if we assume flatness, gi
VL,050.72 andVm,050.28. We have chosen to work d
rectly with the exact form~6.1!, instead of theDL(z) ex-
tracted from observation, in order to clarify the physical co
tent of our results. Indeed, the present observatio
estimates forDL(z) are still too imprecise to constrai
strongly the class of scalar-tensor theories we are cons
ing. Moreover, some of our results below depend crucia
on the fact thatH(z) keeps the form~6.1! up to redshiftsz
;2, which have not yet been reached experimentally.
relate our results to those obtained in@17,48# using fitting
functions or an expansion in powers ofz, one just needs to
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use Eq.~5.1!: Our exact expression~6.1! for H(z) corre-
sponds to some exact expression forDL(z).

To summarize, we are assuming in this section that fut
observations of the luminosity distanceDL(z) will provide a
H(z) of the form~6.1! with the numerical values~6.2!. This
implies notably that our universe is presently accelerati
On the other hand, we arenot assuming that the correc
theory of gravity is necessarily GR plus a cosmological co
stant. The main question that we will address is therefore
following: Would such an ‘‘observed’’H(z) necessarily rule
out the existence of a scalar partner to the graviton? If n
would it be possible to reproduce Eq.~6.1! within a more
natural scalar-tensor theory, in whichVL,0 could be ex-
plained by a ‘‘generalized quintessence’’ mechanism?

We will first analyze in Sec. VI A the simplest subclass
scalar-tensor theories that we can consider, namely wheU
50 in action~2.1!. Since this isa priori the subclass which
differs the most from GR plus a cosmological constant, t
study will be rather detailed, and it will allow us to underlin
the mathematical and physical meaning of the constra
that are obtained. Section VI B will be again devoted to t
case of a massless scalar field, but combined with a cos
logical constant. As its conclusions basically confirm tho
of Sec. VI A, we will present them more concisely. Finall
we will briefly discuss in Sec. VI C the cases where o
imposes particular forms for the coupling functionF in ac-
tion ~2.1!, and one reconstructs the potentialU from the
background equations~5.3!,~5.4!. The case of a given func
tional dependence betweenF andU will also be addressed.

A. Case of a vanishing scalar-field potential

Since a cosmological constant can be interpreted as a
ticular case of scalar-field potential, it is instructive to an
lyze whether an observed expansion such as Eq.~6.1! could
be reproduced in a theorywithoutany potential, and we now
study Eqs.~5.3!–~5.6! for U(F)505V(w). This case can
be analyzed using the second order differential equation~5.3!
for F, which simplifies significantly if one introduces a func
tion f such that

F~z!/F0[~11z!2f ~11z!. ~6.3!

~As mentioned in Sec. V A above, one can also setF051
without loss of generality.! Then, using the assumed ‘‘ex
perimental’’ expression~6.1! for H(z) and writing Eq.~5.3!
in terms ofx[11z5a0 /a, we get

~VL,01Vm,0 x3!x f9~x!1
3

2
Vm,0 x3f 8~x!24Vk,0 x f~x!

53Vm,0 . ~6.4!

To avoid any confusion, let us recall thatVL,0 ~and the two
occurrences ofVm,0 on the left-hand side! comes from the
‘‘observed’’ cosmological function~6.1!, notwithstanding
the fact that there isno cosmological constant in the mode
we are considering. The valueVm,0 appearing in the right-
hand side stands for the present relative energy densit
dustlike matter. We assume that it takes the same nume
4-11
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value ~6.2! as in the ‘‘observed’’H(z), Eq. ~6.1!. Equation
~6.4! tells us how we should choosef (x) to mimic exactly
this H(z) in the present potential-free theory. In other word
VL,0 and Vm,0 are two numbers assumed to be given
experiment, and we wish to fitf (x) andVk,0 to satisfy Eq.
~6.4!.

To integrate this second-order differential equation,
need two initial conditions forf and its derivative. The firs
one is an obvious consequence of Eq.~6.3! taken atz50,
and we simply getf (1)51. The second one should be su
that the solar-system bound~3.2! is satisfied. For instance, i
F08 does not vanish, it issufficient to imposeF0850, i.e.,
f 8(1)522 using Eq.~6.3!. This corresponds to a scala
tensor theory which has been attracted towards an extrem
of F during the cosmological expansion of the universe~cf.
@27,28#!, so that it is presently strictly indistinguishable fro
general relativity in solar-system experiments.@The full al-
lowed domain forf 8(1) will be explored below in a numeri
cal way.#

1. Spatially flat universe

We consider first our potential-free model in a spatia
flat FRW universe (Vk,050). Then Eq.~6.4! becomes a
first-order differential equation forf 8, and its integration
yields

f 8~x!5
1

A11zx3 F z lnS A11z11

A11zx311

A11zx321

A11z21
D

22A11zG , ~6.5!

where we have setz[Vm,0 /VL,0 , and where the final con
stant inside the square brackets has been chosen to im
f 8(1)522 ~i.e., F0850). The function f (x)51
1*1

x f 8(y)dy can be explicitly written in terms of genera
ized hypergeometric functions, but its complicated expr
sion will not be useful for our purpose. Let us just quote t
first order of its expansion in powers ofVm,0 /VL,0 :

f ~x!5322x1
1

4
~15216x1x4112x ln x!

Vm,0

VL,0

1OS Vm,0
2

VL,0
2 D . ~6.6!

In conclusion, Eq.~6.4! could be integrated analytically, in
the particular case of a spatially flat universe. This me
that at least in the vicinity ofz50, therea priori exists a
potential-free scalar-tensor theory which exactly mimics g
eral relativity plus a cosmological constant.

However, the theory is mathematically consistent only
F(z) remains strictly positive.@If F vanishes, then the cou
pling function A(w), Eq. ~2.4c!, between matter and th
helicity-0 degree of freedomw diverges, and ifF becomes
negative, the graviton carries negative energy.# Let us thus
compute the valuezmax for which F(zmax) or f (11zmax)
06350
,

e

m

ose

-
e

s

-

f

vanishes for the first time. Because of the complexity of
solution f, we did not find a close analytical expression f
zmax, but its expansion in powers ofVm,0 /VL,0 can be ob-
tained straightforwardly:

zmax5
1

2
1

9

4 S ln
3

2
2

7

32DVm,0

VL,0

1
3

8 F2
5105

1792
1

21

8
ln

3

2
19S ln

3

2D 2GVm,0
2

VL,0
2

1OS Vm,0
3

VL,0
3 D .

