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(y*qqa)-Reggeon vertex in next-to-leading order QCD
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As a first step towards the computation of the NLO corrections to the photon impact factor i1 e
— y* ¥* scattering process, we calculate the one loop corrections to the coupling of the Reggeized gluon to the
y*—>qavertex. We list the results for the Feynman diagrams which contribute the following: all loop inte-
grations are carried out and the results are presented in the helicity basis of a photon, quark, and antiquark.
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. INTRODUCTION vertex, (i) the vertexy* —qqg in leading order, andii ) the
integration over the phase space of the intermediate states. In

The experimental test of the Balitskii-Fadin-Kuraev- this paper, we report on the results of the first step, the NLO
Lipatov (BFKL) Pomeron[1] is generally considered to be g ections to they* + Reggeon-qq vertex. The vertex is
an important task in strong interaction physics. Recentlygptained from the high energy limit of the scattering process
much |.nterest has b.een g|Yen to the total *cri)ss sectlor? of th}g* +g—qq+a.
scattering of two highly virtual photons,,” [2,3]. This
process describes the scattering of two small-size projectiles, II. TECHNICAL PRELIMINARIES
and its high energy behavidat not too large energigss
expected to be described by the BFKL Pomeron. Therefor
a measurement of the reactiene” —e*e™ + X by tagging
the outgoing leptons at the CERN e~ collider LEP or at a
future linear collider provides an excellent test of this very
important QCD prediction.

e The kinematics is illustrated in Fig. 2. As usuglandp
denote the four momenta of the photon and the incoming
quark, respectively, ang . is the polarization vectors of the
photon. We use to denote the energy of thg* q scattering
process, and we introduce the invaria@%= — g2, t,=k?,

(Al r)2 2_ 2 4.2 — 0O2/9n.
So far, leading order calculations of the BFKL Pomerontb_(q. k=r)%, M (q.+r)  1=r an(_j>_< Q /2p-q for
the Bjorken scaling variable. For simplicity, in the calcula-

have been compared toLEP d@@th OPAL and L3[4-6]. tion of this paper, we treat the quarks as massless. The mo-
In both experiments the data lie above the one gluon ex-

i mentak andr can be written in the Sudakov decomposition
change curvécommonly called the Born approximatipbut form: i.e.
below the BFKL prediction. Since the next-to-leading order ’

(NLO) corrections to the BFKL kernel have been calculated k=aq'+8p+k,, 1)
[7,8], it is known that the higher corrections will lower the

theoretical predictions of the cross section. However, a con- t  tatiy

sistent comparison with the NLO BFKL calculations has not r=54-——5 P*rL, 2

yet been possible: there remains the task of also calculating

the next-to-leading order corrections of the coupling of thewhereq’=q+xp and

BFKL Pomeron to the external photons, the so-called photon

impact factor. Bs=
The photon impact factor is obtained from the energy dis-

continuity of the amplitudey* + Reggeon- y* + Reggeon ) . )

(Fig. 1). In leading orderas this discontinuity is simply the The Feynman diagrams, which contribute to our NLO calcu-

square of the scattering amplitudé+Reggeon»qain the Iatlon., are listed in Fig. 3. I.n addition to the graphs shown

tree approximation, and the reggeon, i.e., the reggeize ." diagrams, except for Fig. 3.14we have to add tho§e

gluon, can be identified with the elementarghannel gluon lagrams where thechannel gluc_)n couples to _the outgoing

(with a particular helicity. In the next-to-leading order new antiquark rather than the outgaing quark. It is easy 1o see

o —. ) that, for the color octet-channel configuration, the sum of
contributions have to be calculated. For thg intermediate 5| giagrams has to be antisymmetric if we interchange quark
state we need the NLO corrections to thé& +Reggeon

—>qaamplitude either on the left-hand side or on the right- !

hand side of the discontinuity line, and thg intermediate '
state requires with leading order amplitudg$+ Reggeon

k?
1-a

Q% ©)

—>qu on both sides of the energy discontinuity line. The - + +
task of calculating the NLO corrections to the photon impact :
factor therefore can be organized in three stépsthe cal- !
culation of the NLO corrections to the* + Reggeon-qq FIG. 1. Contributions to the photon impact factor.
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wherexd(a=1,...,8) are theolor matrices and. and\’
ta ty denote the helicities of the outgoing quark pair. When inter-
/ \ @k N changing quark and antiquark lines it will be convenient to
use the following identity:

M2 H
\ H$+H$25H2—28~pHE—28'rHS. (10)

k+r ) We organize our calculations in the following order. We first
consider those diagranfBigs. 3.1—3.9which can be viewed
as “elastic scattering of two quarks,” with the upper “in-
coming” quark carrying the mast,. Correspondingly, the
diagrams not shown in Fig. 3 define quark-quark scattering
with the upper incoming antiquark having the mags To-
[ — gether with the correction at the photon vert@ig. 3.10
\ / and the quark self-enerd¥ig. 3.11), these diagrams are the

t ones which have to be made ultraviolet finite by renormal-
ization. In the final part, we turn to the calculation of the box
diagrams in Figs. 3.12 and 3.14, and the pentagon graph
shown in Fig. 3.13.
We are interested in the high energy limit, where

FIG. 2. Kinematics of the procesg +q—>qa+ g.

and antiquarkk—q—k—r, N\—\'. In particular, the “box”
graph shown in Fig. 3.14 has to be antisymmetric by itself.

We will use the Feynman gauge throughout the calculation, 2 2
: t, Q% ta, tp, M° <s, (17
and for thet-channel gluons we decompose the metric tensor
according to and we do not impose any restriction on the remaining in-
2 variants. The Regge ansatz for the scattering amplitude
_ ! ! 1 *
ng_g(quy+ P.a,)+7,,. (4) v*g—1(qqQ)q takes the form
) . i . a S| s\ [—s\’| .,
In our calculation we retain only the first term, since the T:Fy*—w]af s + s qu. (12

remaining ones are suppressed by powers of the energy. We
use the helicity formalism, and our results will be expresseqyare 1+ 4 is the gluon trajectory. Expanding all terms in

in terms of the following matrix elements: powers on the strong couplirg we have
a=u(k+r,\)pké N (g—k,\'), (5) 0=9% oW +g* 0@, (13)
HE=U(k+1.0)4 (d—K—1) p A%(q—kA'), () % =g I0% g - (14
Hi=u(k+r,M)é \(g—k\"), ) =9 I{g*+g® I, (15

After substituting corresponding elements in Ef2) with
above expansions, one obtains the following structure of the
amplitude:

HE=u(k+r, M)k N (g—k\'), ®
H3=u(k+1,0)p N (g—k\'), ©

T=g? TO+g* T, (16)
(€Y

€3} () (3) .
% ﬁ % with
2s
(0)_1(a _Z> n(0),a
% T | R I Laq (17
(8)

