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General relativistic dynamics of compact binaries at the third post-Newtonian order
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The general relativistic corrections in the equations of motion and associated energy of a binary system of
pointlike masses are derived at the third post-Newtort®PN) order. The derivation is based on a post-
Newtonian expansion of the metric in harmonic coordinates at the 3PN approximation. The metric is param-
etrized by appropriate nonlinear potentials, which are evaluated in the case of two point particles using a
Lorentzian version of a Hadamard regularization which has been defined in previous works. Distributional
forms and distributional derivatives constructed from this regularization are employed systematically. The
equations of motion of the particles are geodesiclike with respect to the regularized metric. Crucial contribu-
tions to the acceleration are associated with the nondistributivity of the Hadamard regularization and the
violation of the Leibniz rule by the distributional derivative. The final equations of motion at the 3PN order are
invariant under global Lorentz transformations, and admit a conserved gine@gcting the radiation reaction
force at the 2.5PN orderHowever, they are not fully determined, as they depend on one arbitrary constant,
which probably reflects a physical incompleteness of the point-mass regularization. The results of this paper
should be useful when comparing theory to the observations of gravitational waves from binary systems in
future detectors VIRGO and LIGO.
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[. INTRODUCTION tion of the Einstein-Infeld-Hoffmann equationsThe same
equations were also obtained by Fock and followéts-17]

The present work is a contribution to the problem of thefor the motion of the centers of mass of bodies with finite
dynamics of two compact objects at the so-called third postsize. The next approximation, 2PN, has been tackled by
Newtonian (3PN) approximation of general relativity. By Otha, Okamura, Kimura, and Hiidd8—-20 with a direct
3PN we mean the relativistic corrections in the binary’spost-Newtonian computation of the Hamiltonian Mfpoint
equations of motion corresponding to the orde®lklative  particles; however the first complete two-particle case in
to the Newtonian acceleration, when the speed of light their framework is only given by Damour and Ség21],
tends to infinity. Why study the equations of motion to suchand the fully explicit three-particle case is due to Seha
a frightful post-Newtonian order? A side reason is the[22]. Up to the 2PN level, the equations of motion are con-
strange beauty of the post-Newtonian expansion, which beservative(existence of ten conserved quantities, including a
comes quite intricate at the 3PN order, where it requiresonserved energyThe nonconservative effect, which is as-
some interesting mathematical methods. The main reasospciated with the radiation reaction force, arises at the 2.5PN
however, is that inspiraling compact binaries, namely, syserder. The first correct equations of motion of two masses at
tems of two neutron stars or black holex one of each the 2.5PN order were obtained by Damour, Deruelle, and
moving on a relativistic orbit prior to their final merger, coworkerd23—26 in harmonic coordinates. These equations
should be routinely observed by the gravitational-wave deare applicable to systems of strongly self-gravitating bodies
tectors such as the Laser Interferometric Gravitational Waveuch as neutron starsee Damourf9,10] for the prooj.
Observatory (LIGO), VIRGO, and their fellows. Several Moreover, Kopejkin[27] and Grishchuk and Kopejkif28]
analyses show that the post-Newtonian templates requireabtained the same equations in the case of weakly self-
for the detection and parameter extraction of inspiralinggravitating extended bodies. The corresponding result at
compact binaries should include the relativistic corrections ir2.5PN order was also derived by Stda[29,30 using the
the binary’s orbital phase at approximately the level of theArnowitt-Deser-Misner (ADM) Hamiltonian approach.
3PN orderf1-7]. Later, the harmonic-coordinate equations of motion were re-

Lorentz and Drosté8] were the first to obtain the correct computed by Blanchet, Faye, and Ponggi] following a
equations of motion of two nonspinning particles at the 1PNdirect post-Newtonian iteration of the field equations. Some
approximation(see[9,10] for reviews. An important work  of the latter derivation$23,29,3] opt for a formal descrip-
by Einstein, Infeld, and Hoffmanfil1-13 showed that the tion of the compact objects by point particles. There is a nice
1PN acceleration can in fact be deduced from the vacuuragreement between all these different methods at the 2.5PN
gravitational field outside the masses. This result is interesterder. In addition, the complete 2.5PN gravitational field
ing because, in their approach, the bodies are allowed tgenerated by point particles in harmonic coordinates was de-
carry a strong internal gravity. Unfortunately, the computa-rived in [31].
tion of the surface integrals surrounding the masses is very At the 3PN order, the equations of motion have been ob-
difficult even at the 1PN ordgsee[14] for a recent deriva- tained using a Hamiltonian and formalfunctions by Jara-
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nowski and Schier [32,33 in the center-of-mass frame, and post-Newtonian orders, we get the correct geodesic limit for
by Damour, Jaranowski, and Séba[35] in an arbitrary the motion of a test particle in a Schwarzschild background,
frame. These authors found an irreducible ambiguity linkedind that the 3PN equations of motion stay invariant under
probably with an incompleteness in the regularization of theglobal Lorentz transformations, and obtain a conserved en-
infinite self-field of the particles. In this paper, following the ergy at 3PN(neglecting the radiation reactiprirhe investi-
method initiated iff31], we address the problem of the 3PN gation of the Lagrangian formulation of the equations is dealt
dynamics of point particles in harmonic coordinates. EarlieWith in a separate work37]. _ _

in [34], our result was already discussed and reported in the 'deally, one should perform, instead of a computation

case of circular orbits. We find the presence of tared only valid only for point particlegand necessitating a regulariza-

one undetermined coefficient in the 3PN equations of mo_f[ion), a complete calculation in the case of extended bodies,

tion, in agreement witf32,33,35. Recently, the physical & taking into account the details of the internal structure of

equivalence between our result in harmonic coordinates anid'® Podies. By considering the limit where the radius of the

the result given by the ADM-Hamiltonian approach has beerfWO objects tends to zero, one should recover the same result

established36,37. as obtained by means of the point-mass regularization. This

Another line of research, initiated by Chandrasekhar andvould demonstrate the suitability of the regularization. In

coworkers[38,39, consists of working with continuous hy- 1act, this program has been achieved at the 2PN order by
drodynamical fluids from the start, and deriving the metricCishchuk and Kopejkii27,28, who proved that the com-
and equations of motion of an isolated fluid ball up to thePactness parameters associated with each object disappear

2.5PN ordef40—43 (the derivation in the case of two fluid from the equations of motion, and they obtained the same
balls. in the limit of zero size of the bodies. is due to€duations as in the case of point particles. At the 3PN order
[27,28). Our iteration of the gravitational field and equations 1€r€ is no such proof that the method with extended bodies
of motion in the previous pap&81] is close to the latter line Would give the same result as with point particles.

of work in the sense that it is based on the reduction of some "€ main problem is that from the 3PN level one cannot

general expressions of the post-Newtonian metric, initiallycCMPute the most difficult of the nonlinear integrals in
valid for continuous fluids, to pointlike particles. The choice closed form for two extended fluid bodies of finite radius

of point particles, adopted here as well, is motivated by thdthough these integrals could perhaps be obtained as power

efficiency of thes functions in performing some complicated S€res valid when the two radii tend to zgr@resently the
nonlinear integrations. The price we have to pay is the ne@nly @pproach which is able to overcome this problem is the
cessity of a self-field regularization. We apply systematicallyone followed in this paper: namely, to model the sourcesby

in this paper the regularization of Hadamard, based on thf#nctions and to use a regularization. The price we have to
concept of “partie finie” of singular functions and divergent P&y S the appearance of one physical undetermined coeffi-

integrals[44—46. This technique is indeed extensively usedcient at the 3PN order. As a consequence, this method should
in this field[23,29,31,32 More precisely, we apply a variant be completedhopefully in a future workby the study of the

of the Hadamard regularization, together with a theory ofimit relation of the point-particle result with the physical

pseudofunctions and distributional derivatives, that isresultvalid for extended bodies in the limit of zero size. This

compatible with the Lorentzian structure of the gravitationaiStudy should probably give the value of the undetermined
field. All the details of this regularization can be found in Parameter left out by the regularization.

[47,48. We use notably a specific form of distributional "€ Plan of this paper is the following. In Sec. II, we
stress-energy tensor based o@ pseudofunctions”(with review some necessary to_ols concerning the regularization
support limited to the world lines of the particletn a sense, and the definition of the p.omtjparn.cle model. I.n Sec. III,'we
these & pseudofunctions constitute some mathematicallyP€rform the post-Newtonian iteration of the field equations
well-defined versions of the so-called “goatifunctions”  and write the 3PN metric in terms of some convenient non-
introduced long ago by Infelf49] (see also an appendix in linear potentials. Section IV is dev_oted to th_e computation of
the book of Infeld and Plebansf&0]). the compact support an_d.quadratlcallly nqnlmeay parts of the
potentials. The most difficult potentials, involving notably
some noncompact cubic nonlinearities at 1PN, are obtained
in Sec. V. The so-called Leibniz and nondistributivity con-
described by suchs pseudofunction singularities?Defi- tr?butions to the equc"_;ltions of motion are derived in Sec. VI.
nitely, our main justification is that this method permits the Fnally, we present in Sec. VI the result for the compact
derivation of a result in a consistent and well-defined wayPinary’s 3PN acceleratiofin the case of general orbjtand
(i.e., all the difficult nonlinear integrals at the 3PN order arelh€ associated 3PN energy.

computed unambiguouslyFurthermore, we shall check that

some different regularization prescriptipns yield equations of Il. HADAMARD REGULARIZATION

motion that are physically the same, in the sense that they

differ from each other by merely a coordinate transforma- In this section we present a short account of the regular-
tion. Moreover, a justificatiora posterioriis that the end ization of Hadamard44,45, the associated generalized or
result owns all the physical properties that we expect the trupseudofunctions, and the choice of stress-energy tensor for
equations of motion of compact objects to obey. In particuoint particles. We follow(and refer to the detailed investi-

lar, there is agreement with the known results at the previougations in[47,48. Consider the clas§ of functions F(x)

Thus, we are using a formal regularization method, base
on a clear mathematical framewd7,48), but one that we
cannot justify physicallywhy should the compact objects be
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which are smooth@*) on R® but for two singular pointy/, [51], is the § pseudofunction P§;, which plays the same
andy,, around which they admit a powerlike singular ex- role as the Dirac measure in distribution theory, in the sense
pansion of the type that

VneN, F(x)= > rif(n)+o(r]), (2.1 VFeF, <Pf51,F>=Pff d®x8.F=(F);, (2.9
ag=asn 1
o _ where ), is the partie finie ofF as defined by Eq(2.2).
and similarly for the other point 2. Herg=|x—y,|—0,and  From the product of P§; with any PfF we obtain the new
the coefficients, f, of the various powers of; depend on pseudofunction Pf 8;) which is such that
the unit directionn, = (x—y,)/r4 of the approach to the sin-

gular point. The powers of r; are real, range in discrete VGeF, (Pf(F51),G)=(FG);. (2.6)
stepsli.e., ae(aj)i.n], and are bounded from belova(
<a). The coefficients,;f, (and ,f,) for which a<0 are Next, the spatial derivative of a pseudofunction of the

referred to as theingular coefficients ofF. If F andG be-  type PfF, namely,d,(PfF), is treated as follows. Essen-
long toF so does the ordinary pointwise prod#, as well  tially, we require in[47] the so-called rule of integration by
as the ordinary gradiemtF. We define the Hadamard “par- Parts, namely, that we are allowed to freely operate by parts

tie finie” of F at the location of the singular point 1 as ~ any duality bracket, with the all-integratétsurface”) terms
always zero, exactly as in the case of nonsingular functions.

1 This requirement is motivated by our wish that a computa-
(F)1=f 7 fo(ny), (220 tion involving singular functions be as much as possible the
1 same as a computation valid for regular functions. Thus,

wheredQ;=dQ(n;) denotes the solid angle element cen- VF,GeF, (&(PfF),Gy=—(a(PfG),F). (2.7

tered ony; and of directiom,. Furthermore, the Hadamard

partie finie (Pf) of the integral/d®xF, which is in general Furthermore, we assume that when all the singular coeffi-

divergent at the two singular poings andy, (we assume no cients ofF vanish, the derivative of F¥ reduces to the or-

divergence at infinity is defined by dinary derivative, i.e.,d;(PfF)=Pf(d;F). As a particular
case, we see from these assumptions that the integral of a

sat3 F) gradient is always zero{d;(PfF),1)=0. Certainly this
1

3y E_ i 3
Pfsl,SJd X F an%d XF+4m > 3

2 should be the case if we want to apply to the case of singular
sources a formula which is defined modulo a total divergence
s for continuous sources. We have also at our disposal a dis-
+ 41 In(s—)(rfF)pL 1<—>2]. (2.3 tributional time derivative and the associated partial deriva-
! tives with respect to points 1 and(@ee Sec. IX if47]). The
difference between the distributional derivative and the ordi-

: ; : 3
The first term integrates over a domdh(s) defined asi® to  nary one gives the distributional terrs[F] present in the
which the two spherical balls;<s andr,=<s of radiussand  {erivative ofF,

centered on the singularities are removed. The other terms, in

which the value of a function at 1 takes the meani2@), 9;(PfF)=Pf(9;F)+D[F]. (2.9
are such that they cancel out the divergent part of the first

term in the limit wheres—0 (the symbol ¥+2 means the A simple solution of our basic relatiorf2.7), denoted
same terms but corresponding to the other poin®te that ~ DP*[F] standing for the “particular” solution, was obtained
the Hadamard partie finie depends on two strictly positivein [47] as the following functional of the singular coefficients
constantss; ands,, associated with the logarithms in Eq. of F:

(2.3). See[47] and Sec. V below for alternative expressions

50 a+3<0

of the partie-finie integral. part =1 i1 1

To anyF € F we associate a partie finie pseudofunctionDi [F1=4mPf n} §r1f11+k§O FE f—lZ—k 61| +1e2,
PfF defined as the linear form oft given by the duality 2.9
brackets

where we assume for simplicity that the powersn the
expansion of are relative integers e Z. (The sum ovek

is always finite) The distributional term(2.9) is of the form
Pf(Gé;) (plus 1+2). However, the particular solutiof®.9)

The pseudofunction F¥, when restricted to the set of does not represent the most satisfying derivative operator
smooth functions with compact support, is a distribution inacting on pseudofunctions. It is shown [#7] that one can
the sense of Schwarfa5]. The product of pseudofunctions require also the rule of commutation of successive deriva-
coincides with the ordinary pointwise product, namelytives, which is not satisfied in general by E8.9). Still we
PfF-PfG=Pf(FG). A particularly interesting pseudofunc- are motivated when asking for the commutation of deriva-
tion, constructed if47] on the basis of the Rieszfunction tives that the properties of our distributional derivative be the

VGe F, <PfF,G>=Pff d*x FG. (2.9
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closest possible to those of the ordinary derivative. The mostense, the regularizatidr-]; permits us to get rid of the
general derivative operator satisfying the same properties amisotropic Lorentz contraction due to the motion when de-
Eqg. (2.9 and, in addition, the commutation of derivatives fining the point masses. The Lorentzian regularizafibn,
(Schwarz lemmpis given by differs from the old one k), by relativistic corrections of
order 1£2 at least. All the formulas for its computation are
given in[48] in the form of some infinite expansion series in
the relativistic parameter d7. The regularizatiofiF ], plays

a crucial role in the present computation, as it will be seen
that the breakdown of the Lorentz invariance due to the old
+1<2, (2.10  regularization E); occurs precisely at the 3PN order in the
equations of motion. Associated with the new regularization
L , _in [48] we can define, exactly like in E¢2.5), a “Lorentz-
where we denpte byfs t_h(_e symmetn_c tra_ce—free harmonics 5" & pseudofunction P&, , which when applied on any

of the expansion coefficienif,, which is such that;f, gives[F],. More generally we have, similar to E(.6),
=3,-on5:f5 (see[47] for detaily. A particularity of this

derivative is that it depends on an arbitrary constint

+ oo

Di[F]=47TIZO Pfl C,

iLEL LZiL
1 1

ny .

L

+ 2 T
k=0 'y 4

through thel-dependent coefficient VGeF (Pf(FA,),G)=[FG];. (2.13
|
C=(1+1)| K+ _ 1 _ (2.12) Notice that as a general rule we are not allowed to repface
=1)+1 in the pseudofunction PA ;) by its regularized value, i.e.,

o Pf(FA,)#[F],PfA,. This is a consequence of the “nondis-
Both the derivative operator2.9) and(2.10, (2.11) repre-  ripytivity” of the Hadamard partie finie with respect to the
sent some generalizations of the Schwartz distributional dernumpncation’ i.e., [FG];#[F1,G];. In this paper, we
rivative [45], which are appropriate to the s_ingular functions gpq (heuristically model the compact objects by point par-
of the class7. It was shown in Sec. VIIl if47] that the  ticles, and in order to describe those point particles we shall
distributional terms associated with thié distributional de- ;ge 3 particular representation of the stress-energy tensor
rivative, i.e., D [F]=d PfF—Pfd F, whereL=ii>...iy  which has been derived in Sec. V [gf8] on the basis of an
denotes a multi-index composed loihdices, is given by action principle compatible with the Lorentzian regulariza-
tion [F];. The proposal made i8] is that

|
DL[F]=k§=:1 9 i Pildi,, iFl (2.12

+1<2. (2.19

1v1 1
Though this is not manifest in this formul®, [F] in the T#"=m,c = o f( NE
case of the “correct” derivativg2.10, (2.11) is fully sym- [9polavivy 9
metric in thel indices formingL. Note that neither of the

derivatives(2.9) and(2.10 satisfies the Leibniz rule for the Most important about this expression are the facts that
derivation of a product. Rather, the investigatior{47] has  (j) [0,,]1 within the first factor means the Lorentzian
suggested that, in order to construct a consistent thes®y  regularization of the metric in the previous sen§@) the

ing the “ordinary” product for pseudofunctionsthe Leib-  pseudofunction Rf1//—g)A;) is of the type PfEA;)

niz rule should in a sense be weakened, and replaced by thghich is defined by Eq(2.13. We denote bym; the (con-

rule of integration by part2.7), which is in fact nothing but stan} mass of the particle 1, by,(t) its trajectory param-

an “integrated” version of the Leibniz rule. In this paper, We etrized by the harmonic-coordinate tinte and by v;(t)
shall be careful about taking into account the violation of the_ dy, /dt the coordinate velocitywith v4=(c,v;)]. In the

Leibniz rule by the distributional derivative. We shall also
investigate the fate of the constdtappearing in Eq(2.11)
when deriving the 3PN equations of motion.

The Hadamard regularizatiofr); is defined by Eq(2.2)
in a preferred spatial hypersurfate const of a coordinate

next section, we look for solutions in the form of post-
Newtonian expansions of the Einstein field equations having
the latter stress-energy tensor as a matter source.

system, and consequently is reopriori compatible with the IIl. THE THIRD POST-NEWTONIAN METRIC
global Lorentz invariance of special relativity. If we restrict - )
the coordinates to satisfying the usual harmonic gauge con- A. The Einstein field equations

ditions, we introduce a preferred Minkowski metric, and thus  we base our investigation on a system of harmonic coor-
we can view the gravitational field as a relativistic Lorentzdinatesx®=ct, (x')=x, since such coordinates are espe-
tensor field in special relativity, which we certainly want to cjally well suited to a post-Newtonian(or post-
regularize in a Lorentz-invariant way. To achieve this weMinkowskian iteration of the field equations. We define the

defined in[48] a new regularization, denotéd |,, by per-  gravitational perturbatiom®” associated with the “gothic
forming the Hadamard regularization within the spatial hy-metric” as

persurface that is geometrically orthogondin the
Minkowskian senseto the four-velocity of the particle. In a h#"=\—-gg*"— »*", (3.0

062005-4



GENERAL RELATIVISTIC DYNAMICS OF COMPACT ... PHYSICAL REVIEW D 63 062005

with g#” andg being the inverse and the determinant of the _,[167G
covariant metricg,,, and wherep*”=diag(-1,1,1,1) de- h#v=0g
notes an auxiliary Minkowski metric. Under the condition of

harmonic coordinates,

gl TEr AR, (35

The gravitational source term*” is related to the Landau-
a,h*"=0, (3.2 Lifchitz pseudotensot(}” by

the Einstein field equations take the form 167G
167G A”“”=—C4 lg|t{"+ d,h*79,h"P—hr7g,,h#",  (3.6)

Oh#*r= C4

|g| T#"+ A#Y, (3.3

, ) and can be expanded as an infinite nonlinear seriésaind
wherelJ=7*"d,,d, denotes the flat d’Alembertian operator, jis first and second space-time derivatives; in this paper we
where T#” is the matter stress-energy tensor defined in ouf,geq only the nonlinear terms up to the quattié or G%)
case of point-particle binaries by E@®.14), and whereA*” level, viz.,
is the gravitational source term. Using the integral of the

retarded potentials given by AR =NEY(h,h) 4+ MA(h.huh) -+ LE(h, b bR+ O(hS).