~6.7!

Numerically, for the values~6.2! of VL,0 andVm,0 , we find
zmax'0.66. In conclusion, this scalar-tensor model is able
mimic general relativity plus a cosmological constant, b
only on the small intervalz<0.66. If future observations o
type Ia supernovae give a behavior ofH(z) of the form~6.1!
on a larger interval, say up toz;1, then the present scala
tensor theory will be ruled out. This example of a vanishi
potential illustrates a conclusion that we will reobtain belo
for more general theories: The determination of the form
H(z) over some~even rather small! redshift interval is in fact
more constraining than the precise value of the parame
Vm,0 , VL,0 themselves. Indeed, Eq.~6.7! clearly shows that
zmax cannot exceed 1 even in the presumably unrealistic c
of Vm,0'VL,0 . @A calculation using the exact expression f
f (x) shows thatzmax would exceed 1 only forVm,0 /VL,0
>1.59.# Note that all the results obtained are independen
the parameterH0.

2. Spatially curved universe

One could try to increasezmax by considering a spatially
curved FRW universe. We did not solve Eq.~6.4! in the most
general case, but since we wish to compute the correction
Eq. ~6.7! due to a small value ofuVk,0 /VL,0u, it is sufficient
to work at zeroth order inVm,0 /VL,0 . Let us thus setVm,0
50 in Eq. ~6.4!, which reduces to

VL,0f 9~x!24Vk,0f ~x!50. ~6.8!

Its solution is obviously a sine ifVk,0,0 ~i.e., k511,
closed universe! or a hyperbolic sine forVk,0.0 ~i.e., k5
21, open universe!. Taking into account the initial condi
tions f (1)51 and f 8(1)522, we thus get

f ~11z!5cos~2jz!2
1

j
sin~2jz! for j2[2

Vk,0

VL,0
.0,

~6.9a!

f ~11z!5cosh~2jz!2
1

j
sinh~2jz! for j2[1

Vk,0

VL,0
.0.

~6.9b!

The first zero of f (11z) is then reached either atzmax
5(1/2j)arctanj or at (1/2j) arctanhj. In both cases, the
expansion in powers ofj gives zmax'

1
2 1 1

6 Vk,0 /VL,0 .
Working perturbatively, one can also compute the correct
4-12
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SCALAR-TENSOR GRAVITY IN AN ACCELERATING UNIVERSE PHYSICAL REVIEW D63 063504
to this expression due to the nonzero value ofVm,0 , and one
finds thatzmax is given by Eq.~6.7! above plus the following
correction:

dzmax5
1

6 F11
456 ln~3/2!2163

16

Vm,0

VL,0
1OS Vm,0

2

VL,0
2 D G

3
Vk,0

VL,0
1OS Vk,0

2

VL,0
2 D . ~6.10!

In conclusion,zmax can be slightly enlarged if we conside
our potential-free scalar-tensor theory in an open FRW u
verse (Vk,0.0). Numerically, for the values~6.2! of VL,0
and Vm,0 , we find dzmax'0.26Vk,0 /VL,0 . Since the latest
experimental data on CMB temperature fluctuations alre
constrainuVk,0u to be small~see the latest Boomerang an
Maxima data@3,4#!, and actually an open universe is unlike
while a marginally closed universe is still acceptable,
thus recover the same qualitative conclusion as in the
tially flat case: It is possible to mimic general relativity plu
a cosmological constant within a potential-free scalar-ten
theory only on a small redshift intervalz&0.8.

3. Numerical integrations

The above conclusions have been confirmed by nume
integrations of Eqs.~5.3!–~5.6!, still assuming a Hubble dia
gram consistent with Eq.~6.1!. Instead of considering only
theories which are presently indistinguishable from gene
relativity (F0850), we imposed arbitrary initial condition
for F8, and computed the corresponding value of the pres
scalar-matter coupling strengtha0, Eq.~2.7!. In the case of a
spatially flat FRW universe, we recovered that the so
system bound~3.2! imposes the limitzmax'0.68, consis-
tently with the above analytical estimate~6.7!. In other
words, the constraint~3.2! is so tight that even taking th
largest allowed value forua0u does not change significantl
zmax. Figure 1 displays the reconstructedF(z) for this maxi-
mal ua0u, and one can note that its slope atz50 is visually

FIG. 1. ReconstructedF(z) @i.e., Brans-Dicke scalarFBD(z)]
and Einstein-frame scalarw as functions of the Jordan-frame~i.e.,
observed! redshift z, for the maximum value ofua0u allowed by
solar-system experiments and for a vanishing potential.
helicity-0 degree of freedomw diverges atzmax'0.68.
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indistinguishable from the horizontal. This figure also plo
the Einstein-frame scalarw, Eq. ~2.4b!, which is the actual
helicity-0 degree of freedom of the theory. Notice that
diverges atzmax, so that the theory loses its consistency b
yond this value of the redshift.

Curiously, we found that even if no experimental co
straint like Eq.~3.2! is imposed onua0u ~i.e., even if we
forget that solar-system experiments confirm very well g
eral relativity!, then the mathematical consistency of t
theory anyway imposesz,3.5. In fact, Eq.~5.3! alone can
be solved for arbitrary large values ofz; i.e., there exist ini-
tial values ofF08 such thatF(z) remains positive for anyz.
However, the values ofF08 needed to integrate Eq.~5.3! be-
yond z53.5 correspond to negative values ofa0

25(2v0

13)21 ~wherev0 denotes the present value of the Bran
Dicke parameter!. In other words, the expression o
(dw/dz)2 given by Eq.~5.6! would become negative aroun
z50, and the helicity-0 degree of freedom would thus ne
to carry negative energy at least on a finite interval ofz, if
one wished to integrate Eqs.~5.3!–~5.6! beyondz53.5.

