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Scale- and scheme-independent extension of Pade´ approximants: Bjorken polarized sum rule
as an example
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Asia Pacific Center for Theoretical Physics, Seoul 130-012, Korea

and Department of Physics, Universidad Te´cnica Federico Santa Marı´a, Valparaı́so, Chile†
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A renormalization-scale-invariant generalization of the diagonal Pade´ approximants~DPA!, developed pre-
viously, is extended so that it becomes renormalization-scheme invariant as well. We do this explicitly when
two terms beyond the leading order (NNLO,;as

3) are known in the truncated perturbation series~TPS!. At
first, the scheme dependence shows up as a dependence on the first two scheme parametersc2 and c3.
Invariance under the change of the leading parameterc2 is achieved via a variant of the principle of minimal
sensitivity. The subleading parameterc3 is fixed so that a scale- and scheme-invariant Borel transform of the
resummation approximant gives the correct location of the leading infrared renormalon pole. The leading
higher-twist contribution, or a part of it, is thus believed to be contained implicitly in the resummation. We
applied the approximant to the Bjorken polarized sum rule~BPSR! at Qph

2 55 and 3 GeV2, for the most recent

data and the data available until 1997, respectively, and obtainedas
MS(MZ

2)50.11920.006
10.003 and 0.11320.019

10.004,
respectively. Very similar results are obtained with Grunberg’s effective charge method and Stevenson’s TPS
principle of minimal sensitivity, if we fix thec3 parameter in them by the aforementioned procedure. The
central values foras

MS(MZ
2) increase to 0.120~0.114! when applying DPA’s, and 0.125 (0.118) when applying

NNLO TPS.

DOI: 10.1103/PhysRevD.63.056013 PACS number~s!: 11.10.Hi, 11.80.Fv, 12.38.Bx, 12.38.Cy
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I. INTRODUCTION

The problem of extracting as much information as p
sible from an available QCD or QED truncated perturbat
series~TPS! of an observable, and including this informatio
in a resummed result, was the focus of several works du
the last twenty years. Most of these resummation meth
are based on the available TPS only. Some of these la
methods eliminate the unphysical dependence of the TPS
the renormalization scale~RScl! and scheme~RSch! by fix-
ing them in the TPS itself. Among these methods are
Brodsky-Lepage-Mackenzie~BLM ! fixing motivated by
large-nf considerations@1#, the principle of minimal sensitiv-
ity ~PMS! @2#, and the effective charge method~ECH! @3,4#
~see Ref.@5# for a related method!. Some of the more recen
approaches in this direction include approaches related
the method of ‘‘commensurate scale relations’’@6#, an ap-
proach using an analytic form of the coupling parameter@7#,
ECH-related approaches@8#, a method using expansions
the two-loop coupling parameter@9# expressed in terms o
the Lambert function@10#, and methods using conforma
transformations either for the Borel expansion parame
@11# or for the coupling parameter@12#. A basically different
method consists in replacing the TPS by Pade´ approximants

*Email address: cvetic@fis.utfsm.cl
†Address after August, 2000.
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~PA’s! which provide a resummation of the TPS such th
the resummed results show weakened RScl- and RS
dependence@13#. In particular, the diagonal Pade´ approxi-
mants~DPA’s! were shown to be particularly well motivate
since they are RScl independent in the approximation of
one-loop evolution of the couplingas(Q

2) @14#. An addi-
tional advantage of PA’s is connected with the fact that th
surmount the purely polynomial structure of the TPS’s
which they are based, and thus offer a possibility of accou
ing for at least some of the nonperturbative contributions,
a strong mechanism of quasianalytic continuation implici
contained in PA’s.

Recently, we proposed a generalization of the method
DPA’s which achieves the exact perturbative RScl indep
dence of the resummed result@15#. While this procedure in
its original form was restricted to the cases where the num
of available TPS terms beyond the leading order@~LO!:
;a1# is odd, it was subsequently extended to the remain
cases where this number is even@16#. This would then apply
to those QCD observables where the number of such kn
terms is 2 (NNLO,;as

3).1 In Ref. @16# we also speculated
on ways how to eliminate the leading RSch dependence f
our approximantsA, and proposed for the NNLO case
simple way following the principle of minimal sensitivity
~PMS!. It turns out that the way proposed there does

1When just one such term is known~NLO!, our approximants give
the same result as the ECH method.
©2001 The American Physical Society13-1
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work properly in practice since no minimum of the PM
equation]A/]c250 @see Eq.~40! there# can be found. The
dependence of our approximants on the RSch parame
c2[b2 /b0 andc3[b3 /b0 of the original TPS is definitely a
problem when the approximants are applied to the lo
energy observables such as the Bjorken polarized sum
~BPSR! at the low momentum transfer of the virtual photo
e.g.,Qph

2 '3 –5 GeV2 @17#.
In the present work, we address this problem. For

NNLO TPS case, we construct in Sec. II an extended vers
A of our approximants, in which the dependence on the le
ing RSch parameterc2 is successfully eliminated by applica
tion of a variant of PMS conditions]A/]c2

( j )50. This pro-
cedure can be extended in a straightforward way to the c
where more terms are known in the TPS, e.g., the NNN
cases available now in QED, but we will not discuss su
cases here. In Sec. III, we apply our approximant to
BPSR at suchQph

2 where three quark flavors are assum
active, e.g.,Qph

2 '3 –5 GeV2. While the approximant at this
stage is an RScl-independent andc2-independent generaliza
tion of the diagonal Pade´ approximant~DPA! @2/2#, it still
containsc3 dependence comparable to that of the ECH@3#
and TPS-PMS@2# methods. Subsequently, we fix the val
of c3 in our, the ECH, and the TPS-PMS approximants
that PA’s of a modified~RScl- and RSch-independent! Borel
transform of these approximants yield the correct location
the leading infrared~IR! renormalon pole. Thus, in the ap
proximants we implicitly useb functions which go beyond
the last perturbatively calculated order of the observa
~NNLO!, in order to incorporate the aforementioned nonp
turbative information. In Sec. IV we then compare the valu
of these resummation approximants with the values for
BPSR extracted from experiments, and obtain predictions
as(MZ

2). We also apply the TPS and various PA methods
resummation to these values of the BPSR and obtain hig
values foras(MZ

2). In Sec. V we redo the calculations b
applying a PA-type quasianalytic continuation for theb
functions relevant for our, ECH, and TPS-PMS appro
mants. We further address the question of higher-twist ter
In Sec. VI we discuss the obtained numerical results
as(MZ

2) and Sec. VII contains a summary and outlook.
A brief version containing a summarized description a

application of the method can be found in Ref.@18#. In con-
trast to Ref.@18#, the numerical analysis of the BPSR in th
present paper~Secs. IV, V! uses, in addition, the most rece
data of the E155 Collaboration@19#.

