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A renormalization-scale-invariant generalization of the diagonal RageoximantgDPA), developed pre-
viously, is extended so that it becomes renormalization-scheme invariant as well. We do this explicitly when
two terms beyond the leading order (NNL:©q2) are known in the truncated perturbation se€BS. At
first, the scheme dependence shows up as a dependence on the first two scheme pararaatecs.
Invariance under the change of the leading paran®tés achieved via a variant of the principle of minimal
sensitivity. The subleading parametgris fixed so that a scale- and scheme-invariant Borel transform of the
resummation approximant gives the correct location of the leading infrared renormalon pole. The leading
higher-twist contribution, or a part of it, is thus believed to be contained implicitly in the resummation. We
applied the approximant to the Bjorken polarized sum (BIRSR ath,h:S and 3 GeV, for the most recent
data and the data available until 1997, respectively, and obtaiff€dM2)=0.119"3353 and 0.1133%,
respectively. Very similar results are obtained with Grunberg’s effective charge method and Stevenson’s TPS
principle of minimal sensitivity, if we fix thec; parameter in them by the aforementioned procedure. The
central values foag"S(Mi) increase to 0.12(0.114 when applying DPA'’s, and 0.125 (0.118) when applying

NNLO TPS.
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I. INTRODUCTION (PA’s) which provide a resummation of the TPS such that

the resummed results show weakened RScl- and RSch-

The problem of extracting as much information as pos-dependencé¢l3]. In particular, the diagonal Padgpproxi-
sible from an available QCD or QED truncated perturbationmants(DPA’s) were shown to be particularly well motivated
series(TPS of an observable, and including this information since they are RScl independent in the approximation of the
in a resummed result, was the focus of several works duringne-loop evolution of the couplings(Q?) [14]. An addi-
the last twenty years. Most of these resummation methodsonal advantage of PA’s is connected with the fact that they
are based on the available TPS only. Some of these lattesurmount the purely polynomial structure of the TPS’s on
methods eliminate the unphysical dependence of the TPS omhich they are based, and thus offer a possibility of account-
the renormalization scalgRSc) and scheméRSch by fix- ing for at least some of the nonperturbative contributions, via
ing them in the TPS itself. Among these methods are thé& strong mechanism of quasianalytic continuation implicitly
Brodsky-Lepage-Mackenzig€BLM) fixing motivated by contained in PA's. o
largen; consideration§l], the principle of minimal sensitiv- Recently, we proposed a generalization of the method of
ity (PMS) [2], and the effective charge meth¢BCH) [3,4] DPA'’s which achieves the exact perturbative RScl indepen-

(see Ref[5] for a related methad Some of the more recent dence of the resummed res{dt5]. While this procedure in
ithhs original form was restricted to the cases where the number

of available TPS terms beyond the leading ori¢rO):
~al]is odd, it was subsequently extended to the remaining
ECH-related approachd8], a method using expansions in cases where this number is ed6]. This would then apply
the two-loop coupling parameté8] expressed in terms of to thos_e QCD observasbltlas where the number of such known
the Lambert function10], and methods using conformal t€rms is 2 (NNLOw«;).” In Ref. [16] we also speculated
transformations either for the Borel expansion parametePn Ways how to eliminate the leading RSch dependence from
[11] or for the coupling parametét2]. A basically different OUr approximantsA, and proposed for the NNLO case a

method consists in replacing the TPS by Pagproximants simple way following the principle of minimal sensitivity
(PMS). It turns out that the way proposed there does not

the method of “commensurate scale relatior$], an ap-
proach using an analytic form of the coupling param§gtér
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work properly in practice since no minimum of the PMS RSclQg (symbol “0” is generically attached to the RScl and

equationdA/dc,=0 [see Eq.40) therd can be found. The RSch parameters in the TP8p to NNLO, yielding as the

dependence of our approximants on the RSch parameterssult the TPS

c,=B,1By andcy= B3/ B, of the original TPS is definitely a

problem when the approximants are applied to the low- Sp1=ao(1+ 180+ 1,a). 2

energy observables such as the Bjorken polarized sum rule .

(BPSR at the low momentum transfer of the virtual photon, Here, bothay and the coefficients, andr, are RScl and

e'g'-QSh%?’_S GeV? [17]. RSch dependent. The coupling parameﬁaaslw_ eyolves
In the present work, we address this problem. For thé!Nder the change of the energy scéRSc) Q, within the

NNLO TPS case, we construct in Sec. Il an extended versioVen RSch, according to the following renormalization
A of our approximants, in which the dependence on the leaddOUP equationRGE):
ing RSch parametar, is successfully eliminated by applica-

. 2.,(0)
tion of a variant of PMS conditiong.4/dcy’=0. This pro- da(inQ%c;”, . - )

cedure can be extended in a straightforward way to the cases 3In(Q?)

where more terms are known in the TPS, e.g., the NNNLO

cases available now in QED, but we will not discuss such = —Boa*(1+cia+cPa?+cla’+--+), (3
cases here. In Sec. lll, we apply our approximant to the

BPSR at suchQj, where three quark flavors are assumedWhere Bo Za”d ¢y are universal quantitiegRScl a)nd_ RSch
active, e.g.Q5~3-5 Ge\. While the approximant at this invariand,” whereas the remaining coefficients” (j=2)
stage is an RScl-independent andindependent generaliza- ﬁre dRSgh de%endenht and their r:/alues hcan—on the ‘l)‘h?f
tion of the diagonal Padapproximant(DPA) [2/2], it still and—be use FO characterize .t e RSc - Consequently, in
containsc, dependence comparable to that of the E[H Eqg. (2) the coupling parametex, is a function of the RScl
and TPS-PMS2] methods. Subsequently, we fix the value and RSch
of c5 in our, the ECH, and the TPS-PMS approximants so

that PA’s of a modifiedRScl- and RSch-independeérgorel

transform of these approximants yield the correct location ofrpe NLO and NNLO coefficients in E42) have, due to the

the leading infraredIR) renormalon pole. Thus, in the ap- Rscl and RSch independence $fthe following RScl and
proximants we implicitly usgs functions which go beyond Rsch dependence:

the last perturbatively calculated order of the observable
(NNLO), in order to incorporate the aforementioned nonper- 1 =y, (InQ2)=r,(In Q?) + B, In(Q%/Q?),
turbative information. In Sec. IV we then compare the values
of these resummation approximants with the values for the, _— 2..0)y_ 2 2 2y _ ~(0)
BPSR extracted from experiments, and obtain predictions forr2 2(InQo:ca™) =ri(In Qo)+ Cara(In Qo) = c2 7+ pz, (5)
aS(Mi). We also apply the TPS and various PA methods of
resummation to these values of the BPSR and obtain highevherep, is RScl and RSch invariant. Although the physical
values foraS(Mi). In Sec. V we redo the calculations by quantity S must be independent of the RScl and RSch, its
applying a PA-type quasianalytic continuation for tige TPS (2) possesses an unphysical dependence on RScl and
functions relevant for our, ECH, and TPS-PMS approxi-RSch which manifests itself in higher order terms
mants. We further address the question of higher-twist terms.
In Sec. VI we discuss the obtained numerical results for G2 PR PRSPy
(M) and Sec. VIl contains a summary and outiook. Q2 0 5c® 9@

A brief version containing a summarized description and
application of the method can be found in Rf8]. In con-  All approximants toS which are based on TP&) must
trast to Ref[18], the numerical analysis of the BPSR in the fulfill the minimal condition: when expanded in powersapf
present papeiSecs. IV, V uses, in addition, the most recent to ordera?, they must reproduce TPQ). Further, since the

a,=a(InQ3;cV ,c, ...). (4)

(6)

data of the E155 Collaboratidri9]. full Sis RScl and RSch independent, the approximant should
preferably share this property wiif it is to bring us closer
Il. CONSTRUCTION OF c,-INDEPENDENT to the actual_ value o8 The gen_eralization of the diagonal
APPROXIMANTS Pade approximants developed in Reffl5] possesses full
. _ o RScl independence for massless observables.
Let us consider 4QCD) observableS, with negligible In its original form it is accountable only to TPS with an
mass effects, which is normalized so that its perturbativeydd number of terms beyond the leading orded: ~a').
expansion takes the canonical form Unfortunately, however, QCD observables have been calcu-

lated at most to the NNLO, i.e., at best the T@25is known.
S=ag(1l+rag+rai+rsas+---), (1)

whereay= a(so)/rr. We suppose that this expansion is calcu- 2g,=(11-2n,/3)/4, ¢,=(102—38n/3)/(168,), wheren; is the
lated within a specific RSch and using a spedifiaclidean  number of active quark flavors.

056013-2



SCALE- AND SCHEME-INDEPENDENT EXTENSION OF . .. PHYSICAL REVIEW D 63 056013

. , 5
Therefore, in Ref[16] we have extended the method to the dAéz 2(fin sz(c(zo))}j e )

cases with even numbers of terms beyond the LO, in particu- =0,

lar for the TPS of the typ€2). Since within the present paper dc® @

we are going to apply an extended related procedure to these s (12)

cases 0f5,;, we recapitulate briefly the main steps for treat-
ing a TPS Of the generiC fO”ﬁ[z] . The tI’iCk ConSiSted in where |mp||c|t|y “=0" should be understood asp\‘,‘ag”

introducing—in addition toS—the auxiliary obseryablé since in general this derivative isa3. However, expansion
=5 S, which then gets the following formal canonical form: of this expression in powers of the coupliag (or any a)

- yields
S=(S)?=ay(0+ag+R,a5+Rzag+---), 7)
dALZ/Z]
where FS(O) — —10c,a3+0(ad). (13
2 (0)
R2:2r1, R3=I’§+2I’2,..., (8) 03 Y

This implies that the approximai(®) to S has no stationary

Sis then known formally to NNNLO ¢-a) and/z'ghelnethod (PMS) point with respect to the RSch parameté? , since
can thus be applied, yielding an approximar” to'S. The the coefficient of the leading term in the expansion of the

corresponding approximant t8 is \/A[S%’Z] which has the derivative is constant and cannot be made equal to zero by a
form [16] change of the RSch. Also actual numerical calculations for
various observableS confirm this.
\ /A~S[2 ;2]={Zuo[a(ln 0%:c®,cO, ) Therefore, we will modify the approximai®) so that the
new one will allow us to remove, by a PMS condition, the
—a(ln 63;0(20)’0(0)’ O dependence on the leading RSch paraméfé[ This modi-
(9) fication must, of course, be such that the aforementioned
[=Sg+ O(ag)], minimal condition is satisfied and that the RScl invariance is
preserved. We do this in the following way. We keep the
and it is again exactly RScl invariant. Here, the two scale®verall functional structure of Eq9). However, we replace

Q; (j=1,2) and the factor, are independent of the RScl the single set of RSch parameter (j=2), which we

Q, and determined by the identities inherited from the TPS, by two sets of apriori arbitrary pa-
rameters:}l) andcj(z) (j=2) in the two coupling parameters,
In(Q%/Q3) 1 = — _ 1 respectively, and we also admit new values of the reference
(93 Q(z) =——[by= \Vbi-4b,], a=—r, momentaQ? and Q3
In(Q1/Qq)/  2Bo Vb2—4b
v 122 _ 2.0(1) o)
(10 A ={ala(InQf;cs ,ct, .. )
By=c,—2ry, —a(inQ;c? ¢, .. )}
, (14
- 3 [=Sp21+O(ap) .
b2=—§c§+c(2°)+clr1+3ri—2r2. (11) ) °

The parameters(l) and c{? will be appropriately fixed.

If we ignore all higher than one-loop evolution effects, i.e., if They will turn out to be independent of the RSch parameters
) (0) 2 - . :

we setc1=O=c(2°) in Egs. (10),(11) and replace the two Cj and of the RSclQg of the orlgmal TPS, just like the

coupling parameters in Eq9) by their one-loop evolved scalesQ? andQ3 and the parameter will be.® We will now

(from RSclQj to QF) counterparts, then the approximat requireci”# ¢, in contrast to Eq(9) which led us to the

becomes the square root of f&/2] Padeapproximant ofS. problem (13). This reqLiirzeer;t s nozt unrzlatural, si_nce the
This follows from general considerations in Refg5,16,  forms(9) and(14) haveQi#Q; and Q1 # Qa, respectively.
but can also be verified directly in this special case. TheThe two new momentum scal€y; and the parameter in
approximant[2/2]~é/2 preserves the RScl invariance only ap- Eq. (14) will be determined, in terms ot()'s (k=2,3; j
proximately[in the one-loop renormalization group equation =1,2), by expanding the two coupling parameters in power
(RGE) approximation. series of the original coupling, (4) and requiring that the
Although the RScl dependence is eliminated completelyninimal condition be fulfilled, i.e., that the power series for
by using the approximan(®), there remains a RSch depen- A[Szzlzl coincides with that o (7),(8) up to (and including
dence, i.e., dependence off’ (j=2). It manifests itself to a
large degree due téb,/acy+#0 (db,/ac’=3). In Ref.
[16] we Spegulated that the dependence on the leading RScRparameters(!) andc® will be chosen later in the section, by
parametercy’) could be eliminated by imposing the PMS following a variant of the PMSe{? and ¢’ will be set equal to
condition of local independendsee Eq.(40) in Ref.[16]] each other and fixed in the next sections.
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~a3. For this purpose we use the expansion for thewherep, andp, are the usual RScl and RSch invariants as
general a=a(InQ%c,cs,...) in powers of a, defined, e.g., in Ref2]* [see also Eq(5)]
=a(InQ%;cY,cY,...) asobtained in Appendix A[Egs.