Figure 2 displays the maximum redshiftzmax consistent
with the positivity of energy of both the graviton and th
scalar field, but for any value of the present matter-sca
coupling strengthua0u. As underlined above, one finds th
zmax can never be larger than 3.5. This figure also indica
the present solar system bound onua0u, corresponding to
zmax'0.68 as in Fig. 1. The limiting case of a vanishin
ua0u, i.e., of a scalar-tensor theory which is presentlystrictly
indistinguishable from GR in the solar system, correspo
to zmax'0.66, as was derived analytically in Eq.~6.7!. Fig-
ure 2 also indicates the range of values forua0u that are
generically obtained in Ref.@27# while studying the cosmo-
logical evolution of scalar-tensor theories at earlier epoch
the matter-dominated era: The theory is attracted toward
maximum of F @i.e., a minimum of lnA(w)] so that the

e FIG. 2. Maximum redshiftz consistent with the positivity of
energy of both the graviton and the scalar field, as a function of
parameterua0u. This figure corresponds to the case of a vanish
scalar-field potential, and we fit the exactH(z) predicted by genera
relativity plus a cosmological constant (GR1L).
4-13
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present value ofua0u is expected to be extremely small. F
nally, this figure also displays the maximum value ofua0u for
which the parametrizationZ(F)51 of action ~2.1! has a
meaning. Beyondua0u51/A3 ~i.e., for a Brans-Dicke param
eter2 3

2 ,v0,0), one would getF08
2,0 in this parametri-

zation. In other words, Eqs.~5.3!,~5.4! cannot be integrated
consistently beyondz'1.58 if one setsZ(F)51, whereas
the Brans-Dicke or the Einstein-frame representations s
that the theory can be mathematically consistent up tz
'3.5 (w82 remains positive!. This underlines that theZ51
parametrization may be sometimes pathological.

Our numerical integration of Eq.~5.6b! not only allowed
us to check the positivity of the scalar field energy, but a
to reconstruct parametrically the matter-scalar coupling fu
tion A(w). SinceA5F21/2, Eq.~2.4c!, we know thatA(z) is
finite and strictly positive over the interval@0,zmax@ , but we
also checked that it is single valued over this interval. T
means that ifw(z) can take several times the same value
different z, they must correspond also to the same value
A(z). Actually, since Eq.~5.6b! does not fix the sign of
dw/dz, one should keep in mind thatw can oscillate around
a constant valuewmin . If the numerical integration confuse
the two pointswmin6«, but if A(w) happens not to be sym
metrical aroundwmin , it may look like a bi-valued function
When such a situation occurred in our programs, we alw
verified that a single-valuedA(w) could be defined consis
tently by unfolding it around the oscillation points ofw.
Figure 3 illustrates such a situation, for an intentionally u
realistic value ofua0u in order to clarify the plots.@The value
ua0u51 is inconsistent with the solar-system bound~3.2!,
but it corresponds anyway to a mathematically consis
theory, although theZ51 parametrization cannot be used
this case.#

All the functions lnA(w) that we reconstructed have sim
lar convex parabolic shapes. This is consistent with the
sults of Refs.@27,28#, showing that the scalar field is gener
cally attracted towards a minimum of lnA(w) during the
expansion of the universe. If we had found models such

FIG. 3. Two versions of the reconstructed coupling functi
ln A(w) for ua0u51, the dashed one looking bi-valued, but t
~single-valued! solid one giving the same predictedH(z). This fig-
ure still corresponds to the case of a vanishing scalar-field poten
and we fit the exactH(z) predicted by GR1L.
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the present epoch (z50) is close to amaximumof ln A, this
would have meant that the theory is unstable, and that
have extremely fine-tuned it to be consistent with sol
system constraints. On the contrary, the convex functi
ln A(w) that we obtained show that these scalar-tensor m
els are cosmologically stable, i.e., that the tight bounds~3.2!
are in fact natural consequences of the attractor mechan
described in@27,28#.

We have checked that reducing the parameterVL,0 allows
us to extend the integration region in the past, consiste
with the above analytical results. For instance, when we v
VL,0 , still satisfying Vm,0512VL,0 and settingVk,050,
we find thatVL,0,0.02 is required in order to integrate th
equations up to a redshiftz55. This would correspond to
Vm,0 /VL,0.50, i.e., 100 times larger than present estimat

We also added random noise to our assumedH(z), Eq.
~6.1!, and verified that the conclusions are not changed qu
tatively providedH(z) is known over a wide enough redshi
interval. This means that the experimental determination
the luminosity distanceDL(z) needs not be very precise t
be quite constraining, provided redshifts of orderz;2 are
probed. As an illustration, let us assume that the correctH(z)
is still given by Eqs.~6.1!,~6.2!, but that its experimenta
determination at regular values of the redshift, sayz
50,0.1,0.2,0.3,. . . , is randomly increased or decreased
at most 30%. This means that instead of knowing the ac
function H(z), one only knows a few discrete values of
multiplied by random numbers between 0.7 and 1.3. Th
one may fit a polynomial through these ‘‘noisy’’ values
H(z), and integrate numerically Eqs.~5.3!–~5.6! to recon-
struct F. We performed this reconstruction for hundreds
such ‘‘deformed’’H(z), and always found that there exists
maximum redshift beyond whichF is negative ~and the
theory thus inconsistent!. Figure 4 displays the two extrem
values ofzmax that we obtained: It is sometimes even smal
than for the ‘‘exact’’H(z) of Eqs.~6.1!,~6.2!, and sometimes
larger but never greater than;2. The reason for this result i
our assumption ofrandomdeviations from the exactH(z). It
should be noted that a particularbias of it, such that the
observed value ofH(z)/H0 is always larger than the exac
one, increaseszmax much more. For instance, the functio
H(z)/H05(11z)3/2, corresponding to pure GR without an
cosmological constant, lies within the large error bars
considered@this would mean that the observedH(z) for z
.0 is always larger by;30% than the exact one~6.1!,~6.2!,
but that the observed Hubble constantH05H(0) happens to
be smaller by ;30% than the exact one#. This function is
plotted as a dotted line in Fig. 4. In that case, a potential-f
scalar-tensor model withF5const would of course have fit
ted it perfectly up toz→`. However, if one assumes that th
discrete observed values ofH(z) randomlydiffer from Eqs.
~6.1!,~6.2!, i.e., from the bold line of Fig. 4, then it is ex
tremely unlikely to remain close to the dotted one ove
significant redshift interval. This explains why we nev
found zmax larger than;2 for the hundreds of randomly
deformedH(z) that we simulated. We are aware that they
not reproduce a realistic experimental noise. However, t
illustrate in a well-defined way that an inaccurate determi

al,
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tion of H(z) over a wide redshift interval is actually mor
constraining than a precise measurement over a small
shift interval only. On the other hand, if there are some r
sons to expect abias in the experimental measures ofDL(z),
thereby ofH(z), then our study shows that it must be si
nificantly lower than 30% to be able to constrain potenti
free scalar-tensor theories.

