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New approach to electromagnetic wave tails on a curved spacetime
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We present an alternative method for constructing the exact and approximate solutions of electromagnetic
wave equations whose source terms are arbitrary order multipoles on a curved spacetime. The developed
method is based on the higher-order Green’s functions for wave equations which are defined as distributions
that satisfy wave equations with the corresponding order covariant derivatives of the Dirac delta function as the
source terms. The constructed solution is applied to the study of various geometric effects on the generation
and propagation of electromagnetic wave tails to first order in the Riemann tensor. Generally the received
radiation tail occurs after a time delay which represents geometrical backscattering by the central gravitational
source. It is shown that for an arbitrary weak gravitational field it is valid that the truly nonlocal wave-
propagation correction~the tail term! has a universal form which is independent of multipole structure of the
gravitational source. In a particular case when the electromagnetic radiation pulse is generated by the wave
source during a finite time interval, the structure of the wave tail at the time after the direct pulse has passed
the gravitational source is in the first approximation independent of the higher multipole moments of the source
of gravitation, including the angular momentum. These results are then applied to a compact binary system. It
follows that under certain conditions the tail energy can be a noticeable fraction of the primary pulse energy;
namely, it is shown that for a particular model the energy carried away by the tail can amount to 10% of the
energy of the low-frequency modes of the direct pulse. The present results indicate that the wave tails should
be carefully considered in energy calculations of such systems and that the delay effect of the wave tails may
be of great importance for their observational detection.
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I. INTRODUCTION

The problem of radiation propagation on a curved spa
time has been studied since the birth of general relativ
both as a matter of principle and as a basis of observati
predictions. A field satisfying a hyperbolic differential equ
tion ~wave equation! propagates not only on the character
tic surfaces~light cones!, but also inside the light cone in th
form of wave tails which violate Huygens’ principle@1,2#.
Physically speaking, the wave tails arise because the ra
tion is backscattered by the spacetime curvature. In cer
cases backscattering can influence observations as it wea
and disperses sharp initial pulses. For instance, the ele
magnetic~or gravitational! radiation from a pulsed source i
the vicinity of a massive body reaching an asymptotic o
server is received as two distinct pulses: one arriving al
the direct route and the other, the tail, effectively being sc
tered off by the central body@3–5#.

Recently the wave tails have come to be recognized
factors in the planned observational detection of gravitatio
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waves by forthcoming laser interferometric detectors@6–11#.
It has also been shown that the wave tails play an impor
role in the generation of gravitational waves by the orbi
inspiral of a compact binary system@12–14#. The close re-
lationship between the generation of the wave tails a
gravitational focusing has been demonstrated in Ref.@15#.

The process of wave propagation on a curved space
being quite complicated, usually the wave equation is sol
in the weak-field and slow-motion limit by the method
successive approximations, using multipole expansion in
way or another~see, e.g.,@16–19#!. A general solution of the
electromagnetic wave equation in a curved space was
structed by DeWitt and Brehme@20# in terms of the Green’s
function, using the Hadamard procedure@1#. The general so-
lution demonstrates scattering of the electromagnetic ra
tion by the spacetime curvature. An alternative technique
investigating electromagnetic radiation in the Schwarzsch
and Kerr metrics was worked out following the Regg
Wheeler approach to metric perturbations@21–23#. This
technique relies on an expansion into generalized sphe
harmonics and is especially useful when radiation eman
from a given multipole moment of the source. Herein, fo
point charge an infinite sum emerges. The benefit, howe
is that the obtained solution is also valid for the strong-fie
region.
©2001 The American Physical Society03-1
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We have recently developed a new method@24–26# for
calculating the exact solutions of scalar and tensor w
equations whose source terms are arbitrary-order multip
on a curved spacetime. The method developed is base
the higher-order fundamental solutions~Green’s functions!
for wave equations which are defined in our paper@27# as the
distributions that satisfy wave equations with the correspo
ing order covariant derivatives of the Dirac delta function
the source terms. Provided that the classical Green’s func
and the multipole expansion of the source term are giv
there is no need for a small expansion parameter within
framework of our formalism and in certain cases we c
even find exact multipole solutions for a strong field. O
approach also enables us to find an approximate solu
provided that an approximate form of the classical Gree
function is known, which is the case for most spacetim
Moreover, it proves to be more advantageous to apply
algorithm@25,26#, instead of the traditional approach of su
cessive approximations, because of the following reas
First, the amount of computations involved is considera
reduced and, second, as will be demonstrated below, s
features not revealed by successive approximation meth
are brought forward. It is worthwhile to point out that,
distinct from most papers dedicated to the topic of wave t
in which the source of the gravitational field is regarded a
point mass, within the framework of our approach@24,25#
the extension of the source of gravitation is finite. The l
circumstance enables us to avoid in computations the a
tional nonphysical singularity, the regularizing of which m
bring on difficulties in interpreting the results.

On the basis of our method@25# of higher-order Green’s
functions we have developed a new approach to the elec
magnetic radiation on a curved spacetime. In a recent R
Communication@28# we presented some initial results o
tained within the framework of this approach. Namely, w
considered a pulsed source of electromagnetic radiatio
arbitrary bounded motion in a weak gravitational field a
concluded that generally the received radiation tail arri
after a time delay which represents geometrical backsca
ing by the central gravitational source. This delay effect
the wave tails may be of great importance for their obser
tional detection. Further, by applying this approach to a co
pact astrophysical binary system we demonstrated that u
certain conditions the tail energy can be a noticeable frac
of the direct pulse energy. The underlying formulas involv
are herein published for the first time.

The wider aim of the present paper is to provide a co
prehensive view of our new approach to the electromagn
radiation, more fully describe the already published resu
and expand upon them. Specifically, among the rest we
prove the following.~i! Vanishing of the Ricci curvature
tensor is the necessary and sufficient condition for the va
ity of Huygens’ principle in the first-order approximation, a
is already known.~ii ! If the direct pulse of electromagneti
radiation has passed the gravitational source, then in the
approximation the structure of electromagnetic wave tail
independent of the higher multipole moments of the grav
tional source, including the angular momentum.~iii ! In an
arbitrary weak gravitational field it is valid that in the fir
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approximation the nonlocal radiative electromagnetic
term at infinity acquires a universal form, viz., Eq.~48!,
which is independent of the multipole order.~The limitations
of applicability as well as the relationships of these resu
with the earlier ones will be discussed in due course belo!

Finally, we think that our method deserves to be presen
in detail as it may prove to be useful also for theoretic
investigations of the detection of gravitational waves p
formed within the framework of the Laser Interferomet
Space Antenna~LISA! mission.

The remainder of the paper is organized as follows. S
tion II gives a review of the theory of classical and highe
order Green’s functions~fundamental solutions! for vector
wave equations, as well as the recurrent formulas for ca
lating the Green’s functions proceeding from the Hadam
coefficients. In Sec. III we determine the multipole mome
of the electromagnetic field source term with respect to
given world line, and also present an algorithm for calcul
ing the exact multipole solutions of the wave equations.
Sec. IV the main results are obtained. We consider the
term of the retarded Green’s function expanded to first or
in the gravitational potential, and give the first-order tail te
for the multipole solutions of electromagnetic field~Secs.
IV A, IV B !. In Sec. IV D we turn to the nonlocal radiativ
wave-propagation correction in the far wave zone. We e
mate the magnitude of the electromagnetic radiation ene
and find that, compared to the energy of the direct pulse,
value of the tail energy can be considerable and may t
have astrophysical significance. Limitations to the applica
ity of the derived conclusions are also considered. Sectio
contains brief concluding remarks. The Appendix expla
our notation and displays the relevant definitions.

