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We consider scalar-tensor theories of gravity in an accelerating universe. The equations for the background
evolution and the perturbations are given in full generality for any parametrization of the Lagrangian, and we
stress that apparent singularities are sometimes artifacts of a pathological choice of variables. Adopting a
phenomenological viewpoint, i.e., from the observations back to the theory, we show that knowledge of the
luminosity distance as a function of redshift upaze 1—2, which is expected in the near future, severely
constrains the viable subclasses of scalar-tensor theories. This is due to the requirement of positive energy for
both the graviton and the scalar partner. Assuming a particular form for the Hubble diagram, consistent with
present experimental data, we reconstruct the microscopic Lagrangian for various scalar-tensor models, and
find that the most reasonable ones are obtained if the unive(seaiginally closed.
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I. INTRODUCTION turely, the status of new paradigm. A striking consequence
for our universe is then its present acceleration, for a large
Recently, there has been a lot of interest in cosmologicatange of equations of staf&].
solutions in the presence of a cosmological constant, when Of course, from the point of view of particle physics, a
the latter is significant compared to the present total energpure cosmological constant of the order of magnitude
density of the universe. Indeed, the Hubble diagram based o= 3x 10~ ?2¢%/(%G), interpreted as the vacuum energy, is
observations of type la supernovae up to a redshiftlt  extremely problematic. This is why attempts were made to
seems to imply that our universe is presently acceleratinfind some alternative explanation to the origin of the accel-
[1,2]. These data, when combined with the observed locatiorration under the form of some scalar field (sometimes
of the first acoustic peak of the cosmic microwave back-alled quintessend®], “ A" field, etc.) whose slowly vary-
ground(CMB) temperature fluctuations, favor a spatially flating energy density would mimic an effective cosmological
universe whose energy density is dominated by aonstant. This is very reminiscent of the mechanism produc-
“cosmological-constant”-like term. The flatness of the uni- ing the inflationary phase itself with the fundamental differ-
verse is corroborated by the latest Boomerang and Maximance that this scalar field, which does not have ta Ipgiori
data[3,4], in accordance with the inflationary paradigm, the inflaton, is accelerating the expansion today, therefore at
though a marginally closed universe is still allowed by thea much lower energy scale. This of course has problems of
position of the first acousti¢Dopplen peak atl~200. A its own as this effective cosmological constant term started
significant cosmological constant may help in resolving thedominating the universe expansion only in the very recent
dark matter problem — for dustlike matter alone observapast(the so-called “cosmic coincidence” problémindeed,
tions seem to imply2,,~0.3 — and in reconciling flat cold the energy density of the field must remain subdominant
dark matter(CDM) models with observations in the frame- at very early stages and come to dominate in the recent past
work of CDM models with a cosmological constant only. Hence, specific evolution properties are required to
(ACDM). Finally, a cosmological constant is an elegant waymeet these constraints and were indeed shown to hold for
to allow a high Hubble constantH, with h particular potentials, partly alleviating the problem of the
=H,/(100 kms*Mpc 1)~0.65 and a sufficiently old initial conditions. For inverse power-law potentials the en-
universeto>11 Gyr[5] (see also, e.g[f] for a recent com- ergy density of the scalar field was shown to decrease less
prehensive review and references therein rapidly than the background energy density so that it can be
Therefore, this interpretation, if confirmed by future ob- negligible in the early universe and still come to dominate in
servations, constitutes fundamental progress towards the stie recent pag®9,8,10. For exponential potentiald1,9], the
lution of the dark matter problem and the formation of large-scalar field energy density has the very interesting behavior
scale structure in the universe out of primordial fluctuationghat it tends to a fixed constant fraction of the total energy
generated by some inflationary model. That is certainly whatlensity, these are the so-called “tracker solutions.” Hence a
makes it so appealing and gives it, maybe somehow premasure exponential potential is excluded if data confirm that the
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energy density of the scalar field is dominating today, as thiselativity (GR). Indeed, scalar partners to the graviton generi-
fraction had to be small at the time of nucleosynthesis. Stillcally arise in theoretical attempts at quantizing gravity or at
tracking solutions alleviate significantly the problem of theunifying it with other interactions. For instance, in super-
initial conditions. A slightly different potential is proposed in string theory, a dilaton is already present in the supermultip-
[12] and a classification of the scaling behavior of the scalatet of the 10-dimensional graviton, and several other scalar
field for various potentials has been given[it8]. Hence, fields (called the modu)i also appear when performing a
though a minimally coupled scalar field is an attractive posKaluza-Klein dimensional reduction to our usual spacetime
sibility, some degree of fine-tuning still remains in the pa-(see, e.g., Chap. 14.5 of R¢fl9]). Moreover, contrary to
rameters of the potentigl3,14. other alternative theories of gravity, scalar-tensor theories

If one admits that it is some minimally coupled scalar respect most of GR’s symmetries — conservation laws, con-
field which plays the role of an effective cosmological con-stancy of(non-gravitational constants, local Lorentz invari-
stant while gravity is described by general relativity, theance(even if a subsystem is influenced by external mgsses
guestion immediately arises: What is the “right” potential — and they also have the capability of satisfying the weak
U(®P) of this scalar field? In a recent work by Starobinsky equivalence principléuniversality of free fall of laboratory-
[15], the following “phenomenological” point of view was size objectseven for a strictly massless scalar field. Never-
adopted: Instead of looking for more or less well-motivatedtheless, they can describe many possible deviations from
models, such as the interesting possibilities discussed abov@R, and their predictions have been thoroughly studied in
it is perhaps more desirable to extract as much informatiowarious situations: solar-system experimenf20-22,
as possible from the observatiofs similar approach can binary-pulsar testf20,21,23, and gravitational-wave detec-
also be adopted to reconstruct the inflaton poteniiabrder  tion [24,25. Finally these scalar-tensor theories could play a
to reconstruct the scalar field potential, if the latter exists atrucial role in the very early universe, for example in the
all. Cosmological observations could then be used to conpre-big-bang inflationary modésee e.g[26]).
strain the particle physics model in which this scalar field is  Thus, in this work we are investigating the possibility to
supposed to originate. In the context of general relativityhave an accelerating universe in the context of scalar-tensor
plus a minimally coupled scalar field, it was shown that thetheories of gravity instead of pure GR. This has indeed at-
reconstruction otJ(®) can be implemented once the quan-tracted a lot of interest recently and such cosmological mod-
tity D, (2z), the luminosity distance as a function of redshift, els have been studied and possibly confronted with observa-
is extracted from the observatiofis,16], something that is tions such as CMB anisotropies or the growth of energy
expected in the near futufeThe SNAP(Supernovae Accel- density perturbationgsee for instancg27—-37). However,
eration Probgsatellite will notably make measurements with we emphasize once more that the central point of view
an accuracy at the percent level upzts 1.7. Of course, in  adopted here, in analogy with Starobingkb], is to con-
this way only the recent past of our universe, up to redshiftstrain the model with theexperimentalknowledge of the
z~1—2 (for reference, we will push some of our simula- Hubble diagram up ta~1—2. This is precisely why use of
tions up toz~5), is probed and so the reconstruction isthe redshiftz as basic variable is crucial for our purpose:
made only for the corresponding part of the potential. Cru-Quantities such akl(z) are directly observable, in contrast
cial information is therefore gained on the microscopic La-to, say? H(t) or H(®). For instance, we have access to
grangian of the theory through relatively “low” redshift cos- H(z) through direct measurement of the luminosity distance
mological observations. as a function of redshiftD, (z). In a recent Lettef38], it

A further step is to generalize the same mechanism in theyas shown that knowledge of bokh(z) and 5,,(z) is suffi-
framework of scalar-tensor theories of gravity, sometimesient to reconstruct the full theokgain, in the range probed
called “generalized” (or also “extended’] quintessence. by the data This means that we doot choose any specific
The usual minimally coupled models are certainly ruled outtheory a priori, but instead we reconstruct whatever theory
if, for example, it turns out that this component of the energypossibly realized in nature.
density obeys an equation of stgieewp with w<—1 (p As we will see, knowledge oH(z) on its own, though
=0). Strangely enough, such an unexpected equation ahsufficient in order to fully reconstruct a scalar-tensor theory
state, which in itself implies new physics, is in fair agree-unless one makes additional assumptions, turns out to be
ment with the observationd18]. Also the inequality already very constraining when subclasses of models are
dH2(z)/dz>3()m0HS(1+z)2 must hold for a minimally considered. This is particularly interesting because it means
coupled scalar fiel@@]; hence its violation would force us to that cosmological observations at low redshifts implying an
consider more complicated theories, possibly scalar-tensaccelerated expansion might well give new constraints on
theories. There are also strong theoretical motivations. Thessalar-tensor theories. We will show that this is indeed the
theories, in which the scalar field participates in the gravitacase.
tional interaction, are the most natural alternatives to general Throughout the paper, we use natural units for which

Actually, it is shown in Ref[17] that the potentiald () can 2The functionH(t) can be obtained from knowledge &f(z)
already be reconstructed from present experimental data, althoughanks to the relatioh=— [dz/[ (1+z)H(z)], but the directly ob-
not yet very accurately. servable quantity i$1(z).
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=c=1, and the signature{+ + +), together with the sign dF dz du
2Z2(®)0b=——R— —(9,P)?+2—

conventions of[39]. In Sec. Il, we introduce the general AT i (2.2b
formalism of scalar-tensor theories of gravity and their dif-
ferent parametrizations. In Sec. lll, we briefly review the _

p y V,.Th=0, (2.29

severe experimental restrictions imposed on these theories
today In Sec. IV, we consider Friedmann-Robertson-Walkerhere the matter energy-momentum tensor is defined by

(FRW) universes in the framework of scalar-tensor gravityT,wE(Z/ —q) 85,159 The scalar-field equatiof2.2b
. . . gra V - .
and we give the equations for the different parametrizations.g, of course be rewritten differently if one uses the trace of

In Sec. V, we review the full reconstruction problem. In Sec.Eq. (2.23 to replace the curvature scaRby its source, and
VI, we give a detailed study of subclasses of models, which, gets the Brans-Dicke-like equation ’

are investigated using the background equations. Finally, in

Sec. VII, our results are summarized and discussed.

1. SCALAR-TENSOR THEORIES OF GRAVITY

We are interested in a universe where gravity is described

by a scalar-tensor theory, and we consider the a¢don

1
167G,

—2U(®) ]+ Sy ¥m: 9.1

S=

Jd4x\/—_g[F(<D)R—Z(<I>)g“V<9MCI>(9V<I>

(2.1

Here, G, denotes the bare gravitational coupling constant

[which differs from the measured one; see E215 below],

R is the scalar curvature d,,, andg its determinant. In
Ref. [38], we used different conventiongorresponding to
the choice 8rG, =1 in the above actionhere, the quantity
F(®) is dimensionless. This factét(P) needs to be posi-

dF _ dw ., dF _duU
ZWDQ)ZSWG*%T—E(&QQ)) _4UE+ZEF'

(2.3

WhereT=T%, and where 2=2ZF+3(dF/d®)? needs to

be positive for the scalar field to carry positive energmy.

the Brans-Dicke representation where=® and Z
=w(P)/P, this factor Zv reduces to the well-known ex-
pression 2»(®)+ 3.] In the following, we will however use
the form(2.2b), which will simplify considerably our calcu-
lations.