The conclusion of the present subsection is therefore
a scalar-tensor theory without potential can accommoda
Hubble diagram consistent with Eq.~6.1!, but only on a
small redshift interval ifVL,0 is significant. The experimen
tal determination of the luminosity distanceDL(z), either
accurately forz&1 or even with large~tens of percent! un-
certainties up to redshiftsz;2, severely constrains this sub
class of theories. Future observations should thus be ab
distinguish them from general relativity and to confirm
rule them out without any ambiguity.

It is worth noting that such future determinations
DL(z) would a priori be much more constraining than sola
system experiments and binary pulsars tests. Indeed
though the precision of the latter is quite impressive~see e.g.
@20–23#!, they anyway probe only the first two derivatives
ln A(w), Eqs.~3.2!,~3.3!, whereas cosmological observatio
should give access to the full shape of this function.

Let us also recall that the constraints we found crucia
depend on the fact that the theory should contain o
positive-energy excitations to be consistent and notably
the functionF should remain always strictly positive. We d
not use any other cosmological observation, but obviou
once the microscopic Lagrangian of a scalar-tensor the
has been reconstructed usingDL(z), all its other cosmologi-
cal predictions should also be checked. For instance, a bo
Fnuc.0.86F0 is given in Ref.@36# for the value of the func-

FIG. 4. Random deformations of theH(z) predicted by GR
1L ~with VL,050.7) and corresponding maximum value of th
redshiftz consistent with the positivity of energy. The dashed lin
indicate the region in which random points have been chose
regular intervals ofz. The thin solid lines correspond to two poly
nomial fits of such random points. Note that they can differ fro
the GR1L curve even more than the dashed lines. The dotted
labeled simply ‘‘GR’’ corresponds to a vanishing cosmologic
constantL. Such abias of the GR1L curve changeszmax much
more that therandom noisewe considered.
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tion F at nucleosynthesis time.5 If one assumes thatF(z) is
monotonic, the reconstructed function of Fig. 1 would not
consistent with this nucleosynthesis bound beyondz'0.3.
This would be even more constraining than the boundz
,0.68 we obtained just from mathematical consistency
quirements. Alternatively, a reconstructed functionF(z) like
the one of Fig. 1 would be consistent with the above nucl
synthesis bound only if it were non-monotonic beyondz
*0.6. Although this would not be forbidden from a pure
phenomenological point of view, this would be anyway u
natural and more difficult to justify theoretically.

B. Massless scalar field and an„arbitrary … nonzero
cosmological constant

To confirm the results of the previous subsection, let
now consider the case of a massless scalar field together
a cosmological constant whose valuediffers from the one
entering our assumedH(z), Eqs. ~6.1!,~6.2!. The question
that we wish to address is the following: Canpart of the
observedVL,0 be due to the presence of a massless sc
field?

To impose a cosmological constant in a scalar-ten
theory, one would naively choose a constant potentialU(F)
in action~2.1!. However, as shown by Eq.~2.4d!, the corre-
sponding potentialV(w) of the helicity-0 degree of freedom
w would not be constant in this case@becauseF(F) is a
priori varying#, and its second derivative would give gene
cally a nonvanishing scalar mass. To avoid any scalar s
interaction, and in particular to set its mass to 0, one need
fact to imposeV(w)5const in the Einstein-frame actio
~2.5!. This defines a consistent cosmological ‘‘constant’’ in
massless scalar-tensor theory. Note that the correspon
Jordan-frame potentialU(F) is then proportional toF2(F),
and therefore that it does not correspond to the usual no
of cosmologicalconstantin action ~2.1!.

Since our assumed ‘‘observed’’H(z) involves a param-
eter denotedVL,0 , Eqs.~6.1!,~6.2!, let us introduce a differ-
ent notation for the contribution due to the constant poten
V:

VV,0[
2F0V

3H0
2 . ~6.11!

It is easily checked that forVV,05VL,0 , the solutionA(w)
51 @or F(F)51] is recovered, i.e., a scalar field minimal
coupled to gravity with a constant potential acting like
cosmological constant. Indeed, in terms of the functionf (x)
defined in Eq.~6.3!, Eq. ~5.3! reads

~VL,01Vm,0 x3!x f9~x!1 3
2 Vm,0 x3f 8~x!24Vk,0 x f~x!

26VV,0 x f2~x!53Vm,0 . ~6.12!

5See however Ref.@29#, in which extremely small values o
Fnuc/F05A0

2/Anuc
2 are shown to be consistent with the observ

abundances of light elements, providedd2ln A(w)/dw2 is large
enough, whereA(w) is the matter-scalar coupling function~2.4c!.

at

e
l

4-15



If

n
re

he
is

rg

th

’’
e
ic

w

ve
tl

on

al-
h

of

,

nt

n-

s a
ust

ain
of

ou-

l
e
ons
s.
ld

of
d in
ve

h
-

s

al
re

r

els

d

GILLES ESPOSITO-FARE`SE AND DAVID POLARSKI PHYSICAL REVIEW D 63 063504
Note that this is now anon-linear equation inf, contrary to
Eq. ~6.4! above for the case of a vanishing potential.
VV,05VL,0 , one finds thatf (x)5x22 is an obvious solu-
tion, i.e.,F(z)5F05const. A constant scalar fieldF ~or w)
then satisfies Eqs.~5.4!–~5.7!.

If we now consider a scalar-tensor theory for whichVV,0
differs from the ‘‘observed’’VL,0'0.7, we find that like in
the previous subsection there exists a maximum redshiftzmax
beyond whichF(z) becomes negative and, therefore, beyo
which the theory loses its mathematical consistency. Figu
displays this maximum redshift as a function ofVV,0 . We
plot this figure for the initial conditionF0850 ~i.e., for a
theory which is presently indistinguishable from GR in t
solar system!, but as before we verified that the curve
almost identical if one takes the maximum value ofuF08u
consistent with the solar-system bound~3.2!. We also as-
sumeVk,050 ~spatially flat universe! for this figure, as we
know from the previous discussion that a value even as la
as uVk,0u;0.2 does not change qualitatively the results.

