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General relativistic dynamics of compact binaries at the third post-Newtonian order

Luc Blanchet and Guillaume Faye
Département d’Astrophysique Relativiste et de Cosmologie, Centre National de la Recherche Scientifique (UMR 8629),

Observatoire de Paris, 92195 Meudon Cedex, France
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The general relativistic corrections in the equations of motion and associated energy of a binary system of
pointlike masses are derived at the third post-Newtonian~3PN! order. The derivation is based on a post-
Newtonian expansion of the metric in harmonic coordinates at the 3PN approximation. The metric is param-
etrized by appropriate nonlinear potentials, which are evaluated in the case of two point particles using a
Lorentzian version of a Hadamard regularization which has been defined in previous works. Distributional
forms and distributional derivatives constructed from this regularization are employed systematically. The
equations of motion of the particles are geodesiclike with respect to the regularized metric. Crucial contribu-
tions to the acceleration are associated with the nondistributivity of the Hadamard regularization and the
violation of the Leibniz rule by the distributional derivative. The final equations of motion at the 3PN order are
invariant under global Lorentz transformations, and admit a conserved energy~neglecting the radiation reaction
force at the 2.5PN order!. However, they are not fully determined, as they depend on one arbitrary constant,
which probably reflects a physical incompleteness of the point-mass regularization. The results of this paper
should be useful when comparing theory to the observations of gravitational waves from binary systems in
future detectors VIRGO and LIGO.
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I. INTRODUCTION

The present work is a contribution to the problem of t
dynamics of two compact objects at the so-called third po
Newtonian ~3PN! approximation of general relativity. By
3PN we mean the relativistic corrections in the binar
equations of motion corresponding to the order 1/c6 relative
to the Newtonian acceleration, when the speed of lighc
tends to infinity. Why study the equations of motion to su
a frightful post-Newtonian order? A side reason is t
strange beauty of the post-Newtonian expansion, which
comes quite intricate at the 3PN order, where it requi
some interesting mathematical methods. The main rea
however, is that inspiraling compact binaries, namely, s
tems of two neutron stars or black holes~or one of each!
moving on a relativistic orbit prior to their final merge
should be routinely observed by the gravitational-wave
tectors such as the Laser Interferometric Gravitational W
Observatory~LIGO!, VIRGO, and their fellows. Severa
analyses show that the post-Newtonian templates requ
for the detection and parameter extraction of inspiral
compact binaries should include the relativistic corrections
the binary’s orbital phase at approximately the level of
3PN order@1–7#.

Lorentz and Droste@8# were the first to obtain the correc
equations of motion of two nonspinning particles at the 1
approximation~see@9,10# for reviews!. An important work
by Einstein, Infeld, and Hoffmann@11–13# showed that the
1PN acceleration can in fact be deduced from the vacu
gravitational field outside the masses. This result is inter
ing because, in their approach, the bodies are allowed
carry a strong internal gravity. Unfortunately, the compu
tion of the surface integrals surrounding the masses is v
difficult even at the 1PN order~see@14# for a recent deriva-
0556-2821/2001/63~6!/062005~43!/$15.00 63 0620
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tion of the Einstein-Infeld-Hoffmann equations!. The same
equations were also obtained by Fock and followers@15–17#
for the motion of the centers of mass of bodies with fin
size. The next approximation, 2PN, has been tackled
Otha, Okamura, Kimura, and Hiida@18–20# with a direct
post-Newtonian computation of the Hamiltonian ofN point
particles; however the first complete two-particle case
their framework is only given by Damour and Scha¨fer @21#,
and the fully explicit three-particle case is due to Scha¨fer
@22#. Up to the 2PN level, the equations of motion are co
servative~existence of ten conserved quantities, including
conserved energy!. The nonconservative effect, which is a
sociated with the radiation reaction force, arises at the 2.5
order. The first correct equations of motion of two masse
the 2.5PN order were obtained by Damour, Deruelle, a
coworkers@23–26# in harmonic coordinates. These equatio
are applicable to systems of strongly self-gravitating bod
such as neutron stars~see Damour@9,10# for the proof!.
Moreover, Kopejkin@27# and Grishchuk and Kopejkin@28#
obtained the same equations in the case of weakly s
gravitating extended bodies. The corresponding resul
2.5PN order was also derived by Scha¨fer @29,30# using the
Arnowitt-Deser-Misner ~ADM ! Hamiltonian approach.
Later, the harmonic-coordinate equations of motion were
computed by Blanchet, Faye, and Ponsot@31# following a
direct post-Newtonian iteration of the field equations. So
of the latter derivations@23,29,31# opt for a formal descrip-
tion of the compact objects by point particles. There is a n
agreement between all these different methods at the 2.
order. In addition, the complete 2.5PN gravitational fie
generated by point particles in harmonic coordinates was
rived in @31#.

At the 3PN order, the equations of motion have been
tained using a Hamiltonian and formald functions by Jara-
©2001 The American Physical Society05-1
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LUC BLANCHET AND GUILLAUME FAYE PHYSICAL REVIEW D 63 062005
nowski and Scha¨fer @32,33# in the center-of-mass frame, an
by Damour, Jaranowski, and Scha¨fer @35# in an arbitrary
frame. These authors found an irreducible ambiguity link
probably with an incompleteness in the regularization of
infinite self-field of the particles. In this paper, following th
method initiated in@31#, we address the problem of the 3P
dynamics of point particles in harmonic coordinates. Ear
in @34#, our result was already discussed and reported in
case of circular orbits. We find the presence of one~and only
one! undetermined coefficient in the 3PN equations of m
tion, in agreement with@32,33,35#. Recently, the physica
equivalence between our result in harmonic coordinates
the result given by the ADM-Hamiltonian approach has be
established@36,37#.

Another line of research, initiated by Chandrasekhar a
coworkers@38,39#, consists of working with continuous hy
drodynamical fluids from the start, and deriving the met
and equations of motion of an isolated fluid ball up to t
2.5PN order@40–43# ~the derivation in the case of two flui
balls, in the limit of zero size of the bodies, is due
@27,28#!. Our iteration of the gravitational field and equatio
of motion in the previous paper@31# is close to the latter line
of work in the sense that it is based on the reduction of so
general expressions of the post-Newtonian metric, initia
valid for continuous fluids, to pointlike particles. The choi
of point particles, adopted here as well, is motivated by
efficiency of thed functions in performing some complicate
nonlinear integrations. The price we have to pay is the
cessity of a self-field regularization. We apply systematica
in this paper the regularization of Hadamard, based on
concept of ‘‘partie finie’’ of singular functions and diverge
integrals@44–46#. This technique is indeed extensively us
in this field@23,29,31,32#. More precisely, we apply a varian
of the Hadamard regularization, together with a theory
pseudofunctions and distributional derivatives, that
compatible with the Lorentzian structure of the gravitation
field. All the details of this regularization can be found
@47,48#. We use notably a specific form of distribution
stress-energy tensor based on ‘‘d pseudofunctions’’~with
support limited to the world lines of the particles!. In a sense,
these d pseudofunctions constitute some mathematica
well-defined versions of the so-called ‘‘goodd functions’’
introduced long ago by Infeld@49# ~see also an appendix i
the book of Infeld and Plebanski@50#!.

Thus, we are using a formal regularization method, ba
on a clear mathematical framework@47,48#, but one that we
cannot justify physically~why should the compact objects b
described by suchd pseudofunction singularities?!. Defi-
nitely, our main justification is that this method permits t
derivation of a result in a consistent and well-defined w
~i.e., all the difficult nonlinear integrals at the 3PN order a
computed unambiguously!. Furthermore, we shall check tha
some different regularization prescriptions yield equations
motion that are physically the same, in the sense that t
differ from each other by merely a coordinate transform
tion. Moreover, a justificationa posteriori is that the end
result owns all the physical properties that we expect the
equations of motion of compact objects to obey. In parti
lar, there is agreement with the known results at the previ
06200
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post-Newtonian orders, we get the correct geodesic limit
the motion of a test particle in a Schwarzschild backgrou
find that the 3PN equations of motion stay invariant und
global Lorentz transformations, and obtain a conserved
ergy at 3PN~neglecting the radiation reaction!. The investi-
gation of the Lagrangian formulation of the equations is de
with in a separate work@37#.

Ideally, one should perform, instead of a computati
valid only for point particles~and necessitating a regulariza
tion!, a complete calculation in the case of extended bod
i.e., taking into account the details of the internal structure
the bodies. By considering the limit where the radius of t
two objects tends to zero, one should recover the same re
as obtained by means of the point-mass regularization. T
would demonstrate the suitability of the regularization.
fact, this program has been achieved at the 2PN order
Grishchuk and Kopejkin@27,28#, who proved that the com
pactness parameters associated with each object disap
from the equations of motion, and they obtained the sa
equations as in the case of point particles. At the 3PN or
there is no such proof that the method with extended bod
would give the same result as with point particles.

The main problem is that from the 3PN level one cann
compute the most difficult of the nonlinear integrals
closed form for two extended fluid bodies of finite radi
~though these integrals could perhaps be obtained as po
series valid when the two radii tend to zero!. Presently the
only approach which is able to overcome this problem is
one followed in this paper: namely, to model the source bd
functions and to use a regularization. The price we have
pay is the appearance of one physical undetermined co
cient at the 3PN order. As a consequence, this method sh
be completed~hopefully in a future work! by the study of the
limit relation of the point-particle result with the physica
result valid for extended bodies in the limit of zero size. Th
study should probably give the value of the undetermin
parameter left out by the regularization.

The plan of this paper is the following. In Sec. II, w
review some necessary tools concerning the regulariza
and the definition of the point-particle model. In Sec. III, w
perform the post-Newtonian iteration of the field equatio
and write the 3PN metric in terms of some convenient n
linear potentials. Section IV is devoted to the computation
the compact support and quadratically nonlinear parts of
potentials. The most difficult potentials, involving notab
some noncompact cubic nonlinearities at 1PN, are obtai
in Sec. V. The so-called Leibniz and nondistributivity co
tributions to the equations of motion are derived in Sec.
Finally, we present in Sec. VII the result for the compa
binary’s 3PN acceleration~in the case of general orbits! and
the associated 3PN energy.

II. HADAMARD REGULARIZATION

In this section we present a short account of the regu
ization of Hadamard@44,45#, the associated generalized
pseudofunctions, and the choice of stress-energy tenso
point particles. We follow~and refer to! the detailed investi-
gations in@47,48#. Consider the classF of functionsF(x)
5-2
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GENERAL RELATIVISTIC DYNAMICS OF COMPACT . . . PHYSICAL REVIEW D 63 062005
which are smooth (C`) on R3 but for two singular pointsy1

and y2 , around which they admit a powerlike singular e
pansion of the type

;nPN, F~x!5 (
a0<a<n

r 1
af

1
a~n1!1o~r 1

n!, ~2.1!

and similarly for the other point 2. Herer 15ux2y1u→0, and
the coefficients1f a of the various powers ofr 1 depend on
the unit directionn15(x2y1)/r 1 of the approach to the sin
gular point. The powersa of r 1 are real, range in discret
steps@i.e., aP(ai) i PN#, and are bounded from below (a0
<a). The coefficients1f a ~and 2f a! for which a,0 are
referred to as thesingular coefficients ofF. If F andG be-
long toF so does the ordinary pointwise productFG, as well
as the ordinary gradient] iF. We define the Hadamard ‘‘par
tie finie’’ of F at the location of the singular point 1 as

~F !15E dV1

4p
f
1

0~n1!, ~2.2!

wheredV15dV(n1) denotes the solid angle element ce
tered ony1 and of directionn1 . Furthermore, the Hadamar
partie finie ~Pf! of the integral*d3xF, which is in general
divergent at the two singular pointsy1 andy2 ~we assume no
divergence at infinity!, is defined by

Pfs1 ,s2
E d3x F5 lim

s→0
H ED~s!

d3x F14p (
a13,0

sa13

a13 S F

r 1
a D

1

14p lnS s

s1
D ~r 1

3F !111↔2J . ~2.3!

The first term integrates over a domainD(s) defined asR3 to
which the two spherical ballsr 1<s andr 2<s of radiuss and
centered on the singularities are removed. The other term
which the value of a function at 1 takes the meaning~2.2!,
are such that they cancel out the divergent part of the
term in the limit wheres→0 ~the symbol 1↔2 means the
same terms but corresponding to the other point 2!. Note that
the Hadamard partie finie depends on two strictly posit
constantss1 and s2 , associated with the logarithms in E
~2.3!. See@47# and Sec. V below for alternative expressio
of the partie-finie integral.

To any FPF we associate a partie finie pseudofuncti
PfF defined as the linear form onF given by the duality
brackets

;GPF, ^PfF,G&5PfE d3x FG. ~2.4!

The pseudofunction PfF, when restricted to the set o
smooth functions with compact support, is a distribution
the sense of Schwartz@45#. The product of pseudofunction
coincides with the ordinary pointwise product, name
PfF•PfG5Pf(FG). A particularly interesting pseudofunc
tion, constructed in@47# on the basis of the Rieszd function
06200
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@51#, is the d pseudofunction Pfd1 , which plays the same
role as the Dirac measure in distribution theory, in the se
that

;FPF, ^Pfd1 ,F&5PfE d3xd1F5~F !1 , ~2.5!

where (F)1 is the partie finie ofF as defined by Eq.~2.2!.
From the product of Pfd1 with any PfF we obtain the new
pseudofunction Pf(Fd1) which is such that

;GPF, ^Pf~Fd 1!,G&5~FG!1 . ~2.6!

Next, the spatial derivative of a pseudofunction of t
type PfF, namely, ] i(PfF), is treated as follows. Essen
tially, we require in@47# the so-called rule of integration b
parts, namely, that we are allowed to freely operate by p
any duality bracket, with the all-integrated~‘‘surface’’! terms
always zero, exactly as in the case of nonsingular functio
This requirement is motivated by our wish that a compu
tion involving singular functions be as much as possible
same as a computation valid for regular functions. Thus,

;F,GPF, ^] i~PfF !,G&52^] i~PfG!,F&. ~2.7!

Furthermore, we assume that when all the singular coe
cients ofF vanish, the derivative of PfF reduces to the or-
dinary derivative, i.e.,] i(PfF)5Pf(] iF). As a particular
case, we see from these assumptions that the integral
gradient is always zero:̂ ] i(PfF),1&50. Certainly this
should be the case if we want to apply to the case of sing
sources a formula which is defined modulo a total diverge
for continuous sources. We have also at our disposal a
tributional time derivative and the associated partial deri
tives with respect to points 1 and 2~see Sec. IX in@47#!. The
difference between the distributional derivative and the or
nary one gives the distributional termsDi@F# present in the
derivative ofF,

] i~PfF !5Pf~] iF !1Di@F#. ~2.8!

A simple solution of our basic relation~2.7!, denoted
Di

part@F# standing for the ‘‘particular’’ solution, was obtaine
in @47# as the following functional of the singular coefficien
of F:

Di
part@F#54p PfS n1

i F1

2
r 1f 21

1
1 (

k>0

1

r 1
k f 222k

1
Gd1D 11↔2,

~2.9!

where we assume for simplicity that the powersa in the
expansion ofF are relative integers,aPZ. ~The sum overk
is always finite.! The distributional term~2.9! is of the form
Pf(Gd1) ~plus 1↔2!. However, the particular solution~2.9!
does not represent the most satisfying derivative oper
acting on pseudofunctions. It is shown in@47# that one can
require also the rule of commutation of successive deri
tives, which is not satisfied in general by Eq.~2.9!. Still we
are motivated when asking for the commutation of deriv
tives that the properties of our distributional derivative be
5-3
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closest possible to those of the ordinary derivative. The m
general derivative operator satisfying the same propertie
Eq. ~2.9! and, in addition, the commutation of derivative
~Schwarz lemma! is given by

Di@F#54p(
l 50

1`

PfS ClFn1
iL f̂ 21

L

1

2n1
L f̂ 21

iL

1
Gr 1d1

1 (
k>0

n1
iL

r 1
k f̂ 222k

L

1

d1D 11↔2, ~2.10!

where we denote by1 f̂ a
L the symmetric trace-free harmonic

of the expansion coefficient1f a , which is such that1f a

5( l>0n1
L

1 f̂ a
L ~see @47# for details!. A particularity of this

derivative is that it depends on an arbitrary constantK
through thel-dependent coefficient

Cl5~ l 11!FK1(
j 51

l
1

j 11G . ~2.11!

Both the derivative operators~2.9! and ~2.10!, ~2.11! repre-
sent some generalizations of the Schwartz distributional
rivative @45#, which are appropriate to the singular functio
of the classF. It was shown in Sec. VIII in@47# that the
distributional terms associated with thel th distributional de-
rivative, i.e., DL@F#5]L PfF2Pf]LF, where L5 i 1i 2 ...i l
denotes a multi-index composed ofl indices, is given by

DL@F#5 (
k51

l

] i 1 ...i k21
Di k

@] i k11 ...i l
F#. ~2.12!

Though this is not manifest in this formula,DL@F# in the
case of the ‘‘correct’’ derivative~2.10!, ~2.11! is fully sym-
metric in the l indices formingL. Note that neither of the
derivatives~2.9! and ~2.10! satisfies the Leibniz rule for the
derivation of a product. Rather, the investigation in@47# has
suggested that, in order to construct a consistent theory~us-
ing the ‘‘ordinary’’ product for pseudofunctions!, the Leib-
niz rule should in a sense be weakened, and replaced b
rule of integration by part~2.7!, which is in fact nothing but
an ‘‘integrated’’ version of the Leibniz rule. In this paper, w
shall be careful about taking into account the violation of
Leibniz rule by the distributional derivative. We shall als
investigate the fate of the constantK appearing in Eq.~2.11!
when deriving the 3PN equations of motion.

The Hadamard regularization (F)1 is defined by Eq.~2.2!
in a preferred spatial hypersurfacet5const of a coordinate
system, and consequently is nota priori compatible with the
global Lorentz invariance of special relativity. If we restri
the coordinates to satisfying the usual harmonic gauge c
ditions, we introduce a preferred Minkowski metric, and th
we can view the gravitational field as a relativistic Loren
tensor field in special relativity, which we certainly want
regularize in a Lorentz-invariant way. To achieve this w
defined in@48# a new regularization, denoted@F#1 , by per-
forming the Hadamard regularization within the spatial h
persurface that is geometrically orthogonal~in the
Minkowskian sense! to the four-velocity of the particle. In a
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sense, the regularization@F#1 permits us to get rid of the
anisotropic Lorentz contraction due to the motion when
fining the point masses. The Lorentzian regularization@F#1
differs from the old one (F)1 by relativistic corrections of
order 1/c2 at least. All the formulas for its computation ar
given in @48# in the form of some infinite expansion series
the relativistic parameter 1/c2. The regularization@F#1 plays
a crucial role in the present computation, as it will be se
that the breakdown of the Lorentz invariance due to the
regularization (F)1 occurs precisely at the 3PN order in th
equations of motion. Associated with the new regularizat
in @48# we can define, exactly like in Eq.~2.5!, a ‘‘Lorentz-
ian’’ d pseudofunction PfD1 , which when applied on anyF
gives @F#1 . More generally we have, similar to Eq.~2.6!,

;GPF, ^Pf~FD1!,G&5@FG#1 . ~2.13!

Notice that as a general rule we are not allowed to replacF
in the pseudofunction Pf(FD1) by its regularized value, i.e.
Pf(FD1)Þ@F#1PfD1 . This is a consequence of the ‘‘nondis
tributivity’’ of the Hadamard partie finie with respect to th
multiplication, i.e., @FG#1Þ@F#1@G#1 . In this paper, we
shall ~heuristically! model the compact objects by point pa
ticles, and in order to describe those point particles we s
use a particular representation of the stress-energy te
which has been derived in Sec. V of@48# on the basis of an
action principle compatible with the Lorentzian regulariz
tion @F#1 . The proposal made in@48# is that

Tmn5m1c
v1

mv1
n

A2@grs#1v1
rv1

s
PfS D1

A2g
D 11↔2. ~2.14!

Most important about this expression are the facts t
~i! @grs#1 within the first factor means the Lorentzia
regularization of the metric in the previous sense;~ii ! the
pseudofunction Pf„(1/A2g)D1… is of the type Pf(FD1)
which is defined by Eq.~2.13!. We denote bym1 the ~con-
stant! mass of the particle 1, byy1(t) its trajectory param-
etrized by the harmonic-coordinate timet, and by v1(t)
5dy1 /dt the coordinate velocity@with v1

m5(c,v1)#. In the
next section, we look for solutions in the form of pos
Newtonian expansions of the Einstein field equations hav
the latter stress-energy tensor as a matter source.

III. THE THIRD POST-NEWTONIAN METRIC

A. The Einstein field equations

We base our investigation on a system of harmonic co
dinatesx05ct, (xi)5x, since such coordinates are esp
cially well suited to a post-Newtonian~or post-
Minkowskian! iteration of the field equations. We define th
gravitational perturbationhmn associated with the ‘‘gothic
metric’’ as

hmn5A2ggmn2hmn, ~3.1!
5-4
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with gmn andg being the inverse and the determinant of t
covariant metricgmn , and wherehmn5diag(21,1,1,1) de-
notes an auxiliary Minkowski metric. Under the condition
harmonic coordinates,

]nhmn50, ~3.2!

the Einstein field equations take the form

hhmn5
16pG

c4 uguTmn1Lmn, ~3.3!

whereh5hmn]m]n denotes the flat d’Alembertian operato
whereTmn is the matter stress-energy tensor defined in
case of point-particle binaries by Eq.~2.14!, and whereLmn

is the gravitational source term. Using the integral of t
retarded potentials given by

hR
21t~x,t !5E d3x8

24p

t~x8,t2ux2x8u/c!

ux2x8u
, ~3.4!

we can also rewrite the solution of the field equations~3.3!,
under a condition of no-incoming radiation, under the for
t-
di-

tro

06200
r

e

hmn5hR
21F16pG

c4 uguTmn1LmnG . ~3.5!

The gravitational source termLmn is related to the Landau
Lifchitz pseudotensortLL

mn by

Lmn5
16pG

c4 ugutLL
mn1]rhms]shnr2hrs]rshmn, ~3.6!

and can be expanded as an infinite nonlinear series inh and
its first and second space-time derivatives; in this paper
need only the nonlinear terms up to the quartic~h4 or G4!
level, viz.,

Lmn5Nmn~h,h!1Mmn~h,h,h!1Lmn~h,h,h,h!1O~h5!,

~3.7!

where the quadratic nonlinearityNmn, the cubic oneMmn,
and the quarticLmn are explicitly given by
Nmn52hrs]rshmn1 1
2 ]mhrs]nhrs2 1

4 ]mh]nh1]shmr~]shr
n1]rhns!22] (mhrs]rhn)s1hmn@2 1

4 ]thrs]thrs

1 1
8 ]rh]rh1 1

2 ]rhst]
shrt#, ~3.8a!