(A?) (A9)] and apply it to as yet unspecified parameters P1=Bo|n(Qc2>//~\2)—r1, (23
Ql, Q2, andck (j=1,2). The resulting expressions, when ©)
introduced into the square of the right-hand side of @4), p2=ra—ri—Ciry+C5". (24)

yield an expansion in powers @af,. According to the mini-
mal condition, it should coincide with Eq7) up to ~aj.
Comparison of the coefficients af) (n=2,3,4) leads to the

Therefore, Eqs(21),(22) show the following: IfcY andc$?
and scy=c{P—c{? are chosen and fixed, then the solutions

following relations: X; and thus the scale®; (j=1 2) are independent of the
RScI (Qg) and of the RSChC((ZO c3 , ...). Thus, we have
at a2: 1=—a(xX,—X,),
’ vam QP=Qf(ct) 60y (1=1,2),
T G N 1
(X=X BoIn(Q%Q3)’ a=——————=a(ct),c;5c;). (25
o (15 BoIn(Q¥Q3)

t a3 2r.=—[(x2—x2)— _ Therefore, our approximartfi4) will be regarded from now

atap: 2n=—[04—x) =~ el —x;) on as a function of onlyc{) parameters K=2; j=1,2):

+ C,]/(X1—Xa2), 16 ALZA (D, cf?;c,c?); .. .). For actually solving the

equations for the scalg3d; andQ,, it is more convenient to
use Eqs(16),(17). For the subsequent use, we rewrite them

4. 2_
at ag:  2rptri= in the following form:

5
— (4= x3) + 501 (4= x3)

e (x1—x5) — 3(x, 8¢5 — x,8¢52))
’ VY2 B(ef?) +y- 7 (5esde;— bs) -~ 1(302)P=0,

1
+50C3 / (X1—X5), 17) (26)
. 1 16c,
where we have used the notations —ryt 5617, y —=Y,,
=Bo(QY/QY), oc=c~c (j=1,, @7
(18) where we use the notations

scy=cH—cP),  sca=c{H—c. (19) 1 2 2
. . . y-=5Bo N5 *In=5|, (28)

Equations(16) and (17) are the two equations which deter- 2 Q5 Qo

mine the two scale®; andQ, (< parameters; andx,) as
functions ofc{)’s (k=2,3; j=1,2). In order to see that these
two scales are independent of the original RSghX and of
the original RSch ¢”’, k=2), we introduce

se=c{N—c{?, c(s)— Se+cel?)  (k=23, (29

X=BoIN(QYR?Y) (j=1,2), (20) Z5=

7
2p,+ ch) 3c¥=27%(c), (30)

where] is the universal QCD scale appearing in the Stevenwherep, is given by Eq.(24). Incidentally, it can be explic-
son equationAl), so it is RScl and RSch invariant. After itly checked that in the special case df’=c{?=c{® and
some algebra, we can rewrite E4$6) and(17) as a system C(al)zcgz)zc(so) Egs. (26)—(30) and (16) recover the old ap-
of equations foix; proximant(9)—(11) of Ref.[16]. _ _
The next question is how to fix paramete’$ andc{’
6Cy (J=1,2). Above all, we have to fix the leading parameters

2pytcp=(X1tx2) + C—%) (21) cY)s since otherwise their arbitrariness would reflect the fact

5
2pa+3pi—2c1p1= (X +XyXo +X3) Cl(X1+X2) “Raczka[20] used the sum of the absolute values of termp.in
for a formulation of criteria for acceptable RScl's and RSch’s in
(ch(l)_ C(2)) 53 NNLO TPS. He concluded that the strong RScl/RSch dependence
= —-—, (22 of the NNLO TPS of the BjPSRwith n;=3) presents a serious
(X1—X2) 2(X1—X, practical problem.
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that the leading RSch dependene., the dependence on and c, and ¢ (<ct andct?). For completeness, the
c®?) has not been eliminated from the approximant. We daPMS-like equation$31), whendcs= 0= 8c,, are written ex-
this by requiring the local independence of the approximanplicitly in Appendix B, to the relevant order a3 at which
with respect to variation o¢(21> and ofc(zz) separately. This we solve them—Eqs(B1),(B2). From there and from Eq.
condition is a variant of the principle of minimal sensitivity (26) we explicitly see that these three equations contain only
(PMS), or a PMS-type ansatz the three unknownsy( , c(zs), and §c,) and the(known)
RScl and RSch invariants, (24) andc,= B1/8,. Interest-

2/2 2/2 2/2 2/2
WlLs ] _ _054%; ]‘ <9ALS ] _ _0"v4%; ] ingly enough, these three equations do not depenasn
et (2)_0_ e ’ (1;:’ PRO) =0= (8¢5 o (=c{=c{). In addition, they do not depend on any other
c3 c 2 higher order parametery” (k=4; j=1,2) appearing irg;

@D =a@n Qic¥ ca.cf, . .. ), except onsc,=c§)—cf?) which
was taken to be zero in EqE1),(B2). Hence,Q; andcy’
(j=1,2) will be functions ofp, andc; only, thus explicitly
RScl and RSch invariant. For simplicity, we want the solu-
tions Q7 andcy’ (j=1,2) to be independent afny higher
order parametec(k‘) (k=3) that possibly appears in our
approximant, therefore we choose from now on also
scy(=ciV—c?)=0. The solution of the mentioned three
coupled equations in any specific case can be found numeri-
cally, e.g., by USINQUATHEMATICA or some other compa-
rable software for numerical iteration. Certainly we have to

Here, “=0" should be understood as~a$" since in gen-

eral these derivatives area3. These two equations then
give us solutions for the leading paramete&? and cgz),
once the values of the subleading parametéj%z(cgl)
+cP)/2 and scz=c{M—c?) have been choseénHowever,
using Eq.(A5) and the fact thaQ” are independent of$’
[see Eq(25)], we can show the following dependence of the
approximant orc$? (at constantscs):

dIn(\/A~S[2 2])=d(c(35))}(af+ afa,+a;as+aj) +0(a;) ensure that the program scans through a sufficiently wide
4 range of the initial trial valueg™, (c$)™, and (5c,)™
Sd(cgs))|a1|3, (32 foriterations, in order not to miss any solution. The solutions
o which result in eitheta|>1 or |a|<1 should be discarded
wherea;=a(InQ’;c¥ ¢, ...) (=1,2) and we took the since they signal numerical instabilities of the approximant

indeé)conventiodaﬂz|a2|. This means that the dependencer|3|> 1= Q2~Q2—see Eq.(15)] or are in addition physi-
oncy” cannot be eliminated in the considered case, not evep, 7 2.2 2.2

: . S table| &| <1 < <Q7).Weh
by a PMS variant. In this respect, the situation is analogouga y unacceptable| | <103 <Q; or Q;<Q}). We have

to the usual TPS-PM£] and the ECH 3] methods. These apparently two possibilitiesi) y_, C(ZS)’ anddc, are all real
two methods (see Appendix € while fixing RScl numbergand thus the intial trial values as well(ii) c(zs) and

_ 0) . .PMS its initial values are realy_ and éc, and their initial values
((EQCOH.QECH Qpg) andc, RSch parametercg?:—>c3™"® or are imaginary numbers§" andc!? are complex conjugate
5™ in the original TPS2), leave the value of the sublead- > 5. 2
ing parametercy there unspecified, with the residuz] de- to each other, as a@; andQy). In both cases, the approx-

pendence of théTPS approximant imant itself turns out to be real, as long @sis real.
If we encounter several solutions which give different val-

d In(Sg]))~d(c3)a;°’(/2, (33)  ues for the approximant, we should choose, again within the
PMS logic, among them the solution with the smallest cur-
where X stands either for ECH or TPS-PMS. Comparing vature with respect te$" andc$?. For such cases, we de-
Egs. (32) and (33), we see that the! dependence of our fine two almost equivalent expressions for such curvature in
approximant could be up to twice as strong as that of theAppendix B—see EqgB4),(B5).
TPS-PMS and ECH methods.
Hence, varyingc§” and c{? parameters in our approxi- IIl. BJORKEN POLARIZED SUM RULE (BPSR):

mant at this point would apparently not lead to any new cs FIXING
insight. For the sake of simplicity, we choose from now on

these two subleading parameters to be equal to each other We will now apply the described method to the case of
the Bjorken polarized sum rul@PSR [21]. It is the isotrip-

cP=cP=c; (8c3=0), (34 let combination of the first moments oveg; of proton and
neutron polarized structure functions
but we will adjust the common parameteylater to a physi-

cally motivated value. 1 ) o " o
With the chosen restrictiof34), the problem of finding Jo dxgi[ 91 (Xgj; Qprn) — 91 (Xaj; Qpn) ]
our approximant14) to the TPS(2) basically reduces to the
problem of solving the system of three coupled equations 1 ,
(26) and (31) for the three unknowng_ [ =B, In(Q;/Q,)] :6|gA|[1_S(Qph)]! (35

where p2:—Q§h<0 is the momentum transfer carried by
SAlso a value ofdc,=c§"—c{?) has to be chosen—see later.  the virtual photon. The quantit$(Qpj,) has the canonical
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form (1). It has been calculated to the NNL[@2,23, in the Q? 1

€13,
MS RSch and with the RSCI)0 Qph The pertaining values Bo |n_J:_+C1 In it
of r; andr,, for thoseQ? ph Where three quark flavors are Q% a, 1+ca;
assumed activen¢=3), e.g., atQ> ph=3 or 5 GeV, arer, (i) 4
=3.5833[22] andr,= 20. 2153[23] so that N f Y g (C3"+C3X)
0 (1+cX)(1+cyx+cPx®+caxd)
S[z](Qgh;QS:QphanAS!CgAS 1
€139
=ag(1+3.583%,+20.215%3), (36) ———c4ln )
ag 1+cqag
with yes
aod (02 +c3 x)
X
ap=a(nQZ;cMSc¥s ..), n=3, c¥S=4471, 0 (14 e (L4 Coxt ciSx2+ i)
cNMS=20.99. (37)
(j=12. (41

The constant|g,| appearing in Eq.(35 is known from
B-decay measuremeniig4] (it is denoted there dgi/gy|)

In Eq. (41) we |gnored termscc(” and higher since they are
not known @ is not known, either Stated otherwise, we

Solving the coupled system of Eq@6) and (B1),(B2) for  Set here and in the rest of this secti@f!)=c(?)=c}"*=0
the three unknownyg_, ¢, and dc,, as discussed in the for k=4, i.e. Theg functions pertaining to the approximant
previous section, results in this case in one physical solutioAre taken in the TPS form to the four—loop order. Hence, the
only? only free parameter in the approximaftt ¢ (14) is nowcs

[cf. condition (34)], all the other nonzero parameter@f(,

e, ) have been determined and arg- and RScl- and
RSch-independent. Further, any effects due to the mass
thresholds ;=4) are ignored in Eq41). These effects are
suppressed because the difference of the two integrals in Eq.
c§7=3.301, oc,=—3.672-c5)=1.465, c}’=5.137. (41) tends to cancel them. Note that the scales appearing in
(40 Eq. (41) (Q,~0.6-0.8 GeV,Q,~1.2-1.5 GeV,Qu=Qy

~1.7-2.2 GeV are all regarded to be below the threshold
(ns=3)—(n;=4), i.e., all the active quark flavors afal-
mos) massless.

The main question appearing at this point is which value
of c3 (=c(31)=c(32)) should we choose in our approximant?

The two most obvious possibilities a=0 or c;=cjy>
(=20.99). The decision is far from being numerically irrel-
evant. If choosing forap=a(In Q3;c5",c¥) at Q%=Q3
=3 GeV a typical value, e.ga,=0.09[= a¥>(3Ge\?)