II. METHOD OF HIGHER-ORDER GREEN’S FUNCTIONS

To investigate the electromagnetic wave tails within t
framework of general relativity, we first consider on
pseudo-Riemannian 4-spaceM a vector wave equation

Lu5f, ~1!

which in local coordinates can be written in the followin
coordinate invariant form~for our notation see the Appen
dix!:

Lucªgab¹a¹buc2Rc
aua5 f c , ~18!

where the contravariant components of the metric tensorgab

are assumed to be of differentiability classC`, andRac are
the covariant components of the Ricci tensor. The inhom
geneous termf of Eq. ~1! is in general a distribution, i.e.,f
PD81(V). In order to be able to complete the constructi
of u, we restrict the solutions to a causal domainV#M ~see
point 5 in the Appendix and Refs.@2#,@29#!.

The notation and basic definitions used in this paper w
be presented in detail in the Appendix. Here we touch
only the spacetime subdomains frequently resorted
3-2
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C1(y) is the future light cone, i.e., the set of all pointsx
PV that can be reached along future-directed null geode
from y; C2(y) is the past light cone, defined similarly b
past-directed geodesics. The setsD6(y) denote the respec
tive interiors of the future and past light conesC6(y),
whereasJ6(y)ªD6(y)øC6(y).

A. Classical „zeroth-order… Green’s function

The classical (i.e., zeroth-order) Green’s function, or fun-
damental solution as mathematicians would say,G(x,y) of
the wave equation~1! satisfies

LG ~x,y!5g~x,y!d~x,y!, ~2!

where d(x,y) is the Dirac delta distribution, with
„d(x,y),f(x)…ªf(y) for all fPC0

`(V) and g(x,y) is a
transport bivector~for its defining equations see the Appe
dix!.

As in the case of flat spacetime, there are two particula
important Green’s functions of the wave equation~1!: the
retarded Green’s functionG1(x,y) and the advanced
Green’s functionG2(x,y). It has been demonstrated th
they have the following form@2,29#:

G6~x,y!5
1

2p
@U~x,y!d6

~0!
„s~x,y!…1V~x,y!U6„s~x,y!…#,

~3!

where the bitensorsUPC`(V3V) andVPC`(V3V) are
the Hadamard coefficients of the classical Green’s functi
~3! of the vector wave equation~1!.

The bitensorU in Eq. ~3! is determined by the following
transport equation and normalization condition:

s ;a~x,y!¹aUb
i ~x,y!1M ~x,y!Ub

i ~x,y!50,

Ua
i ~x,x!5da

i ,
~4!

where

M ~x,y!ª 1
2 ¹a¹as~x,y!24. ~5!

It is well known that the bivectorU can be written as@29,20#

Uªg~x,y!k~x,y!, ~6!

whereg(x,y) andk(x,y) are, respectively, the transport b
vector and scalarized van Vleck determinant, defined in
Appendix.

The bivectorVPC`(V3V) in Eq. ~3!, called the tail
term, is determined by the characteristic Cauchy problem
corresponds to the ‘‘logarithmic term’’ of the Hadamard co
struction and is inherently connected with the concept
validity of Huygens’ principle@1#. In the regionsD6(y) the
vector fieldV satisfies the homogeneous wave equation

LV ~x,y!50, ~7!

which is completed by the characteristic initial conditions
06300
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s ;a~x,y!¹aVb
i ~x,y!1@M ~x,y!12#Vb

i ~x,y!

52 1
2 LUb

i ~x,y!, ~8!

for ;xPC6(y).
Sometimes, instead of solving the differential equatio

~7! and~8! straightforwardly, in order to find the tail termV,
it is preferable to use an exact integral equation. We proc
from the fact that Friedlander has derived the correspond
exact integral equation for the tail term of the Green’s fun
tion of the scalar wave equation@Eq. ~5.4.19! in Ref. @29##,
and suggested a procedure for obtaining the tensor fi
Green’s functions from the scalar Green’s function. Th
generalizing the above-mentioned Friedlander equation,
find for the vector case, whenxPD1(y), that the tail termV
satisfies the following exact integral equation:

Va
i ~x,y!1

1

2p E
S~y!

Va
p~x,z!LUp

i ~z,y!ms~z,y!~z!

1
1

2p E
S~y!

Ua
p~x,z!LUp

i ~z,y!v~z!50. ~9!

Here the 3-surfaceS(y) and the 2-surfaceS(y) are defined
by S(y)ªC1(y)ùJ2(x) and S(y)ªC1(y)ùC2(x), re-
spectively; the operatorL acts atz; the 3-formms(z,y) and
the 2-formv are defined in the Appendix by Eqs.~A6! and
~A8!. @The geometric regions occurring in Eq.~9! are illus-
trated in Fig. 1#.

We will use Eq.~9! in Sec. IV for obtaining an expressio
for electromagnetic wave tails in the first-order approxim
tion.

Only the retarded Green’s functionsG1 will be discussed,
as the corresponding results for the advanced Green’s f
tions G2 can be obtained by reversing the time orientati
on the domainV.

B. Higher-order Green’s functions for vector wave equations

Let V be a causal domain. Then the tensor differen
operator L in Eq. ~1! has a unique retardedmth-order
Green’s functionG1 on V such that

FIG. 1. The geometric regions occurring in Eq.~9!: an illustra-
tion on a 3-dimensional intersection of the Minkowski space w
the planex35const. The darker region on the future light con
C1(y) is the hypersurfaceS(y) whose 2-dimensional boundaryS
is represented by an ellipse which is the intersection of the li
conesC1(y) andC2(x).
3-3
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LGiJ~m!
1a ~x,y!5~21!m¹B~m!@gi

a~x,y!gJ~m!
B~m!~x,y!d~x,y!#,

suppG1,J1~y!.

If test vector fields FPD1(V) are such that
suppF,V\$y%, then the retardedmth-order Green’s func-
tion G1 is of the following form:

G15
1

2p F (
n50

m

Wn
md1

~m2n!~s!1Wm11
m Q1~s!G , ~10!

whereWn
m , n50,...,m11 are bitensor fields of rank 1 atx

and of rankm11 at y recursively determined by

Wn iJ~m!
ma 5s ; j m

Wn iJ~m21!
m21a 1Wn21iJ~m21!; j m

m21a ,

W21
m 5Wm12

m
ª0, W0

0
ªU, W1

0
ªV, ~11!

wheren50,...,m11.
This statement was first proposed by us without proo

@27#: its proof can be found in@24#. Equations~11! provide a
simple recurrent algorithm for calculating themth-order
Green’s functions for the vector wave equation~1! proceed-
ing from the Hadamard coefficientsU and V of classical
Green’s function~3!. The formulas~10!, ~11! constitute the
main mathematical tool which allows construction of o
exact multipole solutions of vector wave equations.

III. EXACT SOLUTIONS

A. Multipole expansion of the electromagnetic field source

On the basis of Dixon’s ideas@30# we will now construct
a multipole expansion of the electromagnetic field sourcef as
follows. We first choose a unique timelike world linej lying
inside the world tubeG,V of the source of the electromag
netic field that represents its dynamical properties. Suc
curve can be given as aC` embeddingt→y(t)Pj of an
open intervalI ,R into V, whereR is the real line. We se
v i(t)5dyi /dt; this vector is assumed to be timelike an
future-directed, and it is convenient to normalize the para
etrization so thatt is the proper time, which means th
v iv i51. For y(t)Pj we defineS(t)ª$xuv i(t)s ; i„x,y(t)…
50%, the spacelike hypersurface consisting of all geode
throughy(t) orthogonal tov(t). We suppose that there ex
ists a 3-formmS such thatm(x)5dh∧mS on suppf; here
h(x) is defined byv i

„h(x)…s ; i„x,y„h(x)……50, y(h)Pj.
For the sake of simplicity, we assume also that suppf is
compact in the domainV. Regarding the source functionf as
a regular distribution with compact support, we can write

~ f,F!5E
I
dtE

S~ t !
^f~x!F~x!&mS~x!,

where ^fF& denotes the scalar product. LetM̄m(t) be C`

tensor fields of corresponding ranksm11>1 at y(t)Pj,
with suppM̄m(t) compact, and letN>0 be an integer. We
consider the line distributions
06300
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m50

N

~21!mM̄m
I ~m! j~ t !¹A~m!gI ~m!