II. CONSTRUCTION OF c2-INDEPENDENT
APPROXIMANTS

Let us consider a~QCD! observableS, with negligible
mass effects, which is normalized so that its perturba
expansion takes the canonical form

S5a0~11r 1a01r 2a0
21r 3a0

31••• !, ~1!

wherea0[as
(0)/p. We suppose that this expansion is calc

lated within a specific RSch and using a specific~Euclidean!
05601
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RSclQ0 ~symbol ‘‘0’’ is generically attached to the RScl an
RSch parameters in the TPS! up to NNLO, yielding as the
result the TPS

S[2]5a0~11r 1a01r 2a0
2!. ~2!

Here, botha0 and the coefficientsr 1 and r 2 are RScl and
RSch dependent. The coupling parametera[as /p evolves
under the change of the energy scale~RScl! Q, within the
given RSch, according to the following renormalizatio
group equation~RGE!:

]a~ ln Q2;c2
(0) , . . . !

] ln~Q2!

52b0a2~11c1a1c2
(0)a21c3

(0)a31••• !, ~3!

where b0 and c1 are universal quantities~RScl and RSch
invariant!,2 whereas the remaining coefficientscj

(0) ( j >2)
are RSch dependent and their values can—on the o
hand—be used to characterize the RSch. Consequentl
Eq. ~2! the coupling parametera0 is a function of the RScl
and RSch

a0[a~ ln Q0
2 ;c2

(0) ,c3
(0) , . . . !. ~4!

The NLO and NNLO coefficients in Eq.~2! have, due to the
RScl and RSch independence ofS, the following RScl and
RSch dependence:

r 1[r 1~ lnQ0
2!5r 1~ ln Q̃2!1b0 ln~Q0

2/Q̃2!,

r 2[r 2~ lnQ0
2 ;c2

(0)!5r 1
2~ ln Q0

2!1c1r 1~ ln Q0
2!2c2

(0)1r2 ,
~5!

wherer2 is RScl and RSch invariant. Although the physic
quantity S must be independent of the RScl and RSch,
TPS ~2! possesses an unphysical dependence on RScl
RSch which manifests itself in higher order terms

]S[2]

] ln Q0
2
;a0

4;
]S[2]

]c2
(0)

;
]S[2]

]c3
(0)

. ~6!

All approximants toS which are based on TPS~2! must
fulfill the minimal condition: when expanded in powers ofa0

to ordera0
3, they must reproduce TPS~2!. Further, since the

full S is RScl and RSch independent, the approximant sho
preferably share this property withS if it is to bring us closer
to the actual value ofS. The generalization of the diagona
Padé approximants developed in Ref.@15# possesses ful
RScl independence for massless observables.

In its original form it is accountable only to TPS with a
odd number of terms beyond the leading order~LO: ;a1).
Unfortunately, however, QCD observables have been ca
lated at most to the NNLO, i.e., at best the TPS~2! is known.

2b05(1122nf /3)/4, c15(102238nf /3)/(16b0), wherenf is the
number of active quark flavors.
3-2
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Therefore, in Ref.@16# we have extended the method to t
cases with even numbers of terms beyond the LO, in part
lar for the TPS of the type~2!. Since within the present pape
we are going to apply an extended related procedure to t
cases ofS[2] , we recapitulate briefly the main steps for trea
ing a TPS of the generic formS[2] . The trick consisted in
introducing—in addition toS—the auxiliary observableS̃
[S* S, which then gets the following formal canonical form

S̃5~S!25a0~01a01R2a0
21R3a0

31••• !, ~7!

where

R252r 1 , R35r 1
212r 2 , . . . , ~8!

S̃ is then known formally to NNNLO (;a4) and the method
can thus be applied, yielding an approximantA S2

[2/2] to S̃. The

corresponding approximant toS is AAS2
[2/2] which has the

form @16#

AAS̃
[2/2]

5$ã0@a~ ln Q̃1
2 ;c2

(0) ,c3
(0) , . . . !

2a~ ln Q̃2
2 ;c2

(0) ,c3
(0) , . . . !#%1/2

~9!
@5S[2]1O~a0

4!#,

and it is again exactly RScl invariant. Here, the two sca
Q̃j ( j 51,2) and the factorã0 are independent of the RSc
Q0 and determined by the identities

S ln~Q̃2
2/Q0

2!

ln~Q̃1
2/Q0

2!
D 5

1

2b0
@ b̃16Ab̃1

224b̃2#, ã05
1

Ab̃1
224b̃2

,

~10!

b̃15c122r 1 ,

b̃252
3

2
c1

21c2
(0)1c1r 113r 1

222r 2 . ~11!

If we ignore all higher than one-loop evolution effects, i.e.
we set c1505c2

(0) in Eqs. ~10!,~11! and replace the two
coupling parameters in Eq.~9! by their one-loop evolved
~from RSclQ0

2 to Q̃j
2) counterparts, then the approximant~9!

becomes the square root of the@2/2# Padéapproximant ofS̃.
This follows from general considerations in Refs.@15,16#,
but can also be verified directly in this special case. T
approximant@2/2# S̃

1/2 preserves the RScl invariance only a
proximately@in the one-loop renormalization group equati
~RGE! approximation#.