~0.283, a¥S(M2)~0.113], we obtain the following re-
summed values for the BPSR

|gal = 1.2670+0.0035. (39)

1 Qi -
y_ szﬁoan—% =-1514 (=2=0.330), (39

Parametey , , defined in Eq(28), is then obtained from Eq.
(27). The resulting scale®,, Q, are then 0.767, 1.504 GeV
(Q%=5 GeV?) and 0.594, 1.165 GeVy;,=3 GeVf). We
stress that these results are independent of the valug of
(34) and ofc, and otherc(k” (k=5; j=1,2) in the approxi-
mant A g (14), and are independent of the choice of RScl
Qo and RSch¢ , k=2) in the original TP$[2] . In TPS
(36), the choice WasQo Qpn and c§'=c}® (=4.471).
Knowing Q; and c(') (j=1,2), for the actual evaluation of
approximant(14) we need to assume a certain value &gr
(37) (at RSclQy). The value ofw is obtained from Eq(16)
(a=0. 3303) the value of the coupling parametaf

=a(InQF:c¥ c3,6,.60, ...) (1=1,2) can be obtained, for 7 \/F
example, by solving the subtracted Stevenson equéfi@n VAZ “(c3=0)=0.1523, V. Ag “(c3=cy"®)=0.1632.
(42)

6
Formally, we get wo solutions, but they give the same approxi- The latter is 7.16% higher than the former. The correspond-

mant, since the second solution is obtained from the first by
Q.—Q, and c§M—ct? . Further, if ignoring in PMS conditions ing resummed values of the ECH] and TPS-PMJ2] are

(B1)-(B2) the denominators, one arrives at two additional solu-
tions, both having® = (6p,—7c2/4)/7; however, one can check

that also the denominators are then zero and the derivésige ’In the whole paper, we ignore any quark mass effects, except
reduces to 2(Zc2—1501y,)53/(3y,) which turns out to be finite later in the evolutior‘vzg"s(Qph)»—>ozs S(MZ) where the quark mass
and nonzero. thresholds are significant and accounted for.
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AECH(C3:0):O_1535’ AECH(CSZC?I\’A—S):O.]_SQ& renormalon poles, i.e., the positive and negative poles of the
(43) Borel transformBg(z) of the observable closest to the origin
(for a review on renormalons, see RE25]). In the case of
the BPSR, these two locations are known from laBge-
o o - (largeny) considerationg26,27): z,5e=1/8¢ (IR1), Zyoe=
A5 (c3=0)=0.1528, Ag"(cz3=cy°)=0.1588. —1/B8p (UVy).
(44) Which of the two leading renormalons is numerically
more important in the BPSR case? In the simple Borel trans-
form of the BjPSR, withMS RSch and RScQq=Qp, (¢

The latter valuegfor c;=c¥S) are 3.79%ECH) and 3.96% =~ 3). the ratio of the residues of the JRnd UV, poles in
(TPS-PMS higher than the formetfor c;=0). Thus, the e largeBo approximation is 2exp(10/3)56>1 [26,25.
sensitivity of our approximant to the variation ¢f is in the | s would suggest strong numerical dominance of the IR

considered case almost twice as large as for the ECH and€" UV;. However, when using there the V scheffi¢ i.e.,

L : : MS with RSclQy= Q,nexp(—5/6) (=Qgch), this ratio goes
TPS-PMS methods, as anticipated in E¢2),(33) in the <07 ~ph AT !
previous section. The true value of in A5 should be down to 2. This would suggest that the YWis avisIR,) is

equal tops, i.e., the third RScl and RSch invariant of the not entirely negligible. The authors of Ref7] used the

: : B 't Hooft RSch and varied the RScl in such an approach
BPSR’. but th'.s value is not e>§actly know_n because t ._(largeB,, simple Borel transform, principal value prescrip-
coefficientrs in the perturbative expansion of the BPSR 'Stion) and their Fig. 2 for the BJPSR &@2.—2.5 Ge\ sug-
not known yet. The strongec; sensitivity should not be ' 9. ) ph = 9

regarded as a negative feature of our approximant, but rath@Sts that IR renormalon contributions $Qpy) are 34
within the following context. times larger than those of the UV renormalo_ns._The (elatlve
Our approximant contains tw¢RScl invariant energy strength of the UV vs IR renormalon con.trlbut.lons, in the
scalesQ,, Q,. Since the considered observable is close tgS¢l or RSch noninvariant gpproac_h with S'mPI? Borel
the nonperturbative sectorQg,<2.5 Ge\j, the relevant transform, appears to depend in practice on the choice of the
A N RScl and RSch. Incidentally, a consideration of the status of
scalesQ; (~ Q) are low:Q,~0.6-0.8 GeVan,~1.2— | " 210 contributions and of their scheme depen-
15 GeV. Thus the relevant coupling parametess d de in Ref28]. Th tion of the rel tivp
=a(In sz;c(zj),c3) are largea;~0.19 anda,~0.11(whencg ence was made in i« - 1he guestion of the relative
, a P suppression of théeading UV renormalon contributions in
is set equats™ anday=0.09, QonphZS.GeVz). There-  Rgel- and RSch-invariant resummations would deserve a
fore, the contribution of the; term on the right-hand side of fyrther study. An additional uncertainty resides in the fact
the integrated RGE41) [« differential RGE(3)] at such  that the residues, in contrast to the renormalon pole loca-
energy scales is not negligible. Thls feature, to a somewhafyng, change and thus attain unknown values when we go
lesser degree, can also be seen in the ECH and TPS-PI\/[%yond the larges, approximation. For the UV renorma-
approaches, wher®ecy (=Qpvg~0.8 GeV andagcy  |ons, this uncertainty shows up in an especially acute form
=a(In QZcy;c5M c3)~0.16 (whency is set equal tacy>,  [29].
and ag=0.09, Qg:QSh:3 Ge\?). The significantc; de- The aforementioned works, however, suggest strongly
pendence of all these approximants, at fiegd reflects the that, in the BPSR cas®(Qj,=3-5 Ge\f), we should pref-
fact that the coupling parametea$Q;) appearing in the ap- erably fix the value o€; in our, ECH, and TPS-PMS resum-
proximants are not small and that consequently the considnation approximants by using {R(z,q.=1/89) and not
ered observable is in the low-energy regime. The values 0PV; (Z,0e= —1/Bo) information. The IR pole location can
PadeapproximantsPA’s), when applied to NNLO TPS of be transcribed ag,, =2, wherey=2p,z. This corresponds
an observablée.g., BPSR are alsac; dependent. However, to possible renormalon-ambiguity COHtI’ibutiOﬁSl/QSh to
the latterc; dependence, in contrast to that in the aforementhe BPSR observable which are nonperturbative.
tioned approximants, is not playing a highlighted role, since We will present now an algorithm for adjusting approxi-
the PA’s depend in addition on the leading RSch parametemately the value otz in our approximant for the NNLO
C, (c»c(zo)) and even on the RSQS. TPS (2). Briefly, it consists of the requirement theg must
The above considerations, however, do not address thee adjusted in such a way that the Borel transform of the
important problem presented by E@t2): Which value of approximant has the correct known location of the lowest
parameterc; should we use in our approximant? We note positive pole, where the latter location is obtained by con-
that c; characterizes the MO term in the corresponding  struction of Padeapproximants(PA’s) of the Borel trans-
function (3), and the information on its value in a consideredform.
approximant cannot be obtained from the NNLO TPS on A first idea would be to use simple Borel transforms. We
which the approximant is based. To determine the optimavould first expand our approximafwith a general yet un-
value ofcs in an approximantour, ECH, or TPS-PMg an  specifiedcs) in power series of a coupling parameter, say
important known piece ofnonperturbativeinformation be-  ag=a(In Q3;c¥,c?, ...), up to acertain order~al"* (]
yond the NNLO TPS should be incorporated into the approx=3), then obtain from this predicte§;; TPS the corre-
imant. There are at least two natural candidates for this: thepondingB3;;(z) TPS(up to~2') of the simple Borel trans-
location of the leading infrared (KR and ultraviolet (U\{) form as schematically described by
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2/2 . _ opr . ©
< “(ag;c3)=Sf(ag;c _
A5 (20:63) =3y (203 ¢a) Q%)= fodzexq—m(th)z]Bs(z). (49
=ag[1+rap+ryai+rhi(cgas+- -
Here,p; is the first Stevenson’s RScl or RSch invarié2d)

pr J
Fri(cs)al, (49 of the observabl&:
=BPL(z;C3) 2 2
[i1\= >3 Qo Qph
p1<Q§h>=—r1<Q§4QS>+ﬂolnﬁ=ﬁolnX—F;, (49)
r r rfc
et T2 3(3)23

TR TRT < - .
where A is the universal scale appearing in the Stevenson

rJPr(c3) equation (A1), while A is a scale which depends on the

il Z. (46) choice of the observab® But A is independent of RS,
and of RSch and even of the process momen@gp. We

The (approximat pole structure of the simple Borel trans- Note thatp1(Qgy) is, up to a constant (the latter is irrelevant
form can be investigated by constructing various PA’s of itsfor the position of the poles ds), equal to 14 "°PX(Q2 ).
TPS(46). The requirement that the lowest positive pole be afThus, Bg(z) of Eq. (48) reduces to the simple Borel trans-
y(=23,2) =2.0 would then give us predictions fog. How-  form, up to a factor ex@@), if higher than one-loop effects
ever, this approach is in practice seriously hampered, beare ignored. The positions of the polesR§(z) of Eq. (48)
cause coefficientsr, /k! of the simple Borel transform are the same as those of the simple Borel transform. The

B(z;c3) depend very much on the choice of the RSQEY  coefficients of the power expansion B(z) of Eq. (48) are
and RSch ¢*,c?, ...). Forexample, if expanding our RScl and RSch invariant, in contrast to the case of the simple

approximantyA w(ag;c3) Up to ~ad in an RSch withc®) Bprel tran_sform. These _invarian_t coeffici_ents can_t_)e related
_ WS : (0) : 2 with coefficientsr , of Swith relative ease in a specific RSch
=c,~ and an arbitrarycy”’, and keeping the RS&; un- c=ck (k=2,34 ...). while keeping the RSCO? un-
changed (=Qgh), we reproduce in the BPSR case the ﬁrStch\;n led I ping 0

two coefficientsr; andr, of Eq. (36), while the predicted 5 9

in this RSch is

_ Ciz . (rhn—Cily-1) n
c® Bs(z2)=(c,2)* EXD(—HZ)EO: Tn+i+c,z)
r¥=125.790- - — — tCs. (47) o
=(c12)"By(2). (50)
The PA’s[2/1] or [1/2] of the corresponding simple Borel
transform TPSB[3)(z) would therefore be functions of
(—c<3°>/2+ C3), and the requirement,q.=2.0 would at this ~ ) -
level give us only a prediction for- 0(30)/2+ Cs), not for ¢, =0, r9=1. In Eq.(50), we introduced the modified RScl or
itself® For example, working witf3f§;(z) in the RSch with ~ RSch invariant Borel transforis(z), by extracting the fac-

c®=0 results in a prediction focs that is by about 10.5 tor,(clz)ClZ who_se9 behavior at— 0 may be problematic for
lower than the one whea®=c¥S(~21) is used. If using PA’s to deal with? The obtained coefficients of the power

the ECHagcr(Cs) [3] or TPS-PMSSpyg(Cs) [2] approxi- expansi_on oBg(z) are e_xplici_tly RSc_I and RSch invariant,
mants instead of our approximafwherec, is the arbitrary ~depending only on the invariang (j=2), onc, and on
subleading parameter useddpcy andapys—see Appendix ~ SOMe universal constants. _

C), the corresponding prediction witlQy=Q,y is r(spr) We will now calculate the invariant Borel transforin
=129.8998- - +(—c(3°)+c3)/2. Hence, also in the case of of our approximant. The coefficients as predicted by our
these approximants we end up with the same kind of probapproximant(14) \.As(cs) are functions of the only un-
lem of strong RSch dependence{¥ dependenceof the
predicted values of5.

Therefore, we will use a variant of the RScl- and RSch-
independent Borel transform(z) introduced by Grunberg
[30], who in turn introduced it on the basis of the modified
Borel transform of the authors of Rg¢B1]

Here,T, is the coefficient aB""* in the expansion oS in

powers ofa=a(In Q3;c?,c3,c, . .. ), and bydefinitionT _,

9Grunberg’y30] Borel transfornmB(®" was chosen by convention
as BC)(z)=T(1+c,2)expc,2B(2). In this way, B()(z)
~B(z)y2mc,z whenz—«, and the coefficients of the power ex-
pansion ofB(®" in z depend only on the RScl/RSch invariamts
(no dependence on; and onI'-function-related constantsWe
decided not to follow this convention, primarily sin€ég1+c,z)
8The[1/1] PA of the simple Borel transform is independentcgf  introduces spurious poles on the negative axis, the one closest to the
and ofc§” . In the BPSR case, in the modified minimal subtraction origin beingy(=2/,2)~ — 2.53. Such spurious poles not far away
(MS) RSch and at RSGDS:S or 5 GeVf, wheren;=3, it predicts  from the origin can significantly limit the PA’s ability to locate
Ypole™=1.6. correctly the leading IR renormalon polg,(e~2.0).
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TABLE I. Predictions forcs in our, ECH, and TPS-PMS ap- est PA’s (5/1], [4/2], [3/3]) also differ from the average.
proximants, using various PA’s of the invariant Borel transform The reason for this probably lies in the fact that these PA’s
B(z) of the approximants and demanding that the lowest p.OSiti"econtain information on many higher order Coefficieﬁps
pole be atz,,e=1/8, (=4/9). The higher order parametec§’ (n=3,4,5,6) which are not contained in the TR, on
(k=4, j=1,2) in our approximant, and, (k=4) in ECH and L . . o2
TPS-PMS, were all set equal to zero. WhICh the apprommgnt\/,_él_sz is based. In addltlon, these

high order PA’s are implicitly dependent on the high order

PA; cs (VA D) cs (ECH) cs (TPS-PMS parameters{") andc{® (k=4,5,6,7) which were here sim-
ply set equal to zeréwe will come back to this point later in
[2/1] 21.7 35.1 35.1 Sec. V).
[3/1] 13.7 195 19.0 Completely analogous considerations produce the values
[4/1] 111 14.4 13.1 of c; parameter in the ECH and TPS-PMS approximants. For
[5/1] 9.3 11.2 8.8 details on the ECH and TPS-PMS methods, when applied to
[1/2] 12.8 17.3 17.3 the NNLO TPSS;; (2), we refer to Appendix C. Also in this
[2/2] 124 16.9 16.2 case, we make for the correspondifigunctions the simple
[3/2] 11.7+3.4 15.8+6.4 15.4+7.4 TPS choice ECH RSch(p,,C3,0, . ..); TPS-PMS RSch
[4/2] 10.3-2.8 12.9+5.1i 11.6+6.8 =(3p,/2,3,0,...). The obtained predictions foic; for
[1/3] 12.4 16.9 16.2 these approximants are included in Table I. Again,[RAL]
[2/3] 12.9 17.4 18.20.8 and the highest order PA’s appear to give unreliable predic-
[3/3] 10.6-2.9 13.6-5.5 12.6=7.0 tions. On the basis of the predictions of P# of intermedi-
average ~12.5 ~17.0 ~16.0 ate order, we will adopt the valug;=17 for the ECH case,

andc;=16 for the TPS-PMS case. The actual valuesof
must be exactly real.
~ _~ = . ~In fact, we can apply this method of determining the