A~m!
„x,y~ t !…

3gj
a
„x,y~ t !…d̄~x,j!

PE81~V!, ~12!

which assigns to anyFPC0
`(V) the number

~ fN ,F!ª (
m50

N E
I
M̄m

I ~m! j~ t !f j ;I ~m!„y~ t !…dt. ~13!

In the particular case ofN50 the formula~13! means that

„gi
a
„x,y~ t !…M̄0

i ~ t !d̄~x,j!,fa~x!…ªE
I
M̄0

i ~ t !f i„y~ t !…dt.

Let us now choose a test function so that suppF.suppf.
If for all test functions such that suppF.suppf, the follow-
ing equation is valid:

~ fN ,F!5E
I
dtE

S~ t !
^f~x!FN~x,t !&mS~x!, ~14!

whereFN is determined by the Taylor expansion of the ve
tor functionF,

fN
a ~x,t !ª (

m50

N
~21!m

2mm!
ga j

„x,y~ t !…

3s ; i 1
„x,y~ t !…¯s ; i m

„x,y~ t !…f j ;I ~m!„y~ t !…;

then the line distributionfN is called theNth-order multipole
expansion of the source functionf.

If fN is the Nth-order multipole expansion off, then it
follows from Eqs.~13! and ~14! that one can choose

M̄m
I ~m! j~ t !5

~21!m

2mm! E
S~ t !

ga
j
„x,y~ t !…f a~x!

3s ; i 1
„x,y~ t !…¯s ; i m

„x,y~ t !…mS~x!. ~15!

The tensor fieldM̄m(t) determined by the expression~15!
is called the 2m-pole moment of the field sourcef with re-
spect toj. One should mention that Eqs.~13! and~14! do not
uniquely determine the structure of the multipole mome
M̄m in Eq. ~15!. For example, let us define a set of ne
multipole moments Mm(t) by relations Mm

I (m) j (t)

5M̄m
I (m) j (t)1Dm21

I (m21) jv i m1(d/dt)Dm
I (m) j (t), m<N, DN

I (N) j

50, where the symbold/dt denotes the absolute derivativ
along the world linej. Now, integrating Eq.~13! by parts, it
follows that fN remains unchanged for arbitrary tensor fiel
Dm(t) with compact support.

The multipole moments defined by Eq.~15! are obviously
symmetric in the firstm indices, i.e.,M̄m

i 1 ...i m j
5M̄m

( i 1 ...i m) j .

They also satisfy the orthogonality conditionM̄m
i 1 ...i m jv i m

50. One should say, though, that due to charge conserva
¹af a50, the multipole moments of different ordersM̄m are
3-4
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interrelated through differential constraints. For that rea
their direct usage in solving particular physical problems
inconvenient. However, Dixon demonstrated in Ref.@30#

that by means of the multipole momentsM̄m a new set of
reduced multipole momentsQm m>1 can be constructed
which together with the total chargeQ will completely de-
scribe the four-currentf. If Q5const, then the charge i
automatically conserved, and thus the multipole moment
different ordersQm ,m>1 are independent. Dixon’s reduce
multipole moments have the following symmetry and o
thogonality properties:

Qm11
i 1 ...i m jk

5Qm11
~ i 1 ...i m!@ jk# for m>0,

Qm11
i 1 ...i m21@ i m jk#

50,

Qm11
i 1 ...i m jkv i m

50 for m>1. ~16!

Following Dixon’s work @30#, we will in this paper ap-
proximate the source of electromagnetic wavesf by its
Nth-order multipole expansion~12! replacing, however, the
multipole momentsM̄m(t) with the reduced onesMm(t):

Mm
I ~m! j

ª

2m

m11
Qi m i 2 ...i m21i 1 j , m>1. ~17!

B. Exact solutions of vector wave equations with a multipole
source term

In one of our earlier papers@25# we demonstrated how to
obtain a solution by way of describing 2m-pole radiation of a
vector field in terms of the higher-order Green’s function
i.e., how to calculate the retarded solutionum

1 , of the vector
wave equation

Lum
a 5rm

a ,

with a multipole source term

rm
a
ª~21!mMm

I ~m! j~ t !¹A~m!„gI ~m!
A~m!

„x,y~ t !…

3gj
a
„x,y~ t !…d̄~x,j!…. ~18!

HereMm(t) is a tensor field of orderm11 on the world line
j of the source of~electromagnetic! radiation and the coor
dinates of the points of the linej are denoted byy(t), where
the parametert is the proper time alongj. Let us suppose
that there is at0PI such thatMm(t)50 for t,t0 . If Mm is
determined by relations~17!, it follows from the symmetry
properties of Dixon’s moments~16! that ¹arm

a 50, i.e.,

~¹arm
a ,f!52~rm

a ,¹af!50. ~19!

On the domainJ1(j)\$j%, with J1(j)ªøyPjJ
1(y), the

solution um
1 can be represented as a regular distribut

~function!. To find a form of the solution suitable for appl
cations it is reasonable to define a new, retarded time c
dinatet(x) as follows:
06300
n
s

of

-
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n

r-

s„x,y„t~x!……50, y~t!PC2~x!. ~20!

Evidently, the future light coneC1
„y(t)… is determined by

the equationt(x)5t. We denote the corresponding Lera
form by mt(x), i.e., dt∧mt(x)5m(x) on J1(j)\$j% ~see
Ref. @29#!. On the surfaceC1

„y(t)…\$y(t)% we have

ds52s ; i„x,y~ t !…v i~ t !ut~x!5tdt. ~21!

In what follows we shall use the notation

c~x,t !ª2s ; i„x,y~ t !…v i~ t !. ~22!

Because of theorem 5 proved in@25#, the unique retarded
solutionum

1 of Eq. ~18! can be written in the following form:

um
1a~x!5

1

2p (
n50

m F S 1

c~x,t !

d

dtD
m2n

3
Mm

I ~m! j~ t !Wn j I ~m!
ma

„x,y~ t !…

c~x,t ! G
t5t~x!

1
1

2p E
t0

t~x!

Vj ;I ~m!
a

„x,y~ t !…Mm
I ~m! j~ t !dt,

;xPJ1~j!\$j%, ~23!

where the quantitiesWn
m , n50,...,m, are bitensor fields of

rank 1 atx and of rankm11 at y recursively determined by
Eqs. ~11!, and the bitensor fieldV is the tail term of the
Green’s function of Eq.~1!. Identifying the tensor fieldMm
in Eqs. ~18! and ~23! with the tensor field~17!, defined via
Dixon’s multipole moments, it is easy to see that as a re
of Eq. ~19! and the uniqueness of the retarded solution of
wave equation, the solutionum

1a satisfies the gauge conditio
¹aum

1a50. Consequently, the quantityum
1a can be inter-

preted as the retarded potential of electromagnetic field. T
Eq. ~23! with the recurrence system~11! enables one to find
with admirable ease the exact multipole solution of arbitra
order for the electromagnetic wave equation~18! by means
of the world functions, transport bitensorg, and tail termV
of the classical Green’s function~3!.

IV. ELECTROMAGNETIC WAVE TAILS IN THE CASE
OF A WEAK GRAVITATIONAL FIELD

Application of formulas~23! presupposes knowledge o
the tail term V of the classical Green’s function and th
world function s, the exact forms of which, however, hav
been thus far calculated for some particular cases only, s
as for example the Bianchi type-I metric@31#, de Sitter met-
ric @29#, and a class of Robertson-Walker metrics@32#. Nev-
ertheless, for most cases approximate forms ofV ands are
known and can be used within the framework of our form
ism in obtaining approximate solutions.

We assume that the gravitational field is weak and the
fore use a perturbational approach. The metric tensor
other geometrical quantities are supposed to depend o
small parameter« which determines the order of deviatio
3-5
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from flat spacetime. Such expansion has been used, fo
stance, for the electromagnetic field in Ref.@33# and for
gravitational waves in Ref.@15#.