The above equations are written in the so-called Jordan
frame (JP. Since in action(2.1) matter is universally
coupled tog,,, , this “Jordan metric” defines the lengths and
times actually measured by laboratory rods and clocks
(which are made of mattgrAll experimental data will thus
have their usual interpretation in this frame. In particular, the

tive for the gravitons to carry positive energy. The action ofobserved Hubble parameter and the measured redshifts

matterS,, is a functional of some matter fields, and of the
metricg,,,, but it does not involve the scalar fie. This

of distant objects are Jordan-frame quantities.
However, it is usually much clearer to analyze the equa-

ensures that the weak equivalence principle is exactly satisions and the mathematical consistency of the solutions in the

fied.

The dynamics of the real scalar fiedel dependsa priori
on three functionsF(®), Z(®), and the potential (P).
However, one can always simpli(®) by a redefinition of
the scalar field, so thd(®) and Z(d) can be reduced to

so-called Einstein fram¢EF), defined by diagonalizing the
kinetic terms of the graviton and the scalar field. This is
achieved thanks to a conformal transformation of the metric
and a redefinition of the scalar field. Let us ogf], and ¢

the new variables, and define

only one unknown function. Two natural parametrizations

are used in the literaturdi) the Brans-Dicke one, corre-
sponding toF(®)=® and Z(P)=w(P)/P, and (ii) the
simple choiceZ(®)=1 and F(®) arbitrary. This second
parametrization is however sometimes patholog|@die de-

rivatives of @ can become imaginary in perfectly regular

situations; see the discussion about Eg63 below,] In the

following, we will write the field equations in terms of the

two functionsF(®) andZ(®), so that any particular choice
can be recovered easily.
The variation of actior(2.1) gives, straightforwardly,

1
F(@)(Rw— EQ,WR)
=8mG,T,,
1 2
+Z(®)| 9,P9,P— ng(&ofb)

+V,0,F(®)

09, R (®)—g,,U(P), (2.23

9;,,=F(®)g,,, (2.4a
de\? 3({dInF(®)\? Z(d)
(E) =Z< o ) T oF@) (.49
Alp)=F (@), (2.49
2V(p)=U(DP)F (D). (2.40

Action (2.1) then takes the form

S=

1 fd“ RE 1, y
4’7TG* XN~ 0x T_Eg* (9MQD(9VQD— (QD)

+ Sal Ui AX()G], ], 2.5
whereg, is the determinant of7,,, g;" its inverse, andR*

its scalar curvature. Note that the first term looks like the
action of general relativity, but that matter is now explicitly
coupled to the scalar fielgp through the conformal factor
A?(¢). Quantities referring to the Einstein frame will always
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have an asteriskeither in superscript or in subscripte.g.  sidered as a viable one. On the other hand, if there exists a
V* and O* for the covariant derivative and the naked singular hypersurfadas this is generically the case
d’Alembertian with respect to the Einstein metric. The indi- whenF(®) vanishe$ one must discard the solution as un-
ces of Einstein-frame tensors will also be lowered and raise@hysical. It should be noted that when the transformation
with the Einstein metrig* , and its inverseg’”. The field (2.4 happens to be singular, the opposite situation may oc-

equations deriving from actiof2.5) take the simple form  cur: an apparent singularity in the JF, whereas the EF formu-
lation is regular. In such a case, one must trust again the EF

R,*w_ 1R* gzvzgwe*TfLﬁ 2%@&#_921/ result, since the field degrees of freedom behave in a consis-
tent way. The JF singularity is then just an artifact of the
X(95P0,0050)—2V(@)gY,, parametrization chosen to write acti¢h1), and it does not

(2.6 have any physical significance. In the following, we will see
' that the JF is better suited than the EF for our cosmological

O* o= —47G, a(¢)T, +dV(¢)/de, study, but we will always check the consistency of our re-
(2.6b) sults by finally translating them in terms of Einstein-frame
quantities.
ViTh ,=a(e)T, 0,0, (2.60

IIl. KNOWN EXPERIMENTAL CONSTRAINTS
where

The predictions of general relativity in weak-field condi-

dinA 2.7 tions, and at present, are confirmed by solar-system experi-

de ' ments at the 0.04% level41,42. One should therefore
. ) ] verify that the scalar-tensor models we are considering are
is the coupling strength of the scalar field to matter sourcepresently close enough to Einstein’s theory.
[21], and T, =g}, T," is the trace of the matter energy- |f the scalar field is very massivsay, ifd2V/d? is large
momentum tensof{"=(2/y—g,) &Sy,/dg;;, in Einstein-  with respect to the inverse of the astronomical yrits in-
frame units. From its definition, one can deduce the relatiofluence is exponentially small in solar-system experiments,
T:‘LV:AZ( ®)T,, with its Jordan-frame counterpart. even if it is strongly coupled to matter. This situation corre-

Let us underline that the Cauchy problem is well posed insponds to the particular scalar-tensor model considered in

the Einstein framé¢21], because all the second-order deriva-Ref. [43] [namelyF(®)=® andZ($)=0 in action(2.1),
tives of the fields are separated in the left-hand sides of Eqéut assuming a large enough value @StJ/d®?]. Although
(2.6), whereas they are mixed in the JF equati@h®). Ac- this situation is phenomenologically acceptable, it remains
tion (2.5) also shows that the helicity-2 degree of freedom issomewhat problematic from a field theoretical viewpoint,
described by the fluctuations of the Einstein metg% since the massive scalar would priori desintegrate into
(whose kinetic term is the standard Einstein-Hilbert Jpne lighter (mattey particles.(See however Ref43], where a
and that the EF scalap is the true helicity-0 degree of range of scalar masses is shown to give negligible effects in
freedom of the theorysince its kinetic term has the standard the solar system although they remain much smaller than the
form). On the other hand, the fluctuations of the Jordan metelectron mass.
ric g,,, actually describe anixingof helicity-2 and helicity-0 On the contrary, if the scalar mass is small with respect to
excitations, and the JF scaldr is related to the helicity-0 the inverse solar-system distances, it must be presently very
degree of freedom via the complicated relati@¥4b), be-  weakly coupled to matter for the theory to be consistent with
cause its kinetic term in actiof2.1) comes not only from the experimental data. At the first post-Newtonian ordercf1/
naive contributionZ(®) (aﬂq))Z but also from the cross Wwith respect to the Newtonian interactjprthe deviations
term F(®) R. In conclusion, the mathematical consistencyfrom general relativity can be parametrized by two real num-
of the theory should be analyzed in the Einstein frame, s®ers, which Eddingtof44] denoted asg—1) and (y—1).
that one can be sure that the Cauchy problem is well poselh the present framework, they take the fofg©—22
and that there are no discontinuities in the degrees of free-
dom, no adynamical field or any negative-energy mode. One a? (dF/dd)?
should thus be able to write the action in the EF as in Eq. y=1= _21+a2 = ZF+2(dF/d®)?’ (3.13
(2.5), notably with its negative sign for the scalar-field ki-
netic term, so thap carry positive energy. If it happens that
the transformation(2.4) is singular for particular values of B—1=
@, then Jordan-frame solutions may sometimes look regular
while they are actually singular in the EF, i.e., from a field-
theoretical viewpoinfa typical example is provided when =
F(®) vanishe$ Such singularities would correspond to a
region of spacetime where the degrees of freedom cannot be
defined consistently, i.e., where the theory is actually nowhere the first expressions are given in terms of the Einstein-
predictive. If the singularities are pointlike or linelike and frame notation(2.5—(2.7), whereas the last ones correspond
hidden behind an event horizon, the theory may still be conto the Jordan-frame general representatibty). To simplify,

a(e)=

1 a? da

2
1 F(dF/d®)  dy
4

2ZF+3(dF/dD)2 4’ (3.1
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the second expression of E8.1b has been written in terms under reasonable cosmological assumptions, one can derive

of the derivative of Eq(3.139 with respect tob. G~ Gy With ~10% accuracy up to redshifis-1.
Using the upper bounds ony(1) from solar-system
measurementgtl], we thus get the constraint IV. SCALAR-TENSOR COSMOLOGY
zag%(zp)al (d F/d(p)(2)<4>< 1074, (3.2 The equations derived in this section generalize those of

our previous papef38] in several ways. First, we use the
where an index 0 means the present value of the corresponthost general representati@ 1) of the theory, instead of the
ing quantity. On the other hand, the experimental bounds osimpler choiceZ=1 that was made ifi38]. Second, we take
(B—1) cannot be used to constrain the derivatideAd¢), into account a possible spatial curvature of the universe,
appearing in Eq(3.1b), since it is multiplied by a factoag which will be an interesting possibility in our studies of Sec.
consistent with 0. Because of nonperturbative strong-field/I below. Third, we write the equations for an arbitrary pres-
effects, binary-pulsar tests are however directly sensitive téure of the perfect fluid describing matter in the universe.
this derivative, i.e., to the ratie 4(8—1)/(y—1). Ina ge- This will not be useful for our reconstruction program of the
neric class of scalar-tensor models, R¢®3,25 have ob- following sections, as matter can be assumed to be simply
tained the bound dustlike for the redshifte<5 that we will consider, but
these general equations may be interesting for further cosmo-
(dal/dg)y>—4.5. (3.3 logical studies of earlier epochs of the universe. Finally, we
comment on the Einstein-frame version of these equations,
From action(2.1), one can naively define Newton’s gravi- which are mathematically simpler, but actually more difficult
tational constant as the inverse factor of the curvature scalap use for our purpose.
R:
GNEG*AzzG* IE (3.9 A. Background
We consider a FRW universe whose background metric in
However,Gy, does not have the same physical meaning aghe Jordan frame is given by
Newton’s gravitational constant in GR. Indeed, the actual

— _ At2 2 2
Newtonian force measurdih Cavendish-type experiments ds’=—dt*+a’(t)dI?, (4.13
between two close test masses and m, is of the form )
GemMm, /12, where the effective gravitational constant di2= +r2(d@?+sirte de?)

reads[20—27 1— kr?
(4.1b
o ,. G, [2ZF+4(dF/d®)? .
Gei=G, A (1+a )=? 2ZF+3(dF/dD)2)” where k=—1, 0, or 1 for spatially open, flat, or closed
(3.5 universes respectively. The scalar fidldor ¢, in the EF is
also assumed to depend only on time. Since the relation be-

The contributionG, A2 is due to the exchange of a graviton tween the EF and JF is given los?=A?(¢)ds’ [see Egs.
between the two bodies, where@g A%a?=G, (dA/dg)? (2.4)], our universe is still of the FRW type in the EF, with
comes from the exchange of a scalar particle between therdlsz = — dtZ +aZ (t,)dI? and

Of course, when the distance between the bodies becomes

larger than the inverse mass of the scalar field, its influence dt=A(e)dt,, a=A(¢)a, . (4.2
becomes negligible and one geB.~Gy. Note that as

usual, the last expression in ER.5), in terms of Jordan- In the following, matter will be described by a perfect fluid,
frame notation, is much more complicated than its Einsteinand we will write its energy-momentum tensor as

frame counterpart. In the particular Brans-Dicke representa-

tion, F=® and Z=w(®)/®, it however reduces to the Tu=(p+P)ULU,+pg,, =A% T),
simpler (and well-known form Gg=G,® (2 -
AT " =Gy @720 =A H(p HpIULUT RG] (43

The experimental boun(8.2) shows that the present val- whereu®=dx#/|ds| andu’=dx*/|ds, | are the spacetime

ues of G and Gy differ by less than 0.02%. However, they i . . .