For VV,050, we recover the resultzmax'0.66 derived
above for a vanishing potential. WhenVV,0,0, zmax be-
comes even smaller. As expected, this is worse than in
potential-free case. On the contrary, whenVV,0 is positive
~i.e., when it contributes positively to part of the ‘‘observed
VL,0), the maximum redshiftzmax increases. This is just du
to the fact that our massless scalar field needs to mim
smaller fraction of the ‘‘observed’’VL,0 , so that the theory
can remain consistent over a wider redshift interval. Ho
ever, we find thatzmax is still smaller than 1.5 forVV,0
<0.6, and aH(z) of the form ~6.1!,~6.2! observed up toz
;2 would thus suffice to rule out the model. If such aH(z)
could be confirmed up toz;5, one would needVV,0
>0.694 for our massless scalar-tensor theory to fit it. E
so, the theory would anyway become pathological at sligh
higher redshifts. In conclusion, a massless scalarcannotac-
count for a significant part of the observed cosmological c
stant ifH(z) is experimentally found to be of the form~6.1!
over a wide redshift interval.

Let us note finally that forVV,0.VL,0 , Eq. ~6.12! does
admit strictly positive solutions forf ~or F) up to arbitrarily

FIG. 5. Maximum redshiftz consistent with the positivity of
energy, as a function of the value of a constant potentialV ~case of
a massless helicity-0 degree of freedomw).
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large redshifts. This ensures that the graviton energy is
ways positive. However, it is now the scalar field whic
needs to carry negative energy. Indeed, Eq.~5.7! gives a
negative value forw82, basically because of the presence
the large negative number2U in this equation.@In the
Z(F)51 parametrization,F82 is obviously also negative
because of Eq.~5.6a! or directly from Eq.~5.5! which also
involves a2U term.#

Therefore, there is only one possibility for a consiste
massless scalar-tensor theory to reproduce Eq.~6.1! over a
wide redshift interval: It must involve a cosmological co
stant, whose contributionVV,0 is equal to~or very slightly
smaller than! the parameterVL,0 entering Eq.~6.1!. In other
words, the theory should be extremely close to GR plu
cosmological constant, and the massless scalar field m
have a negligible contribution. This illustrates again the m
conclusion of our paper: The experimental determination
the luminosity distanceDL(z) over a wide redshift interval,
up toz;2, will suffice to rule out~or confirm! the existence
of a massless scalar partner to the graviton.

C. Reconstruction of the potentialU from a given F

In the previous two subsections, the matter-scalar c
pling function F(F) @or A(w)] was reconstructed from the
assumed knowledge ofH(z), for theories whose potentia
U(F) @or V(w)] had a given form. We now consider th
inverse problem. We still assume that future observati
will provide a Hubble diagram consistent with Eq
~6.1!,~6.2!, but we wish now to reconstruct the scalar-fie
potentialU for given forms of the coupling functionF.

1. Generic scalar-tensor theories

We first consider a generic two-parameter family
scalar-tensor theories, which has already been studie
great detail for solar-system, binary-pulsar and gravity-wa
experiments@23,25#, as well as for cosmology starting wit
the matter-dominated era@27# and even back to nucleosyn
thesis@29#. Its definition is simplified if we work in the Ein-
stein frame~2.4!,~2.5!. The matter-scalar coupling function i
simply given by

ln A~w!5a0~w2w0!1 1
2 b0~w2w0!2, ~6.13!

in which the present value of the scalar field,w0, may be
chosen to vanish without loss of generality. Any analytic
function lnA(w) may be expanded in such a way, but we he
assume that no higher power ofw appears, i.e., that lnA(w) is
strictly parabolic: It depends only on the two parametersa0
andb0. The latter is a simplified notation for (da/dw)0, and
should not be confused with the post-Newtonian parameteb
defined in Eq.~3.1b!. ~Actually, this equation shows thatb
'11 1

2 a0
2b0.! Solar-system experiments imposeua0u,1.4

31022, Eq. ~3.2!, while binary pulsars giveb0.24.5, Eq.
~3.3!, for this class of theories. We first study these mod
for the case of a spatially flat universe (Vk,050).

As shown by Eq.~4.7!, a constant scalar fieldw5w0 may
be a solution ifa050 @so thata(w)}(w2w0) vanishes too#
and if the potentialV(w) is also constant. Our assume
4-16
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FIG. 6. Minimally coupled modelF51 in a spatially closed FRW universe, respectively forVk,0521023 ~left panel! and Vk,0

520.1 ~right panel!. In both cases, the potentialV(w) is analytically given by Eq.~6.14!. Note that the reconstructed potential does not ha
a ‘‘natural’’ shape ifuVk,0u is too small: The present value ofVL,0 is not explained by a quintessence mechanism, and the correspo
scalar-tensor theory is basically equivalent to GR1L. On the contrary, ifuVk,0u is large enough, the potential has a nice smooth shape,
its present value~at w2w050 on the figure! basically corresponds to the observedVL,0 .
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H(z), Eqs.~6.1!,~6.2!, can thus always be reproduced if th
parametera0 vanishes identically, and the reconstructed p
tential merely reduces to the constantV5 3

2 H0
2VL,0 . This

corresponds simply to GR plus a cosmological constant,
the massless scalar degree of freedomw remains unexcited
frozen at an extremum of the parabola~6.13!. Actually, Eq.
~4.7! shows that this extremum corresponds to a stable s
ation only if it is a minimum, i.e., ifb0>0 in Eq. ~6.13!.
This is consistent with the results of Refs.@27,28#: If the
theory involves a cosmological constant whose value eq
the ‘‘observed’’ one in Eqs.~6.1!,~6.2!, a massless scala
field is cosmologically attracted towards a minimum of t
coupling function lnA(w), and the present value of its slop
a0, is expected to be generically very small.

On the other hand, ifa0 is not assumed to vanish, say
its value is comparable to the solar-system bound~3.2!, then
our reconstruction of the potentialV(w) from Eqs. ~5.3!–
~5.6! leads to serious difficulties. Their nature depends on
magnitude of the curvature parameterb0 of parabola~6.13!.

String-inspired models@49# suggest thatb0 may be as
large as 10, or even 40. With such large values~and assum-
ing non-vanishinga0), our numerical integrations of Eqs
~5.3!–~5.6! give concave potentialsV(w), unbounded from
below. This corresponds to unstable theories and thereb
extremely fine-tuned initial conditions: Changing slightly t
derivative of the scalar field,dw/dz, at high redshifts would
a priori yield a totally different universe at present. Th
result tells us that this kind of models cannot be consis
over a wide redshift interval with the exact form ofH(z) we
chose in Eq.~6.1!, unless the parametera0 is extremely
small. Actually, this is just another way to present the res
of Refs.@27,28#: Since they predict thata0 should be almost
vanishing at present, assuming a significant non-zero v
implies that the theory is unnatural.