Mmn52hrs~]mhrt]
nhs

t 1]thr
m]ths

n 2]rht
m]shnt!1hmn@2 1

4 ]thrs]thrs1 1
8 ]rh]rh1 1

2 ]rhst]
shrt#

1 1
2 hrs] (mhrs]n)h12hrs]thr

(m]n)hs
t 1hr(m@]n)hst]rhst22]sht

n)]rhst2 1
2 ]n)h]rh#

1hmn@ 1
8 hrs]rh]sh2 1

4 hrs]thrs]th2 1
4 htl]thrs]lhrs2 1

2 htl]rhts]shl
r1 1

2 htl]rht
s]rhls#, ~3.8b!

Lmn52 1
2 hmnhrs]th

rl]lhst2 1
4 hmnhrs]rhtl]shtl1 1

8 hmnhrs]rh]sh1 1
2 hmnhrs]thl

r]thsl2 1
4 hmnhrs]th

rs]th

1hrlhs
l]th

mr]thns22hrlhs
l]th

r(m]n)hst1hrlhs
l]mht

r]nhst2 1
2 hrlhs

l] (mhrs]n)h2hrshtl]thmr]lhns

1 1
2 hrshtl]mhrt]nhsl2 1

4 hrshtl]mhrs]nhtl12hsth
r(m]lhn)t]rhsl22hsth

r(m]n)hl
s]rhtl

1 1
2 hsth

r(m]n)hst]rh1 1
2 hsth

r(m]n)h]rhst1 1
2 hmrhns]rhtl]shtl2 1

4 hmrhns]rh]sh

1hmn@ 1
2 hrphs

p]th
rl]lhst2 1

2 hrphs
p]lht

r]lhst1 1
4 hrphs

p]th
rs]th2 1

4 hrshtl]phrt]phsl

1 1
8 hrshtl]phrs]phtl1 1

2 hrshtl]rhp
t ]shlp2 1

4 hrshtl]rhtl]sh#. ~3.8c!
q.
All indices are lowered and raised with the Minkowski me
ric hmn ; h5hmnhmn ; the parentheses around indices in
cate the symmetrization.

To describe the matter source we find convenient to in
duce the density of masss, of currents i , and of stresss i j
defined by

sc25T001Tii , ~3.9a!

s ic5T0i , ~3.9b!
-

s i j 5Ti j ~3.9c!

~where Tii 5d i j T
i j !. These definitions are such thats, s i ,

ands i j admit a finite nonzero limit whenc→1` ~sinceTmn

has the dimension of an energy density!. In the case of our
model of point particles@stress-energy tensor given by E
~2.14!#, we obtain

s~x,t !5Pf~m̃1D1!11↔2, ~3.10a!

s i~x,t !5Pf~m1v1
i D1!11↔2,

~3.10b!
5-5
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s i j ~x,t !5Pf~m1v1
i v1

j D1!11↔2,
~3.10c!

where D1[D@x2y1(t)#, and wherem1 and m̃1 represent
some effective masses defined by

m1~x,t !5
m1c

A2@grs#1v1
rv1

s

1

A2g~x,t !
, ~3.11a!

m̃1~x,t !5m1~x,t !F11
v1

2

c2G . ~3.11b!

Note that m1 and m̃1 depend on timeand space. Indeed
while the first factor in Eq.~3.11a! is clearly a mere function
of time through the values of the positions and velocities
the particles at the instantt, the second factor (2g)21/2 is
evaluated at thefield point t,x instead of the source pointt,
y1 . From the nondistributivity of the Hadamard regulariz
tion, one is not allowed to replace (2g)21/2 by its ~regular-
ized! value at point 1, even though it is multiplied by ad
pseudofunction at 1.

B. The 3PN iteration of the metric

In what follows we sketch the main steps of our iterati
of the Einstein field equations~3.3!–~3.8! generated by two
particles at the 3PN order. For more clarity in the presen
tion, we reason by induction over the post-Newtonian or
n. However, we have not proved the validity of this meth
to any ordern; simply we applied the method outlined belo
to construct the metric at the 3PN order.

~I! Suppose by induction overn that we have succeeded
obtaining some approximate post-Newtonian metric coe
cientsh@2n22#

mn , as well as the previous coefficientsh@m#
mn for

anym such that 2<m<2n22, which approach the true me
ric modulo a small post-Newtonian remainder,

hmn5h@2n22#
mn 1O~2n21!, ~3.12!
06200
f

-

-
r

-

with the notationO(2n21)5O(1/c2n21), here and else-
where, for the post-Newtonian error terms. We assume
the h@m#

mn ’s are at once some explicit functions of the fie
point x and functionals of the two trajectoriesy1(t),y2(t)
and velocitiesv1(t),v2(t). Since the matter source of th
field equations is made ofd pseudofunctions, the metric co
efficients become singular at the location of the particles~in-
deed, this is already true at the Newtonian order!. As a mat-
ter of fact, we assume for the present iteration that

;m<2n22, h@m#
mn PF, ~3.13!

whereF is the class of functions considered in@47,48# and
Sec. II. This is not a completely rigorous assumption beca
of the presence of logarithms in the expansions around
singularities; but we shall see that this assumption is justi
at the 3PN order where one can consider these logarithm
mere constants.

~II ! Consider for simplicity the combination12 (h001hii )
only, for which we need the maximal post-Newtonian pre
sion since it is directly connected tog00. The structure of the
Einstein field equations~3.3!, containing notably the gravita
tional source term~3.7!,~3.8!, reads as

hS h001hii

2 D5
8pG

c2 ugus1( h¯h]h]h, ~3.14!

where s is given by Eq.~3.9a!, where the sum runs ove
nonlinearities and the two partial derivatives]] have to be
distributed among theh’s ~with double derivatives allowed
in the quadratic term!. In order to obtain an equation valid a
the next post-Newtonian ordern, we replace the approximat
metric ~3.12! into the right-hand side of Eq.~3.14!. Further-
more, we replace the partial derivatives]] in Eq. ~3.14! by
the distributional derivatives~2.8! @we shall discuss the ef
fect of using either the particular derivative~2.9! or the more
correct one~2.10!#. Using also the density of particles in th
form ~3.10a!, we get
re as

ent
ves

ered as a
hS h001hii

2 D5H 8pG

c2 ~Pfugum̃1D11Pfugum̃2D2!1 (
m1 ,...,mp<2n22

h@m1# ,...,h@mp22#]~Pfh@mp21#!]~Pfh@mp#!J
@2n#

1O~2n11!, ~3.15!

where theh@m1# ,...,h@mp# ~with 2<p<n! denote the metric coefficients known from the previous iterations, and whe

indicated by the label@2n# a truncation up to the post-Newtonian order 1/c2n is understood. At this stage, any subsequ
transformation of the right-hand side must be done using the rules for handling the pseudofunctions and their derivati@47#.

~III ! We integrate the latter equation by means of the retarded integral given by Eq.~3.4!:

h001hii

2
5hR

21H 8pG

c2 ~Pfugum̃1D11Pfugum̃2D2!1 (
m1 ,...,mp<2n22

h@m1# ,...,h@mp22#]~Pfh@mp21#!]~Pfh@mp#!J
@2n#

1O~2n11!.

~3.16!

This defines the solution to thenth order, and so, by recursion, to any order~in principle!. The partie-finie symbols Pf take
care of the divergences of the retarded integral at the locations of the particles; that is, the retarded integral is consid
partie-finie integral in the sense of@47#. More precisely, the retardations in Eq.~3.16! are expanded to thenPN order and the
resulting Poisson-like integrals computed using the duality brackets in the way specified by Sec. V in@47#. Actually,
5-6



o

ra
he

s
e

de
k

x
u-
he
s

in
re
c

a
tis

th
n
u

te

is-
he
e
ise
he
to

ing
uta-
-
ized
cal
he

in-
s
by

GENERAL RELATIVISTIC DYNAMICS OF COMPACT . . . PHYSICAL REVIEW D 63 062005
the Poisson-like integrals, which have a noncompact supp
become rapidly divergent at infinity whenn increases, and
the correct solution we use is not the Poisson-like integ
but is obtained by a matching of the inner metric to t
multipole expansion of the exterior field. So, in fact,

~hR
21 PfF !~x8,t !52

1

4p (
k50

2n
~2 !k

k!ck K S ]

]t D
k

@PfF~x,t !#,

ux2x8uk21L
match

1O~2n11!, ~3.17!

where the subscript ‘‘match’’ refers to the matching proce
that is described in Sec. IV in the case of the 3PN ord
Notice that the time derivatives (]/]t)k resulting from the
Taylor expansion of the retardations are distributional
rivatives and therefore can be put outside the duality brac
~see Sec. IX in@47#!. Thus, equivalently,

~hR
21 PfF !~x8,t !52

1

4p (
k50

2n
~2 !k

k!ck S ]

]t D
k

@^PfF~x,t !,

ux2x8uk21&match#1O~2n11!.

~3.18!

~IV ! Once the solution~3.16! to the nth post-Newtonian
order is in hand we perform many simplifications of the e
pression, following the rules of application of the distrib
tional derivative. In particular, we find very useful to use t
fact that a double gradient can be reexpressed in term
d’Alembertians as

]mF]mG5 1
2 @h~FG!2FhG2GhF#, ~3.19!

which implies that the retarded integral reads as

hR
21@]mF]mG#5 1

2 FG2 1
2 hR

21@FhG1GhF#. ~3.20!

The first term is ‘‘all-integrated,’’ while the second term,
which one can replace the d’Alembertians by their cor
sponding sources, brings in general many interesting can
lations with other terms. Unfortunately, the formula~3.19! is
valid only in an ordinary sense but not in the distribution
sense, because the distributional derivative does not sa
in general, the Leibniz rule. Thus, in general,

]m~PfF !]m~PfG!Þ 1
2 @h~PfFG!2Fh~PfG!

2Gh~PfF !#. ~3.21!

Nevertheless, the strategy we have chosen to follow in
paper is to take advantage of the many simplificatio
brought about by the latter process, at the price of introd
ing some extra terms~named ‘‘Leibniz’’! accounting for the
violation of the Leibniz rule. This means that we shall wri
similarly to Eq.~3.20!,
06200
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hR
21@]m~PfF !]m~PfG!#5 1

2 PfFG2 1
2 hR

21@Fh~PfG!

1Gh~PfF !#1dLeibnizT, ~3.22!

where the Leibniz term is given by

dLeibnizT5hR
21@]m~PfF !]m~PfG!2 1

2 h~PfFG!

1 1
2 Fh~PfG!1 1

2 Gh~PfF !#. ~3.23!

Obviously the Leibniz term depends only on the purely d
tributional part of the derivative. See the Appendix for t
complete list of the Leibniz terms. As it will turn out thes
terms are not too difficult to compute, and, of course, ar
precisely at the 3PN order. They give a contribution to t
metric and the equations of motion that we shall be able
check from the requirement of Lorentz invariance~see Sec.
VI !.

C. The 3PN nonlinear potentials

The post-Newtonian iteration sketched in the preced
subsection is implemented to the 3PN order. The comp
tion is long but straightforward. After the simplification pro
cess described above we find that the metric is parametr
by certain nonlinear potentials, which do not carry a physi
signification by themselves, but turn out to be useful in t
present computation. The 3PN metric reads as

g005211
2

c2 V2
2

c4 V21
8

c6 S X̂1ViVi1
V3

6 D1
32

c8

3S T̂2
1

2
VX̂1R̂iVi2

1

2
VViVi2

1

48
V4D1O~10!,

~3.24a!

g0i52
4

c3 Vi2
8

c5 R̂i2
16

c7 S Ŷi1
1

2
Ŵi j Vj1

1

2
V2Vi D1O~9!,

~3.24b!

gi j 5d i j F11
2

c2 V1
2

c4 V21
8

c6 S X̂1VkVk1
V3

6 D G1
4

c4 Ŵi j

1
16

c6 S Ẑi j 1
1

2
VŴi j 2ViVj D1O~8!. ~3.24c!

We recall our notation for the small post-Newtonian rema
ders: O(n)5O(1/cn). The various post-Newtonian order
are parametrized by some potentials which are defined
means of the retarded integral~3.4!. At the ‘‘Newtonian’’
and 1PN orders we pose

V5hR
21@24pGs#, ~3.25a!

Vi5hR
21@24pGs i #, ~3.25b!

in which the source densities were defined by Eq.~3.9!.
Next, at the 2PN order, we define
5-7



re due to
igh
rce is

are

ent to

r of the

t
m

LUC BLANCHET AND GUILLAUME FAYE PHYSICAL REVIEW D 63 062005
X̂5hR
21@24pGVs i i 1Ŵi j ] i j V12Vi] t] iV1V] t

2V1 3
2 ~] tV!222] iVj] jVi #, ~3.26a!

R̂i5hR
21@24pG~Vs i2Vis!22]kV] iVk2 3

2 ] tV] iV#, ~3.26b!

Ŵi j 5hR
21@24pG~s i j 2d i j skk!2] iV] jV#. ~3.26c!

Finally, at the 3PN order, we have

T̂5hR
21@24pG~ 1

4 s i j Ŵi j 1
1
2 V2s i i 1sViVi !1Ẑi j ] i j V1R̂i] t] iV22] iVj] j R̂i2] iVj] tŴi j 1VVi] t] iV

12Vi] jVi] jV1 3
2 Vi] tV] iV1 1

2 V2] t
2V1 3

2 V~] tV!22 1
2 ~] tVi !

2#1dLeibnizT̂, ~3.27a!

Ŷi5hR
21@24pG~2sR̂i2sVVi1

1
2 skŴik1 1

2 s ikVk1 1
2 skkVi !1Ŵkl]klVi2] tŴik]kV1] i Ŵkl]kVl

2]kŴil ] lVk22]kV] i R̂k2 3
2 Vk] iV]kV2 3

2 V] tV] iV22V]kV]kVi1V] t
2Vi12Vk]k] tVi #1dLeibnizŶi , ~3.27b!

Ẑi j 5hR
21@24pGV~s i j 2d i j skk!22]~ iV] tVj )1] iVk] jVk1]kVi]kVj22]~ iVk]kVj )2d i j ]kVm~]kVm2]mVk!

2 3
4 d i j ~] tV!2#1dLeibnizẐi j . ~3.27c!

Note the presence in the 3PN potentials of the Leibniz contributions described in the preceding subsection, which a
the simplifications we did to arrive at these relatively simple expressions~with respect to what could be expected at the h
3PN order!. The Leibniz contributions will be computed in Sec. VI. Of course, in the case where the matter sou
continuous—a hydrodynamical fluid for instance—the 3PN metric~3.24! and all the expressions of nonlinear potentials
valid with simply the Leibniz contributions set to zero.

The potentials~3.25!–~3.27! are connected by the following approximate post-Newtonian differential identities~equivalent
to the condition of harmonic coordinates at the 3PN order!:

] tH V1
1

c2 F1

2
Ŵkk12V2G1

4

c4 F X̂1
1

2
Ẑkk1

1

2
VŴkk1

2

3
V3G J 1] i H Vi1

2

c2 @R̂i1VVi #1
4

c4 F Ŷi2
1

2
Ŵi j Vj

1
1

2
ŴkkVi1VR̂i1V2Vi G J 5O~6!, ~3.28a!

] tH Vi1
2

c2 @R̂i1VVi #J 1] j H Ŵi j 2
1

2
Ŵkkd i j 1

4

c2 F Ẑi j 2
1

2
Ẑkkd i j G J 5O~4!. ~3.28b!

We shall check that the~regularized! potentials we compute satisfy these identities. They are in turn respectively equival
the equation of continuity at the 2PN order and the equation of motion at the 1PN order:

] tFsS 11
2Ŵii

c4 D G1] jFs j S 11
2Ŵii

c4 D G5
1

c2 ~] ts j j 2s] tV!2
4

c4 ~sVj] jV1s jk] jVk!1O~6!, ~3.29a!

] tFs i S 11
4V

c2 D G1] jFs i j S 11
4V

c2 D G5s] iV1
4

c2 @s] tVi1s j~] jVi2] iVj !#1O~4!. ~3.29b!

D. Computing the equations of motion

The equations of motion of particle 1 are deduced from the covariant conservation of the stress-energy tenso
particles,

¹nTmn50, ~3.30!

whereTmn is given by the definite expression~2.14! made of thed pseudofunctions defined in@47,48#. It is shown in Sec. V
of @48# that by integrating Eq.~3.30! over a volume surrounding particle 1~and only 1!, i.e., by constructing the duality bracke
of Eq. ~3.30! with the characteristic function of that volume, we obtain the equations of motion of particle 1 in the for
062005-8
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d

dt S @glm#1v1
m

A2@grs#1

v1
rv1

s

c2

D 5
1

2

@]lgmn#1v1
mv1

n

A2@grs#1

v1
rv1

s

c2

. ~3.31!

These equations of motion take the same form as the ge
sic equations for a test particle moving on a smooth ba
ground, but with the role of the background metric played
the true metric generated by the two bodies and regular
according to the Lorentzian prescription@48#.

In this paper we compute the spatial acceleration of b
1, which corresponds to the equation with spatial indexl
5 i in Eq. ~3.31!; we do not consider the energy which wou
be given by the equation with time indexl50. Indeed, the
energy of the binary system will be determined directly fro
the ~fully order-reduced! acceleration. From Eq.~3.31! we
can write the equations into the form

dP1
i

dt
5F1

i , ~3.32!

where the ‘‘linear momentum density’’P1
i and ‘‘force den-

sity’’ F1
i are given by

P1
i 5

@gim#1v1
m

A2@grs#1

v1
rv1

s

c2

, ~3.33a!

F1
i 5

1

2

@] igmn#1v1
mv1

n

A2@grs#1

v1
rv1

s

c2

.

~3.33b!

The expressions of bothP1
i andF1

i in terms of the nonlinear
potentials follow from insertion of the 3PN metric coeffi
cients~3.24!. We obtain some complicated sums of produ
of potentials which are regularized at point 1 following t
prescription@F#1 . Since the computation will turn out to b
quite involved, we decide to adopt the following ‘‘step-b
step’’ strategy:

~A! We compute, in Secs. IV and V, all the neededindi-
vidual potentials and their gradients at point 1 following t
non-Lorentzian regularization (F)1 ; for instance we obtain
(] iV)1 at the 3PN order, (V)1 at the 2PN order, (] i X̂)1 at the
06200
e-
-

y
d

y

s

1PN order, (] i T̂)1 at the Newtonian order, and so on.~Be-
cause of the length of the formulas, and since the results
all of these individual regularized potentials are only inte
mediate, we shall not give them in this paper; see the app
dices of@52# for complete expressions.!

~B! We add up the corrections brought about by t
Lorentzian regularization@F#1 with respect to (F)1 . We
find, at the end of Sec. V, that the only effect of the ne
regularization at the 3PN order, when computing the val
of potentials at 1~but the new regularization affects also th
corrections due to the nondistributivity!, is a crucial 1PN
correction arising from the so-called ‘‘cubic noncompac
part of X̂; that is, we find@] i X̂

(CNC)#12(] i X̂
(CNC))1Þ0.

~C! We replace all the individually regularized potentia
@F#1 and their gradients into the equations of motion~3.32!,
~3.33! which would be obtained while supposing that t
Hadamard regularization is ‘‘distributive’’ with respect to
the multiplication, i.e., supposing incorrectly that we are
lowed to write everywhere@FG#15@F#1@G#1 . In doing this
we obtain what we call the ‘‘distributive’’ parts of the linea
momentum and force densities~3.33!, namely, (P1

i )distr and
(F1

i )distr. ~Other types of nondistributivity arising in the po
tentials themselves are discussed in Sec. IV.!

~D! Finally, we compute separately, in Sec. VI, the co
rections due to the nondistributivity, i.e., the differencesP1

i

2(P1
i )distr andF1

i 2(F1
i )distr. Note that these corrections re

flect quantitatively the specific form that we have adopted
the stress-energy tensor of point particles~2.14!. Had we
used another stress-energy tensor, for instance by repla
incorrectly Pf„(1/A2g)D1… by @1/A2g#1PfD1 inside Eq.
~2.14!, we would have obtained a different nondistributivit
and thereby some different equations of motion. Note a
that thanks to the new regularization@F#1 the corrections
due to the nondistributivity do not alter the Lorentz inva
ance of the equations of motion. At last, we find the 3P
acceleration of body 1 as

a1
i 5F1

i 2
d

dt
~P1

i 2v1
i !. ~3.34!

We report now the expressions of the distributive parts
the linear momentum and force densities as straightforwa
obtained by substitution of the 3PN metric~3.24!. The ex-
pressions of the correcting terms due to the nondistributiv
~i.e., @FG#1Þ@F#1@G#1! are relegated to Sec. VI, where it
seen that they contribute only at the 3PN order:
~P1
i !distr5v1

i 1
1

c2 ~ 1
2 v1

2v1
i 13@V#1v1

i 24@Vi #1!1
1

c4 ~ 3
8 v1

4v1
i 1 7

2 @V#1v1
2v1

i 24@Vj #1v1
i v1

j 22@Vi #1v1
21 9

2 @V#1
2v1

i ~3.35a!

24@V#1@Vi #114@Ŵi j #1v1
j 28@R̂i #1)1

1

c6 ~ 5
16 v1

6v1
i 1 33

8 @V#1v1
4v1

i 2 3
2 @Vi #1v1

426@Vj #1v1
i v1

j v1
2

1 49
4 @V#1

2v1
2v1

i 12@Ŵi j #1v1
j v1

212@Ŵjk#1v1
i v1

j v1
k210@V#1@Vi #1v1

2220@V#1@Vj #1v1
i v1

j 24@R̂i #1v1
2

5-9



ns of the
s

2PN

n much

s
(
does

LUC BLANCHET AND GUILLAUME FAYE PHYSICAL REVIEW D 63 062005
28@R̂j #1v1
i v1

j 1 9
2 @V#1

3v1
i 112@Vj #1@Vj #1v1

i 112@Ŵi j #1@V#1v1
j 112@X̂#1v1

i 116@ Ẑi j #1v1
j

210@V#1
2@Vi #128@Ŵi j #1@Vj #128@V#1@R̂i #1216@Ŷi #1)1O~8!,

~F1
i !distr5@] iV#11

1

c2 ~2@V#1@] iV#11 3
2 @] iV#1v1

224@] iVj #1v1
j !1

1

c4 ~ 7
8 @] iV#1v1

422@] iVj #1v1
j v1

2

1 9
2 @V#1@] iV#1v1

212@] i Ŵjk#1v1
j v1

k24@Vj #1@] iV#1v1
j 24@V#1@]Vj #1v1

j 28@] i R̂j #1v1
j

1 1
2 @V#1

2@] iV#118@Vj #1@] iVj #114@] i X̂#1!1
1

c6 ~ 11
16 v1

6@] iV#12 3
2 @] iVj #1v1

j v1
41 49

8 @V#1@] iV#1v1
4

1@] i Ŵjk#1v1
2v1

j v1
k210@Vj #1@] iV#1v1

2v1
j 210@V#1@] iVj #1v1

2v1
j 24@] i R̂j #1v1

2v1
j 1 27

4 @V#1
2@] iV#1v1

2

112@Vj #1@] iVj #1v1
216@Ŵjk#1@] iV#1v1

j v1
k16@V#1@] i Ŵjk#1v1

j v1
k16@] i X̂#1v1

218@] i Ẑ jk#1v1
j v1

k

220@Vj #1@V#1@] iV#1v1
j 210@V#1

2@] iVj #1v1
j 28@Vk#1@] i Ŵjk#1v1

j 28@Ŵjk#1@] iVk#1v1
j

28@R̂j #1@] iV#1v1
j 28@V#1@] i R̂j #1v1

j 216@] i Ŷj #1v1
j 2 1

6 @V#1
3@] iV#124@Vj #1@Vj #1@] iV#1

116@R̂j #1@] iVj #1116@Vj #1@] i R̂j #128@V#1@Vj #1@] iVj #124@X̂#1@] iV#124@V#1@] i X̂#1

116@] i T̂#1!1O~8!. ~3.35b!

