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We present an alternative method for constructing the exact and approximate solutions of electromagnetic
wave equations whose source terms are arbitrary order multipoles on a curved spacetime. The developed
method is based on the higher-order Green’s functions for wave equations which are defined as distributions
that satisfy wave equations with the corresponding order covariant derivatives of the Dirac delta function as the
source terms. The constructed solution is applied to the study of various geometric effects on the generation
and propagation of electromagnetic wave tails to first order in the Riemann tensor. Generally the received
radiation tail occurs after a time delay which represents geometrical backscattering by the central gravitational
source. It is shown that for an arbitrary weak gravitational field it is valid that the truly nonlocal wave-
propagation correctiofthe tail term) has a universal form which is independent of multipole structure of the
gravitational source. In a particular case when the electromagnetic radiation pulse is generated by the wave
source during a finite time interval, the structure of the wave tail at the time after the direct pulse has passed
the gravitational source is in the first approximation independent of the higher multipole moments of the source
of gravitation, including the angular momentum. These results are then applied to a compact binary system. It
follows that under certain conditions the tail energy can be a noticeable fraction of the primary pulse energy;
namely, it is shown that for a particular model the energy carried away by the tail can amount to 10% of the
energy of the low-frequency modes of the direct pulse. The present results indicate that the wave tails should
be carefully considered in energy calculations of such systems and that the delay effect of the wave tails may
be of great importance for their observational detection.
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I. INTRODUCTION waves by forthcoming laser interferometric detec{@rs11].
It has also been shown that the wave tails play an important
The problem of radiation propagation on a curved spacetole in the generation of gravitational waves by the orbital
time has been studied since the birth of general relativityinSpiral of a compact binary systefti2—14. The close re-
both as a matter of principle and as a basis of observationafionship between the generation of the wave tails and
predictions. A field satisfying a hyperbolic differential equa- gra_l\_/rl]tanonal focu?mg has been dtemonstrated 'ndﬁfﬁl' i
tion (wave equationpropagates not only on the characteris- be € process of wave propagation on a curved spacetime

. . L . ) ing quite complicated, usually the wave equation is solved
tic surfaceglight cones, but also inside the light cone in the thgeqweak-fielg and slow-moBt/ion limit by ?he method of
form of wave tails which violate Huygens’ principld.,2].

: . ! , _successive approximations, using multipole expansion in one
Physically speaking, the wave tails arise because the rad|_§;)\7ay or anothersee, e.g[16-19). A general solution of the

tion is backscattered by the spacetime curvature. In certaigjectromagnetic wave equation in a curved space was con-
cases backscattering can influence observations as it weakegtpucted by DeWitt and Brehni@0] in terms of the Green’s
and disperses sharp initial pulses. For instance, the electr@ynction, using the Hadamard proced{itd. The general so-
magnetic(or gravitational radiation from a pulsed source in |ution demonstrates scattering of the electromagnetic radia-
the vicinity of a massive body reaching an asymptotic ob-tion by the spacetime curvature. An alternative technique for
server is received as two distinct pulses: one arriving alongnvestigating electromagnetic radiation in the Schwarzschild
the direct route and the other, the tail, effectively being scatand Kerr metrics was worked out following the Regge-
tered off by the central body3-5]. Wheeler approach to metric perturbatiof®1-23. This
Recently the wave tails have come to be recognized atechnique relies on an expansion into generalized spherical
factors in the planned observational detection of gravitationaharmonics and is especially useful when radiation emanates
from a given multipole moment of the source. Herein, for a
point charge an infinite sum emerges. The benefit, however,
*Electronic address: tony@tpu.ee is that the obtained solution is also valid for the strong-field
TElectronic address: tammelo@physic.ut.ee region.
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We have recently developed a new methj@d—-2€¢ for  approximation the nonlocal radiative electromagnetic tail
calculating the exact solutions of scalar and tensor wavéerm at infinity acquires a universal form, viz., E@8),
equations whose source terms are arbitrary-order multipoleghich is independent of the multipole ordéFhe limitations
on a curved spacetime. The method developed is based & applicability as well as the relationships of these results
the higher-order fundamental solutiofGreen’s functions ~ With the earlier ones will be discussed in due course bglow.
for wave equations which are defined in our pd@5f as the Finally, we think that our method deserves to be presented
distributions that satisfy wave equations with the correspondl? detail as it may prove to be useful also for theoretical
ing order covariant derivatives of the Dirac delta function agnvestigations of the detection of gravitational waves per-

the source terms. Provided that the classical Green's functiofp'Med within the framgwprk of the Laser Interferometer
and the multipole expansion of the source term are given>PaC€ AntennéLISA) mission. _
The remainder of the paper is organized as follows. Sec-

there is no need for a small expansion parameter within the : ) : )
framework of our formalism and in certain cases we carfon Il gives a review of the theory of classical and higher-

even find exact multipole solutions for a strong field. OurOrder Green's functiongfundamental solutionsfor vector
approach also enables us to find an approximate solutioffaVe equations, as well as the recurrent formulas for calcu-

provided that an approximate form of the classical Green'sting the Green's functions proceeding from the Hadamard

function is known. which is the case for most spacetimes?oefﬁ‘:ients' In Sec. Il we determine the multipole moments
' f the electromagnetic field source term with respect to a

Moreover, it proves to be more advantageous to apply ou?! . 1
algorithm[ 25,26, instead of the traditional approach of suc- 9/ven world line, and also present an algorithm for calculat-
cessive approximations, because of the following reasond?d the exact multipole solutions of the wave equations. In
First, the amount of computations involved is considerably>€C¢: 1V the main results are obtained. We consider the tail
reduced and, second, as will be demonstrated below, sonjé'™m Of the retarded Green’s function expanded to first order
features not revealed by successive approximation methodg the gravitational potential, and give the first-order tail term
are brought forward. It is worthwhile to point out that, as O the multipole solutions of electromagnetic fiel8ecs.
distinct from most papers dedicated to the topic of wave taildV A IV B). In Sec. IVD we turn to the nonlocal radiative
in which the source of the gravitational field is regarded as 4/aV&-Propagation correction in the far wave zone. We esti-
point mass, within the framework of our approad#,25 mate the magnitude of the electromagnetic radiation energy

the extension of the source of gravitation is finite. The las@nd find that, compared to the energy of the direct pulse, the

circumstance enables us to avoid in computations the addy:@/ué of the tail energy can be considerable and may thus

tional nonphysical singularity, the regularizing of which may _have astrophysical signifipance. Limitations_to the applicabil-
bring on difficulties in interpreting the results. ity of the derived conclusions are also considered. Section V

On the basis of our methd@5] of higher-order Green’s contains brief concluding remarks. The Appendix explains

functions we have developed a new approach to the electr@Ur Notation and displays the relevant definitions.
magnetic radiation on a curved spacetime. In a recent Rapid
Cpmmunicgtion[ZS] we presented' some initial results ob- || \ETHOD OF HIGHER-ORDER GREEN'S FUNCTIONS
tained within the framework of this approach. Namely, we
considered a pulsed source of electromagnetic radiation in To investigate the electromagnetic wave tails within the
arbitrary bounded motion in a weak gravitational field andframework of general relativity, we first consider on a
concluded that generally the received radiation tail arrivepseudo-Riemannian 4-spabka vector wave equation
after a time delay which represents geometrical backscatter-
ing by the central gravitational source. This delay effect of Lu=f 1
the wave tails may be of great importance for their observa- '
tional detection. Further, by applying this approach to a com-
pact astrophysical binary system we demonstrated that und@thich in local coordinates can be written in the following
certain conditions the tail energy can be a noticeable fractiogoordinate invariant forngfor our notation see the Appen-
of the direct pulse energy. The underlying formulas involveddix):
are herein published for the first time.