To obtain convex-shaped potentialsV(w) ~i.e., stable
theories! while still assuming a non-vanishinga0, we typi-
cally need values ofub0u&4. However, the reconstructe
potentials always exhibit sudden changes of their slope.
sically, they reproduce a cosmological constant over a fi
interval aroundw0 ~i.e., aroundz50) and become rapidly
divergent beyond a critical value of the scalar field~depend-
ing on b0). Therefore, as in Sec. VI B above, we find th
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such scalar-tensor models can reproduce Eq.~6.1! only if
they involve a cosmological constant, whose energy con
bution is close to the parameterVL,0 enteringH(z), and if
the scalar field has a negligible enough influence. In ot
words, such models would not explain the small but nonz
value of the observed cosmological constant by a ‘‘quint
sence’’ mechanism, and would not be more natural th
merely assuming the existence ofL.

The above results are significantly changed if we take i
account the possible spatial curvature of the universe.
deed, smoother potentialsV(w) are obtained for closed uni
verses (Vk,0,0), and the present value of the cosmologic
constant thus becomes more ‘‘natural.’’

To illustrate this feature, let us consider the case o
minimally coupled scalar field~as in@15#!, corresponding to
a05b050 in Eq. ~6.13!. For an open universe (Vk,0.0),
we find from Eq.~5.6! that the scalar field would need t
carry negative energy to reproduce Eq.~6.1!. On the other
hand, for a closed universe (Vk,0,0), one can derive ana
lytically the parametric form of the potentialV(w). It can be
expressed in terms of the hypergeometric funct
2F1(a,b;c;x) „solution of the differential equationx(1
2x)F91@c2(a1b11)x#F82abF50…:

V5S 3

2
VL,02Vk,0 x2DH0

2 , ~6.14a!

w56 xA2
Vk,0

VL,0

32F1S 1

3
,
1

2
;
4

3
;2

Vm,0

VL,0
x3D , ~6.14b!

where as beforex[11z. If uVk,0u is very small, we recover
thatV(w) exhibits a sudden change of slope, as was obtai
above in the flat case. This is illustrated by the left panel
Fig. 6. On the contrary, ifuVk,0u is large enough, the sam
analytical expression~6.14! gives nice regular potentials
such as the one displayed in the right panel of Fig. 6. T
reconstructedV(w) as well as those obtained numerically f
weakly varying lnA(w), Eq. ~6.13!, are natural~i.e., reason-
able! in the sense that they can be approximated by
4-17



pe
ia

b
.

ve
n
le

la

in
e
o

ca
an
a
c

om

es

tia

im

o

in
re
to

n
la

o

a
ty

this

ond
an

o-

re

nts
the

the

, as
lar-

ift

. It

is-
ion

m

m
ost
s.

GILLES ESPOSITO-FARE`SE AND DAVID POLARSKI PHYSICAL REVIEW D 63 063504
exponential of simple polynomials inw. In that case, the
observed value of the cosmological constant does not ap
as a mere parameter introduced by hand in the Lagrang
but corresponds basically to the present value of 2V(w0). It
should be noted that a value as large asVk,0520.1 is not
excluded by the latest Boomerang data, though it would
problematic in the framework of the inflationary paradigm

In conclusion, the existence of non-singular solutions o
a long period of time is again the constraining input. A no
minimally coupled scalar field is essentially incompatib
with Eq. ~6.1! over a wide redshift interval, unless the sca
field is frozen at a minimum of lnA(w) ~consistently with
@27,28#!. If future experiments provide a Hubble diagram
accordance with Eq.~6.1! and also give a very small valu
for Vk,0 , it will be possible to conclude that scalar-tens
theories~either non-minimally or minimally coupled! cannot
explain in a natural way the existence of a cosmologi
constant. On the other hand, if the universe is closed
uVk,0u large enough, a ‘‘quintessence’’ mechanism in
scalar-tensor theory seems more reasonable than a mere
mological constant.

2. Scaling solutions

The above conclusions can be confirmed by starting fr
a givenF(z) @or A(z)], rather thanF(F) @or A(w)]. We
consider here ‘‘scaling solutions’’; i.e., we assume that th
functions behave as some power of the scale factora. One
may for instance writeF(z)5(a/a0)p5(11z)2p, with p
>0. As before, our aim is to reconstruct a regular poten
V(w) from the knowledge ofH(z), assumed to be of the
form ~6.1!,~6.2!.

The strongest constraint on this class of theories is
posed by the solar-system bound~3.2!. Indeed, using the
definition ~2.7! for a(w), one can also write it asa(w)5
2F8/(2w8F), and Eq.~5.6! evaluated atz50 then yields
the following second-order equation forp:

~12a0
2!p22~213Vm,0!a0

2p14Vk,0a0
250. ~6.15!

Note that this equation does not depend on the full form
Eq. ~6.1!, but only on its first derivative atz50, i.e., on the
deceleration parameterq05(H8/H)021. The constraints on
p derived below are thus valid as soon asq0 is of order;
2 1

2 , consistently with the estimated value~6.2! for Vm,0 .
In the case of a spatially flat universe (Vk,050), Eq.

~6.15! gives immediately p5(213Vm,0)a0
2/(12a0

2)
'3a0

2, so that the solar-system bound~3.2! imposesp,6
31024. Therefore, the scalar field needs to be almost m
mally coupled. Ifp vanishes identically, we recover as befo
the trivial solution of GR plus a cosmological constant,
gether with an unexcited minimally coupled scalar field. O
the other hand, ifp does not vanish, one finds that the sca
field needs to carry negative energy beyondz'1.4. Even
without trying to reconstruct the potentialV(w), one can
thus conclude that such scaling solutions would be ruled
by the observation of aH(z) of the form ~6.1! up to z;2.
Paradoxically, this result is valid even for an infinitesim
~but nonzero! value ofp. Indeed, there exists a discontinui
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between the case of a strictly constantF and that of a scaling
solutionF(z)5(11z)2p. At first order inp, and still assum-
ing Vk,050, one can write Eq.~5.6! as

2~11z!2w825p23pS ln~11z!2
1

2D Vm,0~11z!3

VL,01Vm,0~11z!3

1O~p2!. ~6.16!