Recall that it is supposed that all the accelerations appearing in the potentials have been order reduced by mea
equations of motion. Notably, during the reduction of the ‘‘Newtonian’’ term@] iV#1 in Sec. IV, we shall need the equation
of motion to the 2PN order. Furthermore, we see from Eq.~3.35a! that when computing the time derivative ofPi we meet an
acceleration at 1PN which is thus also to be replaced by the 2PN equations of motion. We recall here that the latter~or,
rather, 2.5PN! equations in harmonic coordinates are@24–26,31#

dv1
i

dt
52

Gm2

r 12
2 n12

i 1
Gm2

r 12
2 c2 H v12

i @4~n12v1!23~n12v2!#1n12
i F2v1

222v2
214~v1v2!1

3

2
~n12v2!215

Gm1

r 12
14

Gm2

r 12
G J

1
Gm2

r 12
2 c4 n12

i H F22v2
414v2

2~v1v2!22~v1v2!21
3

2
v1

2~n12v2!21
9

2
v2

2~n12v2!226~v1v2!~n12v2!22
15

8
~n12v2!4G

1
Gm1

r 12
F2

15

4
v1

21
5

4
v2

22
5

2
~v1v2!1

39

2
~n12v1!2239~n12v1!~n12v2!1

17

2
~n12v2!2G1

Gm2

r 12
@4v2

228~v1v2!

12~n12v1!224~n12v1!~n12v2!26~n12v2!2#1
G2

r 12
2 F2

57

4
m1

229m2
22

69

2
m1m2G J 1

Gm2

r 12
2 c4 v12

i H v1
2~n12v2!

14v2
2~n12v1!25v2

2~n12v2!24~v1v2!~n12v1!14~v1v2!~n12v2!26~n12v1!(n12v2)21
9

2
~n12v2!3

1
Gm1

r 12
F2

63

4
~n12v1!1

55

4
~n12v2!G1

Gm2

r 12
@22~n12v1!22~n12v2!#J 1

4G2m1m2

5c5r 12
3 H n12

i ~n12v12!

3F26
Gm1

r 12
1

52

3

Gm2

r 12
13v12

2 G1v12
i F2

Gm1

r 12
28

Gm2

r 12
2v12

2 G J 1O~6!. ~3.36!

Unavoidably, because of the proliferation of possible terms, the equations of motion at the next 3PN order are eve
longer @see Eq.~7.16! below#.

IV. COMPACT SUPPORT AND QUADRATIC POTENTIALS

All the potentials that enter the linear momentum (P1
i )distr and the force density (F1

i )distr are computed at point 1 by mean
of the Lorentzian regularization@F#1 . However, we shall first determine their Hadamard partie finie in the usual senseF)1 ,
i.e., by approaching the singularity in the spatial slicet5const. The difference between the two regularization processes
not affect any compact or quadratic potentials.
062005-10
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A. Iterative computation of compact support potentials

In this paragraph, we are interested in the compact te
involved in the equation of motion@see Eqs.~3.35a! and
~3.35b!#. According to our previous remark, it is sufficient
evaluate them with the classical Hadamard prescription.
need (] iV)1 up to 3PN order; (V)1 , (Vi)1 , and (] iVj )1 at
2PN; (Ŵi j

(C))1 , (] i Ŵjk
(C))1 , (R̂i

(C))1 , (] i R̂j
(C))1, and (] i X̂

(C))1

at 1PN. The remaining contributions are Newtonia
(X̂(C))1 , (] i T̂

(C))1 , (Ŷi
(C))1 , and (] i Ŷj

(C))1 . We follow the
same classification and nomenclature concerning the var
parts of potentials—compact, noncompact, etc.—as in Se
of @31#. The compact~C! potentials are generated by sourc
with ~spatially compact! support limited to the particles; fo
instance,V(C)5V, and, from Eq.~3.27a!,

T̂~C!5hR
21@24pG~ 1

4 s i j Ŵi j 1
1
2 V2s i i 1sViVi !#. ~4.1!

Thus, by definition, the sourceS(x,t) of each compact po
tential P(C) is made of Dirac pseudofunctions, multiplied b
some functions of the classF:

S~x,t !5Pf~FD1!1Pf~GD2!,

with F,GPF. As a result, it is in general possible to find a
explicit expression ofP(C) over the whole space~for anyx!.
Besides, the expansion under the integration symbol of
retardation ofS(x8,t2ux2x8u/c) asc goes to infinity is per-
fectly licit, because the integrand has a compact support

P~C!52
1

4p (
n50

1`
~2 !n

n!cn ] t
nE d3x8ux2x8un21S~x8,t !

52
1

4p (
n50

1`
~2 !n

n!cn ] t
n~@Fux2x8un21#1

1@Gux2x8un21#2!. ~4.2!

The sourcesS(x,t) are supposed to be known at the curre
order. This implies to proceed iteratively as explained
@31#. The reader is referred to this paper for more details
short, we start from theV andVi potentials, whose source
do not depend on any other ones at the lowest order. Ind
we havehV524pG Pf(m̃1D1)11↔2 ~and similarly for
Vi!, wherem̃15m11O(2), as it follows from insertion of
the ‘‘Newtonian’’ metric into the definition~3.11! of the ef-
fective mass. Hence,

V5GE d3x8

ux2x8u H Pf@m̃1D1#2
1

c
] t Pf @ ux2x8um̃1D1#J

11↔21O~2!

5
Gm1

r 1
2

G

c
] tm111↔21O~2!

5
Gm1

r 1
1

Gm2

r 2
1O~2!. ~4.3!
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To obtain the regularized metric~at the location of the first
body, say!, we need the partie finie of the potentialV at point
1, (V)1 . Since we use Hadamard regularization, it is simp
given by the value of its nonsingular part whenx5y1 . Here,
we find (V)15Gm2 /r 121O(2), with the notation r 12
5uy12y2u.

The computation of more complicated compact terms
cessitates the knowledge of the effective massesm1 and m̃1
beyond the Newtonian approximation. By substituting togmn

the explicit 3PN expression~3.24! for the metric in the equa-
tions ~3.11!, we get the general forms of both effectiv
masses. As an example,m̃1 at 2PN order reads

m̃1

m1
511

1

c2 F22V1@V#11
3

2
v1

2G1
1

c4 F22Ŵii 12V2

22V@V#11
3

2
@V#1

22@V2#123Vv1
21

7

2
@V#1v1

2

24@Vi #1v1
i 1

7

8
v1

4G1O~6!, ~4.4!

where we are careful at distinguishing the potentials co
puted at the field pointx from those computed at the sourc
point y1 , and where we take into account the nondistribut
ity of the regularization~m1 differs only by some numerica
coefficients!. Thus, as emphasized in Sec. III,m1 andm̃1 are
functions of timeand space. Replacing them by the regula
ized quantities (m1)1 , (m̃1)1 ~and 1↔2! is definitely forbid-
den because, on one side, the partie finie is not distribut
and, on the other side, the usual Hadamard regulariza
does not coincide with the Lorentzian one. However, t
replacement does not modify any compact potentials, w
the notable exception of the 3PN contributions inV ~see
below!. It is thus convenient to pose

Vdistr5hR
21@24pG~m̃1!1 Pfd124pG~m̃2!2 Pfd2#,

and to calculateVdistr and V2Vdistr separately. In the othe
compact sources, we shall employ (m1)1 , (m̃1)1 , etc., in-
stead ofm1 and m̃1 for practical calculations at the 3PN
approximation. Furthermore, in all the compact terms,
action of the Lorentziand pseudofunctions PfD1 and PfD2 ,
remarkably, reduces to the one of Pfd1 and Pfd2 . From
what precedes, it becomes obvious that, after the evalua
of (m1)1 or (m̃1)1 at a given post-Newtonian ordern, we can
determine all the potentials to the precision 1/c2n. As all the
terms involving the retarded potentials inm̃1 appear already
with a factor 1/c2 at least, we are then in a position to com
pute the right-hand side of Eq.~4.4!. The process is initiated
by the computation of the Newtonian value ofV as presented
above. Most of the quantities needed to get (m̃1)1 at the 3PN
order are obtained in@31#. Finally, the regularized value o
m̃1 at point 1 is
5-11
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~m̃1!1

m1
511

1

c2 F2
Gm2

r 12
1

3

2
v1

2G1
1

c4 FGm2

r 12
S 1

2
v1

224~v1v2!12v2
21

1

2
~n12v2!22

1

2

Gm1

r 12
1

3

2

Gm2

r 12
D1

7

8
v1

4G
1

8G2m1m2

3c5r 12
2 „~n12v1!2~n12v2!…1

1

c6 FG2m1m2

r 12
2 S 2

3

2

Gm1

r 12
2

39

4

Gm2

r 12
1

35

8
v1

22
41

4
~v1v2!1

41

8
v2

22
9

8
~n12v1!2

1
25

4
~n12v1!~n12v2!2

41

8
~n12v2!2D1

G2m2
2

r 12
2 S 3

2
v2

22~n12v2!223~v1v2!2~n12v1!~n12v2!1
1

2
~n12v1!22

3

2

Gm2

r 12

1
15

4
v1

2D1
Gm2

r 12
S 2~v1v2!215v1

2v2
2210~v1v2!v1

21
33

8
v1

412v2
42

1

2
~n12v2!2v2

22
3

8
~n12v2!424v2

2~v1v2!

12~n12v2!2~v1v2!2
1

4
v1

2~n12v2!2D1
11

16
v1

6G1O~7!. ~4.5!
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In our notation, two vectorsv1 ,v2 between brackets repre
sent the scalar product: (v1v2)5v1

i v2
i ; v1

25v1
i v1

i . We re-
call that it is important to keep the grouping of factors im
posed by the regularization in products of potentials. F
instance, (VŴi j )1Þ(V)1(Ŵi j )1 .

Among the compact potentials, the 3PN value ofV is
certainly the most difficult one to obtain, since the oth
quantities require only lower orders in powers of 1/c. We
shall focus onVdistr to illustrate the method we have fo
lowed. The differenceV2Vdistr will be handled in the next
subsection. We begin with specializing the general form
for V to the case ofVdistr:

Vdistr5
G~m̃1!1

r 1
2

G

c
] t~m̃1!11

G

2c2 ] t
2@~m̃1!1r 1#

2
G

6c3 ] t
3@~m̃1!1r 1

2#1
G

24c4 ] t
4@~m̃1!1r 1

3#

2
G

120c5 ] t
5@~m̃1!1r 1

4#1
G

720c6 ] t
6@~m̃1!1r 1

5#

11↔21O~7!. ~4.6!

Since the Schwarzschild massm1 is constant,] tm̃1 /c is of
order O~3! and does not contribute at the 1PN level. F
convenience, we shall introduce some special notation
the terms that occur at this approximation; we pose

U5
G~m̃1!1

r 1
1

G~m̃2!2

r 2

and

X5G~m̃1!1r 11G~m̃2!2r 2 .

Actually the potentials are to be considered as pseudofu
tions and it is understood that there is a symbol Pf in fron
them. Notably, the time derivatives appearing in Eq.~4.6! are
distributional. The regularized effective mass (m̃1)1 as well
as the distance to the first bodyr 1 depend on time through
06200
r

r

a

r
or

c-
f

the trajectoriesy1,2(t) and velocitiesv1,2(t). We make ex-
plicit the time differentiations and obtain, at 1PN,

Vdistr5U1
1

2c2 ] t
2X1O~3!

5
Gm1

r 1
F11

1

c2 S 2
Gm2

r 12
1

3

2
v1

2D G1
Gm1

2c2 ~2a1
i ] i r 1

1v1
i v1

j ] i j
2 r 1!11↔21O~3!. ~4.7!

The accelerations are order reduced by means of the e
tions of motion at previous orders. Notably, for computi
the 1PN term (G/2c2)] t

2 Pf @(m̃1)1r 1# at relative order 3PN,
we need the 2PN acceleration given by Eq.~3.36!. Once we
have gotVdistr all over the space, the last stage consists
regularizing it, as well as its gradient, atx5y1 using the
Hadamard partie finie. Now,Vdistr can be divided into two
parts, Vdistr r1 and Vdistr r2 corresponding to the source
24pG(m̃1)1 Pfd1 and 24pG(m̃2)2 Pfd2 , respectively.
The first part,Vdistr r1 , depends onx through r1 only, and
contains many terms that are either singular or vanish w
x→y1 , giving no contribution to the partie finie; on the op
posite, the smooth terms with odd 1/c-power factors in Eq.
~4.6! generally contribute. The partVdistr r2 does not necessi
tate any regularization since it is already regular in the nei
borhood ofx5y1 .

The remaining potentials are determined in the same w
However, we have to apply properly the formalism dev
oped in@47#. In particular:

~1! The regularized value of some potentialP~C! is the
partie finie ofP~C! computed initially outside the singularity
In the case whereP~C! is the Poisson integral of a compa
source Pf(Fd1), with FPF, we must take care@47# that

P1
~C!5S PfE d3x8

24p

1

ux2x8u
Fd1D

1

ÞPfE d3x

24p

1

r 1
Fd1 . ~4.8!
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@We generally do not write the dependence of the integr
on the integration variable, as it is evident from the conte
thus,Fd1 is computed at pointx8 in the intermediate expres
sion of Eq.~4.8! and at pointx in the last one.#

~2! If F is not regular at point 1, we generally hav
Pf(Fd1)Þ(F)1 Pfd1 , even when both members act, in th
sense of pseudofunctions, on smooth test functions. This
tinction is crucial, for instance, in the determination ofT̂~C! at
Newtonian order. Indeed, one of its contributions@first term
in Eq. ~4.1!#, denoted byT̂~C1!, reads as

T̂~C1!5
1

4
G PfE d3x8

ux2x8u
s i j Ŵi j 1O~1!

5
1

4
Gm1v1

i v1
j S Ŵi j

ux2x8u D
1

11↔21O~1!,

which is different from Gm1v1
i v1

j (Ŵi j )1/4r 111↔2

1O(1). Had weused the latter expression instead ofT̂~C1!,
we would have obtained a different potentialT̂distr; this
would have been correct if the partie finie operation had b
‘‘distributive’’ ~see Sec. I!, but we have actually

T̂2T̂distr5
G3m1

3

r 1
3 F2

1

240
v1

21
1

80
~n1v1!2G11↔2.

Notice that the latter expression is not Galilean-invariant
itself, and therefore will be checked later when verifying th
the final equations of motion stay invariant under Lore
transformations.

B. Nondistributivity in the potential V

We call nondistributivity in the potentialV that contribu-
tion which arises because the coefficient of thed pseudo-
function PfD1 in the matter stress-energy tensor~2.14! is a
function not only on time but also on space through
factor 1/A2g. It will turn out that this contribution is purely
of order 3PN. A related contribution, due to the nondistrib
tivity in T̂, has just been computed in the preceding subs
tion. The potentialV is generated by the source dens
s(x,t)5m̃1D@x2y1(t)#11↔2, wherem̃1 is a function of
space-time given explicitly by

m̃1~x,t !5

m1cS 11
v1

2

c2D
A2@grs#1v1

rv1
s

1

A2g~x,t !
. ~4.9!

The first factor is a function of time, and the second o
depends on both timeand space~nondistributivity!. The po-
tential V is given by the retarded integral~3.25a!, whose
retardations we expand up to any post-Newtonian order:

V~x,t !5G(
n50

1`
~2 !n

n!cn ] t
nE d3x8ux2x8un21s~x8,t !.

~4.10!
06200
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~Actually we shall see that an expansion to the 1PN orde
sufficient for our purpose.! We insert into that expression th
source densitys, use the definition of thed pseudofunction
Pf(FD1) given by Eq.~2.13!, and arrive at

V~x,t !5G(
n50

1`
~2 !n

n!cn ] t
n@m̃1~x8,t !ux2x8un21#111↔2.

~4.11!

Here, the square brackets refer to the Lorentzian Hadam
regularization whenx8→y1 . Using a multipolar expansion
we obtain immediately these brackets as

@m̃1~x8,t !ux2x8un21#15(
l 50

1`
~2 ! l

l !
]L~r 1

n21!@r 81
l n81

Lm̃18#1 ,

~4.12!

wherem̃18[m̃1(x,t). If m̃1 were a function of time only, then
we see that all the multipolar contributions on the right-ha
side of Eq.~4.12! but the scalarl 50 one would be zero,
because of the factorr 18

l with l>1 ~this is clear with the old
regularization, and easily checked to be true with the Lore
zian regularization as well!. We definedVdistr as beingV but
computed with the function of time@m̃1#1 instead of the true
m̃1(x,t). This Vdistr is exactly the one which has been com
puted in Sec. IV A.@It can be checked that up to the 3P
order @m̃1#15(m̃1)1 .# Therefore, by the previous argumen
Vdistr is produced entirely by the scalar partl 50 in the latter
multipolar expansion, so that its complementary to the t
potentialV reads as

V2Vdistr5G(
n50

1`
~2 !n

n!cn

]n

]tn H (
l 51

1`
~2 ! l

l !
]L~r 1

n21!

3@r 81
l n81

Lm̃18#1J 11↔2, ~4.13!

where the sum overl starts with l 51. Thus, the problem
reduces to the computation of each regularization te
@r 8 l

ln81
Lm̃18#1 . Obviously, at a given post-Newtonian orde

these terms will all become zero forl larger than a certain
value. We find that, up to the 3PN order, all the regulariz
tions are zero starting atl 53, namely,@r l8 n81

Lm̃18#15O(8)
for any l>3, while the nonzero values forl 51,2 are given
by

@r 18 n81
i m̃18#153

G3m1
3m2

c6r 12
2 n12

i 1O~8!, ~4.14a!

@r 28 n81
i j m̃18#15

G2m1
3

c4 d i j 23
G3m1

3m2

c6r 12
d i j 1

3

2

G2m1
3

c6 v1
2d i j

2
G2m1

3

c6 v1
i v1

j 1O~8!. ~4.14b!

Replacing these results back into Eq.~4.13!, and using the
fact thatd i j ] i j (1/r 1)50, leads to the intermediate form
5-13
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V2Vdistr523
G4m1

3m2

c6r 12
2 n12

i ] i S 1

r 1
D2

G3m1
3

2c6 v1
i v1

j ] i j S 1

r 1
D

1
G3m1

3

2c6

]2

]t2 S 1

r 1
D1O~8!11↔2. ~4.15!

As we see, the nondistributivity of the potentialV is a 3PN
effect. Expanding the time derivative in the last term we fi
that the dependence on the velocityv1

i cancels out, which is
normal because a velocity-dependent term would violate
Lorentz invariance, in contradiction with our use of th
Lorentzian regularization@F#1 . The final expression is
simple:

V2Vdistr52
5

2

G4m1
3m2

c6r 12
2 n12

i ] i S 1

r 1
D1O~8!11↔2.

~4.16!

The contribution of the nondistributivity in the acceleratio
of 1 is given by the gradient at 1 as

@] iV#12@] iVdistr#155
G4m1m2

3

c6r 12
5 n12

i 1O~8!. ~4.17!

C. Computation of quadratic potentials „­V­V…

By definition, the quadratic potentials are those who
sources are made of products of two compact factors, likeV,
Vi ,Wi j

~C! , etc.~or their derivatives, most of the time!. A typi-
cal source term for them is of the type ‘‘]V]V’’; hence their
denomination; for instance,

Ŵi j
~]V]V!5hR

21@2] iV] jV#. ~4.18!

But the quadratic source terms may also involve other qu
tities of the same structure, as is the case for] tŴik

~C!]kV

appearing in the source of the potentialŶi
(]V]V) @cf. Eq.

~3.27b!#.

1. Matching to the external field

The retardation of the compact potentials defining
metric of an isolated fluid can be expanded in powers ofc
only in the ‘‘near zone’’Dnear of the source, at a distanc
much smaller than the typical wavelength of the emitted
diation. The question then is how to incorporate in the po
Newtonian metric the no-incoming radiation conditions
past null infinity. We achieve this by performing a matchi
between the post-Newtonian expansion of the metric,
equate in the near zone, and its multipole expansion, vali
the regionDext exterior to the compact support of the sourc
Recall that for slowly moving sources, one can alwa
chooseDnearandDext in such a way that their intersection
not empty: DnearùDextÞ0” ~see, e.g.,@53#!. The field hmn

admits a multipole-type expansionM(hmn), in the sense of
@54#, at every spatial pointxPDext. As a matter of fact, it is
shown in @55# that the multipole expansion of the exteri
field ~a vacuum solution of the field equations! thatmatches,
06200
e

e

n-

e

-
t-
t

d-
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.
s

according to the theory of matched asymptotic expansions
the post-Newtonian expansion in the interior of the source
given by

M~hmn!5FPB→0hR
21F S r

r 0
D B

M~Lmn!G
2

4G

c4 (
l 50

1`
~2 ! l

l !
]LH 1

r
HL

mn~ t2r /c!J ~4.19!

~with L a multi-index of orderl PN!. The multipole moments
HL

mn entering the right-hand side read as

HL
mn~u!5FPB→0E d3yS uyu

r 0
D B

yLt̄mn~y,u!,

wheret̄mn represents the~formal! post-Newtonianexpansion
of the complete source termtmn5uguTmn1(c4/16pG)Lmn

of the field equations~3.3!. These expressions are defined
analytic continuation inB, and the symbol FPB→0 denotes
the finite part whenB goes to zero of the Laurent expansio
of the analytic continuation~we refer to @54,55# for more
details about this finite part!.

Let us show how we find the ‘‘matched’’ solution of th
equationhP5S at the relative 1PN order~this is all we
shall need in this paper!. We neglect all higher-order post
Newtonian contributions in the source termS, and look for
the solution of

hP5S1PN1O~3!. ~4.20!