The vyider.aim of the present paper is to provide a com- Lug:=g2°V VU, — R2u =", (1)
prehensive view of our new approach to the electromagnetic
radiation, more fully describe the already published results,
and expand upon them. Specifically, among the rest we wilhere the contravariant components of the metric teg&br
prove the following.(i) Vanishing of the Ricci curvature are assumed to be of differentiability cla88, andR,. are
tensor is the necessary and sufficient condition for the validthe covariant components of the Ricci tensor. The inhomo-
ity of Huygens’ principle in the first-order approximation, as geneous ternfi of Eq. (1) is in general a distribution, i.ef,
is already known(ii) If the direct pulse of electromagnetic €D’1(Q). In order to be able to complete the construction
radiation has passed the gravitational source, then in the firstf u, we restrict the solutions to a causal dom@a M (see
approximation the structure of electromagnetic wave tails ipoint 5 in the Appendix and Ref§2],[29]).
independent of the higher multipole moments of the gravita- The notation and basic definitions used in this paper will
tional source, including the angular momentu@iii.) In an  be presented in detail in the Appendix. Here we touch on
arbitrary weak gravitational field it is valid that in the first only the spacetime subdomains frequently resorted to.
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C*(y) is the future light cone, i.e., the set of all points

e () that can be reached along future-directed null geodesics
fromy; C7(y) is the past light cone, defined similarly by
past-directed geodesics. The sBt$(y) denote the respec-
tive interiors of the future and past light con&"(y),
whereasl™ (y):=D*(y)UC™*(y).

A. Classical (zeroth-order) Green'’s function

The classical (i.e., zeroth-order) Green’s function fun-
damental solution as mathematicians would gagx,y) of
the wave equatiofil) satisfies

LG (X.y)=0(x.y)3(x.y), 2 FIG. 1. The geometric regions occurring in E§): an illustra-

. . S . tion on a 3-dimensional intersection of the Minkowski space with
where d(x,y) is the Dirac delta distribution, with the planex®=const. The darker region on the future light cone

(6(x,y), (x)):=¢(y) for all peCo(Q) andg(x,y) i & ¢+ (y) s the hypersurfacg (y) whose 2-dimensional boundag/
transport bivectoftfor its defining equations see the Appen- js represented by an ellipse which is the intersection of the light

dix). conesC*(y) andC™(x).

As in the case of flat spacetime, there are two particularly _ _
important Green’s functions of the wave equatidn: the a¥(X,Y)VaVp(X,y) +[M(X,y)+ 2]V, (X,Y)
retarded Green's functionG*(x,y) and the advanced 1
Green’s functionG™(x,y). It has been demonstrated that =—2LUp(xy), ®)
they have the following fornj2,29]: for Vxe C*(y).

1 Sometimes, instead of solving the differential equations
* - 0) (7) and(8) straightforwardly, in order to find the tail teri,
G (Y=o [Uey) Sy +V(y)0- (@ (xy)] it is preferable to use an exact integral equation. We proceed
(3)  from the fact that Friedlander has derived the corresponding
, . . exact integral equation for the tail term of the Green'’s func-
where the bitensordl e C*(1xX (1) andV e C*((1 X)) are  tjon of the scalar wave equatigiq. (5.4.19 in Ref.[29]],
the Hadamard coefficients of the classical Green’s functiongng suggested a procedure for obtaining the tensor field

(3) of the vector wave equatiofi). ~ Green’s functions from the scalar Green’s function. Thus,
The bitensoiJ in Eqg. (3) is determined by the following  generalizing the above-mentioned Friedlander equation, we
transport equation and normalization condition: find for the vector case, where D * (y), that the tail termV/

. i i satisfies the following exact integral equation:
o ?(x,y)ValUp(X,y) +M(X,y)Up(X,y) =0,

. 1 .
U;(X,X):ai ’ Vg(X,y)"' Zfz(y)VQ(X,Z)LUIp(Z,y),u,o.(Z’y)(Z)
4 L
where tomls )UQ(X,Z)LUip(z,y)w(z)zo. 9
y
M(x,y):=3V2V,0(x,y) — 4. (5  Here the 3-surfac&(y) and the 2-surfac&(y) are defined

. . . by 3(y):=C"(y)NJI~(x) and S(y):=C"(y)NC (x), re-
It is well known that the bivectod can be written af29,20 spectively; the operatdr acts atz the 3-form s,y and

the 2-formw are defined in the Appendix by Eq#6) and
U:=g(X,y)K(X,Y), (6) @ pp y Eq#\6)

(A8). [The geometric regions occurring in E@) are illus-
whereg(x,y) andk(x,y) are, respectively, the transport bi-

trated in Fig. 1.
vector and scalarized van Vleck determinant, defined in th? We will use Eq.(9) in Sec. IV for obtaining an expression
Appendix. or

electromagnetic wave tails in the first-order approxima-
The bivectorV e C*(Q2XQ) in Eg. (3), called the tail

tion.
term, is determined by the characteristic Cauchy problem. It

Only the retarded Green’s functio@s" will be discussed,
corresponds to the “logarithmic term” of the Hadamard con-as the corresponding results for the advanced Green'’s func-
struction and is inherently connected with the concept an

&ions G~ can be obtained by reversing the time orientation
validity of Huygens’ principlg[1]. In the regionsD ~(y) the

on the domair().
vector fieldV satisfies the homogeneous wave equation B. Higher-order Green’s functions for vector wave equations

LV (x,y)=0, (7) Let () be a causal domain. Then the tensor differential
operatorL in Eq. (1) has a unique retardegth-order
which is completed by the characteristic initial conditions Green’s functionG* on Q such that
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LG58, (6Y)= (= 1AV, [g7(x,y) 954 (x,y) 8(x,y)],

suppG* C I (y).

If test vector fields ®eDY(Q) are such that
supp®C Q\{y}, then the retardegith-order Green’s func-
tion G* is of the following form:

1 M
G =y | 3 WESE ()4 W10 ()|, (10

whereW?’ , »=0,...u+1 are bitensor fields of rank 1 at

and of ranku+ 1 aty recursively determined by

w—1la

a 71a
W =0 WmJ(M 1+Wu 1I(p=1)3,, "

vid(pm)
WH =W =0, Wo=U, W=V, (1D

wherev=0,...u+ 1.

This statement was first proposed by us without proof in

[27]: its proof can be found ifi24]. Equationg11) provide a
simple recurrent algorithm for calculating theth-order
Green'’s functions for the vector wave equatidn proceed-
ing from the Hadamard coefficientd and V of classical
Green’s function(3). The formulas(10), (11) constitute the

main mathematical tool which allows construction of our

exact multipole solutions of vector wave equations.

I1l. EXACT SOLUTIONS
A. Multipole expansion of the electromagnetic field source

On the basis of Dixon’s ided80] we will now construct
a multipole expansion of the electromagnetic field sofiiae
follows. We first choose a unique timelike world ligdying

inside the world tubd” C Q) of the source of the electromag-
netic field that represents its dynamical properties. Such a

curve can be given as @ embeddingt—y(t) € £ of an
open intervall CR into (), whereR is the real line. We set

PHYSICAL REVIEW D 63 063003

N
= 2 (=DM OV g (Y ()

X g,y (1) 8(X, )

e&'HQ), (12
which assigns to angp e C5(Q) the number
N —_— .
(fy, @)=, f MY () i (y(D)dE (13)
wn=0 JI

In the particular case dfi=0 the formula(13) means that

(G, Y(1)M(t) 8(X,£), (X)) := fl Mo(t) ¢i(y(t))dt.