®

(5) (6) (7 { and
2s 2s
i V_pr@®a _22 ~(0)a (0)a _“2r(1).a
g g % ; TO=T0) o TR+ T T
S
t

(10) (11) (12) (13) (14) S — 0
In_— + In_— Féq)'a (18

©a _S
i + I‘y*%qq n w . .
é Here, thee; represents the charge value of the interacting

- quark, and the lowest-order expressions on the right-hand
FIG. 3. Feynman diagrams for the procegs+q—qq+q. side of Eq.(18) are
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1
L= Su(p=r, Ng)d'Au(p, o), (19
2N, ¢
w®(t)= ——=— L () (20)
( (477)2*66(
H}  H?
(0a __ T
Dl Iefe(sta Stb)’ (0
with D=4-2 ¢ and
T(1+el?*(1—e) 1 2 T, O3
R P R 1R G A
(22)

Here\q and )\ are the helicities of the incoming and out-
going quark, respectively, and® are the generators of the
color group. In this paper, we will present the results of Figs.
3.1-3.14, which can be cast into the form of the right-han

side of EqQ.(18). All pieces except foﬂ“(yi)fqa are known

from earlier calculations. In particular, the Born result for
F(;l)fqa is well known in the context of the photon wave
function formalism, and it is available for definite helicity

PHYSICAL REVIEW D 63 056014

IIl. ANALYTIC RESULTS

We write the NLO amplitudeT® for the processy*
+0g—qq+q as a sum of the different Feynman diagrams:
13
i=1
The subscripts refer to the numbering in Fig. 3, and the

amplitudesA; correspond to the diagrams which are not
shown in Fig. 3; they are obtained by interchanging the cou-
plings of t-channel gluons between quark and antiquark
lines. Formally, we substitute

kg—k—r, a—=(1—a), t—t,,
(27)

H2H2, g-kes—g-(k+r), Ao\,

Under these replacements, the matrix eleméns(9) re-

dﬂain unchanged. FinallyA,, is antisymmetric with respect

to the interchange of quark and antiquark.

A. Calculational methods

Before presenting explicit analytic expressions for all dia-

states[9]. The higher order corrections to the quark-quark-grams' we briefly outline the methods we have used to obtain

Reggeon vertexg®I'()(t), have been calculated in Ref. th

[10]. For vanishing quark masses these correctiongfate
lowing the notations of Ref.10])

L) =\(T{(ag—state + T {J(gg—state) s , .

(23)
with
— (—t)~¢ n¢ Cr 1
W) gg— - _t _
Faalaq-state = | " 2 c1-20) | 1 3-2¢
Lo (2,3, 24
N2 e : (24)
No(—t) €| ¢ 1cp 13 =2
W qq— R SN N et N I
I'yq(gg—state (477)2—5{ 23 e+18+ > |-
(25)

Inserting these results on the right-hand side of @§), we
can easily obtaid“gi)fqa, which is the goal of this paper.

e results.

Starting from the standard Feynman rules of QCD, we
project the color in thé channel into the antisymmetric octet
and proceed by introducing Feynman parametet® com-

bine the denominators for the integration of the loop momen-
tum. Only for the simplest diagrams these steps are easily
performed by hand. Particularly for Figs. 3.12—3.14 this step
becomes too tedious. Therefore, we have used the computer
algebra systenMATHEMATICA with the packagerEYNCALC

[13], in order to reduce the numerators to expressions which
contain the helicity matrix elemeni$) to (9), monomials

XX ... in the Feynman parameters, and, of course, the ki-
nematical invariants. Those diagrams, where the loop inte-
gral itself does not depend on the large scslehe box
diagrams in Figs. 3.12 and 3.14, have to be calculated ex-
actly. The only high energy approximation results from the
gluon nonsense helicity.e., the first term in Eq4)]. Figure
3.13, on the other hand, has first been calculated exactly, and
then the high energy limifl1) has been taken.

To consider the loop integrations, we had to deal with
integrals over the loop momentum itself, which could be
easily performed by the usual shift, and with the remaining
integrals of the Feynman parameters. Integrals of the latter
type are either known or they could be obtained from known

For f‘g}‘)ﬁe purposes, it will be important to note that the gnes with the help of recurrence relationg¢e®) in dimen-
vertexI"), —in Eq. (12) is expected11] to have a rather sjonal regularization. The technical background for these
complex structure. For example, in the limit of large diffrac- methods is given in Refl14] and has been applied to almost

tive masses, it will be more convenient to write EtR) as a

all cases we are interested in by Rdf5]. We have written a

sum of two different expressions: the first one depending omATHEMATICA package to easily call the results of Ref5].

M2 ands; and the second one depending @8 and s [or

In most cases, the integrals are recursively expressed in

(1—a)s]. This decomposition exhibits the Reggeization of terms of special functions, representing a particular combi-
both the gluon and the quark. A detailed discussion of thenation of logarithms and dilogarithms for a giverpoint

large M? limit will be presented in a seperate pap&p].

function. In the case of Fig. 3.14, we have calculated explicit
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results for integrals with two and three Feynman parameters t
in the numerator using the derivative metHdd]. Also for Ldg"(as,t,ty) = Liz( 1- T
this task, we have use@dATHEMATICA. a
Finally, after carrying out the integrations, i.e., replacing t as w
the monomials of Feynman parameters in our amplitudes +in—n—— &
with the explicit expressions from OWATHEMATICA pack- a e
age, we have used agafEYNCALC to take the high energy Here, Li, is the standard dilogarithm function defined as
limit in Figs. 3.2, 3.3, and 3.13, and to carry out some sim-
plifying algebra. A few final simplifications had to be done _ 1In(1—xt)
by hand. The expressions that we have obtained in this way Liz(x)= _f fdt-
will be listed in the remainder of this section.

. as
+ le( 1- —)
ta

2

(31)

In order to exhibit the energy dependence, we rewrite this
B. Quark-quark scattering expression as

cr(—t) ¢
€

as —as
In —_t +In——

scattering processes with one of the incoming quarks being Ay, z=—AO)
—t

off-shell (with virtuality t,). We focus on those diagrams in (4m)% ¢
Fig. 3, where the-channel gluofs) couples to the quark.

Those diagrams where the gluisncouples to the antiquark 1oL (
are easily obtained by performing the substitutions described 2
after Eq.(26).