Although the RScl dependence is eliminated complet
by using the approximant~9!, there remains a RSch depe
dence, i.e., dependence oncj

(0) ( j >2). It manifests itself to a

large degree due to]b̃2 /]c2
(0)Þ0 (]b̃2 /]c2

(0)53). In Ref.
@16# we speculated that the dependence on the leading R
parameterc2

(0) could be eliminated by imposing the PM
condition of local independence@see Eq.~40! in Ref. @16##
05601
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dAS̃
[2/2]

~$ ln Q̃j
2~c2

(0)!% j ;c2
(0) ,c3

(0) , . . . !

dc2
(0) U

c
3
(0) , . . .

50,

~12!

where implicitly ‘‘50’’ should be understood as ‘‘;a0
6’’

since in general this derivative is;a0
5. However, expansion

of this expression in powers of the couplinga0 ~or any a)
yields

dAS̃
[2/2]

dc2
(0) U

c
3
(0) , . . .

5210c1a0
51O~a0

6!. ~13!

This implies that the approximant~9! to S has no stationary
~PMS! point with respect to the RSch parameterc2

(0) , since
the coefficient of the leading term in the expansion of t
derivative is constant and cannot be made equal to zero
change of the RSch. Also actual numerical calculations
various observablesS confirm this.

Therefore, we will modify the approximant~9! so that the
new one will allow us to remove, by a PMS condition, th
dependence on the leading RSch parameterc2

(0) . This modi-
fication must, of course, be such that the aforementio
minimal condition is satisfied and that the RScl invariance
preserved. We do this in the following way. We keep t
overall functional structure of Eq.~9!. However, we replace
the single set of RSch parameterscj

(0) ( j >2), which we
inherited from the TPS, by two sets of apriori arbitrary p
rameterscj

(1) andcj
(2) ( j >2) in the two coupling parameters

respectively, and we also admit new values of the refere
momentaQ1

2 andQ2
2

AA S̃
[2/2]

5$ã@a~ ln Q1
2 ;c2

(1) ,c3
(1) , . . . !

2a~ ln Q2
2 ;c2

(2) ,c3
(2) , . . . !#%1/2

~14!
@5S[2]1O~a0

4!#.

The parameterscj
(1) and cj

(2) will be appropriately fixed.
They will turn out to be independent of the RSch paramet
cj

(0) and of the RSclQ0
2 of the original TPS, just like the

scalesQ1
2 andQ2

2 and the parameterã will be.3 We will now
requirec2

(1)Þc2
(2) , in contrast to Eq.~9! which led us to the

problem ~13!. This requirement is not unnatural, since t
forms ~9! and ~14! haveQ̃1

2ÞQ̃2
2 andQ1

2ÞQ2
2, respectively.

The two new momentum scalesQj and the parameterã in
Eq. ~14! will be determined, in terms ofck

( j )’s (k52,3; j
51,2), by expanding the two coupling parameters in pow
series of the original couplinga0 ~4! and requiring that the
minimal condition be fulfilled, i.e., that the power series f
A S2

[2/2] coincides with that ofS̃ ~7!,~8! up to ~and including!

3Parametersc2
(1) and c2

(2) will be chosen later in the section, b
following a variant of the PMS;c3

(1) and c3
(2) will be set equal to

each other and fixed in the next sections.
3-3
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;a0
4. For this purpose we use the expansion for

general a[a(ln Q2;c2,c3, . . . ) in powers of a0

[a(ln Q0
2;c2

(0),c3
(0), . . . ) as obtained in Appendix A@Eqs.

~A7!–~A9!#, and apply it to as yet unspecified paramet
Q1

2, Q2
2, andck

( j ) ( j 51,2). The resulting expressions, whe
introduced into the square of the right-hand side of Eq.~14!,
yield an expansion in powers ofa0. According to the mini-
mal condition, it should coincide with Eq.~7! up to ;a0

4.
Comparison of the coefficients ofa0

n (n52,3,4) leads to the
following relations:

at a0
2 : 152ã~x12x2!,

⇒ã5
~21!

~x12x2!
5

~21!

b0ln~Q1
2/Q2

2!
,

~15!

at a0
3 : 2r 152@~x1

22x2
2!2c1~x12x2!

1dc2#/~x12x2!, ~16!

at a0
4 : 2r 21r 1

252F2~x1
32x2

3!1
5

2
c1~x1

22x2
2!

2c2
(0)~x12x2!23~x1dc2

(1)2x2dc2
(2)!

1
1

2
dc3G Y ~x12x2!, ~17!

where we have used the notations

xj[b0 ln~Qj
2/Q0

2!, dc2
( j )[c2

( j )2c2
(0) ~ j 51,2!,

~18!

dc2[c2
(1)2c2

(2) , dc3[c3
(1)2c3

(2) . ~19!

Equations~16! and ~17! are the two equations which dete
mine the two scalesQ1 andQ2 (⇔ parametersx1 andx2) as
functions ofck

( j )’s (k52,3; j 51,2). In order to see that thes
two scales are independent of the original RScl (Q0) and of
the original RSch (ck

(0) , k>2), we introduce

x̃ j[b0 ln~Qj
2/L̃2! ~ j 51,2!, ~20!

whereL̃ is the universal QCD scale appearing in the Stev
son equation~A1!, so it is RScl and RSch invariant. Afte
some algebra, we can rewrite Eqs.~16! and~17! as a system
of equations forx̃ j

2r11c15~ x̃11 x̃2!1
dc2

~ x̃12 x̃2!
, ~21!

2r213r1
222c1r15~ x̃1

21 x̃1x̃21 x̃2
2!2

5

2
c1~ x̃11 x̃2!

13
~ x̃1c2

(1)2 x̃2c2
(2)!

~ x̃12 x̃2!
2

dc3

2~ x̃12 x̃2!
, ~22!
05601
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wherer1 andr2 are the usual RScl and RSch invariants
defined, e.g., in Ref.@2#4 @see also Eq.~5!#

r15b0 ln~Q0
2/L̃2!2r 1 , ~23!

r25r 22r 1
22c1r 11c2

(0) . ~24!