E?f(i)cvi\:anniss c[ntktherk(g\?\zérkex?);'n-srigiydzlﬂ?: )oit;[algedegsocf:o parameter of our approximariand of ECH and TPS-PMS
- . P P sAts) pow approximantsto any QCD observable given at the NNLO
a. Looking back at the forni14) of our approximant, such a and whose leading IR renormalon pole is known via lagge-
power egpa?smn requires first the sepzarage expansions @pnsiderations. The method, however, is well motivated only
a;=a(Q3;cs”,cs,0,...) and ofa,=a(Q3:cs”,c3.0,...)  if there are indications that the leading IR renormalon con-
in powers ofa. The latter expansions can be read off Eq.tributions to the observable are larger than those of the lead-
(A7), up to~a°® (therea—a, or a, andag—a.) In fact, we  ing UV renormalon. We wish to stress that our approximant,
carried out the latter expansion up ta® (with the help of as well as the ECH and TPS.'P.MS approximants, are com-
MATHEMATICA ), which allowed us to write the approximant pIeter independent of the original choice of the RScl and

~7 T , RSch in the TPS of the observable, because the paramgeter
_‘/A_SZ_(CS) up to ~a’. This in turn leads gs to obt_aln the s Rscl and RSch invariant since it is determined by using
invariant Borel transfornB z(z) up to ~z°, according to

Eg. (50), and allows us to construct PA’s of the Borel trans- e RScl- and RSch-invariant Borel transfoBi(z).
form of as high order ag3/3], [2/4], [5/1]. The coefficients /A few remarks about the multiplicity of the discussed R
starting atz® are predictions of the approximant and are polezare in order. The simple Borel transforfmrkzk/k. of
BN Fort a2 T 54 ... with b. S(Qpr) b_eha_ves_ neay,qe (= 1/B8o) as~1/(z,0e—2)“ Where
dependentBg(z) =1+ 0,2+ b,2°+bs(Cg)Z°+ - - -, with by the multiplicity is [32,34,29 «=1+(B1/B0)Zyoiet (¥/ Bo),
~—0.7516,b,~0.4209,bs(C3) ~(—2.664+ 0.166%3), ec.  and y is the one-loop anomalous dimension of the corre-
Con;trucuon of various PA’s of that' Borel transform and sponding two-dimensional operator appearing in the operator
requirement that the smallest positive pole equgle  product expansion fo (usually y=0). On the other hand,
(=2B0Zp0le) =2.0 gives us predictions foc; which are  the RScl- and RSch-invariant Borel transfotB0) behaves
listed for the descr_lbed case in the seco_nd column of Table hear Zpoe With the simpler pole multiplicity[31] «x=1
In the column we included values of with small nonzero +(y!By). To our knowledge, the anomalous dimensipis
imaginary parts and Reg)~10-12, since for such values not known in this case. However, in the case of the Adler
the PAs's and the TPS oB are almost real, with imaginary function(logarithmic derivative of the correlation function of
parts less than 1% of the real part fp«<1.9. In the latter quark current operatorsthe one-loop anomalous dimension
cases the real part af; may be regarded as the suggestedof the four-dimensional operator corresponding to the lowest
value. The actual value af; must be exactly real, but since IR renormalon pole therezf,.=2/8,) is known[32,33 to
a specific PA predicts only an approximate valuegfthis  be y=0. If y=0 also in the BPSR case, then the RScl- and
latter value is not necessarily exactly real. We did not in-RSch-invariant Borel transforri@8)—(50) hask=1, i.e., the
clude some other solutions which differ a lot from thoseleading IR renormalon pole is a simple pole, in contrast to
given in the column. Predictions of BA of the intermediate the simple Borel transform where is noninteger. In such a
orders([3/1], [4/1], [2/2], [3/2], [1/3], [2/3]) give us the av- case, we may have an additional incentive to use, instead of
erage value;~12.5 which we will adopt. The prediction by the simple Borel transform, the invariant Borel transform
PA [2/1] differs from most of the other predictions, appar- (48)—(50) in conjunction with the aforedescribed PA’s of
ently becaus¢2/1] is of low order. Predictions by the high- Table I. Namely, PA’s are very good at discerning the loca-
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tion of a pole if such a pole is simple, and are somewhat leshave been taken into account in E¢s3) and(52). However,
successful in this job if the pole is multiple or with noninte- recently the authors of Ref41] argued that additional

ger multiplicity. nuclear effects, originating from spin-one isosinglet 6-quark
clusters in deuteron and heliuwhich include the shadow-
IV. BPSR: PREDICTIONS FOR THE COUPLING ing, EMC, and Fermi motion effecjtsaffect the extracted
PARAMETER values of the neutron structure functig§l” in such a way

_ ~ that the value of the BPSR integral increases by about 10%.
Now that we have fixed the values of the parameter in  Thjs would then change the E155 values of E5p) to
the approximantsy.A«(ag;c3), ECH and TPS-PMS, the

only adjustable parameter in them is the numerical value of ) 1 5
ap=ag (Qjp/m, at suchQj, where three flavors are as- (1"): §|9A|[1_S(Qph:5 GeV)]=0.193+0.009.
sumed active, e.g., dpgh=3 or 5 Ge\f. This a, can be (54
obtained by requiring that it should reproduce the experi- 5 .
mental values forS(QZ) of Eq. (35). The questions con- The values of Eq(52), at Q=3 GeV* would be increased
nected with the extraction of the values of the BPSR integral0 about 0.195 0.020. We will not consider this case ind
(35) from the measured polarized structure functions are agase ! (54) for the time being, but will briefly return to them
present not quite settled. One source of the uncertainty ariséd Sec. VI. _
from the fact that these structure functions have not been In the following we will extract the values aig"S(Qgh)
measured at small values ®f; and that, therefore, a theo- from the BPSR-integral valug§3) and(52), and will simply
retical extrapolation to such smad; values is needed. The denote the corresponding cases as | and Il, respectively.
authors of Refs[35,36 used the smalkg; extrapolation as If we insert the valué38) for |g,| into Egs.(53) and(52),
suggested by the Regge theory, the assumption made also i obtain
various experimentalist groups before 1997. The values thus
obtained in Refs[35,36, on the basis of measurements at (: S(Qjy=5 GeV?)=0.167+0.038, (55
SLAC and CERN before 1997, are

(I):  S(Q5,=3 GeV?)=0.162+0.085. (56)

1
(Regge: g|9A|[1—S(Q§h=3 GeV)]=0.164+0.011. The present small uncertainty in the value|gf| (38) prac-
(51)  tically does not contribute to the uncertaintiesSQQgh) in
Egs.(55),(56).

On the other hand, the authors of Rg7] used a smalksg; Our approximant gives, for example, fora,
extrapolation based on the NLO version of the Dokshitzer—=g(|n 3Ge\Z; ey c¥° 0, ... )=0.09 = a¥5(Q%=3Ge\?)
Gribov-Lipatov-Altarelli-Parisi(DGLAP) equationg pertur- ~0.283 the value 0.1585, which is not far from the middle

bative QCD(PQCD] as opposed to the Regge extrapolationyzyes in Eqs.(55),(56). Varying a, in our approximant
(see also Ref[38]). This leads to higher values and larger (with c3=12.5) in such a way that the middle and the end-
uncertainties of the BPSR integral. The values extracted i'E)oint values of the right-hand side of Eq85) or (56) are
this way by[37] (their Table 4, based on SLAC data, are reproduced then results in the following predictions &y

1 (in MS RSch:
() Z|gall1-S(Q%=3 GeV?)]=0.177:0.018. _
6 52 a¥S(Q?=5 Ge\?)=0.2894 §.333 ();
Furthermore, most of the experimentalist groups have aVS(Q?=3 Ge\?)=0.2855 33550 (Il).  (57)

adopted, since 1997, similar NLO PQCD approaches to the ) )
smallxg extrapolation, e.g., SMC Collaboratiof89] at We then evolved these predicted values via four-loop RGE
CERN, E154[40] and E155[19] Collaborations at SLAC. (3) to Q?=MZ, using the values of the four-loop coefficient
The most recent and updated measurements of the polarized(ns) in the MS RSch[42] and the corresponding three-
structure functions are those of R¢L9]. Their combined loop matching condition§43] for the flavor thresholds. We
value of the BPSR integral @§h=5 GeV is used the matching at(n¢)=xmgy(ns) with the choicex
=2, wheremy(ny) is the running quark masgy(m,) of the
1 ) n¢th flavor andu(ny) is defined as the scale above whith
(1): §|9A|[1_S(QphZSGeVZ)]:O'NGt 0.008. (53 flavors are activé® The resulting predictions fcms(Mﬁ) are
Apart from the problem of the smatly; extrapolation, there
is a pr_Oblem of accounting for n_UCIGjar effects. Since the 10 increasingx from 1.8 to 3 in case |, the predictions for the
extraction of theg{" structure function is based on the mea- cengral, upper, lower values af(M2) decrease by 0.12, 0.15,
surements of the structure functions of the deuteron?‘&mll 0.09 %, respectively; increasing from 1.5 to 3 in case Il, the
nuclear effects have to be taken into consideration. Theespective numbers are 0.12, 0.17, 0.03%. We assumém,)
(multiplicative) effects due to the nuclear wave function =1.25 GeV andny(m,)=4.25 GeV.
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TABLE Il. Predictions for aSMS, derived from various resummation approximants to the BPSR at
Qlnotoi=5GeV?, 3 GeV. Predictions for the case(53) and Il (52) are given in parallel.

Approximant ag(5GeVA): (I)  ay(3GeVA): (1)  ag(M3): (1)  ag(M3): ()

NNLO TPS

N3LO TPS (;=128.05)