Figure 3.1 is one of many three point functions with two

massive external legs. Loop integrals of this type are well
known, and we have calculated them both by hand and by

It is suggested to view Figs. 3.1-3.9 as a quark-quark [

2 2

a
+ ot (1)

* 3

1 t
t

In—
a ta

ZCI‘ 2‘| N Cr
2

€

using computer algebra as outlined above,
= ((—t)f—(—taw)} : (32
N, 1 cr ~ t a
Aj=— {A(O) —(—t) " +2+ In—
2 (4m)% e € -ty 1y From these two diagram@&nd from their respective partners
(—iee)a 25 A, 3) we already get the complete drdependence of our
—————H3r1®a result, in agreement with the right-hand side of Etp). In
=ty t detail, the first line of Eq(32) contains, apart from the ka
cr dependence, the leading order trajectory functidh(t) [cf.
X ?(—t)*f+ 1- o Int— ] (28 Eq.(20)]. Furthermore, if we take the limit,— 0 in the last 3
a a

lines, we are left with only the term in square brackets pro-
portional to (—t) €. One-half of this term will go to the
Here, and in the following, we use lower vertex(25) (the same result could also have been de-
duced from Ref[10]). Therefore, the contribution from Figs.
3.2 and 3.3 td"? —is just
y* —aq

HT N 2cp(—t) ¢

iee;— —
' Sta (47)2" €

H
AO=—jeg— —1 )2 (29
a

_ t
p; Ina+2 L|2(1—t—)

as a shorthand notation. a

In Figs. 3.2 and 3.3 we have to deal with four-point inte- t\2 @2 (=) ¢[2cp

grals, where one of the external legs is off-mass shell. Here+| In—| + —+ —2—772

we make use of the shorthand notations listed in the Appen- a 3 2 €

dix. The result for the sum of the two diagrams is .
Cr _ _ _ _

t5| (D2 t) e (P () )H

€ a

A AON, | (as) +(—as)” ¢

- — — |\ —
2+3 C(47T)27€ 62 (33)

We emphasize, once more, that the two diagrais

t =
- ((—t)_e—(—ta)_e)} +A,, 3 provide the complete Is dependence on the right-
a hand side of Eq(12). At first sight one might expect that

im m also the pentagon diagramss+ A;; might contribute to the
+TLdy (as,t,ty) +Ldy (—as,t,ty) ¢, (300 energy dependence. Later, we will show that, in fact, this is
not the case.
The calculation of Fig. 3.4 is very similar to the calcula-
with tion of Fig. 3.1. We find

()2t
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1 1 2¢ we have computed a new Reggeon-quark-quark vertex with
4=~ 3N A —((—t) "= (-1)79) one quark having the mass. Moreover, from Figs. 3.2 and
c (4m) € 3.3 we have extracted the drterms of the right-hand side of
ot Eqg. (18). The remaining diagrams, Figs. 3.10-3.14, provide
- C_F(_t)fe_ Yn— contributions to the upper vertdx%)? _only.
_ y*—aq
€ t—t, tg
e e C. Vertex correction and quark self-energy
32 (0),a| =~T 2CF (_ta) _(_t) . .
—ieg aH —qu — —t In this subsection, we present the results of the vertex
€ a correction Fig. 3.10:
2cr (—t)"¢ 3t+2t, t 5
- — (- (34) _ AT i)
e t—t, (tt)Zt Ct-t, (4)25 (t)+4

Figures 3.5 and 3.6 are needed to obtain the NLO correc- 302 1, 2s 4c
tions to the lower verteX (). In agreement with Ref10], n In 2@ e
we find Q2+t, Qz t ag | ¢
2
Necr [(—t)°€ Q ) —ta]
— a0 "¢ +10 1+ In , (40)
As A (4,”_)2—5( oe +1 (35) 2 t, Q2
and with
A A(O) 1 Cr € 2 3 8 36 I'=- ieefH—g ek (41)
A e TV @ ere) 9 s Qi
We note that they can be obtained from E@®) and(34) by ~ and for the quark self-energy Fig. 3.11,
choosinge<0 and taking the limit,— 0. 1-
The calculation of Figs. 3.7—-3.9 is straightforward. They A =—AO (—ty)"~ eM, (42)
contribute to both the upper and the lower vertex: (41 )2 € €(1-2¢)

Equations(40) and (42) provide new contributions to the

Neer  (=1)°¢ S
vertexF )2

(47)2~ € 2€(1-2e)

1

A7+8:A(O) 3—2¢

+3].

(37

|

Similarly, the qq contribution to the gluon-self-energy in
Fig. 3.9 leads to

—qq”

D. The box diagram in Fig. 3.12

In this subsection, we give the result of Fig. 3.12, which
was calculated entirely with the help of the computer alge-
bra. (In Ref. [15], this diagram has been named “adjacent
box.)” The result will be expressed as follows:

=

Ag=AOn,

Cr (—t)_e 1
(4m)2—< e(1-2¢) 3—26_1)' (38)

2s
t

1

v

iee
S

Cr
(4m)*

These diagrams contribute with equal weight to both the up-
per and lower vertex. Therefore, in order to complete the
upper Reggeon-quark-quark vertex with one off-shell quark,

A= F(O) :

we simply add 1/2 of the sum of Eq&37) and (38) to the 1 (—2) 1 (“1) 1 A(0)
contributions (28), (34), and (35). Similarly, the lower X| ZALRT+ AL T TAL | (43
Reggeon-quark-quark vertex, with all quarks being on-shell, €
is obtained by adding 1/2 of the sum of E¢37) and(38) to Starting with the divergent terms, we have
(35), (36), and the contribution of the box diagrams in Figs.
3.2 and 3.3: _2 2aH2s((—t) = (-t 79
ALY= t—t
Ne (—t)"¢ 2cr a
_A(O)—c - 4 2 —€ —€ — € —€
amic 2 | e " (39 o D) () (@)
. . T =ty Q2+ta
To summarize, so far we have analyzed Figs. 3.1-3.9.
From Figs. 3.5, 3.6, 1/2 of Figs. 3.7-3.9, and from a piece of —(—=M?) 7+ (Q?) 4 (—t) —2(—t,) €
Figs. 3.2 and 3.3, we have reproduced the lower Reggeon- + t
quark-quark vertex of Ref10]. From Figs. 3.1, 3.4, 1/2 of a
Figs. 3.7-3.9, and from the major part of Figs. 3.2 and 3.3, (44
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and

(=0 = (-t (~ta)°
M? Q%+t,

a
&

2 (Jt(—t)fé+ (I-a) (-~ (~ta) ™)

(=1)—_yg .. a
A =4 e kHy . NE

(45

The O(€°) term for this adjacent box is expressed in terms of many different functions, related to this loop integral. For
convenience, the definitions of these functions are listed in the Appendix;

AlY=—2(2H3+ saH?)Lco(— Q% M2, t) +{3HEM2+ H¥[ 6 - pM2+25((8a—3)e - k+ (5a—3)&-I)]
12 T & T k

2 _ N2
—sa H3(3t,— 2tb—Q2)—2Hg(2Q28-r+s-k(M2—Q2—3tb))}%2Q’t)

+2{H3M?+2H2(M?s - p—s[e-k+(1—a)e - r])+2SHY(1— a)t+ aQ?+1,]

—_ 02 2
—4H7[&-k(2M?*+ Q2+t)+s-r(Q2+ta)]}%2"w’t)

+{2e-kH3(2M?~2Q~t,) — (1— a)SQ?H?