A. First-order tail term for the Green’s function

We assume that the metric tensorgab is expanded up to
the first order in«, so that the zeroth-order term is the met
tensor of the flat spacetimeg

0
ab , i.e.,

gab5g
0

ab1«gab1O~«2!,

gab5g
0

ab2«gab1O~«2!, ~24!

with

gab5g
0

acg
0

bdgcd .

The world functions(x,y), the transport tensorg(x,y), and
the scalarized van Vleck determinantk(x,y) can then also be
expanded in the parameter«. We have

s5s
0

1«s
1

1O~«2!,

g5g
0
1«g

1
1O~«2!,

k5k
0
1«k

1
1O~«2!, ~25!

where

s
0
, g

0
, and k

0
51

are the corresponding quantities of flat spacetime. The
pansions of the Ricci tensor and the tail termV of the clas-
sical Green’s function begin with terms which are small
the first order, that is,

Rab5«R
1

ab1O~«2!,

V5«V
1

1O~«2!. ~26!

As a result of the tensor character of the expressions
tained, they can be used in all the coordinate systems, w
the metric preserves the form~24!. Up to now we have where
necessary meticulously inserted the underscripts 0 and 1
noting the zeroth-order terms~i.e., the flat spacetime quant
ties! and the first-order terms, respectively. The Ricci ten
Rab and the tail termV being small, of first order, we will
omit these underscripts where confusion is excluded,
write the results in what follows to the first-order approx
mation.

Next we will find an explicit expression for the leadin
member of the expansion of the tail termV proceeding from
the integral equation~9!. SinceV is small, of first order, it
06300
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follows from Eq.~8! that the quantityLUb
i (x,y) is also small

of first order. Thus the first integral in Eq.~9! is a second-
order small quantity, whereas the first factorUp

a(x,z) under
the second integral in Eq.~9! may be considered as a zerot
order quantity. Hence, taking into account Eq.~6! with

k
0
51,

the vector integral equation~9! reduces to

Va
i ~x,y!52

1

2p E
S~y!

ga
p~x,z!LUp

i ~z,y!v~z!1O~«2!.

~27!

Likewise, the first factor under the last integral is of zero
order, and if we would use Minkowskian coordinates in t
flat spacetime, we could writega

p5da
p1O(«). Nevertheless,

in order to be able to use general curvilinear coordinates
flat spacetime without any need for modifications in the
tegral in Eq.~27!, we prefer to keep the more general expre
sionga

p(x,z). The same will be done in similar cases belo
To calculate the factorLUa

i under the last integral we
need the linear terms in the expansions ofga

i (x,y) and
k(x,y) which can be obtained as follows. Expanding t
defining equations ;a¹agi

b(x,y)50 of the transport bivector
we have

gai~x,y!5g
0

ai1
«

2 E0

1

g
0

a
p
„y,z~l!…g

0
i
q
„y,z~l!…

3@gq~p;r !„z~l!…2gpr;q„z~l!…# żrdl1O~«2!.

~28!

Here, as well as in the next integral, integration is perform
along the geodesicz(l) connecting the pointsx andy, where
l is an affine parameter on the geodesic, such thatz(1)
5x, z(0)5y.

Next substituting Eq.~6! with Eq. ~28! into Eq. ~4! yields
for the scalarized van Vleck determinant~67! the following
first-order expression:

k~x,y!511
1

8
s ;a~x,y!s ;b~x,y!

3E
0

1

l~12l!ga
p
„x,z~l!…gb

q
„x,z~l!…

3Rpq„z~l!…dl1O~«2!. ~29!

Finally, after quite simple but voluminous calculations w
obtain from Eqs.~27!–~29! the sought-after expression fo
the first-order tail term:

Va
i ~x,y!5

1

4p
$ga

i ¹b@s21~x,y!Pb~x,y!#

1s21~x,y!Fa
i ~x,y!%, ~30!

where
3-6
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Pb~x,y!ªE
S~y!

gp
b~x,z!Gpq~z!dSq~z!, ~31!

Fa
i ~x,y!ªE

S~y!
ga

pgiq
„4R@p

r Dq] r1RDpq

12Rpqs~x,y!…v~z!. ~32!

HereGpq
ªRpq2 1

2 gpqR are the contravariant components
Einstein’s tensor, R is the Ricci scalar, Dpq
ªs ;@p(z,x)s ;q] (z,y), anddSq(z) denotes the 3-surface e
ement onS(y) defined by

dSp~z!5 1
6 Ag~z!epqrsdzq`dzr`dzs, ~33!

where epqrs are the components of the discriminant tens
with e012351.

It can be shown thatVa
i (x,y) remains bounded whenx

→ x̄PC1(y). From Eqs.~30!–~32! we see thatVa
i vanishes

for every xPV and yPV if Rpq(z)50, ;zPV. It is the
necessary and sufficient condition for the validity of Hu
gens’s principle in the first-order approximation@33,34#.

Among the astrophysical applications of great interes
the case in which the source of gravitation is spatially i

lated, i.e., suppRab,G̃, where G̃ is the world tube of the
gravitational field source. In this case it is reasonable to
vide the spacetime domainJ1(y) into the following three
subdomains:

D~y!ª$xuxPJ1~y!,S~y!ùG̃5B%,

D* ~y!ª$xuxPD1~y!,C1~y!ùG̃,S~y!,S~y!ùG̃5B%,

D̃ª$xuxPJ1~y!,S~y!ùG̃ÞB%. ~34!

It is evident from Eqs.~30!–~32! that V(x,y)50 if ;x
PD(y). We remind the reader that our results are valid
an arbitrary weak gravitational field. An analogous conc
sion on the background of a weak Schwarzschild field w
drawn in Refs.@35–37#. As in the first approximationP;b

b

50, xPD* (y), the expression for the tail termV in the
domainD* (y) becomes considerably simpler, namely,

V~x,y!5
1

4p
g~x,y!Pb¹bS 1

s~x,y! D . ~35!

Thus, in the subdomains~34! the character of the tail term
is qualitatively different.~i! No-tail region. In the subdomain
D the observer atx does not see any wave tail,V(x,y)50,
from the source aty. ~ii ! Simple-tail region. In the subdo-
main D* there appears a wave tail of the simple form~35!.
~iii ! General-tail region. In the subdomainD̃ one can exam-
ine a wave tail of the general structure~30! ~see Fig. 2!.

Equation~35! leads to the conclusion that if the metr
tensor satisfies the Einstein field equations, the tail term
the Green’s function in the first approximation in the spa
time domainD* (y) is completely determined by the fou
momentum of the source of gravitation. The higher multip
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moments of the source of gravitation, including the angu
momentum, do not influence in this approximation the str
ture of V(x,y) @in the domainD* (y)#. A corresponding re-
sult for a scalar field has been presented in Ref.@38# and for
a vector field in Ref.@33#.

B. Tail term for multipole solution

On the basis of Eq.~23!, the tail termVm
a of the retarded

2m-pole solution of Eq.~18! can be written as

V m
a 5

1

2p E
t0

t~x!

Vj ;I ~m!
a

„x,y~ t !…Mm
I ~m! j~ t !dt. ~36!

Next we will study the tail termV m
a of a multipole solu-

tion in a weak gravitational field more closely. In a wea
gravitational field the bivector fieldV(x,y) is determined
by Eq. ~30!. In what follows we presume that the worl
line j of the source of electromagnetic waves rema
outside the source of the gravitational field, where
y(t0) and y(t1) are points on the world linej of the
wave source,t0 and t1 being, respectively, the proper tim
values when the source begins and terminates the emis
If the world line j of the wave source lies outside the wor

tube G̃ of the source of gravitation, i.e., suppjùsuppG̃
5B, and if suppMm(t),(t0 ,t1), then in the structure of the
tail term V m

a there appear features similar to the case of
tail term of the fundamental solutionV discussed at the en
of the last subsection.