A S ; components of the four-dimensional unit velocity of matter,
cana priori differ significantly in the past. It should be noted in JE and EE units respectively. As we are interested in a
that the experimental limit on the time variation of the gravi- P y:

tational constant,G./Geg| <6x 10~ 12 yr~! [42], doesnot FRW background, the spatial componenis and uf (i
oeff! Deff y ' =1,2,3) all vanish. From Eg4.3), we deduce the relation

imply any constraint on /A= —F/F. Indeed,Ger can be  petween the matter density and pressure in both frames:
almost constant even iA (or F) varies significantly. A

simple example is provided by Barker's theof5], in ps =A% p, p,=A%p. (4.4
which A(¢@)=cosg: One gets Ggs= G, (COSp+Sirfe)

=G, , which is strictly constant independently of the time  The background equations in the JF follow from Egs.
variations of A(¢(t)). Nevertheless, as pointed out[i88], (2.29—(2.20, and read
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K 1 . . It is also similar to the usual Klein-Gordon equation, with the
3F( H?+ a7) =87G,p+ §Z®2—3HF+U, (453  notable difference of a source term on the right-hand side,
with the coupling strengtla(¢) defined in Eq(2.7) above.
It is tempting to tackle our problem in the EF as the equa-
_2|:( H— ﬁz) =8mG, (p+ p)+Zd2+F —HF, tions are simpler and we can rely on experience gained in
a general relativity. However, a crucial difficulty that we en-
(4.5 counter is that all physical quantities which appear in the EF
background equations are not those that come from observa-

- . dF [ . , K dz &2 tions. Moreover, the behavior of matter in the EF is compli-
Z(P+3HD) =35 | H+2H + | — 95 —- cated by the relationgt.4): Instead of the simple power law
pxa 2 for dustlike matter in the JF, one gets. =A%
_dau 450 «Aa,? in the EF, whereA(¢(a,)) can havea priori any
do’ ' shape. To avoid these problems, we will thus work in the JF,

and show that the “reconstruction” program can equally

: _ well be implemented, like in general relativity, although it is
+3H(p+p)= 4, ! . )

p+3H(p+p)=0, (4.59 mathematically very different. We will nevertheless check at

whereH=d(In a)/dt, and an overdot denotes differentiation f[he end the consistency of the solutions obtained by translat-

with respect to the Jordan-frame timeAs usual, if p/p ing them in terms of EF quantities.
=w=const, Eq. (4.50 is ftrivially integrated as p

xa 3(*W) (and in particularpca™2 for dustlike matter. B. Perturbations
Equation(4.5¢ is actually a consequence of the other three, We now consider the perturbations in the longitudinal
and we will not need it in the following. gauge. For this problem, we will restrict our discussion to the

Since these equations correspond to the most general paase of a spatially flat FRW universe£0), and write the
rametrization(2.1) of scalar-tensor theories, many particular JF and EF metrics as
cases are easily recovered. For instance, the case of a mini-

mally coupled scalar fielfl15] is obtained for constant val- ds’=—(1+2¢)dt*+a*(1—2¢)dx?, (4.89
ues ofF andZ (say,F=1 andZ=8%G, ), and the particular . 5
model considered if43] is recovered immediately foF ds; = —(1+2¢,)dt?+aZ (1— 24, )dx2.
=® andZ=0. (4.8b

The corresponding background equations in the EF ar

very similar to those in general relativity. They follow from n the EF, the perturbation equations deriving from Eq.

(2.6a are strictly the same as in general relativity plus a
Eq. (263, and read minimally coupled scalar field. One thus finds notalgly
2 =4, . On the other hand, the equations for scalar-field and
3[ H2 + _K2_ =8wG, p, + bl +2V(¢), (4.6  matter perturbations are modified by the matter-scalar cou-
a, dt, pling, proportional toa(¢) in Egs.(2.6b and(2.60.

For our purpose, it will be more useful to write the per-

3 d?%a, de\? turbation equations in théphysica) JF. Let us define the
T &, do =47G, (py +3p,)+2 dt, gauge invariant quanti
*
—2V(g), (4.6b _ %
o= 3, (4.9

where H, =d(Ina,)/dt, is the Einstein-frame Hubble pa-

rameter. It is obvious from Ed4.6b) that a vanishing poten- Whereuv is the matter peculiar velocity potentigguch that
tial V() implies d%a, /dti<0, so that the universe is de- du,= —d,v is the perturbation of the four-dimensional unit
celerating in the Einstein frame. However, because of th&elocity u,). We now work in Fourier space, and assume a
relation a=A(¢)a, [see Eq.(4.2)], the observed(Jordan- ~ spatial dependence exb(x), with k=|k|. The conservation
frame expansion raté may be positive even in this case, €duations of mattef2.29 give

and we will see concrete examples in Sec. VI A below. This 5

is an important point to remember: Although we are looking S K —d(¢+ Hv) (4.10a9

for cosmological FRW backgrounds whose expansion is ac- 2 dt

celerating, the sign ofi*a, /dti is a priori not fixed.
The scalar-field equation of motion in the EF follows P

from Eq. (2.6b), and reads p=v+ ;(ZHU —6m). (4.100
d? d dVvi
& o, 92 MO 6, a(e)(pe ~ 30, ). - o _
dt; dt, de 3Note that our definition differs from the quantiéy, introduced in

(4.7 [46]: €= (1+p/p) Sy .
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On the other hand, the Einstein equati¢gda give

= ¢+ SFIF, (4.113
2F(y+Hep)+F ¢

—87G, (p+p)v+2Zd 6®

+8F—H oF, (4.11bH

. k? : .
—3F¢— Z?F—ZCD2+3HF)¢

=8mG,(ptpP)omt+

2 —2
k——6H2—3F— SF
a’ =

+8U+ZD 6D +3HZD 5D

1 . E .
+—52<1>2+3E5F.

5 (4.119

Note that¢+# ¢ in the JF, in contrast to the corresponding

problem in general relativity or in the EF. Equatigh113 is

actually an obvious consequence of the relation betvg%gn

andg,,, Eg.(2.49, and of the fact thatp, = 4, . Finally,

PHYSICAL REVIEW D63 063504

ence arises when one deals with scalar-tensor theories: We
have to reconstruct two unknown functions instead of one;
hence we need to extract two quantities functions of the
redshiftz=agy/a— 1) from the observations. Actually, in the
minimally coupled case, knowledge of the luminosity dis-
tanceD, and of the clustering of mattef,,, both as func-
tions of z, provides two independent ways to reconstruct the
scalar field potential15].% In our case, both quantities are
necessary and the reconstruction itself is significantly more
complicated.

The present section generalizes our previous results of
Ref. [38], not only by considering the most general param-
etrization (2.1) of scalar-tensor theories and by taking into
account the possible spatial curvature of the universe, but
also by discussing particular cases that were excluded in this
reference. From now on, we will restrict our discussion to
the case of a pressureless perfect flipe=0=p, ), because
all matter in the universe will be assumed to be simply dus-
tlike, of course besides that part needed to account for the
present accelerated expansi@re., the scalar field in the
present framewonk

A. Background

The first step of the reconstruction program is the same as
in general relativity, since it is purely kinematical and does

Eq. (2.2b yields the equation for the dilaton fluctuations ot depend on the field content of the theory: If the luminos-

ob:

2

3H+ T2 6 ) st | <, 3 2mz o [ L 9F
B e PO R b

d /[1dU
T a0\ Z dd

5P +

dlnzZ @2
T4 2

k2 . . . |11 dF
;(¢—21//)—3(¢+4H¢+H¢) 74

. 4du

(4.12
In the particular representatiadf= 1 used in Ref[38], this
equation reduces to the simpler form

k2 d’F d?U

5 +3H 5D+ 32~ 3(H+2H?) ot W}a@

[K? Lo ]d
=| J2(6—20)—3(J+aHUTHS) | 45

. du
+(3y+ qb)fb—quﬁ. (4.13

V. RECONSTRUCTION PROBLEM

The reconstruction of the potentibl(®) was shown in

ity distanceD, is experimentally determined as a function of
the redshiftz, one can deduce the quantity(z) from the
relation

!

H(z)

1 (DL(Z) 5

21-12
1+z }

0 14z

where the prime denotes the derivative with respeet the
large square brackets contain a corrective factor involving
the present energy contributiof}, ;= — x/(a3H3) of the
spatial curvature of the universe. It was not written explicitly
in Refs.[6,15], which focused their discussions on the flat-
space case(l,,=0), but it is a straightforward conse-
guence of Eqs(23)—(25) of Ref.[6]. Since present experi-
mental data suggest thdf), o is small, the flat-space
expression for H(z)=[D (2)/(1+2z)]’ is a priori a good
approximation anyway. Note that even if one uses the exact
equation(5.1), it reduces to the flat-space expression Zor
=0 [becausd®, (0)=0], and therefordi is always known
without any ambiguity. To determinéi(z) precisely at
higherz, one then needs to know bolh (z) and(}, q.

By eliminating Z®? from the background equations
(4.59 and(4.5b), we then obtain the equation

“More precisely, to reconstruct the potentia(d) without any
ambiguity in the minimally coupled case, one needs to know both
D (z) and the present energy density of dustlike mafigf,, or

[15] to be possible in the framework of general relativity poth 5,,(z) and the present value of the Hubble constdgt In our

plus a minimally coupled scalar field, the field or quintes-

sence, provided the Hubble diagrdiand thus alsdH(z)]

general scalar-tensor case, we need to know the two functions
D (2) and 5,(2), but no independent measurement(hyf, o or Hg

can be extracted from the observations. An essential differis necessary.
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a parametric way. However, to fully determine the theory,
F=8mG,p+2U, (52  one also needs to know(®)=®dZ(®P) or, equivalently, an

equation giving the dependence df. On the other hand, in
which, when rewritten in terms of the redshift gives the the simpler representatioi=1 and F(®) unknown, we
fundamental equation need an equation giving trEdependence ob to reconstruct
F(®) andU(P) parametrically. These two cases, as well as

. . . 2K
F+5HF+2(H+3H2+a7

4 any other possible parametrization of the theory, are solved
Fia|(InH)" = - |F thanks to Eq(4.5b above, which reads in terms of the red-
shift,
=% - (H°>ZQ F 2
2 x,0 12_ _&n_ ’ = ’
(1+2)2 1+z H Z ®'?=—F"—|(InH) +1+Z}F
Ho\? (INH)"  [Hy)?
_(1+Z)2H2+3(1+Z)( H ) Fonyo. (53) 2 157 _(W) QK,O}F

As before, an index 0 means the present value of the corre- Ho|?
sponding quantity, and we use again the notation —3(1+2) W) Follmo 54
=df/dz In this equatlonﬂm0—87TG*p0/(3F0H0) stands
for the present energy den5|ty of dustlike matter relative tdr, equivalently,
the critical denS|tyscr,t—3H0/87-rGN10 To simplify, this 3F 3F Ho |2
critical density is defined in terms of the present value of Z7 @pr2=_ " 3,:( ) o)
Newton’s gravitational constan3.4), Gy o=G, /Fo, in- 2 1+z (1+Z)2 H w0
stead of the effective gravitational constat5 actually U Ho\ 2
measured in Cavendish-type experiments. Indeed, solar- ———— 3(1+z)( ) FoQmo-
system experiments tell us that their present values differ by (1+2)°H ’
less than 0.02%, as discussed in Sec.(Mote in passing (5.5
that by changing the value @, , one can always sdf
=1 without loss of generality. In the Z=1 representationd (z) — P, is thus obtained by a

In conclusion, we are left with a non-homogeneous secsimple integration. In the Brans-Dicke representation, on the
ond order differential equation for the functiéi(z), a situ-  other handw(z) is given by analgebraicequation in terms
ation very different from that prevailing in general relativity. of H(z), F(z)=®(z), and their derivatives.