0.3287 09e%
0.3121 8552

0.322153%43
0.3065 91515

0.1252° 9505
0.1230°9.06%9

0.1183399%
0.11634 0539

[1/2]s (NNLO) 0.3054 35332 0.3003 59522 0.1220°33%¢5  0.1155 39975
[2/1]s (NNLO) 0.3006 § 0554 0295900  0.1213 00068 0.1149 50008
[2/2]s2 (NNLO) 0.2937 3325 0.2895 3%  0.120399%%%  0.114Q 3996
[2/2]s (N3LO, r;=128.05) 0.2944 55282 0.2901° 09582 0.1204 05083 0.1141° 39980
TPS-PMS(NNLO, c;=16.0) 0.2907 39229 0.2867 01035  0.1198390%8  0.1136'7 107
ECH (NNLO, ¢;=17.0) 0.2898 30234 0.2859 09555 0.1196 0003,  0.1135 39952
VAZH (NNLO, ¢3=12.5) 02894005 028550170 01196 gooss  0.1135 55760
TPS-PMS(NNLO, ¢3=0.0) 0.2957 39258 0.2913 7,577  0.1206 09082 0.1143 ] 5503
ECH (NNLO, c;=0.0) 0.2947 30573 0.2904° 39531 0.1204° 39035  0.1142 33958
VAZZ (NNLO, ¢;=0.0) 029603557 02916077  0.1206gg0e  0.1143 0050

ag"_S(Mi):O.llQ 00035 (). 0113509958 (), come cIos«_er to the predic'_[ions of the NNLO DPA once we
(58) simply set in these approximartg= 0, thus abandoning the
requirement of the correct location of the,IBole. The pre-
In Table II, we give the values afVS, as predicted from the dictions of the NLO DPA [2/2]s are almost identical with
BPSR data(55) and (56) by our approximant(with c3 those of the NNLO DPA. All the PA resummations were
=12.5), by the ECHwith c;=17), and by the TPS-PMS carried out with the RS®3=Q2, (n¢=3) and inMS RSch,
(with c3=16). For comparison, we include predictions of and their predictions would change somewhat if the RScl and
these three approximants whes in them is set equal to RSch were changed—in contrast to the presented predictions
zero, i.e., for the case when the location of the leading IRof \/ A5, ECH and TPS-PMS.
re'normalon (IR) pole in thes.e gpproximants is not porrect. We wish to point out that theg"_s predictions for the case
Given are always three predictions feg, corresponding to Il (52) were already presented in the short vers[as.
o eaaions 1 e e o st . HOWELE, ey vere somewhal over e contal val
> P g app ues of a¥>(M3) were lower by about 0.0009—0.00/%

cluded in Table II: TPSS;; (36) (NNLO TPS); TPS S
with r,=128.05 (NLO TPS: off-diagonal Padeapproxi- bPecause the value of thg-decay parametefg,| there

mants (PA's) [1/2]s and [2/1]s, both based solely on the Was taken from the Particle Data Book of 199d,|
NNLO TPSS,; (36); square root of the diagonal PUDPA) =1.257(t_ 0.2%) (used also in37]), while the value used
[2/2]2, which is based solely on the NNLO TRS6); [2/2]s  here(38) is the updated value based on Rief4]. ,

is the DPA constructed on the basis of theL® TPS S In Fig. 1(a) we present various approximants Q)
with r3=128.05. For[2/2]s and NLO TPS we chose the as functions ofag>(Qpy) (ny=3, €.9.,.Q5,=3 or 5 GeV}),
latter value ofr; (in MS, at RSclQj=Q3,, ny=3) because and in Fig. 1b) the approximants fo6(5 GeV?) as func-

then the[1/2] PA of the invariant Borel transforrBg (50)  tions of ag'*(M2). There is one peculiarity of theNNLO)
predicts the IR pole ypqe=2.0. We wrote in Table Il num- TPS-PMS metho_d, as seen also in F|gs. 1—fqr high v_alges
bers with four digits in order to facilitate a clearer compari- of observableS this method does not give solutions. This is
son of predictions of various methods. so because the polynomial form of tiRNLO) TPS-PMS

From Table Il we see that the values 6FS(M2) pre- S [see Eq.(C4)] is bounded from above b oo
dicted by various approximants differ significantly from each = (2/3)*“pz = which, in the considered casg=5.476),
other. Addition of the RLO term in the TPS decreases the IS €qual to 0.233 which is belod,=0.247 in case Ilsee
central value OhM_S(M%) by 0.0022(0.0020 in case )| and Appendix C for more detai)s This is also indicated in Table

. : :

L . 1/2 1.

appllcatlon_ of the NNLO dPA approximarii2/Z], de- We wish to emphasize one aspect that makes the approx-
creases this value by a further 0.00B70023. Our approx-  jane 15 conceptually quite different from the DPA
imant \/A_52(03=_12'5)’ which is an RScl- and Fl‘),ZSCh' [2/2]s. Although both approximants incorporate information
invariant extension of lhe method of the DAR/Z], about the location of the IRpole (ype=2), they do it in
decreases the centraig"S(Mi) by a further amount of two very different ways. The DPA2/2]s is constructed on
0.0007 (0.0005. Predictions of the ECH and TPS-PMS the basis of the RLO TPS withr;=128.05, where only this
methods are very close to those of our method if the value ofatter coefficient contains approximate information on the
cg in them is adjusted in the aforedescribed way. Howeverpole’s location. So this DPA is a pure®NO construction
predictions of these two and of our method increase andnd is RSch and even RScl dependgvitakly). The approx-
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S(QZ)

0.08 ] FIG. 1. Predictions of various approximants:
(a for S(Q3y) as functions ofas(Q5y) when
s . . L n¢=3; (b) for S(Qgh:5 Ge\?) as functions of
016 0.8 02 022 024 026 028 0.3 032 034 ag/I_S(Mé). The values of the, parameter in our
(Qp) approximant ¢;=12.5), ECH ¢;=17.0), and
TPS-PMS €;=16.0) have been adjusted to en-
our appr, — T T T T T T sure the correct location of the leading IR renor-
A — malon pole. The experimental boundS,,
Smax, @andS;,iq are indicated as dashed horizontal
lines for case I(55) (Qgh:S Ge\?) and dotted
horizontal lines for case 56) (Q3,=3 GeV?).
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imant /A g is constructed on the basis of the NNLO TPS. ItWith the mentionedc; fixing, all give predictions that are

is a RScl anot(zo) independent NNLO construction, and the clustered closelly together and are significantly distanced
correct IR, pole location is obtained by the adjustment of the TOM the predictions ofD)PA's. L

¢, parameter within the approximant. As argued previously There is another theoretical aspect which indicates that

[see the second paragraph after E)], the c; dependence the predictions of théNNLO) approximanty.A ¢ shoulgzin

in VAg(c3) is closely related with the sensitivity of the general be better than those of fNLO) DPA [2/2]; .

approximant to the details of the RGE evolution, and theNamely, the latter DPA is just a one-loop approximation to

latter details are the more important the more nonperturbalUr approximant. More spemflcally,'DP[AQ/Z]éf is similar

tive the observable is. So it seems very natural that it is théo ansatz14), but eachaj=a(InQ7;c¥ cs, . . . ) isreplaced
intrinsic ¢, parameter iny.Ag(c3) that parametrizes the by the coupling parametea ") (In 612) evolved from the
(nonperturbativeIR; pole location, and at the same time it RScl Q3 to aajz by the one-loop RGE in the originaMS)
makes the approximant fully RSch independent. The same iRSch. This follows from considerations in Ref$5,16], and

true for the ECH and the TPS-PMS approximants. can also be checked directly as indicated in the paragraph
_ On the other hand, it would be an ambiguous approach tgfter Egs.(9)—(11). The DPA[2/2]% possesses residual
implement this kind ?E?’ fixing in the NNLO PA methods Rsel dependence, and RSch dependence, the unphysical
([1/2]s, [2/1]s, [2/2])—because these resummations de-properties not shared by the trgenknowr) sum. The ap-
pend in addition on the leading RSch parametet<=cS))  proximantAg, however, possesses RScl and RSch inde-
and even on the RS@S. Therefore, it may not be so sur- pendence, and is thus better suited to bring us closer to the
prising that the results of our method, ECH, and TPS-PMStrue sum.
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On the other hand, when compared with the structure otonstruct PA’'s based on these TPS’s. PA’s represent ap-
the ECH and TPS-PMS approximantg, A< possesses a proximate analytic continuatiorge., quasianalytic continu-
theoretically favorable “PA type” feature that the other two ationg for the true 8(x) functions from the perturbative
methods do not have: It represents an efficient quasianalytigmallx) into the nonperturbativélargex) region. A com-
continuation of the NNLO TPS5,; from the perturbative prehensive source on mathematical properties of PA’s is the
(smalla) to the nonperturbativdargea) regime. Thisis so  book [45]. We have for Eq.(59) three PA candidates:
becauseyA is related with the mentioned DPA method [2/3]5, [3/2] 5, and[4/1] 5. Constructing these PA’s on the
[2/2]222 (see above The ECH and the TPS-PMS approxi- basis of the TP$59), and then reexpanding in powersxf
mants do not possess this strong type of mechanism of quaives us the higher order RSch parametergj=4) that
sianalytic continuation, because they do not go beyond theere up until now simply set equal to zero. Only our approx-
polynomial TPS structure of the original TPS,;. These imant JAg, and the ECH and TPS-PMS approximants for
two approximants do possess, however, a weaker type ahe NNLO TPS’s(2), are sensitive to this change. Predic-
guasianalytic continuation mechanism, provided by the RGEjons ag"_s(Qsh) of Pade resummation approximants for
evolution of the coupling parametaritself. In the one-loop S(Q%) in the previous section, and the TPS evaluations
limit, this would amount to th¢1/1] PA-type quasianalytic thenPlsereS{NNLO, N3LO), are not affected by this change

continuation mechanism fa itself, which may explain why : 2_ A2
especially the ECH method appears to do well even in th th_e):/g)were calculated iMS RSch and at RSAo=Qpn,
f_ .

deep nonperturbative reginfeshereS has large valugs . ,
Lo : e For the approximant/A sz the relevant RSch’s are those
The possibility to adjust the value of the!ND coefficient of a, (RSch) and a, (RScha, i.e., those with the RSch

rs; of Eg. (36) by the IR, pole requiremeny e (=2502) 1) @)

=2 in the BPSR was suggested by the authors of F3&i. parametersc(g ’%)’ ) ?zr)]d €27.Car - -), wh'ere the el-
They chose 5 (at RSC'QSZQSh and inMS RSch approxi- Ilps_es stand foc,’ andcy™’ (k=4) as determlned by our
mately so that the PA2/1] of the simple Borel transform of qh0|ce of PA for the RSch1 and RScj@functions, respec-

_ : tively. Analogously, for the ECH and TPS-PMS approxi-
that TPS gave/pee~2. In fact, they chose;=130.0, which mants, the RSch's arepg,c ) and (o/2c )
would correspond to theiy,,~2.10, and then resummed ’ PR3 - - $2l2Cs, .. .),
the obtained RLO TPS for S(Q3,=3 Ge\?) by the[2/2] ‘é"here thhe dots fsttﬁ”‘?gz’; thfﬁ’e gcsljh pgrﬁgsetgﬁgeterm'”ed

. . y our choice of the or the an - unc-
DPA. However, as we argued in the paragraph following Eqtions. So, each of the three choices of the PA defines, by the

(47), a procedure involving the simplgRScl- and RSch- aforementioned mechanism of quasianalytic continuation

dfg;gggr?; Bvsrr]?clhtrigﬁf%r;:/;e;df]i;ir;a%?n;éagézgssgrgwiﬂinto the nonperturbative sector, the unique schemes RSchl,
P g P ECH Rsch, TPS-PMS RSch, ams.

RScl and RSch used in the original TRScluding 0(30) de- For RSch2, we have to keep in mind one detail: In order

pendenck Their approachiwith r;=130.0 and 2/2) DPA) to avoid presumably unnecessary complications, the PMS

: MS, 2\ __ 0.0276
would result in ag™(Qpp) =0.2934 5570 for case I, and  conditions (B1),(B2) were written and used for the choice
0.2891 §35s5 for case II; andag'“(M7)=0.1202 googs for  ¢@=c(b) (5c,=0), so that the solution€39),(40) for Q;,
case | and 0.114G555¢ for case IIl. Comparing with results Q,, c{), andc{?) were independent afy(=c{=c®) and

in Table I, we see that these predictions are again very closgf gl the otherc) (k=4; j=1,2). Therefore, once we
to the predictions 0[1‘2/2];’22, the latter being based solely on choose a specififM/N]; of the RSchi, the predicted,

the NNLO TPS(36). Recently, in the context of the Borel- must be reproduced also by th&1'/N’]; of the RSch2.
Pademethod of resummatiofnot used here the knowledge  This means that the order of the latter PA is by one unit
of the location of renormalon poles was used in Ré4], in  higher than that of the formei’+N’'=M+N+1. Since
two physical examples, to fix the denominator structure ofthe PA choices for the RSchd function arg[2/3], [3/2], and

the PA’s of the Borel transform. [4/1], those for the RSch function are[2/4], [3/3], [4/2],
) [5/1]. As to the numerics, the situation does not change much
V. BPSR: USING PADE-RESUMMED B FUNCTIONS when different choices ofM'/N']; or even TPS for the

RSch2 are taketwith c{?=c{", and always the same fixed

. e T . value ofcs). This is so because, in the strong-coupling re-
evance for the high-precision predictions in the case of th imesS=0.155,a, is by a factor of 1.66 or more larger than
considered observable, one may go still one step further. U T Concer.nin ,tﬁe choice of P fM_S RSch. this choice
til now, we used for the3 functions appearing in the inte- %2 9 A '

grated RGE(41) [see also Eq(3)] simply their TPS to the does _not influence the predmtpn_sccgfat a_IIS, ar;d influences
known order only little the subsequent predictions faﬁ" (Qpn- The lat-

ter is true mainly because of the hierarcy<a,<a; (Qq
TPSy(X) = — BoX3( 1+ CyX+ Cox2+Cax3), 590 ~Q2>Q11 Q=034 Q2~0.67pn,  Qo=Qpn
FHN= - poc(Lrextextte), (B9 02a Gey.

wherex= as/, and the bar over symbols denotes that they For the various PA choices of RSchl, RSch2, ECH
are different in different RSch’s. However, in the nonpertur-RSch, and TPS-PMS RSch, we can just redo the entire cal-

bative region of largex, these TPS’s may give wrong nu- culation of the invariant Borel transfornEs of Eq. (50) and
merical results. To address this question, we may insteadf their PA’s, and find predictions foc; that give us the

Since nonperturbative physics appears to be of high rel
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TABLE Ill. As in Table I, but theg functions in tr;% apE)lr)oxi- mant is based is given only up teag (~53)_ Therefore, it
mants are taken a2/3], (RSchl, [2/4], (RSch2ici”=¢s7);  seems plausible that the best and most stable predictions are
[3/2]5 (ECH RSch, and TPS-PMS RSch given by PA's of intermediate orders 8/1], [4/1], [2/2],

[3/2], [1/3], [2/3]).