To begin with, we divide the spacetime doma
J1

„y(t0)…\$j% with y(t)Pj into three subdomains:

Eª$xuxPJ1
„y~ t0!…\$j%,S„y~ t0!…ùG̃5B%,

E*ª$xuxPJ1
„y~ t0!…\$j%,C1

„y~ t1!…ùG̃,S„y~ t1!…,

S„y~ t1!…ùG̃5B%,

Ẽª$xuxPJ1
„y~ t0!…\$j%,x¹E,x¹E* %. ~37!

~See Fig. 3.!
In the subdomainsE, E* , andẼ the character of the tai

term of a wave pulse with finite duration is qualitative
different.

FIG. 2. A diagram in Minkowski 2-spacetime: the region
where the character of the tail term is qualitatively different.y is the

source of electromagnetic waves andG̃ is the world tube of the
gravitational source. The observer in the regionD(y) does not see
any wave tail, and the observer inD* (y) can see a wave tail o

simple structure~37!, whereas in the regionD̃(y) one can see a
wave tail of the general form~30!.
3-7
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~i! No-tail region. If xPE, then alsoxPD„y(t)… for ev-
ery tP„t0 ,t(x)…. Hence it is valid thatVj

a50, and conse-
quently

V m
a 50, ;xPE. ~38!

As EÞB, there exist points in space where the (for
front of the wave is not simultaneously accompanied by
wave tail, the latter appearing after some time delay. To
describe this effect in more detail, let us define the quan
t0(x,z) as a solution of the following set of equations:

s~x,z!50, zPC2~x!ùG̃,

s~z,y„t0~x,z!…!50, y~t0!PC2~z!. ~39!

For further treatment the maximal and minimal values of
time intervalt(x)2t0(x,z) are important~measured in the
proper time of the wave source! for the fixed spacetime poin
x, viz.,

D1~x!ªt~x!2maxt0~x,z!,

D2~x!ªt~x!2mint0~x,z!. ~40!

The quantitiesD1(x) and D2(x) can be given a simple
lucid interpretation by taking into account that an instan
neous wave pulse emitted by the wave source at maxt0(x,z)
traveling at the speed of light reaches the spacetime pox
exactly as if it would first travel to the source of gravitatio
reflect from there, and further travel to the spacetime poinx.
In the case of mint0(x,z) the reflection takes place precise

FIG. 3. A diagram in Minkowski 2-spacetime: the regionsE,

E* , andẼ where the tail term of a wave pulse with finite duratio
behaves differently. The past light coneC2( x̄) originating from the
point x̄ is represented by the dotted lines. The bold-faced part of
future light cone C1

„y(t0)… corresponds to the hypersurfac
S„y(t0)… with x5 x̄ and the boundary of the hyperplaneS„y(t0)…:

i.e.,S„y(t0)… is seen as the two pointss. HereG̃ is the world tube of
the source of gravitational field.j is the world line of the wave
source which radiates during a finite proper time interval@ t0 ,t1#. l
is the world line of the observer. On the observer’s world linel
these intervals are indicated in bold where the observer can in p
ciple see the direct pulse~the interval@a,b#! and the wave tail„the
semi-interval@c,`)…. During the interval~b,c! on l there occurs a
blackout between the direct pulse and the wave tail.
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when the above-mentioned instantaneous wave pulse
passed the source of gravitation.

Obviously, in caset(x)<t01D1(x), thenxPE andV m
a

50.
~ii ! Simple-tail region. If t(x)>t11D2(x), thenxPE* ,

and the structure of the tail term is determined only by
four-momentum of the source of gravitational field:

V m
a 5

1

8p2 E
t0

t1
gj

a
„x,y~ t !…Mm

I ~m! j~ t !Pb¹bF 1

s„x,y~ t !…G
;I ~m!

dt.

~41!

Consequently, the higher multipole moments of t
source of gravitation, among them the angular moment
do not influence the structure of the wave tail.

~iii ! General-tail region. To the domainẼ corresponds the
interval „t01D1(x),t11D2(x)… of the retarded timet(x),
and for these instants it is valid:

V m
a 5

1

2p E
t0

min~t~x!2D1~x!,t1!

Vj ;I ~m!
a

„x,y~ t !…Mm
I ~m! j~ t !dt,

~42!

whereV is determined by Eqs.~30!–~32!. Thus, in compari-
son with the direct pulse, the tail of the wave appears to
observer after the time delayD1(x).

The particular caseD1(x).t12t0 is also of interest. In it
there occurs a time lapse of durationD(x) between the end
of the principal pulse@t(x)5t1# and the appearance of th
wave tail, with

D~x!ªD1~x!2~ t12t0!. ~43!

Hence, instead of a single pulse, the observer would see
clearly separable pulses: the principal one and the wave

C. Schematic representation of the geometry
of wave tail generation

The purpose of this subsection is to provide a schem
plane spacetime representation of the geometry of wave
generation. This subsection is meant as an illustration:
rest of this paper does not rely on it. For the sake of simp
ity we make here the following simplifying assumption
which are not used in our calculations:~i! the gravitational
source is spherical and static, and~ii ! the gravitational and
wave sources and the observer do not move with respe
each other.

In order to draw Fig. 4 we have suppressed the time
mension and one space dimension. Thus all the image
Fig. 4 are obtained by projecting Minkowski spacetime on
a hypesurfacex05const, and then cutting the 3-space wi
x1x2. The plane of the figure is determined by locations
the wave sourcey, of the observerx, and of the center~not
pointed out in the figure! of the gravitational source. The
surfaceS(y), which spreads with time, is the boundary
the ellipsoid of revolutionS(y), with foci at the locations of
the observerx and of the wave sourcey. The ellipsesS1 and
S2 are the intersections of the plane of the figure with t
surfaceS(y), which, respectively, correspond to the instan

e

n-
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of time at which a deltalike wave pulse emitted by the wa
source reaches and passes the source of gravitation. I
surfaceS(y) has not yet reached the gravitational sour
thenV50 and there is no wave tail. If the surfaceS(y) has
passed the gravitational source, the source will forever
main inside the region of integrationS(y), while
P(x,y)/8p5const will be the 4-momentum of the gravita
tional source andFa

i (x,y)50. The shadowed areaK, which
includes the source of gravitational field, corresponds to
region where the tail wave field is predominantly genera
by gravitational focusing which deforms the direct wa
fronts @15#. Thus we have the following picture. The wav
sourcey emits an instantaneous wave pulse. The direct pu
propagates along the direct routeyx to the observerx, after
which there occurs a blackout before the arrival of the fi
tail contribution. The parts of the wave front which trav
~along the routesl 1 ,l 2 , etc.! to the points of the regionK
scatter off ~reflect! from there and then propagate~along
l 1* ,l 2* , etc.! to x, appearing to the observer as the tail wa

To elucidate the introduced maximal and minimal tim
intervals,D1 andD2 , let us again consider the example pr
sented in Fig. 4. At timey05t0 the wave source emits
deltalike pulse. The evolution of the surfaceS(y) is charac-
terized by the time-varying semimajora and semiminorb
axes which depend on the observer timex0 as a5(x0

2t0)/2 andb5@s(x,y)#1/2/2. The ellipsesS1 , S2 , and S3
are the intersections of the plane of the figure with the s
face S(y) at times of observationx1

05t01uxW2yW u1D1 , x2
0

5t01uxW2yW u1D2 , andx3
0.x2

0, respectively. HereuxW2yW u is
the spatial separation between the wave source and the
server. The observer detects the direct pulse at timex0

05t0

1uxW2yW u, the wave tail begins to appear atx1
05t01 l 11 l 1*

5x0
01D1 , and beginning from timex2

05t01 l 21 l 2* 5x0
0

1D2 the structure of the wave tail is determined by Eq.~30!
with Fa

i 50. The time intervalD15 l 11 l 1* 2uxW2yW u is evi-
dently equal to the difference of the propagation times of t
pulses from the wave source to the observer: one arriv
along the direct route and the other first traveling to
source of gravitation, reflecting from there and then reach
the observer.