However, the right-hand side also depends on the unknown It is rather obvious but anyway important to note that if
potentialU(z), so that this equation does not suffice to fully the microscopic Lagrangiaf2.1) can be reconstructed in the
reconstruct the microscopic Lagrangian of the theory. As welF, it can also be directly obtained in the EF, E|5). This

will show in Sec. VI below, it can nevertheless be used for aallows us to check the mathematical consistency of the
systematic study of several scalar-tensor models, providetheory and, notably, if the helicity-0O degree of freed@m
one of the two unknown functions is giveénr a functional always carries positive energy. One can also verify that the
dependence between them is assumeklis can be useful as function A(¢) defining the coupling of matter to the scalar
we do not expect a simultaneous release of data yieldin§jeld is well defined and, notably, single valued. Finally, the
H(z) andés,(z). We will see that such a study already yields second derivative of the potent(¢) also gives us the sign
powerful constraints on the family of theories which are vi- of the square of the scalar mass, and negative values would
able. strongly indicate an instability of the model. These important

On the other hand, ib,,(z) is also experimentally deter- features cannot easily be checked in the JF, because the sign
mined, and if we assume a spatially flat FRW universeof Z(®) in Eq.(2.1) is not directly related to the positivity of
(Q,=0), we will see in the next subsecti¢gBec. VB that the scalar-field energfsee below, and also because the sec-
the value ofQ),, as well as the functiorfr(z) can be ob- ond derivative olU(®) does not give the precise value of its
tained independently ofJ(z). Equation (5.3) then gives squared mas$As shown by Eq(2.4d), the helicity-0 degree
U(2) in an algebraic way from our knowledge oH(z),  of freedom¢e may have a massl?V(¢)/dg?+0, even if
F(z) and Q. U(®) is strictly constant, provide&(®) varies]

Let us now assume that boE(z) andU(z) are known, Let us thus assume théi(z), (o andQ . o are known,
either because one of them was given from theoretical natuand thatF(z) andU(z) were reconstructed as above. Equa-
ralness assumptions or becau$gz) has been experimen- tion (2.49 then givesA(z)=F Y%(z), i.e., the Einstein-
tally determined with sufficient accuracy. We will also as- frame coupling factoA as a function of theJordan-frame
sume that bothQ.,, and Q,, are known. It is then redshiftz(which is the redshift we obserxeCombining now
straightforward to reconstruct the various functionsboén-  Eq. (2.4b with Eq. (5.4), we get
tering the microscopic Lagrangig@.l). In the Brans-Dicke ) o '
representation, one has=®; therefore the knowledge of (d_<P) _ E(F_) e
F(z) andU(z) suffices to reconstruct the potentld(®d) in dz F 2F

=12 (5.6a
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3/F'\? F" [1 F' (InH)’ k?/a?>max H? A 2|d2V/de?|). (5.9
=—|—| —z=—|z(InH)' + ——| =+
4\ F 2F |2 1+z| F 1+z . .
Two different reasonings can now be used to reach the same
Ho\? 3 Ho\2F, conclusions. The first one, explained in R&8], consists in
] Qo 31D F Qmo (5.6D  taking the formal limitk—o in the various perturbation
equations. Then, the leading terms are either those contain-
or also, not e|iminaﬂng the potentihj’ |ng 5m or those multlplled by the Iarge faCt(kIZ/az. One
also needs to consider only the growing adiabatic mode of
de\? 3(F'\? 3F .3 4 Ho ZQ Eq. (4.12), for which |s®|<k?a™?| 6®|.
dz] " a\F (1+2)F ' (1+2)2 H | “Fko The other reasoning needs a simpleut a priori stron-
5 gen hypothesis. One assumes that the logarithmic time de-
_ U2 ,—3(1+2) ﬂ) EQ 0. (5.7) rivative of any quantity, say, is at most of ordeH: |f|
(1+2)°FH H/ F~™ <|Hf|. Physically, this means that the expansion of the uni-

i i verse is driving the time evolution of every physical quan-
The EF scalare is thus also known as a function of the tity. Then the hypothesik?/a?>H2 suffices to derive

Jordan—frameredshiftz.(up toan additive constarty which straightforwardly all the following approximations.
can be chosen to vanish without loss of generglind one Note that both reasonings correspond in fact to the same
can reconstrucA(¢) in a parametric way. Similarly, the EF physical situation of a weakly coupled light scalar field. In
potential V(¢), Eq. (2.4d, can be reconstructed from our he case of a strongly coupled but very massive sdalke
knowledge ofF(z), U(z) and ¢(2). the second paragraph of Sec.)|llthe equations cannot be
Sincee describes the actual helicity-0 degree of freedomgpproximated as shown below, and the time evolution of
of the theory, this field must carry only positive energy ex-density fluctuations does not follow the same law. For in-
citations, and §¢/dz)? must be positive. On the other hand, stance, in the particular model considered in R48], one
the tensor and scalar degrees of freedom are mixed in the Jgays finds a strong clustering of the scalar field at small
and the positivity of energy does not imply tfP'? should  scales. Indeed, this model corresponds to the chieab
always be positive. Actually, Eq5.68 shows that it can  andz=0 in action(2.1), and Eq.(4.12) can then be rewritten
become negative whe(In F)'2 happens to be larger than as  (d2U/dd2) 6D =(k¥a?)(d—2¢) — 3(ih+4H Y+ Hp)

12 H . . .
¢, Which can occur in perfectly regular situatiorigve —2¢(dU/dd). Therefore, even if the scalar field is very
massive (°U/d®? large, one finds that it is anyway

will see an explicit example in Sec. VIA belowThis un-
derlines that the parametrizati@s=1 can sometimes be sin- strongly clustered for comoving wavelengtagk shorter
than the inverse mass, i.e., in the formal lirkit>c. Al-

gular: The derivatives of may become purely imaginary

although the scalar degree Of. freedgnis well o!efm_ed. On though this isa priori not forbidden by observations of
the otherrzhand, Fhe Brans-D|ck§_ representatlon.lls.well b‘z‘lg'.]ravitational clustering, since the inverse mass must be much
haved ( remains alv_vays positiye and th_e p05|t!V|ty of smaller than the astronomical unit in this model, this is any-
the tinergy simply |mpI|fas the We”"i“""g”. mequa!tt;(qb) way an indication of its probable instability. We will not

= 3. Actually, the particular value = —3 is also singular,  ¢qnsiger such heavy scalar fields any longer in this paper,
as it corresponds to an infinite coupling strengtk (2w

and we now come back to the class of weakly coupled light-
+3)~ Y2 petween matter and the helicity-0 degree of free- y coupec 1

: ; = .~ '=="scalar models, which are the most natural alternatives to gen-
dom ¢. The domain for which th&=1 parametrization is eral relativity.

pathological although the theory remains consistent simply SettingB= ¢+ Hv and making use of Eq4.100, one
corresponds to- 3 <w(P®)<0, or|a|>1/y3. can write Eq.(4.109 as ,

i . . k? .. .
B. Perturbations St 2H St — =3B+ 6HB~0, (5.9
Although the perturbations will not be used in Sec. VI a

below, we emphasize that the phenomenological reconstruc- . L - .
tion of the full microscopic Lagrangian can be implementedwhere the right-hand side is negligible with respect to each

without any ambiguity if fluctuations are taken into account.Sep‘r’lr"ﬂe term of the left-hand side because of the above hy-

For completeness, we review now this part of our programPOtheses' Note that EG5.9) just reproduces the standard

We assume that botH(z) and the matter density perturba- evolution equation for matter perturbations. Using Eg.
. ) ; . (4.13, we also arrive at

tion 8,,(z) are experimentally determined with enough accu-

racy, and as in Sec. IV B above, we focus our discussion on dF/d® FdF/d®

the case of a spatially flat FRW univers@ (=0). We also oDP~(p—2¢) ~—¢ s o
assume that matter is dustlikp£0), and the perturbation z ZF+2(dF/do) (5.10
equations of Sec. IV B are thus simplified. In particular, Eq. '

(4.10b reduces to the mere identigy=v. where the second equality is a consequence of£413. In

We consider comoving wavelengths=a/k much shorter the case of GR plus a minimally coupled scalar field, one
(for recent times than the Hubble radiugi~%, and also finds thaté® <k 2¢ in the limit k—, so that the scalar
shorter than the inverse mass of the scalar field: field is not gravitationally clustered at small sca&§]. This
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is in agreement with the observational fact that the dark matand their derivatives. Using now E@5.4) and expression
ter described by th& term should remain unclustered up to (3.5 for G, we get a nonlinear second order differential
comoving scaleR~10h~1(1+2) " Mpc (where we recall equation forF(z), which can be solved for givel, andF
thath— 1= 100H5l kms 1Mpc™1). On the other hand, in [one can always sét,=1 without loss of generality, while
our scalar-tensor framework, E@.10 shows that the scalar Fg is constrained by Eq3.2)]. After we have found-(2),
field is clustered at arbitrarily small scales, but only weaklywe can plug it into Eq(5.3) to determineU(z) in an alge-
because the derivatiielF/d®| is experimentally known to braic way. The final step is explained in the previous subsec-
be small[see the solar-system constrait?) and the limit ~ tion, above Eq(5.4), for the various possible parametriza-
a?<0.1 justified in[38] for redshiftsz<1]. The class of tions of action(2.1): In the Z=1 parametrization®(z)
models we are considering, involving a light scalar field ~ %o IS obtained by a simple integration of E&.4), while
weakly coupled to matter, is thus also in agreement witH? the Brans-Dicke parametrizatiofF(®)=®], «(z) is
observations of gravitational clustering. given algebraically by the same equati@4). This enables

: : . us to reconstrude(®) [or w(P)] andU(P) as functions of
Finally, still under the above hypotheses, E4.119 im &, for that range corresponding to the data.

plies Actually, for sufficiently low redshiftz<1, Eq. (5.14
K2 k2 dF can be simplified without losing too much accuracy. Indeed,
—Z;Fq‘WSTrG*p Omt 22 %ECD. (5.11 as shown in Ref[38], the square of the matter-scalar cou-

pling strengtha, Eq.(2.7), is at most of order 10% for such
redshifts. Moreover, under reasonable assumptions, much
smaller values ofa® are generically predicted in scalar-
tensor theorief27,28. Therefore G+ andGy differ by less
than~10% for redshifte<1, and Eq(5.14) can be used to

k? obtainGey/Gy o~ Gn/Gy 0= Fo/F with the same accuracy.