Therefore, Eqs.~21!,~22! show the following: Ifc2
(1) andc2

(2)

anddc3[c3
(1)2c3

(2) are chosen and fixed, then the solutio

x̃ j and thus the scalesQj ( j 51,2) are independent of th
RScl (Q0) and of the RSch (c2

(0) ,c3
(0) , . . . ). Thus, we have

Qj
25Qj

2~c2
(1) ,c2

(2) ;dc3! ~ j 51,2!,

ã5
~21!

b0 ln~Q1
2/Q2

2!
5ã~c2

(1) ,c2
(2) ;dc3!. ~25!

Therefore, our approximant~14! will be regarded from now
on as a function of onlyck

( j ) parameters (k>2; j 51,2):
A S2

[2/2](c2
(1) ,c2

(2) ;c3
(1) ,c3

(2) ; . . . ). For actually solving the
equations for the scalesQ1 andQ2, it is more convenient to
use Eqs.~16!,~17!. For the subsequent use, we rewrite the
in the following form:

y2
4 2y2

2 z0
2~c2

(s)!1y2

1

4
~5c1dc22dc3!2

3

16
~dc2!250,

~26!

2r 11
1

2
c12

1

4

dc2

y2
5y1 ,

~27!

where we use the notations

y6[
1

2
b0F ln

Q1
2

Q0
2

6 ln
Q2

2

Q0
2G , ~28!

dck[ck
(1)2ck

(2) , ck
(s)[

1

2
~ck

(1)1ck
(2)! ~k52,3!, ~29!

z0
2[S 2r21

7

4
c1

2D23c2
(s)[z0

2~c2
(s)!, ~30!

wherer2 is given by Eq.~24!. Incidentally, it can be explic-
itly checked that in the special case ofc2

(1)5c2
(2)5c2

(0) and
c3

(1)5c3
(2)5c3

(0) Eqs.~26!–~30! and ~16! recover the old ap-
proximant~9!–~11! of Ref. @16#.

The next question is how to fix parametersc2
( j ) and c3

( j )

( j 51,2). Above all, we have to fix the leading paramete
c2

( j )’s since otherwise their arbitrariness would reflect the f

4Ra̧czka @20# used the sum of the absolute values of terms inr2

for a formulation of criteria for acceptable RScl’s and RSch’s
NNLO TPS. He concluded that the strong RScl/RSch depende
of the NNLO TPS of the BjPSR~with nf53) presents a seriou
practical problem.
3-4
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that the leading RSch dependence~i.e., the dependence o
c2

(0)) has not been eliminated from the approximant. We
this by requiring the local independence of the approxim
with respect to variation ofc2

(1) and ofc2
(2) separately. This

condition is a variant of the principle of minimal sensitivi
~PMS!, or a PMS-type ansatz

]A S̃
[2/2]

]c2
(1) U

c
2
(2)

505
]A S̃

[2/2]

]c2
(2) U

c
2
(1)

⇔
]A S̃

[2/2]

]c2
(s) U

dc2

505
]A S̃

[2/2]

]~dc2!
U

c
2
(s)

.

~31!

Here, ‘‘50’’ should be understood as ‘‘;a0
6’’ since in gen-

eral these derivatives are;a0
5. These two equations the

give us solutions for the leading parametersc2
(1) and c2

(2) ,
once the values of the subleading parametersc3

(s)[(c3
(1)

1c3
(2))/2 anddc3[c3

(1)2c3
(2) have been chosen.5 However,

using Eq.~A5! and the fact thatQj
2 are independent ofc3

(s)

@see Eq.~25!#, we can show the following dependence of t
approximant onc3

(s) ~at constantdc3):

d ln~AA S̃
[2/2]

!5d~c3
(s)!

1

4
~a1

31a1
2a21a1a2

21a2
3!1O~aj

4!

&d~c3
(s)!ua1u3, ~32!

where aj[a(ln Qj
2 ;c2

(j) ,c3
(j) , . . . ) (j 51,2) and we took the

index conventionua1u>ua2u. This means that the dependen
on c3

(s) cannot be eliminated in the considered case, not e
by a PMS variant. In this respect, the situation is analog
to the usual TPS-PMS@2# and the ECH@3# methods. These
two methods ~see Appendix C!, while fixing RScl
(Q0°QECH5QPMS) andc2 RSch parameter (c2

(0)°c2
PMS or

c2
ECH) in the original TPS~2!, leave the value of the sublead

ing parameterc3 there unspecified, with the residualc3 de-
pendence of the~TPS! approximant

d ln~S[2]
(X)!'d~c3!aX

3/2, ~33!

where X stands either for ECH or TPS-PMS. Compari
Eqs. ~32! and ~33!, we see that thec3

(s) dependence of ou
approximant could be up to twice as strong as that of
TPS-PMS and ECH methods.

Hence, varyingc3
(1) and c3

(2) parameters in our approxi
mant at this point would apparently not lead to any n
insight. For the sake of simplicity, we choose from now
these two subleading parameters to be equal to each ot

c3
(1)5c3

(2)[c3 ~dc350!, ~34!

but we will adjust the common parameterc3 later to a physi-
cally motivated value.