, (349 (3.7

. d3" 7(x',t—|x—x'|/c)
HrorxH= — 47 |x—x'|

we can also rewrite the solution of the field equati¢®s8), = where the quadratic nonlinearity*”, the cubic oneM*”,
under a condition of no-incoming radiation, under the form and the quartidc.*” are explicitly given by

N“r=—hPog, h#"+ 3 3*h ,,0"hP7 = 3 9*hd*h+3,h*P(97h) + 3 ,h"7) = 204h 0P 7+ ph — 33, h .0 TheT
+5d,hd’h+30,h,,07h°"], (3.89

M#’=—hro(g*h, . d"hi+d,he o™y — 9 ,hea,h") +h' [ = 2d.h,,0™h* + 39, hdPh+ 3,h,.07h"7]

P
+3hr7oh 0h+ 2079 h(aVh7 +he @] 9,0, 23,0 9,h7— 39" ha,h]
+ ' §h*73,hd,h—5hPd.h ,0"h— th™a.h,,d,h*7— Fh™ 3 h 07"+ 3h™9,h7o%h, ], (3.8b
L#"=—3h#"h ,d,h**9,h7— zh#**h, a°h, 9°h™ + gh#*h  9Pha"h+ zh#*h  0.hE 9Thr — h#*h , 9.h?79Th
+h,\h}ah#9™h"7—2h , hl g hegIho"+h y hh#h29*ho—3h, h d#hPe 9 h—h  h,, dTh#e h o
+3h,,hd*nP79"h* = 2h ,h, 9P 9" h™ + 2h , hP(#9, W17 ho* = 2h, h?#5"hT g h™
+3h, 907 h+ 3h, h*#9Mha ho7+ h#Ph 79 h,, 3,h™ = 2h#Ph*79 hd,h
+9**[3h,-h7d,h**a,h7"—3h, h79,h?*h° "+ zh, h79,h*79™h—zh h, 9, hP79™Th

+5h,,hnd,hP79™h™+3h, h\aPhTa°h ™ —2h h., 9’Ph™37h]. (3.80

All indices are lowered and raised with the Minkowski met- aij =Til (3.99
rc n,,; h=7»""h,,; the parentheses around indices indi- ) -
cate the symmetrization. (where T"=g;; T"). These definitions are such that o,
To describe the matter source we find convenient to introando;; admit a finite nonzero limit whea— + o (sinceT#”
duce the density of mass of currento;, and of stressr;; has the dimension of an energy denkity the case of our
defined by model of point particlegstress-energy tensor given by Eq.
(2.14)], we obtain

oc2=TO04 Til, (3.99 o(X,1)=Pf(1;A,) + 12, (3.103

, ai(X1)=Pf(uviAg) +1-2,
oic=TY%, (3.9h (3.10b
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iy () =Pl uwivlA) + 12, with the notationO(2n—1)=O(1/c>"" 1), here and else-
(3.100  Where, for the post-Newtonian error terms. We assume that

5 the hf;,'s are at once some explicit functions of the field
where A;=A[x—y,(t)], and whereu, and i, represent point x and functionals of the two trajectorias(t),ys(t)

some effective masses defined by and velocitiesv, (t),v,(t). Since the matter source of the

field equations is made af pseudofunctions, the metric co-
. (3113 efficients become singular at the location of the parti¢ies
V=[0,011050] V=a(x,1) deed, this is already true at the Newtonian oydas a mat-

ter of fact, we assume for the present iteration that

m,C
,ul(X,t) =

2

V
Ty (X, 1) =y (X,1) 1+C—§. (3.110 vms=2n-2, hieF, (3.13

Note thatu, and 7;; depend on timeand space. Indeed, where F is the class of functions considered[#7,48 and
while the first factor in Eq(3.114 is clearly a mere function Sec. Il. This is not a completely rigorous assumption because

of time through the values of the positions and velocities ofo! the presence of logarithms in the expansions around the
the particles at the instart the second factor-{g) 2 is singularities; but we shall see that this assumption is justified

evaluated at théield point t,x instead of the source poifg at the 3PN order where one can consider these logarithms as
y,. From the nondistributivity of the Hadamard regulariza- Mere constants.

tion, one is not allowed to replace-@)~ Y2 by its (regular- (I1) Consider for simplicity the combinatioé—l(hoofr hil) .
ized value at point 1, even though it is multiplied by& only, for which we need the maximal post-Newtonian preci-
pseudofunction at 1. sion since it is directly connected tpo. The structure of the

Einstein field equation3.3), containing notably the gravita-

B. The 3PN iteration of the metric tional source tern{3.7),(3.9), reads as

h00+ hii
2

In what follows we sketch the main steps of our iteration
of the Einstein field equation@.3)—(3.8) generated by two
particles at the 3PN order. For more clarity in the presenta-

tion, we reason by induction over the post-Newtonian ordeivhere o is given by Eq.(3.98, where the sum runs over
n. However, we have not proved the validity of this methodnonlinearities and the two partial derivatives have to be
to any ordem; simply we applied the method outlined below distributed among thé's (with double derivatives allowed
to construct the metric at the 3PN order. in the quadratic terin In order to obtain an equation valid at
(1) Suppose by induction overthat we have succeeded in the next post-Newtonian ordar we replace the approximate
obtaining some approximate post-Newtonian metric coeffimetric (3.12 into the right-hand side of E43.14). Further-
cientshfy,_,;, as well as the previous coefficierftg, for ~ more, we replace the partial derivativesin Eq. (3.14 by
anym such that 2m=2n- 2, which approach the true met- the distributional derivatives(2.8) [we shall discuss the ef-

87G
==z lglo+2 h-hohoh,  (3.14

ric modulo a small post-Newtonian remainder, fect of using either the particular derivatiy2.9) or the more
, , correct ong2.10]. Using also the density of particles in the
h#’=h{5,_,+0(2n—-1), (312 form (3.103, we get
h®+h"\ (8

G _ _
2 (Pf|9|#1A1+Pf|g|M2A2)+m quH h[ml]a---rh[mpfz]ﬁ(Pfh[mpfl])a(Pfh[mp])

2 - o

+0(2n+1), (3.19

where thehpp, ; ,...,h[mp] (with 2<p=n) denote the metric coefficients known from the previous iterations, and where as

indicated by the labdl2n] a truncation up to the post-Newtonian ordec®/is understood. At this stage, any subsequent
transformation of the right-hand side must be done using the rules for handling the pseudofunctions and their dgivatives
(1) We integrate the latter equation by means of the retarded integral given W@.Bq.
ho0+h' _,|87G ~ ~
> :DR o2 (Pf|g|,LLlAl+ Pf|g|,LL2A2)+m1 m2<2n72 h[ml]""'h[mp,z]&(Pfh[mp,l])a(Pfh[mp]) +0(2n+1).
..... o< [2n]
(3.16

This defines the solution to theth order, and so, by recursion, to any ordier principle). The partie-finie symbols Pf take

care of the divergences of the retarded integral at the locations of the particles; that is, the retarded integral is considered as a
partie-finie integral in the sense pf7]. More precisely, the retardations in E§.16 are expanded to thePN order and the

resulting Poisson-like integrals computed using the duality brackets in the way specified by Sed4¥]. idctually,
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the Poisson-like integrals, which have a noncompact support,) .1 9 (PfF)a“(PfG)]=3PfFG— 31, [FO(PfG)
become rapidly divergent at infinity whamincreases, and "

the correct solution we use is not the Poisson-like integral +GO(PfF) ]+ SLeipniT, (3.22
but is obtained by a matching of the inner metric to the
multipole expansion of the exterior field. So, in fact, where the Leibniz term is given by

SLeibnizT =0z '[9, (PfF)9*(PfG)— 0(PfFG)
+iFO(PIG) + 1GO(PFF)]. (3.23

B 1 2n (_)k g \K
(Oz PfF)(x’,t):—Egomk— (5) [PFF(x,t)],

|X_Xf|kl> +0(2n+1), (3.17  Obviously the Leibniz term depends only on the purely dis-
match tributional part of the derivative. See the Appendix for the

complete list of the Leibniz terms. As it will turn out these
where the subscript “match” refers to the matching procesderms are not too difficult to compute, and, of course, arise
that is described in Sec. IV in the case of the 3PN orderPrecisely at the 3PN order. They give a contribution to the
Notice that the time derivativesa{ot) resulting from the ~Metric and the equations of motion that we shall be able to
Taylor expansion of the retardations are distributional decheck from the requirement of Lorentz invariarisee Sec.
rivatives and therefore can be put outside the duality brackeY!)-
(see Sec. IX if47]). Thus, equivalently,

C. The 3PN nonlinear potentials

1 12 (—)k[a\k The post-Newtonian iteration sketched in the preceding
(L™ PIF) (X' )== 72— 2 17¢ E) [(PTF(x,1), subsection is implemented to the 3PN order. The computa-
o tion is long but straightforward. After the simplification pro-
Ix=X" "N mater] + O(2n+1). cess described above we find that the metric is parametrized

31 by certain nonlinear potentials, which do not carry a physical
(3.18 signification by themselves, but turn out to be useful in the

_ . present computation. The 3PN metric reads as
(IV) Once the solutior{3.16 to the nth post-Newtonian

order is in hand we perform many simplifications of the ex- ) ) 8 /. V3
pression, following the rules of application of the distribu- ggo=—1+ =V— — V2 + _6(X+Vivi+ — |+ =
. L . X C c c 6 c
tional derivative. In particular, we find very useful to use the
fact that a double gradient can be reexpressed in terms of 1 1 1,
d’Alembertians as x| T— EVX+ R\Vi— EVViVi - 4_8V +0(10),
(3.24a
aMFa”G=%[D(FG)—FDG—GDF], (3.19
o ] 4 8. 16(. 1. 1,
which implies that the retarded integral reads as Ooi=— EgVi— §Ri— o Y+ EWiJVi+ EV V| +0(9),
4 L N (3.24bh
Oz 19, Fo*G]=3FG—30,[FOG+GOF]. (3.20
2 2 ., 8/, VAT 4
The first term is “all-integrated,” while the second term, in 9ij = gij| 1+ ?\H" ?V t e X+ ViVt BT ?Wij
which one can replace the d’Alembertians by their corre-
sponding sources, brings in general many interesting cancel- 6/, 1 .
lations with other terms. Unfortunately, the formal9 is * c8 Zij+ EVWU' —ViVj | +0(8). (3.240

valid only in an ordinary sense but not in the distributional

sense, because the distributional derivative does not satisfwe recall our notation for the small post-Newtonian remain-
in general, the Leibniz rule. Thus, in general, ders: O(n)=0O(1/c"). The various post-Newtonian orders
are parametrized by some potentials which are defined by

‘7M(PfF)‘7“(PfG)¢%[D(PfFG)_FD(PfG) means of the retarded integréd.4). At the “Newtonian”

— GO(PfF)]. (3.21) and 1PN orders we pose
Nevertheless, the strategy we have chosen to follow in this V=0z'[-47Go], (3.253
paper is to take advantage of the many simplifications
brought about by the latter process, at the price of introduc- Vi=D{€1[—4quoi], (3.25hH

ing some extra term@amed “Leibniz”) accounting for the
violation of the Leibniz rule. This means that we shall write, in which the source densities were defined by E9).
similarly to Eq.(3.20), Next, at the 2PN order, we define
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X=0x —47G Vo +Wi;3;V+2V;09,V+ Va2V + 3(3,V)?— 24,V;d,Vi], (3.26a
Ri=0x'[~47G(Voi— Vo) = 20,Vd\Vi— 39V V], (3.26b
Wij:D;zl[_‘]-’ﬂ'G(O'ij—5i1'0'kk)_07ivajV]. (3260

Finally, at the 3PN order, we have
:l\—: D;zl[ - 4776(%0'”\7\/” + %VZ(T” + O'ViVi) +2ij O"ijV'i‘ ﬁﬁt&iv— 2(9|V] &J ﬁi - 07,VJ<3’t\7V,J +Vvi(9t(9iv
+2V;0,Vid\V+ 2Via VgV + 3V2oV+ 3V (9, V)2 = 3 (3, Vi) 2]+ SLeipniz T » (3.273

Yi=0R'[—47G(— oR— oVV+ 3 Wi+ 3 0 Vit 3 010Vi) + Wi 9 Vi — WiV + 3 Wi iV

— W, 8V — 20 V3, R — 3V iV oV — 3V GV — 2V ANV Vi + Va2V + 2V o Vi T+ SLeibnizYi » (3.27b

2ij =0z [—47GV(0i;— 8 0) — 20V Vjy + G Vikd | Vie+ a9V — 20 ViedkVy = 8 Vi Vi — Im Vi)
— 38 (V) 21+ SLeibnii - (3.270

Note the presence in the 3PN potentials of the Leibniz contributions described in the preceding subsection, which are due to
the simplifications we did to arrive at these relatively simple expressisitls respect to what could be expected at the high
3PN ordey. The Leibniz contributions will be computed in Sec. VI. Of course, in the case where the matter source is
continuous—a hydrodynamical fluid for instance—the 3PN mé8i24) and all the expressions of nonlinear potentials are
valid with simply the Leibniz contributions set to zero.

The potentialg§3.25—(3.27) are connected by the following approximate post-Newtonian differential iden(@mgsvalent
to the condition of harmonic coordinates at the 3PN order

1)1, ’ ~ 1. 1 . 2 . 2 . 4. 1.
0 V+ 2| 5 Wit 2V2 |+ 7| X+ 5 Ziget 5 VWit 5 V3| [ +3i) Vit 2[R+ VViI+ | V- 5 WV,
1. [ 2
+ EWkai+VRi+V Vi :O(G), (3283
2 . A 1. 41, 1.
(9( Vi+ ?[Rl‘FVVJ +(9J' Wij_zwkkéij—i_F Zij—EZkkéij :0(4) (328@

We shall check that th@egularized potentials we compute satisfy these identities. They are in turn respectively equivalent to
the equation of continuity at the 2PN order and the equation of motion at the 1PN order:

2W;, 2W;, 1 4
o 1+? 1+? :?(ato'jj_o'&tv)_g(o'vjajV+a'jk&ij)+O(6)v (3.293

(9t +&] O'J'

4
07t +0”J O-ij :0'(?iV+ ?[Uﬁtvl+0']((9JV|_(7|V])]+0(4) (3295

LAY
c?

4V
g 1+?

D. Computing the equations of motion

The equations of motion of particle 1 are deduced from the covariant conservation of the stress-energy tensor of the
particles,

vV, T#"=0, (3.30
whereT#? is given by the definite expressidd.14) made of thed pseudofunctions defined [47,48. It is shown in Sec. V
of [48] that by integrating Eq(3.30 over a volume surrounding particleldnd only 1, i.e., by constructing the duality bracket
of Eq. (3.30 with the characteristic function of that volume, we obtain the equations of motion of particle 1 in the form
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d (g, ]10% 1 [0\9u]wiv] 1PN order, (9i'AI')l at the Newtonian order, and so aiBe-

— =— . (3.3) cause of the length of the formulas, and since the results for

dt vivy 2 viv] all of these individual regularized potentials are only inter-
_[gpa']l7 _[gpo']l7 mediate, we shall not give them in this paper; see the appen-

dices of[52] for complete expressions.

These equations of motion take the same form as the geode- (B) We add up the corrections brought about by the

sic equations for a test particle moving on a smooth backLorentzian regularizatioj F], with respect to £),. We

ground, but with the role of the background metric played byfind, at the end of Sec. V, that the only effect of the new

the true metric generated by the two bodies and regularizefggularization at the 3PN order, when computing the values

according to the Lorentzian prescriptif4g]. of potentials at I(but the new regularization affects also the
In this paper we compute the spatial acceleration of bodyorrections due to the nondistributivityis a crucial 1PN

1, which corresponds to the equation with spatial index COTection arising from theAso-caIIed “cyblc noncompact”

=i in Eqg.(3.31; we do not consider the energy which would part of X; that is, we find 3, X(“N], — (;X(EN®)), = 0.

be given by the equation with time indéx=0. Indeed, the (C) We replace all the individually regularized potentials

energy of the binary system will be determined directly from[F]; and their gradients into the equations of moti@r82),

the (fully order-reducedl acceleration. From Eq3.3) we  (3.33 which would be obtained while supposing that the

can write the equations into the form Hadamard regularization isdistributivé’ with respect to

the multiplication, i.e., supposing incorrectly that we are al-

lowed to write everywhergFGJ,=[F],[G];. In doing this

we obtain what we call the “distributive” parts of the linear

. momentum and force densiti¢3.33, namely, P}) sy and

where the “linear momentum densityP; and “force den-  (F})q,. (Other types of nondistributivity arising in the po-

dPilz

s Fl, (3.32

sity” F} are given by tentials themselves are discussed in Seq) IV.
(D) Finally, we compute separately, in Sec. VI, the cor-
i [9iu]ivt rections due to the nondistributivity, i.e., the differen@s
Pi= o (3.333 — (P gisy andF — (F") gisy- Note that these corrections re-
</ “[9,.] ﬂ flect quantitatively the specific form that we have adopted for
poll 2 the stress-energy tensor of point particl@s14. Had we
used another stress-energy tensor, for instance by replacing
1 [8g,]whu! incorrectly Pf(1/J/—g)A;) by [1/J/—g],PfA, inside Eq.
Fi== } (2.14), we would have obtained a different nondistributivity,
2 vivy and thereby some different equations of motion. Note also
—[9peli—%— that thanks to the new regularizati¢f ], the corrections
¢ (3.33h due to the nondistributivity do not alter the Lorentz invari-

ance of the equations of motion. At last, we find the 3PN

The expressions of botR, andF', in terms of the nonlinear acceleration of body 1 as
potentials follow from insertion of the 3PN metric coeffi-
cients(3.24). We obtain some complicated sums of products
of potentials which are regularized at point 1 following the
prescription F]; . Since the computation will turn out to be
quite involved, we decide to adopt the following “step-by-  we report now the expressions of the distributive parts of
step” strategy: the linear momentum and force densities as straightforwardly
(A) We compute, in Secs. IV and V, all the neededi-  optained by substitution of the 3PN meti8.24. The ex-

vidual potentials and their gradients at point 1 following the pressions of the correcting terms due to the nondistributivity
non-Lorentzian regularization(,; for instance we obtain  (j.e.,[FG],#[F]i[G],) are relegated to Sec. VI, where it is
(6;V), at the 3PN order,\); at the 2PN order,{;X), atthe  seen that they contribute only at the 3PN order:

. ood .
a}=Fy— - (PL—vl). (3.34

. o1 . . 1 . . o .
(PDdisr=v1+ oz (30301 +3[VIwi —4[Vilo) + o (Buivr+ Z[VIwivi—4[Vilwwl - 2[Vilwi+3[VIv,  (3.353

n ) n 1 ) ) o
—4IVLIVila+AIW; vl — 8[R1D) + o (Tsvivi+ F[VIwios— 3[Vilawi - 6[Vi]wivlv]
+2[VIfo T+ 2l Wi 1o i+ 2l Wy oo = 10 V[ Vi 1w i - 20 V14 Vi lwiol = 4[R 1w}
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—8[R; 110 0l + VI3 + 12V, 11 [V 11w + 1AW 1 [ V]go ) + 12 X ],y + 160 Z; 150}
—10VIF[Vi]i—8[ Wi Ta[ V{11 = 8[ VI:[R 11— 160Yi]1) + O(8),
(deimr:[aivmé(—[vmvm%[aiVle%—4[aivj]1v£>+é(%[athi—z[aivjhv"lvi
+3IV1a[ V10 2+ 2[ ;Wi Jyvho k= 41V, 1106 V10l — 4LV [ 0V, 1v] — 8[ 4R 110)
+3IVIT V1 +8LV 1l 6V 11+ 40 X]y) + 6(“u‘f[aV]1 HaVilwho+ £IVIi[ V]

+[ Wy Jy0 ook =10V 118 V10 Tol — 10 V][ 4,V 10 Tol — 4L 6iR 1w fvh + Z VI V]2

+12 V1[0V 1102+ 6[ Wi 11[ 8 V110 vk + 6[ V1[0 Wy Jyv vk + 6[ 3 X101+ 8[ 31 Zj ] v v
=200V{1a[V1a[6V]a0 = L VITL 6V 110 = 8[ Vidal 6 Wi 10— 8[ Wi Ja[ 9 Vid 1o}

—8[R11[ 9 V11w —8[VI1[ aiR;110} — 1600110 — $[VITL 6 VI — 4LV, ][V 1 [ i V]

+16 R 1[0 V11 + 16V 11[ giR 11— 8[VIa[ V1[4V 11— A X14[ 6 V1, — 4[ V1[4 X],

+169,T1)+O(8). (3.35H

Recall that it is supposed that all the accelerations appearing in the potentials have been order reduced by means of the
equations of motion. Notably, during the reduction of the “Newtonian” t¢mV ], in Sec. IV, we shall need the equations

of motion to the 2PN order. Furthermore, we see from B354 that when computing the time derivative Bf we meet an
acceleration at 1PN which is thus also to be replaced by the 2PN equations of motion. We recall here that the later 2PN
rather, 2.5PN equations in harmonic coordinates §24—26,31

do}) Gm, o m, Gm ~Gm
e = 7 Nyt ) v 4(Nyw1) —3(Nywp) ]+ 0y — 2U2+4(Ulvz)+—(n1202) +5 +4
dt EP) rC M2 i
Gm, . 3 9 15
+ Py ni, _203"‘405(0102)_2(0102)24' Evi(anUZ)z_" 5U%(”lZUZ)Z_G(Ulvz)(nlzv2)2_ §(n1202)4
12
Gm[ 15, 5, 5 39 , 17 ] em
+ ——vit v — 5 (v1w2) + 5 (N1 1) —3AN10 1) (N1w2) + - (N )|+ ——[4v5—8(v1v5)
rlz 4 4 2 2 2 r12
2 >y, G757 m2 Gm 5| 5
+2(N101) = 4(N101) (N120) —6(N1205) ]+r—2—2 M 9m2 > Mm; +r7?v12 v1(N1w5)
1 19

9
+405(N10 1) —505(N105) = 4(v102) (N 1)+ 4(V102) (N1202) — 6(N101) (N0 5) °+ E(nlzvz)a

2

Gmy| 63 55 Gm, 4G mim; |

- _Z(n12vl)+ Z(nlzvz) +r_12[_2(n1201)_2(n12U2)] +Tr:142 Ny(N10 1)
Gm 52Gm, ) i, Gm _Gm
l2 3 Iy M2 M2

Unavoidably, because of the proliferation of possible terms, the equations of motion at the next 3PN order are even much
longer[see Eq(7.16 below].

IV. COMPACT SUPPORT AND QUADRATIC POTENTIALS

All the potentials that enter the linear momentuR Y5 and the force densityH,) qis;r are computed at point 1 by means
of the Lorentzian regularizatigr~], . However, we shall first determine their Hadamard partie finie in the usual sEhse (
i.e., by approaching the singularity in the spatial slieeconst. The difference between the two regularization processes does
not affect any compact or quadratic potentials.
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A. lterative computation of compact support potentials To obtain the regularized metriat the location of the first

In this paragraph, we are interested in the compact term@°0Y; Sa¥, we need the partie finie of the potenfiakt point
involved in the equation of motiofisee Egs.(3.353 and 1: (V). Since we use Hadamard regularization, it is simply
(3.35B]. According to our previous remark, it is sufficient to 9iven by the value of its nonsingular part wheny, . Here,
evaluate them with the classical Hadamard prescription. w&/€ find (V)1=Gm,/r,+O(2), with the notation ry,
need ¢;V); up to 3PN order; ¥);, (V;)1, and @;V)); at :|¥1h_>’2|- ation of icated .