Le3™(— Q2 t,)
2

—H3(Q%+t,) —2HYe-k(1—2a)s+e&-p(Q%+t,) ]} —2{2sa(3e-k+e-1)HE

Lca™(t,,t)

+sHY a(M?=Q%=3ty) +(t—t,) ]+ Hi[3e rty+e-k(4t—ty)]} E

Leis(— Q3 M2 )
M2t,

+2{4e- pM*HE+3M?HI—s[a(M?=2Q*~t) +t]HE—2[2-r Q*+&-k (M?+Q*+2t)H}

+4asHILCE(t,,1) —8 & K HALCS™(— Q2 ty) —2{H} M2+ 2H{[e - pM?—s((1-2a)e-k+(1—a)e-T)]

Lc,(—Q?, M2 t)

+2HPe - k(2M?+t—t,) — asHI(Q*+1t,)} 2

+2{26 - k(ta— MOH+(Q2+ t) HE+2[ (1-2 a)se -k

Leg(M?,-Q%1)
2

+e-p(Q%+ty)HY 2(2e -k Hy+sa HY)Lcy(— Q% M2 t)

Ld3(ty,M?, —Q3?t)
—4pa—22 t +2{tyM?H3+st,[ o (Q%+1) —Q*—2 a M2 —t,]H?

a

—2t[e-k(2M?+ Q%+ 1)+ &1 (t—tp) JH = 2[(— (- p M?) +(e-k+ e 1))t +sa(2 &k M?

Ld(t,,M2,— Q% 1)
M2t,

—g-rty)JHE —2{H3+sHI-2&-rH}}Lds(t,,M? — Q%)

+{4[as(Be-k(t—t,)+2e-kt,+2e-T1Q%+3&-rt,)—t,(e-p M?>+s(s-k+e-r))]H
+4[2e-rty(t—ty)+e-k(2t(Q%+1)
+(t=ta)(ta— 2ty))IHS — 2 [ a(Q?+1,)(2 Q%+ 5t,) — 2(Q%t +t,ty) | HE

Ld21(taaM21_Q21t)

—2H3M?t )}
2t,M?

+2{— (Q%+t )M2H3+2[e -1 (Q%+1t,) (t—tp)

+e-k(Q*+ta)(t—ta)+(t—tp)?)IHp—2[e-p M* (Q*+1t) —s((1—a) &1 (Q*+t,)
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22(ta 1 Mz' - Qzlt)

Ld
—e-k(Q*+ta—(1-3 @) M?)JHR+S[(1- a)(Q%t+taty) — a (Q*+1,)*JHE} VET

2sa(Q%+2t,) HALdyy(t,,M2,— Q% 1)
+
ta

+{24g-pM?H2+ 18M2H2—6 s[t—t,— a (3 Q?

Ld,g(ta, M2, — Q% 1)
M2t,

+2ta ) JHE =12 e -k (3t—2t,—ty) +&-1 (Q%+1,) JHE}
+{8e -k ta(ta—)HF — 4(Q%t +t,tp) HT
+8[e-ks(t;—t)—ae-ks(M2—2t+2t,)

Lds14(ta, M2, — Q% 1)
—&-p(Q2t+1t,ty) JHY FVE
a

+{4e-k(t—ty)’Hi—4s[(e-k+e 1) (t—ty)

a1dta, M2, — Q% 1)
M2t,

Ldsoot,,M?,— Q2 t Ldssdty,M?,— Q2 t
y 322(&1t Q )—4as(s~k+s-r)Hﬁ 344(:;1t Q ).
a a

Ld
—a(2e-k+e-1)(Q%+ty)JHE—2 as(Q%t+t,t,) HY} +4(1-a)se-kHE

(46)

E. The box diagram in Fig. 3.14
The result of Fig. 3.14in Ref.[15] named “opposite box), can, again, be split into divergent and finite pieces:

2s[ —iee\ [N 1 c c
_1@®aZ> e L A(=2) ZLA(=1) 4 A(0)
A=T G t( S )( 2 | am 62A14 AL AT (47

The term proportional te/€? reads

2 e pH (ta—ty) (HE—H3) (t,+tp) H3s
AL D= e DT Ty [(a — (1~ ))(Qt+1,ty)

Q?%t+t,t, Q?%t+t,ty 2(t—t)% (t—tp) 2 (Q23t+1,ty)
X (% (tattp) T taty (tattp) =4ttt — (ta—tp) (2(t—ta) *(t—tp) >+ (Q* t+ta tp)(tatp—t?))]

2H3
T g (T (1) Gttt ) e K (L) ()

st - —2&-pHEM2Q? (t,—tp) . HEM2Q?s (t,—tp)
oD (T 2 (@) (QPtr taty) | (QP+tn) (QP+ 1) (Q2 L4 ty)
. (H2—H3) Q2 (2+t2—t (ta+tp) + Q% (tat+tp—21)) 2H3Q?

(Q%+t,) (Q%+1tp) (Qt+t,ty) (Q%+1t)2 (Q*+1t,)2 (Q%t+1taty)

X[e-K(Q%+1tp) (Q* (ta—ty) + Q% (2 ti+taty—th+1t (th—3ty)) +1ta (tA+ 1t (ta+1y)))

+e-(k+r) (Q%41,) (Q* (th—ta) + Q2 (2t + taty—t3+t(ty— 3tp) +ty (t3+th—t (ta+1p)))) ][ (Q?)

(H}—HD (Q*+M?Q°—t)) 2 pHR[2+Q%(t+t—ty)] H2s
(Q%+1,) (Q%t+t,ty) (Q%+1t,) (Q%t+t,ty) (t—t)2 (Q%+1y) (Q%t+t,ty)
X[ ty(QA+12ty) —t2(t—t,)%+ Q2 (—t3+12 (ty +1p) Htta(ta,— 2tp) 12 (t,—ty) + at? (t+1y,))]
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a
2H,

K (t— 6. M202(02— 4 242, .3
) (12 Qa1 KT (@ MIQUQ )+ QT Q7+ 1)

(H3—H2) (Q*+M2Q2-tD)
(Q%+1p) (Q%t+1t,ty)

+e- (K1) (Q%+1ty) (12 (t+1a)+ Q% (t, (ta—tp) +t <2ta+tb)—t2))]] (—ta)f+|

2¢-pHR[tE+ Q% (t+tp—ta)] HZs
(Q%+1p) (Q%t+t,ty,) (t—tp)% (Q%+1p) (Q%t+1,ty)
+Q% (3 —1% (1, +1p) + L th(2ta— ) + tf (tp—ta) — (1— @)t} (t+14))]

[—(1— @) tp(Q*+1t3t,) +t3(t—t,)?