With the chosen restriction~34!, the problem of finding
our approximant~14! to the TPS~2! basically reduces to the
problem of solving the system of three coupled equati
~26! and ~31! for the three unknownsy2 @5b0 ln(Q1 /Q2)#

5Also a value ofdc4[c4
(1)2c4

(2) has to be chosen—see later.
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and dc2 and c2
(s) (⇔c2

(1) and c2
(2)). For completeness, th

PMS-like equations~31!, whendc3505dc4, are written ex-
plicitly in Appendix B, to the relevant order;a0

5 at which
we solve them—Eqs.~B1!,~B2!. From there and from Eq
~26! we explicitly see that these three equations contain o
the three unknowns (y2 , c2

(s) , and dc2) and the~known!
RScl and RSch invariantsr2 ~24! andc15b1 /b0. Interest-
ingly enough, these three equations do not depend onc3

(5c3
(1)5c3

(2)). In addition, they do not depend on any oth
higher order parametersck

( j ) (k>4; j 51,2) appearing inaj

[a(ln Qj
2 ;c2

(j) ,c3,c4
(j) , . . . ), except ondc4[c4

(1)2c4
(2) which

was taken to be zero in Eqs.~B1!,~B2!. Hence,Qj andc2
( j )

( j 51,2) will be functions ofr2 andc1 only, thus explicitly
RScl and RSch invariant. For simplicity, we want the so
tions Qj

2 and c2
( j ) ( j 51,2) to be independent ofany higher

order parameterck
( j ) (k>3) that possibly appears in ou

approximant, therefore we choose from now on a
dc4([c4

(1)2c4
(2))50. The solution of the mentioned thre

coupled equations in any specific case can be found num
cally, e.g., by usingMATHEMATICA or some other compa
rable software for numerical iteration. Certainly we have
ensure that the program scans through a sufficiently w
range of the initial trial valuesy2

(in) , (c2
(s)) (in), and (dc2)(in)

for iterations, in order not to miss any solution. The solutio
which result in eitheruãu@1 or uãu!1 should be discarded
since they signal numerical instabilities of the approxima

@ uãu@1⇒Q1
2'Q2

2—see Eq.~15!# or are in addition physi-

cally unacceptable (uãu!1⇒Q1
2!Q2

2 or Q2
2!Q1

2). We have
apparently two possibilities:~i! y2 , c2

(s) , anddc2 are all real
numbers~and thus the intial trial values as well!; ~ii ! c2

(s) and
its initial values are real;y2 anddc2 and their initial values
are imaginary numbers (c2

(1) andc2
(2) are complex conjugate

to each other, as areQ1
2 andQ2

2). In both cases, the approx
imant itself turns out to be real, as long asc3 is real.

If we encounter several solutions which give different v
ues for the approximant, we should choose, again within
PMS logic, among them the solution with the smallest c
vature with respect toc2

(1) andc2
(2) . For such cases, we de

fine two almost equivalent expressions for such curvature
Appendix B—see Eqs.~B4!,~B5!.

III. BJORKEN POLARIZED SUM RULE „BPSR…:
c3 FIXING

We will now apply the described method to the case
the Bjorken polarized sum rule~BPSR! @21#. It is the isotrip-
let combination of the first moments overxBj of proton and
neutron polarized structure functions

E
0

1

dxBj@g1
(p)~xBj ;Qph

2 !2g1
(n)~xBj ;Qph

2 !#

5
1

6
ugAu@12S~Qph

2 !#, ~35!

where p252Qph
2 ,0 is the momentum transfer carried b

the virtual photon. The quantityS(Qph
2 ) has the canonica
3-5



e

tio

.

f

c

f

r

e

t
the

ass

Eq.
g in

ld

lue
t?

l-

nd-x
b

lu
k

ept

G. CVETIČ AND R. KÖGERLER PHYSICAL REVIEW D63 056013
form ~1!. It has been calculated to the NNLO@22,23#, in the
MS RSch and with the RSclQ0

25Qph
2 . The pertaining values

of r 1 and r 2, for thoseQph
2 where three quark flavors ar

assumed active (nf53), e.g., atQph
2 53 or 5 GeV2, are r 1

53.5833@22# and r 2520.2153@23#, so that

S[2]~Qph
2 ;Q0

25Qph
2 ;c2

MS,c3
MS!

5a0~113.5833a0120.2153a0
2!, ~36!

with

a05a~ ln Q0
2 ;c2

MS,c3
MS, . . . !, nf53, c2

MS54.471,

c3
MS520.99. ~37!

The constantugAu appearing in Eq.~35! is known from
b-decay measurements@24# ~it is denoted there asugA /gVu)

ugAu51.267060.0035. ~38!

Solving the coupled system of Eqs.~26! and ~B1!,~B2! for
the three unknownsy2 , c2

(s) , anddc2, as discussed in the
previous section, results in this case in one physical solu
only6

y2S [
1

2
b0 ln

Q1
2

Q2
2D 521.514 ~⇒ã50.3301!, ~39!

c2
(s)53.301, dc2523.672⇒c2

(1)51.465, c2
(2)55.137.

~40!

Parametery1 , defined in Eq.~28!, is then obtained from Eq
~27!. The resulting scalesQ1 , Q2 are then 0.767, 1.504 GeV
(Qph

2 55 GeV2) and 0.594, 1.165 GeV (Qph
2 53 GeV2). We

stress that these results are independent of the value oc3

~34! and ofc4 and otherck
( j ) (k>5; j 51,2) in the approxi-

mantAA S2 ~14!, and are independent of the choice of RS
Q0 and RSch (ck

(0) , k>2) in the original TPSS[2] . In TPS
~36!, the choice wasQ05Qph and c2

(0)5c2
MS (54.471).

Knowing Qj and c2
( j ) ( j 51,2), for the actual evaluation o

approximant~14! we need to assume a certain value fora0

~37! ~at RSclQ0). The value ofã is obtained from Eq.~16!

(ã50.3303); the value of the coupling parameteraj

[a(ln Qj
2 ;c2

(j) ,c3,c4,c5
(j) , . . . ) (j 51,2) can be obtained, fo

example, by solving the subtracted Stevenson equation~A2!

6Formally, we get two solutions, but they give the same appro
mant, since the second solution is obtained from the first
Q1↔Q2 and c2

(1)↔c2
(2) . Further, if ignoring in PMS conditions

~B1!–~B2! the denominators, one arrives at two additional so
tions, both havingc2

(s)5(6r227c1
2/4)/7; however, one can chec

that also the denominators are then zero and the derivative~B1!

reduces to 2(2dc2215c1y2)ā0
5/(3y2) which turns out to be finite

and nonzero.
05601
n

l

b0 ln
Qj

2

Q0
2

5
1

aj

1c1 lnS c1aj

11c1aj
D

1E
0

aj
dx

~c2
( j )1c3x!