2 » A - e e computation of more complicated compact terms ne-
2PN; W), (W), (RO)s, (4R(),, and X)), taton th  fective masseand s
L A . cessitates the knowledge of the effective magsgand i,
at 1PN. The remaining contributions are Newtonian: . . . o
< (C) <0 (C) (C) beyond the Newtonian approximation. By substituting (o
(X1, (6 T2, (Yi7)1, and @;Y]~),. We follow the e explicit 3PN expressiof8.24) for the metric in the equa-
same classification and nomenclature concerning the varioygns (3.11), we get the general forms of both effective

parts of potentials—compact, noncompact, etc.—as in Sec. lhasses. As an examplg, at 2PN order reads
of [31]. The compactC) potentials are generated by sources

with (spatially compagtsupport limited to the particles; for

instance V(©=V, and, from Eq(3.273, Z
1

1 3 1 R
. A =l —2v+[V]1+§v§ + | —2Wj; +2V?
TO=0 - 47G(oy, W, + $V20y; + 0V V). (4.1) 1 ¢ ¢
Thus, by definition, the sourc(x,t) of each compact po- —2V[V],+ E[V]f—[vz]1—3va+ Z[V]lvi
tential P(©) is made of Dirac pseudofunctions, multiplied by 2 2
some functions of the clas:

o7
_ _ i _ .4
S(x,t)=Pf(FA,)+ P(GA,), 4 Vilwi+ goi|+0O(6), (4.4)

with F,G e F. As a result, it is in general possible to find an
explicit expression oP(®) over the whole spacdor anyx).  where we are careful at distinguishing the potentials com-
Besides, the expansion under the integration symbol of thputed at the field point from those computed at the source
retardation ofS(x’,t—|x—x’|/c) asc goes to infinity is per- pointy,, and where we take into account the nondistributiv-
fectly licit, because the integrand has a compact support: ity of the regularization(x, differs only by some numerical
coefficient$. Thus, as emphasized in Sec. [ld; andz, are
1 = (=", ., e functions of timeand space. Replacing them by the regular-
T 4w 2 nieh Ot f A [x—=x"[""1S(x", 1) ized quantities £1)1, (%1)1 (and 1~2) is definitely forbid-
den because, on one side, the partie finie is not distributive,
oo and, on the other side, the usual Hadamard regularization
1 (_)na“ Flx—x'|"~ does not coincide with the Lorentzian one. However, this
47w & nic" t([Fix=x ks replacement does not modify any compact potentials, with
the notable exception of the 3PN contributions\in(see
+[Gx=x'[""M). (4.2  below. Itis thus convenient to pose

p© =

The sources$S(x,t) are supposed to be known at the current 4 _ _
order. This implies to proceed iteratively as explained in  Vaist= Uz [ —47G(11)1 Pf61—47G ()2 Pfo,],
[31]. The reader is referred to this paper for more details. In

short, we start from th& andV; potentials, whose sources
do not depend on any other ones at the lowest order. Indee
we have(1V=—47G Pf(u,A1) +1<2 (and similarly for
V,), wherezz;=m;+O(2), as itfollows from insertion of
the “Newtonian” metric into the definition3.11) of the ef-
fective mass. Hence,

and to calculaté/ s, and V — Vs, SEparately. In the other
compact sources, we shall employp,),, (&,);, etc., in-
stead ofu,; and 4 for practical calculations at the 3PN
approximation. Furthermore, in all the compact terms, the
action of the Lorentzia® pseudofunctions Rf; and PfA,,
remarkably, reduces to the one of 8fand Pf5,. From

d3x’ 1 what precedes, it becomes obvious that, after the evaluation
V= Gf W( Pli1Aq]— 2o PI[[x—x"|7144] of (uq); Or (1), at a given post-Newtonian ordeywe can
determine all the potentials to the precision?l/ As all the
+1-2+0(2) terms involving the retarded potentialsify appear already
with a factor 1¢2 at least, we are then in a position to com-
_ Gml_ Eatm1+1H2+O(2) pute the right-ha_md side of EQ4.4)._ The process is initiated
ry o by the computation of the Newtonian value\ofs presented
above. Most of the quantities needed to get); at the 3PN
= Gm + G_mz+(9(2). (4.3  order are obtained if31]. Finally, the regularized value of
51 ) 7, at point 1 is
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(,(,Ll)l 1 sz 3 2 1 sz 1 1 Gml 3 sz 7 4
m, stz 2T, 1 2Y 4(U1U2)+2U2+ (n1202) 27, 271, ) 8%
8G2m1 m, S szlm2 3Gm 396m2+35 , 41 . 9 5
305 r12 ((N1v1) = (N102)) b r12 271, 4 1, gl1” 2 (vv2) g V2 8(”1201)
5 1 , 2m3 (3 3 sz
+ (N 1)(N1w3) — 5 (N2)° |+ —2— —(N102)2=3(v102) = (N1 1) (N1 ) + 5 (nlzvl) -5
4 8 ri, 27 Mo
15 Gm 3 1 3
+—vf b2 2(vlvz)2+50iv§—1O(vlvz)vi+—v‘ll+20‘21——(nlzvz)zvg——(n1202)4—4v§(vlvz)
4 M2 8 2 8
2 1,
+2(N107) (UlUZ)_Zvl(anUZ) 1601 +O(7). (4.5

In our notation, two vectors,,v, between brackets repre-
sent the scalar product: v{v,)=v'vh; vi=viv}. We re-
call that it is important to keep the grouping of factors im-

posed by the regularization in products of potentials. For

instance, YW;); # (V) 1(W;;)1 -

Among the compact potentials, the 3PN value\bfis

certainly the most difficult one to obtain, since the other

guantities require only lower orders in powers o€.1\We
shall focus onV, to illustrate the method we have fol-
lowed. The difference/— Vs Will be handled in the next

the trajectoriesy; o(t) and velocitiesv; o(t). We make ex-
plicit the time differentiations and obtain, at 1PN,

1
Vais=U + 52 91X+ 0(3)

Gmy 1+ 1 Gm2+3 ) G my i
= 2 r—lz PR AT Sz (—aydiry

subsection. We begin with specializing the general formula

for V to the case oV yig:

G(f1)1
r

G

- G -
distr= - Eﬁt(ﬂl)ff ﬁﬁtz[(#l)lrl]

G o~ 2 G 4~ 3
_@ﬁt[(ﬂl)lrﬂ*'2TC40"t[(,U~1)1r1]

G o - 4 G 6~ .5
_Tmsat[(ﬂl)lrl]‘*‘ﬁsat[(ﬂl)lrﬂ

+1-2+0(7). (4.9

Since the Schwarzschild mass, is constantg,i,/c is of
order O(3) and does not contribute at the 1PN level. For
convenience, we shall introduce some special notation f
the terms that occur at this approximation; we pose

G(12)2
)

G(E
_ (Ml)l+
r

and

X=G(f1)1r1+G(f2)or .

Actually the potentials are to be considered as pseudofunc-
tions and it is understood that there is a symbol Pf in front of

them. Notably, the time derivatives appearing in Eg6) are
distributional. The regularized effective mass,§, as well
as the distance to the first body depend on time through

The accelerations are order reduced by means of the equa-
tions of motion at previous orders. Notably, for computing
the 1PN term G/2c?) a2 Pf[(fu1)1r1] at relative order 3PN,
we need the 2PN acceleration given by E236). Once we
have gotVy, all over the space, the last stage consists of
regularizing it, as well as its gradient, aty, using the
Hadamard partie finie. Nowy g, can be divided into two
parts, Vgisyr1 and Vgisyro corresponding to the sources
—47wG(1m,), Pfo, and —47wG(m,), Pfo,, respectively.
The first part,Vgisyr1, depends orx throughr, only, and
contains many terms that are either singular or vanish when
X—Y, giving no contribution to the partie finie; on the op-
posite, the smooth terms with oddcipower factors in Eq.
(4.6) generally contribute. The pavy;s, > does not necessi-
tate any regularization since it is already regular in the neigh-

%orhood ofx= V1.

The remaining potentials are determined in the same way.
However, we have to apply properly the formalism devel-
oped in[47]. In particular:

(1) The regularized value of some potentR(® is the
partie finie ofP© computed initially outside the singularity.

In the case wher®© is the Poisson integral of a compact
source PfF &), with F e F, we must take carp47] that

d*x 1
pPP= Pff ——F&,
7 |x=x|

d3x
Pt f

1

! Fo
_4’77 I’l L

4.9
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[We generally do not write the dependence of the integrandActually we shall see that an expansion to the 1PN order is
on the integration variable, as it is evident from the contextsufficient for our purposg¢We insert into that expression the
thus,F &; is computed at point’ in the intermediate expres- source densityr, use the definition of thé pseudofunction
sion of EQ.(4.8) and at pointx in the last ond. Pf(FA,) given by Eq.(2.13), and arrive at

(2) If F is not regular at point 1, we generally have
Pf(F5,) # (F), Pf&;, even when both members act, in the - (5" )
sense of pseudofunctions, on smooth test functions. This dis- V(X.t)= ano e Al O D X=X+ 12,

tinction is crucial, for instance, in the determinationiéf at (4.1
Newtonian order. Indeed, one of its contributidfisst term
in Eq. (4.1)], denoted byT©?, reads as Here, the square brackets refer to the Lorentzian Hadamard
regularization wherx’ —y,;. Using a multipolar expansion,
~ 1 d3x’ ~ we obtain immediately these brackets as
TCV=—G Pff—,aijwij+0(1)
4 |X_X | +o (_)I
1 . ( Wij [ﬁl(x',t)|x_xr|nfl]1zzoTaL(rgil)[rrllnrliﬁi 1
—_— il - '

1

, , , Lo where;=7m4(X,t). If 7., were a function of time only, then
which is different from Gmyvy(Wij)ofdra+1-2 o goo that all the multipolar contributions on the right-hand
+0(1). Had weused the latter expression insteadTéf”,  side of Eq.(4.12 but the scalal =0 one would be zero,
we would have obtained a different potentiBl,; this  because of the factcvl’l' with | =1 (this is clear with the old
would have been correct if the partie finie operation had beeregularization, and easily checked to be true with the Lorent-
“distributive” (see Sec.)| but we have actually zian regularization as wellWe defineadV 4, as beingv but
computed with the function of timgu, ], instead of the true

A - Gm? 1, 1 5 m1(X,t). This Ve, is exactly the one which has been com-

T=Taise=—3~| ~ 559V1 T go(Mv)"| +1=2. puted in Sec. IVAJIt can be checked that up to the 3PN
! order[t1]1= (1)1 .] Therefore, by the previous argument,

Notice that the latter expression is not Galilean-invariant by dist IS produced entirely by the scalar part0 in the latter
itself, and therefore will be checked later when verifying thatMultipolar expansion, so that its complementary to the true
the final equations of motion stay invariant under LorentzPOtentialV reads as

transformations. o o |
(=)" " (—) ne1
N . V=Vair=G 2 o~ 2 - rl )

B. Nondistributivity in the potential V n=0 MNC =1 I

We call nondistributivity in the potential that contribu-
tion which arises because the coefficient of #h@seudo- X[r'in"5mil  +1-2, (4.13
function PfA; in the matter stress-energy tens@rld) is a
factor T4/, 1wl 0 out that s contrution s purely "eTe the Sum over starts with| =1, Thus, the probler
of order 3PN. A related contribution, due to the nondistribu—reduces to the computation of each regularization terms

A . ) , [r’ln’&ﬁi]l. Obviously, at a given post-Newtonian order,
tivity in T, has just been computed in the preceding subseGnase terms will all become zero forlarger than a certain

tion. The potentialV is generated by the source density q1ye. We find that, up to the 3PN order, all the regulariza-
o(x,) =n1A[X—y(t) ]+ 12, where, is a function of  jons are zero starting at=3, namely,[r’;n’ %], =O(8)

space-time given explicitly by for any =3, while the nonzero values fd=1,2 are given

2 by
m,c| 1+ :
(X ! c? 1 4.9 G mim,
palXb)= - : : N R =3 — Nyt 4.14
V=10, hviof V=g0xb) [ apa 1 =3 =gz =Mzt O(8), (4.143
The first factor is a function of time, and the second one B cmd . Gmlm, . 3GZmd -
depends on both timand space(nondistributivity). The po- [r'on"{u],= OMN=-3—F—-68"+2 vid!
. A : 21/ c? cbr 2 c® 1
tential V is given by the retarded integréB8.253, whose 12
retardations we expand up to any post-Newtonian order: G2ms
mi
s b vivi+0O(8). (4.14b
(—)" f
V(x,t)=G o | &3 |x=x'|""ta(x',t). . . .
xt) nzo nich 7t X X=X "o (x',1) Replacing these results back into Eg.13), and using the

(410  fact thats'l9;;(1/r;) =0, leads to the intermediate form
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G4m§m2 , 1 G3m§ o 1 according to the theory of matched asymptotic expansions, to
V—=Vist= —3—52—n'123i(—) - 2_6_U|1U]1(9ij (—) the post-Newtonian expansion in the interior of the source, is
“Ti f1 ¢ f1 iven b
g y
G*m? 42 5
= —|—| + + . . [T
2% a2\, TOB T2 413 M(h#")=FPy o0 r—) M(A#)
0

As we see, the nondistributivity of the potentialis a 3PN o
effect. Expanding the time derivative in the last term we find 4G D (—)!
that the dependence on the veloaify cancels out, which is BSE=L
normal because a velocity-dependent term would violate the

Lorentz invariance, in contradiction with our use of the
Lorentzian regularizationlF],. The final expression is
simple:

aL[%H’L‘”(t—r/c)] (4.19

(with L a multi-index of ordef € N). The multipole moments
H{*” entering the right-hand side read as

|yl

43
5G'mm; . Iyl
l'o

—— ———nN (9
6,2 12%1
2 c°ry,

B
) y " (y,u),
M

+0O(8)+1-2. Ht‘”(U)=FPBﬁof d3y(

(4.1
o S . wheret” represents th€ormal) post-Newtoniarexpansion
The contribution of the nondistributivity in the acceleration ¢ tye complete source termt’=|g|T#"+ (c*/16wG) A*"
of 1 is given by the gradient at 1 as of the field equation$3.3). These expressions are defined by
G“mlmg e;}nalfyti_c continur?tir%n iB, and the sfyrt?boLI RP.o denotes_
N TN . T — i the finite part wherB goes to zero of the Laurent expansion
(VI = [9Vaseh =55 3 Mzt O8). (417 of the analytic continuatioriwe refer to[54,55 for more
details about this finite part
Let us show how we find the “matched” solution of the
equationJP=S at the relative 1PN ordefthis is all we
By definition, the quadratic potentials are those whoseshall need in this paperWe neglect all higher-order post-
sources are made of products of two compact factorsMike Newtonian contributions in the source te@nand look for
Vi W7, etc.(or their derivatives, most of the timeA typi-  the solution of
cal source term for them is of the type/VdV’’; hence their
denomination; for instance, P =SPN+ 0(3). (4.20

V=V gist=

1

C. Computation of quadratic potentials (@VaV)

WYY =0 = a,Va, V1. (4.189 _ _
Since the formula4.19 results from the properties of the
But the quadratic source terms may also involve other quar Alembertian operatofand is not specific to the field vari-
tities of the same structure, as is the case dp?s/-(C)a \% ableh?"), we can use it with the replacements.of(A) by
o ’ ) T k M(S™N) and of 7 by (c*/167G)S'"N. Thus, the multipole
appear]lng in the source of the potentté [cf. Ed.  expansion of the solution must satisfy
(3.27D].

B
1. Matching to the external field M(P)= FPBeomﬁl rL) M(SlPN)}
The retardation of the compact potentials defining the 0
metric of an isolated fluid can be expanded in powers of 1/ 1 = (—)
only in the “near zone” D, Of the source, at a distance T an i TﬁL[FPL(t—”C) +0(3),
much smaller than the typical wavelength of the emitted ra- - '
diation. The question then is how to incorporate in the post- (4.21

Newtonian metric the no-incoming radiation conditions at

past null infinity. We achieve this by performing a matching yith

between the post-Newtonian expansion of the metric, ad-

equate in the near zone, and its multipole expansion, valid in

the regionD ¢y, exterior to the compact support of the source. PSP (u) = FPBHOJ‘ d3y
Recall that for slowly moving sources, one can always

chooseD o,,and Dy, in such a way that their intersection is

not empty: Dea \Dex# 0 (see, e.g.[53]). The fieldh*”  The partie-finie retarded integral of the multipole source
admits a multipole-type expansiokt(h**), in the sense of M(S'Y has to be handled with care. It is not allowed to
[54], at every spatial pointe D¢y. As a matter of fact, itis develop whenc— +« the integrand under the integration
shown in[55] that the multipole expansion of the exterior symbol because the source is not compact supported. The
field (a vacuum solution of the field equatigrtatmatches  correct formula was shown if56] to be

lyl

)

B
) yS*™My,u).
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FPs_oxt

r B +o 1 J 2k d3Xr r’ B
- 1PN, | _ 7 _yr|2k—1| __ 1P
r0> M N)} FPB_").ZO (2k)! (c&t) J'_47T|x X'l (ro) M(S™

5 o) —
1 5 ( )bL[RL(t r/c) RL(t+r/c)}. .22

P ey or

The hat on the partial derivativéﬁ indicates that the trace has been removed,?i,_e.:,STF(&,_). The R, functions param-
etrize the general solution of d’Alembertian equations that are smooth near the origin: “antisymmetric” solution as given by
the last term in Eq(4.22. We have, more precisely,

B
RL(U):FPB—OJ dgny(%) Ti(y,u), (4.23

with

20+ 1)1 [+
T|(Y'U)=(—)'+1(—2|”L ) dz(z2—1)' M(S""N(y,u—z]y|/c).

Here,§" denotes the symmetric trace-free tensor associatedylithy'!, for | e N. With Eqgs.(4.21) and(4.22 we can write
the multipole expansioiM(P) at the 1PN order as

a3 1 [r'\B 12 (-) (1 1(9\2 d3x’
M(P)ZFPBHof_—MW<G) M(Slp'\')—ﬂgo TﬂL(F)PL(t)Jrzz(E) [FPBHoJ__M
r\8 " 1 2 (=) 1. .
X|x=x'| T M(S N)_EEOT&L(”PL(U 1 [ROFPO]+O), (4.24

where the last term, of orderd/is a simple function of time that of solving and matching the two successReisson
made of the function®(t) and(t) defined as bein®(t) equations(4.26a and (4.26hH. Now, from Eg.(4.25, it is
and P, (t) with =0 (the dot indicates the time derivative evident that the correct matched solution of E420 reads
Now, it can be shown that the latter multipole expansion carin terms of the matched solutions of Eg.26) as

be rewritten under the new form

P=pP"+ i[7’2(t)+7’>(t)]+ - 3) 2[ P+ 0(3)
47C 2¢?\ ot '

1 . .
M(P)=M(P")+ 7 [R()+P(1)]

(4.27
2
+ 2_12(%) [M(P")]+0(3), _To recall the meaning _of _this solution v(\{)e shall then denote
¢ it as P= P acn below; similarly for P= P, (for instance,

—_p(n -
or, equivalently(indeed the second term is a mere functionYmatch computed belowand P=Przich (€.9., fraren. Actu

of time, and the multipole expansion obviously commutes2!ly, we shall find that the functioR(t) appearing in the &/
with the time derivativi term of our solution(4.27) never contributes in the case of

the applications made in the present paper. Thus, it will not
be considered in this paper, whereas the funcfétr) plays

1 . . 1/(09\?
M(P)=M|[PD+ Tac RO+FPO]+ ZZ(E) [P(")]) a role and is given by

+0(3). (4.25

r B
P(t)=Pf[ FPBHOJ d3x(r— SlPN(x,t)] (4.28
In these equation®?" and P(" denote thematchedsolu- 0

tions of the following Poisson equations: (of courseS'™N there could be replaced with this approxima-

AP =gIPN (4263  tion by S*°™). See Eq(4.41) below for an example of com-
putation of this function.
AP =2p() (4.26b In practice, in order to find the matched solution of a

Poisson equatiorP(" for instance, we proceed as follows.
Therefore, we have reduced the problem of finding theSuppose that we know a particular solution of the equation,
matched solution of the d’Alembertian equatioh.20 to sayngm. Then the correct solution is necessarily of the type
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PO =P} hidy, whereh), denotes a homogeneous solu- d3x’ 1 d3x

tion of the Laplace equatiotharmonic functiol Ah{) P _Pff iy WF&_E(% Pff pypt

=0, which is moreoveregular at the location of the source 1 e

points. Note that its multipole expansion coincides with it- -2 Il N

self, M(h{) )=h{) . Now, the latter homogeneous solution i 2¢? % Pff —4m x=x|F o112+ 0(3),

is determined by the matching equation as (4.30

e 1 B with F e 7. The first contribution has been calculated4i]
h) —Fp f X (r_) M(SPY [see Eq.(6.18 therd. What is interesting for us is that the
hom B=0) —am |x—x'|\rg result writes as a sum of space derivative af;1or 1k ,),
L e () |ed aL(%/:l) (vglilt)h tSh_e plorllventipn that. designates a multi—If
- | index of lengthl). Similarly, it is easy to convince onese
=T ‘7L(F) PL(t)_M(P:J;rt)' (4.29 that the third contribution is composed of termisr; (or
d.r»). Moreover, the action of time derivatives in front of the
integral leaves the latter structure unchanged, in accordance
It is not evident in that expression that the right-hand side iswith formulas such ag,d.r,= —v'd;d_r,. The second con-
a harmonic function; but it really is, as can be verified ex-tribution in Eq.(4.30 is a mere constant with respectxoln
plicitly in practice. We compute the multipole expansion of fact, as they appear in the quadratic sources, the compact
the source ternB8'™N as well as of our particular solution potentials are preceded by some space or time derivatives.
Pg;n, In our case this means computing the formal expanNow, these derivations have to be performed in the sense of

sions of SIPN and pg;n whenr tends to infinity or equiva- Pseudofunctionp47]. From these considerations, we are now

lently when the two source pointg, , tend to zero. The in a position to tell what is the precise structure of the

computation is greatly simplified if one considers the dimen-SCUrces of quadratic potentials. They read as a sum of what

sionality of the source. Suppose for instance th@&"N] we'shall cgll elemer]tary terms. As we are mterested here in

— (lengthy which meane{hﬂ)m]=(length)d*2 Then, using their spatial behavior only, we shall omit purely time-
[0} . 1

. St 2 . dependent factors, though they are normally included. New-
the fact that this function is harmonic, its structure is NeceSionian elementary terms are themselves products of two

sarily of the typeh(h'émif&yily? with 1+1,+1,=d+2.  pseudofunction derivatives of contributions coming from the
This shows that in order to obtal '())m completely it is suf-  first integral in the generic expressiof.30: d; Pfox(1/r )
ficient to develop the right side of E¢.29 wheny, ,—0 X Pfay(1/ry), or d;Pfac(1hry)Xa. Pfay(llry) (and
up to the orded+2 included(i.e., to control all the terms similarly with 1 2), whereJ, K, L, M are multi-indices of
y7ly;2 in the expansions which have+1,<d+2). All the ~ fespective length), k, |, m. In the same manner, the 1PN
higher-order terms, having +1,=d-+3 on the right side of terms rgsult from products o_f ps_eudofunctlon der_lvat|ves of
Eq. (4.29 mustman to give zero. Th me method i Ngvvtoman and post-Newtonian integrals as the first and the
g. (% ustmanage 1o give zero. Ihé same metnod ISy gnes in Eq.(4.30: d;Pfox(liry)xa, Pfoyr,, or
u?ﬁd to comque the homoggneous sol.uhﬁf,% cqntamed in 3, PFa(Llr) X 3, Pfayr,, and 1-2. As for the 0.5PN
P™. We shall implement this method in practice below.  {ayms "~ they are simply the pseudofunction derivatives of
d (1lry) or d.(1lr,) (times a mere function of timelt is
2. Structure of the quadratic sources also natural to distinguish between the “self” elementary
In the context of the present paper, we will not need tol€'Mms on one side, which depend on one body °”|3£v €.g.,
compute the quadratic sources beyond the 1PN order. As & Pf(1h1)xd; Pf(1k,), and always admit prefactorgy,
consequence, we will deal with only a few kinds of elemen-&1, 111, and the “interaction” terms on the other side,
tary sources. By Eq4.7), we already know the structure of involving both objects, e.g.¢; Pf(1/f,)xd; Pf(1k;). The
V at the 1PN approximation. The other compact retarded.5PN termsy (1/r, ;) are considered separately.
potentials have a very similar form. After expansion of the To be more explicit, we shall provide as an example the

retardation of any of them, sa(©), we get 1PN source ofV{V"") defined by Eq(4.18:
|
W{?V(?V) 2~ 2 1 1 szi k 1 k. | 1 2~ ~ 1 1
] i =-G ,LLlﬂi Pfr—dj Pfr_"' ? al&(inr—&j)karl—vlvl&(inr—dj)k|Pfr1 -G MM20; Pfr_ (9] Pfr_
1 1 1 1 1 2
G'mm,[ 1 . 1
+ T ala(inE &j)karl—vlv 1(9(in6 (?]-)k|Pfr1 +1-2+ 0(3) (4.3)

Here, we have used the fact thatdif, = g; Pfr, and Pfg;; ry=g;; Pfry.