Since the formula~4.19! results from the properties of th
d’Alembertian operator~and is not specific to the field vari
ablehmn!, we can use it with the replacements ofM~L! by
M(S1PN) and of t̄ by (c4/16pG)S1PN. Thus, the multipole
expansion of the solution must satisfy

M~P!5FPB→0hR
21F S r

r 0
D B

M~S1PN!G
2

1

4p (
l 50

1`
~2 ! l

l !
]LH 1

r
PL~ t2r /c!J 1O~3!,

~4.21!

with

PL@S1PN#~u!5FPB→0E d3yS uyu
r 0

D B

yLS1PN~y,u!.

The partie-finie retarded integral of the multipole sour
M(S1PN) has to be handled with care. It is not allowed
develop whenc→1` the integrand under the integratio
symbol because the source is not compact supported.
correct formula was shown in@56# to be
5-14
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FPB→0hR
21F S r

r 0
D B

M~S1PN!G5FPB→0(
k50

1`
1

~2k!! S ]

c]t D
2kE d3x8

24p
ux2x8u2k21S r 8

r 0
D B

M~S1PN!

2
1

4p (
l>0

~2 ! l

l !
]̂LHRL~ t2r /c!2RL~ t1r /c!

2r J . ~4.22!

The hat on the partial derivatives]̂L indicates that the trace has been removed, i.e.,]̂L5STF(]L). TheRL functions param-
etrize the general solution of d’Alembertian equations that are smooth near the origin: ‘‘antisymmetric’’ solution as gi
the last term in Eq.~4.22!. We have, more precisely,

RL~u!5FPB→0E d3y ŷLS uyu
r 0

D B

Tl~y,u!, ~4.23!

with

Tl~y,u!5~2 ! l 11
~2l 11!!!

2l l ! E
1

1`

dz~z221! lM~S1PN!~y,u2zuyu/c!.

Here,ŷL denotes the symmetric trace-free tensor associated withyi 1...yi l, for l PN. With Eqs.~4.21! and~4.22! we can write
the multipole expansionM(P) at the 1PN order as

M~P!5FPB→0E d3x8

24p

1

ux2x8u S r 8

r 0
D B

M~S1PN!2
1

4p (
l 50

1`
~2 ! l

l !
]LS 1

r DPL~ t !1
1

2c2 S ]

]t D
2H FPB→0E d3x8

24p

3ux2x8uS r 8

r 0
D B

M~S1PN!2
1

4p (
l 50

1`
~2 ! l

l !
]L~r !PL~ t !J 1

1

4pc
@Ṙ~ t !1Ṗ~ t !#1O~3!, ~4.24!
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where the last term, of order 1/c, is a simple function of time
made of the functionsR(t) andP(t) defined as beingRL(t)
andPL(t) with l 50 ~the dot indicates the time derivative!.
Now, it can be shown that the latter multipole expansion c
be rewritten under the new form

M~P!5M~P~ I!!1
1

4pc
@Ṙ~ t !1Ṗ~ t !#

1
1

2c2 S ]

]t D
2

@M~P~ II !!#1O~3!,

or, equivalently~indeed the second term is a mere functi
of time, and the multipole expansion obviously commu
with the time derivative!,

M~P!5MXP~ I!1
1

4pc
@Ṙ~ t !1Ṗ~ t !#1

1

2c2 S ]

]t D
2

@P~ II !#C
1O~3!. ~4.25!

In these equations,P(I) and P(II) denote thematchedsolu-
tions of the following Poisson equations:

DP~ I!5S1PN, ~4.26a!

DP~ II !52P~ I!. ~4.26b!

Therefore, we have reduced the problem of finding
matched solution of the d’Alembertian equation~4.20! to
06200
n

s

e

that of solving and matching the two successivePoisson
equations~4.26a! and ~4.26b!. Now, from Eq. ~4.25!, it is
evident that the correct matched solution of Eq.~4.20! reads
in terms of the matched solutions of Eq.~4.26! as

P5P~ I!1
1

4pc
@Ṙ~ t !1Ṗ~ t !#1

1

2c2 S ]

]t D
2

@P~ II !#1O~3!.

~4.27!

To recall the meaning of this solution we shall often den
it as P5Pmatch below; similarly forP5Pmatch

~I) ~for instance,
gmatch computed below! and P5Pmatch

~II) ~e.g., f match!. Actu-
ally, we shall find that the functionR(t) appearing in the 1/c
term of our solution~4.27! never contributes in the case o
the applications made in the present paper. Thus, it will
be considered in this paper, whereas the functionP(t) plays
a role and is given by

P~ t !5PfH FPB→0E d3xS r

r 0
D B

S1PN~x,t !J ~4.28!

~of courseS1PN there could be replaced with this approxim
tion by S0.5PN!. See Eq.~4.41! below for an example of com
putation of this function.

In practice, in order to find the matched solution of
Poisson equation,P(I) for instance, we proceed as follow
Suppose that we know a particular solution of the equati
sayPpart

~I) . Then the correct solution is necessarily of the ty
5-15
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P(I)5Ppart
~I) 1hhom

~I) , wherehhom
~I) denotes a homogeneous sol

tion of the Laplace equation~harmonic function!, Dhhom
~I)

50, which is moreoverregular at the location of the sourc
points. Note that its multipole expansion coincides with
self,M(hhom

~I! )5hhom
~I! . Now, the latter homogeneous solutio

is determined by the matching equation as

hhom
~I! 5FPB→0E d3x8

24p

1

ux2x8u S r 8

r 0
D B

M~S1PN!

2
1

4p (
l 50

1`
~2 ! l

l !
]LS 1

r DPL~ t !2M~Ppart
~I! !. ~4.29!

It is not evident in that expression that the right-hand side
a harmonic function; but it really is, as can be verified e
plicitly in practice. We compute the multipole expansion
the source termS1PN as well as of our particular solutio
Ppart

~I! . In our case this means computing the formal exp
sions ofS1PN and Ppart

~I! when r tends to infinity or equiva-
lently when the two source pointsy1,2 tend to zero. The
computation is greatly simplified if one considers the dime
sionality of the source. Suppose for instance that@S1PN#
5(length)d which means@hhom

~I! #5(length)d12. Then, using
the fact that this function is harmonic, its structure is nec
sarily of the typehhom

~I! ;( x̂Ly1
L1y2

L2 with l 1 l 11 l 25d12.
This shows that in order to obtainhhom

~I! completely it is suf-
ficient to develop the right side of Eq.~4.29! wheny1,2→0
up to the orderd12 included~i.e., to control all the terms
y1

L1y2
L2 in the expansions which havel 11 l 2<d12!. All the

higher-order terms, havingl 11 l 2>d13 on the right side of
Eq. ~4.29! mustmanage to give zero. The same method
used to compute the homogeneous solutionhhom

~II ! contained in
P~II !. We shall implement this method in practice below.

2. Structure of the quadratic sources

In the context of the present paper, we will not need
compute the quadratic sources beyond the 1PN order. A
consequence, we will deal with only a few kinds of eleme
tary sources. By Eq.~4.7!, we already know the structure o
V at the 1PN approximation. The other compact retard
potentials have a very similar form. After expansion of t
retardation of any of them, sayP(C), we get
06200
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P~C!5PfE d3x8

24p

1

ux2x8u
Fd12

1

c
] t PfE d3x

24p
Fd1

1
1

2c2 ] t
2 PfE d3x8

24p
ux2x8uFd111↔21O~3!,

~4.30!

with FPF. The first contribution has been calculated in@47#
@see Eq.~6.18! there#. What is interesting for us is that th
result writes as a sum of space derivative of 1/r 1 ~or 1/r 2!,
i.e., ]L(1/r 1) ~with the convention thatL designates a multi-
index of lengthl!. Similarly, it is easy to convince onese
that the third contribution is composed of terms]Lr 1 ~or
]Lr 2!. Moreover, the action of time derivatives in front of th
integral leaves the latter structure unchanged, in accorda
with formulas such as] t]Lr 152v1

i ] i]Lr 1 . The second con-
tribution in Eq.~4.30! is a mere constant with respect tox. In
fact, as they appear in the quadratic sources, the com
potentials are preceded by some space or time derivati
Now, these derivations have to be performed in the sens
pseudofunctions@47#. From these considerations, we are no
in a position to tell what is the precise structure of t
sources of quadratic potentials. They read as a sum of w
we shall call elementary terms. As we are interested her
their spatial behavior only, we shall omit purely time
dependent factors, though they are normally included. N
tonian elementary terms are themselves products of
pseudofunction derivatives of contributions coming from t
first integral in the generic expression~4.30!: ]J Pf]K(1/r 1)
3]L Pf]M(1/r 1), or ]J Pf]K(1/r 1)3]L Pf]M(1/r 2) ~and
similarly with 1↔2!, whereJ, K, L, M are multi-indices of
respective lengthj, k, l, m. In the same manner, the 1P
terms result from products of pseudofunction derivatives
Newtonian and post-Newtonian integrals as the first and
third ones in Eq.~4.30!: ]J Pf]K(1/r 1)3]L Pf]Mr 1 , or
]J Pf]K(1/r 1)3]L Pf]Mr 2 , and 1↔2. As for the 0.5PN
terms, they are simply the pseudofunction derivatives
]L(1/r 1) or ]L(1/r 2) ~times a mere function of time!. It is
also natural to distinguish between the ‘‘self’’ elementa
terms on one side, which depend on one body only, e
] i Pf (1/r 1)3] j Pf (1/r 1), and always admit prefactorsm1

2,
m̃1

2, m̃1m1 , and the ‘‘interaction’’ terms on the other side
involving both objects, e.g.,] i Pf (1/r 1)3] j Pf (1/r 2). The
0.5PN terms]L(1/r 1,2) are considered separately.

To be more explicit, we shall provide as an example
1PN source ofŴi j

(]V]V) defined by Eq.~4.18!:
ansion in
ch can be
n the field
ntegrals
hŴi j
~]V]V!52G2m̃1

2] i Pf
1

r 1
] j Pf

1

r 1
1

G2m1
2

c2 S a1
k] ( iPf

1

r 1
] j )kPf r 12v1

kv1
l ] ( iPf

1

r 1
] j )klPf r 1D2G2m̃1m̃2] i Pf

1

r 1
] j Pf

1

r 2

1
G2m1m2

c2 S a1
k] ( iPf

1

r 2
] j )kPf r 12v1

kv1
l ] ( iPf

1

r 2
] j )klPf r 1D11↔21O~3!. ~4.31!

Here, we have used the fact that Pf] i r 15] i Pf r 1 and Pf] i j r 15] i j Pf r 1 .
The sum of the retarded integral of the elementary terms then gives us the complete quadratic potentials after exp

1/c and matching. Therefore, these potentials are generated by the sources through some partie-finie integrals, whi
regarded as the result of the action of the elementary terms, considered as pseudofunctions, on smooth quantities i
point. By inspection, it can be shown that the distributional part of the self terms never contributes to the previous i
5-16
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whereas the partie-finie derivatives applied to the interac
terms coincide with those of the Schwartz distributi
theory.

3. Integration of the elementary sources

We now come to the solving ofhP5S at the 1PN order
for each of the elementary terms composing the quadr
sources. We proceed following the method we exposed a
end of Sec. IV C 1. For this purpose, we first need to fin
particular solution of the following Poisson equations:

DPpart
~I! 5]L Pf

1

r 1
]K Pf

1

r 1
, DPpart

~I! 5]L Pf r 1]K Pf
1

r 1
,

~4.32a!

and

DPpart
~I! 5]L Pf

1

r 1
]K Pf

1

r 2
, DPpart

~I! 5]L Pf r 1]K Pf
1

r 2
,

~4.32b!

with L5 i 1 ...i l andK5 j 1 ...j k . From Ppart
~I! , we deduce the

matched valueP~I! by computinghhom
~I! according to the rela-

tion ~4.29! adapted to each elementary terms.
Equation~4.32a! involves only the vector variabler1 , so

that it is simple enough to be integrable in a systematic w
To put the sources into a more suitable form, we start
applying the derivative operator that enters the self term
the sense of functions, since the purely distributional par
the derivative does not contribute. The result is an adeq
power of r 1 times a finite sum of partial term
d i 1i 2...d i 2k21i 2kn1

i 2k11...n1
i l, which we shall denote more com

pactly asd2Kn1
L22K . The solving of the Poisson equation

rests then on the well-known identities~easily checked by
direct calculation!

r 1
an̂1

L5DH r 1
a12n̂1

L

~a2 l 12!~a1 l 13!J
for aPC\$ l 22,2 l 23%,

r 1
l 22n̂1

L5DH 1

2l 11 F lnS r 1

r 10
D2

1

2l 11G r 1
l n̂1

LJ ,

r 1
2 l 23n̂1

L5DH 2
1

2l 11 F lnS r 1

r 10
D1

1

2l 11G n̂1
L

r 1
l 11J ,

~4.33!

wheren̂1
L is the trace-free part ofn1

L , andr 10 a strictly posi-
tive constant. The quantities between braces are partic
solutionsPpart

~I! of DP~I!5r 1
an̂1

L , and we must in general ad
to them some harmonic functions to be evaluated by ma
ing to the external field. Equations~4.32b! are a priori the
most difficult ones, because of the mixing of the source
and 2. As a matter of fact, determiningPpart

~I! amounts to
solving
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Dg5
1

r 1r 2
, D f 125

r 1

r 2
, ~4.34!

in the sense of distributions, on account of the fact that,
instance,

]L Pf
1

r 1
]K Pf

1

r 2
5~2 !k1 l]1L]2K Pf

1

r 1r 2
,

where]1L and]2K denote the partial derivatives with respe
to y1 and y2 @the same transformation applies to]L Pf r 1

3]K Pf(1/r 2)#. As a consequence,LgK[]1L]2Kg and L f K
12

[]1L]2K f 12 clearly verify

D@~2 !k1 l
LgK#5]L Pf

1

r 1
]K Pf

1

r 2

and

D@~2 !k1 l
L f K

12#5]L Pfr 1]K Pf
1

r 2
. ~4.35!

Note that the derivatives above should be understood as m
~Schwartz! distributional derivatives. Luckily, particular so
lutions of Eqs.~4.34! in the whole space can be exhibite
@57,53,58#. We may take

g5 ln S, with S5r 11r 21r 12, ~4.36a!

f 1252 1
3 r 1r 12~n1n12!~g2 1

3 !1 1
6 ~r 2r 121r 1r 22r 1r 12!,

~4.36b!

where (n1n12) denotes the scalar product of Euclidean ve
tors. The functiong is symmetric in its three variablesx, y1 ,
andy2 , so that

D1g5
1

r 1r 12
and D2g5

1

r 2r 12
,

in the sense of distributions. For a more complete list
useful formulas, see@31#. We have also the two identities

D1f 1252g and D2f 125
r 12

r 2
.

Their proof is straightforward and calls for some simple
lations permitting to express the scalar products (n1n2),
(n1n12), and (n2n12) by means of some fractions involvin
r 1 , r 2 , andr 12. These relations, given by~5.14! in @31#, are
very convenient in most of our computations. The functi
f 12 is obtained by exchangingx and y1 in the function f
which was introduced in Appendix B of@57#,

f 5 1
3 r 1r 2~n1n2!~g2 1

3 !1 1
6 ~r 1r 121r 2r 122r 1r 2!, ~4.37!

and which satisfies, in the sense of distributions, the equa

D f 52g.
5-17
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Once Poisson equations with 1PN source are integrate
remains to find the homogeneous solutions to be added to
the full matched solution. Most of the self terms are alrea
correct, namely, those that go to zero whenr→1`. The
other ones are determined from the interaction terms by
ing the limit y2→y1 , which happens to be always possib
The matching formula~4.29! provides the functionhhom

~I! as-
sociated toPpart

~I! 5g. The computation is very easy becau
the dimension of the source is@1/(r 1r 2)#5(length)22 ~i.e.,
d522 in the notation of the end of Sec. IV C 1!; therefore
one needs to control only the constant term on the right s
of Eq. ~4.29! when y1,2→0. We arrive athhom

~I! 52 ln(2r0)
21; hence the correctgmatch solution ofDgmatch51/r 1r 2 is

gmatch5 lnS S

2r 0
D21,

where r 0 is the positive constant occurring in Eq.~4.19!.
Similarly, but with a little more work because the dimensio
ality of the source is nowd50 so we must expand to secon
order iny1,2, we obtain the matched value corresponding
f 12 as

f match
12 52 1

3 r 1r 12~n1n12!~gmatch2
1
3 !1 1

6 ~r 2r 121r 1r 22r 1r 12!

2 1
6 r ~ny1!2 1

6 ~y1y2!1 1
2 r ~ny2!

@where (ny1) for instance denotes the scalar product ofn
5x/r with y1#. As a consequence, the potentialsP~I! satisfy-
ing Eq. ~4.32b! are, respectively, (2) l 1k

LgmatchK and
(2) l 1k

L f matchK
12 . With this result in hand, we are able t

deduce very simply all the self terms that do not match pr
erly yet. We shall content ourselves with examining how t
works in an example. Let us suppose we want to solve

DP~I!5r 1] i j Pf
1

r 1
. ~4.38!

We make the correspondence with the equationD f matchi j
12

5r 1] i j Pf(1/r 2), whose source coincides withr 1] i j Pf(1/r 1)

for y15y2 ~we recall our notationf matchi j
12 5]2i j f match

12 !. The
distributional part of the derivative yields a compact su
ported contribution tof matchi j

12 given by

K Pf r 1S 24p

3 D d i j d2 ,
1

24p

1

ux2x8u L 5
r 12

3r 2
d i j ,

which is zero in the limity2→y1, while the ordinary part
yields a Poisson integral which is well-defined and eas
evaluated fory15y2 . We conclude that the value off matchi j

12

wheny2→y1 ,

P~I!5~ f matchi j
12 !y2→y1

5 1
6 d i j 2 1

2 n1
i n1

j ,

is precisely the matched solution of the Poisson equa
~4.38!.

Let us complete now the program presented at the en
Sec. IV C 1. Because of the presence of time derivative
the 1PN order, we restore in the elementary terms all
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coefficients depending only on time, either through the t
jectoriesy1,2 or the velocitiesv1,2 @we shall generically call
a(t) this time-dependent coefficient; for instancea
5(v1v2)#. It is worth noting that the potentials assimilate
to P~II ! in Eq. ~4.26b! are needed only at the Newtonia
order, as they come with a 1/c2 factor. Consequently, the
sources of theP~II !’s are simply ~two times! the matched
solutions of the Poisson equationsDP~I!5SN1O(1), where
SN are the Newtonian-type sourcesa(t)]L Pf(1/r 1,2)
3]K Pf(1/r 1,2); so, all we have to solve is

DP~II !52a~ t !r 1
pd2Kn1

L22K , ~4.39a!

or

DP~II !52a~ t !LgmatchK , ~4.39b!

with pPZ, andL,K some multi-indices. The elementary se
potentials obeying Eq.~4.39a! are evaluated by applicatio
of the identities~4.33!, before matching the full term~i.e.,
including thea coefficients! to the external field. The latte
stage will be dropped here, because, on one hand, the ge
procedure has been explained before, and, on the other h
powerful methods permitting to deal with the trickiest int
grals one could encounter here will be expounded in Sec
Let us look next at the second equation~4.39b!. To getP~II !

from some particularPpart
~II ! one must perform the complet

matching including all the time-dependent factorsa(t).
Here, for simplicity’s sake, we give the result in the ca
where the ~Newtonian! source is 1/(r 1r 2); hence, P~I!

5gmatch, as we have seen before. Then, we have to find
matched solution of

DP~II !52gmatch.

A particular solutionPpart
~II ! of this equation is easily obtaine

with the help of the functionf defined by Eq.~4.37! ~indeed,
the Laplacian ofPpart

~II ! 2 f is a mere constant!. The corre-
sponding homogeneous solutionhhom

~II ! is computed using the
same equation as Eq.~4.29! but using the source 2P~I!

[2gmatch. The result, which we naturally callf match[P~II !,
reads as

f match5
1
3 r 1r 2~n1n2!~gmatch2

1
3 !2 1

6 ~r 1r 121r 2r 122r 1r 2!

2 1
6 r ~ny1!2 1

6 r ~ny2!1 1
2 ~y1y2!. ~4.40!

Notice that in the case of the source 1/(r 1r 2) the only ‘‘odd’’
contribution 1/c in the formula~4.27! is that given by the
function P(t) defined by Eq.~4.28!; the contribution due to
R(t) is of higher order in this case. We readily find

P~ t !5FPB→0E d3xS r

r 0
D B 1

r 1r 2
522pr 12 ~4.41!

~no need of the symbol Pf!. This calculation is also done in
Eq. ~5.8! of @31#. In Sec. V, we shall see more generally ho
such integrals can be obtained. Thus, our definitions ofgmatch
and f match are such that
5-18
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S hR
21 1

r 1r 2
D

match

5gmatch2
1

2c
ṙ 121

1

2c2 ] t
2f match1O~3!.

~4.42!

Finally, we have all the material to integrate the ind
vidual post-Newtonian terms in such a way that the in
metric matches the external field at the 3PN order. Let
remark however that, in fact, the work we have done on
matching is, as seena posteriori, unnecessary. Indeed, sum
ming up all the contributions in the potentials, we find th
had we made use of some ‘‘unmatched’’ elementary fu
tions, e.g.,g and f 12 defined by Eq.~4.36!, to compute the
interaction terms instead of the corresponding matched q
tities, and had we deduced jointly the corresponding s
terms from the limity2→y1 , we would have arrived at the
samepotentials up to the 3PN order. This means that the n
contributions brought about by the matching to the exter
field actually cancel out in the final 3PN equations of motio
In particular, the constantr 0 which enters into the matche
quantitiesgmatch, f match

12 , and f matchdisappears from the fina
result. Though we have verified this, we stick to our pres
tation and use systematically all the matched functions de
mined previously.

To end this section, we shall achieve the example of
potentialŴi j

(]V]V) defined by Eq.~4.18!. We indeed already
know its source from Eq.~4.31!. We split the potential itself
into

Ŵi j
~]V]V!52Ui j 2

1

c2 Ki j 1
1

c
Li j 2

1

2c2 ] t
2Xi j . ~4.43!

The first two contributions are, respectively, the matched
lutions of the Poisson equations
06200
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e

,
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n-
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DUi j 5] iU] jU

and

DKi j 5]~ iU] j )] t
2X,

which come from ] iU] jU1(1/c2)] ( iU] j )] t
2X1O(3)

5] iV] jV. Recall that the potentialsU, X, and so on have to
be viewed as pseudofunctions@for instance, U
5PfG(m̃1)1 /r 111↔2#, so the derivatives entering th
source terms are distributional derivatives. The self ter
can be determined with the help of the relations~4.33! and
matching. To get the interaction part, we change the spa
derivatives to partial derivatives with respect to the sou
points y1,2, and next, we make the replacement 1/(r 1r 2)
→gmatch, r 1 /r 2→ f match

12 , and r 2 /r 1→ f match
21 . The ‘‘odd’’

term Li j is a pure function of time given by

Li j 5] tE d3x

24p
] iU] jU,

which is already known from Eq.~5.9! in @31#; it can also be
computed with the methods of Sec. V. The contributionXi j
is the matched solution of the double-Poisson equation

D2Xi j 52] iU] jU,

whose source is to be considered at the Newtonian o
only. The iterative application of Eq.~4.33! plus matching
yields the self terms; for interaction terms, we repla
]L(1/r 1)]K(1/r 2) by (-)L

l 1kf matchK . The results are
Ui j 5
G2m̃1

2

8 S ] i j
2 ln r 11

d i j

r 1
2 D 1G2m̃1m̃2 igmatchj , ~4.44a!