This equation confirms thatw82→0 whenp→0, and there-
fore that the scalar field tends towards a constant in
limit. However, it carries positive energy (w82>0) only if

~11z!3S ln~11z!2
5

6D<
VL,0

3Vm,0
. ~6.17!

Since the right-hand side is estimated to be&1, the maxi-
mum value ofz is obtained for ln(11z)'5/6, so that the
large numerical factor coming from (11z)3 in the left-hand
side is compensated by the small term inside the sec
parentheses. Working iteratively, this maximum redshift c
be better approximated by zmax'e5/621
1(VL,0 /3Vm,0)e

25/3'1.45, and the actual numerical res
lution of equality ~6.17! for the values~6.2! gives zmax
51.429. Therefore, even ifp is vanishingly small, a scaling
solutionF(z)5(11z)2p cannot be consistent with Eq.~6.1!
beyond this maximum redshift. This illustrates once mo
that the experimental determination ofH(z) up to z;2
would be more constraining that solar-system experime
for this class of theories, provided one takes into account
requirement of positive energy. Let us underline that
above value forzmax is valid for a monomialF5(a/a0)p but
not for more complicated polynomial expressions. Indeed
shown for instance in Sec. VI B above, there do exist sca
tensor theories consistent with Eq.~6.1! up to arbitrarily
large redshifts, and they do not need to bestrictly equivalent
to GR plus a cosmological constant~although they must be
close enough to it!. Moreover, the above maximum redsh
is a consequence of theexactform for H(z) we chose in Eq.
~6.1!. A slightly different function may of course allow a
positive-energy scalar field up to much higher redshifts
suffices that the right-hand side of Eq.~5.6b! be strictly posi-
tive for F'const, and the case of a closed universe d
cussed below provides an example, since the contribut
2Vk,0 is then positive in Eq.~5.6b!.

The case of a spatially open universe (Vk,0.0) is forbid-
den by Eq. ~6.15!, unless Vk,0 is smaller than; 1

2 a0
2

,1024. Such a situation would be indistinguishable fro
the spatially flat case.

In a spatially closed universe (Vk,0,0), p is given by the
positive root of the second-order equation~6.15!. Remem-
bering the solar-system bound~3.2!, one may consider the
casea0

2!uVk,0u, and one getsp'2ua0uA2Vk,0. Even if
one considered values ofVk,0 as large as20.1, this would
limit p to ;1022. Therefore, in this case again, solar-syste
constraints impose that the scalar field should be alm
minimally coupled, if one looks for such scaling solution
The difference with the spatially flat case is that Eqs.~5.3!–
~5.7! can now be integrated for any redshiftz ~from future
4-18
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SCALAR-TENSOR GRAVITY IN AN ACCELERATING UNIVERSE PHYSICAL REVIEW D63 063504
infinity, z521, to arbitrarily largez). SinceF(z) needs to
be almost constant, we recover solution~6.14! for the poten-
tial V(w). As in Sec. VI C 1 above, we can thus conclu
that such models would be consistent with Eq.~6.1! over a
wide redshift interval only if they are~almost! minimally
coupled, and they would provide a natural ‘‘quintessenc
mechanism to explain the presently observed cosmolog
constant only if the universe is~marginally! closed.

Let us end this paragraph by a remark concerning sca
solutions, for which the scalar-field energy density sca
like a power ofa. As mentioned in the Introduction, the
have attracted a lot of attention recently. For a minima
coupled field, the possible scaling behaviors and the co
sponding potentials can be classified@13#. As for a non-
minimally coupled field, a subclass of theories was cons
ered in@47#, for which

U~F!5CF~F!M, ~6.18!

whereC andM are constants. Since besides these two c
stants there is only one unknown function ofF, knowledge
of H(z) suffices to reconstruct the full microscopic Lagran
ian from Eqs.~5.3!–~5.6! above. However, the main conclu
sion of Ref.@47# can be recovered from a simple argume
without any numerical integration. Indeed, it was shown
this reference that there exists a universal behavior of th
theories, depending onM but not on the precise shape
F(F). As emphasized in@47#, this result was obtained in th
strong coupling limit, corresponding formally toZ(F)→0 in
action~2.1!. Taking into account the assumed relation~6.18!,
the class of theories under consideration is thus defined

S5
1

16pG*
E d4xA2g@F~F!R22CF~F!M#

1Sm@cm ;gmn#. ~6.19!

If we now introduce a new scalar variableC5F(F), we
notice thatF disappears totally from the action. No physic
result can thus depend on the precise form ofF(F), and we
recover the conclusion of@47#. The constantC may also be
set to 1 by a change of length units, and this class of theo
is thus parametrized by the single real numberM. Any physi-
cal prediction must therefore depend only onM.

VII. CONCLUSION

In this work we have investigated the constraints t
arise from experimentalknowledge of the luminosity dis
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tance in function of the redshift up toz;2, corresponding to
H(z) given by Eqs.~6.1!,~6.2!. In particular, our universe is
then presently accelerating and we have studied the viab
of subclasses of scalar-tensor theories of gravity. We h
shown that the subclass of models in which the scalar par
F of the graviton has no potential at all and which satisfy t
present-day existing constraints are inevitably ruled out if
expansion of the form of Eq.~6.1! holds even for a redshif
interval as tiny asz,2 ~see the precise numbers in Sec. V!.
We see that these theories become pathological in the f
of a vanishingF, already at such low redshifts for whic
H(z) will be experimentally accessible in the near futu
@17#. Hence we show that a cosmological observation of
background evolution according to Eq.~6.1! in the ‘‘recent’’
epoch will be enough to rule out such models.@On the other
hand, future observations might provide aH(z) which con-
firms the existence of a scalar partner to the graviton and
out pure GR.# The main reason why we obtained so co
straining results is that we took into account the mathem
cal consistency of the theory, i.e., the fact that it should c
tain only positive-energy excitations to be well behave
This requirement severely restricts the class of viable m
els.

A non-flat universe can alleviate in some cases the ti
constraints we found. However, the latest CMB data relea
by Boomerang and Maxima@3,4# favor a flat universe~in
accordance with the inflationary paradigm!, and only a mar-
ginally closed universe is still allowed by the location of th
first acoustic~Doppler! peak atl;200, while an open uni-
verse is more unlikely.