The sum of the retarded integral of the elementary terms then gives us the complete quadratic potentials after expansion in
1/c and matching. Therefore, these potentials are generated by the sources through some partie-finie integrals, which can be
regarded as the result of the action of the elementary terms, considered as pseudofunctions, on smooth quantities in the field
point. By inspection, it can be shown that the distributional part of the self terms never contributes to the previous integrals

062005-16



GENERAL RELATIVISTIC DYNAMICS OF COMPACT ...

whereas the partie-finie derivatives applied to the interaction
terms coincide with those of the Schwartz distribution

theory.

3. Integration of the elementary sources

We now come to the solving dflP=S at the 1PN order

for each of the elementary terms composing the quadratic
sources. We proceed following the method we exposed at the

PHYSICAL REVIEW D 63 062005

1 r
Ag=—, Afl=1 (4.34
B )

in the sense of distributions, on account of the fact that, for
instance,

1 1 | 1
(9|_ Pf_ (9K Pf_: ( _) + &1L32K Pf_,

E] ) rirs

end of Sec. IV C 1. For this purpose, we first need to find a

particular solution of the following Poisson equations:

1 1
APV =4, Pf—a, Pf—,
s i

part

n — i
AP =9, Pirydg Pf—,
r

(4.323

and

AP, = d, PI- g PI—, AP, =a, Pfrio Pl
part L r K ro’ part L 10k ro’
1 2 2

(4.32b

with L=i;...i; andK=];...jx. FromP{},, we deduce the

matched valué) by computinghﬁ,'())m according to the rela-

tion (4.29 adapted to each elementary terms.
Equation(4.323 involves only the vector variable;, so

whered;; andd,x denote the partial derivatives with respect
to y, andy, [the same transformation applies & Pfr

X dx Pf(1k,)]. As a consequence,gy=dy doxg and | fi

=0, dok 12 clearly verify

VK g 1= g PR g pfE
AL(=)*"Lgk]=d, Pf—ax Pf
r )

and

1
AL(=) L fil] = a0 Piryay Pf—. (4.35
2

Note that the derivatives above should be understood as mere
(Schwartz distributional derivatives. Luckily, particular so-
lutions of Eqgs.(4.39 in the whole space can be exhibited
[57,53,58. We may take

that it is simple enough to be integrable in a systematic way.
To put the sources into a more suitable form, we start by
applying the derivative operator that enters the self terms in
the sense of functions, since the purely distributional part of
the derivative does not contribute. The result is an adequate
power of r; times a finite sum of partial terms

R Tt —
5'1|2---5'2k_21:k[‘f;1---”1|’ which we shall denote more com- yhere (11n,,) denotes the scalar product of Euclidean vec-
pactly asé““n; “". The solving of the Poisson equations tors. The functiorg is symmetric in its three variables y;,

g=InS, with S=r;+r,+ry,, (4.36a

f12= — 3raria(nini)(g9—3) + 5(ror 1o+ rar2—rar 1),
(4.36b)

rests then on the well-known identitiésasily checked by
direct calculation

ra+2ﬁL
r3ak=A CR—
i (a—1+2)(a+1+3)
for ae C\{I —2,—1-3},
r 1
|—2al _ Sy I al
=455 ”(rm) 2|+1r1”1}’
1 r 1 ]nt
—1-3aL_ Al _ N U s
AL A[ 21+1 '”(r10)+2|+1 AR

(4.33

whereﬁ& is the trace-free part af:, andr 1, a strictly posi-

andy,, so that

1
and A,g=—

Alg: y
Moo

Mrio

in the sense of distributions. For a more complete list of
useful formulas, sef31]. We have also the two identities

;
A,f?=2g and Azflzzr—lz.
2

Their proof is straightforward and calls for some simple re-
lations permitting to express the scalar produatgng),
(ninyy), and (,ny,) by means of some fractions involving
ri, r,, andrq,. These relations, given k.14 in [31], are
very convenient in most of our computations. The function
f12 is obtained by exchanging andy; in the functionf

tive constant. The quantities between braces are particul%hich was introduced in Appendix B ¢57]

solutionsP{), of APV=r3A}, and we must in general add
to them some harmonic functions to be evaluated by match- f—1r r,(nn,)(g—2)+ 2(rir ot ol 15— r1r5),

ing to the external field. Equatiorig.320 are a priori the

(4.37

most difficult ones, because of the mixing of the sources land which satisfies, in the sense of distributions, the equation

and 2. As a matter of fact, determinir@). amounts to

. part
solving

Af=2g.
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Once Poisson equations with 1PN source are integrated, @efficients depending only on time, either through the tra-
remains to find the homogeneous solutions to be added to gfctoriesy; , or the velocitiesv; , [we shall generically call
the full matched solution. Most of the self terms are alreadyw(t) this time-dependent coefficient; for instance
correct, namely, those that go to zero when +o. The  =(v v,)]. It is worth noting that the potentials assimilated
other ones are determined from the interaction terms by tako P!" in Eq. (4.26h are needed only at the Newtonian
ing the limit y,—y,, which happens to be always possible. order, as they come with a c factor. Consequently, the
The matching formuld4.29 provides the functiomﬂgm as- sources of theP!"’s are simply (two time9 the matched
sociated toPS;,tzg. The computation is very easy becausesolutions of the Poisson equation®= SN+ (1), where
the dimension of the source fi4/(r,r,)]=(lengthy 2 (i.e., S" are the Newtonian-type sources(t)d Pf(1f )
d=—2 in the notation of the end of Sec. IV G;therefore X dx Pf(1k1,); so, all we have to solve is
one needs to control only the constant term on the right side
of EQ. (4.29 wheny, ,—0. We arrive athfi), = —In(2ro) APW=2a(t)rfs%n; =2, (4.393

—1; hence the corre®maicn Solution of AQmaier= 1/r 115 is
or

Omatcr=IN

2_r() -h AP(”)z20‘(':)LgmatchK, (4.39b
wherer is the positive constant occurring in E(.19. with pe Z, andL,K some multi-indices. The elementary self
Similarly, but with a little more work because the dimension-Potentials obeying Eq4.393 are evaluated by application
ality of the source is now=0 so we must expand to second _of the identities(4.33, before matching the full ternii.e.,

order iny; ,, we obtain the matched value corresponding tolncluding thea coefficients to the external field. The latter
£12 55 ' stage will be dropped here, because, on one hand, the general
procedure has been explained before, and, on the other hand,
frmter™ — 3717 12001N12) (Imato= 3) + & (F2F 12H 117 2= 1171) powerful methods permitting to deal with the trickiest inte-
grals one could encounter here will be expounded in Sec. V.
—&r(nyy) = 5(yay2) +3r(ny,) Let us look next at the second equati@39h. To getP!"

. from some particulatPan one must perform the complete
[where ;) for instance denotes the scalar productnof  maiching including all the time-dependent factosgt).
=x/r with y,]. As a consequence, the p?}?‘”t'a@ satisfy-  Here, for simplicity’s sake, we give the result in the case
Ing |+Ekq 1(24.32b are, respectively, €)' " Omacnk @Nd  \yhere the (Newtonian source is 1Asr,); hence, P?
(=) " "Lfmatcnk - With this result in hand, we are able to —q a5 we have seen before. Then, we have to find the
deduce very simply all the self terms that do not match propmatched solution of
erly yet. We shall content ourselves with examining how this

works in an example. Let us suppose we want to solve APM=2g, ch
APO=r,4,; bl (439 A particular solutionP g of this equation is easily obtained
ry with the help of the functiori defined by Eq(4.37) (indeed,

the Laplacian ofP(y—f is a mere constant The corre-

: 2
We make the correspondence with the E?q“amihatchii sponding homogeneous solutibf}) is computed using the
=r,0;; Pf(1k,), whose source coincides withd;; Pf(1k ) same equation as Eq4.29 but using the source R

for y; =y, (we recall our notatiorfiZ .= zij fraen- The =29, ... The result, which we naturally cafl,c=P",
distributional part of the derivative yields a compact sup-reads as

ported contribution td ;Z,; given by ) o
fmatet™ 37 1M 2(N1N2) (Imateh=3) = 5 (F1F 12+ M2l 12— T1f 2)

| A Gig L L VT2 ; ; .
Pry 3 J 52'—477|x—x’| _3_r26’ —5r(ny1) —5r(nys) +3(y1ya)- (4.40

which is zero in the limity,—y; while the ordinary part Notice that in the case of the sourcerf(,) the only “odd”

yields a Poisson integral which is well-defined and easilycontribution 1¢ in the formula(4.27) is that given by the
evaluated foly;=y,. We conclude that the value 6}2, . function P(t) defined by Eq(4.28); the contribution due to
wheny,—y,; ' R(t) is of higher order in this case. We readily find

1

= (§12 r\B
Pr=( P(t)=FPBHOJ d3x(—) —=-2mry, (4.4))

matchij )y2—>y1: 3
ro/ rifs
is precisely the matched solution of the Poisson equation
(4.38. (no need of the symbol RPfThis calculation is also done in
Let us complete now the program presented at the end d&q. (5.8 of [31]. In Sec. V, we shall see more generally how
Sec. IVC 1. Because of the presence of time derivatives auch integrals can be obtained. Thus, our definitiorsQfcn

the 1PN order, we restore in the elementary terms all th@ndf,4c,are such that
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D_l 1 ) 1 o 1 (921: +O(3) AU,IZ(?lU(?JU
— = — =T .
R ris et Omatch 2c 12 EZ t ! match
(4.4 and
Finally, we have all the material to integrate the indi- AK”:a(anj)afx,

vidual post-Newtonian terms in such a way that the inner
metric matches the external field at the 3PN order. Let us . 2 5
remark however that, in fact, the work we have done on thd/hich come  from §;Ud;U+ (1/c%)dUd;)dX+ O(3)
matching is, as seem posteriori unnecessary. Indeed, sum- —¢iV7;V. Recall that the potentiald, X, and so on have to
ming up all the contributions in the potentials, we find that,0€ viewed as pseudofunctionslfor instance, U

had we made use of some “unmatched” elementary func— PfG(711)1/r1+1<2], so the derivatives entering the
tions, e.g.,g and f12 defined by Eq(4.36, to compute the SOUrce terms are dls_trlbutlonal derivatives. _The self terms
interaction terms instead of the corresponding matched qua®@n e determined with the help of the relatidds33 and
tities, and had we deduced jointly the corresponding selfatching. To get the interaction part, we change the spatial
terms from the limity,—y,, we would have arrived at the de_rlvatlves to partial derivatives with respect to the source
samepotentials up to the 3PN order. This means that the neW©iNts ¥1,2, and ”‘i;(t- we make the gplacementr;rl@
contributions brought about by the matching to the externat9match: F1/T2— fiaens @nd ro/r1—fize,. The “odd”

field actually cancel out in the final 3PN equations of motion.termL;; is a pure function of time given by

In particular, the constanty which enters into the matched

quantitiesgmatchr ratch aNdfmacn disappears from the final

result. Though we have verified this, we stick to our presen- Lij :3th
tation and use systematically all the matched functions deter-

mined previously. C . .

To end this section, we shall achieve the example of th%v ;fgulf’eglrvsﬁﬁ);hkg?nvggg%r: (I)EquSé% I%[ilgéltc%i?rﬂzgq%e
pOtem_ialwi(jW{N) defined by Eq(4.18. We indeed already s the matched solution of the double-Poisson equation
know its source from Eq4.31). We split the potential itself
into

d3x

Twﬁiu{?iu’

Azxij =2(3’|U(9]U,

AN V) _ 2 . . .
Wi(j )__Uii_?Kii”L ELij_z_CzatXii- (443 whose source is to be considered at the Newtonian order
only. The iterative application of Eq4.33 plus matching
The first two contributions are, respectively, the matched soyields the self terms; for interaction terms, we replace

lutions of the Poisson equations AL (LI 1) a (1 5) by ()" *f mawenk - The results are
G713 S5 o
Ujj = 8 (‘93 |nr1+r—2 +G?T17i2 iOmatchj » (4.443
1
(i k k 24 ikl 2
a a; . a vid  viv) vivy v
o2 1 1 1 2 1 11 U1Ug 2 1
Kij =Gt —Zaj)lnrl+§5”o7klnrl— 4—80ijk(rllnr1)+ 162 + 82 T Mo Inry+ Ea”— Inry
vivy
AT Fija (r2InT ) | + G2 haTiol @ i Frdateny) + U501 kici Frateny ]+ 12, (4.440
0|2 d*x 1 1 o d®x 1
Lij:G dy| g PT _—Maiaﬂja + G4, M1M201id3; Pf T“TE +1-2+0(2)
r
:Gzﬁlﬁzataliazj712+1H2+ 0(2), (4.440
X _ G 2 o1 Gy, f 12 4.44
=T gaij(rl nry)+8tInry |+ G @ty fmatchj+ 12+ const. (4.440

In the last equation we do not write for simplicity a constégsociated with a function of tyg®) which is cancelled out by
the time derivativer?t2 in front of that term. The self terms have been written in the form of s@rdinary) space derivatives
in order to prepare the computation of the cubic sources.
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V. CUBIC POTENTIALS proximation. Recall thatv/V"") was defined by Eq4.18.
A. Methodological scheme We start from the expression of the source&8tN® obtained

For methodological reasons, it is convenient to express aﬁ)y insertion of Eqs(4.7) and(4.43 into Eq. (5.1). We get

the cubic sources in a similar way, with the help of the same 1 1
set of (:::Iementary integrals. The so-called “cubic-non- OXENO = _ UjjaU+ = Li0U— —K;ja;U
compact” term c

$(CNC) _ = Lp\Rf(aVaV) 1
XNO= DR {W 93V}, (5.3) ~ 522 (333U + Uy a3 X1+ O(3),
which is part of theX potential[see Eq.(3.263], is a good (5.2

example to understand the successive transformation opera-

tions we perform in practice. Furthermore, this cubic—non—using the notation introduced in E@.43. On the right side
compact term is the only one we need to compyte at th‘?he potentials are seen as pseudofunctiomeolving a Pj '
relative 1PN order; all the other ones, which enter ifitand  and the derivatives are distributional. After carrying on the
Y, are merely Newtonian. So the practical computation ofexpansion of retardations up to the 1PN approximation, we
Eq. (5.1 is the most difficult one we face at the 3PN ap- find

o eNe d3x’ 1 1 d¥% 1 1 d3x’ 1 dx 1
XCENO= [ — = _ = . .g.U== ——LiggU—=0; | —U;d;U+ = | — ——K;;d;U
191 c 9] c

4 |x=x'| "VUT ¢ ) 4w |x—X| 4 4 |x=x'| Y
b stx/ 2,0, U+ = J—dsx,—u x4+ ZJ Lk "|Ujj ;U
2 ) am x| 7RV 507 | T xm Vit diX g | g X 10y
1 d3x’
+?8t ?LijﬂijU'f‘O(:‘}). (5.3
|
We have checked explicitly that the sum of the integrals B. Self terms

occurring in this formula yields an integral convergent at

W ideri ly th If terfisth
infinity when considering the regularized value of the gradi- e agree on considering only the self termsthat are

& (CNO) T ) o proportional tomi rather tharmg (they are the same modulo
ent (9;X7""), which is the only thing required; thus we do e reniacement 1 2), and(ii) that do contribute to the 1PN
not need to introduce a finite part at infiniggut of course order at most. We leave aside the terms that are generated by
the regularization Pf is needed to cure the point-particle sins i

gularities. The next step consists of replacing the potentialsl‘ij , since their structure is especially simple and they are

U, X, L;;, K;;, andX;; given by Eq.(4.44 above by their evaluated at the end of the section. By explicitly writing

values at the field poink#y, and x#y,. The spatial and down all the sources, as done previouslyHgys;;U, we can

time derivations appearing in each of the integrals of Eq_draw the complete list of intervening terms. There are three

(5.3 are to be understood in the sense of pseudofunctionyPes of terms: th&/dVoV type concerns one kind of term
(see Sec. )l Consider, as an example, the term only, i.e., 1f;Xd; Pf(1ky)xd; Pf(1k,); the so-calledy
type refers tod, Pfrixdy Pfr{ terms, wherep and q are
positive or negative integers; th&-type terms come as
J d3x" 1 Kool d, Pfag(rfInry)xa,Pfaxr{ (the terms) and A are named
—47 [x—x'| ijdijU- after some integrals introduced belowhere may exist con-
tracted indices among the set of multi-indices. In particular,
some terms involve a fact@rA Pf(1/r,) and are thus purely
Remember thaK;; is given by Eq.(4.44h. Let us multiply ~ compact supported. In fact all the terms can be split into
Eq.(4.440 by 9;;U=g;; P{(Glu1 /r1+ Gi,/r,) and develop  compact and noncompact parts. The latter part is an ordinary
the product. The result is made of a sum of terms of the typdéunction that we are able to calculate explicitly. The former
(1/r§)><r7ij Pf(1k 1),  dxInryXa; Pi(1k ), aijk,(rg Inry) is determined from the results of Secs. VI-VIII iA7] and
X PRLITL), iwi(Fraen; X & P(Lr,), etc. Some of them depends on the pseudofunction derivative we use. We shall
are functions of ; only; we call them “self” terms, whereas refer to it as the self partie-finie-derivative contribution to the
those depending on both andr, are called “interaction”  potentials. If we take the termjk,(rfln ry)Xa; Pf(1/r,), for
terms. instance, it reads
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1 1 and other similar formulas fan}/r7, ninink/r8 etc.
A (r2Inr )y Pf—= a1 (r2Inr )9, — : i i
ik (1IN Fa) oy FHZ = dijla (T N T) iy As an illustration of our handling of the sources, here are
the effects of these transformations on
1 dina(r2Inry)d; Pf(1k,). Starting from Eq.(5.4) and usin
+ 0 2 =] ijki\"1 ij 1/ g q.(o. g
Jiga (rIn rl)D"[rJ Eq. (5.5, we find
In the case of the “particular” derivative defined by Eq. 5
(2.9), we haveDP* 1/r ;1= 27 Pf(8' —5nin}) 8, so that R PR |
1 —— 74 (r1°Inry)d, Pf—
—4q |x=x'| ! U

) 1 n¥n} — &

Fijk(riInry) g Pf—==12——5— d3x’ 1 [4 1 48 ¢
e g =f—— il Pf-rg— — Pfos

a4 45 —47 [x—x'||5 ri° 5 rp

+877Pf+51 kit Kl
: 87 niknj'—186¢
+ — Pf——— 1|,
(5.4 S r

(as in the first term of the right side we sometimes do not

write the Pf when there is no possible confusidn morst of  \vhere the first term is generated by the specific derivative
this section, we shall use the partlculf\r der'vf‘@?[FJ (2.9). In this term the derivative can be changed to a partial
given by Eq.(2.9) instead of the more “correct” derivative derivative with respect to point 1, and since we employ a

giJ[F] dgine?f b3{ EqsiEZ.lfQ), 523%3]&' in Setp. Vi v]\c/e sf;_all ]pseudofunction derivative, we are allowed to permute inte-
IScuss the efiect on tne fina equations of MOlon Oy 45 and derivation symbols. This yields

using the derivativ® ;[ F]. In order to obtain the self cubic
potentials, all we have to do now is to apply the operator

J(d3x'/—47)|x—x"| 1 to the various sources we are focus- e 1
ing on, andd?[ (d®x’/ — 4m)|x—x'| to the Newtonian source pff ax —,f?i'jm(riz Inr})a;, Pf—
of X(®NO_ As a matter of fact, the resulting integrals can be —4m [x=x'| '
viewed as partie finie pseudofunctions like E§.4) acting

on 1/(—4m|x—x']) or [x—x'|/(—4m); both quantities are 4 3" 1 1
smooth at point 1, so the pseudofunctions associated with the = 5w Pff 47 |x—x'| r?
noncompact part reduce to Schwartz distributions in that !
case(but, in order to construct the pseudofunctions them-

selves, we used the generalized distribution$4af]). Each _ 4_85k| Pf
integral is indeed a sum of terms of the forf?<n} =< 5 —4m [x—x'| r;?
wherep belongs toZ. It is convenient to write them as sums

of pseudofunctior(or, equivalently here, distributionatie-

rivatives of quantities without indice$‘scalars™), times +
some possible Kronecker symbols. We have, for example,

d3x' 1 1

2 n¥n' 36 &
—— +—= .
5riflx=x[ " 5 rifx=x']/,

ninf 11 14!