Let us now choose a test function so that s@psuppf.
If for all test functions such that sugp>D suppf, the follow-
ing equation is valid:

(fn. @)= jldtJE(U<f(X)(I)N(X1t)>ME(X) (14)

where®, is determined by the Taylor expansion of the vec-

tor function®,

N

— 1)
(X, 1) = >, D
u=0

2k ]

g?(x,y(1))

X o106,y (1) -0 (X, Y (1) i1, (V(1);

then the line distributioriy is called theNth-order multipole
expansion of the source functidén

If fy is the Nth-order multipole expansion df then it
follows from Egs.(13) and(14) that one can choose

(—D*

l( _
0=

f gl (6, y(1))F3(x)
(1)

v'(t)=dy'/dt; this vector is assumed to be timelike and X a1(X,y (1)) o w(X,y (1) us(X). (15)
future-directed, and it is convenient to normalize the param- .

etrization so that is the proper time, which means that  The tensor fieldV ,(t) determined by the expressiohS)
v'vi=1. Fory(t) e ¢ we defineX(t):={x|v'(t)o;(x,y(t)) is called the Z-pole moment of the field sourdewith re-
=0}, the spacelike hypersurface consisting of all geodesicspect to. One should mention that Eq4.3) and(14) do not

throughy(t) orthogonal tov(t). We suppose that there ex- uniquely determine the structure of the multipole moments

ists a 3-formuy such thatu(x)=d»Uus on supd; here
7(x) is defined byv'(n(x))o,i(x,y(17(x))=0, y(n) € ¢.
For the sake of simplicity, we assume also that Supp
compact in the domaifd. Regarding the source functidras
a regular distribution with compact support, we can write

(f,q)):fldtL(t)U(X)@(X))Mz(X),

where (f®) denotes the scalar product. L§M(t) be C*
tensor fields of corresponding ranks+1=1 at y(t) €&,

with suppl\WM(t) compact, and leN=0 be an integer. We
consider the line distributions

M, in Eq. (15). For example, let us define a set of new
multipole moments M ,(t) by relations M'M(“)‘(t)
—Ml(“)J(t)—I-D'(“ 1)j I“+(5/&)D,Iu(mj(t)! u=<N, D:\,(N)J
=0, Where the symbob/ 6t denotes the absolute derivative
along the world linet. Now, integrating Eq(13) by parts, it
follows thatfy remains unchanged for arbitrary tensor fields
D, (t) with compact support.

The multipole moments defined by Ed.5) are obviously

symmetric in the firstu indices, i.e., M'l Tl = M('1 '/‘)J

They also satisfy the orthogonality condrtrdr/l'l T v,

=0. One should say, though, that due to charge conservation,
V.f2=0, the multipole moments of different ordeM; are
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interrelated through differential constraints. For that reason a(x,y(7(x)))=0, y(7)eC (x). (20)
their direct usage in solving particular physical problems is

inconvenient. However, Dixon demonstrated in RES0] Evidently, the future light con€* (y(t)) is determined by
that by means of the multipole momerits, a new set of the equationr(x)=t. We denote the corresponding Leray
reduced multipole moment®, w=1 can be constructed, form by u,(x), i.e., dr0u.(X)=pu(x) on I"(§\&} (see
which together with the total charg@ will completely de-  Ref.[29]). On the surfac€ " (y(t))\{y(t)} we have

scribe the four-currenf. If Q=const, then the charge is i

automatically conserved, and thus the multipole moments of do=— ;i (Y00 (V)] 9=dT. (21
different orderQ,,,u=1 are independent. Dixon’s reduced
multipole moments have the following symmetry and or-

thogonality properties: WX, 1) = — a;i(x,y(t))v‘(t). (22)

In what follows we shall use the notation

. jk
QL =Q211'”)[J I for =0, Because of theorem 5 proved|ia5], the unique retarded
solution u; of Eq. (18) can be written in the following form:
g d ol 0K
Q/,L+l _0

1 i 1 d\#
Q'lj;r”l"”kviuzo for wu=1. (16) U 0= 57 o [\ p(x.t) dt
)i
Following Dixon’s work [30], we will in this paper ap- e (t)WvJHm(X’y(t))}

proximate the source of electromagnetic wavedy its P(X,t) t=r(x)
Nth-order multipole expansiofi2) replacing, however, the 1 ( )

. . . T(X
multipole momentsM ,(t) with the reduced oneMl ,(t): + ﬂf VR (%, y(t))M'(” I(t)dt,

(i,
e L S N ) Vxe I (&g, 23

, ) . . where the quantitieV’), »=0,...u, are bitensor fields of
B. Exact solutions of vector wave equations with a multipole rank 1 atx and of ranku+ 1 aty recursively determined by
source term Egs. (11), and the bitensor field/ is the tail term of the
In one of our earlier papef25] we demonstrated how to Green’s function of Eq(1). Identifying the tensor field ,
obtain a solution by way of describing‘zpole radiation of a  in Egs.(18) and(23) with the tensor field17), defined via
vector field in terms of the higher-order Green's functions,Dixon’s multipole moments, it is easy to see that as a result

i.e., how to calculate the retarded solutiof, of the vector ~ of Eq.(19) and the uniqueness of the retarded solution of the

wave equation wave equat|on the solutiam’ ? satisfies the gauge condition

A a Vau?t M =0. Consequently, the quanutyﬂ can be inter-
Lu,=p,, preted as the retarded potential of electromagnetic field. Thus
_ ) Eq. (23) with the recurrence systefil) enables one to find
with a multipole source term with admirable ease the exact multipole solution of arbitrary
a Wi Alw) order for the electromagnetic wave equatid®) by means
PLi=(=1)*M OV A (96 K Y(1) of the world functiono, transport bitensog, and tail termv
a — of the classical Green’s functiof3).
X gy(x,y(t))6(x,8)). (18)

IV. ELECTROMAGNETIC WAVE TAILS IN THE CASE

HereM ,(t) is a tensor field of ordex + 1 on the world line
OF A WEAK GRAVITATIONAL FIELD

¢ of the source ofelectromagneticradiation and the coor-

dinates of the points of the lingare denoted by(t), where Application of formulas(23) presupposes knowledge of
the parametet is the proper time along. Let us suppose the tail termV of the classical Green’s function and the
that there is dpe | such thatM ,(t) =0 fort<t,. If M, is  world function o, the exact forms of which, however, have
determined by relationél?), it follows from the symmetry  peen thus far calculated for some particular cases only, such

properties of Dixon’s momentsl6) thatV,p5=0, i.e., as for example the Bianchi type-l metfig1], de Sitter met-
ric [29], and a class of Robertson-Walker metiigg]. Nev-
(Vapy d)=—(p},Vagp)=0. (19 ertheless, for most cases approximate form¥ aind o are

known and can be used within the framework of our formal-
On the domam] (OME}, with " (£)=Uy.J"(y), the  ism in obtaining approximate solutions.
solution uM can be represented as a regular distribution We assume that the gravitational field is weak and there-
(function). To find a form of the solution suitable for appli- fore use a perturbational approach. The metric tensor and
cations it is reasonable to define a new, retarded time cooether geometrical quantities are supposed to depend on a

dinate 7(x) as follows: small parametee which determines the order of deviation
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from flat spacetime. Such expansion has been used, for idellows from Eq.(8) that the quantity-U(x,y) is also small
stance, for the electromagnetic field in Rg83] and for  of first order. Thus the first integral in E¢Q) is a second-
gravitational waves in Ref15]. order small quantity, whereas the first factdf(x,z) under
the second integral in E@9) may be considered as a zeroth-
A. First-order tail term for the Green’s function order quantity. Hence, taking into account ). with