The most impressive conclusion is that future cosmolo
cal observations may prove to be more constraining
massless scalar-tensor theories than solar-system and bi
pulsar tests. Indeed, even if the determination of the lu
nosity distanceDL(z) will not reach very quickly the impres
sive accuracy obtained in the solar system or with bin
pulsars, it will nevertheless give access to the full coupl
functionF(F) in action~2.1!, or A(w) in the Einstein-frame
rewriting Eq.~2.5!, whereas only its first two derivatives ar
presently probed.
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Théorique is UnitéPropre de Recherche 7061.

t,

@6# V. Sahni and A.A. Starobinsky, Int. J. Mod. Phys. D9, 373
~2000!.

@7# M. Chevallier and D. Polarski, gr-qc/0009008.
@8# R.R. Caldwell, R. Dave, and P.J. Steinhardt, Phys. Rev. L

80, 1582~1998!.
@9# B. Ratra and P.J.E. Peebles, Phys. Rev. D37, 3406~1988!.

@10# P.J. Steinhardt, L. Wang, and I. Zlatev, Phys. Rev. D59, 123
504 ~1999!.

@11# P.G. Ferreira and M. Joyce, Phys. Rev. D58, 023503~1998!;
4-19



ky

s

D

ta,

-

’’

R.

GILLES ESPOSITO-FARE`SE AND DAVID POLARSKI PHYSICAL REVIEW D 63 063504
Phys. Rev. Lett.79, 4740~1998!.
@12# I. Zlatev, L. Wang, and P.J. Steinhardt, Phys. Rev. Lett.82,

896 ~1999!.
@13# A.R. Liddle and R.J. Scherrer, Phys. Rev. D59, 023509

~1999!.
@14# C. Kolda and D.H. Lyth, Phys. Lett. B458, 197 ~1999!.
@15# A.A. Starobinsky, Pis’ma Zh. E´ksp. Teor. Fiz.68, 721 ~1998!

@JETP Lett.68, 757 ~1998!#; Gravit. Cosmol.~Suppl.! 4, 88
~1998!.

@16# D. Huterer and M.S. Turner, Phys. Rev. D60, 081301~1999!;
T. Nakamura and T. Chiba, Mon. Not. R. Astron. Soc.306,
696 ~1999!.

@17# T.D. Saini, S. Raychaudhury, V. Sahni, and A.A. Starobins
Phys. Rev. Lett.85, 1162~2000!.

@18# R.R. Caldwell, astro-ph/9908168.
@19# M.B. Green, J.H. Schwarz, and E. Witten,Superstring Theory

~Cambridge University Press, Cambridge, England, 1987!.
@20# C.M. Will, Theory and Experiment in Gravitational Physic

~Cambridge University Press, Cambridge, England, 1993!.
@21# T. Damour and G. Esposito-Fare`se, Class. Quantum Grav.9,

2093 ~1992!.
@22# T. Damour and G. Esposito-Fare`se, Phys. Rev. D53, 5541

~1996!.
@23# T. Damour and G. Esposito-Fare`se, Phys. Rev. D54, 1474

~1996!.
@24# C.M. Will, Phys. Rev. D50, 6058~1994!.
@25# T. Damour and G. Esposito-Fare`se, Phys. Rev. D58, 042001

~1998!.
@26# M. Gasperini and G. Veneziano, Astropart. Phys.1, 317

~1993!; Mod. Phys. Lett. A8, 3701~1993!.
@27# T. Damour and K. Nordtvedt, Phys. Rev. Lett.70, 2217

~1993!; Phys. Rev. D48, 3436~1993!.
@28# D.I. Santiago, D. Kalligas, and R.V. Wagoner, Phys. Rev.

58, 124005~1998!.
@29# T. Damour and B. Pichon, Phys. Rev. D59, 123502~1999!.
06350
,

@30# A. Navarro, A. Serna, and J.M. Alimi, Phys. Rev. D59,
124015~1999!.

@31# J.P. Uzan, Phys. Rev. D59, 123510~1999!.
@32# T. Chiba, Phys. Rev. D60, 083508~1999!.
@33# X. Chen and M. Kamionkowski, Phys. Rev. D60, 104036

~1999!.
@34# F. Perrotta, C. Baccigalupi, and S. Matarrese, Phys. Rev. D61,

023507~2000!; C. Baccigalupi, S. Matarrese, and F. Perrot
ibid. 62, 123510~2000!.

@35# D.J. Holden and D. Wands, Phys. Rev. D61, 043506~2000!.
@36# N. Bartolo and M. Pietroni, Phys. Rev. D61, 023518~2000!.
@37# E. Gaztanaga and J.A. Lobo, Astrophys. J.~to be published!,

astro-ph/0003129.
@38# B. Boisseau, G. Esposito-Fare`se, D. Polarski, and A.A. Star

obinsky, Phys. Rev. Lett.85, 2236~2000!.
@39# C.W. Misner, K.S. Thorne, and J.A. Wheeler,Gravitation

~Freeman, San Francisco, 1973!.
@40# P.G. Bergmann, Int. J. Theor. Phys.1, 25 ~1968!; K. Nor-

dtvedt, Astrophys. J.161, 1059 ~1970!; R. Wagoner, Phys.
Rev. D1, 3209~1970!.

@41# T.M. Eubankset al., Bull. Am. Phys. Soc.~Abstract No. K
11.05! ~1997!; C. M. Will, ‘‘The confrontation between gen-
eral relativity and experiment: A 1998 update,
gr-qc/9811036.

@42# J.O. Dickeyet al., Science265, 482 ~1994!; J.G. Williams,
X.X. Newhall, and J.O. Dickey, Phys. Rev. D53, 6730~1996!.

@43# P. Fiziev, Mod. Phys. Lett. A15, 1977~2000!.
@44# A.S. Eddington,The Mathematical Theory of Relativity~Cam-

bridge University Press, Cambridge, England, 1923!.
@45# B.M. Barker, Astrophys. J.219, 5 ~1978!.
@46# J.M. Bardeen, Phys. Rev. D22, 1882~1980!.
@47# L. Amendola, Phys. Rev. D60, 043501~1999!.
@48# J. Weller and A. Albrecht, astro-ph/0008314; I. Maor,

Brustein, and P.J. Steinhardt, Phys. Rev. Lett.86, 6 ~2001!; T.
Chiba and T. Nakamura, Phys. Rev. D62, 121301~R! ~2000!.

@49# T. Damour and A. Polyakov, Nucl. Phys.B423, 532 ~1994!;
Gen. Relativ. Gravit.26, 1171~1994!.
4-20