7T TR E R The first two terms are left in this form for the time being.
On the other hand the last term is computed following the
procedure explained by Eq&.17), (6.18 in [47]; see also
Eq. (5.16 below. By implementing the previous procedure

(5.5) for all the self terms entering;;d;;U, we finally arrive at

_1oal 14 T eninl— g o2
_1—5(9” E+§§+E( niny )E,

. 5 & dx 1 1 ol dx 1 1
=G my __ﬁli Pf|] ———+—=+ (91” Pf T 3

fd3x’ 1 K o U
—47 |x—x'| i1 i 6 —47 [x—x'[r{®" 30 —47 |x—x']r}3

self

202 fdg’x’ 1 1 (nqay) 7(npy)? 7ol

i Bl + = +1-2+0(1). (5.6
5 “arx—x| 15 122 " 1507 asgd| T1o2tOD)- 56
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cubic potentials of interest her@{eN®  Y(CNO " or the re- ol Pfq- “aax—x|
maining terms inX(©N©.
We find that there are definite contributions, coming at the _ iﬁ, Pfi 1
3PN order, due specifically to the pseudofunction derivative ritory —amx—x'|ry)”
introduced in[47]. Indeed, the distributional part of the de-
rivative gives some well-defined nonzero contributions,The compact part of the dual bracket, which is associated
while, for instance, the Schwartz derivative yields somewith the distributional part of the derivative, when acting on

We follow the same way to treat the self parts of the other < 1 1 1 >

rirs

terms which are ill-defined in this case. These contributions/(—4w|x—x']), i.e.,
of the pseudofunction derivative actually take part in the

values of TN and X(°N© only. Denoting them bydseiT

and §Se|f5( in the case of theparticular derivative (2.9) we
find

7 G'mim,
Osefl = — —=—=—(N1N5) + 12 5.7
self 12 rir%z ( 1 12) A ( 3
. Gmi/ 17Gm, 1 )
OseltX = 3|\ T2, ri(ningp) + 4—O(n101)
—ﬁ)vi +1-2. (5.7b

C. Interaction terms

We consider exclusively the interaction teristhat are
proportional tom?m, rather tharm;m2, and(ii) that contrib-

ute at relative 1PN order, leaving aside those which are ge
erated byL;;. Depending on whether they come from
“simple” or “composite” cubic parts as shown respectively
below, the elementary terms composing the sources re

schematically

dPF(ry)]oPIG(ry)]d PIH(r,)] (5.89
and
d PILF(ry)]d1d, PT[G(ry,r35)]
=d, PHIPI[F(ry) o, PIG(ry,ro)1}; (5.8

the functionsG, H belong toF, and it is also the case &fin

1 1

Al
(I=1 or 2, leadsa priori to a nonzero result. Herd),
denotes the distributional part of the multiderivative, ob-
tained in Sec. VIl off47] and recalled by Eq.2.12 above.
However, the left side of the bracket, which is homogeneous
to the (—1—2)th power of a length, is necessarily of the type
ri" Pfé,, times some dimensionless angular function
whose multipolarity differs from by an even integetbe-
cause of the index structure of the operainr). Now, the
previous compact part is equal to the angular integral of the
ri~* Taylor coefficient of 1/¢ 4|x—x'|), times the angu-
lar dependence dd, [ 1/r4]. The integrand then appears as a
sum of terms whose multipolarity differs frod (1—1)
=21-1 by an even integer and so is always odd; thereby the
angular integral gives zero. By similar arguments, we can
prove that the other compact sources associated with the dis-
tributional derivatives will never contribute to the Poisson

1
" —Am|x—x'|r}

r]htegrals constituting the potentials we are considering here.

Actually, it is possible to put together all the various kinds of
simple-type[see Eq.(5.8a] cubic terms into a unique one,

hich is nt/ri"?x 9 Pf(1k,). We express at last the first
factor (if 1#0) as a sum of derivatives of “scalars” thanks
to identities such as Ed5.5). Since the pseudofunction de-
rivatives will give here the same results as the Schwartz dis-
tributional ones, and by virtue of g, Pf(l/r§)|D
=Pfg (1l i) |» (WwhereD is the set of smooth functions with
compact support the last transformation can be done in the
sense of functions. Note, however, that the multiple deriva-
tives of 1f, are indeed distributional and play an important
role in the sources.

To sum up what precedes, all the interaction terms have

general. However, there exist some composite terms fothe general structure

which F=Inr, but this is not a problem sinc#- is still in

F. In the cases needed in this proble@js always one of

the four functionsgmaich fiaen fomich OF fmach Then,G

is “regular enough” so that PiG and ¢ PfG coincide in

d3x’
f — = X=X [Payy PTLa} PIF(r]) auc PIG(r] . r5)]
(5.9

any cases, and further simplifications of the sources do not _ .
seem to be possible at this level. All we need, thus, is tdPp=—1 or 1,F andG functions of 7). After commuting the

transform the simple cubic contributiors.8a similarly to

the self termgsee Sec. VB A typical example of elemen-

tary source we have to handle is Lf(,) X d, (1/r,), where

integral and the derivativé,, , which is always allowed for
integrals converging at infinitysince d,, is followed by a
Pf), the general cubic terrtb.9 becomes

L represents at most two noncontracted indices. We can

check that this term can be computed to Newtonian order
only; hence it is given simply by a Poisson integral. In the

3Xr
t?sz _4W|x—x’|p&j PfF(ry)dsx PIG(ry,r).

language of pseudofunctions, this means that we have to

evaluate:

In the case wher&=G(r,) (andk=0), this rearranges as
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3X/
S X PRIDG(Y). (5.0

3x! .
(92LJ |X X' [P(=) g, [ PEF(r)PfG(ry)]= (=) d130a Pfj

We shall end with implementing concretely our treatment of the source on two typical terms:

fds/ - ’Pf1 Pf ! Pffdsxl t o 5.11
“am x| 1y A P A PR = 5 0wda P T e (.11

d3 1 d3 1 1
f — 47 |x— x|k'fmat6h1‘9 Pf 5’21f Zam x— Xlk.fmatcn?” Pfq. (5.11h

and by providing the complete interaction component corresponding to the Poisson intdgyal &, which completes the

self part obtained previously in E¢p.6). The compact support terms have been explicitly determined, while the other ones are
left unevaluated for the moment:

de, 1 K U
— 47 |x—x'| i

ay DPff d3' 1 Inr1 ay DPff d 1 riInr;
7 % 4 |x=x'| r} 287 —4m |x=x'| 1}

32
=G mlmz[

int

i d*’ 1 1 dx 1, 1
+al‘92i Pf Tmmjkfmatcrﬂlk /+a2‘92|] Pf kamatctf?ikq

(N1 vy} J'd3x’ 1 1 viD Pf d® 1 Inr]
8rir, 8 4 [x— x|r’2’ 16 —4x |[x—=X'] r}

L u i . PfJ d3x 1 rizlnri_l_ |k Pff d3x' 1 (2 o
26 allj —47T|X—X'| ré Ulvl&Zi — A |X—X'| jkl matctﬁilq

d3X' 1 21 , 1 (n1201)2

joko - - [T

whereD denotes the operatak; dy; .

D. Elementary integrals
1. Nomenclature

The inspection of the formuléb.12) for interaction terms issued from;;d;;U suggests that we should re-express this
potential, as well as all the other ones, by means of a restricted number of elementary integrals, basically one for each source

type; hence the proposal for a useful systematic nomenclature, which reflects their structure. We shall introduce the following
notations(and ditto X 2):

(np) dBX’ 1 merp d3X’ 1 12 ’

Y =Pf “am x—x |r1 ra° ‘7:(P Q= | Tan F= iofmatctfip Pf

(np) d*’ R dx 1 1
N=Pl Zaxx 12 " Feo™ | a7 ox] iof materfip P

d 1 ;1 d 1
sz: __MkagmatchkaP Pfa 71:(P,Q)= i x| iof matctfip Pf

d3x’ 1 1 (P d3x’
IlCP_j__MTngatcH?PPfE N —Pff 7y [x=x"[ry"rs?

f d3x’ 1 f (n,p) fJ' d3x’ e
= P — P v/ A ’ !
?(PYQ) — A |X X| Ingathle -/\1/‘ _47T|X X |I’1 r,inry
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d* 1 o1 3’ , o1
if(P,Q): a x| iQ9macip Pfa %P,QF — 2 X=X liqOmaterfip Pfa
"y _f a3 1 ! piy! 51
P~ | Z27 [x=x] iQImatctfip PTr. (5.13

The value of the previous integrals is not generally known ahxpansion ofXCNO  and thus enter this potential through

any space location, except in some special cases. The reasgfdir second time derivative. What we shall have to compute
is that their sources involve three points, in addition to thegy, oy purpose is their Hadamard regularized value. How-
integration variable<’, the pointx where the field is calcu- A ;
Iateg, and the two sourcé3 poinig,y,. The few that are i;/ esréﬁtﬂil\;\llg)Clznnnogt?j\::jlljl;éj an the ]:/rv:r?]lg s_pader e
: ) , 21 21(.,0) it directly. We
computab(l::‘o;or anyx g\clude notably some selzf |r(1(§e_gl§als shall adopt then a different approach. In a first stage, we
such asy ™% and &9, and the two integral® A3 express the operata with the help of the partial deriva-
and d,G, ; o) entering the interaction part of th“N° po-  tives g, anddy; : if F(ry,ry)=ay Q1.0 then
tential at the Newtonian order. Actually, there are no other ’
cubic contributions up to the 2.5PN order, and that is why we o i ] i
were able i 31] to get the complete expression of the metric diF=0dv1d1iF]=viv10yF+a,0,F+1-2.
in the near zone at this order. This property of the integrals
D2NP™ and g, Gy i o) is linked to the specific form of the Next, we commute the partial derivatives, with the inte-
integrands, which are made of products of two second degration sign, so that the derivatives act on the source of the
rivatives applied on appropriate functions, such that the inPoisson integral. This operation is legitimate only if the de-
dices of the first derivative are contracted with those of theijvatives d,. when acting on the integrands are viewed as
second oned;; Pfinr X Pf(1k ;) and;g;X d;; Pf(1k1). In  distributional (in the sense of Sec. IX ifi47]). The new
both cases, particular solutions in the sense of distributionfitegrands write then as a partie finie derivative of a product,
of the corresponding Poisson equations e.9.,01.[i09d{p(1/r1)1; but remember that we are natpri-
ori allowed to develop them according to the Leibniz rule in
AK;=20;; PfInr 4 Pfi, AH, =2, Pfi (5.14 our formalism. In fact, thege specific non-Leibniz co'rrection's
I ri happen to give zero contribution to the 3PN potentials. This
. . can be seen by applying successively the form{@dla3 in
can be exhibited57,31]. The solutionsK; andH; of Eq.  [47] (which is indeed sufficient since the “test” function
(5.14 that go to zero as— read |x—x’| is smooth at points 1 and o all the sources we are
dealing with. Therefore, we can employ the usual rule for

K1=(EA—A1) Inry + 1 ) InTs r22 . 21 , derivatives of products to perform our final transformation.
2 r-] 2 rp | 2riry rifs In summary, we will have, for instance,
(5.153
P f X e P
1 Inr ry+r 1kl | — - IX—X|iQjdij F1—7
H1=—A1P+ 1 ) 1 129” 4 ri
2 r{ ro 2
3y’
+ 005 |n_|'12 m _ia [((9 ) ]_ 2 :f 34)( |X_X,|iklgjaij Pfi/
02i r 20, 1y 2il (7i9)1 mr ™ ra

(5.15b

3%’ , 1
+2f _477_|X_X |i(kgja|)ij Pfr_,
with A1=4y;;i, Ay,=4d,; see also Eq(5.32 for the ex- - 1
panded forms of these solutions. Thus, we have 3

!

+
DZN(lo'il):%Kl f —4m

1
IX=X"[i0;dijii Pfr_r!
1
and . . . .
(the indexj means thaj is excluded from the symmetriza-
92iG1(1.0= IH,. tion operation. On this form we can apply the patrtie finie at
1 while staying in the same class of elementary integrals
In the list (5.13 above, we note the appearance of iterated5.13. We conclude by going back to the example of the
Poisson integrals such & 59, M©~Y and 3, Q4.  cubic term generated by;;9;U; we have, after appropriate
which come from the 1PN contribution to the retardationreshaping,
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d3x' 1 a) (=30 iyl (=80 2u3-50 (nja;) 7(nwy)?  Tvs
3 =9, =g 2= — + _ +G3m?2
f x| (U= CIM) g Vot ggmdny Yo m g VTt g T gpg 3] FOTMM:
ay 01 ay (2-1) (npay) vyl (27D
2 — ...
{4 d2iD /\/ +48‘91'D N +a1¢92,7-'(,1)+a2a2”]-‘(, 0" Broy, s dij Y
2 _ i _ 2
U7 (0,-1) v1U1 (2-1) . . (nlzl)l)
+1—6D2 N +E(91ijD2 N +Ujlviif72if%iz,jk)+v]205(?2ijkf(2i]:0)+8T +1<—>2+O(1)
1 1 1 1 F1of2
|
We refer to[52] for the expressions of the other nonlinear [92F(X,Y1,Y2) 1= 02 F(X,Y1,Y2) 11,

potentials expressed in this manner by means of the same
nomenclature. The problem is now to evaluate all the elbut

ementary integrals from which the 3PN cubic potentials have .
beon bt P [04F (%Y1, Y2) 1 #a[F(xY1.y2)]s  (with F,Ge 7).

Thus, for each elementary integral, we shall determine first
the partie finie of the quantity figuring under the derivation

As mentioned before, in most cases, we do not have at owsymbol 9, and, only then, apply the latter operator. On the
disposal the explicit values of the elementary integrals in alcontrary, we cannot bring the derivatives with respecy to
space. This does not matter since all we need is their Hadbut of the partie finie at 1, so we are led to incorporate them
amard partie finie at point {or 2). Notice that the partial to the sources, in the sense of pseudofunctions, by permuta-
derivative with respect tg, is the only one that commutes tion with the integration sign. As a consequence, the inte-
with the partie finie operation at 1; to be more explicit grals we are interested in are of the type

2. Particles finies of the elementary integrals

d® 1
f _4);|X_X'|p0"1[PfF(r1)]31[ PfG(rqy,rp)]=— E(ﬁl[PfF(rl)]al[ PEG(ry,r)1.[x—x"|P).

They involve both a compact pai€) and a noncompact pafilC). The compact part is produced by the purely distributional
contributions of derivatives in the integrands:

1 1
- E<D1[F(f1)]Pf(91@(r1.fz)-|X—X'|p>— E<D1[G(f1,rz)]PfﬁlF(f1)1|X—X'|p>-

As mentioned at the beginning of Sec. V C, the partie finie derivatives reduce here, in our case, to those of the Schwartz theory.
This is obvious whers=G(r,), because then the sourEér,), regarded as a linear functional Pfr,), acts on a function

that is smooth in a neighborhood gy, ; in the other cases, the result follows from explicit calculations. Note that the
numberl of derivatives in front 0fG(r,r5) = Omatchr it T omiche OF FmatcniS @lways small enough so that, _1G(ry,r,)

is bounded; hence, PfG(rq,r,)=Pfd; G(rq,r,). Once we have in hand the compact part, it remains to obtain its regu-
larized value at point 1. As a matter of fact, if the source is of the typE &Bf whereF € F, then

1 1
< Pf(F52)(X’),|X_—X,|> = E (rz éLF)Z&L(E) (5.1

TI1=0

is smooth at point 1 and we need not call for the Hadamard regularization. Therefore, we are allowed to replace directly
[x—x'| by r in the left-hand side of Eq5.16). When the source is of the generic typeF; , the same identity as E¢5.16)

holds, but with 2-1. This shows that the integréPf(F &,),|x—x’| 1) is purely singular as;— 0, which means that it has

no partie finie aik=y,: the §; type sources do not contribute to the potentials computed at body 1. Summarizing, we have

1 1
1

1
(< Pf(F51),—|X_X,|>> =0. (5.179
1
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We refer the reader to Eq$6.17)—(6.20 in [47] for more Mo o rg
details. (Ph=—m«7%@Fh4%—J(—F
Let us now focus our attention on the noncompact parts of M S2/\M
the elementary integrals, whose integrands are made, by defi-
nition, of ordinary functions. The problem is to get the Had-where the dots indicate the terms that are independent of any
amard partie finie of the Poisson integRibf F € F: constants. As we see, the constapthas been so to speak
“replaced” by rj. This makes clearer why it is convenient
, to keep the Im; in the definition of the Hadamard partie
P(x ):Pff — 47 |x—X| F(x), finie; if we had decided to exclude this logarithm from it, we
would have found some barerp in the first term of Eq.
as well as the one of the iterated Poisson inte@ajiven by  (5.19 instead of a nicer logarithm of a dimensionless quan-
tity, In(ry»/r1); but this is simply a matter of convenience,
because we shall see that in fact the “constantst;land
Inr; can be gauged away from the 3PN equations of motion.
The same argument is valid for all cases in Eg118. As a
(Each of these functions depends also on the source poing®nsequence, the acceleration of the first body will depend
y1.» and velocitiesv; ,.) Now, the partie finie prescription only on two unspecified constants:rin and, of course, Is,
applies only to functions admitting powerlike expansions(and ditto for the acceleration of the second bo@ee Sec.
near their singularitiegsee Eq.(2.1)], whereasP or Q may VI for further discussion of these constants.
contain logarithmic coefficients in their development: if we  The relationg5.18 answer the problem of evaluating the
take, for instance,lelri, we shall have P=—[1 elementary integrals at the location of particle 1 without
+In(ri/s))r;, wheres, is the constant appearing in Eq. knowing their values at an arbitrary field point. The subse-
(2.3). Following [47], we shall simply include the possible quen't task consi;ts of ca'lculat?ng the partie-finie integrals on
logarithms(i.e., Inr}) appearing in the zeroth power coeffi- the right-hand sides, which will turn out to be always pos-
cient of the expansion d? or Q in the definition of the partie ~ Sible.
finie: see Eq.5.4) in [47]. With this generalized notion of
“partie finie,” we can give a sense toP), and @), as 3. Integration methods
well as their gradients{P), and (¢;Q),. We make thenthe  The noncompact parts of the regularized elementary inte-
following statementgsee Sec. V of47] for proofs and dis-  grals consist essentially of some integrals/Bfx F(ry,r5),

+-- (519
2

d3x

3

X
Q(x’)=PfJ . |x—x"|F(x).

cussion: with F e F. It is worth noting that the sources depend on
5 , ri,r, exclusively, and not on the separate variabtey,,
(P),=Pf fﬂipr In(r_l —1/(r2F) andy,, because scalar products such ag,§, (xy,), or
" ss | —4gry ) SR (Y1Y,) occurring infi2 . f2L . andf .cnare killed by the

(5.183  derivatives that precede them in the integrand. In this work,
we make use of two different integration methods) the

d3x ry 4 angular method, in which we determine successively angular
(Q)1= Pfsl,SZJ —a,NFF|In s +5|(riF)a, and radial integrals in spherical coordinates, é)dhe ana-
(5.18b lytic continuation method, based on the so-called Riesz for-
mula.
d3x e (a) Angular methodLet F=F(r,r,) be a function in the
(6,P),= Pfsl,sJ gy 71|:+ In s_l) (nyr.F)q, classF. We assume for a moment thais locally integrable
1

at point 2; so we are allowed to compute the integral over the
(5.180 whole space, deprived from a small b&l(s) of centery,
and radiuss>0. Thus, we start with the well-defined quan-
(n'r3F) tity f‘|§3\51(s)d3x F(rq,r,), but for convenience we write it in
v spherical coordinatesr{,6,¢®4), such that the azimuthal
(5.18d  angled, coincides with the separation angle betwgenand

!