We assume that the metric tengpy, is expanded up to k=1
the first order ing, so that the zeroth-order term is the metric o
tensor of the flat spaceting,;,, i.e.,

0 the vector integral equatiof®) reduces to

Jab=0abt €Yap™T 0(82): ) 1 )
0 VL(X,y)=— —f 9h(x,2)LU(z,y)o(2) + O(&?).
2w Jsy)
g2 =g3—£92°+ 0O(&?), (24) @)
0
Likewise, the first factor under the last integral is of zeroth
with order, and if we would use Minkowskian coordinates in the
flat spacetime, we could writgh= 65+ O(e). Nevertheless,
ab__ qac~bd . i . .
Y %J g Yed- in order to be able to use general curvilinear coordinates in

flat spacetime without any need for modifications in the in-
tegral in Eq.(27), we prefer to keep the more general expres-

The world functiono(X,y), the transport tensay(x,y), and X ) N
siongl(x,z). The same will be done in similar cases below.

the scalarized van Vleck determind{ix,y) can then also be

expanded in the parameter We have To calculate the factot U, under the last integral we
need the linear terms in the expansions g){x,y) and
o=o+eo+0(g?), k(x,y) which can be obtained as follows. Expanding the
o 1 defining equationr2V ,g°(x,y) =0 of the transport bivector,
we have

g=g+eg+0(e?),
0 1

e (1
ailXY)=Uai T 5 2 v Z(N ? ' Z(N
k:k+8k+0(82), (25) g (Xy) g +2J0% (y Z( ))g (y Z( ))
0 1

X[ Yq(pir)(Z(N) = ¥prg(Z(X\))]Z'dN +O(£2).

where (28)

, 0, andk=1 . . . .
(or 8 o Here, as well as in the next integral, integration is performed

along the geodesi{A) connecting the points andy, where
are the corresponding quantities of flat spacetime. The exx is an affine parameter on the geodesic, such #ia)

pansions of the Ricci tensor and the tail tevhof the clas- =X, z(0)=y.
sical Green’s function begin with terms which are small of Next substituting Eq(6) with Eq. (28) into Eq. (4) yields
the first order, that is, for the scalarized van Vleck determingi7) the following

first-order expression:
Rap=¢&Rap+O(e?),
1

1 .
k(x,y)=1+¢ a3(X,y)aP(X,y)
V=eV+0(&?). (26)

1

1
, Xf M1-N)gh(x,z(N)gp(x,z(N))
As a result of the tensor character of the expressions ob- 0

tained, they can be used in all the coordinate systems, where
the metric preserves the for(@4). Up to now we have where
necessary meticulously inserted the underscripts 0 and 1 de- Finally, after quite simple but voluminous calculations we

noting the zeroth-order ternise., the flat spacetime quanti- gptain from Egs.(27)—(29) the sought-after expression for
ties) and the first-order terms, respectively. The Ricci tensokne first-order tail term:

Rap and the tail termV being small, of first order, we will

X Ryq(z(N))dN +O(&?). (29

omit these underscripts where confusion is excluded, and i 1 . . b
write the results in what follows to the first-order approxi- Va(X,y)= E{gavb[a (X,y)P°(x,y)]
mation.
Next we will find an explicit expression for the leading +o (Y PRy}, (30

member of the expansion of the tail tenhproceeding from
the integral equatiorf9). SinceV is small, of first order, it where
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Pb(X,Y)==JE(y)gE(x,z)qu(z)qu(z), (31) D'y /B D) ()

F;(X'y) = fS(y)gggiqu{PDQ]f +R qu

+2Rpq0(X,Y))w(2). (32

0
HereGP%:=RP9— 1gPIR are the contravariant components of J y
Einstein’s tensor, R is the Ricci scalar, D,
=0.5(2,X)0.q/(2,y), anddX4(z) denotes the 3-surface el-
ement onx(y) defined by

FIG. 2. A diagram in Minkowski 2-spacetime: the regions
where the character of the tail term is qualitatively differgris the
source of electromagnetic waves aRdis the world tube of the
gravitational source. The observer in the regidfy) does not see
any wave tail, and the observer * (y) can see a wave tail of
where €,4,s are the components of the discriminant tensorSimple s_tructure(37), whereas in the regio(y) one can see a

. wave tail of the general forn30).
W|th €0123— 1. )

It can be shown thaV}(x,y) remains bounded whex  moments of the source of gravitation, including the angular
—XeC™(y). From Eqgs.(30)—(32) we see that/ia vanishes momentum, do not influence in this approximation the struc-
for everyxe Q andyeQ if Ry(2)=0, Vze Q. Itis the ture of V(x,y) [in the domainD*(y)]. A corresponding re-
necessary and sufficient condition for the validity of Huy- Sult for a scalar field has been presented in R8] and for
gens’s principle in the first-order approximatif3g,34. a vector field in Ref[33].

Among the astrophysical applications of great interest is B. Tail term for multipole solution

the case in which the source of gravitation is spatially iso-
lated, i.e., supﬁlabCf, whereT is the world tube of the On the basis of Eq(23), the tail term)* of the retarded
2*-pole solution of Eq(18) can be written as

gravitational field source. In this case it is reasonable to di4

vide the spacetime domaih'(y) into the following three 1 (%
e a_ a I(p)j

subdomains: V“_er Jto Vi Y(IM A (t)dt. (36

d3,(2)= % Vg(2) €pgred 2N dZ NdZ, (33

D(y):={x|xe 3" (y),X(y)NI'=2}, Next we will study the tail termv’2 of a multipole solu-

~ ~ tion in a weak gravitational field more closely. In a weak
D*(y):={x|xeD"(y),C"(y)NT CX(y),S(y)NI'=}, gravitational field the bivector field/(x,y) is determined
by Eqg. (30). In what follows we presume that the world
5:={x|xEJ+(y),s(y)mF¢@}, (34) line ¢ of the source of electromagnetic waves remains
outside the source of the gravitational field, whereas
It is evident from Eqs(30)—(32) thatV(x,y)=0 if ¥x  Y(to) and y(t;) are points on the world ling of the
eD(y). We remind the reader that our results are valid forwave sourcet, andt, being, respectively, the proper time
an arbitrary weak gravitational field. An analogous conclu-values when the source begins and terminates the emission.
sion on the background of a weak Schwarzschild field wadf the world line ¢ of the wave source lies outside the world
drawn in Refs.[35-37. As in the first approximatiorP;bb tube I' of the source of gravitation, i.e., sugp suppl’
=0, xe D*(y), the expression for the tail terd in the =, and if suppgM ,(t) C(to,t;), then in the structure of the

domainD* (y) becomes considerably simpler, namely, tail term Vi there appear features similar to the case of the
tail term of the fundamental solutiovt discussed at the end
1 b of the last subsection.
V(X,y)= EQ(X,V)P Vi Xy (39 To begin with, we divide the spacetime domain

JT(y(tp))\{ €} with y(t) € £ into three subdomains:
Thus, in the subdomain(84) the character of the tail term

is qualitatively different(i) No-tail region In the subdomain E:={x|xe I"(y(to))\{&},2(y(to))NT =},
D the observer ax does not see any wave taif(x,y)=0, ) ~
from the source ay. (i) Simple-tail region In the subdo- E*:={x|xe 37 (y(to))M &}, CT (y(t)) NI CE(y(ty),

main D* there appears a wave tail of the simple fo{@3). Syt ))ﬂf—@}

(iii ) General-tail region In the subdomai® one can exam- Y '

ine a wave tail of the general structui@0) (see Fig. 2 Bimixlxe It (V(tONE x & E.x & E* 3
Equation (35) leads to the conclusion that if the metric {xlxe I (y(to)\gh x e Eoxe B} 37

tensor satisfies the Einstein field equations, the tail term ofSee Fig. 3.