2 Ha

(k — 61+ M202
) (@A (@t T (TR @R

X(Q%—tp) + Q% ty+ Q2+ 1t)) + & K (Q%+1y) (7 (t+1p) + Q% (ty (th—ta) +t (2t +ta) —t2))] { (—tp) <. (48)

Thecr /e term is rather simple since we kept only the first terms in the expansion of powers-i§€ {, while the logarithms
are combined with logarithms from the finite term, leading to significant simplifications:
sH a(t—tp) —(1-a)(t—ty)] 4He-k(Q*+tp)+e-(k+r)(Q%*+t,)]

AL =
(t—ty) (t—tp) (Q%+1,) (Q%+1p)

(49

Finally, the O(€®) term for this opposite box diagram reads

2s[a(t—ty) —(1-a)(t—t) 1H] 8[e-(r+k)(Q*+ta)+e-k(Q*+1p)]H}
(t—ta) (t=ty) (Q*+ta) (Q*+1p)

0)_
A=

N 2s[ae-(k+r) (Q2+ta) (t—tb)+(1—a)s-k(Q2+tb)(t—ta)]Hﬁ
(t—ty) (t—tp) (Q%+1,) (Q%+ty)

Ld3P(ty,t,, — Q% 1)

M QL L) {(HF—H3) M2 [3(Q% +tat) + MP(ta+ty)]
a'‘b

+2H8[e-p M*(t,—t,) —3s(Q?t+t,ty)(ae-k+(1—a) e-(k+T))]
+HE[£-1 (ta— 1) (2Q*+ Q2(4(ta+ty) —5t) = 2t(ta+tp) + 2(ta+tp) *— 3, ty)

+(e-kte-(k+r)) (4tQ*+Q2t(9(t,+1,)—10t)— 2t%(t,+tp)

a

H:s
+ 2L (3 5~ taty) + Btaty(tat )] — ——[(ta= 1) (2Q* 7QPt+4Q(ta + 1) + 2(t —ta— tp)*— 3taty)

—3[a—(1-a)[(Q%t +1t,5tp) (2Q%+ ta+1p)]} — 3. Qs [a(Q%+ty) = (1—a)(Q*+1p)]
e P M2(Q2 ) (Q2+ty) : "
- 2HpQ" [e-K(AM2+3 (Q%+1,))(Q%+1tp)?+e- (K+T1)(AM2+3(Q%+1,))(Q%+14)?]
M2 (Q+12)? (Q%+ ;)2 : ’ ’ :
HEQ?s

- . 2 2 2 _
|V|2(Q2+ta)2(Q2+tb)2(Q2t+tatb)[8 (L Ga(@ ()

+2(1—a)t;M2) +e- (k+1)(Q%+1,)% (6 (1—a) (Q®+ty) (t—ty) +2at,M?)] log(Q?)
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(H3—H}) (2t—t,—ty) HY

. 2 —
2(t—ty) (t—tp) i M2 (t—t,) (t—tb)[s (kM ~ta)

a
&

2M2? (t—t5) (t—tp)?
+3t(ta+tp) — 22— 262 t,tp) + (1— @) (— 4t3(ta+ ty) + talp(ta+ ) 2+ 12T+ 6t b, + 7t2)

—6t(t—t,))—e-k (M2(t,—t,) +6t(t—t,))] + [t(ty,—ty) (4t—21t,—2t,)Q%—t?

—t(3t3+ 52ty + 5t ot2+ 3t3) + Q2(— 63+ 7t(t,+ tp) + tatp(tattp)

—t(3t2+ At ty+3t2))) — o (— 4t3(ty+ty) + taty(tat tp) 2+ 272+ Bt b, + 7t2) — t(3t3+ 5t2t, + 5t,t2+ 3td)
HE

M? (t=ta)? (t—tp)? (Q°t+taty)

X[e-pM2(t—t,) (t—tp) (ta—ty) (Q%t+t,ty)+e-kst(t—ty) 2M2t, (1—a)(t—t,)

+ QA(— 63+ Tt2(ta+ tp) + taty(tat tp) — t(3t2+ At ty+ 3t2)))] —

+6a(Q%+ty) (t—tp) ) +e-(k+r)st(t—tp)(2M?t, a(t—t,) +6(1—a)(Q*+1t,)(t—t,)?) ( log(—t)+ 2(Tt_—t;

HZs Ha
+ ML) (OPT L) [M2(Q%+1,)(ta—t+4at)—6ty(t—t,) (t,+ aQ?— (1—a)t)]+ v (t—ta)FEQZHa)Z

X[e-TM2(Q%+1,)2 +6t,e-1r (Q%+1t,)°+61t,e-k(Q2+1,)(Q?+t)+4e-k M3 (Q%—t,)(t,—1)]

HY
’ M? (t=t2)? (Q%+1,)? (Qt+t,ty)
+6(1—a)(t—t))ta (Q*+ta)*+se-k (2 M [ at(Q%+1)*— Q¥(t—t,)*— 2aQ?(t—ty)(t+2t,)]

[e-p M2 (t—t,) (Q%+1,)%(Q?t+t,ty)+se-r (2aM?t

+6(t—ta)[ta(t—t) (Q%+1to)2— aM2(Q*t+1t3)])] [ log(—t,)

H3—H2 H3s

&

" 2(tp,—1t) " 2M? (t—1t,)% (Q%+tp)

[M2Z(Q2%+tp)(t—tp—4(1— a)t)— 6ty(t—ty) (at—t,

a

H
~(1-a)Q)]+ Mz(t_tb)‘;Qzﬂb)z[—s-rM2<Q2+tb>2—6tbs~r(Qz+tb>2

HE

+6t,e-(K+1) (Q%+1tp)(Q%3+1t) +4e- (k+r) MA(Q%—ty,) (t,—t) ]+ M (1 (P (P Lty

X[—e-pM?(t—tp) (Q%+1t,)? (Q?t+t,ty)+se-r(—2(1—a)M?t
—6a(t—ty) ) t, (Q%+tp)?+se- (k+r) (2M?tp[(1— a)t(Q?+1tp)*— Q% (t—t,)2—2(1— a) Q% (t—t,) (t+21) ]

+6(t—tp)[tp(t—tp) (Q%+ 1) 2— (1— a)M2(Q*t+1t3) )] { log(—ty). (50)

We have cast all our results féx,, into a form which manifestly exhibits the antisymmetry under the exchangpaoﬁa

F. The pentagon diagram in Fig. 3.13

The result for the pentagon diagram in Fig. 3.13 is much simpler than one might expect. The reason for this is the fact that,
in contrast to the box diagrams in Figs. 3.12 and 3.14, the integrals depend upon the largesswhia the high energy limit
they can enormously be simplified. As before, we separate divergent and finite pieces:
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(51)

The divergent contribution has the form:

1
2)_
ALz Y= T

H3
HE

taty {H_%_Hﬂ_m# 2H2

ﬁ-la— — € — €
+E((as) (~(-a)s) )+{t(Q2t+tatb) t tta+Q2t+tatb

s-kQZ_s.(k+r)taH

th Q%+t, =ty

() tytp H& H2| 2H2 2HY  |e-kty e-(k+r)Q? ()
: HQ2t+t t)lta ol tth  Q2t+t |t Q%+t b
. taty H3 H2 2H3 s.ktb+s-(k+r)ta} R Q2 [HE H2
t(Q%t+tyty)lta Tl Q%t+t t,l -1 t—1ty Q%t+t tylta T
2Q%H2 | ek e-(k+r
T A2 - 2. T (2 : Q@7 (52
Q%t+t,ty| Q%+t, Q%+t

whereas the finite piece reads

tat H H$ A .
g%emti t—T}[Ld (ta,(1— ) s,— Q2 — )~ Ldd(ty, — @S, — Q2 (1— a) )~ LdI™((1— @) S,1,t,)
. 2Ha . 2H2 . taty
+LAg"(—astty)]- Ld otar(1-a)s,—Q% —a9)+ - Ldo(tb, $,-Q%(1-a)9)+ HQ2t4tuty)
at‘b
H3 H2 2H2 .
X H—E} m[s.k(Q2+tb)+s.(k+r)(Q2+ta)] Ld3P(t ty ,t, — Q2). (53)

The counterpaer of the pentagon graph in Fig. 3.13 can be obtained in two different ways. In one method, we follow the

substitution described after ER6) and simply interchange quark and antiquqrelea Alternatively, we start from Fig. 3.13
and perform the crossing{-u~ —s) (an additional minus sign comes from the color antisymmetry irt tfeannel. In the

following we present the su 3+ A;3. In order to demonstrate the cancellation of the-ttependence, we combine the first

term of Eq.(52) with the first three terms of Eq53) (and their counterparts iKB). The results contain a term proportional
to cr/e:

[IN((1-a)s)+In(—(1—a)s)—In(as)—In(—as)], (549

H HE
ta tp

t
and a finite piece,

tp H2 4+, H2
t(Q%t+t,tp) L2

(In((l a)s)—In(—(1— a)S))z——(ln(aS) In(—as))?+(In(—t,)+In(—tp) —In(—1t) = IN(Q?))(In((1

a

—a)s)+In(—(1—a)s)—In(as)—In(—as)) |+ —

1 1
E(In(as)—ln(—as))z— E(ln((l—a) s)—In(—(1—a) s))?

—(In(1—a) s)—In(—as)) (In(— (1—a) )= In(a s))+ (N(Q?)— 2 In(—ty)) (IN((1— @) S)+In(— (1— a) 5)

(In((l a)s)—In(—(1—a) s))? —E(In (as)—In(—as))>—(In((1—a) s)

—In(as)—In(—as))

—In(—as)) (In(—(1—a) s)—In(as))+(In(Q? —2In(—ty)) (In(as)+In(—as)—In((1—a) s)—In(— (1— a) S))
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2

1+ =
ty

ty H3+t, HE

22— | Li
t(Q%t+1,t,)

QZ
+_
! t

a

1, 1, t t HS
+ =In“(—tp) — zIn“(—ty) +In(—ty)In—+In(—t ) In—| —4—
2 2 ty ta

—Li, T,

. t . t
—Lis| 1——|+Liy| 1——
tb ta

77'2 i
F—le

2

Q
+_
1+ T

2

Q
+_
1+ 3

X

H3[ 72
+4 T[——Li2

tty| 6 } (55)

We can easily observe that the logarithmssicancel out. A(O)g4 (—t,)"€
Note, however, the nontrivial phase structure: as we have ALY = - 2
discussed after Eq25), such a phase structure is expected, (4m)="¢  €uv
and in the double-Regge limit,Q?<M?<s) it will lead to

the anticipated decomposition. Finally, we mention that, UV
when adding the two pentagon graphs, the remaining terms A =-—
in Egs.(52) and (53), that do not depend 08, are simply

multiplied by a factor of 2.

CF! (61)

A(O)g4 ( - ta) oe

(4m)%"¢  €uy

Ce. (62)

The poles inAg and Ag, coming from the lower vertex cor-
rection, as well as the gluon self-energy to Ag, can be
IV. RENORMALIZATION compared to standard textbook results.

In this paper. the Fevnman gaude is adooted in all calcus In above formulag, the strong coupling constant denotes
Paper, y gaug P e unrenormalized one, the bare coupling. In order to per-

Iat|0n§. In qrder to regularlz_e the singularities, we have use orm the usual renormalization, we make the replacement:
the dimensional regularization procedure. At this stage, our

results contain both infrared and ultraviolet singularities:

standard renormalization will remove the ultraviolet singu- 4_, Zlg““sﬁg 1— ﬁﬁo 1 ye+log(4m) |+ .. }
larities, whereas the infrared singularities will cancel only in 22\/2—3 ' A €uv '
the complete NLO result for the photon impact facfb6]. (63

In this section, we will perform the renormalization and use
the modified minimal subtractiorlMS) scheme. In order to whereg,=(%N.— 3n¢), andyg is the Euler constant. In the
demonstrate the cancellation of the ultraviokepoles, we MS scheme we have

first list the ultraviolet divergencies of our diagrams in Figs.

3.1 and 3.4-3.11the box diagrams in Figs. 3.2 and 3.3, the a
pentagon graph in Fig. 3.13, and the box diagrams in Figs. Z1=1=7—
3.12 and 3.14 are ultraviolet finjteOur analysis leads to the

following results[deviating from definitions in Eq(16) we

S
a

1
(Ne+ CF){E —vet |09(47T)}, (64

now include the coupling constagi: Z,=1— &CF i— ve+log(4m) |, (65)
47T EUV
(O)yd (_4\—€
gV: A" (- 3NC’ (56) as (5 2 1
(4mp e e 2 S L | P e

(66)
oy AQg* (—t)7¢ 1 o .
ANV=——— , (57) for the vertex renormalization, the quark wave function
(4m)? ¢ ewv 2Nc renormalization, and the gluon wave function renormaliza-
tion, respectively. Finally, we add the quark self-energy dia-
A@g4 (—t)~€ 3N, grams for the external legsot shown in Fig. 3

(58

uv
A5

(4m)%~¢ €y 2 AQg* cp

AYY —_—
(47)% € €uv

quark self-energy”. — (67)

o AOgt (—t)7c 1

Ag'=———— : (59)
(4m)%2~¢ ey 2N

It is easy to see that in this way all ultraviolet divergencies
cancel. In particular, the ultraviolet divergences in Figs. 3.10
and 3.11 exactly cancel against each other as expected, simi-

, (60) lar to the situation in the NLO calculation Qf*—>qain the
e"e” annihilation process.