FIG. 4. A schematic representation of the geometry of wave
generation on a spacelike planex1x2. Herey is the wave source,x
is the observer, the darker shadowed circular disk is the grav
tional source, andK is the focusing region. The remaining comp
nents in the figure are explained in Sec. IV C.
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D. Radiative part of the electromagnetic wave tails

Let us examine the case in which the source of gravitat
is spatially isolated and the distance of the source of wa
from the source of gravitation is bounded. The tail term b
ing a first-order small quantity, we can regard the spacet
as flat when discussing it and use Minkowskian coordina
whose origin lies inside the world tube of the source
gravitation. We denote the distance of the observer to
origin of the coordinates byr, and will also below use the
following notation: if two functionsrA(x) and rB(x) are
equal in the limitr→`, t5const, i.e.,

lim
r→`

t5const

„rA~x!…5 lim
r→`

t5const

„rB~x!…

then we will writeA(x)8B(x). The position vectors of the
pointsx andy in three-space are denoted byxW andyW , respec-
tively.

Taking now into account that for an arbitrary finitet are
valid the asymptotic relations

lim
r→`

s„x,y~ t !…;r ,

lim
r→`

s ; i„x,y~ t !…;r

and

lim
r→`

s ; ik„x,y~ t !…;O~1!,

we obtain from Eqs.~30!–~32! the relationship

Vj ;I ~m!
a

„x,y~ t !…8~21!ms ; i 1
„x,y~ t !…¯s ; i m

„x,y~ t !…

3S 1

c~x,t !

d

dtD
m

Vj
a
„x,y~ t !…. ~44!

For brevity, in what follows we will not write explicitly the
arguments of the functions depending both on the pointx as
well as on the parametert.

The radiative part of the wave tail which dominates
infinity can be written as

V m rad
a 8

~21!m

2p E
t0

t~x!

s ; i 1
¯s ; i m

Mm
I ~m! j~ t !S 1

c

d

dtD
m

Vj
adt.

~45!

Because of Eqs.~23! and~11!, the zeroth-order radiative par
Zm

a of the 2m-pole solution can be written as

Zm
a
„x,y~t!…8

1

2p
F S 1

c

d

dtD
m

gj
a

s ; i 1
¯s ; i m

c
Mm

I ~m! j~ t !G
t5r ~x!

8
1

2p
gj

a
„x,y~t!…S 1

c~x,t!

d

dt D m

3
s ; i 1

„x,y~t!…¯s ; i m
„x,y~t!…

c~x,t!
Mm

I ~m! j~t!. ~46!

il
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On the basis of the last two relations, after integrating
parts the right-hand side of Eq.~45! we obtain the following
expression forV m rad

a :

V m rad
a 8E

t0

t~x!

cgb
i Vi

aZm
b
„x,y~ t !…dt

1H (
n50

m21

~21!m2nF S 1

c

d

dtD
n

Vj
aG

3S 1

c

d

dtD
m2n21 s ; i 1

¯s ; i m

c
Mm

I ~m! j~ t !J
t5t~x!

,

~47!

whereZm
b
„x,y(t)…ªZm

b
„x,y„t(x)……ut(x)5t .

We must point out that Eq.~47! containsm11 terms, out
of which the lastm ones are actually instantaneous. The fi
term in Eq.~47! is truly nonlocal, whereas the factorcgb

i Vi
a

assigns most of the weight to the source’s recent past.
The truly nonlocal radiative wave-propagation correcti

Ṽ m rad
a

ªE
t0

t~x!

cgb
i Vi

aZm
b
„x,y~ t !…dt ~48!

takes a universal form which is independent of the multip
order. An analogous result in a weak Schwarzschild field
slow-motion approximation has been earlier found in R
@10# ~cf. also@26#!. Our formula~48! generalizes this resul
in two ways. First, Eq.~48! is valid in the case of an arbitrar
weak gravitational field in the corresponding asymptotica
flat spacetime. Second, there are no formal restrictions to
bounded motion of the wave source: e.g., the wave sou
can move with a relativistic speed. Because of the unive
form of the tail term, Eq.~48! has a simple, but from the
point of view of observations essential, generalization.
the assumption that the local partAa(x,t) of a wave observ-
able at infinity~or its zeroth-order radiative part! can be ap-
proximated with sufficient accuracy by the superposition o
finite number of multipole waves, it follows from Eq.~48!
that the corresponding nonlocal radiative wave-propaga
correctionEa(x,t) has the following form:

Ea~x,t!5E
t0

t~x!

cgb
i Ab~x,t !Vi

adt, ~49!

wherec is defined by Eq.~22!.
For a source radiating in the pulsed mode the last form

enables us to comparatively simply~on the basis of the pa
rameters of a recorded direct pulse and a presumable m
of an astrophysical object! predict the physical parameters
the radiation tail and evaluate the possibilities of obser
tional detection of the tail.

It should be emphasized that applicability of Eq.~49! does
not depend on whether the source of radiation actually em
in the pulsed mode or pulses of radiation are present at
location of an observer due to the kinematics of the radia
system~e.g., the rotation of the directed radiation cone o
pulsar!.
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If Ab(x,t) does not vanish merely during a finite tim
interval t0,t,t1 and the world line of the source of radia
tion lies outside the world tube of the source of gravitatio
then the conclusions of Sec. IV B are also valid for the
diative partEa of the tail term. Thus, for example, ift(x)
<t01D1(x), thenEa(x,t)50; if t(x)>t11D2(x), then

Ea~x,t!8
1

4p E
t0

t1
Aa~x,t !c„x,y~ t !…Pb¹bS 1

s„x,y~ t !…Ddt

8
1

4p E
t0

t1 s ;b„x,y~ t !…Pb

s„x,y~ t !…

d

dt
Aa~x,t !dt. ~50!

A matter of particular interest is the situation in whic
D1(x).(t12t0), as in this case there is a blackout durin
the time intervalD(x)5D1(x)2(t12t0) between the end o
the direct pulse and the appearance of the wave tail. The
fact considerably simplifies the observation methods for d
tinguishing the profile of the direct pulse from the gene
relativistic radiation tail originating from compact astro
physical binary systems. The relative intensity of the dir
pulse and the wave tail, and the time delay~blackout! be-
tween them, can yield essential additional information, in
pendently of other methods, about the physical characte
tics of a binary~the distance between the compact objec
the mass of the source of gravitation, the orientation of
plane of the orbit with respect to the observer, etc.!.

From Eq.~50! if follows that the wave tail effect of the
astrophysical systems radiating in the pulsed mode is
dominantly caused by the low-frequency modes@v
&2p/(t12t0)# of the direct pulse.~Here the angular fre-
quencyv of the radiation is measured in the proper time
the wave source.! The high-frequency waves reflecting from
the spacetime curvature interfere and prevalently atten
each other in the expression of the tail. Also important, fro
the point of view of observational detection, is the fact e
suing from Eq.~49! that the intensity and the time delay o
the wave tail of radiation from a pulsed source moving on
circular orbit depend substantially on the mutual positions
the observer, the wave source, and the source of gravita
By comparing the profiles of the pulses emitted in differe
points of an orbit, one can distinguish in principle the co
tributions of the direct pulse and the tail even if there is
considerable time delay between the tail and the princ
pulse. This circumstance is significant because in the cas
most astrophysically realistic models the physical conditio
necessary for the occurrence of a blackout in between
direct pulse and the wave tail will considerably decrease
intensity of the tail.

Let us now turn to the magnitude of electromagnetic
diative energy arriving after the direct pulse has pass
t(x).t11D2(x). The powerdP/dV radiated into the solid
angledV can be calculated as follows:

I ~t![
dP

dV
52

r 2

4p
E,0

a ~x,t!Ea,0~x,t!. ~51!
3-10
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For further treatment it is reasonable to present Eq.~50! in a
somewhat different form. In the proper reference frame
the source of gravitational field we have

E,0
a 822ME

u~ t0!

u~ t1! @A,0
a
„x,t~x!…#t~x!5t~u!