PAg ¢4 for c5 for c5 for ! :

JA: (23], [2/4]5, ECH:[3/2], TPS-PMS{3/2], 'V.Vlth these .ch0|ces for the values of and for thg per-

taining B8 functions, we could now go on to calculating pre-

[2/1] 21.7 35.1 35.1 dictions of the three approximants fa'®. Since the choice
[3/1] 15.7 22.9 21.5 of PA, for MS RSch will not matter much numerically, as
[4/1] 15.8 20.8 18.7 we argued above, we could just choose blindly asRk
[5/1] 16.9 19.6 17.3 even the TPS for it. But at this point, we want to point out an
[1/2] 12.8 17.3 17.3 additional argument for the made RAhoices of RSchl/
[2/2] 14.9 204 19.4 RSch2, ECH RSch, and TPS-PMS RSch. This argument
[3/2] 15.8 2028 17.3+346 will, in addition, lead us to a specific choice of pAor MS
[4/2] 15.7 20.4-1.8 17.0=2.6 RSch.
[1/3] 15.0 20.6 19.5 In this context, we recall first that quasianalytic continu-
[2/3] 15.1+1.2 19.3 18.5 ation, e.g., via PA’s, of the TPS of g function into the
[3/3] 14.0+1.7 20.2£2.0 16.9+2.7 largex (nonperturbativeregion leads in general to a pole of
average ~15.5 ~20.0 ~19.0 such PAy(x) at some positivex. The authors of Ref[46]

pointed out that these poles “suggest the occurrence of dy-
namics in which both a strong and an asymptotically free
correct IR poleyqe=2. It turns out that the most stabdg  phase share a common infrared attractor.” Now, if there is
predictions in our approximanfA . are those witH /3] such a common POk o= a2®%  where the two phases
for RSchl (1) and[2/4]4, for RSch2 (32). The choice meet, it is reasonable to expect that its numerical value does
[2/3] g1 and [5/1] g, gives virtually the same and almost as not vary wildly when we change RSch—provided that the
stable predictions focs. For the ECH and TPS-PMS ap- RSch’s in question are themselves physically motivated
proximants, all three choicef2/3]z, [3/2]5, and[4/1]s  (physically reasonablein the nonperturbative reginte.
give comparably stable and mutually quite simidgrpredic-  Such physically motivated RSch’s should include those con-
tions, but the choic€3/2]; seems to be slightly more stable nected in some significant way with the calculation of the
than the other two. The results, for the mentioned optimatonsidered observable and of the predicted coupling param-
choices of P4's for the three approximants, are given in eters. In the case of our approximaftl ¢z, these are RSchl
'I;]able 1, ir|1 comhplete I<':1n_alog)‘;m\j/vith Tablledl.dlr'] scr)]me gf‘sesand RSch2, and in additioMS when we want to extract
there are also other solutions foy, not included in the table,  ws,~2 - -

: ) o ’ . ) ' ag (Qpy from the approximant. In Fig. 2 we present the
which differ significantly from those given in the table. We PS's of RSchl, RSch2 ardS 4 functions, as well as the

will adopt the approximate predictions as suggested b .
PAg's of intermediate order§3/1], [4/1], [2/2), [3/2], [1/3], reviously chosen2/3]g, of RSchl and 2/4]g, of RSch2

2/3]): Ca~15.5 for Az ca~20 for the ECH:ca~ 19 for (see Table II_I;03=15.5), and we include als[(2/3jﬁ of MS

Ehe ]'I)'PSS—PMS. The actstjal \3/aluescnj must be e;actly real. RSch. The figure shows that all these BAfunctions have
We recall that the results of the previous two sectionsfli_bou" the sameygie (Xpore=0.334,0.325,0.311, respectivily

including those of Table I, were for the simple choice of 1N mutual proximity of,qes of RSchl and RSch2 F#s

TPS; (59) for the corresponding RSch's“truncated is now yet another indication that these P#) chosen pre-
RSch’s,” with ¢,=0 for k=4). Comparing those results

viously on the basis of the stability @f predictions, are the

with the results of Table IIl, we see that the latter are some!&asonable ones. Furthg®/3]; appears to be the reasonable
what higher and significantly more stable under the changghoice forMS RSch. The choiceis3/2] ; and[4/1] 5 for MS
of the choice of P4. This latter fact can be regarded as a RSch givex,,.=0.119,0.213, respectively, which is further
numerical indication that it makes sense to use certain PAWay from thex,q of RSchl and RSch2. We could choose,
resummations for the pertainingfunctions of approximants in principle, for RSchl and RSch2 other P& We recall
when the considered observaliie this case BPSRcontains  that for RSchl we can havg2/3] g1, [3/2] g1, [4/1]ps; for
nonperturbative effects. RSch2:[2/4]g,, [3/3] g2, [4/2] g2, [5/1] go. However, when

When the order of PAis increased, the trend of the pre- taking [3/2] 5, or [4/1],, we always end up either with a
dictions is similar as in Table I: The predictions tend to  Situation when the two positive,q. values ofg1 ands2 are
stabilize at intermediate orders of the P& The lowest or-  far apart, or both are unphysically small, or one posityge
der PAg's ([1/2], and above al[2/1]) give unreliable pre- does not exist, or there are virtually no predictionsdgtnot
dictions forcs, apparently because of a too simple structureVen unstable ongsor X, values are very unstable under
of these PA’s. The highest order B ([5/1], [4/2], [3/3])  the change ot; in the interesting regiom;~12-16. Con-
also sometimes give unreliable predictions, apparently becerning the latter point—when taking/2] 5,, and for RSch2
cause of their “overkill” capacity—these R#s depend on
many terms in the power expansion of the approxin{apt

to ~~a7), while the original TPS36) on which the approxi- N the perturbative regime, all RSch’s are formally equivalent.
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FIG. 2. TPS B functions for RSchl and
RSch2 €;=15.5), andMS (n;=3), and their
corresponding PA'§2/3], [2/4] (c{?=c{V), and
[2/3], respectively.
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[3/3] 52 OF [4/2] g5, the location ofx,q e Of the latter PA's  of X4e=0.311 lying close to, e Of the g functions appear-
changes drastically whey is varied around the interesting ing Iin the discussed approximants for the BPSR. Further, the
values of 12—16, thus signalling instability of these /%A  precise choice of the PA fdvIS 3 function practically does
The choice] 2/3] g; and[5/1] 5, which gave very similar and not influence the numerical results of our analysis, because
almost as stable results fag as the most preferred choice a=a(In Qgh;cg"S, ... ) issignificantly smaller than the cou-
[2/3]4 and [2/4]4, gives the corresponding poles again pling parametersaj=a(in Q7;c¥ c5.c4.cY,...) (1=1.2)
close to each othex,.=0.334,0.291, respectively. So, the appearing in our approximant, and the parametgts, and

PA; choices[2/3] 5, and [2/4], (or [5/1]s,) for our ap-  apwsappearing in the ECH and the TPS-PMS approximants.

proximant give us the most stahtg predictionsand are the To summarize, the best choice in calculatimﬁTS from
only ones giving mutually similafand reasonablevalues of  our approximanty.A s is c3~15.5, the P4 choice[2/3]4
Xpole Of RSCh1 and RSch2. for RSch1[2/4] 4 choice for RSch2¢{”=c{Y), and[2/3],

It is also encouraging that the choidei2]; for the ECH  for MS RSch; the best choice in calculating' from the
and TPS-PMS RSch’s give ug, values comparable to the ECH and TPS-PMS approximantsdg~20 and 19, respec-
ones previously mentioned,,.=0.263 for ECH withcs tively, the PA; choice[3/2], for ECH RSch and TPS-PMS
=20; Xpole=0.327 for TPS-PMS withc;=19. Even other  RSch; and 2/3], for MS RSch; our, the ECH and the TPS-
choices of P4 for the ECH and TPS-PMS RSch'§2/3], PMS approximants are completely independent of the origi-
[4/1]5), which also gave rather stable and simitgrpredic-  nal choice of the RScl and RSch, becausecthparameter is
tions, give usx,qe¢~0.27-0.41. Hence, also in this case we determined by using the RScl or RSch invariant Borel trans-
see correlation between the stability of thepredictions on  form B(z) of Sec. Ill.
the one hand angp,¢~0.3-0.4 on the other. In practice, this means that for our approximat ¢ the

The authors of Ref§47,48 estimated the five-loop coef- two coupling parametera;=a(In sz?C(zj) RO L N

ficient cﬁ"s of the MS g function, by applying their method =1,2) are now related with the coupling param-
of asymptotic Padepproximation(APAP) [47] and its im-  eter a,=a(InQ3;cy>,c¥>,ci>, ...) via the following
provement using estimators over negative numbers of flavordA-)version of the subtracted Stevenson equatitl) [see
(WAPAP) [48]. Their predicted values by two variants of the also Eqs.(A1)—(A2)]:

latter method, when including the four-loop quartic Casimir

contributions, are}>=123.7,115.3see Tables Ill and IV in 841N Q_f I n( €18,

Ref. [48], respectively;n;=3). On the other hand, the g a, ! 1+c,3;

simple PA’s[2/3], [3/2], [4/1] for MS g function predict _ 5
c°=62.2,149.8,98.5, and,,.=0.311,0.119,0.213, respec- N f 1 gl PAE () + Box (1 Crx)}
tively. If we assume that the actual valuedf° is close to 0 X*(1+ c1X)PAg (X)
the one predicted by Ref48], and if we were led just by the 1 c1a0

requirement that the PA should reproduce well this value, ———c4In

then[4/1] would be the preferred choice. However, the au- o 1+cia,

thors of Ref.[48] indicated that their predicted value of 20 {[2/3]usp(X) + Box*(1+c1x)}
may be changed significantly if new Casimir terms, appear- —f dx >

ing for the first time at the five-loop order, are large. Our 0 X“(1+€1X)[2/3]msp(x)

choice[ 2/3] for MS g function was motivated by the value (60)
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TABLE |V. Predictions forozg"_S for our, ECH, and TPS-PMS approximants, when the PA-resumgned
functions in the approximants are taken as in Table Ill. Predictions for cd&3 &nd case 1(52) are given

in parallel.

Approximant(with PA,’s) a5 GeV®): () ay(3 GeVA): (II) ag(M2): (1) ag(M3): (I1)
VAZ? (c4=15.5) 0.2838 0311 0.2805§65  0.1187g0oss  0.1127 5oss
ECH (c5=20.0) 0.2856 (0307 0282230853  0.1190g00s  0.1130 goe;
TPS-PMS ¢;=19.0) 0.2867 00595 0.2831°7 1001 0.1192395%  0.11317 10,

where PA;; stands for the mentiond@/3] ; of RSch1l(when
j=1) and[2/4]; of RSch2(whenj=2), with c;=15.5. We
recall that the scale@j2 and the parametené') (j=1,2) of

The results of these calculations, i.e., the predicted values
of ag™(Q3) and ag>(M3), are given in Table IV for the
approximantsy.A s, ECH and TPS-PMS. The predictions

the approximant, which are RScl- and RSch-invariant andire now a little, but still significantly, lower than those of the

calculated in Secs. Il and Illsee Eqs(39),(40)], are inde-
pendent of the parameter; and of any higher order
B parameter c(k” (k=4; j=1,2) appearing in a;
=a(InQ?;c¥ c5,6,,c¢, .. .). For the ECH and’PS-PMS
the calculation is performed in an analogous way.

corresponding approximants in Table Il where all th&unc-
tions were taken in the TPS for(B9) and withcy=12.5, 17,

16, respectively. The evolution froey >(Qj,) to al'>(M2)
was performed as in the previous section, i.e., with the four-
loop RGE(i.e., TPSB function of MS) and the correspond-

FIG. 3. Predictions of our approximatwith

cs=15.5), ECH(with c5=20.0), and TPS-PMS
(with c3=19.0): (a) for S(Qj,) as functions of
. at>(QZy whenn=3; (b) for S(Q3,=5 GeV?)

as functions ofxY'S(M2). The PA choices of the
RGE B functions were made as explained in the
text. For comparison, we include also the corre-

T sponding predictions from Figs. 1 when the
TPS's(59) are used for theg functions. The val-
ues of thec; parameter have been adjusted in all
cases to ensure the correct location of the leading
IR renormalon pole. The experimental bounds are
denoted as in Fig. 1.