Ag* (—t)~¢

(4m)% "¢ €uy

5 2
uv “N.— =
3NC 3

7+8+9° Ng
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V. CONCLUSIONS S1r
1
Led™(pZ,515) =In—.. (A1)

In this paper, we have calculated the high energy limit of 2

the process;z*q—mﬁq in next-to-leading order, and from
the results we have extracted the NLO corrections to the For the three-mass triangle we have the following func-

coupling of the reggeized gluon to the vertgk—qq. This  tion:
calculation represents the first step in the computation of the
NLO corrections to the photon impact factor. These NLO L 2 2 _ 1
corrections will allow to perform a complete NLO analysis Co(P1,P2.S12) —
of the BFKL prediction for the scattering process y*
—y* y* at high energies.

In this paper, we have listed the results of all one loop +2Liy(a™)—2Liy(a")
diagrams. Using dimensional regularization, we have carried
out all loop integ_rations, and.our f!nal results are expresse%th the definitions
in terms of logarithms and dilogarithms. We also show the
explicit dependence upon the helicities of the photon and the Ag=—pi—pi—s2,+2p2p2+2pis;+ 2p3ss,, (A3)
quarks. After renormalization our results are free from ultra-

- (1—a+>
In(a*a™)In

5

: (A2)

violet divergencies, but they still contain infrared singulari- 2 2

. : . ' . +p5—piEV—A

ties which will cancel once all NLO pieces of the photon at= PP 3 (A4)
impact factor have been calculated and put together. 2515

We have not yet attempted to combine the contributions ) .
from the Feynman diagrams into a single compact expres! € bzoxes depend on the virtualities of the externz;l legs
sion. The results for the individual diagrams are sufficientlyPUt P2=S129 and on the invariants;,=(p1+p2)®, Sz
complicated and lengthy, and we found it useful to first list=(P2+Ps)® In the case of the one-mass box, with only the
them separately. A closer investigation of the sum of allfourth leg having a virtualitys; »3# 0, we have the function

diagrams will be presented in a forthcoming paper. This in-

im
cludes important consistency checks as well as investigations Ldg " (S12,523,5129)
of several special kinematic limits. s s
Note added in proofShortly before this paper was com- = |_i2( 1- 222 Li,| 1— ﬁ)
pleted, a short papethep-ph/0007119 by V. Fadin, D. S123 S123

Ivanov, and M. Kotsky appeared, which reports on a similar Sy Sy

calculation of they* —qq vertex. However, the results pre- +in—In— -+ (AS5)
sented in that paper are written in terms of one-dimensional, 123 =123

two-dimensional, or even three-dimensional integrations=q, the box with the two adjacent legs “1” and “4” being
which have to be performed. We therefore feel, at this stage,_shell (pfqﬁo andpﬁ=8123¢0), we have

unable to make any comparison between ours and their re-

sults. Ld§(S12,S23, pi ,S123)
2
. S12 . P1
ACKNOWLEDGMENTS =Li,l 1— S_ —Liy|l 1— S—
123 12
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“Zukunftige Entwicklungen der Teilchenphysik,” and by Finally, in the case of the opposite box wheré+0 and
the TMR-Network “QCD and Particle Structure,” Contract pi:Sm;&O we have
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LdgP(s12,523, p% +S123)

APPENDIX A: BASIC FUNCTIONS ) ( S12 _ 523) ) ( p%)
) ) ) ) ) . :L|2 1__ +L|2 1__ _L|2 1__
In this section, we define some basic functions, which are S123 S123 S23
closely related to scalar integrals and are built up from loga- 2 2
rithms and dilogarithms. The functions are defined in Ref. —Liz(l— 2] 4Lyl 1- @) +In2In2.
[15]. For convenience we list them here. S12 $12S23 S123 Si123

The triangle functions depend on virtualitiqu% of the (A7)
external legs, which we denote byp?, p3, andps=s;,. In
the case of the two-mass triangle, where the second leg iBhe pentagoriin our case it always has one virtual external
on-shell,p§=0, we have only one simple logarithm: leg, péa& 0) will always be expressed in terms of these box
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functions, since it is basically calculated in terms of boxes, - 1, -
introduced by removing propagators from the pentagon.  LCis(P1,P2,812)= 5 [P1Lca(p2,Pi,S12)
APPENDIX B: MORE FUNCTIONS +psLey(p5.p3.510)], (B7)

In the following, we give a list of functions appearing in
our calculations. These functions appear in the tensor decom-_c,¢(p?,p3,51,) =
position of the loop integrals and will recursively be ex-
pressed in terms of the basic functions we introduced in the
previous section.

2p1p2512LC13( p1 ,pz 1S12)

1 S
4 2_ .2 12, 4
- g( P1(S12+ P2 = PDIN— +pa(Si2
P1
1. Functions for the two-mass triangle

Here we list the functions that are needed in order to +pi- p2)|n +2p1P2312> (B8)
express the tensor integrals of the two-mass triangle. The p2
invariants are explained above;
2m, 2 Lcas(P2,p2,510) = 2pps LCos(p?,p2,510)
cs™(p7,S1) 3s{P1:P2:51 1P2S12L-Cos(P1,P2,S1
(Pl s =, (B1)
S12— P1 <
6 2_ 2 12
= za| P1(S12t p2—p1)In—
S piLciM(pF 510 —1 60( pi
(pl 1512) = 2 ’ (BZ)
S12— P1 . )
+pa(Si2tp1— pz)'”p +pip3si
2| ~2my 2 i 2
p1Lcs(p1,S12) —1/2
5"(p% 810 =~ A : (B3)
127 P1 X (p2+ p§+slz)/2> : (B9)
2. Three-mass triangle functions
In the tensor decomposition of the three-mass triangle the 3. Adjacent box
following functions appeafthe Gram-determinanf\; is For the box with two adjacent massive external legs, we

given in Eq.(A3)]: use the abbreviation

y 1 Ay=25, (S125— S12) (S12— P5) —S15503).  (B10)
Lcl( pl ) p2 !S]_Z) = A

2p1|np— +(pi+ps- Slz)ln_

1 pz With this we have the following functions related to higher
dimensionial scalar integrals:

+pi(S12+ P3— PHLCH(PL.P3.512) | Ld;s(S12,523,PF ,S129)

2515573

(B4 == A, Ld8(812as231p§13123)
Lcy(p? 2sz)=i 24 2 s, P22 4 2 2(p? 1 Pisizs
2 pl’pZ’ 1 2A3 pl pZ 12 p2 pg pZ pl + E 3123+ pl 523 2 LCO(pi!SZSlSIZfS)
S12
—p+siLey(pi,p3,81) + P3Pl (B1D)
+p5+Ssi)ley(ps.pi.si) Ld,s(S12.523.P7 5129
2

s So3 S S p;. s
—pip5Lco(pi.p3.512) |, (BS) _ _ S12%3) % 22y 512|n£3_ Sp22

3A4 S1o 2 p%

. S1 +515523L.d15(S12,523,PF 5129
—2p1+(p3—sp)in—
2

2 .2 1
LC3(pl ’ p2 1512) = ZTA?,

2p§$123
Leag( p% +523,5123) |

(B6) (B12)

+piLco(pi. 3,51 +3pi(—pi+p3 .