229~ ~47Gefip Spn.- (5.12  The interest of this simplification is th&(z) is now given

by analgebraicequation. In the Brans-Dicke representation,

Poisson’s equation is thus simply modified by the substituall the steps of the reconstruction program are thus algebraic,
tion of Newton’s constanG by G, the effective gravita- Ed. (5.3 giving U(z) and Eq.(5.4) giving w(z). The only
tional constant between two close test masses. This concliton-algebraic step is the final parametric reconstruction of
sion was also reached if87], but only for Brans-Dicke U(®) andw(®P).
theory with a constant parameter while we have derived it Let us end this section by a few comments on the obser-
for an arbitrary(light) scalar-tensor theory. As discussed in vational accuracy which will be needed for this reconstruc-
Sec. lIl above, expressiof8.5) is valid only if the distance tion program to be implemented. First, E§.14) allows us
between the test masses is negligible with respect to the ifo reconstruc#(z) only if &y, and &;, are both determined
verse scalar mass. The physical reason why this expressiovith enough accuracy. Moreover, the second derivative of
appears in Poisson’s equatith12 is just that we are work- this reconstructeé (z) is needed in E((5.3) to obtainU(z).
ing in the short wavelength limi5.8): The frequency of the Therefore, the actual reconstruction of the potential depends
waves we are considering is so large that the scalar field priori on the fourth derivative 06,,(z), so that extremely

Remembering the definitio3.5 for G.x, and using Eq.
(5.10 above, Eq.(5.11) can be recast into a form which
exhibits its physical content:

behaves as if it were massless. clean data seem to be necessary. However, the situation is
Combining Eq(5.9) with Eqg.(5.12, we now arrive at our better than this naive derivative counting suggests. Indeed,
final evolution equation fob,,: the above estimates far?> show thatF(z) does not vary
- . much on the redshift interval9z<1. Therefore, the first
Smt2H 8= 47Cegtt p Sn~0. (5.13  two terms of Eq(5.3), involving F’ andF", are expected to
) ) be negligible with respect to the third one involvikg A
In terms of the redshifz, this reads noisy experimental determination & (z) and 8//(z) is
(HY)'  H? thus not a serious difficulty for our reconstruction program.
2 ’ .
H 5’m+< ——|6n, On the other hand, clean enough data are still needed to
2 1+z determine~(z) from Eq.(5.14), using§,,(z) and its first two

,Gei(2) derivatives. Before such clean data are available, it will be
0 G Qnodm. (5.19 sufficient to verify that Eq(5.14) is consistent with a slowly

N.O varying F(z). In the next section, we will show that inter-
Provided we can extract from observation both physicafSting theoretical constraints can anyway be obtained with-
quantitiesH (z) and 8,,(z) with sufficient accuracy, the ex- Ut knowing at all the density fluctuatiofi,(z), but using
plicit reconstruction of the microscopic Lagrangian is ob-Only the luminosity distanc®, (z) and consistency argu-
tained in the following way. Starting from Eq5.14 and ments within particular subclasses of scalar-tensor models.
using the fact thatoday Gy o and Gy o differ by less than
0.02%, Eq.(5.14 evaluated at present gives us the cosmo-

> (14 2)H
NE( 2)

VI. CONSTRAINTS FROM AN ACCELERATING

. . UNIVERSE
logical parametef) ,, o with the same accuracy. Then, return-
ing to Eq.(5.14) for arbitraryz, we getGg«(z) = p(z), where In Ref.[17], a fit of presently known supernovae events
p(z) is a known function of the observablé(z), 6,,(z), has been performed to obtain the luminosity distaDgéz)
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up to redshiftsz~1, of course still with large uncertainties. use Eq.(5.1): Our exact expressiof6.1) for H(z) corre-
Although this is not yet sufficient to constrain seriously sponds to some exact expression Eqr(z).
scalar-tensor models, we can expect clean datB diz) in To summarize, we are assuming in this section that future
the near future from additional supernova events and, anyebservations of the luminosity distanbe (z) will provide a
way, earlier than for the density perturbatiodg(z). The  H(z) of the form(6.1) with the numerical value&.2). This
SNAP satellite will in particular observe thousands of superimplies notably that our universe is presently accelerating.
nova events up ta~1.7. In this section, we will concentrate On the other hand, we aneot assuming that the correct
on the theoretical constraints that can be extracted frontheory of gravity is necessarily GR plus a cosmological con-
knowledge oD, (z) alone and, therefore, &1(z) using Eq.  stant. The main question that we will address is therefore the
(5.1). We will thus only use the results of Sec. V A above. following: Would such an “observedH(z) necessarily rule
Since knowledge of this function does not suffice to fully out the existence of a scalar partner to the graviton? If not,
reconstruct the microscopic Lagrangiéhl), we will need  would it be possible to reproduce E.1) within a more
additional assumptions on one of the functions it involvesnatural scalar-tensor theory, in whidd, o could be ex-
eitherF (or Z, depending on the parametrizatjaor the po-  plained by a “generalized quintessence” mechanism?
tentialU. One may also assume a functional relation between We will first analyze in Sec. VI A the simplest subclass of
F andU (for instanceUxFM as in Ref[47)). scalar-tensor theories that we can consider, namely when
To emphasize as clearly as possible what kind of con=0 in action(2.1). Since this isa priori the subclass which
straints can be imposed on scalar-tensor theories, we shaliffers the most from GR plus a cosmological constant, this
consider the worst situation for them. Let us assume that thstudy will be rather detailed, and it will allow us to underline
observed functiorH(z) will be exactly given by Eq(4.59  the mathematical and physical meaning of the constraints

for k=0, F=®=1, andU=A=3H3Q, ,: that are obtained. Section VIB will be again devoted to the
case of a massless scalar field, but combined with a cosmo-
(H/H)?=Q o+ Qmo(1+2)3. (6.1)  logical constant. As its conclusions basically confirm those

of Sec. VIA, we will present them more concisely. Finally,
Of course, such an observation wouwddpriori call for the ~ we will briefly discuss in Sec. VIC the cases where one
following standard interpretation: Gravity is correctly de- imposes particular forms for the coupling functiénin ac-
scribed by general relativity, and we live in a flat universetion (2.1, and one reconstructs the potentldl from the
filled with dustlike matter and a cosmological constant, withbackground equation$.3),(5.4). The case of a given func-
corresponding present energy densifiedative to the criti-  tional dependence betwe&nandU will also be addressed.
cal density o and (), o. However, for our purpose, Eq.
(6.1) should just be considered as kinematical. It tells us how A. Case of a vanishing scalar-field potential
the universe expands with redshiftbut we are free to as- . . .
sume that the dynamics of the expansion is governed by a Since a cosmological constant can be interpreted as a par-

scalar-tensor theory. Therefo@,, , andQ) , o are here mere ticular case of scalar-field potential, it is instructive to ana-

parameters, whose names refer to their physical significam%éze whether an observeq expansion SUCh. as(&q) could
in the framework of GR. Of course, one should not forget®® reProduced in a theowithoutany potential, and we now

: : . | r'§tudy Eqs.(5.3).—(5.6) for U(®)=O=V(¢). This case can
:gﬁtsct)??%e%?igg thave the same interpretation within scala be analyzed using the second order differential equat®)

For our numerical applications, we will further take the for F, which simplifies significantly if one introduces a func-

present estimates based on combined CMB fluctuations arfipn f such that
supernovae observatioiithey will be determined more ac- F(2)/Fo=(1+2)%f(1+2). 6.3
curately by future experiments 0

(As mentioned in Sec. VA above, one can also Bgt 1
040~0.7, Qpe~0.3. (6.2 without loss of generality. Then, using the assumed “ex-
perimental” expressiori6.1) for H(z) and writing Eq.(5.3
For these numerical values, E@.1) is consistent with the i terms ofx=1+2z=a,/a, we get
presently available luminosity distand2 (z) up to z~1.
Actually the best-fit universe, if we assume flatness, gives 3
Q) 0=0.72 andQ,,,=0.28. We have chosen to work di- (24 o+ Qmox®)x"(x)+ EQm,oX3f'(X)—4QK,on(X)
rectly with the exact form(6.1), instead of theD | (z) ex-
tracted from observation, in order to clarify the physical con- =30mo- (6.4
tent of our results. Indeed, the present observational
estimates forD (z) are still too imprecise to constrain To avoid any confusion, let us recall th@t, , (and the two
strongly the class of scalar-tensor theories we are consideoccurrences of),, on the left-hand sidecomes from the
ing. Moreover, some of our results below depend crucially‘observed” cosmological function(6.1), notwithstanding
on the fact thaH(z) keeps the form(6.1) up to redshiftz  the fact that there iso cosmological constant in the model
~2, which have not yet been reached experimentally. Tave are considering. The valu@, , appearing in the right-
relate our results to those obtained[iti7,48 using fitting  hand side stands for the present relative energy density of
functions or an expansion in powers nfone just needs to dustlike matter. We assume that it takes the same numerical
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value (6.2) as in the “observed"H(z), Eq. (6.1). Equation  vanishes for the first time. Because of the complexity of the

(6.4) tells us how we should choodgx) to mimic exactly  solutionf, we did not find a close analytical expression for

thisH(z) in the present potential-free theory. In other words,zn,,, but its expansion in powers @1, ,/{), o can be ob-

Q)0 and Qo are two numbers assumed to be given bytained straightforwardly:

experiment, and we wish to fft(x) and(}, , to satisfy Eq.

(6.4). 1 9/ 3 7\Qno
To integrate this second-order differential equation, we Zmax:§+ Z(lnz_ @)Q_AO

need two initial conditions fof and its derivative. The first '

one is an obvious consequence of K63 taken atz=0, 3| 5105 21 3 3\? sz'o Qﬁ‘w
and we simply gef(1)=1. The second one should be such +t35l " 1795 g N5t “"5) QT+O e
that the solar-system bourtd.2) is satisfied. For instance, if AD A0
® does not vanish, it isufficientto imposeF;=0, i.e., (6.7

f’(1)=—-2 using Eq.(6.3). This corresponds to a scalar-
tensor theory which has been attracted towards an extremubumerically, for the value$6.2) of ., o andQ,,, we find
of F during the cosmological expansion of the univefse  Zmax=0.66. In conclusion, this scalar-tensor model is able to
[27,28), so that it is presently strictly indistinguishable from mimic general relativity plus a cosmological constant, but
general re|ativity in so|ar_system experimer[fﬁhe full al- only on the small intervat<0.66. If future observations of
lowed domain forf’ (1) will be explored below in a numeri- type la supernovae give a behaviortdfz) of the form(6.1)
cal way] on a larger interval, say up to~1, then the present scalar-
tensor theory will be ruled out. This example of a vanishing
1. Spatially flat universe potential illustrates a conclusion that we will reobtain below
for more general theories: The determination of the form of
H(z) over somdeven rather smalredshift interval is in fact
more constraining than the precise value of the parameters
Qmo. Q4 othemselves. Indeed, E(6.7) clearly shows that
Zmax C2NNot exceed 1 even in the presumably unrealistic case
3 of Qno=Q, 0. [A calculation using the exact expression for
VitiHl JiHoc-1 f(x) Shows thatZyg, would exceed 1 only fofdy o/,
VI+03+1 J1+¢-1 =1.59] Note that all the results obtained are independent of
the parameteH,,.

We consider first our potential-free model in a spatially
flat FRW universe , ,=0). Then Eq.(6.4) becomes a
first-order differential equation fof’, and its integration
yields

Zln

1
Fo0= J1+ox3

—2J1+¢|, (6.5

2. Spatially curved universe

One could try to increaseg,,, by considering a spatially
where we have sef=Q, 0/, o, and where the final con- curved FRW universe. We did not solve E§.4) in the most
stant inside the square brackets has been chosen to impageneral case, but since we wish to compute the corrections to
f'(1)=—-2 (i.e.,, Fy=0). The function f(x)=1 Eq.(6.7) due to a small value df}, o/Q, , it is sufficient
+ [1f’(y)dy can be explicitly written in terms of general- to work at zeroth order i), 0/ . Let us thus sef), o
ized hypergeometric functions, but its complicated expres=0 in Eg.(6.4), which reduces to
sion will not be useful for our purpose. Let us just quote the

first order of its expansion in powers 0¥, o/, o: Q) of"(X) =40, of (x)=0. (6.9
1 Q Its solution is obviously a sine if), ;<0 (i.e., k=+1

_na_ - o 4 m,0 y k,0 ) 1

fx)=3 2X+4(15 16x+x"+12In X)QAO closed universeor a hyperbolic sine fof), >0 (i.e., k=

—1, open universe Taking into account the initial condi-

0?2 tionsf(1)=1 andf’(1)=—2, we thus get
+0 —Q;"’O). (6.6) (1) (1) 9
e H(1+2)= co8262)— “sin2é2) for = 2x0-g
Z)=c0g2£z) — <Si z) for &=-— ,

In conclusion, Eq(6.4) could be integrated analytically, in 3 Qao
the particular case of a spatially flat universe. This means (6.99
that at least in the vicinity ok=0, therea priori exists a 0
potential-free scalar-tensor theory which exactly mimics gen,, _ _ E . 2 x,0
eral relativity plus a cosmological constant. f(1+2)=cosh2£z) gsmr(zgz) for &°=-+ Q4 0>O.