@u~t!2u#2 du, ~52!

whereu(t)ªy0(t)2nW •yW (t), nWªxW /uxW u andM is the mass of
the source of gravitational field. Below we will use the n
tationsTªu(t1)2u(t0), which is the duration of the direc
pulse in the observer time, andD̃2ªu„t11D2(x)…2u(t1).

To get an idea of the magnitudes involved we construc
artificial example in which

A,0
a
„x,t~x!…ut5t~u!5

1

r
f a~y,f!Q„u2u~ t0!…Q„u~ t1!2u….

~53!

Here Q is the Heaviside distribution,v,f are the polar
angles determining the observer’s position, andf a is an ar-
bitrary vector function. From Eqs.~51!–~53! we obtain an
estimate of the ratio of the intensity of the wave tailI „t1
1D2(x)… to the intensity of the direct pulseI 0 ~the ratio of
the densities of the energy fluxes at the observer’s locati!,
namely,

I „t11D2~x!…

I 0

5S 2M

D̃2~x!
D 2S T

T1D̃2~x!
D 2

. ~54!

We see that ifD̃2(x) is sufficiently small@D̃2(x);2M #, the
intensity of the tail can be comparable with that of the dir
pulse. Evidently, in this case we cannot confine ourselve
the first approximation but must instead additionally ta
into consideration the higher approximation~s!.

To illustrate the above estimate, let us consider a w
source rotating in a circular orbit~or radius r 0) around a
spherical source~or radiusr s) of gravitational field. The ori-
gin of the spatial coordinates is taken to coincide with
center of the source of gravitation. Under the conditio
nW•yW(t1),0 and r 0@d1r s , wheredªr 0A12@nW •yW (t1)/r 0#2,
it follows from Eqs.~39! and ~40! that

D̃2~x!'
~d1r s!

2

2r 0
1O~M !. ~55!

Hence, ifr 0.r s
2/4M , then in case the wave pulse is emitt

in the region of the geometric shadow of the source of gra
tation or in its vicinity, it is valid thatD̃2(x);2M , and ac-
cording to the estimate~54! the intensity of the tail can be o
the same magnitude as the intensity of the primary pulse

For the model under discussion it is also easy to find
ratio of the energyE transferred by the tail term@beginning
from the timet11D2(x)# to the energy of the direct termE0 ,
namely,

E
E0

5S 2M

D̃2~x!
D 2

FS D̃2~x!

T
D ,
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where

F~r!5r1
r2

r11
22r2 ln

r11

r
.

It is interesting to note that the functionF(r) has a maxi-
mum atr'0.638~see Fig. 5!.

Therefore, for the given model the amount of ener
transferred by the tail after the timet11D2(x) is maximal if
the duration of the direct pulse isT'1.57D̃2(x), and can in
this case make up nearly 10% of the energy of the dir
pulse:E'0.119E0(2M )2/D̃2

2(x).
As the quantityF does not explicitly depend on the ma

of the gravitational source, then its value for any particu
case~as 0.119 for the present example! is primarily deter-
mined by the profile of the direct pulse and the spatial c
figuration of the system consisting of the wave source, gra
tational source, and the observer. Somewhat unexpecte
the outcome that the magnitude of the factor (2M /D̃2)2,
which characterizes the influence of the gravitational sou
can be of the order of 1, even if the potential of the gravi
tional source is low everywhere, i.e., 2M!r s . This conclu-
sion can be understood on the basis of Ref.@15#, where it is
shown that the tail field is predominantly generated by
direct field in those regions where gravitational focusing h
deformed the geometry of the direct wave fronts~see the
shadowed region in Fig. 4!. The deformation is characterize
by the focusing functiona( z̄,y). If the pointsz̄ andy lie on
a geodesic line which does not cross the gravitational sou
thena( z̄,y)50. If the distancer 0 of the wave source from
the gravitational source is much larger than the extensior s
of the latter, then for the rays originating in the wave sou
and passing through the gravitational source it is valid,a
;Mr 0 /r s

2. In the case of our example the conditio

2M /D̃2'1 corresponds toa;1. Let us note that the las
effect is not revealed by the traditional methods based on
expansion in terms of spherical functions, as in this case
natural to choose the effective location of the wave sou
within the source of gravitation. Thus,D̃2'r s and a
;M /r s ; that is, the intensity of the tail is proportional to th
square of the potential of the gravitational field on the s
face of the source of gravitation@39#.

FIG. 5. The functionF(r) vs its argumentr.
3-11
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E. Constraints on applicability of the elaborated algorithm

Relying on Ref.@15#, we will now briefly analyze limita-
tions to the applicability of the above results. First, note t
the conclusions of this paper were derived under the assu
tion that on the physically interesting spacetime domain
world function s is single valued: i.e., the geodesics orig
nating from the pointy do not cross. If this condition is no
satisfied, then the developed algorithms are not directly
plicable. However, by virtue of the superposition princip
valid because of the linearity of the wave equation, th
algorithms can be applied even when the world function i
multiple-valued function. Then the correct classical Gree
function is the sum over all distinct elementary classi
Green’s functions corresponding to all distinct geodesics
tween the pointsx andy ~see also@20#!.

Crossing of the geodesics would be caused by grav
tional focusing, and at the crossing point the exact fac
k(x,y) in U ~see@20#! would diverge. Thus, the criterion fo
no crossing is thatk(x,y) be finite alongC1(y). Let us now
consider our first-order expression~29!. This expression for
k(x,y) can never diverge if the gravitational source
bounded. However, if the focusing functiona(x,y)
[k(x,y)21 approaches unity, then the second- and high
order effects will come into play, producing a divergenc
Thus, the constrainta(x,y),1 for all x andy is necessary,
on the one hand, for the first-order analysis to be valid; o
the other hand, it simultaneously avoids crossing of geo
sics.

For a wave source in a circular orbit~the observer lying
on the plane of the orbit!, Eq. ~29! gives maxa;(2M/
rs)(2r0 /rs), whereM is the mass of the source of gravitatio
r s is its linear size, andr 0 is the radius of the orbit. In this
case the constraint maxa,1 is significant: it says that in
order to avoid too much ray focusing, the wave source
the gravitational source must not be too far apart:

2M

r s
,

r s

2r 0
. ~56!

Applying Eqs.~49!, ~50!, and ~52! to a particular model
system, one should not overlook the fact that, althoughE is
a first-order small quantity and therefore, when calculat
the integrals involved, the spacetime may be considered
flat background; generally the retarded timet(x) must be
regarded as the retarded time on the curved spacetime
cause the integrands may be sensitive to the wave phas

The quantitiesD̃2(x) and D̃1(x)ªu„t01D1(x)…2u(t0)
offering their own inherent physical interest must genera
also be calculated at least up to the accuracy of the first-o
corrections.

Let us now consider in more detail the time interva
D̃2(x) andD̃1(x) for the binary system described at the e
of Sec. IV C. We denote the origin of the coordinates at
center of the source of gravitation byz and consider only the
case in which the pointsx, y, andz are aligned on a straigh
line. Evidently there are two possible cases:~i! the pointz is
placed between the pointsx and y, and ~ii ! the point y is
placed between the pointsx and z. Equations~39! and ~40!
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yield the following conclusions. In case~i! the time intervals
D̃1(x) and D̃2(x) have maximal values:

maxD̃1~x!52~r 02r s!1x1~x!,

maxD̃2~x!52~r 01r s!1x2~x!.

In case~ii ! the time intervalsD̃1(x) andD̃2(x) have minimal
values:

min D̃1~x!50, minD̃2~x!5
r s

2

2r 0
1x3~x!.

Here the quantitiesxa;2M , a51,2,3, denote the correc
tions caused by the Shapiro effect within the inner region
the binary system which are of the same order of magnit
as the Shapiro time delay between the pointsy andz.

It is obvious that in Eqs.~49!, ~50!, and ~52! the correc-
tions caused by the inner Shapiro effect may be neglec
only in the low-frequency limit

v!
1

2M
. ~57!

The necessary condition~57! is also sufficient, if the inequal-
ity ~56! is simultaneously satisfied.