Ki j 5G2m̃1
2F2

a1
~ i

4
] j ) ln r 11

a1
k

8
d i j ]k ln r 12

a1
k

48
] i jk~r 1

2 ln r 1!1
v1

2d i j

16r 1
2 1

v1
i v1

j

8r 1
2 2

v1
kv1

l

16
d i j ]kl

2 ln r 11
v1

2

16
] i j ln r 1

1
v1

kv1
l

96
] i jkl ~r 1

2 ln r 1!G1G2m̃1m̃2@a1 k~ i
k f matchj )

12 1v1
kv1 kl~ i

l f matchj )
12 #11↔2, ~4.44b!

Li j 5G2] tF m̃1
2 PfE d3x

24p
] i

1

r 1
] j

1

r 1
G1G2] tF m̃1m̃2]1i]2 j PfE d3x

24p

1

r 1r 2
G11↔21O~2!

5G2m̃1m̃2] t]1i]2 j

r 12

2
11↔21O~2!, ~4.44c!

Xi j 5
G2m̃1

2

4 F1

6
] i j ~r 1

2 ln r 1!1d i j ln r 1G1G2m̃1m̃2 i f matchj11↔21const . ~4.44d!

In the last equation we do not write for simplicity a constant~associated with a function of typeR! which is cancelled out by
the time derivative] t

2 in front of that term. The self terms have been written in the form of some~ordinary! space derivatives
in order to prepare the computation of the cubic sources.
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V. CUBIC POTENTIALS

A. Methodological scheme

For methodological reasons, it is convenient to express
the cubic sources in a similar way, with the help of the sa
set of elementary integrals. The so-called ‘‘cubic-no
compact’’ term

X̂~CNC!5hR
21$Ŵi j

~]V]V!] i j V%, ~5.1!

which is part of theX̂ potential@see Eq.~3.26a!#, is a good
example to understand the successive transformation op
tions we perform in practice. Furthermore, this cubic-no
compact term is the only one we need to compute at
relative 1PN order; all the other ones, which enter intoT̂ and
Ŷi , are merely Newtonian. So the practical computation
Eq. ~5.1! is the most difficult one we face at the 3PN a
al
a
di
o

sin
al

q
io

yp
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proximation. Recall thatŴi j
(]V]V) was defined by Eq.~4.18!.

We start from the expression of the source ofX̂~CNC! obtained
by insertion of Eqs.~4.7! and ~4.43! into Eq. ~5.1!. We get

hX̂~CNC!52Ui j ] i j U1
1

c
Li j ] i j U2

1

c2 Ki j ] i j U

2
1

2c2 @] t
2Xi j ] i j U1Ui j ] i j ] t

2X#1O~3!,

~5.2!

using the notation introduced in Eq.~4.43!. On the right side,
the potentials are seen as pseudofunctions~involving a Pf!
and the derivatives are distributional. After carrying on t
expansion of retardations up to the 1PN approximation,
find
X̂~CNC!5E d3x8

4p

1

ux2x8u
Ui j ] i j U2

1

c E d3x8

4p

1

ux2x8u
Li j ] i j U2

1

c
] tE d3x8

4p
Ui j ] i j U1

1

c2 E d3x8

4p

1

ux2x8u
Ki j ] i j U

1
1

2c2 E d3x8

4p

1

ux2x8u
] t

2Xi j ] i j U1
1

2c2 E d3x8

4p

1

ux2x8u
Ui j ] i j ] t

2X1
1

2c2 ] t
2E d3x8

4p
ux2x8uUi j ] i j U

1
1

c2 ] tE d3x8

4p
Li j ] i j U1O~3!. ~5.3!
o
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We have checked explicitly that the sum of the integr
occurring in this formula yields an integral convergent
infinity when considering the regularized value of the gra
ent (] i X̂

~CNC!)1 which is the only thing required; thus we d
not need to introduce a finite part at infinity~but of course
the regularization Pf is needed to cure the point-particle
gularities!. The next step consists of replacing the potenti
U, X, Li j , Ki j , andXi j given by Eq.~4.44! above by their
values at the field pointxÞy1 and xÞy2 . The spatial and
time derivations appearing in each of the integrals of E
~5.3! are to be understood in the sense of pseudofunct
~see Sec. II!. Consider, as an example, the term

E d3x8

24p

1

ux2x8u
Ki j ] i j U.

Remember thatKi j is given by Eq.~4.44b!. Let us multiply
Eq. ~4.44b! by ] i j U5] i j Pf(Gm̃1 /r 11Gm̃2 /r 2) and develop
the product. The result is made of a sum of terms of the t
(1/r 1

2)3] i j Pf(1/r 1), ]k ln r13]ij Pf(1/r 1), ] i jkl (r 2
2 ln r2)

3]ij Pf~1/r 1), ikl( f match
12 ) j3] i j Pf~1/r 1), etc. Some of them

are functions ofr1 only; we call them ‘‘self’’ terms, whereas
those depending on bothr1 and r2 are called ‘‘interaction’’
terms.
s
t
-

-
s

.
ns

e

B. Self terms

We agree on considering only the self terms~i! that are
proportional tom1

3 rather thanm2
3 ~they are the same modul

the replacement 1→2!, and~ii ! that do contribute to the 1PN
order at most. We leave aside the terms that are generate
Li j , since their structure is especially simple and they
evaluated at the end of the section. By explicitly writin
down all the sources, as done previously forKi j ] i j U, we can
draw the complete list of intervening terms. There are th
types of terms: theV]V]V type concerns one kind of term
only, i.e., 1/r 13] i Pf(1/r 1)3] j Pf(1/r 1); the so-calledY
type refers to]L Pf r 1

p3]K Pf r 1
q terms, wherep and q are

positive or negative integers; theN-type terms come as
]L Pf]M(r 1

p ln r1)3]J Pf]Kr 1
q ~the termsY andN are named

after some integrals introduced below!. There may exist con-
tracted indices among the set of multi-indices. In particu
some terms involve a factor]DPf~1/r 1) and are thus purely
compact supported. In fact all the terms can be split i
compact and noncompact parts. The latter part is an ordin
function that we are able to calculate explicitly. The form
is determined from the results of Secs. VI–VIII in@47# and
depends on the pseudofunction derivative we use. We s
refer to it as the self partie-finie-derivative contribution to t
potentials. If we take the term] i jkl (r 1

2 ln r1)3]ij Pf~1/r 1), for
instance, it reads
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] i jkl ~r 1
2 ln r 1!] i j Pf

1

r 1
5] i jkl ~r 1

2 ln r 1!] i j

1

r 1

1] i jkl ~r 1
2 ln r 1!Di j F 1

r 1
G .

In the case of the ‘‘particular’’ derivative defined by E
~2.9!, we haveDi j

part@1/r 1#52p Pf(d i j 25n1
i n1

j )d1 , so that

] i jkl ~r 1
2 ln r 1!] i j Pf

1

r 1
512

n1
kn1

l 2dkl

r 1
5

18p Pf
23n1

kn1
l 14dkl

r 1
2 d1

~5.4!

~as in the first term of the right side we sometimes do
write the Pf when there is no possible confusion!. In most of
this section, we shall use the particular derivativeDi j

part@F#
given by Eq.~2.9! instead of the more ‘‘correct’’ derivative
Di j @F# defined by Eqs.~2.10!, ~2.11!; in Sec. VI we shall
discuss the effect on the final 3PN equations of motion
using the derivativeDi j @F#. In order to obtain the self cubic
potentials, all we have to do now is to apply the opera
*(d3x8/24p)ux2x8u21 to the various sources we are focu
ing on, and] t

2*(d3x8/24p)ux2x8u to the Newtonian source

of X̂~CNC!. As a matter of fact, the resulting integrals can
viewed as partie finie pseudofunctions like Eq.~5.4! acting
on 1/(24pux2x8u) or ux2x8u/(24p); both quantities are
smooth at point 1, so the pseudofunctions associated with
noncompact part reduce to Schwartz distributions in t
case~but, in order to construct the pseudofunctions the
selves, we used the generalized distributions of@47#!. Each
integral is indeed a sum of terms of the formr 1

pd2Kn1
L22K ,

wherep belongs toZ. It is convenient to write them as sum
of pseudofunction~or, equivalently here, distributional! de-
rivatives of quantities without indices~‘‘scalars’’!, times
some possible Kronecker symbols. We have, for exampl

n1
i n1

j

r 1
5 5

1

15
] i j

1

r 1
3 1

1

5

d i j

r 1
5

5
1

15
] i j Pf

1

r 1
3 1

1

5

d i j

r 1
5 1

4p

15
~8n1

i n1
j 2d i j !

d1

r 1
2 ,

~5.5!
06200
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and other similar formulas forn1
i /r 1

4, n1
i n1

j n1
k/r 1

6, etc.
As an illustration of our handling of the sources, here a

the effects of these transformations o
] i jkl (r 1

2 ln r1)]ij Pf(1/r 1). Starting from Eq.~5.4! and using
Eq. ~5.5!, we find

E d3x8

24p

1

ux2x8u
] i jkl8 ~r 18

2 ln r 18!] i j8 Pf
1

r 18

5E d3x8

24p

1

ux2x8uF4

5
]kl8 Pf

1

r 18
32

48

5
Pf

dkl

r 18
5

1
8p

5
Pf

n18
kn18

l218dkl

r 18
2 d18G ,

where the first term is generated by the specific deriva
~2.9!. In this term the derivative can be changed to a par
derivative with respect to point 1, and since we employ
pseudofunction derivative, we are allowed to permute in
gration and derivation symbols. This yields

PfE d3x8

24p

1

ux2x8u
] i jkl8 ~r 18

2 ln r 18!] i j8 Pf
1

r 18

5
4

5
]1kl PfE d3x8

24p

1

ux2x8u
1

r 18
3

2
48

5
dkl PfE d3x8

24p

1

ux2x8u
1

r 18
5

1S 2
2

5

n18
kn18

l

r 18
2ux2x8u

1
36

5

dkl

r 18
2ux2x8u D

1

.

The first two terms are left in this form for the time bein
On the other hand the last term is computed following
procedure explained by Eqs.~6.17!, ~6.18! in @47#; see also
Eq. ~5.16! below. By implementing the previous procedu
for all the self terms enteringKi j ] i j U, we finally arrive at
S E d3x8

24p

1

ux2x8u
Ki j ] i j U D

self

5G3m1
3H 2

a1
i

6
]1i PfE d3x8

24p

1

ux2x8u
1

r 18
3 1

v1
i v1

j

30
]1i j PfE d3x8

24p

1

ux2x8u
1

r 18
3

2
2v1

2

5
PfE d3x8

24p

1

ux2x8u
1

r 18
52

~n1a1!

12r 1
2 1

7~n1v1!2

150r 1
3 2

7v1
2

450r 1
3J 11↔21O~1!. ~5.6!
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We follow the same way to treat the self parts of the ot
cubic potentials of interest here:T̂~CNC!, Ŷi

~CNC! , or the re-

maining terms inX̂~CNC!.
We find that there are definite contributions, coming at

3PN order, due specifically to the pseudofunction derivat
introduced in@47#. Indeed, the distributional part of the de
rivative gives some well-defined nonzero contribution
while, for instance, the Schwartz derivative yields so
terms which are ill-defined in this case. These contributio
of the pseudofunction derivative actually take part in t
values ofT̂~CNC! and X̂~CNC! only. Denoting them bydselfT̂

and dselfX̂ in the case of theparticular derivative ~2.9! we
find

dselfT̂5
7

12

G4m1
3m2

r 1
2r 12

2 ~n1n12!11↔2 ~5.7a!

dselfX̂5
G3m1

3

c2r 1
3 S 2

17

72

Gm2

r 12
2 r 1~n1n12!1

1

40
~n1v1!2

2
1

120
v1

2D 11↔2. ~5.7b!

C. Interaction terms

We consider exclusively the interaction terms~i! that are
proportional tom1

2m2 rather thanm1m2
2, and~ii ! that contrib-

ute at relative 1PN order, leaving aside those which are g
erated by Li j . Depending on whether they come fro
‘‘simple’’ or ‘‘composite’’ cubic parts as shown respective
below, the elementary terms composing the sources
schematically

] Pf@F~r1!#] Pf@G~r1!#] Pf@H~r2!# ~5.8a!

and

] Pf @F~r1!#]1]2 Pf @G~r1 ,r2!#

5]2 Pf $] Pf @F~r1!#]1 Pf@G~r1 ,r2!#%; ~5.8b!

the functionsG, H belong toF, and it is also the case ofF in
general. However, there exist some composite terms
which F5 ln r1, but this is not a problem since]F is still in
F. In the cases needed in this problem,G is always one of
the four functions:gmatch, f match

12 , f match
21 , or f match. Then,G

is ‘‘regular enough’’ so that Pf]G and ] PfG coincide in
any cases, and further simplifications of the sources do
seem to be possible at this level. All we need, thus, is
transform the simple cubic contributions~5.8a! similarly to
the self terms~see Sec. V B!. A typical example of elemen
tary source we have to handle is 1/(r 1r 2)3]L(1/r 1), where
L represents at most two noncontracted indices. We
check that this term can be computed to Newtonian or
only; hence it is given simply by a Poisson integral. In t
language of pseudofunctions, this means that we hav
evaluate:
06200
r

e
e

,
e
s

n-

ad

or

ot
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n
r

to

K 1

r 18r 28
]L8 Pf

1

r 18
,

1

24pux2x8u L
5K 1

r 18
]L8 Pf

1

r 18
,

1

24pux2x8ur 28
L .

The compact part of the dual bracket, which is associa
with the distributional part of the derivative, when acting o
1/(24pux2x8u), i.e.,

K 1

r 18
DLF 1

r 18
G , 1

24pux2x8ur 28
L

~l 51 or 2!, leadsa priori to a nonzero result. Here,DL
denotes the distributional part of the multiderivative, o
tained in Sec. VIII of@47# and recalled by Eq.~2.12! above.
However, the left side of the bracket, which is homogene
to the (2 l 22)th power of a length, is necessarily of the typ
r 1

12 l Pfd1 , times some dimensionless angular functi
whose multipolarity differs froml by an even integer~be-
cause of the index structure of the operatorDL!. Now, the
previous compact part is equal to the angular integral of
r 1

l 21 Taylor coefficient of 1/(24pux2x8u), times the angu-
lar dependence ofDL@1/r 1#. The integrand then appears as
sum of terms whose multipolarity differs froml 1( l 21)
52l 21 by an even integer and so is always odd; thereby
angular integral gives zero. By similar arguments, we c
prove that the other compact sources associated with the
tributional derivatives will never contribute to the Poiss
integrals constituting the potentials we are considering h
Actually, it is possible to put together all the various kinds
simple-type@see Eq.~5.8a!# cubic terms into a unique one
which is n1

L/r 1
l 123] Pf(1/r 2). We express at last the firs

factor ~if lÞ0! as a sum of derivatives of ‘‘scalars’’ thank
to identities such as Eq.~5.5!. Since the pseudofunction de
rivatives will give here the same results as the Schwartz
tributional ones, and by virtue of ]L Pf(1/r 1

2)uD
5Pf]L(1/r 1

2)uD ~whereD is the set of smooth functions with
compact support!, the last transformation can be done in t
sense of functions. Note, however, that the multiple deri
tives of 1/r 2 are indeed distributional and play an importa
role in the sources.

To sum up what precedes, all the interaction terms h
the general structure

E d3x8

24p
ux2x8up]2L Pf @]J8 PfF~r18!]1K PfG~r18 ,r28!#

~5.9!

~p521 or 1,F andG functions ofF!. After commuting the
integral and the derivative]2L , which is always allowed for
integrals converging at infinity~since]2L is followed by a
Pf!, the general cubic term~5.9! becomes

]2LE d3x8

24p
ux2x8up]J8 PfF~r18!]1K PfG~r18 ,r28!.

In the case whereG5G(r2) ~andk50!, this rearranges as
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]2LE d3x8

24p
ux2x8up~2 ! j]1J@PfF~r18!PfG~r28!#5~2 ! j]1J]2L PfE d3x8

24p
ux2x8upF~r18!G~r28!. ~5.10!

We shall end with implementing concretely our treatment of the source on two typical terms:

E d3x8

24p

1

ux2x8u
1

r 18
] i8 Pf

1

r 18
] j8 Pf

1

r 28
5

1

2
]1i]2 j PfE d3x8

24p

1

ux2x8u
1

r 18
2r 28

, ~5.11a!

E d3x8

24p

1

ux2x8u ki f match j
12 ] i j8 Pf

1

r 18
5]2 jE d3x8

24p

1

ux2x8u ki f match
12 ] i j8 Pf

1

r 18
, ~5.11b!

and by providing the complete interaction component corresponding to the Poisson integral ofKi j ] i j U, which completes the
self part obtained previously in Eq.~5.6!. The compact support terms have been explicitly determined, while the other on
left unevaluated for the moment:

S E d3x8

24p

1

ux2x8u
Ki j ] i j U D

int

5G3m1
2m2H a1

i

4
]2iD PfE d3x8

24p

1

ux2x8u
ln r 18

r 28
1

a1
i

48
]1iD

2 PfE d3x8

24p

1

ux2x8u
r 18

2 ln r 18

r 28

1a1
j ]2i PfE d3x8

24p

1

ux2x8u jk f match
12 ] ik8

1

r 18
1a2

j ]2i j PfE d3x8

24p

1

ux2x8u k f match
21 ] ik8

1

r 18

2
~n12a1!

8r 12r 2
1

v1
i v1

j

8
]2i j PfE d3x8

24p

1

ux2x8u
1

r 18
2r 28

1
v1

2

16
D2 PfE d3x8

24p

1

ux2x8u
ln r 18

r 28

1
v1

i v1
j

96
]1i j D

2 PfE d3x8

24p

1

ux2x8u
r 18

2 ln r 18

r 28
1v1

j v1
k]2i PfE d3x8

24p

1

ux2x8u jkl f match
12 ] i l8

1

r 18

1v2
j v2

k]2i jk PfE d3x8

24p

1

ux2xu l f match
21 ] i l8

1

r 18
1

~n12v1!2

8r 12
2 r 2

J 11↔21O~1!, ~5.12!

whereD denotes the operator]1i]2i .

D. Elementary integrals

1. Nomenclature

The inspection of the formula~5.12! for interaction terms issued fromKi j ] i j U suggests that we should re-express t
potential, as well as all the other ones, by means of a restricted number of elementary integrals, basically one for ea
type; hence the proposal for a useful systematic nomenclature, which reflects their structure. We shall introduce the f
notations~and ditto 1↔2!:

Y
~n,p!

5 PfE d3x8

24p

1

ux2x8u
r 18

nr 28
p F

1
~P,Q!
12 5E d3x8

24p

1

ux2x8u iQ f match
12 ] iP8 Pf

1

r 18

N
1

~n,p!

5 PfE d3x8

24p

1

ux2x8u
r 18

nr 28
p ln r 18 F

1
~P,Q!
21 5E d3x8

24p

1

ux2x8u iQ f match
21 ] iP8 Pf

1

r 18

U
1

P5E d3x8

24p

1

ux2x8u k gmatchk]P8 Pf
1

r 18
F
1

~P,Q!5E d3x8

24p

1

ux2x8u iQ f match] iP8 Pf
1

r 18

K
1

P5E d3x8

24p

1

ux2x8u
gmatch]P Pf

1

r 18
S

~n,p!

5 PfE d3x8

24p
ux2x8ur 18

nr 28
p

G
1

~P,Q!5E d3x8

24p

1

ux2x8u iQgmatch] iP8 Pf
1

r 18
M

1

~n,p!

5 PfE d3x8

24p
ux2x8ur 18

nr 28
p ln r 18
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iG
1

~P,Q!5E d3x8

24p

1

ux2x8u iQgmatch] iP8 Pf
1

r 18
Q
1

~P,Q!5E d3x8

24p
ux2x8u iQgmatch] iP8 Pf

1

r 18

H
1

~P,Q!5E d3x8

24p

1

ux2x8u iQgmatch] iP8 Pf r 18 . ~5.13!
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The value of the previous integrals is not generally known
any space location, except in some special cases. The re
is that their sources involve three points, in addition to
integration variablex8, the pointx where the field is calcu-
lated, and the two source pointsy1 ,y2 . The few that are
computable for anyx include notably some self integra
such asY (n,0) and S(n,0), and the two integralsD2N 1

(0,21)

and ]2iG1(i ,0) entering the interaction part of theX̂~CNC! po-
tential at the Newtonian order. Actually, there are no ot
cubic contributions up to the 2.5PN order, and that is why
were able in@31# to get the complete expression of the met
in the near zone at this order. This property of the integr
D2N 1

(0,21) and]2iG1(i ,0) is linked to the specific form of the
integrands, which are made of products of two second
rivatives applied on appropriate functions, such that the
dices of the first derivative are contracted with those of
second one:] i j Pf ln r13]ij Pf(1/r 2) and igj3] i j Pf(1/r 1). In
both cases, particular solutions in the sense of distributi
of the corresponding Poisson equations

DK152] i j Pf ln r 1] i j Pf
1

r 2
, DH152igj] i j Pf

1

r 1
~5.14!

can be exhibited@57,31#. The solutionsK1 and H1 of Eq.
~5.14! that go to zero asr→` read

K15S 1

2
D2D1D F ln r 1

r 2
G1

1

2
D2F ln r 12

r 2
G1

r 2

2r 12
2 r 1

2 1
1

r 12
2 r 2

,

~5.15a!

H15
1

2
D1F g

r 1
1

ln r 1

r 12
2D1S r 11r 12

2
gD G

1] i]2iF ln r 12

r 1
1

ln r 1

2r 12
G2

1

r 1
]2i@~] ig!1#2

r 2

2r 1
2r 12

2 ,

~5.15b!

with D15]1i i , D25]2i i ; see also Eq.~5.32! for the ex-
panded forms of these solutions. Thus, we have

D2N 1
~0,21!5 1

2 K1

and

]2iG1~ i ,0!5
1
2 H1 .