the Green’s function in the first approximation in the space- In the subdomaing&, E*, andE the character of the tail

time domainD* (y) is completely determined by the four- term of a wave pulse with finite duration is qualitatively

momentum of the source of gravitation. The higher multipoledifferent.
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when the above-mentioned instantaneous wave pulse has
passed the source of gravitation.
oW Obviously, in caser(x)<to+Ay(x), thenxe E andV?,
7 CH ) =0. o
s (i) Simple-tail region If 7(x)=t,;+ A,(x), thenxe E*,
c® and the structure of the tail term is determined only by the
four-momentum of the source of gravitational field:

1 ty '
nTg2 ﬁ g, y(DIM (1) PPV, dt.
0 ()
(41)

1
o(x,y(t))

Consequently, the higher multipole moments of the
FIG. 3. A diagram in Minkowski 2-spacetime: the regioss ~ Source of gravitation, among them the angular momentum,

E*, andE where the tail term of a wave pulse with finite duration do not influence the structure of the que tail.

behaves differently. The past light co@e (X) originating from the (iii) General-tail region To the domairE corresponds the
pointX is represented by the dotted lines. The bold-faced part of thénterval (to+A(x),t;+A,(x)) of the retarded timer(x),
future light cone C*(y(toy)) corresponds to the hypersurface and for these instants it is valid:

3 (y(to)) with x=x and the boundary of the hyperplaBdy(t,)):
1 min(7(x) —Aq(x),tq)

i.e.,S(y(tp)) is seen as the two poini;sHerelN“ is the world tube of ya=__ Va (X Y(1)M |(//-)j(t)dt
the source of gravitational field is the world line of the wave mo2m )y, Jitw) "
source which radiates during a finite proper time inteftglt;]. A (42

is the world line of the observer. On the observer’s world Ine ) ) ) )
these intervals are indicated in bold where the observer can in prinhereV is determined by Eq$30)—(32). Thus, in compari-

ciple see the direct pulsghe interval[a,b]) and the wave tailthe ~ SOn with the direct pulse, the tail of the wave appears to the
semi-interval[ c,)). During the intervaib,c) on \ there occurs a  observer after the time delay,(x).
blackout between the direct pulse and the wave tail. The particular casa 1(x) >t;—t; is also of interest. In it
there occurs a time lapse of duratidrfx) between the end
(i) No-tail region If xe E, then alsoxe D(y(t)) for ev-  of the principal pulsd 7(x)=t,] and the appearance of the
ery te (tp,7(x)). Hence it is valid thal\/jaz 0, and conse- wave tail, with
quently
A(X):=A1(x) = (t1—to). (43
V‘;=O, VxeE. (38 ) )
Hence, instead of a single pulse, the observer would see two
As E+JJ, there exist points in space where the (fore)clearly separable pulses: the principal one and the wave tail.
front of the wave is not simultaneously accompanied by the
wave tail, the latter appearing after some time deldp C. Schematic representation of the geometry
describe this effect in more detail, let us define the quantity of wave tail generation

7o(X,2) as a solution of the following set of equations: The purpose of this subsection is to provide a schematic

plane spacetime representation of the geometry of wave tail

o(x2)=0, zeC (x)NT, generation. This subsection is meant as an illustration: the
_ _ rest of this paper does not rely on it. For the sake of simplic-
o(2,y(70(x,2)))=0, y(70) €C™(2). 39 ity we make here the following simplifying assumptions

For further treatment the maximal and minimal values of theWhICh are not used in our calculations) the gravitational

e meral =)~ () are mpotan{messure 1t SCUC° % STER ond st at e graviatenel ang
proper time of the wave sourctor the fixed spacetime point P

X Viz each other. _ _ _
o In order to draw Fig. 4 we have suppressed the time di-
A4(X):=7(X) — maxmy(X,2), mension and one space dimension. Thus all the images in

Fig. 4 are obtained by projecting Minkowski spacetime onto

A(X):=7(X) —min 7o(X,2). (40 @ hypesurface®=const, and then cutting the 3-space with

xx2. The plane of the figure is determined by locations of
The quantitiesA;(x) and A,(x) can be given a simple the wave sourcg, of the observex, and of the centefnot
lucid interpretation by taking into account that an instanta{pointed out in the figueof the gravitational source. The
neous wave pulse emitted by the wave source at#ax)  surfaceS(y), which spreads with time, is the boundary of
traveling at the speed of light reaches the spacetime point the ellipsoid of revolutior® (y), with foci at the locations of
exactly as if it would first travel to the source of gravitation, the observex and of the wave sourcg The ellipsesS; and
reflect from there, and further travel to the spacetime paint S, are the intersections of the plane of the figure with the
In the case of mimy(x,2) the reflection takes place precisely surfaceS(y), which, respectively, correspond to the instants
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D. Radiative part of the electromagnetic wave tails

Let us examine the case in which the source of gravitation
is spatially isolated and the distance of the source of waves
from the source of gravitation is bounded. The tail term be-
ing a first-order small quantity, we can regard the spacetime
/ 2 as flat when discussing it and use Minkowskian coordinates

S

w

Ly

whose origin lies inside the world tube of the source of
gravitation. We denote the distance of the observer to the
origin of the coordinates by, and will also below use the
following notation: if two functionsrA(x) and rB(x) are
equal in the limitr —, 7=const, i.e.,

FIG. 4. A schematic representation of the geometry of wave tail lim (rA(x))= lim (rB(x))
generation on a spacelike plar&?. Herey is the wave source re e
is the observer, the darker shadowed circular disk is the gravita- 7= const r=const

tional source, an& is the focusing region. The remaining compo-

nents in the figure are explained in Sec. IV C. then we will write A(x)=B(x). The position vectors of the

pointsx andy in three-space are denoted ¥wndy, respec-
t|vely
source reaches and passes the source of gravitation. If thgyid the asymptotic relations

surfaceS(y) has not yet reached the gravitational source,

thenV=0 and there is no wave tail. If the surfaBgy) has lim o(x,y(t))~r,
passed the gravitational source, the source will forever re- e

main inside the region of integration®(y), while . _
P(x,y)/8m=const will be the 4-momentum of the gravita- ,lm 7y (D)~
tional source andr,(x,y)=0. The shadowed are®, which
includes the source of gravitational field, corresponds to th&nd
region where the tail wave field is predominantly generated

by gravitational focusing which deforms the direct wave
fronts [15]. Thus we have the following picture. The wave
sourcey emits an instantaneous wave pulse. The direct pulsee obtain from Eqgs(30)—(32) the relationship
propagates along the direct route to the observek, after

which there occurs a blackout before the arrival of the firstV]:(. % Y(1)=(—1)*o; (x,y(1))--0;; Lxy(1)
tail contribution. The parts of the wave front which travel
(along the routes,,l,, etc) to the points of the regiol d

scatter off (reflech) from there and then propagatalong ma)

17,15, etc) to x, appearing to the observer as the tail wave.