2
S123t P1—S23—

+s19)Les(p?,p3,519) |,
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2
Ld3s(S12,S23,P1,S129)

_ S12523
5A,

24" s, T 12" s,

—=In—+
247 p2

2
+ 515523l d25(S12,S23,P1,S129)

2 2 4
S23 S123  S12 S123 P1 Si23 S1252
12
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In the tensor decomposition of adjacent box integrals, the
following functions are used:

Ld1(5121523-p§ ,S129) = — [Ld15(S12,S23, pf 1S123)

+Lco(p?,823,5129 ], (B14)

2
Ld21(S12,S03,P3,S129 = — 3—12[3 Lds(S12,S23,P7,S129)

ZpiSlZS
+| S1o3+ P —Saa— LCas(P%,S23,5129) |-
+LCg(PT,S23,5129) ]
(B13) —Lcy(S93,p2,S129), (B1Y)
2 S123~ S12 2 2 S12° om, 2
Ldox(S12,S23,P1,S129 =2————— [ 3Lds(S12,S23,P1,S129) + LC15(P7,S23,S129) | = ——LCT (P7,S12)
$12S23 S23
5123L 2
+ o C1(S23,P7,S123), (B16)
23
2 p% —S12 2 2 S12 2m
Ldo(S12,S23,P1 8129 = 22— [3Ldy5(S12,S23,P7,S123) + LC15(P1,S23,S123) | = ——LCT (S12,S123)
S12523 S23
p
+ S—Lcl(szsypiislzs), (B17)
23
) 12 5 ) S1o+ p? 2
Ld311(S12,S23,P1,5129 = — 57[5 Ldss(S12,S23,P1,S129) T LCos(P1,S23,5129) | + Lca(S03,P1,5129)
12
S23 2
+ S_ch(p1,523,5123) ; (B18)
12
pi —S12 p‘11
Ld314(S12,S23,P%,S129 = 12 > [5L03s(S12,523:P7,S129) + LCos(PT,S23,5129 1+ S—L03(323, p?,S129)
12523 12523
2
S1ot P1 S12
- LCa(PF,S23,5129) — 5= L€ (S12,5129), (B19)
S12 253
2 (5123_ S12) 2 2 2
Ld32AS12,S23,P1,S129) = — | 12———5——[5Ld3s(S12,523,P7,S123) + LC2s(P7,S23,S123) ]
12523
2 2
S1581231 P1S123~ 2P1S12 S12
*+S123 > LCa(S23.PF 15129 — g'—cgm( pi.s1)
S$12523 23
S127 S12 S123—2S12
+ slz—szcim(slz S129) + 125 LCo(P},523,5129)
285, S$12523
PiSiot+S12525— $125123 L.
+ Lc (p1.S12) |» (B20)

253,
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(S12—-p})? pi—2s;,
Ld3ad(S12,523,PF,S129 = — 12———[5 Ldss(S12,523:P35129) + LCos(PF,S23,5129) ]+ PT ———LCo( P ,S23,512)
S75553 S12523
p—si S12— P} S
1 1 12
+p3 — LC3(Sz3, PT.S129+ SlZ—ZLCEm(51213123) + Z_chm(51213123) - (B21)
S12523 2853 S23
4. One-mass box
For box integrals with one massive external leg we use the abbreviation
A= 251553125~ S12~ S29)- (B22
The functions we are using for tensor integrals are
1m 2515823 1,
Ld15(S12,523,5129 = — AIm Ld5"(S12,523,5123), (B23)
4

S12523 S123 S123
Ld38(S12,523,5129 = = ——3| S12523L018(512,523,5129) + Spdln —— +Spdn——|, (B24)

34, S23 S12
Ld1™(S12,523,5129 = — LA19(512,53,5129), (B25

1

Ld37(S12,523,5129 = — 3_12[6 Ld38(S12,523,5129) + 523|-C§m(523:3123)] ) (B26)
Ld%rzn(slzvszsyslzs) = Ldim(512a523:5123) - Ld%rln(512152315123)- (B27)

[1] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, ZﬁkEp. Teor.
Fiz. 72, 377(1977 [Sov. Phys. JETBS5, 199(1977]; Ya. Ya.
Balitskii and L. N. Lipatov, Yad. Fiz28, 1597(1978 [Sov. J.
Nucl. Phys.28, 822(1978].

[2] J. Bartels, A. De Roeck, and H. Lotter, Phys. Lett3&0, 742
(1996.

[3] S. J. Brodsky, F. Hautmann, and D. E. Soper, Phys. Réd6,D
6957(1997; Phys. Rev. Lett78, 803(1997.

[4] J. Bartels, C. Ewerz, and R. Staritzbichler, Phys. Letd32,
56 (2000.

[5] A. Donnachie and S. $dner-Rembold, in Proceedings of the

UK Phenomenology Workshop on Collider Physics, Durham,

1999[J. Phys. G26, 689 (2000], hep-ph/0001035.

[6] S. J. Brodsky, V. S. Fadin, V. T. Kim, L. N. Lipatov, and G. B.
Pivovarov, Pis'ma Zh. Esp. Teor. Fiz.70, 161(1999 [JETP
Lett. 70, 155(1999].

[7] V. S. Fadin and L. N. Lipatov, Phys. Lett. 89 127(1998,
and references therein.

[8] M. Ciafaloni and G. Camici, Phys. Lett. B30, 349 (1998,
and references therein.

[9] A. H. Mueller, Nucl. PhysB335 115(1990; N. Nikolaev and

B. G. Zakharov, Z. Phys. @9, 607(199)); 53, 331(1992; S.
J. Brodsky, P. Hoyer, and L. Magnea, Phys. Re\6%) 5585
(1997; F. Hautmann, Z. Kunszt, and D. E. Soper, Phys. Rev.
Lett. 81, 3333(1998; D. Yu. Ivanov and M. Wasthoff, Eur.
Phys. J. C8, 107 (1999; S. Gieseke and C. F. Qiao, Phys.
Rev. D61, 074028(2000.

[10] V. S. Fadin, R. Fiore, and A. Quartarolo, Phys. Rev5@Q
2265(1994).

[11] J. Bartels, Nucl. PhysB175, 365(1980.

[12] J. Bartels, S. Gieseke, and C.-F. Qi@o preparatioi

[13] R. Mertig, M. Bchm, and A. Denner, Comput. Phys. Commun.
64, 345(1991).

[14] z. Bern, L. Dixon, and D. A. Kosower, Nucl. PhyB412 751
(1994, and references therein.

[15] J. M. Campbell, E. W. N. Glover, and D. J. Miller, Nucl. Phys.
B498 397 (1997.

[16] V. S. Fadin and A. D. Martin, Phys. Rev. B0, 114008
(1999.

056014-15