In the list ~5.13! above, we note the appearance of itera
Poisson integrals such asS(25,0), M(0,21), and ]2iQ1(i ,0) ,
which come from the 1PN contribution to the retardati
06200
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expansion ofX̂~CNC!, and thus enter this potential throug
their second time derivative. What we shall have to comp
for our purpose is their Hadamard regularized value. Ho
ever,]2iQ1(i ,0) is not available on the whole space~for any
x!, so that we cannot deduce] t

2]2iQ1(i ,0) from it directly. We
shall adopt then a different approach. In a first stage,
express the operator] t

2 with the help of the partial deriva
tives ]1i and]2i : if F(r1 ,r2)5]2iQ1(i ,0) , then

] t
2F5] t@v1

i ]1iF#5v1
i v1

j ]1i j F1a1
i ]1iF11↔2.

Next, we commute the partial derivatives]1L with the inte-
gration sign, so that the derivatives act on the source of
Poisson integral. This operation is legitimate only if the d
rivatives ]1L when acting on the integrands are viewed
distributional ~in the sense of Sec. IX in@47#!. The new
integrands write then as a partie finie derivative of a produ
e.g.,]1L@ iQg] iP8 (1/r 18)#; but remember that we are nota pri-
ori allowed to develop them according to the Leibniz rule
our formalism. In fact, these specific non-Leibniz correctio
happen to give zero contribution to the 3PN potentials. T
can be seen by applying successively the formula~7.23! in
@47# ~which is indeed sufficient since the ‘‘test’’ functio
ux2x8u is smooth at points 1 and 2! to all the sources we are
dealing with. Therefore, we can employ the usual rule
derivatives of products to perform our final transformatio
In summary, we will have, for instance,

]1klE d3x8

24p
ux2x8u igj] i j Pf

1

r 18

5E d3x8

24p
ux2x8u iklgj] i j Pf

1

r 18

12E d3x8

24p
ux2x8u i ~kgj] l ) i j Pf

1

r 18

1E d3x8

24p
ux2x8u igj] i jkl Pf

1

r 18
,

~the index j means thatj is excluded from the symmetriza
tion operation!. On this form we can apply the partie finie a
1 while staying in the same class of elementary integr
~5.13!. We conclude by going back to the example of t
cubic term generated byKi j ] i j U; we have, after appropriate
reshaping,
5-24
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E d3x8

24p

1

ux2x8u
Ki j ] i j U5G3m1

3H 2
a1

i

6
]1i Y

~23,0!

1
v1

i v1
j

30
]1i j Y

~23,0!

2
2v1

2

5
Y

~25,0!

2
~n1a1!

12r 1
2 1

7~n1v1!2

150r 1
3 2

7v1
2

450r 1
3J 1G3m1

2m2

3H a1
i

4
]2iD N

1

~0,21!

1
a1

i

48
]1iD

2 N
1

~2,21!

1a1
j ]2iF

1
~ i , j !
12 1a2

j ]2i j F
1

~ i ,0!
21 2

~n12a1!

8r 12r 2
1

v1
i v1

j

8
]2i j Y

~22,21!

1
v1

2

16
D2 N

1

~0,21!

1
v1

i v1
j

96
]1i j D

2 N
1

~2,21!

1v1
j v1

k]2iF
1

~ i , jk !
12 1v2

j v2
k]2i jkF

1
~ i ,0!
21 1

~n12v1!2

8r 12
2 r 2

J 11↔21O~1!.
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We refer to@52# for the expressions of the other nonline
potentials expressed in this manner by means of the s
nomenclature. The problem is now to evaluate all the
ementary integrals from which the 3PN cubic potentials h
been built.

2. Particles finies of the elementary integrals

As mentioned before, in most cases, we do not have at
disposal the explicit values of the elementary integrals in
space. This does not matter since all we need is their H
amard partie finie at point 1~or 2!. Notice that the partial
derivative with respect toy2 is the only one that commute
with the partie finie operation at 1; to be more explicit
06200
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@]2iF~x,y1 ,y2!#15]2i@F~x,y1 ,y2!#1 ,

but

@]1iF~x,y1 ,y2!#1Þ]1i@F~x,y1 ,y2!#1 ~with F,GPF!.

Thus, for each elementary integral, we shall determine fi
the partie finie of the quantity figuring under the derivati
symbol ]2 and, only then, apply the latter operator. On t
contrary, we cannot bring the derivatives with respect toy1
out of the partie finie at 1, so we are led to incorporate th
to the sources, in the sense of pseudofunctions, by perm
tion with the integration sign. As a consequence, the in
grals we are interested in are of the type
nal

tz theory.

the

egu-

directly

have
E d3x

24p
ux2x8up]1@PfF~r1!#]1@ PfG~r1 ,r2!#52

1

4p
^]1@PfF~r1!#]1@ PfG~r1 ,r2!#,ux2x8up&.

They involve both a compact part~C! and a noncompact part~NC!. The compact part is produced by the purely distributio
contributions of derivatives in the integrands:

2
1

4p
^D1@F~r1!#Pf]1G~r1 ,r2!,ux2x8up&2

1

4p
^D1@G~r1 ,r2!#Pf]1F~r1!,ux2x8up&.

As mentioned at the beginning of Sec. V C, the partie finie derivatives reduce here, in our case, to those of the Schwar
This is obvious whenG5G(r2), because then the sourceF(r1), regarded as a linear functional PfF(r1), acts on a function
that is smooth in a neighborhood ofx5y1 ; in the other cases, the result follows from explicit calculations. Note that
numberl of derivatives in front ofG(r1 ,r2)5gmatch, f match

12 , f match
21 , or f match is always small enough so that]1L21G(r1 ,r2)

is bounded; hence]1L PfG(r1 ,r2)5Pf]1LG(r1 ,r2). Once we have in hand the compact part, it remains to obtain its r
larized value at point 1. As a matter of fact, if the source is of the type PfFd2 , whereFPF, then

K Pf~Fd2!~x8!,
1

ux2x8u L 52
1

4p (
l>0

~2 ! l

l !
~r 28

ln28
LF !2]LS 1

r 2
D ~5.16!

is smooth at point 1 and we need not call for the Hadamard regularization. Therefore, we are allowed to replace
ux2x8u by r 18 in the left-hand side of Eq.~5.16!. When the source is of the generic type PfFd1 , the same identity as Eq.~5.16!
holds, but with 2→1. This shows that the integral^Pf(Fd1),ux2x8u21& is purely singular asr 1→0, which means that it has
no partie finie atx5y1 : the d1 type sources do not contribute to the potentials computed at body 1. Summarizing, we

S K Pf~Fd2!,
1

ux2x8u L D
1

5 K Pf~Fd2!,
1

r 1
L , ~5.17a!

S K Pf~Fd1!,
1

ux2x8u L D
1

50. ~5.17b!
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We refer the reader to Eqs.~6.17!–~6.20! in @47# for more
details.

Let us now focus our attention on the noncompact part
the elementary integrals, whose integrands are made, by
nition, of ordinary functions. The problem is to get the Ha
amard partie finie of the Poisson integralP of FPF:

P~x8!5PfE d3x

24p

1

ux2x8u
F~x!,

as well as the one of the iterated Poisson integralQ, given by

Q~x8!5PfE d3x

24p
ux2x8uF~x!.

~Each of these functions depends also on the source p
y1,2 and velocitiesv1,2.! Now, the partie finie prescription
applies only to functions admitting powerlike expansio
near their singularities@see Eq.~2.1!#, whereasP or Q may
contain logarithmic coefficients in their development: if w
take, for instance,F51/r 1

3, we shall have P52@1
1 ln(r18/s1)#/r18 , where s1 is the constant appearing in Eq
~2.3!. Following @47#, we shall simply include the possibl
logarithms~i.e., lnr18! appearing in the zeroth power coeffi
cient of the expansion ofP or Q in the definition of the partie
finie: see Eq.~5.4! in @47#. With this generalized notion o
‘‘partie finie,’’ we can give a sense to (P)1 and (Q)1 , as
well as their gradients (] i P)1 and (] iQ)1 . We make then the
following statements~see Sec. V of@47# for proofs and dis-
cussion!:

~P!15Pfs1 ,s2
E d3x

24p

1

r 1
F1F lnS r 18

s1
D 21G~r 1

2F !1 ,

~5.18a!

~Q!15Pfs1 ,s2
E d3x

24p
r 1F1F lnS r 18

s1
D 1

1

2G~r 1
4F !1 ,

~5.18b!

~] i P!15Pfs1 ,s2
E d3x

24p

n1
i

r 1
2 F1 lnS r 18

s1
D ~n1

i r 1F !1 ,

~5.18c!

~] iQ!15Pfs1 ,s2
E d3x

4p
n1

i F1F2 lnS r 18

s1
D 1

1

2G~n1
i r 1

3F !1 ,

~5.18d!

where the first terms on the right sides are made of so
partie-finie integrals in the sense of the definition~2.3!. The
‘‘constant’’ r 18 is the variable which tends toward zero wh
evaluating the partie finie. It is easy to show that the cons
s1 cancels out between the two terms in each of the sec
members of the identities~5.18!. Indeed, using the genera
dependence of the partie-finie integral on the constantss1 ,s2
as given by Eq.~4.20! in @47#, we easily see that (P)1 given
by Eq.~5.18a!, for instance, depends on the constantsr 18 and
s2 through the formula
06200
f
fi-

-

ts

e

nt
nd

~P!152 lnS r 12

r 18
D ~r 1

2F !12 lnS r 12

s2
D S r 2

3

r 1
F D

2

1¯ ~5.19!

where the dots indicate the terms that are independent of
constants. As we see, the constants1 has been so to spea
‘‘replaced’’ by r 18 . This makes clearer why it is convenien
to keep the lnr18 in the definition of the Hadamard parti
finie; if we had decided to exclude this logarithm from it, w
would have found some bare lnr12 in the first term of Eq.
~5.19! instead of a nicer logarithm of a dimensionless qua
tity, ln(r12/r 18); but this is simply a matter of convenienc
because we shall see that in fact the ‘‘constants’’ lnr18 and
ln r28 can be gauged away from the 3PN equations of moti
The same argument is valid for all cases in Eq.~5.18!. As a
consequence, the acceleration of the first body will dep
only on two unspecified constants: lnr18 , and, of course, lns2

~and ditto for the acceleration of the second body!. See Sec.
VII for further discussion of these constants.

The relations~5.18! answer the problem of evaluating th
elementary integrals at the location of particle 1 witho
knowing their values at an arbitrary field point. The subs
quent task consists of calculating the partie-finie integrals
the right-hand sides, which will turn out to be always po
sible.

3. Integration methods

The noncompact parts of the regularized elementary in
grals consist essentially of some integrals Pf*d3x F(r1 ,r2),
with FPF. It is worth noting that the sources depend
r1 ,r2 exclusively, and not on the separate variablesx, y1 ,
and y2 , because scalar products such as (xy1), (xy2), or
(y1y2) occurring inf match

12 , f match
21 , andf matchare killed by the

derivatives that precede them in the integrand. In this wo
we make use of two different integration methods:~1! the
angular method, in which we determine successively ang
and radial integrals in spherical coordinates, and~2! the ana-
lytic continuation method, based on the so-called Riesz
mula.

~a! Angular method. Let F5F(r1 ,r2) be a function in the
classF. We assume for a moment thatF is locally integrable
at point 2; so we are allowed to compute the integral over
whole space, deprived from a small ballB1(s) of centery1
and radiuss.0. Thus, we start with the well-defined qua
tity *R3\B1(s)d

3x F(r1 ,r2), but for convenience we write it in

spherical coordinates (r 1 ,u1 ,f1), such that the azimutha
angleu1 coincides with the separation angle betweeny12 and
r1 ,

E
R3\B1~s!

d3x F~r1 ,r2!5E
r 1

1`

dr1 r 1
2E dV1 F~r1 ,r2!.

Actually the functionF may be a tensor with many indices
but the only unit vectors in the problem aren1 , n2 , n12, and
only two of them, sayn1 andn12, are independent, by virtue
of the relationr 1n11r 12n125r 2n2 ; and therefore,F can be
expressed under the form of a finite sum of tensorial pr
5-26
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ucts of typen1
Ln12

K ( l ,kPN); moreover, each factor admits

symmetric trace-free~STF! decomposition on the basisn̂1
L

5STFn1
L . Hence we have

F5(
l 50

l 0

(
k50

k0

n̂1
Ln12

K G~ lk !~r 1 ,r 2!, l 0 ,k0PN.

Here, theG( lk)’s are some scalar functions ofr 1 and r 2 .
Now, r 2 is related tor 1 and the scalar product (n1n12) by
r 25Ar 1

21r 12
2 12r 1r 12(n1n12), so that the angular integral o

F can be obtained by means of the ‘‘mean formula;’’ se
e.g., the formula~A26! in @54#. We get

E dV1F52p(
l 50

l 0

(
k50

k0

n̂12
L n12

K E
21

1

dz

3G~ lk !~r 1 ,Ar 1
21r 12

2 12r 1r 12z!Pl~z!,

~5.20!

wherePl is the Legendre polynomial of orderl. In the cases
of interest here,G( lk) is always a sum of rational fraction
with general structurer 1

pr 2
q/(r 11r 21r 12)

n, with p, q positive
or negative integers andnPN. It is easy to check that the
result of the angular integration depends on the relative
sitions of r 1 and r 12. Therefore we must split the radia
integral into two contributions according to the integrati
domainsr 1P]0,r 12] or r 1P] r 12,1`@ . Typical terms com-
ing from the angular integration arer 1

p/(r 11r 12)
n, as well as

some more complicated logarithmic terms such asr 1
p ln(1

1r12/r 1). Most of the corresponding radial integrals are o
tained straightforwardly using some integrations by part,
plying the partie finie at the boundr 15s @i.e., removing the
poles 1/sk, with k>1, and replacing lns by lns1#. In the case
of the latter logarithmic terms withp521, integrating by
parts does not lead to anything, but the radial integrals ca
found in standard mathematical textbooks:

E
r 12

1` dr1

r 1
lnS 11

r 12

r 1
D5E

0

r 12 dr1

r 1
lnS 11

r 1

r 12
D5

p2

12
,

E
r 12

1` dr1

r 1
lnS 11

r 12

r 1

12
r 12

r 1

D 5E
0

r 12 dr1

r 1
lnS 11

r 1

r 12

12
r 1

r 12

D 5
p2

4
.

~5.21!

It can be shown that the integrals diverging aty1 involve in
general a logarithm ln(r12 /s1) but never anyp2 terms. The
procedure we have just described indeed permits calcula
most of the elementary integrals. Consider for instance
integral

iG
1~ j ,0!

5E d3x8

24p

1

ux2x8u ig] j8 Pf
1

r 18
~5.22!

~in which we replacedgmatch by g5 ln S since they merely
differ by a constant!. We are interested in the value of th
integral at point 1, following the regularization. From E
06200
,

o-

-
-

be

ng
e

~5.17b! we know that the distributional part of the derivativ
will not contribute. Then, using Eq.~5.18a!, we readily find

~ iG
1~ j ,0!

)15 PfE d3x

24p

1

r 1
ig] j

1

r 1
1

d i j

6r 12
F lnS r 18

s1
D 21G .

The noncompact integral has a sole divergence at point 1
that we can apply the previous method without any chan
and get

PfE d3x

24p

1

r 1
ig] j

1

r 1
52

d i j

18r 12
2

n12
i n12

j

12r 12
2

d i j

6r 12
lnS r 12

s1
D .

~5.23!

As expected the constant lns1 cancels out and we arrive at

~ iG
1~ j ,0!

)152
2d i j

9r 12
2

n12
i n12

j

12r 12
2

d i j

6r 12
lnS r 12

r 18
D . ~5.24!

A few elementary integrals diverge at the locationsy1 and
y2 of both particles. In this occurrence, the integr
*R3\B1(s)d

3xF has no meaning, and the previous integrati
process is not adequate anymore. However, Proposition
Sec. IV B of @47# allows us to extend it to this case. W
introduce the auxiliary source

F̃25F2 (
b13<0

r 2
bf b
q

,

which is locally integrable neary2 but does not converge a
infinity. As before, the angular integral ofF̃2 aroundy1 takes
a different expression depending on whetherr 1<r 12 or r 1
.r 12, so we must split the radial integration into the tw
domains ]0,r 12@ and ]r 12,1`@ . Then, with full generality,
the partie-finie integral of the sourceF is given by

Pfs1 ,s2
E d3x F5Pfs1

E
0

r 12
dr1 r 1

2E dV1 F̃2

1E
r 12

1`

dr1 r 1
2E dV1F F̃21

1

r 1
3 ~r 2

3F !2G
14p~r 2

3F !2 lnS r 12

s2
D . ~5.25!

If this integral comes from a Poisson integral evaluated a
the constants1 will be canceled out as we have seen pre
ously and replaced byr 18 ; but there will remain in general a
constants2 coming from the singularity at the other poin
With the angular method we were able to obtain all the
ementary integrals~and their gradients! at point 1. See an
appendix of@52# for the complete list of those results.

~b! Analytical continuation method. The equivalence be
tween the Hadamard partie finie prescription for integr
and the analytic continuation regularization has long be
known~see, e.g.,@45#!, and we have recovered it in the thre
dimensional case by the Theorem 2 of@47#. More precisely,
for any FPF that behaves likeo(1/r 3) when r→1`, the
5-27
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integral *d3x(r 1 /s1)a(r 2 /s2)bF of two complex variablesa and b admits an analytic continuation in the neighborhood
a5b50, and we have

Pfs1 ,s2
E d3x F5FP

b→0
a→0E d3xS r 1

s1
D aS r 2

s2
D b

F5FP
a→0
b→0E d3xS r 1

s1
D aS r 2

s2
D b

F, ~5.26!

where FP
b→0
a→0 means taking the finite part of the Laurent expansion of the~analytic continuation of the! integral whena→0

andb→0 successively. This result is particularly useful in the case whereF is of the typer 1
pr 2

q , with p andq relative integers,
since the integral is directly computable thanks to the Riesz formula@51#:

E d3x r 1
a1pr 2

b1q5p3/2

GS a1p13

2 DGS b1q13

2 DGS 2
a1b1p1q13

2 D
GS 2

a1p

2 DGS 2
b1q

2 DGS a1b1p1q16

2 D r 12
a1b1p1q13. ~5.27!
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One may consult@47# for an example of practical computa
tion. Most of the time, the structure of the sources of elem
tary integrals is more complicated than a simpler 1

pr 2
q ; nota-

bly it involves many ‘‘free’’ tensorial indices which imply
that generally the sources of elementary integrals, when f
developed, involve numerous inverse powers ofS5r 11r 2
1r 12. However, by considering all the possible contractio
of these free indices with vectorsn12

i and Kronecker symbols
d i j , it happens that we reduce the computation to that
several scalar integrals we can obtain thanks to the R
formula ~5.27! ~i.e., when performing the contractions an
after simplification of the result, we are always led to t
simple structurer 1

pr 2
q without 1/S powers!. It should be noted

that the set of scalar functions that we compute contains
complete information about the complicated tensorial in
gral, i.e., it permits to reconstitute it exactly.

Let us illustrate the method with the computation of t
integral ~5.23!. It involves two free indicesij and is neces-
sarily of the type

PfE d3x

24p

1

r 1
ig] j

1

r 1
5f~r 12!n12

i n12
j 1c~r 12!d

i j ,

~5.28!

wheref andc are some unknown ‘‘scalars’’ depending o
r 12. By contracting successively the integrand withn12

i n12
j

andd i j , and simplifying, we find

n12
i n12

j
ig] j

1

r 1
5

1

4r 1
32

r 2

4r 1
4 1

1

4r 1r 12
2 2

r 2

4r 1
2r 12

2 2
r 2

2

4r 1
3r 12

2

1
r 2

3

4r 1
4r 12

2 1
1

4r 1
2r 12

2
r 2

2

4r 1
4r 12

1
r 12

4r 1
4 ,

d i j
ig] j

1

r 1
5

1

2r 1
3 1

1

2r 1
2r 12

2
r 2

2r 1
3r 12

,

thus obtaining a sum of terms of the typer 1
pr 2

q which can all
be integrated with the help of the formula~5.27!. This com-
putation yields a system of equations for the scalarsf andc :
06200
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f1c52
5

36r 12
2

1

6r 12
lnS r 12

s1
D ,

f13c52
1

4r 12
2

1

2r 12
lnS r 12

s1
D .

By solving the previous system, and inserting the results i
Eq. ~5.28!, we recover exactly the value given by Eq.~5.23!.
We have checked in this manner all the elementary integ
previously computed with the angular method.

4. Finite part of integrals diverging at infinity

For the moment, we have left aside the case where
integrals are defined by means of a finite part dealing wit
divergence occurring at infinity. Such a study is needed
compute some 0.5PN integrals encountered in Sec. IV. F
now on, we suppose that the sourceF admits an expansion
when r→1` which is made of simple powersr n23, with
n<nmax ~so the integrala priori diverges at infinity when
nmax>0!, and we consider the quantity

PfH FPB→0E d3xS r

r 0
D B

FJ . ~5.29!

We split the integral above into two integralsI int and I ext
extending respectively over a domainD int including the two
local singularitiesy1,2, and the complementary domainDext
comprising the regions at infinity. Using the integration va
able r15x2y1 , the external integral~on which the regular-
ization Pf can be removed! reads as

I ext5FPB→0E
Dext

d3r1S ur11y1u
r 0

D B

F~r11y1!.

If we assume that the original integral can generate o
simple poles;1/B at infinity ~which will always be the case
here!, we can replace it by
5-28
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I ext5FPB→0E
Dext

d3r1S r 1

r 0
D B

F1FPB→0

B

2 E
Dext

d3r1S r 1

r 0
D B

3 lnS 112~n1y1!
1

r 1
1

y1
2

r 1
2DF. ~5.30!

Indeed, in the case of simple poles, the other terms, inv
ing at least a factorB2, will always give zero. The secon
term is nonzero only if the corresponding integral does ad
a pole, and can be calculated in a simple way by picking
the term of order 1/r 1

3 in the expansion of the integrand whe
r→1`. Notably, in the important case where the functionF
goes to zero like 1/r 3 at infinity, its product with the log term
behaves at least like 1/r 4 and therefore the second term
Eq. ~5.30! gives no contribution. For instance, an integ
divergent at infinity that we encounter in the problem is

FPB→0E d3xS r

r 0
D B

] i j S Pf
1

r 1
D52

4p

3
d i j .