3

d°x .,
(aiQ)lzpfsl,szf Ean"_

r
—In
S1

3

where the first terms on the right sides are made of somrel'

partie-finie integrals in the sense of the definiti@3). The

“constant” ry is the variable which tends toward zero when J d3x F(rq,rp)= f
evaluating the partie finie. It is easy to show that the constant 7 E*By(s) r
s, cancels out between the two terms in each of the second

members of the identitie€5.18). Indeed, using the general Actually the functionF may be a tensor with many indices,
dependence of the partie-finie integral on the const®n®  but the only unit vectors in the problem arg, n,, n;,, and

as given by Eq(4.20 in [47], we easily see thatR), given  only two of them, say, andn;,, are independent, by virtue
by Eq.(5.183, for instance, depends on the constarjtand  of the relationr ;n,+r,n;,=r,n,; and thereforeF can be

s, through the formula expressed under the form of a finite sum of tensorial prod-

+ o0
dqrjfdﬂlFulxg.
1
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ucts of typen&n?z (1,ke N); moreover, each factor admits a (5.178 we know that the distributional part of the derivative
symmetric trace-fre¢STP decomposition on the basr“éi will not contribute. Then, using Eq5.183, we readily find

=STFn}. Hence we have d¥x 1 1 & r
)= Pf f In|

K (i9 _—Mﬁigﬁjan— 5

—-11.
6r
15,0 12

F= ATNSG (1),  lo.koe N.
The noncompact integral has a sole divergence at point 1, so
Here, theGy's are some scalar functions of andr,. that we can apply the previous method without any change,
Now, r, is related tor; and the scalar produch(n,,) by ~ @nd get

— 2 2 H . . . -
rz—\/rl+r12+2rlr12(n1n12), so that th‘t‘a angular mteg.rfl of d3x 1 1 s ninl, 4 o
F can be obtained by means of the “mean formula;” see, Pf e i9dj—=— o 1x. &a.mn .
e.g., the formulaA26) in [54]. We get mrT 12 12 Ol

S1

L 1 (5.23
f dQlFZZW;O go ﬁkz”?zf_ldz As expected the constantspcancels out and we arrive at
281 npnl, & (r
X G (F 1, IE+13,H 2111 152)Py(2), (G )=——— 2 12——In(—l,2>. (5.24
(5.20 1.0 9y 12ry;  6ryp 1
whereP is the Legendre polynomial of ordérin the cases A few elementary integrals diverge at the locatignsnd

of interest hereGy is always a sum of rational fractions Y2 Of both particles. In this occurrence, the integral
with general structurelr§/(r,+1,+r,)", with p, q positive  J#3.5,(9d°XF has no meaning, and the previous integration
or negative integers ande N. It is easy to check that the process is not adequate anymore. However, Proposition 2 in
result of the angular integration depends on the relative poSec. IV B of [47] allows us to extend it to this case. We
sitions of r; and r;,. Therefore we must split the radial introduce the auxiliary source

integral into two contributions according to the integration

domainsr,e]0,r15 or rye]rq,, +[. Typical terms com- B —F— E rbf

) . . 2 2Tos

ing from the angular integration aré/(r,+r,)", as well as b+3<0
some more complicated logarithmic terms suchr & (1

+r4,/r1). Most of the corresponding radial integrals are ob-Which is locally integrable neay, but does not converge at
tained straightforwardly using some integrations by part, apinfinity. As before, the angular integral &f, aroundy; takes
plying the partie finie at the bound =s [i.e., removing the a different expression depending on whethgsr, or ry
poles 18X, with k=1, and replacing Is by Ins;]. In the case >r.,, SO we must split the radial integration into the two
of the latter logarithmic terms witlp=—1, integrating by  domains ]0;,J and Jr4,,+[. Then, with full generality,
parts does not lead to anything, but the radial integrals can be partie-finie integral of the souréeis given by

found in standard mathematical textbooks:

f12 -
” ? P fd3xF=Pf f dr rzf dQ,F
f ﬂIn 1+r—12)=frlzﬂln<l+r—l>:7r_, 5152 St)p L1 1F2
r, 1 M o N ripo 1
+ oo - 1
o 5 +[“arrt [ o, F2+r—3<rgp>2}
1+ 22 I , . :
tedry r riadry P T
o R Y s 3 Mo
e fiz | Jo T ] 4 +4m(r3F),In[ =) (5.25
1-— 1— — -
r r

(5.2 If this integral comes from a Poisson integral evaluated at 1,

It can be shown that the integrals divergingyatinvolve in  the constans, will be canceled out as we have seen previ-
general a logarithm Im{,/s;) but never anyr? terms. The ously and replaced b ; but there will remain in general a
procedure we have just described indeed permits calculatingenstants, coming from the singularity at the other point.
most of the elementary integrals. Consider for instance th&Vith the angular method we were able to obtain all the el-

integral ementary integralsand their gradienjsat point 1. See an
appendix off 52] for the complete list of those results.
_J d* 1 ' pf 1 59 (b) Analytical continuation methodrhe equivalence be-
i% —47 |x—X] 19, E (522 tween the Hadamard partie finie prescription for integrals

0o and the analytic continuation regularization has long been

(in which we replaced)cn By g=InS since they merely known(see, e.g[45]), and we have recovered it in the three-
differ by a constant We are interested in the value of this dimensional case by the Theorem 2[47]. More precisely,
integral at point 1, following the regularization. From Eq. for any F € F that behaves like(1/r®) whenr— +, the
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integral fd3x(r,/s;)*(r,/s,)?F of two complex variablesr and 8 admits an analytic continuation in the neighborhood of

a=B=0, and we have

Pfsl,szf d3XF=FPgﬂgf d3x

ro\r
S;) \s

: |2
S1

Sz

(5.26

B B
F=FPﬁﬂgf d3x( ) F,

2

where ang means taking the finite part of the Laurent expansion of(&malytic continuation of theintegral whena—0

andB— 0 successively. This result is particularly useful in th

e case wheseof the typerrj, with p andq relative integers,

since the integral is directly computable thanks to the Riesz forffilh

a+p+3| [(B+q+3 F( a+pB+p+q+3
2 2 2
3yratpeBfta_ 312 a+pB+p+q+3
J d°xr{ " ry T ; s ; B+q _[atBiprq+6 ris . (5.27
2 2 2
|
One may consulf47] for an example of practical computa- 5 1 rio
tion. Most of the time, the structure of the sources of elemen- o+ i=— m— 6r_12|n( 5_1) ;

tary integrals is more complicated than a simpjeJ; nota-
bly it involves many “free” tensorial indices which imply

that generally the sources of elementary integrals, when fully

developed, involve numerous inverse powersSefr,+r,

1

+34= 1 I(rl2
P 2 s )

+r1,. However, by considering all the possible contractions

of these free indices with vectong, and Kronecker symbols
&', it happens that we reduce the computation to that o

By solving the previous system, and inserting the results into
Eq. (5.28, we recover exactly the value given by E§.23.

several scalar integrals we can obtain thanks to the Riesg/e have checked in this manner all the elementary integrals

formula (5.27) (i.e., when performing the contractions and
after simplification of the result, we are always led to the
simple structurefrd without 1/S powers. It should be noted

previously computed with the angular method.

4. Finite part of integrals diverging at infinity

that the set of scalar functions that we compute contains the

complete information about the complicated tensorial inte-

gral, i.e., it permits to reconstitute it exactly.
Let us illustrate the method with the computation of the
integral (5.23. It involves two free indicegj and is neces-

sarily of the type
Pf r (9-i=¢>(r JNn)o+ g(r ) 8
rllg iy 12)N12N72 1 )
(5.28

where ¢ and s are some unknown “scalars” depending on
ri». By contracting successively the integrand withyn)
and &', and simplifying, we find

d3x

— 41

o 1 1 r, 1 P} I’%
NNipi9dy—= 35— -7+ 7T 22 32
12 Ity 4ry 4r] drord, Arird, Argrd,
3 2
r2 1 rz 2
+

_|_ — —
172 2 7 )
Ariri, 4riry, 4riry,  4rg

1 ro,

1
+ - 1
32rfry, 2rirg,

2r?

5ij 1 _
ig&ja_

thus obtaining a sum of terms of the typg § which can all
be integrated with the help of the formula.27). This com-
putation yields a system of equations for the scajaand :

For the moment, we have left aside the case where our
integrals are defined by means of a finite part dealing with a
divergence occurring at infinity. Such a study is needed to
compute some 0.5PN integrals encountered in Sec. IV. From
now on, we suppose that the soufe@admits an expansion
whenr— +o which is made of simple powens' 3, with
N<npax (S0 the integrala priori diverges at infinity when
Nma0), and we consider the quantity

r B
Pf FPBHOJ d3x| —| F1.
o

We split the integral above into two integralg; and | oy
extending respectively over a domdin, including the two
local singularitiesy; ,, and the complementary domalii,,
comprising the regions at infinity. Using the integration vari-
abler,;=x-y,, the external integralon which the regular-
ization Pf can be removedeads as

|

If we assume that the original integral can generate only
simple poles~ 1/B at infinity (which will always be the case
here, we can replace it by

(5.29

Ira+ysl\®
Iext:FPBHOJ‘ d3ry » F(ri+ys).

ext

062005-28



GENERAL RELATIVISTIC DYNAMICS OF COMPACT ... PHYSICAL REVIEW D 63 062005

B B s T2 B Newtonian accuracyThus all the results obtained so far but
F+FPs o5 fD d rl(r_) the one for §;X(°NC), (the relevant quantity for the equa-
ext 0 tions of motion are valid in the case of the new regulariza-
tion. In this subsection we compute the remaining part
F. (5.30 [&i)“((CNC)]l_ (ai)“((CNC))l_
Since the regularizatiorF ], brings some new terms with
Indeed, in the case of simple poles, the other terms, involvrespect to the oldK), starting at the relative 1PN order, and
ing at least a factoB?, will always give zero. The second sjnce X(CNO) is to be computed at the 1PN order only, it is
term is nonzero only if the corresponding integral does admityfficient for this calculation to use the lowest-order, New-
a pole, and can be calculated in a simple way by picking URonian value ofX(CNS) From the computation if67,31 we
the term of order £ in the expansion of the integrand when :
r— +o. Notably, in the important case where the function
goes to zero like 17 at infinity, its product with the log term

r

— 3

Iext_ FPBHOJ d rl(_
Dext Fo

1y
1+ 2(n1y1) E'f’ I’_2
1

XIn

know the analytic closed-form expressionyfN® at New-
tonian order for any field pointt(x),

behaves at least like ¥ and therefore the second term in A 3m3 1 1
Eq. (5.30 gives no contribution. For instance, an integral X(ENO = ——— G3mZm, oz T gkitHs
divergent at infinity that we encounter in the problem is 1y 8rari
B g +0(1)+1+2, (5.3)
3| — 1| g =5
FPBHOJ d X( ro) a”( Pfrl) 3 O where the function&; andH;, which are solutions of cer-
tain Poisson equations, are given explicitly by E§.15.
E. Lorentzian regularization of potentials The complete developed forms of these functions are
All the potentials and their gradientgompact-support, 1 1 1 ry riz rf
quadratic, and noncompact potentjalgich have been com- Ki=-— r—§+ 2 rr. + o122 T or2 37T 53,2
. . . . . 2 2112 1'2 1" 12 1'2 2112
puted in this section and the preceding one were obtained at
point 1 using the standard Hadamard regularizatibi, ( (5.323

However, this regularization, being defined within the hyper- 1 1 1 32
surfacet=const of the harmonic coordinates, must break at 4 —_ _~__ _ __ M2 2

. . . . 1 3 3 2 2.2 3 2.3
some point the Lorentz-invariance properties of the poten- 2r7 Ary, 4riry, 2riry, 2rirg,  4riryg
tials. That is, if a potential defined for a smooth “fluid”
behaves in a certain way under a Lorentz transformation, we i _
expect that its regularized value at point 1 in the sense of 2rirs, 2rird,

(F)1 will generically not behave in the same way. Neverthe- . ) .
less, the equations of motion in harmonic coordinates, a¥/e replace these expressions into E31), and we imple-

computed with the regularizatiorF}, , are known to be Lor- ment all the rules fqr the new .regularizati[)ﬁ]l defined in
entz invariant up to the 2.5PN ordE81]. Perhaps not sur- Se.c. II'I of [48]. Equivalently, since the order of the compu-
prisingly because of this fact, it turns out that the Lorentziani@tion is limited to 1PN, we can use the closed form formula

2 3
r r
2 2 (5.32b

regularization[ F]; (defined in[48]) yields no difference 1 1.

with respect to the old regularizatiorr); for all the 3PN [F]l—(F)lzgz((rl«vl) oF+ §Ullf9i': +0(4),
potentials but for one, namely, the cubic-non-compact poten- 1 £3
tial X(NO) defined by Eq/(5.1) and which had to be com- (533

puted at the relative 1PN ordefEvidently we have[F];  derived in Sec. IV 0f{48]. As a result, we obtain, for the
=(F), for all the potentials which are to be computed with potential itself,

. . G3m?m, (43 43
[X(CNC)]l_(X(CNC))lzcz—r'i‘z(%(nlzvl)z_(nlzvl)(nlzvz)_mvi“‘g(vlvz) +0(4). (5.39

In the case of the gradient needed for the equations of motion, we get

31n2
[aX(CENOT, (ai)z(cm)l:m ( [27

, 3 27 , 3 .27 i
czr‘llz 5_6(n1201) —4—1(”1201)(”1202)_2_8001Jr %(0102) N~ 17@(”1201)01

3 .3 )
+E)(”1202)U|1+ X)(n12vl)vlz +0(4). (5.39
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As we see, the new regularization brings some definite non= g4y, (t);y,(t),y,(t)]. The new metric(6.3, when ex-

zero contributions at the 1PN order in the case of this potenpressed in terms of the old variables, follows from this as
tial, which will constitute a crucial contribution to the 3PN

equations of motion. The right-hand side of E§.35) is not 9,,(X)=0,,(0) + £(X) 39, £(Y1) 16190,
invariant by itself under a Lorentz transformation—it cannot i
be—but will ensure finally the Lorentz invariance of the 3PN +£(Y2)20i9,,+0(10,9,10, 6.9

equations of motion. where we have used the fact that the dependence of the met-

ric on the velocities starts at the 1PN order, so the terms due
VI. LEIBNIZ TERMS AND NONDISTRIBUTIVITY to the modification of the velocities do not contribute to Eq.
(6.5. Since the 3PN metric depends on spa@nly through
the two distanceg—y,; andx—y,, we haved,g,,+1di9,,

In this subsection we study the effect of a gauge transfor- ,5.q =0, and so an equivalent form of E¢6.5) is
mation on the 3PN equations of motion as well as energy of .

the two particles. Le{x*} denote the harmonic coordinate g;y(x’)zgl’w(x)+[§i(y1)—§i(x)]1aigw

system and,,,(x) be the harmonic-coordinate metric, gen- i i

erated by the two particles, that we have iterated in previous +[E(y2) — £(X)]2619,,+ O(10,9,10.  (6.6)
sections up to the 3PN order. The metric depends on th
position x of the field point, and on the coordinate tinhe
=x% ¢ through the trajectorieg; A(t) and velocitiesv, t)

of the particles, i.e., 0un(¥)=8,,(X )+ 0,6, +9,6,+0(109.8, (6.7

A. Effect of a gauge transformation

Equation(6.6), when combined with the law of transforma-
tion of tensors, i.e., in the present case

90(¥) =9, [%Y1(0.Y2(Dva(D).V2(D]. (8.1 whereg,=7,,£", gives the metric variation or Lie deriva-

. tive & =g/ - h th i i
We know that the dependence of the metric over the velocic o 2¢9ur 9,,(X) ~9,,,(X) (where the same variableis

ties arises at the 1PN ordgsee, e.g.. Eqs7.2) in [31]], used for both the transformed and original melrias

namely, the orde’(4,3,4), where this notation is a short- 8e9,,= —aﬂfv—3V§M+[§i(x)—fi(h)]ﬂ?igw
hand for saying?®(4)=0O(1/c*) in goe, O(3) in goi, and _ _
O(4) in g;; . Consider an infinitesimal coordinate transfor- +[€(x) = £'(y2)]20i9,,+0(10,9,8. (6.9

mation of the type In fact, up to this order, only the 00 component of the metric

Tty includes a “nonlinear” correction term; and, within that
X XM+ EH(X), (6.29 ) . . )
nonlinear term, the metric can be approximated by its New-
tonian part, so

()= E*[X;y1(1),y2() ], (6.2b
where, in order to simplify the presentation, we assume that 8:900= — 290+ %([gi(x)—gi(yl)]laiu
the gauge vectog” depends on the positiong, , of the ¢
particles, but not on their velocities. Furthermore, we sup- FE(X)— E(y,)],0,U)+ O(10), (6.99
pose that this gauge transformation is at the level of the 3PN
order, which means thal= O(7) andé¢' = O(6), orequiva- 8:90i= — do&i— diéo+ O(9), (6.9
lently, &#=(0O(7,6). In addition, in a first stage, we suppose
that the vectog”(x) is a smooth function of the coordinates 8:9ij=— 0i§;— ;& +O(8), (6.90
even at the positions of the particles. The new metric in the
new coordinate systefgx’#} is where U=Gm, /r;+Gm,/r, is the Newtonian potential

(with a small inconsistency of notation with respect to pre-
9,,,(xX")=g,,,[X";y1(t"),yo(t");vi(t),v,(t")], (6.3  vious sections Now, it is easy to check that, in the sense of

distributions,

where the new trajectories and velocitigs,, v , are param- : : : i

etrized by the new coordinate tinté=x'%c. The coordi- ACEM) =€ (YD) 1dU+[E ()~ E(y2) |20 V)

natg chang§6.2), when applied at the location of each of the = —25,£0;U—A&dU.

particles, yields the relations between the new and old tra-

jectories, which, when retaining only the terms up to theindeed, thes functions at points 1 and 2, which come from

order(6), read as the Laplacian ofU, are killed respectively by the factors
r : _ &'(x)— &' (y,) and &(x)— &'(y,), which vanish respectively
y1 (t)=yi(t)+ & (y) +O(8), (6.48  at these two points, in front of them. So, we can write for

_ _ _ d¢90o the simpler but equivalent expression
Y5 (1) =ya() +&'(y2) + O(8), (6.4b

2
— _ A1 £ -9
where theé&(y,,)’s denote the gauge vector at the posi- PG00~ 2d0b0~ 2 A 120i;0U A& U]+ O(10),
tion of the particles, for instance, &*(y,) (6.10
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whereA ~! denotes the usual Poisson integral. . G3m3 . 1
The latter result can be generalized to our framework ofd¢Y;= — ijl(gij | tle2, (6.14b
singular metrics by allowing the gauge vectdrto become !
singular at the positions of the particlés the sense that A G3m3 €
& e F), provided that the integral appearing in E§.10 is  §.Z;j=— Taij a +12. (6.149

treated as the Hadamard partie finie of a Poisson integral in

the way which is investigated in Sec. V [p7]. Let us con-  1he computation of the nonlinearity term in E@.144 is
sider, for example, the 3PN gauge vector given by straightforward, and we get

33
G°m (61 €o

gM:_Ce_a:“’ ri E ’ (6.1 Al[Oﬁ'ii

Smy L+Gm
= g,
2r£11 2 1jYij

1
E (?ijU

wheree; ande, denote two dimensionless constants or poSyyhere g=In(r,+r,+r4,) is a kernel satisfyingAg=1/r,r,
sibly functions of timet (and wherem=m;+my). Note that  [see also Eq(4.36], and where we denotgg;; = d1i; i} 9
with this choice of gauge vector the new coordinates satisfy_ p2y -t Jast, we insert the latter changes of the 3PN po-
the condition of harmonic coordinates outside the singularientials into theregularized equations of motiori3.32) with
ties(i.e., in the sense of functiopat the 3PN order: indeed Eq.(3.35 (there is no need to include a correction due to the

0é#=0(9,8). When inserting Ed6.11) into Eq.(6.10, we  pondistributivity, and obtain the corresponding change in
must be careful about evaluating the last term of 610 the acceleration of particle 1 as
in the sense of distributions, taking into account the fact that

A¢ is distributional. For this term we obtain . 26*me . G’m’e,
dsa1=—p5 5 (€1My—€My)Ny+ —57—
3m3 € & o Cra
-1 i i
9U]= —— 1=1++ 0= . . .
A1AGaU] c® 71 r 720 rz) ’ X[ = 15(N120 1) N+ Bo TN+ 6(Ny 1p)v),).

wherey! andy) are the Newtonian accelerations of 1 and 2. (6.19

Therefore, we find In the case where; ande, depend on time, there are some

2G3m? extra contributions proportional te, andé,. A good check

_ i 4] &2 - €1 f Eq.(6.15 is the fact that to the change in the acceleration
5i000=— 2 2+ | )+ 2 1[0..(—)0.«)“ of Eq g
¢doo & | [ mal r g Y (6.15 always corresponds a change in the associated energy;
+O(10) 412, 6.12) that is, the gauge transformation does not modify the exis-

tence of a conserved ener¢see Sec. VIl for the computa-
tion of the 3PN energy Namely, we find that the combina-
tion my:ayvy+m,d:a5vs is a total time derivative, and
gom this we obtain the gauge transformation of the energy

In the case where; and e, are some pure constariiade-

pendent of timgwe can somewhat simplify the latter expres-
sion by using the fact that the accelerations cancel out in th
first term. In this case, we obtain the full metric transforma-2°

tions as G3mPm, [Gm,
0;E=e;—-=5—|——3(n n +(vqv
2G3m3 ’ e B e 3 2 Csriz M1 (N1 1) (N0 12) +(v1V12)
559002_—8 v]![?ij —|+2A (7” — ﬁIJU
c i r +12. (6.16
+0(10)+ 12, (6.13a
B. Leibniz contributions
2Gm® . (e AR . . o
5.0 = io | 22+ 09)+ 12, n mpqrtant mgredl_ent_of the prgsent cqmputatlon is the
¢Goi c’ U1 ( r (9)+ 1 novel distributional derivative associated with the Hadamard
(6.13b  regularization which has been introduced[#¥] (see also
- Sec. I). This derivative permits us to derive in a systematic
S0 = — 2G°m €1 LO(8)+ 102 and consistent way all the integrals encountered in the prob-
¢9ii = cb Jij r (8)+12. lem; however it represents merely mathematicaltool,

(6.130  which may not be connected to any relevant physics. There-
fore, it is important to know exactly the role played by this
By comparing this with the 3PN metri@.24, we see that derivative in the 3PN equations of motion, with respect to,
the gauge transformation induces the following changes igay, the Schwartz distributional derivatiy45]. We know
the 3PN potentiald, Y;, andz; that our distributional derivative affects the computation of
two types of terms(i) the “self” terms enteringa priori in
the nonlinear potentialX, T, and Y; and which are ill-

defined in the case of the Schwartz derivatigsee Sec. Y,
(6.143 and(ii) the “Leibniz” terms which account for the violation

€1

5]

. G¥md( .
=— v +12,

5§T_ 16 fai'

€
+2A‘1[aij<—l)aiju
ry
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of the Leibniz rule during the 3PN iteration of the metric as  G*mi[ 1 , 1 1 ,
discussed in Sec. lll. In the present subsection, we computése"a'l:CeT - E(nlzvz)zn'lﬁ Ev%n'ler g(nlzvz)v'z
the Leibniz terms and combine the result with the one of Sec. 12

V concerning the self terms. The conclusion is that the terms 151 G*m;m3

coming from the use of the distributional derivative are nec- + 5 Tﬁ’znllz' (6.20

essary for keeping track of the Lorentz invariance of the
equations of motion, and that no other physics is involved

with them in the.present formalisrﬁseg also Sec._ V]l_We Adding up Egs.(6.19 and (6.20 we therefore obtain the
do the computation for both the “particular” derivative de- yy5| effect of the(particula distributional derivative as
fined by Eqg.(2.9) and the more correct one given by Egs.