However, the theory is mathematically consistent only if " (6.9b
F(z) remains strictly positive[lf F vanishes, then the cou-
pling function A(¢), Eg. (2.409, between matter and the The first zero off(1+z) is then reached either &,
helicity-O degree of freedonp diverges, and iF becomes = (1/2¢)arctané or at (1/Z) arctanké. In both cases, the
negative, the graviton carries negative enefgyet us thus  expansion in powers of gives Zyp=~3+5 Q. 0/Qao.
compute the value,,, for which F(zy.) or f(1+2zna Working perturbatively, one can also compute the correction
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FIG. 1. Reconstructe&(z) [i.e., Brans-Dicke scalagp(2)] solar-system  pathology of the
and Einstein-frame scalas as functions of the Jordan-frangee., limit parametrization

observed redshift z, for the maximum value ofa,| allowed by 2@)=1

solar-system experiments and for a vanishing potential. The

FIG. 2. Maximum redshifz consistent with the positivity of
helicity-0 degree of freedom diverges atz,,,,~0.68. ximd : ! M posiivity

energy of both the graviton and the scalar field, as a function of the
parametetay|. This figure corresponds to the case of a vanishing
scalar-field potential, and we fit the ex&t{z) predicted by general
relativity plus a cosmological constant (GR\).

to this expression due to the nonzero valuélgf,, and one
finds thatz,,, is given by Eq.(6.7) above plus the following

correction:
02 indistinguishable from the horizontal. This figure also plots
5Zmale n 456In(3/2)—163 0,0 m,0 the Einstein-frame scalap, Eq. (2.4b, which is the actual
6 16 Qrp Qiyo helicity-0 degree of freedom of the theory. Notice that it
diverges atz,,4, SO that the theory loses its consistency be-
0 0%, yond this value of the redshi.
XQA‘O+O Qio (6.10 Curiously, we found that even if no experimental con-

straint like Eq.(3.2) is imposed on|«ag| (i.e., even if we

In conclusion,z,.x can be slightly enlarged if we consider forget that solar-system experiments confirm very well gen-
our potential-free scalar-tensor theory in an open FRW unieral relativity, then the mathematical consistency of the
verse (1, o>0). Numerically, for the value$6.2) of 1, o  theory anyway imposes<3.5. In fact, Eq.(5.3) alone can
andQp, o, we find 6z,,,,=0.260 o/, o. Since the latest be solved for arbitrary large values mfi.e., there exist ini-
experimental data on CMB temperature fluctuations alreadyig| values ofF§ such thatF(z) remains positive for any.
constrain|€2, ¢ to be small(see the latest Boomerang and However, the values d§} needed to integrate E¢5.3) be-
Maxima date3,4]), and actually an open universe is unlikely yong z=3.5 correspond to negative values af= (2w,
while a marginally closed universe is snl[ accep_table, W€ 3)-1 (where w, denotes the present value of the Brans-
thus recover the'same qualltatlvg ponclusmn as |'n'the SP&icke parametdr In other words, the expression of
tially flat case: It is p055|bl_e tp mimic ge_neral relativity plus de/d2)? given by Eq.(5.6) would become negative around
a cosmological constant W|th_|n a potential-free scalar-tensoizo, and the helicity-0 degree of freedom would thus need
theory only on a small redshift interval<0.8. to carry negative energy at least on a finite intervak,of
one wished to integrate Eq&.3)—(5.6) beyondz=3.5.

Figure 2 displays the maximum redsh#,,, consistent
The above conclusions have been confirmed by numericalith the positivity of energy of both the graviton and the
integrations of Eqs(5.3—(5.6), still assuming a Hubble dia- scalar field, but for any value of the present matter-scalar
gram consistent with E¢(6.1). Instead of considering only coupling strengtha,|. As underlined above, one finds that
theories which are presently indistinguishable from generag, . can never be larger than 3.5. This figure also indicates

relativity (F5=0), we imposed arbitrary initial conditions the present solar system bound fpry|, corresponding to

for F', and computed the corresponding value of the presert,,,~0.68 as in Fig. 1. The limiting case of a vanishing
scalar-matter coupling strengthy, Eq.(2.7). Inthe case ofa |ay|, i.e., of a scalar-tensor theory which is presestiyctly
spatially flat FRW universe, we recovered that the solarindistinguishable from GR in the solar system, corresponds
system bound3.2) imposes the limitz,,~0.68, consis- to z,,~0.66, as was derived analytically in E@.7). Fig-
tently with the above analytical estimai{®.7). In other ure 2 also indicates the range of values fag| that are
words, the constraing3.2) is so tight that even taking the generically obtained in Ref27] while studying the cosmo-
largest allowed value fora,| does not change significantly logical evolution of scalar-tensor theories at earlier epochs in
Zmax- Figure 1 displays the reconstructe¢z) for this maxi-  the matter-dominated era: The theory is attracted towards a
mal | a,|, and one can note that its slopezatO is visually —maximum of F [i.e., a minimum of IMA(¢)] so that the

3. Numerical integrations
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FIG. 3. Two versions of the reconstructed coupling function
InA(¢) for |ag|=1, the dashed one looking bi-valued, but the
(single-valuegl solid one giving the same predictét{z). This fig-
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the present epoclzE&0) is close to anaximumof In A, this
would have meant that the theory is unstable, and that we
have extremely fine-tuned it to be consistent with solar-
system constraints. On the contrary, the convex functions
In A(¢) that we obtained show that these scalar-tensor mod-
els are cosmologically stable, i.e., that the tight bou(3d®)
are in fact natural consequences of the attractor mechanism
described i27,29.

We have checked that reducing the param@tgy, allows
us to extend the integration region in the past, consistently
with the above analytical results. For instance, when we vary
Oy o, still satisfying Q,0=1—4, ¢ and settingQ, =0,
we find that(), ;<<0.02 is required in order to integrate the
equations up to a redshit=5. This would correspond to
Qmo/Q, 0>50, i.e., 100 times larger than present estimates.

ure still corresponds to the case of a vanishing scalar-field potential, e also added random noise to our assurH¢d), Eq.

and we fit the exadt (z) predicted by GR-A.

present value ofa| is expected to be extremely small. Fi-
nally, this figure also displays the maximum valug @f| for
which the parametrizatioZ(®)=1 of action (2.1 has a
meaning. Beyondla,|=1/\/3 (i.e., for a Brans-Dicke param-
eter — 2<wy<0), one would geth;><0 in this parametri-
zation. In other words, Eq$5.3),(5.4) cannot be integrated
consistently beyond~1.58 if one setZ(®)=1, whereas

(6.1), and verified that the conclusions are not changed quali-
tatively providedH(z) is known over a wide enough redshift
interval. This means that the experimental determination of
the luminosity distanc®, (z) needs not be very precise to
be quite constraining, provided redshifts of order2 are
probed. As an illustration, let us assume that the cokiéa)

is still given by Egs.(6.1),(6.2), but that its experimental
determination at regular values of the redshift, say
=0,0.1,0.2,0.3,. ., israndomly increased or decreased by
at most 30%. This means that instead of knowing the actual
function H(z), one only knows a few discrete values of it,

the Brans-Dicke or the Einstein-frame representations showultiplied by random numbers between 0.7 and 1.3. Then,

that the theory can be mathematically consistent up to
~3.5 (¢'? remains positive This underlines that th&=1
parametrization may be sometimes pathological.

Our numerical integration of Ed5.6b not only allowed

one may fit a polynomial through these “noisy” values of
H(z), and integrate numerically Eqs5.3)—(5.6) to recon-

struct F. We performed this reconstruction for hundreds of
such “deformed”H(z), and always found that there exists a

us to check the positivity of the scalar field energy, but alsonaximum redshift beyond whicliF is negative (and the
to reconstruct parametrically the matter-scalar coupling functheory thus inconsistentFigure 4 displays the two extreme

tion A(¢). SinceA=F 12 Eq.(2.49, we know thatA(z) is
finite and strictly positive over the intervgd,z,,,, but we

values ofz,,,, that we obtained: It is sometimes even smaller
than for the “exact”H(z) of Egs.(6.1),(6.2), and sometimes

also checked that it is single valued over this interval. Thidarger but never greater than2. The reason for this result is
means that ifp(z) can take several times the same value forour assumption ofandomdeviations from the exa¢i(z). It
different z, they must correspond also to the same value ofhould be noted that a particulaias of it, such that the

A(z). Actually, since Eq.(5.6b does not fix the sign of
de/dz, one should keep in mind that can oscillate around
a constant value,,. If the numerical integration confuses
the two pointse,i,* e, but if A(¢) happens not to be sym-
metrical aroundp,,,, it may look like a bi-valued function.

observed value oH(z)/H, is always larger than the exact
one, increasegm,, Much more. For instance, the function
H(z)/Ho=(1+2)*? corresponding to pure GR without any
cosmological constant, lies within the large error bars we
consideredthis would mean that the observét(z) for z

When such a situation occurred in our programs, we always-0 is always larger by-30% than the exact orné.1),(6.2),

verified that a single-valued\(¢) could be defined consis-
tently by unfolding it around the oscillation points qf.

Figure 3 illustrates such a situation, for an intentionally un-

realistic value of ay| in order to clarify the plots[The value
|ao|=1 is inconsistent with the solar-system bou(&i2),

but that the observed Hubble constéh=H(0) happens to

be smaller by ~30% than the exact oheThis function is
plotted as a dotted line in Fig. 4. In that case, a potential-free
scalar-tensor model witth = const would of course have fit-
ted it perfectly up t@— <. However, if one assumes that the

but it corresponds anyway to a mathematically consistendiscrete observed values Bif(z) randomlydiffer from Eqgs.

theory, although th&=1 parametrization cannot be used in
this case€,
All the functions InA(¢) that we reconstructed have simi-

(6.1),(6.2), i.e., from the bold line of Fig. 4, then it is ex-
tremely unlikely to remain close to the dotted one over a
significant redshift interval. This explains why we never

lar convex parabolic shapes. This is consistent with the refound z.,, larger than~2 for the hundreds of randomly

sults of Refs[27,28, showing that the scalar field is generi-
cally attracted towards a minimum of A{¢) during the

deformedH (z) that we simulated. We are aware that they do
not reproduce a realistic experimental noise. However, they

expansion of the universe. If we had found models such thatlustrate in a well-defined way that an inaccurate determina-
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H/H, tion F at nucleosynthesis tintelf one assumes that(z) is
monotonic, the reconstructed function of Fig. 1 would not be
consistent with this nucleosynthesis bound beyard.3.
This would be even more constraining than the bound
<0.68 we obtained just from mathematical consistency re-
quirements. Alternatively, a reconstructed functiefz) like

the one of Fig. 1 would be consistent with the above nucleo-
synthesis bound only if it were non-monotonic beyond
=0.6. Although this would not be forbidden from a purely
phenomenological point of view, this would be anyway un-
natural and more difficult to justify theoretically.