To elucidate the introduced maximal and minimal time For brevity, in what follows we will not write explicitly the
intervals,A; andA,, let us again consider the example pre-arguments of the functions depending both on the poims
sented in Fig. 4. At timg/°=t, the wave source emits a Well as on the parameter
deltalike pulse. The evolution of the surfaBgy) is charac- The radiative part of the wave tail which dominates at
terized by the time-varying semimajer and semiminoh  infinity can be written as
axes which depend on the observer tim& as a=(x° ) Y
—tg)/2 e_mdb:[(_r(x,y)]l’zlz. The ellipsesS,, S, and S pa d:(_f OO M'“‘”(t)(——) Vadt.
are the intersections of the plane of the figure with the sur- = #™% 27 Ji 't e # g dt)
face S(y) at times of observatiom{=ty+|X—y|+A, x3 (45)
=tg+|X—Y¥|+A,, andx3>x3, respectively. Heréx—y| is
the spatial separation between the wave source and the oEa of the 2“-nole solution can be written as
server. The observer detects the direct pulse at tiﬁqeto © P
+|X—y|, the wave tail begins to appear &=ty+1,+I% 1 d\e ooy
=xg+A;, and beginning from timex=to+l,+15=x3  Z3(x, y(1)=5— ( 5 ) gf‘#M'ﬂ(“)i(t)}

+ A, the structure of the wave tail is determined by E2f) g dt 4 t=r(x)
with F,=0. The time intervalA;=1,+17 —|X—Y]| is evi-
dently equal to the difference of the propagation times of two - i ( 1 d )M

. . g7 (x,y(7))
pulses from the wave source to the observer: one arriving p(x,7) dr
along the direct route and the other first traveling to the
source of gravitation, reflecting from there and then reaching 7;i, %,y (7)o (%,y(7))
the observer. P(X,7)

lim o (x,y(1))~0O(1),

r—o

VA, y (D). (44)

ecause of Eqg23) and(11), the zeroth-order radiative part

MI#i(r). (46)
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On the basis of the last two relations, after integrating by If A°(x,7) does not vanish merely during a finite time

parts the right-hand side of E@5) we obtain the following intervalt,<7<t; and the world line of the source of radia-

expression fo% .4 tion lies outside the world tube of the source of gravitation,
then the conclusions of Sec. IVB are also valid for the ra-

N I diative partE? of the tail term. Thus, for example, i(x)
a - i\/a—-b ’ )
V;Lrad_ jto lﬁgbvi Z,u(x’y(t))dt $tO+A1(X), thenEa(x,T)=0; if T(X)>t1+A2(X)a then
[#1 1 v
5 o2 e o
=0 g dt) Ef(x,m)= 7 toA (XD #(x,y(1)P°Vy Ty (D) dt
1d\s o oy .
X(——) —”MI(M)J(t)} b
dt ® ' 1 (top(x,y(t)P° d
v ’ t=r(x) 2 L (uonOVOIPR o et 50
47) 4w Jy, o(xy(t)) dt
whereZ;, (x,y(t)):=Z3, (¢ Y (r(x))] -9 - A matter of particular interest is the situation in which

We_ must point out that Eq47) con_ta|ns,u+1 terms, out A(X)>(t;—tp), as in this case there is a blackout during
of which the lastu ones are actually instantaneous. The firstipe time intervalA (x) = A, (x) — (t;—to) between the end of
term in Eq.(47) is truly nonlocal, whereas the factggyV  the direct pulse and the appearance of the wave tail. The last
assigns most of the weight to the source’s recent past.  fact considerably simplifies the observation methods for dis-

The truly nonlocal radiative wave-propagation correctiontinguishing the profile of the direct pulse from the general

relativistic radiation tail originating from compact astro-

Pa :=f7(x)</;giV-aZb (x,y(t))dt (48) physical binary systems. The relative intensity of the direct
wrad'= [ BTt pulse and the wave tail, and the time deld@jackou} be-

tween them, can yield essential additional information, inde-
takes a universal form which is independent of the multipolepemjenuy of other methods, about the physical characteris-
order. An analogous_ resglt in a weak Schwarzschild fi_eld in @ics of a binary(the distance between the compact objects,
slow-motion approximation has been earlier found in Refthe mass of the source of gravitation, the orientation of the
[10] (Cf a|50[26]) Our formula(48) genel’aﬁzes this result p|ane of the orbit with respect to the Observer’)etc_
in two ways. First, Eq(48) is valid in the case of an arbitrary From Eq.(50) if follows that the wave tail effect of the
weak gravitational field in the corresponding asymptoticalIyastrophysica| systems radiating in the pulsed mode is pre-
flat spacetime. Second, there are no formal restrictions to th@ominanﬂy caused by the low-frequency modés
bounded mqtlon of th_e_wave source: e.g., the wave SOUrc& 2 7/(t,—t,)] of the direct pulse(Here the angular fre-
can move Wlth_ a relativistic speed. Because of the unlversa&uencyw of the radiation is measured in the proper time of
form of the tail term, Eq(48) has a simple, but from the the wave sourceThe high-frequency waves reflecting from
point of view of observations essential, generalization. Oipe gpacetime curvature interfere and prevalently attenuate
the assumption that the local pat(x, 7) of a wave observ-  gach other in the expression of the tail. Also important, from
able at infinity (or its zeroth-order radiative partan be ap-  the point of view of observational detection, is the fact en-
pr(_)ximated with suffic_ient accuracy_by the superposition of suing from Eq.(49) that the intensity and the time delay of
finite number of multipole waves, it follows from E¢48)  the wave tail of radiation from a pulsed source moving on a
that the corresponding nonlocal radiative wave-propagatiogjrcular orbit depend substantially on the mutual positions of

correctionE®(x, 7) has the following form: the observer, the wave source, and the source of gravitation.
) By. comparing th_e profiles of _thg pu_lses emi_tteq in different
Ea(X,7)=J YgbAP(x, 1) Vadt, (49  points of an orbit, one can distinguish in principle the con-
to tributions of the direct pulse and the tail even if there is no

) i considerable time delay between the tail and the principal
wherey is defined by Eq(22). pulse. This circumstance is significant because in the case of
For a source radiating in the pulsed mode the last formulgnost astrophysically realistic models the physical conditions
enables us to comparatively simplgn the basis of the pa- necessary for the occurrence of a blackout in between the
rameters of a recorded direct pulse and a presumable modgiect pulse and the wave tail will considerably decrease the
of an astrophysical objecpredict the physical parameters of jntensity of the tail.
the radiation tail and evaluate the possibilities of observa- | et us now turn to the magnitude of electromagnetic ra-

tional detection of the tail. diative energy arriving after the direct pulse has passed,

It should be emphasized that applicability of E49) does  7(x)>t,+ A,(x). The powerd P/d(} radiated into the solid
not depend on whether the source of radiation actually emitgng|ed9 can be calculated as follows:

in the pulsed mode or pulses of radiation are present at the
location of an observer due to the kinematics of the radiating
system(e.g., the rotation of the directed radiation cone of a

pulsay.

2

dpP r
|(T)Ed—Q=—EE%(X,T)E&O(X,T). (51
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For further treatment it is reasonable to present(&6) in a

somewhat different form. In the proper reference frame of

the source of gravitational field we have

a _-

0

E du,

L fu(tl) [A’%(X,T(X))]r(x):t(u) (52)

('[0) [U(T)—U]Z

whereu(t) :=y°(t) — - y(t), A:=x/|X| andM is the mass of
the source of gravitational field. Below we will use the no-
tationsT:=u(t4) —u(ty), which is the duration of the direct

pulse in the observer time, amdh:=u(t; + A,(x))—u(t,).

To get an idea of the magnitudes involved we construct an

artificial example in which

1
AKX, T(X))|T=t(u):F (v, ) O (U= u(ty))® (u(ty) —u).
(53

Here O is the Heaviside distributiony,¢ are the polar
angles determining the observer’s position, dAds an ar-
bitrary vector function. From Eqg51)—(53) we obtain an
estimate of the ratio of the intensity of the wave tHit;
+A,(x)) to the intensity of the direct puldg (the ratio of
the densities of the energy fluxes at the observer’s locgtion
namely,

oM |2

Ay(x)

T
T+A(x)

|t A000) _

lo

2
) . (54)

We see that if\,(x) is sufficiently smal[A,(x)~2M], the

intensity of the tail can be comparable with that of the direct
pulse. Evidently, in this case we cannot confine ourselves t
the first approximation but must instead additionally take

into consideration the higher approximatien

To illustrate the above estimate, let us consider a wav
source rotating in a circular orbior radiusry) around a
spherical sourcéor radiusr) of gravitational field. The ori-

gin of the spatial coordinates is taken to coincide with the

PHYSICAL REVIEW D 63 063003

F(p)

0.12
0.1

0.08

0.06

0.04

0.02

2 3 4p

p, =0.638 1

FIG. 5. The functionF(p) vs its argumenp.

where

It is interesting to note that the functidh(p) has a maxi-
mum atp~0.638(see Fig. 5.