V. SUMMARY AND DISCUSSION

~i! On the basis of our earlier works@27,24,25# , we de-
veloped simple recurrent formulas, i.e., Eq.~11!, for calcu-
lating exact multipole solutions, i.e., Eq.~23!, of the electro-
magnetic wave equation on the background of a cur
spacetime which proceed from the classical Green’s func
~i.e., the corresponding Hadamard coefficients!.

~ii ! The next main new contribution of this paper is fo
mula ~36! with Eq. ~30! for the first-order tail term of the
electromagnetic multipole wave in the case of an arbitr
weak background gravitational field. From these formu
will follow a number of physically interesting effects.

First, one can infer from Eqs.~30! the earlier known~see
@34,33#! necessary and sufficient condition for the validity
Huygens’ principle~in the sense of Hadamard! in the first
approximation, namely,Rab50.

Second, if the gravitational field source is spatially is
lated, then beginning from a certain instant of time the str
ture of the tail accompanied by a pulse of electromagn
radiation is completely determined by the four-momentum
the source of gravitation, and the higher multipole momen
including the angular momentum, do not at all influence
structure of the tail in the first approximation. For the sca
wave equation and for the Green’s function of the elect
magnetic wave equation, essentially similar conclusions h
been presented in Refs.@38# and @33#.

Third, in Sec. IV B we discussed a further consequence
Eq. ~36!, namely, the time delay effect of the tail with re
spect to the direct pulse. In the case of compact binary
trophysical objects the time interval~blackout! in between
the direct pulse and the tail caused by delaying the tail m
3-12
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be observable and can with the relative intensity of the
give, independently of the other methods, essential infor
tion about the characteristics of the physical system~the dis-
tance between compact objects, the mass of the sourc
gravitation, the orientation of the plane of the orbit with r
spect to the observer, etc.!. Earlier, on the basis of the struc
ture of the Green’s function of the wave equation in a we
Schwarschild field, the time delay effect of the tail and
possible astrophysical implications have been indicated
Refs. @3# and @4#. Let us mention that some unpublishe
calculations by the present authors demonstrate the oc
rence of a similar delay effect also for linearized gravi
tional waves in the second approximation~cf. @5#!. By the
common approach in which the wave equation is solved
separating the angular variables the delay effect, as a
remains unrevealed. This is due to the circumstance t
ensuing from the symmetry of gravitational field~Schwarzs-
child, Kerr, etc.!, the origin of the spherical coordinate
whose world line is simultaneously the world line of th
multipole radiation source lies inside the source of grav
tion where the Ricci tensor does not vanish,RabÞ0.

~iii ! It is valid in the first approximation that the nonloc
radiative wave-propagation correction at infinity takes a u
versal form~48! which is independent of the multipole orde
A corresponding result in a weak Schwarzschild field in
slow-motion approximation has been published in@10#. Our
Eq. ~48! generalizes their result in two aspects. First, E
~48! is valid in the case of an arbitrary weak gravitation
field in the corresponding asymptotically flat spacetime. S
ond, there are no formal restrictions to the spatially boun
motion of the wave source: e.g., the motion of the wa
source can be relativistic.

~iv! The intensity of the tail of the electromagnetic wa
pulse emitted by the wave source within a compact binar
the vicinity of the geometric shadow of the source of gra
tation can be of the same magnitude as the intensity of
direct pulse, and the energy carried away by the tail
amount to 10% of the energy of the low-frequency modes
the direct pulse.
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APPENDIX: NOTATION AND BASIC FORMULAS

~1! We adopt the metric signature~1, 2, 2, 2! with the
Latin indices running and summing from 0 to 3. To abbre
ate the notation of repeated tensor indices, we introd
multi-indices, e.g., A(m)ª(a1 ...am), I (m)ª( i 1 ...i m),
P(m)ª(p1 ...pm), etc. We apply extensively the techniqu
of two-point tensors~or bitensors! and follow closely the
standard notation and index conventions@20#. To distinguish
the tensor indices which refer to pointx from those referring
to pointsy andz we use indicesa,b,...,A(m),B(m),... atx,
indices i , j ,...,I (m), J(m),... at y, and p,q,...,P(m),
Q(m),... at z. ThusFI (3)

a is a contravariant vector atx and
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third-order covariant tensor aty. The index convention is
also used for ordinary tensor fields, in which case it dist
guishes the value of the componentva of a vector fieldv at
x from its value v i at y, and GI (m) denotes the covarian
components of the tensor fieldG of rank m at the pointy.

~2! Symmetrization and antisymmetrization of the tens
indices are denoted, respectively, by the parentheses
brackets. For example,t (ab)

ª(tab1tba)/2 and t @ab#
ª(tab

2tba)/2.
~3! Ordinary differentiation is denoted by a comma~,!.

Covariant differentiation with respect to the Levi-Civit`
~metric! connection is denoted by¹ and semicolons, e.g.
¹xaf (x,y)5 f ;a(x,y), gab¹xbf (x,y)5 f ;a(x,y), and
¹ I (2)f (x,y)5¹yi 2¹yi 1f (x,y)5 f ; i 1i 2

(x,y). Absolute differ-

entiation along a linez(l) is denoted by an overdot, i.e
ẇi5w; j

i żj .
~4! We use a system of units in which the speed of lig

and the gravitational constant are equal to 1.
~5! The class ofC` tensor fields of rankm is denoted by

Em(V) and the subspace ofEm(V) consisting of fields with
compact support byDm(V). A tensor-valued distribution
T(x,y)PD8m(V) of rank m at xPV and of rankk at y
PV is a continuous linear mapDm(V)→Ek(V). If ~v, p! is
a coordinate chart such thatx,yPv and FPDm(v), then
each component of„TI (k)

A(m)(x,y),fA(m)(x)… is a ~scalar-
valued! tensor distribution~for a detailed discussion se
@29#!. A set V0,V is called past compact ifJ2(x)ùV0 is
compact~or empty! for all xPV. We denote the class o
distributions in D8(V) with past-compact supports b
D81(V).

~6! The world function biscalars(x,y)PC`(V3V) is
defined by the equations

gab¹as~x,y!¹bs~x,y!54s~x,y!, ~A1!

s~x,y!5s~y,x!, lim
x→y

s50. ~A2!

The world function s(x,y) is numerically equal to the
square of the geodesic arc length between the pointsx andy,
and is positive for timelike intervals and negative for spa
like intervals.

~7! The propagator of geodetic parallel displacement~also
called the transport bitensor! is defined as a bitensor fiel
g(x,y) of rank m at bothx and y, which satisfies, in local
coordinates, the following differential equations and init
conditions:

s ;a¹agB~m!
I ~m! ~x,y!50, ~A3!

gA~m!
I ~m! ~x,x!5da1

i 1 ...dam

i m . ~A4!

~8! The surface distributionsd6
(m)

„s(x,y)…, m50,1,2,...
are defined by

~d6
~m!

„s~x,y!…,f~x!!ª lim
«→10

S 2
]

]« D mE
C«

6
~y!

f~x!ms~x!

~A5!
3-13
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for all fPC0
`(V), if m50, and for allfPC0

`(V\$y%), if
m>1, wherems(x) is a Leray form for which

ds~x,y!∧ms~x!5m~x!, ~A6!

m(x) being an invariant volume element andC«
6(y)5$xux

PD6(y),s(x,y)5«,«.0%. In general, the integral~A5!
can be evaluated by means of a partition of unity subo
nated to a covering ofV by open coordinate neighborhood
in each of which

m~x!5Ag~x!dx0∧dx1∧dx2∧dx3, ~A7!

whereg(x)ªudet„gab(x)…u is the determinant of the metri
tensor. The relevant properties of the surface distributi
are given in@29#.

~9! The 2-form v on the 2-surface S(y)
ªC1(y)ùC2(x) in the integral~9! is defined by

ds~z,x!∧ds~z,y!∧v~z!5m~z!, ~A8!

wherem(z) is an invariant volume element onM.
~10! The Heaviside distributions are defined by
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