B. Massless scalar field and an(arbitrary ) nonzero

FIG. 4. Random deformations of thd(z) predicted by GR cosmological constant

+A (with Q, 0=0.7) and corresponding maximum value of the ~ To confirm the results of the previous subsection, let us
redshiftz consistent with the positivity of energy. The dashed linesnow consider the case of a massless scalar field together with
indicate the region in which random points have been chosen & cosmological constant whose vald#éfers from the one
regular intervals o The thin solid lines correspond to two poly- entering our assumeH(z), Egs. (6.1),(6.2). The question
nomial fits of such random points. Note that they can differ fromthat we wish to address is the following: Caart of the
the GR+ A curve even more than the dashed lines. The dotted |in%bserved()/\’0 be due to the presence of a massless scalar
labeled simply “GR” corresponds to a vanishing cosmological fig|d?
constantA. Such abias of the GR+ A curve changeg,, much To impose a cosmological constant in a scalar-tensor
more that thaandom noisewe considered. theory, one would naively choose a constant potehtiab)
in action(2.1). However, as shown by E§2.4d), the corre-
sponding potentiaV/(¢) of the helicity-0 degree of freedom

tion of H(z) over a wide redshift interval is actually more ¢ would not be constant in this cagbecauseF(®P) is a
constraining than a precise measurement over a small regiiori varying], and its second derivative would give generi-
shift interval only. On the other hand, if there are some reacally a nonvanishing scalar mass. To avoid any scalar self-
sons to expect hiasin the experimental measuresbf (z), interaction, and in particular to set its mass to 0, one needs in
thereby ofH(z), then our study shows that it must be sig- fact to imposeV(¢)=const in the Einstein-frame action
nificantly lower than 30% to be able to constrain potential-(2-5- This defines a consistent cosmological “constant” in a
free scalar-tensor theories. massless scalar-tensor theory. Note that the corresponding

The conclusion of the present subsection is therefore thatordan-frame potential (®) is then proportional t&2(®),
a scalar-tensor theory without potential can accommodate @&d therefore that it does not correspond to the usual notion
Hubble diagram consistent with E¢6.1), but only on a  ©f cosmologicalconstantin action(2.1). -
small redshift interval i) , , is significant. The experimen- ~ Since our assumed “observed(z) involves a param-
tal determination of the luminosity distan®,_(z), either ~ eter denotedl, o, Egs.(6.1),(6.2), let us introduce a differ-
accurately forz=<1 or even with largdtens of percentun- ent notation for the contribution due to the constant potential
certainties up to redshifts~2, severely constrains this sub- V.
class of theories. Future observations should thus be able to SFE
distinguish them from general relativity and to confirm or VOE_OZ
rule them out without any ambiguity. © 3Hp

It is worth noting that such future determinations of
D, (z) would a priori be much more constraining than solar- It is easily checked that fo)y =1, o, the solutionA(¢)
system experiments and binary pulsars tests. Indeed, af1[or F(®)=1]is recovered, i.e., a scalar field minimally
though the precision of the latter is quite impresdisee e.g. coupled to gravity with a constant potential acting like a
[20—23), they anyway probe only the first two derivatives of cosmological constant. Indeed, in terms of the funcfitx)
In A(¢), Egs.(3.2),(3.9), whereas cosmological observations defined in Eq(6.3), Eq. (5.3 reads
should give access to the full shape of this function.

Let us also recall that the constraints we found crucially  (Q, g+ QyoX3)XF"(X)+ £ QX3 (X) —4Q, oXF(X)
depend on the fact that the theory should contain only

o o . _ 20y —
positive-energy excitations to be consistent and notably that 6Qy oXFA(X) =30 0. (6.12
the functionF should remain always strictly positive. We did
not use any other cosmological observation, but obviously,
once the microscopic Lagrangian of a scalar-tensor theory5see however Ref[29], in which extremely small values of

has been reconstructed usidg(z), all its other cosmologi- F_, /F,=A2/AZ . are shown to be consistent with the observed
cal predictions should also be checked. For instance, a boungbundances of light elements, providedin A(¢)/de? is large

F .. 0.86F is given in Ref[36] for the value of the func-  enough, where\(¢) is the matter-scalar coupling functigg.4o).

(6.11
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Zinax large redshifts. This ensures that the graviton energy is al-
ways positive. However, it is now the scalar field which

5:. ................................................. needs to carry negative energy. Indeed, 517) gives a
r negative value for'2, basically because of the presence of
4§ the large negative number U in this equation.[In the
3i Z(P)=1 parametrizationd'? is obviously also negative,
; because of Eq(5.69 or directly from Eq.(5.5 which also
of involves a—U term ]

Therefore, there is only one possibility for a consistent
massless scalar-tensor theory to reproduce(&q) over a
wide redshift interval: It must involve a cosmological con-

A S Q stant, whose contributiofy o is equal to(or very slightly
075 05 -025 0 025 05 075 Vo smaller thahthe parametef) , o entering Eq(6.1). In other
Qup words, the theory should be extremely close to GR plus a

. . ) . o cosmological constant, and the massless scalar field must
FIG. 5. Maximum redshiftz consistent with the positivity of paye a negligible contribution. This illustrates again the main
energy, as a function of the value of a constant poteMtigase of  :4nclusion of our paper: The experimental determination of
a massless helicity-0 degree of freedqi the luminosity distanc®, (z) over a wide redshift interval,

o ) o up toz~2, will suffice to rule out(or confirm) the existence
Note that this is now aonlinear equation irf, contrary t0 ¢ 5 massless scalar partner to the graviton.

Eq. (6.4 above for the case of a vanishing potential. If
Qy =040, oOne finds thatf (x)=x"2 is an obvious solu-
tion, i.e.,F(z) =Fy=const. A constant scalar fietll (or ¢)
then satisfies Eqg5.4)—(5.7). In the previous two subsections, the matter-scalar cou-
If we now consider a scalar-tensor theory for whidky,  pling function F(®) [or A(¢)] was reconstructed from the
differs from the “observed”Q , o~0.7, we find that like in assumed knowledge dfi(z), for theories whose potential
the previous subsection there exists a maximum redghift ~U(®) [or V(¢)] had a given form. We now consider the
beyond whichF (z) becomes negative and, therefore, beyondnverse problem. We still assume that future observations
which the theory loses its mathematical consistency. Figure Will provide a Hubble diagram consistent with Egs.
displays this maximum redshift as a function @f, 5. We (6.1),(6_.2), but we wish now to reconstruct the_scalar-field
plot this figure for the initial conditiorF;=0 (i.e., for a  PotentialU for given forms of the coupling functiof.
theory which is presently indistinguishable from GR in the
solar syster) but as before we verified that the curve is
almost identical if one takes the maximum value |6f)| We first consider a generic two-parameter family of
consistent with the solar-system bouf®l2). We also as- scalar-tensor theories, which has already been studied in
sume(, ,=0 (spatially flat universefor this figure, as we great detail for solar-system, binary-pulsar and gravity-wave
know from the previous discussion that a value even as largexperiment§23,25, as well as for cosmology starting with
as|Q, o ~0.2 does not change qualitatively the results. ~ the matter-dominated ef27] and even back to nucleosyn-
For Qy =0, we recover the result,,~0.66 derived thesis[29]. Its definition is simplified if we work in the Ein-
above for a vanishing potential. Whey, (<0, z;, be-  stein framg2.4),(2.5). The matter-scalar coupling function is
comes even smaller. As expected, this is worse than in theimply given by
potential-free case. On the contrary, wh@y , is positive
(i.e., when it contributes positively to part of the “observed” INA(@)=ag(@— @)+ 2 Bo(e— ¢0)?, (6.13
Q4 o), the maximum redshift,,, increases. This is just due
to the fact that our massless scalar field needs to mimic & which the present value of the scalar fielesh, may be
smaller fraction of the “observed(), o, so that the theory chosen to vanish without loss of generality. Any analytical
can remain consistent over a wider redshift interval. How-function InA(¢) may be expanded in such a way, but we here
ever, we find thatz.,,, is still smaller than 1.5 for},, assume thatno higher powergfappears, i.e., that I(¢) is
<0.6, and aH(z) of the form(6.1),(6.2) observed up t@  strictly parabolic: It depends only on the two parametess
~ 2 would thus suffice to rule out the model. If sucltiéz)  andB,. The latter is a simplified notation fodg/d¢),, and
could be confirmed up t®~5, one would needy, should notbe confused with the post-Newtonian paranggter
=0.694 for our massless scalar-tensor theory to fit it. Everslefined in Eq.(3.1b. (Actually, this equation shows that
s0, the theory would anyway become pathological at slightly~1+ 3a38,.) Solar-system experiments impo§e,|<1.4
higher redshifts. In conclusion, a massless scad@notac- X 10 2, Eq.(3.2), while binary pulsars givgs,>—4.5, Eq.
count for a significant part of the observed cosmological con{3.3), for this class of theories. We first study these models
stant ifH(z) is experimentally found to be of the for(6.1)  for the case of a spatially flat univers@ [ ,=0).
over a wide redshift interval. As shown by Eq(4.7), a constant scalar field= ¢, may
Let us note finally that foK)y o>, o, Eq. (6.12 does be a solution ifay=0 [so thata(¢)>(¢— ¢o) vanishes tobp
admit strictly positive solutions foir (or F) up to arbitrarily — and if the potentialV(¢) is also constant. Our assumed

C. Reconstruction of the potentialU from a given F

1. Generic scalar-tensor theories
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FIG. 6. Minimally coupled modeF=1 in a spatially closed FRW universe, respectively ff ,=—102 (left pane} and Q.
=—0.1(right pane). In both cases, the potentid( ¢) is analytically given by Eq(6.14). Note that the reconstructed potential does not have
a “natural” shape if|Q, ¢ is too small: The present value 6,  is not explained by a quintessence mechanism, and the corresponding
scalar-tensor theory is basically equivalent to-SR. On the contrary, ifQ, ¢ is large enough, the potential has a nice smooth shape, and
its present valugat ¢ — ¢o=0 on the figurg basically corresponds to the observed ;.

H(z), Egs.(6.1),(6.2), can thus always be reproduced if the such scalar-tensor models can reproduce Bd) only if

parametery, vanishes identically, and the reconstructed po-they involve a cosmological constant, whose energy contri-

tential merely reduces to the constangHSQA,o. This  bution is close to the parametér, o enteringH(z), and if

corresponds simply to GR plus a cosmological constant, anthe scalar field has a negligible enough influence. In other

the massless scalar degree of freedemremains unexcited, Wwords, such models would not explain the small but nonzero

frozen at an extremum of the parabd&13. Actually, Eq.  value of the observed cosmological constant by a “quintes-

(4.7) shows that this extremum corresponds to a stable situsence” mechanism, and would not be more natural than

ation only if it is a minimum, i.e., if3,=0 in Eq.(6.13.  merely assuming the existence &f

This is consistent with the results of Ref27,28: If the The above results are significantly changed if we take into

theory involves a cosmological constant whose value equalkccount the possible spatial curvature of the universe. In-

the “observed” one in Eqs(6.1),(6.2, a massless scalar deed, smoother potential§ ¢) are obtained for closed uni-

field is cosmologically attracted towards a minimum of theverses (2, ;<0), and the present value of the cosmological

coupling function IMA(¢), and the present value of its slope, constant thus becomes more “natural.”

ag, is expected to be generically very small. To illustrate this feature, let us consider the case of a
On the other hand, if is not assumed to vanish, say if minimally coupled scalar fieldas in[15]), corresponding to

its value is comparable to the solar-system bo(818), then ~ @o=Bo=0 in Eg.(6.13. For an open univers&X, ,>0),

our reconstruction of the potenti(¢) from Egs.(5.3—  we find from Eq.(5.6) that the scalar field would need to

(5.6) leads to serious difficulties. Their nature depends on théarry negative energy to reproduce Ef.1). On the other

magnitude of the curvature paramefy of parabola(6.13.  hand, for a closed universé)( ,<0), one can derive ana-
String-inspired model$49] suggest thai8, may be as Iytically the parametric form of the potenti®l(¢). It can be

large as 10, or even 40. With such large val(esd assum- €expressed in terms of the hypergeometric function

ing non-vanishinga,), our numerical integrations of Egs. 271(@,b;c;x) (solution of the differential equationx(1