E. Lorentzian regularization of potentials

All the potentials and their gradients~compact-support,
quadratic, and noncompact potentials! which have been com
puted in this section and the preceding one were obtaine
point 1 using the standard Hadamard regularization (F)1 .
However, this regularization, being defined within the hyp
surfacet5const of the harmonic coordinates, must break
some point the Lorentz-invariance properties of the pot
tials. That is, if a potential defined for a smooth ‘‘fluid
behaves in a certain way under a Lorentz transformation,
expect that its regularized value at point 1 in the sense
(F)1 will generically not behave in the same way. Neverth
less, the equations of motion in harmonic coordinates,
computed with the regularization (F)1 , are known to be Lor-
entz invariant up to the 2.5PN order@31#. Perhaps not sur
prisingly because of this fact, it turns out that the Lorentz
regularization@F#1 ~defined in @48#! yields no difference
with respect to the old regularization (F)1 for all the 3PN
potentials but for one, namely, the cubic-non-compact po
tial X̂(CNC) defined by Eq.~5.1! and which had to be com
puted at the relative 1PN order.~Evidently we have@F#1
5(F)1 for all the potentials which are to be computed w
06200
v-
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l
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n-

Newtonian accuracy.! Thus all the results obtained so far b
the one for (] i X̂

(CNC))1 ~the relevant quantity for the equa
tions of motion! are valid in the case of the new regulariz
tion. In this subsection we compute the remaining p

@] i X̂
(CNC)#12(] i X̂

(CNC))1 .
Since the regularization@F#1 brings some new terms with

respect to the old (F)1 starting at the relative 1PN order, an
sinceX̂(CNC) is to be computed at the 1PN order only, it
sufficient for this calculation to use the lowest-order, Ne
tonian value ofX̂(CNC). From the computation in@57,31# we
know the analytic closed-form expression ofX̂(CNC) at New-
tonian order for any field point (t,x),

X̂~CNC!5
G3m1

3

12r 1
3 2G3m1

2m2H 1

8r 2r 12
2 1

1

16
K11H1J

1O~1!11↔2, ~5.31!

where the functionsK1 andH1 , which are solutions of cer-
tain Poisson equations, are given explicitly by Eq.~5.15!.
The complete developed forms of these functions are

K152
1

r 2
3 1

1

r 2r 12
2 2

1

r 1
2r 2

1
r 2

2r 1
2r 12

2 1
r 12

2

2r 1
2r 2

3 1
r 1

2

2r 2
3r 12

2 ,

~5.32a!

H152
1

2r 1
32

1

4r 12
3 2

1

4r 1
2r 12

2
r 2

2r 1
2r 12

2 1
r 2

2r 1
3r 12

1
3r 2

2

4r 1
2r 12

3

1
r 2

2

2r 1
3r 12

2 2
r 2

3

2r 1
3r 12

3 . ~5.32b!

We replace these expressions into Eq.~5.31!, and we imple-
ment all the rules for the new regularization@F#1 defined in
Sec. III of @48#. Equivalently, since the order of the comp
tation is limited to 1PN, we can use the closed form formu

@F#12~F !15
1

c2 S ~r1•v1!F] tF1
1

2
v1

i ] iF G D
1

1O~4!,

~5.33!

derived in Sec. IV of@48#. As a result, we obtain, for the
potential itself,
@X̂~CNC!#12~X̂~CNC!!15
G3m1

2m2

c2r 12
3 H 43

40
~n12v1!22~n12v1!~n12v2!2

43

120
v1

21
1

3
~v1v2!J 1O~4!. ~5.34!

In the case of the gradient needed for the equations of motion, we get

@] i X̂
~CNC!#12~] i X̂

~CNC!!15
G3m1

2m2

c2r 12
4 H F27

56
~n12v1!22

3

4
~n12v1!~n12v2!2

27

280
v1

21
3

20
~v1v2!Gn12

i 2
27

140
~n12v1!v1

i

1
3

20
~n12v2!v1

i 1
3

20
~n12v1!v2

i J 1O~4!. ~5.35!
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As we see, the new regularization brings some definite n
zero contributions at the 1PN order in the case of this po
tial, which will constitute a crucial contribution to the 3P
equations of motion. The right-hand side of Eq.~5.35! is not
invariant by itself under a Lorentz transformation—it cann
be—but will ensure finally the Lorentz invariance of the 3P
equations of motion.

VI. LEIBNIZ TERMS AND NONDISTRIBUTIVITY

A. Effect of a gauge transformation

In this subsection we study the effect of a gauge trans
mation on the 3PN equations of motion as well as energy
the two particles. Let$xm% denote the harmonic coordina
system andgmn(x) be the harmonic-coordinate metric, ge
erated by the two particles, that we have iterated in previ
sections up to the 3PN order. The metric depends on
position x of the field point, and on the coordinate timet
5x0/c through the trajectoriesy1,2(t) and velocitiesv1,2(t)
of the particles, i.e.,

gmn~x!5gmn@x;y1~ t !,y2~ t !;v1~ t !,v2~ t !#. ~6.1!

We know that the dependence of the metric over the vel
ties arises at the 1PN order@see, e.g., Eqs.~7.2! in @31##,
namely, the orderO(4,3,4), where this notation is a shor
hand for sayingO(4)5O(1/c4) in g00, O(3) in g0i , and
O(4) in gi j . Consider an infinitesimal coordinate transfo
mation of the type

x8m5xm1jm~x!, ~6.2a!

jm~x!5jm@x;y1~ t !,y2~ t !#, ~6.2b!

where, in order to simplify the presentation, we assume
the gauge vectorjm depends on the positionsy1,2 of the
particles, but not on their velocities. Furthermore, we s
pose that this gauge transformation is at the level of the 3
order, which means thatj05O(7) andj i5O(6), orequiva-
lently, jm5O(7,6). In addition, in a first stage, we suppo
that the vectorjm(x) is a smooth function of the coordinate
even at the positions of the particles. The new metric in
new coordinate system$x8m% is

gmn8 ~x8!5gmn8 @x8;y18~ t8!,y28~ t8!;v18~ t8!,v28~ t8!#, ~6.3!

where the new trajectories and velocitiesy1,28 ,v1,28 are param-
etrized by the new coordinate timet85x80/c. The coordi-
nate change~6.2!, when applied at the location of each of th
particles, yields the relations between the new and old
jectories, which, when retaining only the terms up to t
orderO(6), read as

y18
i~ t8!5y1

i ~ t !1j i~y1!1O~8!, ~6.4a!

y28
i~ t8!5y2

i ~ t !1j i~y2!1O~8!, ~6.4b!

where thejm(y1,2)’s denote the gauge vector at the po
tion of the particles, for instance, jm(y1)
06200
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5jm@y1(t);y1(t),y2(t)#. The new metric~6.3!, when ex-
pressed in terms of the old variables, follows from this a

gmn8 ~x8!5gmn8 ~x!1j i~x!] igmn1j i~y1!1] igmn

1j i~y2!2] igmn1O~10,9,10!, ~6.5!

where we have used the fact that the dependence of the
ric on the velocities starts at the 1PN order, so the terms
to the modification of the velocities do not contribute to E
~6.5!. Since the 3PN metric depends on spacex only through
the two distancesx2y1 andx2y2 , we have] igmn11] igmn

12] igmn50, and so an equivalent form of Eq.~6.5! is

gmn8 ~x8!5gmn8 ~x!1@j i~y1!2j i~x!#1] igmn

1@j i~y2!2j i~x!#2] igmn1O~10,9,10!. ~6.6!

Equation~6.6!, when combined with the law of transforma
tion of tensors, i.e., in the present case

gmn~x!5gmn8 ~x8!1]mjn1]njm1O~10,9,8!, ~6.7!

wherejm5hmnjn, gives the metric variation or Lie deriva
tive djgmn5gmn8 (x)2gmn(x) ~where the same variablex is
used for both the transformed and original metrics! as

djgmn52]mjn2]njm1@j i~x!2j i~y1!#1] igmn

1@j i~x!2j i~y2!#2] igmn1O~10,9,8!. ~6.8!

In fact, up to this order, only the 00 component of the met
includes a ‘‘nonlinear’’ correction term; and, within tha
nonlinear term, the metric can be approximated by its Ne
tonian part, so

djg00522]0j01
2

c2 „@j i~x!2j i~y1!#1] iU

1@j i~x!2j i~y2!#2] iU…1O~10!, ~6.9a!

djg0i52]0j i2] ij01O~9!, ~6.9b!

djgi j 52] ij j2] jj i1O~8!, ~6.9c!

where U5Gm1 /r 11Gm2 /r 2 is the Newtonian potentia
~with a small inconsistency of notation with respect to p
vious sections!. Now, it is easy to check that, in the sense
distributions,

D„@j i~x!2j i~y1!#1] iU1@j i~x!2j i~y2!#2] iU…

522] ij j] i j U2Dj i] iU.

Indeed, thed functions at points 1 and 2, which come fro
the Laplacian ofU, are killed respectively by the factor
j i(x)2j i(y1) andj i(x)2j i(y2), which vanish respectively
at these two points, in front of them. So, we can write f
djg00 the simpler but equivalent expression

djg00522]0j02
2

c2 D21@2] ij j] i j U1Dj i] iU#1O~10!,

~6.10!
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whereD21 denotes the usual Poisson integral.
The latter result can be generalized to our framework

singular metrics by allowing the gauge vectorjm to become
singular at the positions of the particles~in the sense tha
jmPF!, provided that the integral appearing in Eq.~6.10! is
treated as the Hadamard partie finie of a Poisson integra
the way which is investigated in Sec. V of@47#. Let us con-
sider, for example, the 3PN gauge vector given by

jm5
G3m3

c6 ]mS e1

r 1
1

e2

r 2
D , ~6.11!

wheree1 ande2 denote two dimensionless constants or p
sibly functions of timet ~and wherem5m11m2!. Note that
with this choice of gauge vector the new coordinates sat
the condition of harmonic coordinates outside the singul
ties~i.e., in the sense of functions! at the 3PN order: indeed
hjm5O(9,8). When inserting Eq.~6.11! into Eq.~6.10!, we
must be careful about evaluating the last term of Eq.~6.10!
in the sense of distributions, taking into account the fact t
Dj i is distributional. For this term we obtain

D21@Dj i] iU#5
G3m3

c6 Fg1
i ] i S e1

r 1
D1g2

i ] i S e2

r 2
D G ,

whereg1
i andg2

i are the Newtonian accelerations of 1 and
Therefore, we find

djg0052
2G3m3

c8 H @] t
21g1

i ] i #S e1

r 1
D12D21F] i j S e1

r 1
D ] i j UG J

1O~10!11↔2. ~6.12!

In the case wheree1 ande2 are some pure constants~inde-
pendent of time! we can somewhat simplify the latter expre
sion by using the fact that the accelerations cancel out in
first term. In this case, we obtain the full metric transform
tions as

djg0052
2G3m3

c8 H v1
i j ] i j S e1

r 1
D12D21F] i j S e1

r 1
D ] i j UG J

1O~10!11↔2, ~6.13a!

djg0i5
2G3m3

c7 v1
j ] i j S e1

r 1
D1O~9!11↔2,

~6.13b!

djgi j 52
2G3m3

c6 ] i j S e1

r 1
D1O~8!11↔2.

~6.13c!

By comparing this with the 3PN metric~3.24!, we see that
the gauge transformation induces the following changes
the 3PN potentialsT̂, Ŷi , andẐi j :

djT̂52
G3m3

16 H v1
i j ] i j S e1

r 1
D12D21F] i j S e1

r 1
D ] i j UG J 11↔2,

~6.14a!
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djŶi52
G3m3

8
v1

j ] i j S e1

r 1
D11↔2, ~6.14b!

djẐi j 52
G3m3

8
] i j S e1

r 1
D11↔2. ~6.14c!

The computation of the nonlinearity term in Eq.~6.14a! is
straightforward, and we get

D21F] i j S 1

r 1
D ] i j UG5

Gm1

2r 1
4 1Gm2 i j gi j ,

where g5 ln(r11r21r12) is a kernel satisfyingDg51/r 1r 2
@see also Eq.~4.36!#, and where we denotei j gi j 5]1i j ]2i j g
5D2g. At last, we insert the latter changes of the 3PN p
tentials into the~regularized! equations of motion~3.32! with
Eq. ~3.35! ~there is no need to include a correction due to
nondistributivity!, and obtain the corresponding change
the acceleration of particle 1 as

dja1
i 5

2G4m3

c6r 12
5 ~e1m22e2m1!n12

i 1
G3m3e2

c6r 12
4

3@215~n12v12!
2n12

i 13v12
2 n12

i 16~n12v12!v12
i #.

~6.15!

In the case wheree1 ande2 depend on time, there are som
extra contributions proportional toė2 and ë2 . A good check
of Eq. ~6.15! is the fact that to the change in the accelerat
~6.15! always corresponds a change in the associated ene
that is, the gauge transformation does not modify the e
tence of a conserved energy~see Sec. VII for the computa
tion of the 3PN energy!. Namely, we find that the combina
tion m1dja1

i v1
i 1m2dja2

i v2
i is a total time derivative, and

from this we obtain the gauge transformation of the ene
as

djE5e2

G3m3m1

c6r 12
3 FGm2

r 12
23~n12v1!~n12v12!1~v1v12!G

11↔2. ~6.16!

B. Leibniz contributions

An important ingredient of the present computation is t
novel distributional derivative associated with the Hadam
regularization which has been introduced in@47# ~see also
Sec. II!. This derivative permits us to derive in a systema
and consistent way all the integrals encountered in the p
lem; however it represents merely amathematical tool,
which may not be connected to any relevant physics. The
fore, it is important to know exactly the role played by th
derivative in the 3PN equations of motion, with respect
say, the Schwartz distributional derivative@45#. We know
that our distributional derivative affects the computation
two types of terms:~i! the ‘‘self’’ terms enteringa priori in
the nonlinear potentialsX̂, T̂, and Ŷi and which are ill-
defined in the case of the Schwartz derivative~see Sec. V!,
and~ii ! the ‘‘Leibniz’’ terms which account for the violation
5-31
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of the Leibniz rule during the 3PN iteration of the metric
discussed in Sec. III. In the present subsection, we com
the Leibniz terms and combine the result with the one of S
V concerning the self terms. The conclusion is that the te
coming from the use of the distributional derivative are n
essary for keeping track of the Lorentz invariance of
equations of motion, and that no other physics is involv
with them in the present formalism~see also Sec. VII!. We
do the computation for both the ‘‘particular’’ derivative de
fined by Eq.~2.9! and the more correct one given by Eq
~2.10!, ~2.11!.

The Leibniz terms discussed in Sec. III consist of tho
contributions of the type~3.23! and alike which arise in the
process of simplification of the 3PN metrichmn by means of
the Leibniz rule. These terms depend only on the distri
tional part of the derivative,Di

part@F# or Di@F#. The formu-
las giving the complete Leibniz terms inhmn, not being very
attractive, are relegated to Appendix A. When reducing
plicitly these formulas we find that all the terms take t
same simple structure and, not surprisingly, arise only at
3PN order. As already announced in Eq.~3.27!, the Leibniz
terms implya priori a net contribution to the 3PN potentia
T̂, Ŷi , andẐi j . Actually, in the case of the particular deriva
tive, their contributions to the vector and tensor potentialsŶi

and Ẑi j turn out to be zero,

dLeibnizŶi50, ~6.17a!

dLeibnizẐi j 50, ~6.17b!

while the contribution to the scalar potentialT̂, also in the
case ofDi

part@F#, is found to be

dLeibnizT̂52
G3m1

3

96
v1

i v1
j ] i j S 1

r 1
D1

11

36

G4m1
3m2

r 12
2 n12

i ] i S 1

r 1
D

11↔2. ~6.18!

The modification of the acceleration of body 1 which is ge
erated by the latter Leibniz terms reads as

dLeibniza1
i 5

G3m2
3

c6r 12
4 F5

2
~n12v2!2n12

i 2
1

2
v2

2n12
i 2~n12v2!v2

i G
2

88

9

G4m1m2
3

c6r 12
5 n12

i . ~6.19!

On the other hand, we computed in Secs. IV and V ma
distributional terms associated with the derivative of the n
linear potentials on the right-hand side of the field equati
@see Eq.~3.15!#. Most of these terms are simply given by th
Schwartz distributional derivative. The only terms which r
quire the new distributional derivative of@47# come from the
computation of the ‘‘self’’ parts of the noncompact pote
tials ~see Sec. V!. In this case, the modifications of the p
tentials have been found to be given by Eq.~5.7!, from
which we obtain the following modification of the acceler
tion:
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dselfa1
i 5

G3m2
3

c6r 12
4 F2

1

2
~n12v2!2n12

i 1
1

10
v2

2n12
i 1

1

5
~n12v2!v2

i G
1

151

9

G4m1m2
3

c6r 12
5 n12

i . ~6.20!

Adding up Eqs.~6.19! and ~6.20! we therefore obtain the
total effect of the~particular! distributional derivative as

ddistributiona1
i 5

G3m2
3

c6r 12
4 F2~n12v2!2n12

i 2
2

5
v2

2n12
i 2

4

5
~n12v2!v2

i G
17

G4m1m2
3

c6r 12
5 n12

i . ~6.21!

Interestingly, this quite simple piece of the acceleration
particle 1 involves the velocity of particle 2 alone, and the
fore does not stay by itself invariant under a Lorentz tra
formations, or, rather, at this order, a Galilean transformat
~indeed, for this to be true the term should depend on
relative velocityv125v12v2!. Therefore, if we are correct
since we are using harmonic coordinates and have emplo
a Lorentzian regularization, the result~6.21! has to combine
with other pieces in the acceleration so as to maintain
Lorentz invariance of the equations. We have found that
is exactly what happens: the dependence of Eq.~6.21! over
the velocityv2 is mandatory for the Lorentz invariance of th
final 3PN equations to work. This constitutes, in our opinio
an important check of the relevance of the distributional
rivative introduced in@47#. It shows also that this derivative
is merely a tool for preventing a breakdown of the Loren
invariance when performing integrations by parts of comp
cated divergent integrals@the last term in Eq.~6.21!, which is
not checked by the Lorentz invariance, will turn out to
absorbed into the adjustment of a certain constant; see
VII #.

The previous check has been done with the ‘‘particula
distributional derivative~2.9!, and it is interesting to redo the
computation in the case of the distributional derivative d
fined by Eqs.~2.10!, ~2.11!, which we recall is more satisfy
ing than the particular one because it obeys the rule of c
mutation of successive derivatives.~But note in passing tha
we have verified that the particular derivative does not yi
any ambiguity at the 3PN order which would be due to t
noncommutation of derivatives; however, such ambiguit
could arise at higher orders, in which case the ‘‘correc
derivative would be more appropriate.! In particular, while
the particular derivative is entirely deterministic, the deriv
tive ~2.10!, ~2.11! depends on a constantK, and it is impor-
tant to know the fate of this constant in the final equations
motion, and how the test of the Lorentz invariance will ma
age to be satisfiedin fine. As for the particular derivative we
find that the incidence of this derivative is through two d
tinct contributions, Leibniz and self. Consider the Leibn
contribution: we perform exactly the same computation
before, i.e., based on the formulas in the Appendix, and fi
5-32
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that in the case of the new derivative~2.10!, ~2.11! the terms
in the potentialsŶi andẐi j are no longer zero, but are give
by

dLeibnizŶi uK5S 2
1

15
1

2

15
K DG3m1

3v1
j ] i j S 1

r 1
D11↔2,

~6.22a!

dLeibnizẐi j uK5S 2
1

15
1

2

15
K DG3m1

3] i j S 1

r 1
D11↔2.

~6.22b!

Our convention is that the explicit indication on the left-ha
side of the dependence overK means that the computation
performed using the ‘‘correct’’ distributional derivative. I
the case of the modification of the potentialT̂ things are a
little more complicated because we have to take into
count, in addition to a ‘‘linear’’ contribution similar to thos
of Eq. ~6.22!, the ‘‘nonlinear’’ term that is generated b
the modification of the tensor potentialẐi j shown in Eq.
~6.22b!; cf. the source termẐi j ] i j V in the definition~3.27a!
of T̂. We obtain

dLeibnizT̂uK5S 2
53

480
1

2

5
K DG3m1

3v1
i v1

j ] i j S 1

r 1
D

1S 19

288
1

47

24
K D G4m1

3m2

r 12
2 n12

i ] i S 1

r 1
D

1D21@dLeibnizẐi j uK] i j U#11↔2, ~6.23!

whereU5Gm1 /r 11Gm2 /r 2 . Now, using the results of the
preceding subsection, we see that many of these terms a
the form of a gauge transformation corresponding to a ga
vectorjm of the type~6.11!. Indeed, we pose

e1uK5
8

15
~122K !S m1

m D 3

, ~6.24a!

e2uK5
8

15
~122K !S m2

m D 3

. ~6.24b!

With this choice the Leibniz correction inŶi andẐi j become
pure gauge,

dLeibnizŶi uK5djŶi uK , ~6.25a!

dLeibnizẐi j uK5djẐi j uK , ~6.25b!

while we can rewrite Eq.~6.23! in the simplified form

dLeibnizT̂uK5S 2
37

480
1

1

3
K DG3m1

3v1
i v1

j ] i j S 1

r 1
D

1S 19

288
1

47

24
K D G4m1

3m2

r 12
2 n12

i ] i S 1

r 1
D

11↔21djT̂uK . ~6.26!
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The corresponding modification of the acceleration of p
ticle 1 is found to be

dLeibniza1
i uK5S 37

2
280K D G3m2

3

c6r 12
4 F ~n12v2!2n12

i 2
1

5
v2

2n12
i

2
2

5
~n12v2!v2

i G1S 2
19

9
2

188

3
K D

3
G4m1m2

3

c6r 12
5 n12

i 1dja1
i uK , ~6.27!

where the last term represents the gauge term~6.15! but
computed with Eq.~6.24!. Therefore, modulo a change o
gauge, we see that the Leibniz modification of the accele
tion brought about by the correct derivative has exactly
same form as that given by Eq.~6.19!, due to the particular
one. However, we must also include the contribution of
self terms. We have redone the computation of the self te
as in Sec. V but using theK-dependent derivative and com
pared the corresponding acceleration with the previous re
~6.20!. We get

dselfa1
i uK2dselfa1

i 5
G3m2

3

c6r 12
4 F9

2
~n12v2!2n12

i 2
9

10
v2

2n12
i

2
9

5
~n12v2!v2

i G1S 2
20

3
1

44

3
K D

3
G4m1m2

3

c6r 12
5 n12

i . ~6.28!

Subtracting Eqs.~6.19! and~6.27! for the Leibniz terms, and
adding up the difference of self terms given by Eq.~6.28!,
we thereby obtain the difference between the total effects
the two distributional derivatives in the acceleration as

ddistributiona1
i uK2ddistributiona1

i

5S 41

2
280K D G3m2

3

c6r 12
4 F ~n12v2!2n12

i

2
1

5
v2

2n12
i 2

2

5
~n12v2!v2

i G
1~1248K !

G4m1m2
3

c6r 12
5 n12

i 1dja1
i uK . ~6.29!

As we see, there is a dependence on the individual velo
v2 which is left out. Anticipating the result thata1

i , com-
puted with the particular derivative, is invariant under Lo
entz transformations, this means that theK-dependent de-
rivative breaks down the Lorentz invariance for gene
values ofK ~indeed the gauge term cannot modify the b
havior under Lorentz transformations!. Fortunately, we are
5-33
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now able tofine tunethe constantK so that the velocity-
dependent terms in Eq.~6.29! vanish. Therefore, we obtain
unique value,

K5
41

160
, ~6.30!

for which the equations of motion computed with the help
the correct derivative~2.10!, ~2.11! are Lorentz invariant, as
they are with the particular derivative.