~11c1x!~11c1x1c2
( j )x21c3x3!

2
1

a0

2c1 lnS c1a0

11c1a0
D

2E
0

a0
dx

~c2
MS1c3

MSx!

~11c1x!~11c1x1c2
MSx21c3

MSx3!

~ j 51,2!. ~41!

In Eq. ~41! we ignored terms}c4
( j ) and higher since they ar

not known (c4
MS is not known, either!. Stated otherwise, we

set here and in the rest of this section:ck
(1)5ck

(2)5ck
MS50

for k>4, i.e. Theb functions pertaining to the approximan
are taken in the TPS form to the four–loop order. Hence,
only free parameter in the approximantAA S2 ~14! is nowc3

@cf. condition ~34!#, all the other nonzero parameters (Qj
2 ,

c2
( j ) , ã) have been determined and arec3– and RScl- and

RSch-independent. Further, any effects due to the m
thresholds (nf>4) are ignored in Eq.~41!. These effects are
suppressed because the difference of the two integrals in
~41! tends to cancel them. Note that the scales appearin
Eq. ~41! (Q1'0.6–0.8 GeV,Q2'1.2–1.5 GeV,Qph5Q0
'1.7–2.2 GeV! are all regarded to be below the thresho
(nf53)°(nf54), i.e., all the active quark flavors are~al-
most! massless.7

The main question appearing at this point is which va
of c3 (5c3

(1)5c3
(2)) should we choose in our approximan

The two most obvious possibilities arec350 or c35c3
MS

(520.99). The decision is far from being numerically irre
evant. If choosing fora0[a(ln Q0

2;c2
MS,c3

MS) at Qph
2 5Q0

2

53 GeV a typical value, e.g.,a050.09 @⇒ as
MS(3GeV2)

'0.283, as
MS(MZ

2)'0.113], we obtain the following re-
summed values for the BPSRS

AA S̃
[2/2]

~c350!50.1523, AA S̃
[2/2]

~c35c3
MS!50.1632.

~42!

The latter is 7.16% higher than the former. The correspo
ing resummed values of the ECH@3# and TPS-PMS@2# are

i-
y

-

7In the whole paper, we ignore any quark mass effects, exc
later in the evolutionas

MS(Qph
2 )°as

MS(MZ
2) where the quark mass

thresholds are significant and accounted for.
3-6
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A S
ECH~c350!50.1535, A S

ECH~c35c3
MS!50.1593,

~43!

A S
PMS~c350!50.1528, A S

PMS~c35c3
MS!50.1588.

~44!

The latter values~for c35c3
MS) are 3.79%~ECH! and 3.96%

~TPS-PMS! higher than the former~for c350). Thus, the
sensitivity of our approximant to the variation ofc3 is in the
considered case almost twice as large as for the ECH
TPS-PMS methods, as anticipated in Eqs.~32!,~33! in the
previous section. The true value ofc3 in A S

ECH should be
equal tor3, i.e., the third RScl and RSch invariant of th
BPSR, but this value is not exactly known because the N3LO
coefficient r 3 in the perturbative expansion of the BPSR
not known yet. The strongerc3 sensitivity should not be
regarded as a negative feature of our approximant, but ra
within the following context.

Our approximant contains two~RScl invariant! energy
scalesQ1 , Q2. Since the considered observable is close
the nonperturbative sector (Qph,2.5 GeV!, the relevant
scalesQj (;Qph) are low:Q1'0.6–0.8 GeV andQ2'1.2–
1.5 GeV. Thus the relevant coupling parametersaj

[a(ln Qj
2 ;c2

(j) ,c3) are large:a1'0.19 anda2'0.11~whenc3

is set equalc3
MS and a050.09, Q0

25Qph
2 53 GeV2). There-

fore, the contribution of thec3 term on the right-hand side o
the integrated RGE~41! @⇔ differential RGE~3!# at such
energy scales is not negligible. This feature, to a somew
lesser degree, can also be seen in the ECH and TPS-
approaches, whereQECH (5QPMS)'0.8 GeV and aECH

[a(ln QECH
2 ;c2

ECH,c3)'0.16 ~when c3 is set equal toc3
MS,

and a050.09, Q0
25Qph

2 53 GeV2). The significantc3 de-
pendence of all these approximants, at fixeda0, reflects the
fact that the coupling parametersa(Qj ) appearing in the ap
proximants are not small and that consequently the con
ered observable is in the low-energy regime. The value
Padéapproximants~PA’s!, when applied to NNLO TPS o
an observable~e.g., BPSR!, are alsoc3 dependent. However
the latterc3 dependence, in contrast to that in the aforem
tioned approximants, is not playing a highlighted role, sin
the PA’s depend in addition on the leading RSch param
c2 (⇔c2

(0)) and even on the RSclQ0
2.

The above considerations, however, do not address
important problem presented by Eq.~42!: Which value of
parameterc3 should we use in our approximant? We no
that c3 characterizes the N3LO term in the correspondingb
function ~3!, and the information on its value in a consider
approximant cannot be obtained from the NNLO TPS
which the approximant is based. To determine the optim
value ofc3 in an approximant~our, ECH, or TPS-PMS!, an
important known piece of~nonperturbative! information be-
yond the NNLO TPS should be incorporated into the appr
imant. There are at least two natural candidates for this:
location of the leading infrared (IR1) and ultraviolet (UV1)
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renormalon poles, i.e., the positive and negative poles of
Borel transformBS(z) of the observable closest to the orig
~for a review on renormalons, see Ref.@25#!. In the case of
the BPSR, these two locations are known from large-b0

~large-nf) considerations@26,27#: zpole51/b0 (IR1), zpole5
21/b0 (UV1).