our apﬁ)r.(PA—bet!a) ! ! ! ! ' '
ECH(PA-beta) -------
TPS-PMS(PA-beta) -
our ?gr.gPS-beta; - (a)
03 H(TPS-beta) -
TPS-PMS(TPS-beta) -
02
—_
£
[\i=%
¢]
=
w
0.1 b
0.08
0.06 1 1 1 1 1 1 1 1 1
0.16 0.18 0.2 0.22 0.24 20.26 0.28 0.3 0.32 0.34
os(Qpn)
T T T T T T T
our appr.(PA-beta)
ECH(PA-beta) -------
b
03 (b)
—
<\‘> 0.2
(V]
0]
w
]
NE
s
=
w
0.1 F b
0.08
0.06 1 1 1 1 1 1 1 1
0.09 0.095 0.1 0.105 20.11 0.115 0.12 0.126
as(MZ)
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ing three-loop flavor thresho&matching conditions. If we the |eading IR renormalon is of the same forn’]_/lejh as the
replace the TP function of MS by its PA[2/3]4 in the  higher-twist term(61), and even the estimated coefficients
RGE for the evolutiomy'>(Q3)— ay'>(M?), the results for ~ are of the same order of magnituff#l] (see also Ref.36]

a¥S(M2) decrease insignificantigby less than 0.04%) and ©n this poin}. Our approximant, the ECH and the TPS-PMS,
the numbers in Table IV do not change. via the discussed; fixing, implicitly provide approximant-

In Fig. 3(@) we present predictionS(Qsh) as functions of  SPecific prescriptions of how to integrate in the Borel integral
ag/I_S(Qsh) (=3, 9-9-Q5h23 or 5 GeV?), and in Fig. 3b) over the IR pole, thus eliminating théeading renormalon

- . WS ambiguity.
the predictions foS(5 Ge\?) as functions ofxM'>(M2), for gutty
the three approximants with the aforementioned PA choices
for the B functions. For comparison, we include in the fig- V1. DISCUSSION OF THE NUMERICAL RESULTS

ures also predictions of these three approximants when all The main reason to apply our approatnd PA ap-
the 8 functions have the TPS fort59) and the correspond- - proachesto the BPSR was to investigate efficiencies of vari-
ingly smallercy’s (the latter curves are contained also in Fig. gys methods and the influence of the nonperturbative sector.
1). Predictions of the PA resummation approximait& S) ~ Another reason was that the BPSR is a Euclidean observable
are not included, since these methods are insensitive to ttﬁgh: _QSh< 0), and for such observables various resum-
mentioned PA quasianalytic continuation of tHEUNCions  mation methods are believed to work well since no real par-
and the results remain for them the same as in Figs. 1 anghe thresholds are involved in the observafBe,53.

Table Il. We presented in Figs. 3 the curves for the case of Tha main prediction of our approximanfAs can be
approximants with the mentioned RAfunctions only so far  o54 off from Table IV, for two case3) and (52) of the

as the method _wor.ks. More specifically, w_hen the i”tegratiorBPSR-integral values a(@ﬁh=5 and 3 GeV, respectively,
interval in the first integral of Eq60) starts including values extracted from experiments

x larger than those at which the absolute value of the; PA
exceeds the value 2, we stop the calculation of the approxi-
mant since the latter would otherwise probe values too near
the pole of PA (i.e., too near the common point of the

asymptotically free and the strong phaaed would thus be ) .
unreliable. The ECH and the TPS-PMS give results similar to these,

: : ; hen thec; parameter in them is adjusted in the aforemen-
The considered BjPSR observatﬁ(aQﬁh) has a higher- w 3 .
; o ; 12 tioned way—see Table IV. The diagonal PBPA) methods
twist (HT) contribution, estimated from QCD sum ry#) give higher predictions, and the nondiagonal PA methods

even higher—see Table Il and Fig. 1.
(0.09+0.045 GeV? 61 The result{62) for case I, which is based on the measure-
QSh ' (6D ments before 1997 and a NLO PQCD extrapolation for low
xgj [37] (52), shows quite large uncertainties, a consequence
. . . of the large uncertaintie®6) [(52)]. The result{62) for case
WQ&T,T strr:?u:drrzeinag]deg tﬂ?} tr?e Ipe;tljlrb?tlotr;] seile;Sftol’cfi |, based on the most recent measurements and a similar NLO
a gthiste WS Ze u € ,Ca analyss, the pre c'e ,(_:enPQCD extrapolation for smalg;, by the SLAC E155 Col-
tral values ofag~(M3) given in Table Il decrease signifi- |aporation[19] (53), already shows significantly reduced un-
cantly. For example, the NNLO TPS central value predic-ceriainties. This is so to a large degree because of additional
tions ag' (M%) =0.1252(case ) and 0.1183(case ) then  new measurements in the lavg; regime. And most impor-
decrease to 0.1200-0.128tase ) and 0.1091-0.115{ase tantly, the central values of case | in E§2) are now sig-
I1), where the lower and upper values in each case corraificantly higher than those dthe oldej case II. We recall
spond to the largest and the smallest value choice i@,  that the central values in E¢62) correspond to the central
This indicates numerically that our approximaet€ 15.5,  values of the BPSR integrab3) and (52). We did not at-
Table 1V), which gives the central valuesr)~(M3) tempt to estimate the theoretical uncertainties originating
=0.1187(case J and 0.1127(case 1), already contains at from the resummation method itself. However, the combined
least part of the nonperturbative effects from the leadingesults of Table IVaS(M2)=0.119"33% for (new) case |
higher-twist operator fl/Qgh). The same is true for the could be regarded as containing nonconservatively estimated
ECH (c3=20.0) and TPS-PMScg=19.0). In order to un- theoretical uncertainties.
derstand this numerical indication, we recall that the infor- The present world average iSCygﬂ_S(M%)ZO_]_l?s
mation on the location of the leading IR renormalon )R +0.0020 by Ref[54], and 0.1184 0.0031 by Ref[55].
pole of the considered observable has already been incorp@redictions of the simpléNNLO) TPS evaluation ir(new)
rated in these approximants, via the aforementioned fixing ofgse | give 0. 125%-885733(3% Table ), the central value and
the value of thee; parameter. And the so called ambiguity of most of the interval lying significantly above the world av-
erage. On the other hand, the simNLO) TPS evaluation
in (olden case Il predicts 0.1183 595 (see Table I), the
2Deficiencies of the QCD sum rule calculations were pointed outcentral value agreeing well with the world average, but the
in Ref. [50]. uncertainty interval being much broader. However, the situ-

agS(M3)=0.118700%% (1); 0112760053 (”)&62)

SHD(QZ~
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ation changes drastically when employing more sophistithree-loop flavor-threshold matchif§3] were not known at
cated resummation methods. The values for BPSR-predictetie time. These two effects largely neutralize each other and

agﬂ_S(Mg) go down the more significantly, the more sophis- their result is then close to the NNLO TPS result for case II

ticated resummation we perform—see Table Il for the PA(Table I): alS(M2)=0.118"3535.

methods, and for TPS-PMS, ECH, a5 when thep The authors of Ref[36] obtained the BPSR-predicted
functions have truncated form, and Table IV for the last threevalues a¥'>(M2%)=0.116"350+0.003. They used a DPA
methods when the8 functions are resummed. The predic- method of resummatiof2/2]s mentioned towards the end of
tions of approximants in the latter table havé"s(l\/lé) Sec. IV. However, they took the BPSR-integral val(g$)

~0.119 59% (case I, newand 0.1133 %% (case I, old. The ~ Where the naive Regge smally; extrapolation was used, and

predictions of(new) case | now agree well with the world apparently the valugga| = 1.257 known at the time. Further,
average 0.11840.0031 of Ref[55], while those of(oldep  they included the effects of the higher-twist te(f1) on top
case Il lie almost entirely below the world average intervalsOf their DPA resummation. The additional uncertainty
Thus, the use of resummation methods which account for- 0.003 can be called the method uncertainty. It was esti-
nonperturbative contributions by the mechanism of quasiandhated by them by additionally using the results of the non-
lytic continuation and by incorporation of the information on diagonal PA resummatior{s/2]s and[2/1]s, the RScl de-
thi |eading IR renormalon p0|e, predict the values ofpgndence_' of their DPA results, and the Uncertainty of the
aS(M2) which agree well with the present world average if gher-twist term. _ _
the most recent BPSR dafd9] are used. This suggests, ‘When we reexpar;d th2e approximants in powers of the
among other things, that for reliable predictionsmﬁ’lLS from or!g|nal a_o (at RSClQOZQRh' in MS fSch,anB_), we ob-
reasonably well measured low-energy QCD observables, widin Predictions for coefficients ata, of expansion36)—
have to know the NNLO terms~a®), employ nontrivial cf. Eg. (47) and the discussion following it. Our approxi-
resummation methods, and possibly incorporate some nombant, with c;=15.5, predicts r3=125.8-cy>/2+cy
perturbative(renormalon information in the resummation.  ~130.8. The ECH approximant, witt;=20.0, predicts ;
Some of the recently performed analyses beyond the= 129.9+(—cg"s+ C3)/2~129.4. The two predictions are
NLO, by other authors, gave predictiond'>(M2)=0.118 close to each other, suggesting=130.0+1. This agrees
+0.006[56] from the CCFR data fokgF3 structure func-  well with the prediction of Ref[52] r3~129.9 (~130.)
tion from vN deep inelastic scatteringDIS) (NNLO); which was obtained from the ECH under the assumption
0.1172+0.0024[57] from IN DIS (NNLO); 0.115+-0.008 (—cg"s+c3)~0 (note thatcg"s~21.0 [42] was not even
[58]; and 0.1143519[59] from the Gross-Llewellyn-Smith known at the time Refl52] was written).

sum rule (NNLO); 0.1181+0.0031 from hadronier decay The predictions forr 3, as well as the values @3, Q3,
(NNLO, combined resultg55]); 0.115-0.004[60,54 from ¢t ¢ (39),(40) and ofc; (Tables I, Il), are forn;=3
lattice computations. and are, of course, independent of the specific values for the

We note that the BPSR predictions deviate from the worldBBPSR integral(53), (52) [(55),(56)] that we subsequently
average in cas€ I(54), i.e., when we include in the experi- ysed to obtain values fofg/'_S(Mg)_
mental data of case | the nuclear effects originating from
spin-one isosinglet 6-quark clusters in deuteron and helium
according to Ref[41], on top of the nuclear wavefunction VII. SUMMARY AND OUTLOOK
effects and NLO PQCD smalg; extrapolation effects:
a¥S(M2)~0.103" 3314 (NNLO TPS; 0.101°33%3 (DPA,
ECH, TPS-PMS, our approximantThe combination of
(olden case Il results and the mentioned 6-quark cluste

nuclear effectgcase Il) increases the value of the BPSR related to the method of the diagonal Peafeproximants
integral so much that the predicted valuesadf*(M?) are DPA’s), completely eliminated the unphysical dependence
unacceptably_low: the central.values would be 0.094-0.09%¢ the sum on the renormalization scéRSc), the extension
for all approximants; the maximal allowed values would bepesented here eliminates in addition the unphysical depen-
gkl’a(?:t 0.113 by the methods of Table IV and 0.114 by thejence on the renormalization schertRSch. The depen-

' _ _ dence on the leading RSch paramet@t= g%/ 3, is elimi-

The authprs of Re{.37]M_c;bta|2ned, amonogoi)c;[her things, the nated by a variant of the method of the principle of minimal
BPSR-predicted values~(M7)=0.118 g5, apparently  sensitivity (PMS). The dependence on the next-to-leading
u_sing the simple NNLO TPS suf6) directly _in their analy- Rsch parameter{®)= %)/ B, is eliminated by fixing thes;
sis. They used the BPSR-integral valugg), .S here case yajue in the approximant so that the correct value of the
I, which were extracted by them from lo®;, SLAC ex-  |ocation of the leading infrared renormalon ¢)Rpole is
periments carried out before 1997. They used the value iptained (by PA’s of an RScl- and RSch-invariant Borel
|gal=1.257 known at the time, in contrast to the value of Eq.transform. Hence, in the approximant we ug functions
(38). Their RGE evolution fromQj,=3 GeV? to M5 was  which go beyond the highest calculated order in the observ-
apparently carried out at the three-loop level, since theable(NNLO)—in order to incorporate an important piece of

fourth-loopB coefficientcg"s(nf) [42] and the corresponding nonperturbative information (IRpole location which is not

We presented an extension of our previous method of
resummatiof15—17 for truncated perturbation seri€sP9
Pf massless QCD observables given at the next-to-next-to-
leading order(NNLO). While the previous method, partly
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contained in the available NNLO TPS anyway. The resultsand even on the RScl. Thus, the parametein them is not
are apparently further improved when we resum th@se in a special position, and there is more ambiguity as to how
functions which are relevant for the calculation of the ap-to incorporate into the PA’s the information about theg IR
proximani(RSchlﬂd RSchg functions, fora; anda,) pole.
and of aQ"S(Qgh) (MS RSch, by judiciously choosing cer- It appears that the leading higher-twist term contribution
tain PA forms for thosg3 functions. to the BPSR elngh), or a part of it, is implicitly contained
We applied this method to the Bjorken polarized sum rulejn /4, as well as in the ECH and the TPS-PMS, via the
(BPSR at |°V2V values of the momentum transfer of the vir- aforementionedt; fixing. In this context, we point out that
tual photonQg,=5 or 3 GeVf. Thec; fixing by the IR pole  the so called renormalon ambiguity arising from the It
Ipcation is well motivated ?n this case, because the contribug,o BPSR has the form 1/Q§h, i.e., the form of the leading
tions of the leading ultraviolet renormalon (\/Vappear to higher-twist term. Even the coefficients of this term, as esti-

be sufficiently suppressed in comparison to those of the IR mated by the renormalon ambiguity arguments, are of the

We compared predictions of our resummation with the val- . . :
ues for the BPSR integrdb3) and (52) extracted from ex- same order of magnitude as those predic&sdimatedifrom

i CD sum rule. One can say that the described approaches
periments, and obtainedy >(M3)=0.1187 33528 (new case Q y PP

70,0041 . implicitly give approximate-specific prescriptions for the
) and 0.1127gq;g (Older case Il respectively. Here, the gjimination of the(leading IR renormalon ambiguity.
celntral _vaIIEues 50?"118; ?:,gd 0.1127t_co|rrestond to tg_e central Looking beyond the numerical analysis of the BPSR, we
values mth qs( ) a? tr(1 ), respec 'Vtely' Iarég;ore d (Eg)us— wish to stress that in cases of other QCD observables that are
sion on the 1Ssue ol Iné experimental val anc (or eventually will b¢ known to the NNLO, the analogous
(cases I, I] we refer to Secs. IV and VI. It is gratifying that : . : . . .
: . : numerical analyses may give different hierarchies of numeri-

the newest available experimental val(&3) lead to predic- .