(2.10, (2.1D.

The Leibniz terms discussed in Sec. Ill consist of those ) G3m§ 2 4 )
contributions of the typ&3.23 and alike which arise in the 5distributiora'1:W 2(Ny05)°Ny,— gvgnllz— g(n12U2)Ul2
process of simplification of the 3PN metti¢” by means of 12
the Leibniz rule. These terms depend only on the distribu- G4m1m§ _
tional part of the derivativeDP*{F] or D;[F]. The formu- +7Tn'12- (6.21
las giving the complete Leibniz terms rt”, not being very 12
attractive, are relegated to Appendix A. When reducing ex-
plicitly these formulas we find that all the terms take the|nterestingly, this quite simple piece of the acceleration of
same simple structure and, not surprisingly, arise only at thgarticle 1 involves the velocity of particle 2 alone, and there-
3PN order. As already announced in £8.27), the Leibniz  fore does not stay by itself invariant under a Lorentz trans-
terms implya priori a net contribution to the 3PN potentials formations, or, rather, at this order, a Galilean transformation
T, ¥, andz;; . Actually, in the case of the particular deriva- (indeed, for this to be true the term should depend on the
tive, their contributions to the vector and tensor potenttals relative velocityvi,=v;—Vv,). Therefore, if we are correct,
andZij turn out to be zero, since we are using harmonlc coordinates and have employed

a Lorentzian regularization, the res(f.21) has to combine
SLeionaYi=0, (6.17a with other pieces in the acceleration so as to maintain the
Lorentz invariance of the equations. We have found that this
A is exactly what happens: the dependence of (ER1) over
OteibizZij = 0, (6.170 the velocityv, is mandatory for the Lorentz invariance of the

) o A ) final 3PN equations to work. This constitutes, in our opinion,

while the contribution to the scalar potentib) also in the 4, important check of the relevance of the distributional de-

case ofDP*[F], is found to be rivative introduced i{47]. It shows also that this derivative
3.3 3 is merely a tool for preventing a breakdown of the Lorentz
m; . . (1) 11G*'mim, = [1 invari ing i i i
P N PN (el B 1720 o= invariance when performing integrations by parts of compli-
Leibniz 96 L U\r;) 36 ri, M, cated divergent integralthe last term in Eq(6.21), which is
not checked by the Lorentz invariance, will turn out to be
tle2. (6.18  absorbed into the adjustment of a certain constant; see Sec.

Vil ]

The modification of the acceleration of body 1 which is gen- 1

- v he previous check has been done with the “particular”
erated by the latter Leibniz terms reads as

distributional derivativeg2.9), and it is interesting to redo the
computation in the case of the distributional derivative de-

- G®mi[5 1 , . ! _ \
i e 200 o200 [ fined by Egs(2.10), (2.11), which we recall is more satisfy-
OveibnizA1 cbri, [2 (N1202) N1z~ 502Nz~ (N1202)v; ing than the particular one because it obeys the rule of com-

4 3 mutation of successive derivativg8ut note in passing that
_ 88G'mm; N 619 We have verified that the particular derivative does not yield
9 c6rf2 12 ' any ambiguity at the 3PN order which would be due to the

noncommutation of derivatives; however, such ambiguities

On the other hand, we computed in Secs. IV and V manyould arise at higher orders, in which case the ‘“correct”
distributional terms associated with the derivative of the nonderivative would be more appropriatdn particular, while
linear potentials on the right-hand side of the field equationghe particular derivative is entirely deterministic, the deriva-
[see Eq(3.15]. Most of these terms are simply given by the tive (2.10, (2.11) depends on a constalit and it is impor-
Schwartz distributional derivative. The only terms which re-tant to know the fate of this constant in the final equations of
quire the new distributional derivative p47] come from the  motion, and how the test of the Lorentz invariance will man-
computation of the “self” parts of the noncompact poten- age to be satisfieih fine As for the particular derivative we
tials (see Sec. Y In this case, the modifications of the po- find that the incidence of this derivative is through two dis-
tentials have been found to be given by H§{.7), from  tinct contributions, Leibniz and self. Consider the Leibniz
which we obtain the following modification of the accelera- contribution: we perform exactly the same computation as
tion: before, i.e., based on the formulas in the Appendix, and find
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that in the case of the new derivatif210), (2.11) the terms  The corresponding modification of the acceleration of par-
in the potentialsY; andZ;; are no longer zero, but are given ticle 1 is found to be

by
. 37 G°m3 1,
S 1. 2 i (1 SLeibniAh| k= ——80K)—2 Nyw,)2nt,— —v3n!
5LeibnizYi|K:(_E+ EK)G3mfv‘laij r—)+1<—>2, Leibniz |k (2 CGI“IZ (N1202)°Ny, g Va2l
(6.223 2( . +( 19 188 )
g (M2)va| ™| — 57 5~
- 1 2 1 5 9 3
5Leibnizzij||<:(—1—5+ 1—5K)G3mfﬁij r—>+1<—>2.
' (6.22h G'mm3 i
X—csri’z Nyt S:ayk (6.27)

Our convention is that the explicit indication on the left-hand
side of the dependence oye€means that the computation is
performed using the “correct” distributional derivative. In Where the last term represents the gauge tefriy but

the case of the modification of the potentialthings are a computed with Eq(8.24. Therefore, modulo a change of

little more complicated because we have to take into acdauge, we see that the Leibniz modification of the accelera-

count, in addition to a “linear” contribution similar to those tion brought about b_y the correct derivative has eX‘?C“V the
of Eqg. (6.22, the “nonlinear” term that is generated by same form as that given by E.qs'lg)’ due to the_ pa.rtlcular
o = . one. However, we must also include the contribution of the
the modification of the tensor potentidl; shown in EQ.  ggif terms. We have redone the computation of the self terms
(6.22D; cf. the source ternZ;;d;;V in the definition(3.27a  as in Sec. V but using th€-dependent derivative and com-
of T. We obtain pared the corresponding acceleration with the previous result
(6.20. We get

A 53 2\ ..., (1
S eibniz| [k = _4_80+§K G°mivv1d; E

3m3[9 9
3 Ssendl]k— Bsendl =—g7-| 5 (N102) 2N~ —-v3N},
+<1_9+4_7 )G4mlm2ni a-(i> cri, |2 10
288 ' 24 ri, Mg o 20 44 )
~ —=(N)vs|+| — 5+ 5
+ AT SeipniZijlkdijU]+ 12, (6.23 5 ? 3 3
: G*'mm3 .
whereU=Gm, /r;+Gm,/r,. Now, using the results of the 12 ni,. (6.29

X—7F
preceding subsection, we see that many of these terms are in Cﬁri’z
the form of a gauge transformation corresponding to a gauge

vector & of the type(6.11). Indeed, we pose Subtracting Eqs(6.19 and(6.27) for the Leibniz terms, and
8 m.\3 adding up the difference of self terms given by E§.28),
€1lk= —(1—2K)(—1) , (6.243  we thereby obtain the difference between the total effects of
15 m the two distributional derivatives in the acceleration as

8 m,)\ 3 . .
€lk= 51~ ZK)(F) : (6.240 SdistributiorP1| K — Odistributior1
I _ o e . 41 Gm3 .
With this choice the Leibniz correction M, andZ;; become =| 580K |—7| (N1zv2) N3
] 2 cor
pure gauge, 12
N - 1, 2 i
SeibnizYilk=6¢Yilk » (6.253 V2N g(nlzvz)vz
Sieibniziil k= 0:iilk » 6.25 G*'mms .
Lelbr‘IIZZIle & |1|K ( b +(1—48K) C6r1i22n|12+5§a|1||(- (6.29)

while we can rewrite Eq(6.23 in the simplified form

As we see, there is a dependence on the individual velocity
Vv, which is left out. Anticipating the result that;, com-
43 puted with the particular derivative, is invariant under Lor-
+(1_9+ 4_7K) G'mim; ( 1) entz transformations, this means that tkelependent de-
288 24 rivative breaks down the Lorentz invariance for general
. values ofK (indeed the gauge term cannot modify the be-
+ 12+ 6Tk . (6.26  havior under Lorentz transformationg-ortunately, we are

. 37 1)\ L. (1
S eibniz| [k = _4_80+§K Gmivv1d; n

7 N1di
ri, r
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now able tofine tunethe constanK so that the velocity-

Odistributi rai1|41/160_ Odistributi rail
dependent terms in E¢6.29 vanish. Therefore, we obtain a SRHe SR

P 3
unique value, 113G*mym; | .
=— S ——=— Nt 82 4160 (6.3D
10 CGriz 12 £91141/1
41 . . .
K= (6.30 We shall see in Sec. VII that the effect of the first term is

160’ simply to modify a logarithmic constant iri(s,) that we
shall adjust when we look for a conserved 3PN energy. After
_ ) ) ) adjustment of this constant we find that the 3PN equations of
for which the equations of motion computed with the help of motion computed with the two derivatives are physically the

the correct derivativ€2.10, (2.11) are Lorentz invariant, as same since they differ merely by the gauge transformation

they are with the particular derivative. appearing in Eq(6.31).
Thus, in the case of the correct derivative, the equations
of motion are not in general Lorentz invariant, despite the C. Nondistributivity contributions

use of the Lorentzian regularization. The likely reasonis that The distributive parts of the linear momentuﬁi and
the distributional derivatives were not defined in a “Lorent- force Fil densities have been written down in E@.35.

zian” way (their distributional terms involve thé pseudo- ey \were obtained under the uncorrect hypothesis of dis-
function Pfs; and not the Lorentzian one Rf). Recall that _ tributivity, that is,[FG],=[F],[G];, and we must now cor-

the Lorentzian regularization permitted to add some crucia}ect for this.(As explained in Sec. IIl, our strategy has been
contributions, proportional tanim, in the acceleration of o delineate as much as possible the problems, by concentrat-
particle 1[see for instance Eq5.35], which are mandatory ing our attention first on the computation of the regularized
for satisfying the Lorentz invariance. In the case of the corvalues of the potentials when taken individually, and second
rect derivative, we find that there is still a limited class of on the corrections due to the nondistributivity, i.e5G];
terms, proportional tang, which do not obey the Lorentz #[F]4[G];.) Again, we find that such a subtlety as the non-
invariance, unlesK is adjusted to the unique valyé.30. distributivity makes a difference starting precisely at the 3PN
Finally we obtain order. We get for the required correctionsRh andF}

) ) 1 ) 1 : ) ) ) )
P1= (PDaist= 2 (Wil V21— il VID + 5| 12030V} VT1= 1203 Vi 1[ V1 + 203 Vo] = 303 [ VI [ VA1 + 03[ VT
—8[V;Wi; 11 +8[V;11[ W, 15+ 80 [ VWi 1, — 8vl [ VIa[Wi; 1, — 8[ VAV 11+ 4[ V214 [ Vi1, + 4L VI Vi1,

1 , 1 , . ,
+ 5050 [VZ ]~ 5 00i VI - 1803 ViV + 16803 [ VL[ Vi]: |, (6.323

Fi—(F)disu= gz(—z[vaiV]ﬁ 2[V1s[aV]) + é(—vf[V]l[&iV]ﬁ- vV V11— 8[V,11[a:V;11+8[V;a V11
+ VIV = [Vl V1 + 2L V23 V] = 2L VIL[Va V] + é(—%v‘l‘[VJl[aivm%v;‘[vaiVJl
+ 30T VIV~ 30l V21l V11 + 3vi[VZaV]: = BuT[ VI [ VA V] + S V1[4 V]a
=3[V [V 1[0;V]1+ 2[VE14[ V] — B[V VA V], + 2[ V211 [ VA V], + 2[ VI [ V24, V], — 2[ V34, V],
— 160,V 11[Ri11+ 166, VR 1, — 16 V; 15[ ;R 11+ 16 ViR 11+ 8[V11[ 4V 11 [ V 11+ 8 V1[4V, V11
— 16V V,V, 11+ 4LV LV 1LV T+ 400 VIV, Vi1 - 8[aVV V1, — 1202 4,V 14V, 14

+1202[9V,V;11+ 40i[ VI,V 11+ 40 [ V2[ 6,V 11— 8vi[ V29,V 11+ 8vi [ VI [ V11 V)],
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+8ul[VaV1H[ V11— 1605 VAV V11 + 80i[ Vi1l 8 Wik T3 — 80 [ Viedi Wi J1 + 80 Vi1 [ Wi 4
_80]1[0"inij]1_4Uj10i[V]l[l?ink]lJr4Uj1Ulf[Vf9i\7ij]1_4011Uii[<9iv]1[wjk]1+4Ujlvli[<3’iV\7ij]1

+ 16050, Vida[ Vi 11— 16010 X[ 8 ViV, 11+ 8[ X11[ V], — 8[ X V11 + 8[ V][ ;X ], — B[V X]4).

(6.32h
|

These formulas look complicated but are in fact rather , . _ G“mlmg 97
simple to evaluate because they require only some lower- a'l—(a'l)distr=(5§a'1)dist,+ —% 5| —5aM

. L . . cr 210
order post-Newtonian precision in the potentials, with nota- 12
bly all the difficult noncompact potentials needed at the 779 ‘
Newtonian order onlyhence the interest of separating out + >70™M2 ni,. (6.36

the problems as we didNote that it is crucial here to em-

ploy the Lorentzian regularizatiofF],. The net result of = Thys, the only physics brought about by the nondistributivity
this computation is (i.e., which is not affected by a gauge transformatias
5 constituted by the quartic@*) term displayed on the right-
i i G®mim, (2 .2 hand side of Eq(6.36).
P1—(P1)dist= o653 g(nlzvlz)nlz_ 15V12/
12
(6.333 VII. THE 3PN EQUATIONS OF MOTION

A. Existence of the conserved energy

o G’mim, ([241Gm, 51Gm,] | . .
Fi—(Fdst= —57a—| |5 —— 52— |12 At present, the equations of motion are complete. We now
CT12 70 r; 70 Ty want to look for the conserved energy associated with these
equations at the 3PN ordéconsidering of course only the
723 , i 123 , | . . . . .
+ 2_8(n12012) n,— 170012”12 conservative part of the equations, i.e., excluding the radia-
tion reaction acceleration at the 2.5 PN ojd&Ve shall see
723 . that the existence of an energy is not immediate, but requires
- %(nlzv 12)0'12). (6.33h  the adjustment of a certain constant.

We proved in Sec. V that the equations of motion of body
o 1 depend on two arbitrary constants, which are the constant
Ther_efore_ thg supplement of acceleration linked to the nonfi, tending to zero as we approach particléotit considered
distributivity is here as taking some finite nonzero valwend the constars,
3 2 associated with the Hadamard regularization near the other
G mlmZ( 779Gm, 97 Gmy| particle 2[see Eq(2.3)]. Similarly, the equations of body 2
cSri, 12 depend on the constants ands;. All these constants ap-
pear inside the logarithms entering the equations of motion
in harmonic coordinates. Gathering the results for the “loga-
rithmic” part of the equations of body 1, we obtain

i i —
- (al)distr_

779 L. 179,
+§(n12012) Ny~ mvﬂnlz

779 i  44G*'mim, [t 44G*mm3 . (r
__(n U 2)U| ) (634) I:_—12n| n _12 __#nl n _12)
70 T a=3 ey, 2\l 3 3, s,
. . . L. . 312
Since only the relative velocity, is involved this part of G'mim, o 2
the acceleration is Galilean invariant. Furthermore, it can be + cord, [1100n32012) N3, 2207503,
expressed in a simpler way by introducing an infinitesimal
auge transformation of the tyf§6.11). We pose i r
9o yie.10 P —44(n12v12)v'12]|n(r—1,2 T (7.7)
1
779 m;m3
(€1)disu= — 220 m3 (6.358  where the dots indicate the terms which do not contain any
logarithms. The terms shown in E(/.1) contain the whole
) dependence of the acceleration of 1 ovpands,; there are
(€2) gisy= — 7_79m1m2 (6.35H no other constants elsewhere. Notice thaenters a single
27dist™ 420 m3 ' quartic-order term proportional t6*m;m3. Now, most of
the terms in Eq(7.1) can in fact be gauged away. To see
and easily obtain this, we apply the formul#6.15 with the particular choice
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1 and we obtain the energy &= 3m;vi+ 2m,v5+D. Now,
r_’) , (7.28  the computation with our 3PN equations of moti@btained
2 by means of, say, the particular derivajiv&ows that the

22 mm3
(e)n=—75 -3 In

quantity D does not exist for any values of the constants

2 _mimz f12 In(ri/s,) and Ing;/s,). However, we find that this “nearly”
(€2)n=— n|—|. (7.2b 2/% 1/80). : y
3 m

r works, because we can determine sdmeuch that
The corresponding transformation of the acceleration is Eq. - .. db 44 G*mim3
(6.15), except that &), and (e,),, depend on time through Mi8103+ Mz, + r =~ 3 s, My(Ny301)

the orbital separation;,, so in fact this formula should con-

tain also some terms proportional to the time derivatives of
(€)1, and (e2) 1, ; but the point for us is that these extra terms
are free of any logarithms. Therefore, modulo the dots indi-

J rg) 159
Nl's,) 308

+l<—>2]

cating the logarithmic-free terms, we can write +0(7). (7.7
3 ’ . ~ .
i (s.al) — ﬁlG“mlmz i M2 L. 7.3 From the computation we obtaid as a well-defined local
a1=(da1)n 3 Cﬁrfl’Z ELL s ! ) functional of the positions and velocities of the particles

[containing in particular some logarithms fpf/r;) and
where (5;a});, denotes the coordinate change of the accelIn(ri2/r3)]. The right-hand side of Ed7.7) cannot be writ-
eration. ten, for generic values of Infs,) and In¢;/s,), in the form

The term in Eq.(7.3) which is left out after this coordi- of a total time derivative. It would be possible, for this to be
nate change depends only on the ratio betweerands,  the case, to adopt the simplest choice that both these con-
(similarly, in the equations of motion of body 2, we would stants are numerically equal {8, However, this choice does
find the ratio ofr; ands,). This term is of the same type as Not represent the most general solution for obtaining a total
the one in Eq(6.31) giving the difference of accelerations, time derivative. Indeed, nothing prevents ri¢) and
modulo a change of gauge, when different distributional deln(ry/s,) to depend also on the massag andm,, and there-
rivatives are used. Notice that the constahtvas originally ~ fore such a dependence on the masses should in fact be man-
absent from the equations of motion of 1, but has to bedatory(totalitarian principlg. Since the regularization proce-
introduced in order to “remove” these logarithms by the dure followed in this paper is more mathematical than
coordinate transformation. Therefore, the only physical freephysical, we can be confident that no physics will be over-
dom remaining in the equations of motion is the yet unspecilooked only if at each step we obtain the most general solu-
fied constant Inf/s,). Now we use this freedom to find a tion allowed by the process. Unfortunately, the most general
conserved energy associated with the equations of motior$0lution in this case contains an arbitrary parameter.

which means a local-in-time function&l of the trajectories The necessary and sufficient condition for the right side of
and velocities of the two particles, i.e., Eq. (7.7) to be a total time derivative is that the factor of
(nyv4) in Eq.(7.7) be invariant by exchanging the particle’s
E=E[y1(1),y2(1):va(1),Vo(1)], (7.4 labels2and 1, le.,
whi(_:h is_constant as a consequence of the 3PN equations of m,| In T2 _ Eg =my| In M _ 1_59 _ (7.9
motion, i.e., s,/ 308 s,/ 308
dE . 9E . 9E  9E  9E _ Denoting by Am the common value of both sides of Eq.
gt Evlla_r + Ulza_r + a'lﬁ—I + ag?— =0O(7). (7.5 (7.8, where\ is a constant ancth=m;+m,, we obtain the
Y1 Y2 ! U2 most general solution as
The accelerationa; anda; are to be replaced by the func- ry\ 159 m
tionals of the positions and velocities given by the 3PN equa- In s 308 M (7.93
tions of motion. Our special notation for the remainder 2 2
means a radiation-reaction term which is purely of order r 159 m
2.5PN plus the neglected terms at 3.5PN; schematically nl 2= "4\ —. (7.9
sy 308 " my

5(7)2(1/c5)F5+ O(7). See Eq(7.18 below for the ex-

pression of the term (&)Fs. If an energy exists, the quan- Thjs ) is a dimensionless quantity which is the same for the
tity majv;+myazw, must be a total time derivative. In o particles 1 and 2. We now prove thais necessarily a
practice, we look for a local-in-time functional purenumericalconstant, independent of the masses. Notice
D[Y1,Y2;V1,V2] such that that thex term in Eq.(7.93 will yield a contribution to the
acceleration of 1 which is, as concerns the dependence over
the masses, of the typm;m3m\ [see Eq.(7.3)]. If A de-

o .. dD —
i [ R
Mi8303+ Mpazvp+ o, (7.6 pends on the masses, it must be a symmetric functian,of

dt
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andm,, and therefore it can be expressed solely in terms otase ofC? functions. If this explanation is correct, it is un-

the symmetric mass ratie=m;m,/m?. Suppose that likely that the constanh could be determined within the
=SF7\ v, where the\;’s are numerical constants, so tke Ppresent formalism.
term in the acceleration of 1 is of the tyme;m2m3\;v'. We find by combining Eqs7.9) and(7.7) that the depen-