Thus, in the case of the correct derivative, the equati
of motion are not in general Lorentz invariant, despite
use of the Lorentzian regularization. The likely reason is t
the distributional derivatives were not defined in a ‘‘Loren
zian’’ way ~their distributional terms involve thed pseudo-
function Pfd1 and not the Lorentzian one PfD1!. Recall that
the Lorentzian regularization permitted to add some cru
contributions, proportional tom1

2m2 in the acceleration of
particle 1@see for instance Eq.~5.35!#, which are mandatory
for satisfying the Lorentz invariance. In the case of the c
rect derivative, we find that there is still a limited class
terms, proportional tom2

3, which do not obey the Lorentz
invariance, unlessK is adjusted to the unique value~6.30!.
Finally we obtain
06200
f

s
e
t

l

-
f

ddistributiona1
i u41/1602ddistributiona1

i

52
113

10

G4m1m2
3

c6r 12
5 n12

i 1dja1
i u41/160. ~6.31!

We shall see in Sec. VII that the effect of the first term
simply to modify a logarithmic constant ln(r28/s2) that we
shall adjust when we look for a conserved 3PN energy. A
adjustment of this constant we find that the 3PN equation
motion computed with the two derivatives are physically t
same since they differ merely by the gauge transforma
appearing in Eq.~6.31!.

C. Nondistributivity contributions

The distributive parts of the linear momentumP1
i and

force F1
i densities have been written down in Eq.~3.35!.

They were obtained under the uncorrect hypothesis of
tributivity, that is,@FG#15@F#1@G#1 , and we must now cor-
rect for this.~As explained in Sec. III, our strategy has be
to delineate as much as possible the problems, by concen
ing our attention first on the computation of the regulariz
values of the potentials when taken individually, and seco
on the corrections due to the nondistributivity, i.e.,@FG#1
Þ@F#1@G#1 .! Again, we find that such a subtlety as the no
distributivity makes a difference starting precisely at the 3
order. We get for the required corrections inP1

i andF1
i

P1
i 2~P1

i !distr5
1

c4 ~v1
i @V2#12v1

i @V#1
2!1

1

c6 S 12v1
i @VjVj #1212v1

i @Vj #1@Vj #112v1
i @V3#123v1

i @V#1@V2#11v1
i @V#1

3

28@VjŴi j #118@Vj #1@Ŵi j #118v1
j @VŴi j #128v1

j @V#1@Ŵi j #128@V2Vi #114@V2#1@Vi #114@V#1
2@Vi #1

1
1

2
v1

2v1
i @V2#12

1

2
v1

2v1
i @V#1

2216v1
j @ViVj #1116v1

j @Vi #1@Vj #1D , ~6.32a!

F1
i 2~F1

i !distr5
1

c2 ~22@V] iV#112@V#1@] iV#1!1
1

c4 ~2v1
2@V#1@] iV#11v1

2@V] iV#128@Vj #1@] iVj #118@Vj] iVj #1

1@V#1
2@] iV#12@V2#1@] iV#112@V2] iV#122@V#1@V] iV#1)1

1

c6 ~2 1
4 v1

4@V#1@] iV#11 1
4 v1

4@V] iV#1

1 3
2 v1

2@V#1
2@] iV#12 3

2 v1
2@V2#1@] iV#113v1

2@V2] iV#123v1
2@V#1@V] iV#11 8

3 @V#1
3@] iV#1

23@V#1@V2#1@] iV#11 2
3 @V3#1@] iV#123@V#1

2@V] iV#112@V2#1@V] iV#112@V#1@V2] iV#12 4
3 @V3] iV#1

216@] iVj #1@R̂j #1116@] iVj R̂j #1216@Vj #1@] i R̂j #1116@Vj] i R̂j #118@V#1@] iVj #1@Vj #118@V#1@] iVjVj #1

216@V] iVjVj #114@] iV#1@Vj #1@Vj #114@] iV#1@VjVj #128@] iVVjVj #1212v1
2@] iVj #1@Vj #1

112v1
2@] iVjVj #114v1

j @V#1
2@] iVj #114v1

j @V2#1@] iVj #128v1
j @V2] iVj #118v1

j @V#1@] iV#1@Vj #1
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18v1
j @V] iV#1@Vj #1216v1

j @V] iVVj #118v1
j @Vk#1@] i Ŵjk#128v1

j @Vk] i Ŵjk#118v1
j @] iVk#1@Ŵjk#1

28v1
j @] iVkŴjk#124v1

j v1
k@V#1@] i Ŵjk#114v1

j v1
k@V] i Ŵjk#124v1

j v1
k@] iV#1@Ŵjk#114v1

j v1
k@] iVŴjk#1

116v1
j v1

k@] iVk#1@Vj #1216v1
j v1

k@] iVkVj #118@X̂#1@] iV#128@X̂] iV#118@V#1@] i X̂#128@V] i X̂#1).

~6.32b!
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These formulas look complicated but are in fact rath
simple to evaluate because they require only some low
order post-Newtonian precision in the potentials, with no
bly all the difficult noncompact potentials needed at t
Newtonian order only~hence the interest of separating o
the problems as we did!. Note that it is crucial here to em
ploy the Lorentzian regularization@F#1 . The net result of
this computation is

P1
i 2~P1

i !distr5
G3m1

2m2

c6r 12
3 S 2

5
~n12v12!n12

i 2
2

15
v12

i D ,

~6.33a!

F1
i 2~F1

i !distr5
G3m1

2m2

c6r 12
4 S F241

70

Gm1

r 12
2

51

70

Gm2

r 12
Gn12

i

1
723

28
~n12v12!

2n12
i 2

723

140
v12

2 n12
i

2
723

70
~n12v12!v12

i D . ~6.33b!

Therefore the supplement of acceleration linked to the n
distributivity is

a1
i 2~a1

i !distr5
G3m1

2m2

c6r 12
4 S F779

210

Gm1

r 12
2

97

210

Gm2

r 12
Gn12

i

1
779

28
~n12v12!

2n12
i 2

779

140
v12

2 n12
i

2
779

70
~n12v12!v12

i D . ~6.34!

Since only the relative velocityv12 is involved this part of
the acceleration is Galilean invariant. Furthermore, it can
expressed in a simpler way by introducing an infinitesim
gauge transformation of the type~6.11!. We pose

~e1!distr52
779

420

m1m2
2

m3 , ~6.35a!

~e2!distr52
779

420

m1
2m2

m3 , ~6.35b!

and easily obtain
06200
r
r-
-

-

e
l

a1
i 2~a1

i !distr5~dja1
i !distr1

G4m1m2
2

c6r 12
5 F2

97

210
m1

1
779

210
m2Gn12

i . ~6.36!

Thus, the only physics brought about by the nondistributiv
~i.e., which is not affected by a gauge transformation! is
constituted by the quartic (G4) term displayed on the right
hand side of Eq.~6.36!.

VII. THE 3PN EQUATIONS OF MOTION

A. Existence of the conserved energy

At present, the equations of motion are complete. We n
want to look for the conserved energy associated with th
equations at the 3PN order~considering of course only the
conservative part of the equations, i.e., excluding the ra
tion reaction acceleration at the 2.5 PN order!. We shall see
that the existence of an energy is not immediate, but requ
the adjustment of a certain constant.

We proved in Sec. V that the equations of motion of bo
1 depend on two arbitrary constants, which are the cons
r 18 , tending to zero as we approach particle 1~but considered
here as taking some finite nonzero value!, and the constants2
associated with the Hadamard regularization near the o
particle 2@see Eq.~2.3!#. Similarly, the equations of body 2
depend on the constantsr 28 and s1 . All these constants ap
pear inside the logarithms entering the equations of mo
in harmonic coordinates. Gathering the results for the ‘‘log
rithmic’’ part of the equations of body 1, we obtain

a1
i 5

44

3

G4m1
3m2

c6r 12
5 n12

i lnS r 12

r 18
D 2

44

3

G4m1m2
3

c6r 12
5 n12

i lnS r 12

s2
D

1
G3m1

2m2

c6r 12
4 @110~n12v12!

2n12
i 222v12

2 n12
i

244~n12v12!v12
i # lnS r 12

r 18
D 1¯ , ~7.1!

where the dots indicate the terms which do not contain
logarithms. The terms shown in Eq.~7.1! contain the whole
dependence of the acceleration of 1 overr 18 ands2 ; there are
no other constants elsewhere. Notice thats2 enters a single
quartic-order term proportional toG4m1m2

3. Now, most of
the terms in Eq.~7.1! can in fact be gauged away. To se
this, we apply the formula~6.15! with the particular choice
5-35
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~e1! ln52
22

3

m1m2
2

m3 lnS r 12

r 28
D , ~7.2a!

~e2! ln52
22

3

m1
2m2

m3 lnS r 12

r 18
D . ~7.2b!

The corresponding transformation of the acceleration is
~6.15!, except that (e1) ln and (e2) ln depend on time through
the orbital separationr 12, so in fact this formula should con
tain also some terms proportional to the time derivatives
(e1) ln and (e2) ln ; but the point for us is that these extra term
are free of any logarithms. Therefore, modulo the dots in
cating the logarithmic-free terms, we can write

a1
i 5~dja1

i ! ln2
44

3

G4m1m2
3

c6r 12
5 n12

i lnS r 28

s2
D 1¯ , ~7.3!

where (dja1
i ) ln denotes the coordinate change of the acc

eration.
The term in Eq.~7.3! which is left out after this coordi-

nate change depends only on the ratio betweenr 28 and s2

~similarly, in the equations of motion of body 2, we wou
find the ratio ofr 18 ands1!. This term is of the same type a
the one in Eq.~6.31! giving the difference of accelerations
modulo a change of gauge, when different distributional
rivatives are used. Notice that the constantr 28 was originally
absent from the equations of motion of 1, but has to
introduced in order to ‘‘remove’’ these logarithms by th
coordinate transformation. Therefore, the only physical fr
dom remaining in the equations of motion is the yet unspe
fied constant ln(r28/s2). Now we use this freedom to find
conserved energy associated with the equations of mo
which means a local-in-time functionalE of the trajectories
and velocities of the two particles, i.e.,

E5E@y1~ t !,y2~ t !;v1~ t !,v2~ t !#, ~7.4!

which is constant as a consequence of the 3PN equation
motion, i.e.,

dE

dt
[v1

i ]E

]y1
i 1v2

i ]E

]y2
i 1a1

i ]E

]v1
i 1a2

i ]E

]v2
i 5Ō~7!. ~7.5!

The accelerationsa1 anda1 are to be replaced by the func
tionals of the positions and velocities given by the 3PN eq
tions of motion. Our special notation for the remaind
means a radiation-reaction term which is purely of ord
2.5PN plus the neglected terms at 3.5PN; schematic
Ō(7)5(1/c5)F51O(7). See Eq.~7.18! below for the ex-
pression of the term (1/c5)F5 . If an energy exists, the quan
tity m1a1

i v1
i 1m2a2

i v2
i must be a total time derivative. In

practice, we look for a local-in-time functiona
D@y1 ,y2 ;v1 ,v2# such that

m1a1
i v1

i 1m2a2
i v2

i 1
dD

dt
5Ō~7!, ~7.6!
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and we obtain the energy asE5 1
2 m1v1

21 1
2 m2v2

21D. Now,
the computation with our 3PN equations of motion~obtained
by means of, say, the particular derivative! shows that the
quantity D does not exist for any values of the constan
ln(r28/s2) and ln(r18/s1). However, we find that this ‘‘nearly’’

works, because we can determine someD̂ such that

m1a1
i v1

i 1m2a2
i v2

i 1
dD̂

dt
52

44

3

G4m1
2m2

2

c6r 12
5 H m2~n12v1!

3F lnS r 28

s2
D 2

159

308G11↔2J
1Ō~7!. ~7.7!

From the computation we obtainD̂ as a well-defined loca
functional of the positions and velocities of the particl
@containing in particular some logarithms ln(r12/r 18) and
ln(r12/r 28)#. The right-hand side of Eq.~7.7! cannot be writ-
ten, for generic values of ln(r28/s2) and ln(r18/s1), in the form
of a total time derivative. It would be possible, for this to b
the case, to adopt the simplest choice that both these
stants are numerically equal to159

308. However, this choice doe
not represent the most general solution for obtaining a t
time derivative. Indeed, nothing prevents ln(r18/s1) and
ln(r28/s2) to depend also on the massesm1 andm2 , and there-
fore such a dependence on the masses should in fact be
datory~totalitarian principle!. Since the regularization proce
dure followed in this paper is more mathematical th
physical, we can be confident that no physics will be ov
looked only if at each step we obtain the most general so
tion allowed by the process. Unfortunately, the most gene
solution in this case contains an arbitrary parameter.

The necessary and sufficient condition for the right side
Eq. ~7.7! to be a total time derivative is that the factor
(n12v1) in Eq. ~7.7! be invariant by exchanging the particle
labels 2 and 1, i.e.,

m2F lnS r 28

s2
D 2

159

308G5m1F lnS r 18

s1
D 2

159

308G . ~7.8!

Denoting bylm the common value of both sides of Eq
~7.8!, wherel is a constant andm5m11m2 , we obtain the
most general solution as

lnS r 28

s2
D 5

159

308
1l

m

m2
, ~7.9a!

lnS r 18

s1
D 5

159

308
1l

m

m1
. ~7.9b!

This l is a dimensionless quantity which is the same for
two particles 1 and 2. We now prove thatl is necessarily a
purenumericalconstant, independent of the masses. Not
that thel term in Eq.~7.9a! will yield a contribution to the
acceleration of 1 which is, as concerns the dependence
the masses, of the typem1m2

2ml @see Eq.~7.3!#. If l de-
pends on the masses, it must be a symmetric function ofm1
5-36
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andm2 , and therefore it can be expressed solely in terms
the symmetric mass ration5m1m2 /m2. Suppose thatl
5(2`

1`l in
i , where thel i ’s are numerical constants, so thel

term in the acceleration of 1 is of the typem1m2
2m(l in

i .
First, we see that all the casesi<21 are excluded becaus
the equations of motion would not have the correct pertur
tive limit when n→0; for instance, in the casei 521, we
get a term of the typem3m2 which tends tom2

4 in this limit,
and therefore modifies the geodesic motion of a test par
around a Schwarzschild black hole, which is of course
cluded. Second, the casesi>1, though they pass the simple
physical requirements, imply that the individual particle a
celerations are no longer polynomials in the two individu
massesm1 and m2 , because of the appearance of inve
powers of the total massm5m11m2 . For instance, the cas
i 51 leads to a term of the typem1

2m2
3/m. But we know that

when doing a diagrammatic expansion of theN-body prob-
lem based on the post-Minkowskian expansion~see@59# for
the details of the method! that each successive diagram is
polynomial of theN masses. Therefore, we exclude the p
sibility that some inverse powers of the total mass app
and find, in conclusion, thatl is a pure constant (l5l0).

At last, we have succeed in finding a conserved energ
the 3PN order by specifying an unknown logarithmic rat
but at the price of having introduced an arbitrary purely n
merical constantl. The constantl will be left undetermined
in the present work. So the final 3PN equations of motion
obtain in this paper, as well as the final 3PN energy, dep
on the unknown parameterl. The appearance ofl suggests
that the present formalism, based on a point-mass regula
tion, is physically incomplete. The resulting ambiguity
equivalent to the ‘‘static’’ ambiguity found by Jaranows
and Scha¨fer @33#. It is probably linked to the fact that one ca
write the Einstein field equations into many different form
which are all equivalent in the case of regular sources,
which are in general not equivalent in the case of point p
ticles because the distributional derivative does not obey
Leibniz rule. If we had chosen initially a different form o
the field equations, the Leibniz terms we computed in S
VI could have been different. More precisely, only that p
of the Leibniz terms which is Galilean invariant and cons
quently is not required require by the Lorentz-invarian
symmetry could change. But we have seen in Eqs.~6.19! and
~6.31! that the Galilean-invariant part of the Leibniz terms
precisely made of only one term, which is of the same ty
~proportional toG4m1m2

3! as the term containing the con
stant ln(r28/s2) @see Eq.~7.3!# that we have adjusted in Eq
~7.9a!, resulting in the appearance of the constantl. Thus, in
agreement with Jaranowski and Scha¨fer @33#, we might say
that l encodes an ambiguity associated with the violation
the Leibniz rule by the distributional derivative. At a deep
level, this would mean that the ambiguity is a conseque
of a theorem of Schwartz@60# according to which it is im-
possible to define at once a multiplication of distributio
which agrees with the ordinary product for continuous fun
tions, and a derivation of distributions which satisfies t
Leibniz rule and reduces to the ordinary derivative in t
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case ofC1 functions. If this explanation is correct, it is un
likely that the constantl could be determined within the
present formalism.

We find by combining Eqs.~7.9! and~7.7! that the depen-
dence of the 3PN energyE on l is

E5Ê2
11

3
l

G4m1
2m2

2m

c6r 12
4 , ~7.10!

whereÊ does not depend onl, while we obtain, using Eq.
~7.3!, that the acceleration writes

a1
i 5â1

i 2
44

3
l

G4m1m2
2m

c6r 12
5 n12

i , ~7.11!

where similarlyâ1
i is independent ofl. On the other hand

the acceleration and energy depend also on the two cons
r 18 and r 28 , but from the previous discussion this is not
problem becauser 18 and r 28 are associated with an arbitrar
ness in the choice of coordinates: the 3PN equations of
tion contain the logarithms ln(r12/r 18) and ln(r12/r 28) which
have been shown in Eq.~7.1! to be in the form of the gauge
transformation associated with Eq.~7.2!. In particular, the
‘‘constants’’ lnr18 and lnr28 , which might be said to be for-
mally infinite becauser 18 andr 28 were tending to zero@recall
the discussion after Eq.~5.18!#, will never appear in any
physical result. Similarly, the dependence of the energy
the logarithms ln(r12/r 18) and ln(r12/r 28) is pure gauge. From
Eq. ~6.16! we get

E5
22

3

G3m1
3m2

c6r 12
3 F2

Gm2

r 12
13~n12v1!~n12v12!

2~v1v12!G lnS r 12

r 18
D 11↔21¯ , ~7.12!

where the dots denote the terms independent of logarit
@this result can also be checked directly using Eq.~7.1!#.

Finally, to be more specific about the influence of t
distributional derivative, notice that the solution we have o
tained in Eq.~7.9! corresponds to the ‘‘particular’’ distribu
tional derivative defined by Eq.~2.9!. If one uses the ‘‘cor-
rect’’ derivative ~2.10!, ~2.11! instead, with the valueK
5 41

160 we have obtained in Eq.~6.30! from the Lorentz in-
variance, we obtain the same equation to be solved as
~7.7! but with the rational fraction1 783

3080 instead of2159
308.

This is easily seen thanks to Eq.~6.31!. So, the solution
becomes in this case

lnS r 28

s2
D 52

783

3080
1l

m

m2
, ~7.13a!

lnS r 18

s1
D 52

783

3080
1l

m

m1
. ~7.13b!
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Replacing this into the equations of motion~and associated energy!, it is then clear that they are physically the same as th
computed with the other derivative, because they differ by the mere change of gauge,

a1
i u41/1602a1

i 5dja1
i u41/160, ~7.14!

that we obtained in Eq.~6.31!. We give it here thoroughly for completeness:

dja1
i u41/1605
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25
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c6r 12
5 ~m1

22m2
2!n12

i 1
13

50

G3m2
3

c6r 12
4 @215~n12v12!

2n12
i 13v12

2 n12
i 16~n12v12!v12

i #. ~7.15!

B. End results

We present the 3PN equations of motion of particle 1 in harmonic coordinates, which are obtained by summing u
contributions of the potentials computed in Secs. IV and V, as well as the pieces due to the nondistributivity and the
terms~see Sec. VI!. The equations depend on two gauge constantsr 18 andr 28 through some logarithms, and on one unknow
purely numerical coefficientl. The equations of particle 2 are obtained by exchanging all the labels 1↔2:
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These equations are in full agreement with the known results valid up to the 2.5PN order@24–26,31#. They have the correc
perturbative limit given by the geodesics of the Schwarzschild metric at the 3PN order. Most importantly, the equat
invariant under Lorentz transformations~developed to 3PN order!; this can be checked using for instance the formu
developed in@48#. Finally, as we have seen previously, the equations of motion admit a conserved energy at the 3PN
The study of the Lagrangian~and Hamiltonian! formulation of these equations is reported in a separate work@37#. The energy
is given by
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This energy is conserved in the sense that its time deriva
computed with the 3PN equations of motion equals the
diation reaction effect at the 2.5PN order, namely,
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The rather complicated expressions~7.16!, ~7.17! simplify
drastically in the case where the orbit is circular@apart from
the gradual inspiral associated with the balance equa
~7.18!# and where we place ourselves in the center-of-m
frame. The circular orbit corresponds to the physical sit
tion of the inspiraling compact binaries which motivate o
work @1–7#. Here, we give the result concerning circul
orbits without proof~see also@34#!. The relative acceleration
reads

dv12

dt
52v2y121Freac1O~7!, ~7.19!
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where Freac is the standard radiation-reaction force in ha
monic coordinates,

Freac52
32

5

G3m3n

c5r 12
4 v12 ~7.20!

~n5m1m2 /m2 being the symmetric mass ratio!, and where
the orbital frequencyv of the relative circular motion is
given to the 3PN order by
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The post-Newtonian parameter is defined byg5Gm/r 12c
2,

and we recall thatr 125uy12y2u is the orbital separation in
harmonic coordinates. The constantr 08 appearing in the loga
rithm is related to the two constantsr 18 and r 28 by

ln r 085
m1

m
ln r 181

m2

m
ln r 28 . ~7.22!

The 3PN energyE in the center of mass of the particle
which is such thatdE/dt50 as a consequence of the co
servative equations of motion, is obtained as
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The invariant 3PN energy follows from the replacement
06200
-

f

the post-Newtonian parameterg by its expression in terms o
the frequencyv as deduced from computing the inverse
Eq. ~7.21!. We find
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where the parameterx is defined by

x5S Gmv

c3 D 2/3

. ~7.25!

Note that the logarithm disappeared from the invariant
pression of the energy~7.24!, in agreement with the fact tha
it is pure gauge. However, the constantl stays in the final
formula; the static ambiguity constantvs of Jaranowski and
Schäfer @33# is related to it byvs52 11

3 l2 1987
840 ~see@34#!.
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APPENDIX: SUM OF LEIBNIZ TERMS

In this appendix we give the sum of all the terms of t
typedLeibnizT introduced by Eq.~3.23! that we have encoun
tered during the process of simplification of the 3PN pote
tials. The reduction of these terms using the distributio
derivative is done in Sec. VI.
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1
8
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Ŵh PfVi2

1

2
h~PfViŴ! D1
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1

2
Vjh PfŴi j 1
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