Which of the two leading renormalons is numerica
more important in the BPSR case? In the simple Borel tra
form of the BjPSR, withMS RSch and RSclQ05Qph (nf

53), the ratio of the residues of the IR1 and UV1 poles in
the large-b0 approximation is 2exp(10/3)'56@1 @26,25#.
This would suggest strong numerical dominance of the1
over UV1. However, when using there the V scheme@1#, i.e.,
MS with RSclQ05Qphexp(25/6) ('QECH), this ratio goes
down to 2. This would suggest that the UV1 ~vis àvis IR1) is
not entirely negligible. The authors of Ref.@27# used the
’t Hooft RSch and varied the RScl in such an approa
~large-b0, simple Borel transform, principal value prescri
tion!, and their Fig. 2 for the BjPSR atQph

2 52.5 GeV2 sug-
gests that IR renormalon contributions toS(Qph

2 ) are 3–4
times larger than those of the UV renormalons. The relat
strength of the UV vs IR renormalon contributions, in th
RScl or RSch noninvariant approach with simple Bo
transform, appears to depend in practice on the choice of
RScl and RSch. Incidentally, a consideration of the status
the renormalon contributions and of their scheme dep
dence was made in Ref.@28#. The question of the relative
suppression of the~leading! UV renormalon contributions in
RScl- and RSch-invariant resummations would deserv
further study. An additional uncertainty resides in the fa
that the residues, in contrast to the renormalon pole lo
tions, change and thus attain unknown values when we
beyond the large-b0 approximation. For the UV renorma
lons, this uncertainty shows up in an especially acute fo
@29#.

The aforementioned works, however, suggest stron
that, in the BPSR caseS(Qph

2 53 –5 GeV2), we should pref-
erably fix the value ofc3 in our, ECH, and TPS-PMS resum
mation approximants by using IR1 (zpole51/b0) and not
UV1 (zpole521/b0) information. The IR1 pole location can
be transcribed asypole52, wherey[2b0z. This corresponds
to possible renormalon-ambiguity contributions;1/Qph

2 to
the BPSR observable which are nonperturbative.

We will present now an algorithm for adjusting approx
mately the value ofc3 in our approximant for the NNLO
TPS ~2!. Briefly, it consists of the requirement thatc3 must
be adjusted in such a way that the Borel transform of
approximant has the correct known location of the low
positive pole, where the latter location is obtained by co
struction of Pade´ approximants~PA’s! of the Borel trans-
form.

A first idea would be to use simple Borel transforms. W
would first expand our approximant~with a general yet un-
specifiedc3) in power series of a coupling parameter, s
a0[a(ln Q0

2;c2
(0),c3

(0), . . . ), up to acertain order;a0
j 11 ( j

>3), then obtain from this predictedS[ j ] TPS the corre-
spondingB[ j ] (z) TPS~up to;zj ) of the simple Borel trans-
form as schematically described by
3-7
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AA S̃
[2/2]

~a0 ;c3!5S[ j ]
pr ~a0 ;c3!

5a0@11r 1a01r 2a0
21r 3

pr~c3!a0
31•••

1r j
pr~c3!a0

j #, ~45!

⇒B[ j ]
pr ~z;c3!

511
r 1

1!
z1

r 2

2!
z21

r 3
pr~c3!

3!
z3

1•••1
r j

pr~c3!

j !
zj . ~46!

The ~approximate! pole structure of the simple Borel tran
form can be investigated by constructing various PA’s of
TPS~46!. The requirement that the lowest positive pole be
y([2b0z)52.0 would then give us predictions forc3. How-
ever, this approach is in practice seriously hampered,
cause coefficientsr k /k! of the simple Borel transform
B(z;c3) depend very much on the choice of the RScl (Q0

2)
and RSch (c2

(0) ,c3
(0) , . . . ). For example, if expanding ou

approximantAA S2(a0 ;c3) up to ;a0
4 in an RSch withc2

(0)

5c2
MS and an arbitraryc3

(0) , and keeping the RSclQ0
2 un-

changed (5Qph
2 ), we reproduce in the BPSR case the fi

two coefficientsr 1 andr 2 of Eq. ~36!, while the predictedr 3
in this RSch is

r 3
pr5125.790•••2

c3
(0)

2
1c3 . ~47!

The PA’s @2/1# or @1/2# of the corresponding simple Bore
transform TPSB [3]

pr (z) would therefore be functions o
(2c3

(0)/21c3), and the requirementypole52.0 would at this
level give us only a prediction for (2c3

(0)/21c3), not for c3

itself.8 For example, working withB[3]
pr (z) in the RSch with

c3
(0)50 results in a prediction forc3 that is by about 10.5

lower than the one whenc3
(0)5c3

MS('21) is used. If using
the ECHaECH(c3) @3# or TPS-PMSSPMS(c3) @2# approxi-
mants instead of our approximant~wherec3 is the arbitrary
subleading parameter used inaECH andaPMS—see Appendix
C!, the corresponding prediction withQ05Qph is r 3

(pr)

5129.8998•••1(2c3
(0)1c3)/2. Hence, also in the case o

these approximants we end up with the same kind of pr
lem of strong RSch dependence (c3

(0) dependence! of the
predicted values ofc3.

Therefore, we will use a variant of the RScl- and RSc
independent Borel transformB(z) introduced by Grunberg
@30#, who in turn introduced it on the basis of the modifie
Borel transform of the authors of Ref.@31#

8The @1/1# PA of the simple Borel transform is independent ofc3

and ofc3
(0) . In the BPSR case, in the modified minimal subtracti

(MS) RSch and at RSclQ0
253 or 5 GeV2, wherenf53, it predicts

ypole'1.6.
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S~Qph
2 !5E

0

`

dzexp@2r1~Qph
2 !z#BS~z!. ~48!