First, we see that all the cases — 1 are excluded because dence of the 3PN enerdy on\ is
the equations of motion would not have the correct perturba-
tive limit when »—0; for instance, in the case= —1, we E_E_ 11 G*mim3m
get a term of the typen®m, which tends tanj in this limit, T3t b
and therefore modifies the geodesic motion of a test particle
around a Schwarzschilql black hole, which is of course eXynare £ does not depend on, while we obtain, using Eq.
cIudgd. Second, the cagesl, though th.ey pass the su_”nplest (7.3), that the acceleration writes
physical requirements, imply that the individual particle ac-
celerations are no longer polynomials in the two individual 4 2
. o 44 G'mpmom

massesn; and m,, because of the appearance of inverse al=al— —\ ——5=—n,, (7.10)
powers of the total mass=m;+m,. For instance, the case 3 Cris
i=1 leads to a term of the typ@im3/m. But we know that _
when doing a diagrammatic expansion of tkédody prob-  where similarlyd) is independent of. On the other hand,
lem based on the post-Minkowskian expansisee[59] for  the acceleration and energy depend also on the two constants
the details of the methgdhat each successive diagram is ar; andr;, but from the previous discussion this is not a
polynomial of theN masses. Therefore, we exclude the pos-problem because; andr; are associated with an arbitrari-
sibility that some inverse powers of the total mass appeamess in the choice of coordinates: the 3PN equations of mo-
and find, in conclusion, that is a pure constant\(=\g). tion contain the logarithms In{,/r;) and Inf,/r5) which

At last, we have succeed in finding a conserved energy dtave been shown in E¢7.1) to be in the form of the gauge
the 3PN order by specifying an unknown logarithmic ratio, transformation associated with E(Z.2). In particular, the
but at the price of having introduced an arbitrary purely nu-“constants” Inr; and Inr;, which might be said to be for-
merical constank. The constank will be left undetermined mally infinite because; andr, were tending to zerfrecall
in the present work. So the final 3PN equations of motion wethe discussion after E¢5.18], will never appear in any
obtain in this paper, as well as the final 3PN energy, depenghysical result. Similarly, the dependence of the energy on
on the unknown parametar The appearance of suggests the logarithms In(;,/r1) and In¢,/r5) is pure gauge. From
that the present formalism, based on a point-mass regulariz&q. (6.16) we get
tion, is physically incomplete. The resulting ambiguity is
equivalent to the “static” ambiguity found by Jaranowski 22 G3mfm2 Gm,
and Schter [33]. It is probably linked to the fact that one can E=— { -
write the Einstein field equations into many different forms,
which are all equivalent in the case of regular sources, but
which are in general not equivalent in the case of point par- —(v1v12)
ticles because the distributional derivative does not obey the

Leibniz rule. If we had chosen initially a different form of
y where the dots denote the terms independent of logarithms

the field equations, the Leibniz terms we computed in Sec[thiS result can also be checked directly using &aD)]
VI could have been different. More precisely, only that part Finally, to be more specific about i/he in?lue?\ce. of the

of the Leibniz terms which is Galilean invariant and Conse_distributional derivative, notice that the solution we have ob-
quently is not required require by the Lorentz-invariance, . ’

symmetry could change. But we have seen in E§4.9 and tained in Eq.(7.9) corresponds to the “particular” distribu-

: . : N ._tional derivative defined by Ed2.9). If one uses the “cor-
(6.3) that the Galilean-invariant part of the Leibniz terms is L ' .
; o ect” derivative (2.10, (2.11 instead, with the valu&K
precisely made of only one term, which is of the same typé_ 4 \we have obtained in Eq6.30 from the Lorentz in-

(proportional toG“mlmg) as the term containing the con- ;aﬁnce we obtain the same equation to be solved as Eq
stant In¢,/s,) [see Eq.(7.3)] that we have adjusted in Eq. 7.7 but with the rational fractiont 222 instead of — .
(7.9a, resulting in the appearance of the constarthus, in  1pic is casily seen thanks to E¢B §(]’§° So. the solution
agreement with Jaranowski and Sfehd 33], we might say ecomes in this case T
thatA encodes an ambiguity associated with the violation otb
the Leibniz rule by the distributional derivative. At a deeper ,
level, this would mean that the ambiguity is a consequence n(r_z) s m (7.134
of a theorem of Schwartf60] according to which it is im- S, 3080 " my,’ '
possible to define at once a multiplication of distributions
which agrees with the ordinary product for continuous func-
In(

: (7.10

+3(n n
3 Csriz Mo 3(N101)(N120 1)

+ 12+, (7.12

EP)
In —
rs

tions, and a derivation of distributions which satisfies the

r 783 m
ns, ' _satistie = (7.13b
Leibniz rule and reduces to the ordinary derivative in the

—|==c—=+\N—.
St 3080 )\ml
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Replacing this into the equations of motitend associated enerngyt is then clear that they are physically the same as those
computed with the other derivative, because they differ by the mere change of gauge,

a|arne0-a1= 5§ai1|41/1601 (7.14
that we obtained in Eq6.31). We give it here thoroughly for completeness:

13 G*m;m, G®ms

. . 3 . . .
81| 41/160= 52 —5— (M —Mo)Np+ == —57- [ — 15(N1019)°N) o+ 30 N1+ (N 1) vY,]. (7.19
25 ¢°ry, 50 c°ry,

B. End results

We present the 3PN equations of motion of particle 1 in harmonic coordinates, which are obtained by summing up all the
contributions of the potentials computed in Secs. IV and V, as well as the pieces due to the nondistributivity and the Leibniz
terms(see Sec. VI The equations depend on two gauge constapendr through some logarithms, and on one unknown
purely numerical coefficierX. The equations of particle 2 are obtained by exchanging all the lakel®:1

. Gmpn, 1 ([5GPmm, 4G’m; Gm, (3 . 1, Gm
y=——>+t3 3 3 v E(anUZ) —v1+4(v1v2) =205 | [Nt ——[4(N1v1) —3(N12w2) ]
ro c ro ro I I
o 1 57G3m?m, 69G°m;m5 9G°m3 Gm,| 15 3
X (vy=vy) "'FH_ 4r4112 - 2r‘112 riz riz (‘g(nlzvz)d"" E(nlzvz)zvi_6(“1202)2(0102)

, 9 - , . 4| G*mim, (39 ) 17 , 15,

—2(v1vy) +§(n1202) vyt 4(vwa)vy— 205 +T ?(nlzvl) —39(Ny01) (N1v2) + 7(”12112) 1
12

2 2

2,2
2 m
+—rg[2<n12v1>2—4<n12v1><n12v2>—6<n12v2>2—8(v1v2>+4v§]

5 2
—rr[—z(nlzvl)
12

5 .
_E(Ulvz)+ ZUZ nI12+

2

G“m;m, 63 55 Gm, , 9 3 )
_2(n1202)]+T _Z(n1201)+z(n1202) + 2 —6(Ny01)(N1202) +§(n1202) +(Nwo)v]
12 12
) Al 208G3m;m3
—4(N101) (V102) +4(N102) (V1V2) +4(N10 )5 —5(Nw Vs | [(V1—v3) +§ 15r—4[(n12v1)—(n1202)]
12

24G3m2m,
- 7
5ri,

2G*m;m, 2 27| i
[(Nv1) —(Nwp) |+ Ti,z[(nlzvl)_(nlzvz)][vl_2(01U2)+02] Nio

8@3m§m2_ 32@3mlm§_ 4G%m;m,

2 2l
+ -2 + —
5r4112 5r4112 5r§2 [vi—2(vvp) +to3]|(vy Uz)]
1([Gm, (35 .15 ,, 15 ., 15,
tE T 1—6(”1202) —g(nlzvz) vit ?(anUZ) (v102) +3(N1w o) (Vv 2) _?(anUZ) v
12

3 15
+E(nlzvz)zvivg—12(n12v2)2(vlvz)v§—2(v1v2)2v§+E(nlzvz)zvg+4(vlvz)vg—202)
G2mym, | 171 , 171 , 723 , , 383 , 4 \
T3 _?(nﬂvl) +T(n1201) (N1202) = = (N1201) (N1 2) +T(n12U1)(n1202) _?(nlﬂjz)
Iz
229 ,, 205 , 191 91, 229
+ 7 (Nw) 01— 5= (N 1) (M) v1+ —= (N102) 01— g v~ - (M) (v102) +244N101) (N0 2)

205 o1, 177 229, 283 ,
X(v102) = =~ (M 2) (V102) + 5 v1(V102) = 7= (V10R) "+ = (MP1) Vo~ = (N1 1) (N1 2) V3
259 91 81 G’m3
+T(n1202)211%_ZU§U§+43(01U2)U§_§U‘21 +T[_G(nlzvl)z(nlzvz)z"‘12(”1201)(n1202)3+6(n1202)4
12
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+4(N101) (N0 2) (0102) + 12N 2) (V10 2) +4(0102) 2 — 4Ny 1) (N 2)V3— 12Ny ) 03— 8(v1v2)v5+4v3]
Gm3 , 43 ) 5
—(Nypw1)°+2(Nw 1) (Nyvo) + ?(anUZ) +18(vqv,) — 905

12

G3®m;m3 [ 415 5 11 5 5 ) 5 5
T3 |78 — (Ny1)?— (nlzvl)(n12U2)+ T(nlzvz) _a[(nﬂvl)_(nlﬂ}z)] 7+ 187
12
123 5 33 )2 G3m§m2 45887 , 24025 10469
+ = 6a ™ 2(v1—v2)2+33(v1vy) — 5 V5| F r12 ~ 168 (N 1)+ —5— 12 (nlzvl)(nlzvz)_—z(nlzvz)
.\ 48197 , 36227 . 36227 2 11 2, L 2072 16G*mj
840 1" 420 (v1vp) 840 V2 d(nyvq1) —(Nw2)]° In ri 2Av1—v2) In r riz

G4m§m§(34763 44\ 41 2)+G4mfm2[ 3187 44 (ru”

R — + — P —
5, 210 3 16" 5, | 1260" 3\ 1]

2 i

+G4m1m§[1o478 a4\ 41 44 (rlz)H
—_— n —_—

S| Tes 3 16" 3N )||Me
Gm, (15 3 ,
r_iz (”1201)(n1202) __(”1202) - (nlzvz) 01"‘6(”1201)(”1202) (v102) = 6(N102) (V1V2) —2(N120 )

X(0102)2=12(N101) (N1 2) 205+ 12(N105) 305+ (N0 2)vZ05— (N1 1) (V102)V5+8(N1w ) (V1v2) V5
2

+4(nw 1)03_ 7(”1202)0421 +_rr[_ 2(”1201)2(n1202) + 8(n12v1)(n12v2)2+ 2(n12v2)3+2(n120 1)(v102)
12

+4(n1202)(U102)_2(n1201)U§_4(n12U2)U§]

G’mym, [ 243 565 269 , 95 5 207 5
+r—32 (n1201) +—(n12v1) (Nq2) — —— (nlzvl)(n1202) —1—2(n12v2) +?(n1201)01
1
137 ) 27 81 , 83 )
_?(nlzvz)U1_36(n1201)(Ulvz)+ Z(nlzvz)(vlvz)"‘g(nlzvl)vﬁ'g(nlzvz)vz

G3m3 Gmym3[ 307 )
+—3 [4(n1201)+5(n12v2)]+T ?(n12vl)+ ?(nlzvz)"‘ 5[(”12%)‘(”1202)]77
2 12
G3mim, (31397 36227 i
G 220 (M)~ 55 (Nw2) —44(Nyy) — (“1202)]|n 7 (vy=vh) [ +O(7). (7.1

These equations are in full agreement with the known results valid up to the 2.5PN 24d&6,31. They have the correct
perturbative limit given by the geodesics of the Schwarzschild metric at the 3PN order. Most importantly, the equations are
invariant under Lorentz transformatiorideveloped to 3PN ordgrthis can be checked using for instance the formulas
developed if48]. Finally, as we have seen previously, the equations of motion admit a conserved energy at the 3PN order.

The study of the Lagrangiaiand Hamiltoniah formulation of these equations is reported in a separate {8k The energy
is given by

_mlvi_Gmlmz 1 (G?mim, 3m1v‘1‘+Gmlm2
2 2r, 2| 2rg, 8 Mo

1 3, 7
- Z(nlzvl)(n1202)+ SU1™ Z(Ulvz)

1 Gmdm, 19G3mim3 5mpwe Gmym, /(3 . 3 ) , 9 5
+F - 2@2 - 8@2 + 16 + M1 g(nlzvl) (N1v2) + 1_6(n12v1) (N102) _g(n12vl)(n12vz)vl
,, 21, 13 , 3 55 3120
_g(nlzvz) U1+§Ul+ g(nlzvl) (vivy)+ Z(nlzvl)(nlzvz)(vlvz)_gvl(vlvz)“‘ 8 (0102)%+ — 16"
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G?mim, [ 29 , 13 1 , 3, 7,0 1[35mp?
+_ri2_ Z(nIZl)l) _Z(n12vl)(n1202)+§(n1202) “ovit vt o8

Gmym,

5 i 5 5 19 , ,
™ —1—63(”1201) (n12U2)_ (n1201) (N102)? _32(n1201) (Ny0,)3+ 16(”1201) (N1v2)v7]

+—5(n w1)2(Ng )202+§(n 01)(N0) %07+ E)(n Vo) vi— 2—1(n 01)(N102)v7—2(Ny5) 20T+ i5v6
16 12V 1 12V 2 1 4 12V 1 12V 2 1 16 12V 2 1 16 12V 1 12V 2 1 12V 2 1 16 1

9 4 3 15 2 2 45 2.2
1_6(n12U1) (v1v2) —(N1v1) (nlzvz)(vlvz)_3_2(n1201) (N12v2) (0102)+1_6(n12vl) vi(v1vo)
11 13 3
+z(”1201)(n1202)vi(0102)+ Z(nlzvz)zvi(vlvz)_1_60‘1‘(0102)—Z(nlzvl)z(vlvz)z

+i(n 1) (N105) (V102)2+ 4—102(0 v )2+£(v vy)3— ﬂ5(” 01)%0iv5— E)’(ﬂ 01) (N1 2)vi05
16 12V 1 12V 2 1v2 8 1 1v2 16 1v2 16 12V 1 1v2 32 12V 1 12v 2 1v2

161 ,

+ 16v1v2~ §U1(Ulvz)vz +

G?m?m, 49 75 . 7 ) )
— 2 (nlzvl) +5 (nlzvl) (anUZ)_?(nlzvl) (N1v5)

lo

247 , 49 ,, 81 , 21 -
+ﬂ(nl2vl)(n1202) +§(n12vl) vt §(n1201)(n1202)01_j(n1202) U1

1, 15 3 21
+?Ul__(n1201) (Ulv2)_E(n12vl)(nl2l)2)(vlv2)+_(n12v2) (vqv2) — 27U1(0102)+—(0102)
,, 27 , 3 , , 55 135 ,
+z(n1201) v _?(nlzvl)(n1202)02+z(n1202) vt — 2 viv5—28(v10)v5+ o= 167
3G*mim, G4m1m2 5809 11 22 [ry\] G®mim3 /(547 3115
8l’12 rlz 280 3 3 n ri r12 12 (nlzvl) 48 (nlzvl)(anUZ)
123 , , 123 , 575, 41 , , 4429 a1
_a(nﬂvl) T +a(n1201)(n1202)77 18 +&7T vt 144(0102)_§17T (v1v2)
G3mim,[ 44627 , 32027 3 2, 24187 27967 5,
riz 840 (Ny01) +W(n1201)(n1202)+§(n1202) 5550 2520(0102)+ Y2
r r 22 r 22 r
+22(Ny1)2 In<—1,2> —22(n12v1)(n1202)|n(—1,2)——vim( 12) —(ulvz)m(—l,z +152+0(7). (7.17)
r r 3 ri 3 r

This energy is conserved in the sense that its time derivative The rather complicated expressidiisl6), (7.17) simplify
computed with the 3PN equations of motion equals the radrastically in the case where the orbit is circylapart from

diation reaction effect at the 2.5PN order, namely, the gradual inspiral associated with the balance equation
(7.18] and where we place ourselves in the center-of-mass
dE 4 szlmZ Gm, Gm, frame. The circular orbit corresponds to the physical situa-
o, (Ululz)( —v2,+2 -8 ) tion of the inspiraling compact binaries which motivate our
dt 5 ¢ M M2 M2 work [1-7]. Here, we give the result concerning circular

Gm, 52 szﬂ orbits without proof(see alsq34]). The relative acceleration

+(n1201)(”12012)(3viz—6r—+§ ; reads
12 12 dV12 ,
+1-2+0(7). (7.189 T Y12t Freact O(7), (7.19
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where F ., is the standard radiation-reaction force in har-the post-Newtonian parametgmy its expression in terms of
monic coordinates, the frequencyw as deduced from computing the inverse of

32 G3méy .
Freac: — g Wvlz (720) Eqg. (721) We find
12
1 27 19
(v=m;m,/m? being the symmetric mass ratjand where ~ E=— EMCZX =g *rl—gtg”

the orbital frequencyw of the relative circular motion is
given to the 3PN order by 1 2)x2 ( 675 [209323 205 110

— 4 2
64

2032 967 o M

, Gm 41 24
w?=—3-{1+(=3+v)y+| 6+ —v+1?|y?
r3, 4 155 , 35 3+(’)(8)] (724
- <V — X f .

67759 41 , r,| 44 9% = 5184

+1—-10+| — + =7+22Inl — |+ =\|v ) )
840 64 Io 3 where the parameteris defined by

19 Gme) 23
+7y2+ V3)»y3+0(8)]- (7.21 x:( CSw) . (7.25

The post-Newtonian parameter is definedJy Gm/r1,c%>,  Note that the logarithm disappeared from the invariant ex-
and we recall that 1,=[y,—Y,| is the orbital separation in pression of the energ{.24), in agreement with the fact that
harmonic coordinates. The constaptappearing in the loga- it is pure gauge. However, the constanstays in the final
rithm is related to the two constant$ andr, by formula; the static ambiguity constant, of Jaranowski and
m, Schder [33] is related to it byws=— 3\ — 28 (see[34]).

/_ml ! ’
In ro—mln ri+—Inr;. (7.22

m
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+= 35_’_ 106301_ %’ﬂ_er 2_2 n r_lz _ 2_2 " APPENDIX: SUM OF LEIBNIZ TERMS
64 6720 64 3 ro 3

In this appendix we give the sum of all the terms of the
27 , 5 ) 4 type Sy eibniT iNtroduced by Eq(3.23 that we have encoun-
tp VeV O®)). (7.23  tered during the process of simplification of the 3PN poten-

tials. The reduction of these terms using the distributional
The invariant 3PN energy follows from the replacement ofderivative is done in Sec. VI.

h00+ hii
5Leibniz( T

1 8 1 2 1 2
=OR* = za| & PIVa PRV VO PV= S0 PEV2) = S5(9, PFV)
8 L1 ~ 1. 1 ,\ 1 -
~ 5| 4 PIVa, P+ S VO P+ S WO PV— Z0( PV — =9, PV, PIWY
32 1 ) 1 ) 1 3 32 )
— 5| Vai PV, PIV+ S V2O PIV= V(3 PEV)? =2 D(PRVE) | = 5 (9 PV (PFV2)

2

16 2 2 2 2 42 16 2
2V, PIVa; PIV) = 5 (VP (PTV?) —2V(3 PIV)? = 2V237 PIV) — 5[ PIVa(PTV?)

32
—2V(9,PfV)?] - (Vi 8,0;(PFV2) — 2V V, 8,9, PfV— 2V, ¢, PfV¢, PfV)
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64/ , 1, 1 L) 32 , , ,
— o8| V20 PIVa, PIV+ 2 V3O PV S O(PIVY) | = 5 [4(PIV?)d,(PFV2) — V24, PIV4, PTV]

144 , , 128 ,
+ & [Va; PV PIV?) = 2V29, PIV, PIV] = 5 5[4, PIVa(PFV®] - 3V24, PIV4, PV)

64 16 .. -
+ a9 PV} (PTVVi) = Va; PIV;9; PEV = Vi, PIV;d; PTV] - Eg[wi,-aij(vaz)— 2VW,;g;; PV
- 4 - . .1 -
—2Wj;9; PTVa; PIV] = 5| ¢ PIWo; PFW+ WL PfW— ED(F>fw2))
16/ . A 1 .1 -
— 8| Wai PTVa; PTV+2Ve; PV PIW+ VWO PPV + EVZD PfW— ED(F>fv2W)
8 . - - 16 - -
+ g[WD(PfVZ)—zvvvm PfV—2Wg; PfVg, PfV]— ?[ai PfWa,(PfV2)— 2V, PfWg; PfV]

32 . I
— <84, PIVa,(PFVW) =V, PfV4; PAW—Wa, PFVa, PfV]

8 . L L1 - 64 .1,
+ <5 | P 3 PR + W0 waij—ED(wa”wi,-))—gg(ai PfVo, Pf(x+§z

Lvop 4 2]+ 2%+ L2 )0 prv- 20| prv| x4 22 O(10 Al
) T2t 3% 3 2 t32]|)) o0, (AL)

o 4 16 1 1 1 1
Steiond® =0 = 75| 3 PIVa; PIV,+ S VO PRV, + 5 Vi PIV— S O(PIVV) — - 4 PIV4, PTV,

24 24
+ 7o PfVa;(PfV2)—2Va, PfVg; PfV]+ S7Lai PV PfV?2)—2Vg, PfV4, PfV]

32 .1 1. 1 R
— 7| 9 PVa; PIR + S VO PIR + S RO PIV— SO(PIVR)

32
+ <5 (9 PIVa,(PFVV) = Vo, PIV4, PV,

8 L1 L1 1 .
-7 ( 9; PAV;g; PEW+ 5 V0 PRW+ S WO PFV; — 5 O(PTV,W)

32 32
=V PV, PEV) = 5 [9; PIV3,(PTVV) = V4, PEVa; PRV, = Vid; PEVa; PIV]+ 7 [, PV, 9,(PTV?)

32
2V, PIV,9; PV] = 7[4; PIV,9,(PTV?) —2V3; PfV,3; PfV]

o1 1, 1 . 32
+ 7| APV PR, + 5 VO PRV, + 5 W Pij—ED(PijW”))—?(Via]— PfV4; PV

1

1
2V2D PfV,+VV,0 PfV— §D(va2vi)

+2V9; PfVa; PfV, + +0(9), (A2)

y 16 8
SLeibmi' = DRl( - [0 PfVa;y(PfV2) —2V4,; PfVaj, PfV] — 6 9 [ 9, PEV o, (PFV?) —2V4, PfV4, PfV] ] +0(8).
(A3)
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