Therefore, for the given model the amount of energy
transferred by the tail after the tinte+ A,(x) is maximal if

the duration of the direct pulse ®&~1.57A,(x), and can in
this case make up nearly 10% of the energy of the direct
pulse:E~0.11%,(2M)2/A35(x).

As the quantityF does not explicitly depend on the mass
of the gravitational source, then its value for any particular
case(as 0.119 for the present exampie primarily deter-
mined by the profile of the direct pulse and the spatial con-
?lguration of the system consisting of the wave source, gravi-
tational source, and the observer. Somewhat unexpected is

the outcome that the magnitude of the factoM(A\ ,)?,

which characterizes the influence of the gravitational source,
can be of the order of 1, even if the potential of the gravita-
tional source is low everywhere, i.e.MXrg. This conclu-

center of the source of gravitation. Under the conditionsSIiON ¢an be understood on the basis of Re&], where it is

A-y(t;)<0 andry>d+rg, whered:=ryJ1—[A-y(t;)/ro]?,
it follows from Egs.(39) and (40) that

(d+rg)?

Zz(x)* 21,

+O(M). (55)

Hence, ifro>r2/4M, then in case the wave pulse is emitted
in the region of the geometric shadow of the source of gravi
tation or in its vicinity, it is valid thafA,(x)~2M, and ac-
cording to the estimatés4) the intensity of the tail can be of
the same magnitude as the intensity of the primary pulse.

For the model under discussion it is also easy to find th
ratio of the energ\ transferred by the tail terrfbeginning
from the timet; + A,(x) ] to the energy of the direct teréfy,
namely,

shown that the tail field is predominantly generated by the
direct field in those regions where gravitational focusing has
deformed the geometry of the direct wave froisee the
shadowed region in Fig.)4The deformation is characterized
by the focusing functiomx(z,y). If the pointsz andy lie on

a geodesic line which does not cross the gravitational source,
then a(z,y) =0. If the distance of the wave source from
the gravitational source is much larger than the extensjon

of the latter, then for the rays originating in the wave source
and passing through the gravitational source it is vadid,
~Mro/rZ. In the case of our example the condition

gM/Zﬁl corresponds tax~1. Let us note that the last

effect is not revealed by the traditional methods based on the
expansion in terms of spherical functions, as in this case it is
natural to choose the effective location of the wave source

within the source of gravitation. ThusZZ%rS and «
~M/rg; that is, the intensity of the tail is proportional to the
square of the potential of the gravitational field on the sur-
face of the source of gravitatidi39].
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E. Constraints on applicability of the elaborated algorithm yield the following conclusions. In cage the time intervals

Relying on Ref[15], we will now briefly analyze limita- A1(X) andA,(x) have maximal values:
tions to the applicability of the above results. First, note that

the conclusions of this paper were derived under the assump- maxA ;(x)=2(rg—rg)+ x1(x),
tion that on the physically interesting spacetime domain the 5
world function o is single valued: i.e., the geodesics origi- maxA»(X)=2(rq+rg) + x2(X).

nating from the poiny do not cross. If this condition is not

satisfied, then the developed algorithms are not directly apmn case(ii) the time intervalsd ;(x) andA ,(x) have minimal
plicable. However, by virtue of the superposition principle, values:
valid because of the linearity of the wave equation, these
algorithms can be applied even when the world function is a o~ - <
multiple-valued function. Then the correct classical Green’s minAy(x)=0, minA,(x)= 7+X3(X)-
function is the sum over all distinct elementary classical 0

Green's functions corresponding to all distinct geodesics berere the quantities,~2M, a=1,2,3, denote the correc-

tween the pointx andy (see alsd20]). tions caused by the Shapiro effect within the inner region of
Crossing of the geodesics would be caused by gravitathe binary system which are of the same order of magnitude

tional focusing, and at the crossing point the exact factogs the Shapiro time delay between the poinendz.

k(x,y) in U (see[20]) would diverge. Thus, the criterion for |t is obvious that in Eqs(49), (50), and(52) the correc-

no crossing is thak(x,y) be finite alongC* (y). Letus now  tions caused by the inner Shapiro effect may be neglected
consider our first-order expressi¢29). This expression for only in the low-frequency limit
k(x,y) can never diverge if the gravitational source is
bounded. However, if the focusing functiom(Xx,y) 1
=Kk(x,y)—1 approaches unity, then the second- and higher- < 2M " (57)
order effects will come into play, producing a divergence.
Thus, the constraink(x,y) <1 for all x andy is necessary, The necessary conditids7) is also sufficient, if the inequal-
on the one hand, for the first-order analysis to be valid; ondty (56) is simultaneously satisfied.
the other hand, it simultaneously avoids crossing of geode-
SICS. _ , . V. SUMMARY AND DISCUSSION

For a wave source in a circular orlithe observer lying
on the plane of the orbit Eq. (29) gives maxa~(2M/ (i) On the basis of our earlier workg7,24,25 , we de-
rd(2ro/rd, whereM is the mass of the source of gravitation, veloped simple recurrent formulas, i.e., E1), for calcu-
re is its linear size, and, is the radius of the orbit. In this lating exact multipole solutions, i.e., E(¢3), of the electro-
case the constraint max<1 is significant: it says that in magnetic wave equation on the background of a curved
order to avoid too much ray focusing1 the wave source anépacetime which proceed from the classical Green'’s function

2

the gravitational source must not be too far apart: (i.e., the corresponding Hadamard coefficignts
(i) The next main new contribution of this paper is for-
2M g mula (36) with Eq. (30) for the first-order tail term of the
f_s<2_fo' (56) electromagnetic multipole wave in the case of an arbitrary

weak background gravitational field. From these formulas
will follow a number of physically interesting effects.
First, one can infer from Eq$30) the earlier knowr(see
34,33) necessary and sufficient condition for the validity of
uygens’ principle(in the sense of Hadamarih the first

Applying Egs.(49), (50), and(52) to a particular model
system, one should not overlook the fact that, altholgh
a first-order small quantity and therefore, when calculatin
the integrals involved, the spacetime may be considered asaebproximation, namelR,,= 0.