VS cal results. Actual resummation analyses should be per-

tions for ar ™ which agree well W,'th the present world AVeT" t5rmed also for such observables, in order to shed more light
age. The results of Grunberg’s method of the effective

charge (ECH) and of Stevenson's TPS-PMS method giveo.n the quesu_ons_ about the relative importance of various
= . h kinds of contributions.
very similar results(see Table IV if the ¢ parameter in

these methods is fixed by the same aforementioned requir%—\”-\lrtg) (_?%F;AS r;]rejlfcﬁ’ 'Eghiirclzluzgpzlslsriedr:rc?rﬁ:tlgrtlzcr)b;tri]\?e
ment as in our approximant and PA forms of the pertairng ’ ying P

functions are chosen analogously. The combined result ggontributions throqgh guasianalytic continuation_ of the TPS
Table IV, in case |, i.e., with the newest data of Ha®], is from the perturbativésmall-a) to the nonperturbativdarge-
a) region. In the course of this continuation, the pole struc-
ture of the Borel transform of the sum may be missed, but
ag"_S(Mﬁ):O.llgfg'ggg. (63 ~ Some other nonperturbativbut less singularfeatures of t_he
‘ sum itself may be reproduced well. But our approximant
VA< would presumably do at least as good a job as the

The DPA methods of resummation $predict higher values DPA'’s in reproducing these latter nonperturbative features.
(central values about 0.120 in case I; 0.114 in caketlile  This is so becausgA ¢ (14) reduces to the DPA2/2]% in
nondiagonal PA’s even highécentral values about 0.122 in the largeg, (one-loop RGE evolutionapproximation when
case I; 0.115 in case)lland the NNLO TPS itself the highest thus the full RScl and RSch invariance requirements are
values(central value about 0.125 in case I; 0.118 in cage Il abandoned, see discussion following E@8)—(11). The

We expect that our approximanfAg, as well as the ECH and the TPS-PMS methods do not possess this strong
ECH and TPS-PMS, produced reliable resummation results[2/2]*? PA type” mechanism of quasianalytic continua-
for the considered observable, because—via their depenion, since these two methods fix the RScl and the RSch in
dence orc;—we can incorporate into them in the aforemen-the TPS itself without going beyond tliNLO) polynomial
tioned way important nonperturbative information about theTPS form ina. The ECH, and somewhat less explicitly the
IR; pole, and simultaneously achieve full RSch indepen-TPS-PMS, possess a weaker type of quasianalytic continua-
dence. Thec; dependence in/ A, in the ECH and in the tion, because the one-loop RGE-evohad a /7 (from ag)
TPS-PMS, is very closely related with the sensitivity of theseis a[1/1] PA of a,.
approximants to the details of the corresponding RGE evo- Stated differently, oufNNLO) approximants, from a the-
lution. These detailsd; term9 in the RGE evolution are oretical viewpoint, combine the favorable feature of the
numerically more important in the lower-energy regions, i.e.,(D)PA’s (strong quasianalytic continuation into the lame-
when the relevant energies for the observable are low. Thusegime with the favorable feature of the TPS-form NNLO
significantc; dependence of these approximants signals thepproximants ECH and TPS-PM#ill RScl andc, indepen-
relevance of nonperturbative regimes for the observiggde dencé. The residual RSch dependenag;, dependendein
Egs.(32),(33)]. It then appears natural that thg parameter the latter approximants and in our approximant allows us to
in these approximants, i.e., the only parameter left free, isncorporate into them, often in a well-motivated manner,
made to parametrize the location of {m®nperturbativelR; nonperturbative information on the location of the leading IR
pole. The(D)PA's, in contrast, possess besidesdhelepen-  renormalon pole, and to achieve in this way simultaneously
dence also dependence on the leading RSch-paramgter the full RSch independence as well.
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APPENDIX A: EXPANSION OF THE GENERAL
COUPLING aIN POWERS OF a,

We outline here the derivation of the expansion of QCD

couplinga=a(In Q%¢c,,cs, . . . ) (a=ag/ ) in power series
of ay=a(InQ3;cX,c,...). The starting point is the
Stevenson equatiofsee Ref[2], first entry, Appendix A
which is obtained by integrating RGB):

a
+fdx
0
1

X2(1+cx+epx2+cpxd+ )|

2

Boln(% =—+ 1

x2(1+¢1x)

1
cqiln
a ! (1+cla

(A1)

It can be shown thak here is a universal scale-0.1 Ge\j
independent of the scal@ and of the scheme parametess
(j=2). Writing the analogous equation fap, and subtract-
ing the two, we obtain

2

Q) 1+ I
— | = Cln
Q5 @

0
a
+fdx
0

1

-——c
ag *

c,a
1+cqa

,80In<

(CotcCaxt---)
(14 ¢ X)(1+ X+ CoXP+Cax3+ - - )

[

(C€Q+cPx+ )

C1dp
1+cla0

X .
(1+cix)(1+cyx+ C(ZO)XZ—I— C(30)X3+ .
(A2)
This equation determinesas function ofay. The solutiona

in form of a power series ™, is the Taylor series for func-
tion a of multiple arguments IQ? andc;’s (j=2). To obtain

this power series, one way would be to find first the deriva-

tives ga/dc; [the derivativeda/dIn Q? is already given by
RGE (3)]. For this, we take the partial derivative of both
sides of the above equation with respectcfo(j=2) and
after some algebra we obtain

Ja 2 2 3
—=a“(1+cjatca“+cza’+---)
aCj

dxx ~?

a
Xj 2 3
0 (1+cCiX+CoXxt x>+ - -

-

Expanding the integrand in powers »fand integrating out

da Cy

=331+ =fa%+...

i, 1+ za , (A4)
B el 1-SLas AS
ics 2 32 ’ (A5)
da_1 5+ A6
0,,—C4—§a (AB)

Repeated application of these equations, as well as of RGE
(3) itself, leads us to the following Taylor expansionain
powers ofag=a(In Q3;c”,c?, .. .):

5
a=ag+ag(—X) +ag(x*— Cyx+ ;) +ag| —x°+ 51X
1 13 3
—cPx—3x8c,+ 5 0cg| +ag X' — e+ Eci

+3ci0+ 6502) x%+ (—c{”—3c 8¢, — 25¢3)X

+

1, 5 1 1
3C( )5cz+ (8c,)2— c15c3+3

oc, | |+0O(ad),

(A7)

where we denoted

a=a(InQ?c,,c3, ...), ag=ap(InQ3;c,c, .. ),

(A8)

2

XEBO |n—2,
0

0
sc e,

k=Cy— (Ag)

APPENDIX B: EXPLICIT PMS CONDITIONS

Here we will write explicitly the PMS-like condition$1)
in its lowest order e?o). To do this, we calculate explicitly
the derivativeq31) and then expand them in powers &f
=a(In Q3;c,=c;cs; . . . ) totheir lowest nontrivial ordet®
We assume relatiof34), i.e., 5c;=0, and in additionsc,
(=cM—c{P)=0. Further, we use relation§6),(27) and
notations (28)—(30). The results, obtained with help of
MATHEMATICA , are the following:

B3n fact, a with any RScl and any RSch parameters would do the

each term, we obtain the partial derivatives as power seriegb and give the same coefficient at the leading nontrivial oader
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[2/2]
A%
S
5| = —ag{27(8¢,)3— 157c,(5C,) %y —88c,y2 [ — 27c2+12¢) + 34y? — 823(ct) ]
0 |y,
+48c,y°[13y? - 32j(c) [H{6y? [ 5e, 60, + 16y° —823(cH)y -1} 1+ O(ap)
=0, (B1)
[2/2]
A%
S
306 | o= —ag{27(5¢,)*— 315¢4(8C,) %y - +64z8(cS))y? [ 7] — 2¢5) +375(cS))] - 80, Sc,y
¢’
X[ —2cPy? —2¢P73(cl) + 1225(cS)y? + 3z5(cS) + 7ci(y® + z5(cS))]
+12(8c,) %[ — 2c§y? —2¢73(cS) + 1523(cS)y? + 3z5(cS)) + c2(82y2 + 7Z3(cS))]}
X {12y* [5¢160,+ 16y° —8z5(cs)y T} ~*+ O(ap)
=0. (B2)
|
The actual PMS-type equations are now obtained by requir- 1 ci8g

ing that the coefficients at«Eg in Egs. (B1),(B2) be zero.

When we have several possible solutions of the coupled sys-
tem (26) and Eqgs.(B1),(B2) for the three unknowny_, g
c$?, and éc,, we have to choose, in the PMS spirit, among Jo dx(1+clx)(1+c1x+c(°)x2+c(°)x3+ )
the resulting approximants that one which has the smallest 2 3
curvature. The curvature can be calculated by first obtaining 1
the eigenvalue€A; andCA, of the curvature matrixCn :

(e +cPOx+--.)

92 Az P A faECH « (p2t+Caxt---)
aciH?  acPact? & 0 (1+C1X) (14 CqX+pxP+Cgx®+- - -)
Ca= , B3
M s PP (C1)
(1) 5~(2) (2)y2
dc3 0z a(c”) The ECH resummation value B5“"=ac.,,. In Eq. (C1),
superscript (0)” denotes the original RSch & (for ex-
1 PAs P PAz\° MS i i i i
(CA1) _t s . s . S ampleMS RSch withn;= 3 in the considered BjPSR case
CA; 4 a(cN?  a(scy)? |\ a(scy)act and c; denotes the NNLO ECH value af; (in principle
o 1o unknown at NNLQ. Further,c5°"=p,, the latter RScl and
1 PAs 9PAzg RSch invariant is defined in Eq24). The couplinga,
2 ()2 T 3(6c,)? : (B4 =47 is definedag=a(in QZ;c.,c?, . ..) as in Eq(4),

In the last expression, we traded’ and c{? for c{®

QS being the original RScl in the TP@hosen equal 3 G&V
in the considered BPSR case; = — B, In(QZc/Q32) is the

NLO TPS coefficient as staying in E@2) at the original
RScl Qg. In the above relationC1), we often ignore the
terms=c{?) andc, (k=4) since they are not known, i.e., we
often choose the TPS form for thg(x) functions. For a
given value ofa,, solving the above relation numerically for
agcy gives us the resummed prediction for observabli is

=(cV+c?)/2 and sc,= (¢t —cf?)). The curvaturel 4 of
the solutionA[;z/Z] can be defined in at least two obvious
ways which are virtually equivalent

or C4=+(CA)?+(CA,)°.

C4=|CA|+|CA,|

(B5) dependent orc; which, at this stage, is not known. More
explicitly
APPENDIX C: ECH AND TPS-PMS METHODS
FOR NNLO TPS
S5CH(cg) =agci(cs) =a(in QEripa2.Cas - - -,

The effective charge methadECH) [3] of resummation
of the NNLO TPSS;,; (2) can be expressed by employment _ ) 5
of the subtracted versiofA2) of Stevenson equation with Qgcy=Qoexp(—r1/Bo)- (C2
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For the TPS-PMS methof] applied to the NNLO TPS
Si;» relation(C1) still remains valid, but with the replace-
ments

ECH_
2

PMS_3
Agcr(C3)—>apys(C3), Cy  =pr—Cy =§P2.

(C3

The resummed expression in teNLO) TPS-PMS case is
the following TPS:

PHYSICAL REVIEW D63 056013

1 .
S™MS(cs) =apus— Epzagms with

apus(Cz)=a(In Q&cyi(3/2py.C3, ...), (CH

which again depends ory. ExpressionC4) is obtained by
imposing PMS conditions on the TR, (In Q%Cy,C3, .. .)

=S"MS 4S5, 19 In QP~a>~dSy 1dc,. It is straightforward to
verify that, if p,>0 (as in the considered BPSR casg™°

is bounded from above due to its specific TPS fo@RMS

<(213)¥%, Y2, which in the considered BPSR cai8#) is

0.2326(becausg,=5.476).
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