(5.3—(5.6) give concave potential¥(¢), unbounded from —X)F'+[c—(a+b+1)x]F —abF=0):

below. This corresponds to unstable theories and thereby to

extremely fine-tuned initial conditions: Changing slightly the V=

derivative of the scalar field¢/dz, at high redshifts would

a priori yield a totally different universe at present. This

result tells us that this kind of models cannot be consistent Q.0

E _ 2|2
5 Q0 QoX® | HE, (6.149

over a wide redshift interval with the exact formld{z) we P=EX N\~ Qo

chose in Eqg.(6.1), unless the parametet, is extremely '

small. Actually, this is just another way to present the results 114 Qpp 3

of Refs.[27,28: Since they predict that, should be almost X2l 305037 W’OX . (614D

vanishing at present, assuming a significant non-zero value

implies that the theory is unnatural. where as before=1+z. If |Q, ¢ is very small, we recover
To obtain convex-shaped potentialq¢) (i.e., stable thatV(¢) exhibits a sudden change of slope, as was obtained

theories while still assuming a non-vanishing,, we typi- above in the flat case. This is illustrated by the left panel of

cally need values of3,|<4. However, the reconstructed Fig. 6. On the contrary, ifQ}, ¢ is large enough, the same

potentials always exhibit sudden changes of their slope. Baanalytical expressior(6.14 gives nice regular potentials,

sically, they reproduce a cosmological constant over a finitsuch as the one displayed in the right panel of Fig. 6. This

interval arounde, (i.e., aroundz=0) and become rapidly reconstructed/(¢) as well as those obtained numerically for

divergent beyond a critical value of the scalar fiedépend- weakly varying InA(¢), Eq. (6.13), are naturali.e., reason-

ing on By). Therefore, as in Sec. VIB above, we find that able in the sense that they can be approximated by the
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exponential of simple polynomials ip. In that case, the

PHYSICAL REVIEW D 63 063504

between the case of a strictly const&rand that of a scaling

observed value of the cosmological constant does not appeaolutionF(z) =(1+z) ~P. At first order inp, and still assum-
as a mere parameter introduced by hand in the Lagrangiaing 2, ,=0, one can write Eq(5.6) as

but corresponds basically to the present value \b6(@,). It
should be noted that a value as large(gs,= —0.1 is not

excluded by the latest Boomerang data, though it would be

problematic in the framework of the inflationary paradigm.
In conclusion, the existence of non-singular solutions ove

a long period of time is again the constraining input. A non-

minimally coupled scalar field is essentially incompatible
with Eq. (6.1) over a wide redshift interval, unless the scalar
field is frozen at a minimum of IA(¢) (consistently with
[27,28). If future experiments provide a Hubble diagram in
accordance with Eq6.1) and also give a very small value
for Q, o, it will be possible to conclude that scalar-tensor
theories(either non-minimally or minimally coupledannot

1 Q. o(1+2)3
2(1+z)2<p'2:p—3p(ln(1+z)—— mol1+2)
2/Q ) o+ Qno(1+2)°
r +0(p?). (6.16

This equation confirms that’>—0 whenp—0, and there-
fore that the scalar field tends towards a constant in this
limit. However, it carries positive energyp(?=0) only if

5 ‘Q’A,O
— =<
6) 300

(1+2)% In(1+2) (6.17)

explain in a natural way the existence of a cosmologicafSince the right-hand side is estimated to&, the maxi-
constant. On the other hand, if the universe is closed anfium value ofz is obtained for In(¥2)~5/6, so that the
|Q,q large enough, a “quintessence” mechanism in alarge numerical factor coming from (1z)* in the left-hand
scalar-tensor theory seems more reasonable than a mere céile is compensated by the small term inside the second

mological constant.

2. Scaling solutions

The above conclusions can be confirmed by starting fro
a givenF(z) [or A(z)], rather thanF(®) [or A(¢)]. We
consider here “scaling solutions”; i.e., we assume that thes
functions behave as some power of the scale faatd@dne
may for instance writeF(z) =(a/ag)?=(1+2z) P, with p

=0. As before, our aim is to reconstruct a regular potentialr

V() from the knowledge oH(z), assumed to be of the
form (6.1),(6.2).

The strongest constraint on this class of theories is im
posed by the solar-system boui@l2). Indeed, using the
definition (2.7) for a(¢), one can also write it ag(¢)=
—F'I(2¢'F), and Eq.(5.6) evaluated az=0 then yields
the following second-order equation fpr

(1— af)p?— (2+3Q o) ajp+4Q, a5=0. (6.15

m

parentheses. Working iteratively, this maximum redshift can
be better approximated by Zmnae~e”®—1
+(Qy0/30m0)e *3~1.45, and the actual numerical reso-
lution of equality (6.17 for the values(6.2) gives zmax
=1.429. Therefore, even f is vanishingly small, a scaling
solutionF(z)=(1+2z) P cannot be consistent with E(.1)

%eyond this maximum redshift. This illustrates once more

that the experimental determination &f(z) up to z~2
would be more constraining that solar-system experiments
or this class of theories, provided one takes into account the
requirement of positive energy. Let us underline that the
above value for,,,, is valid for a monomiaF = (a/ay)P but

not for more complicated polynomial expressions. Indeed, as
shown for instance in Sec. VI B above, there do exist scalar-
tensor theories consistent with E.1) up to arbitrarily
large redshifts, and they do not need tostéctly equivalent

to GR plus a cosmological constafaithough they must be
close enough to jt Moreover, the above maximum redshift
is a consequence of tlexactform for H(z) we chose in Eq.
(6.2). A slightly different function may of course allow a

Note that this equation does not depend on the full form opositive-energy scalar field up to much higher redshifts. It

Eq. (6.1), but only on its first derivative at=0, i.e., on the
deceleration parametgp=(H'/H),— 1. The constraints on
p derived below are thus valid as soonasis of order~
— 3, consistently with the estimated val(@2) for Q.

In the case of a spatially flat universé€l(,=0), Eq.
(6.15 gives immediately p=(2+3Q0)ad/(1—ad)
~3a3, so that the solar-system boufil2) imposesp<6

suffices that the right-hand side of E§.6b) be strictly posi-
tive for F~const, and the case of a closed universe dis-
cussed below provides an example, since the contribution
—Q, o is then positive in Eq(5.6b).

The case of a spatially open univerge, (> 0) is forbid-
den by Eq.(6.195, unless ), is smaller than~ a3
<10 *. Such a situation would be indistinguishable from

X 10~ “. Therefore, the scalar field needs to be almost minithe spatially flat case.

mally coupled. Ifp vanishes identically, we recover as before
the trivial solution of GR plus a cosmological constant, to-

In a spatially closed universé), ;<<0), pis given by the
positive root of the second-order equati15. Remem-

gether with an unexcited minimally coupled scalar field. Onbering the solar-system bour{@.2), one may consider the
the other hand, ip does not vanish, one finds that the scalarcase a3<|Q, o/, and one get®~2|ao|V—Q, o Even if

field needs to carry negative energy beyardl.4. Even
without trying to reconstruct the potenti&l(¢), one can

one considered values 6f, ; as large as-0.1, this would
limit p to ~102. Therefore, in this case again, solar-system

thus conclude that such scaling solutions would be ruled outonstraints impose that the scalar field should be almost

by the observation of &l(z) of the form(6.1) up toz~2.
Paradoxically, this result is valid even for an infinitesimal
(but nonzerp value ofp. Indeed, there exists a discontinuity

minimally coupled, if one looks for such scaling solutions.
The difference with the spatially flat case is that EGs3)—
(5.7 can now be integrated for any redshafifrom future
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infinity, z=—1, to arbitrarily largez). SinceF(z) needs to tance in function of the redshift up -2, corresponding to
be almost constant, we recover soluti@l4) for the poten- H(z) given by Eqs(6.1),(6.2). In particular, our universe is
tial V(¢). As in Sec. VIC1 above, we can thus concludethen presently accelerating and we have studied the viability
that such models would be consistent with E81) over a  of subclasses of scalar-tensor theories of gravity. We have
wide redshift interval only if they aréalmosy minimally  shown that the subclass of models in which the scalar partner
coupled, and they would provide a natural “quintessence”® of the graviton has no potential at all and which satisfy the
mechanism to explain the presently observed cosmologicgresent-day existing constraints are inevitably ruled out if an
constant only if the universe ignarginally closed. expansion of the form of Eq6.1) holds even for a redshift
Let us end this paragraph by a remark concerning scalingnterval as tiny ag<2 (see the precise numbers in Sec).VI
solutions, for which the scalar-field energy density scaledVe see that these theories become pathological in the form
like a power ofa. As mentioned in the Introduction, they of a vanishingF, already at such low redshifts for which
have attracted a lot of attention recently. For a minimallyH(z) will be experimentally accessible in the near future
coupled field, the possible scaling behaviors and the corrg-17]. Hence we show that a cosmological observation of the
sponding potentials can be classifigt3]. As for a non-  background evolution according to E&.1) in the “recent”
minimally coupled field, a subclass of theories was considepoch will be enough to rule out such modé¢fdn the other

ered in[47], for which hand, future observations might provideH¢z) which con-
M firms the existence of a scalar partner to the graviton and rule
U(®)=CF(®)", 6.18 oyt pure GR] The main reason why we obtained so con-

whereC andM are constants. Since besides these two conStraining results is that we took into account the mathemati-

stants there is only one unknown functiondf knowledge cal consistency of the theory, i.e., the fact that it should con-

: . . tain only positive-energy excitations to be well behaved.
of H(z) suffices to reconstruct the full microscopic Lagrang- ., . . : .
) . This requirement severely restricts the class of viable mod-
ian from Eqgs.(5.3—(5.6) above. However, the main conclu- els
sion of Ref.[47] can be recovered from a simple argument, . . . .
. A . . " A non-flat universe can alleviate in some cases the tight
without any numerical integration. Indeed, it was shown in

this reference that there exists a universal behavior of the ceonstramts we found. However, the latest CMB data released

) : . y Boomerang and Maximg3,4] favor a flat universgin
';:h(e q?;Ie,SA’s i%)eagé?feg'rm% ttr?icsjtrgguItthve\zlazri(t:)[[zeinzzailﬁethgf accordance with the inflationary paradigrand only a mar-
strong;] couplir?g limit corres,ponding formally B{®)—0 in ginally closed universe is still allowed by the location of the
action(2.1). Taking into account the assumed relat{6riL8), first acoustic(Dopple) peak atl ~200, while an open uni-

the class of theories under consideration is thus defined byveq.sﬁésm@g{?mu;rlékses%e conclusion is that future cosmologi-

cal observations may prove to be more constraining for

S= 167G f d*x\/—g[F(®)R—2CF(d)M] massless scalar-tensor theories than solar-system and binary-
T pulsar tests. Indeed, even if the determination of the lumi-
+ Sl ¥ 9] (6.19 nosity distancé®, (z) will not reach very quickly the impres-

sive accuracy obtained in the solar system or with binary
If we now introduce a new scalar variable=F(®), we  pulsars, it will nevertheless give access to the full coupling
notice that® disappears totally from the action. No physical function F(®) in action(2.1), or A(¢) in the Einstein-frame
result can thus depend on the precise fornk0P), and we  rewriting Eq.(2.5), whereas only its first two derivatives are
recover the conclusion d#7]. The constan€ may also be presently probed.
set to 1 by a change of length units, and this class of theories
is thus parametrized by the single real numiide Any physi-
cal prediction must therefore depend only ldn ACKNOWLEDGMENTS
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