flat background; generally the retarded timg) must be Second, if the gravitational field source is spatially iso-

regarded as the retarded time on _the curved spacetime bE&ed, then beginning from a certain instant of time the struc-
cause the mtegraﬂds may bs sensitive to the wave phase. ture of the tail accompanied by a pulse of electromagnetic
The quantitiesA,(x) and Aj(X):=u(to+A1(x))—u(te)  radiation is completely determined by the four-momentum of
offering their own inherent physical interest must generallythe source of gravitation, and the higher multipole moments,
also be_ calculated at least up to the accuracy of the first-ord%duding the angular momentum, do not at all influence the
corrections. S . o structure of the tail in the first approximation. For the scalar
_ Let us now consider in more detail the time intervalswave equation and for the Green’s function of the electro-
A,(x) andA4(x) for the binary system described at the endmagnetic wave equation, essentially similar conclusions have
of Sec. IV C. We denote the origin of the coordinates at thebeen presented in Ref88] and[33].
center of the source of gravitation yand consider only the Third, in Sec. IV B we discussed a further consequence of
case in which the points, y, andz are aligned on a straight Eq. (36), namely, the time delay effect of the tail with re-
line. Evidently there are two possible cas@sthe pointzis  spect to the direct pulse. In the case of compact binary as-
placed between the pointsandy, and (ii) the pointy is  trophysical objects the time intervéblackou} in between
placed between the pointsand z. Equations(39) and (40)  the direct pulse and the tail caused by delaying the tail may
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be observable and can with the relative intensity of the taithird-order covariant tensor gt The index convention is
give, independently of the other methods, essential informaalso used for ordinary tensor fields, in which case it distin-
tion about the characteristics of the physical systtra dis-  guishes the value of the componeritof a vector fieldv at
tance between compact objects, the mass of the source rffrom its valuev' aty, and G,(,, denotes the covariant
gravitation, the orientation of the plane of the orbit with re- components of the tensor field of rank u at the pointy.
spect to the observer, ekcEarlier, on the basis of the struc-  (2) Symmetrization and antisymmetrization of the tensor
ture of the Green'’s function of the wave equation in a weakindices are denoted, respectively, by the parentheses and
Schwarschild field, the time delay effect of the tail and itsbrackets. For example(3®:=(t3°+3)/2 and tl3Pl:= (1P
possible astrophysical implications have been indicated in-t°2)/2.

Refs. [3] and [4]. Let us mention that some unpublished (3) Ordinary differentiation is denoted by a comrtia
calculations by the present authors demonstrate the occuCovariant differentiation with respect to the Levi-Civita
rence of a similar delay effect also for linearized gravita-(metric connection is denoted by and semicolons, e.g.,
tional waves in the second approximatitef. [5]). By the v af(x,y)="f..(X,y), 92V of (x,y) =f3(X,y), and
common approach in which the wave equation is solved le(z)f(XN):Vyiszilf(X,Y)Zf;iliZ(X,y)- Absolute differ-
separating the angular variables the delay effect, as a rulgyiation along a linez()\) is denoted by an overdot, i.e.,
remains unrevealed. This is due to the circumstance thafi_,.i i

eﬁsuing from the symmetry of gravitational fie(chwayzs- (4 \J/Ve use a system of units in which the speed of light
child, Kerr, etc), the origin of the spherical coordinates and the gravitational constant are equal to 1.

whose world line is simultaneously the world line of the (5) The class oC* tensor fields of rankn is denoted by
multipole radiation source lies inside the source of gravita-ém(m and the subspace @M(Q) consisting of fields with

tion where the Ricci tensor does not vani&y,# 0. m o
L L . L compact support byD™({)). A tensor-valued distribution
(i) It is valid in the first approximation that the nonlocal T(xy) e D'™Q) of rank m at xe Q and of rankk at y

radiative wave-propagation correction at infinity takes a uni- ) . : m ;
versal form(48) which is independent of the multipole order. < {1 is a continuous linear map (Q)ﬁgk(g),an (@, m) Is

. : oo " _a coordinate chart such thatye w and ® e D"(w), then
A corresponding result in a weak Schwarzschild field in a A(m

) i -
slow-motion approximation has been publishedi6]. Our ~ €2ch component oi(Tgy"(x,y), #am(x)) is a (scalar
Eq. (48) generalizes their result in two aspects. First, Eq valued tensor distribution(for a detailed discussion see

(48) is valid in the case of an arbitrary weak gravitational [29)- A set{,C( is called past compact & (x) N €, is

field in the corresponding asymptotically flat spacetime. Seccompact(or e_mpty/ for all xe ). We denote the class of

ond, there are no formal restrictions to the spatially bounde&",sf'bm'onS in D'(Q) with past-compact supports by

motion of the wave source: e.g., the motion of the wavel (). ) ) " )

source can be relativistic. (_6) The world funpuon biscalar(x,y) e C*(Q2 X Q) is
(iv) The intensity of the tail of the electromagnetic wave defined by the equations

pulse emitted by the wave source within a compact binary in ab B

the vicinity of the geometric shadow of the source of gravi- 97V ao(x,y) Voo (X,y) =4a(X,y), (AL)

tation can be of the same magnitude as the intensity of the B

direct pulse, and the energy carried away by the tail can o(x,y)=o(y.x),

amount to 10% of the energy of the low-frequency modes of

the direct pulse. The world function o(x,y) is numerically equal to the
square of the geodesic arc length between the pziatudy,
ACKNOWLEDGMENTS and is positive for timelike intervals and negative for space-
like intervals.
_The present wc_)rk was partially supported py the Estonian (7) The propagator of geodetic parallel displacenatgo

limo=0. (A2)

X—Yy

extend their gratitude. g(x,y) of rank m at bothx andy, which satisfies, in local
coordinates, the following differential equations and initial
APPENDIX: NOTATION AND BASIC FORMULAS conditions:
(1) .tha adopt the metric signgtu(eh —, —, —) with the _ U:avagg%(x,y):o, (A3)
Latin indices running and summing from 0 to 3. To abbrevi-
ate _the _notation of repeated tensor indices, we i_ntroduce gllA((nr;l’:)(X,X)zéil.néim_ (A4)
multi-indices, e.g., A(u):=(a;...a,), (u)=(1...i,), a  @m

P(u):=(p;...p,), etc. We apply extensively the technique o
of two-point téLnsors(or bitensors and follow closely the (8) The surface distribution$*)(a(x,y)), ©=0,1,2,...
standard notation and index conventiga]. To distinguish ~ &ré defined by

the tensor indices which refer to poixfrom those referring

- I a\*
to pointsy andz we use indices,b, ..., A(u),B(u),... atx, SM(o(x x)):= lim <_ _) f X X
incices 1.j..../(u), J(u)oe. aty, and pa..p(a), 0 CYRIONEINATG] Jor P
Q(u),... atz. Thus F,""(S) is a contravariant vector atand (A5)
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for all ¢ CS(Q), if =0, and for all e Cx(Q\y}), if
w=1, Where(ju(,(x) is a Leray form for which (0 +(a(x,y)), (X)) = jJ+(y)¢(X)M(X)v (A9)
do(X,y) Uu () = u(X), (A6)

where J*(y):=D*(y)UC™(y). The relevant properties of

«(x) being an invariant volume element a@d (y) = {x|x the Heaviside distributions can be found !n R({t_EQ]. _
(11) The scalarized van Vleck determinant is a biscalar

eD*(y),o(x,y)=¢e,e>0}. In general, the integra(A5) N ; )
can be evaluated by means of a partition of unity subordiVhich is defined by the equation
nated to a covering of) by open coordinate neighborhoods

in each of which |detoqi(x,y)|H?

KOY)= 900977 (A0
w(X)=g(x)dx°0dx*0dx?0d x3, (A7)
(12) A uth-order Green’s function of the tensor wave op-

whereg(x) :=|detgap(x))| is the determinant of the metric oa10r with respect to ¥,02) is a tensor-valued distribution
tensor. The relevant properties of the surface d|str|but|on§;(x y)eD'}(Q) of rank 1 atx and of ranku+1 aty.

are given in[29]. which satisfies the equation
(99 The 2-form ® on the 2-surface S(y)

—ct (v i i ; :
:=C7(y)NC™(x) in the integral(9) is defined by LG?J(,L)(x,y)=(—1)”VB<M>[g?(x,y)g?((,i‘))(x,y) sy,
do(z,x)0do(z,y)Dw(z) = u(2), (A8) (A1)
whereu(z) is an invariant volume element dvi. where gJB((l’j)) is the tensor propagator of geodetic parallel
(10) The Heaviside distributions are defined by displacement.
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