Here,r1 is the first Stevenson’s RScl or RSch invariant~23!
of the observableS:

r1~Qph
2 !52r 1~Qph

2 /Q0
2!1b0 ln

Q0
2

L̃2
5b0 ln

Qph
2

L̄2
, ~49!

where L̃ is the universal scale appearing in the Steven
equation ~A1!, while L̄ is a scale which depends on th
choice of the observableS. But L̄ is independent of RSclQ0
and of RSch and even of the process momentumQph. We
note thatr1(Qph

2 ) is, up to a constantc ~the latter is irrelevant
for the position of the poles ofBS), equal to 1/a(1-loop)(Qph

2 ).
Thus,BS(z) of Eq. ~48! reduces to the simple Borel trans
form, up to a factor exp(cz), if higher than one-loop effects
are ignored. The positions of the poles ofBS(z) of Eq. ~48!
are the same as those of the simple Borel transform.
coefficients of the power expansion ofBS(z) of Eq. ~48! are
RScl and RSch invariant, in contrast to the case of the sim
Borel transform. These invariant coefficients can be rela
with coefficientsr n of Swith relative ease in a specific RSc
ck5c1

k (k52,3,4, . . . ), while keeping the RSclQ0
2 un-

changed

BS~z!5~c1z!c1z exp~2r 1z!(
0

`
~ r̃ n2c1r̃ n21!

G~n111c1z!
zn

[~c1z!c1zB̄S~z!. ~50!

Here, r̃ n is the coefficient atãn11 in the expansion ofS in
powers ofã[a(ln Q0

2;c1
2,c1

3,c1
4, . . . ), and bydefinition r̃ 21

50, r̃ 051. In Eq.~50!, we introduced the modified RScl o
RSch invariant Borel transformB̄S(z), by extracting the fac-
tor (c1z)c1z whose behavior atz→0 may be problematic for
PA’s to deal with.9 The obtained coefficients of the powe
expansion ofB̄S(z) are explicitly RScl and RSch invarian
depending only on the invariantsr j ( j >2), on c1 and on
some universal constants.

We will now calculate the invariant Borel transformB̄AA
of our approximant. The coefficientsr̃ k as predicted by our
approximant~14! AA S2(c3) are functions of the only un-

9Grunberg’s@30# Borel transformB̃(Gr) was chosen by convention

as B̃(Gr)(z)5G(11c1z)exp(c1z)B̄(z). In this way, B̃(Gr)(z)
'B(z)A2pc1z whenz→`, and the coefficients of the power ex

pansion ofB̃(Gr) in z depend only on the RScl/RSch invariantsr j

~no dependence onc1 and onG-function-related constants!. We
decided not to follow this convention, primarily sinceG(11c1z)
introduces spurious poles on the negative axis, the one closest t
origin beingy([2b0z)'22.53. Such spurious poles not far awa
from the origin can significantly limit the PA’s ability to locat
correctly the leading IR renormalon pole (ypole'2.0).
3-8
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known c3 @ r̃ k5 r̃ k(c3), k>3], They can be obtained as co
efficients of the power expansion ofAA S2(c3) in powers of
ã. Looking back at the form~14! of our approximant, such a
power expansion requires first the separate expansion
a15a(Q1

2 ;c2
(1) ,c3,0, . . . ) and ofa25a(Q2

2 ;c2
(2) ,c3,0, . . . )

in powers of ã. The latter expansions can be read off E
~A7!, up to;ã5 ~therea°a1 or a2 anda0°ã.! In fact, we
carried out the latter expansion up to;ã8 ~with the help of
MATHEMATICA !, which allowed us to write the approximan
AA S2(c3) up to ;ã7. This in turn leads us to obtain th
invariant Borel transformBAA(z) up to ;z6, according to
Eq. ~50!, and allows us to construct PA’s of the Borel tran
form of as high order as@3/3#, @2/4#, @5/1#. The coefficients
starting atz3 are predictions of the approximant and arec3

dependent:B̄S(z)511b̄1z1b̄2z21b̄3(c3)z31•••, with b̄1

'20.7516,b̄2'0.4209,b̄3(c3)'(22.66410.1667c3), etc.
Construction of various PA’s of that Borel transform a
requirement that the smallest positive pole equalypole
(52b0zpole)52.0 gives us predictions forc3 which are
listed for the described case in the second column of Tab
In the column we included values ofc3 with small nonzero
imaginary parts and Re(c3)'10–12, since for such value
the PAB̄’s and the TPS ofB̄ are almost real, with imaginary
parts less than 1% of the real part fory,1.9. In the latter
cases the real part ofc3 may be regarded as the sugges
value. The actual value ofc3 must be exactly real, but sinc
a specific PA predicts only an approximate value ofc3, this
latter value is not necessarily exactly real. We did not
clude some other solutions which differ a lot from tho
given in the column. Predictions of PAB̄’s of the intermediate
orders~@3/1#, @4/1#, @2/2#, @3/2#, @1/3#, @2/3#! give us the av-
erage valuec3'12.5 which we will adopt. The prediction b
PA @2/1# differs from most of the other predictions, appa
ently because@2/1# is of low order. Predictions by the high

TABLE I. Predictions forc3 in our, ECH, and TPS-PMS ap
proximants, using various PA’s of the invariant Borel transfo

B̄(z) of the approximants and demanding that the lowest posi
pole be atzpole51/b0 (54/9). The higher order parametersck

( j )

(k>4, j 51,2) in our approximant, andck (k>4) in ECH and
TPS-PMS, were all set equal to zero.

PAB̄ c3 (AA S2) c3 ~ECH! c3 ~TPS-PMS!

@2/1# 21.7 35.1 35.1
@3/1# 13.7 19.5 19.0
@4/1# 11.1 14.4 13.1
@5/1# 9.3 11.2 8.8
@1/2# 12.8 17.3 17.3
@2/2# 12.4 16.9 16.2
@3/2# 11.763.4i 15.866.4i 15.467.4i
@4/2# 10.362.8i 12.965.1i 11.666.8i
@1/3# 12.4 16.9 16.2
@2/3# 12.9 17.4 18.360.8i
@3/3# 10.662.9i 13.665.5i 12.667.0i

average '12.5 '17.0 '16.0
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est PA’s (@5/1#, @4/2#, @3/3#) also differ from the average
The reason for this probably lies in the fact that these P

contain information on many higher order coefficientsr̃ n

(n53,4,5,6) which are not contained in the TPSS[2] on
which the approximantAA S2 is based. In addition, thes
high order PA’s are implicitly dependent on the high ord
parametersck

(1) andck
(2) (k54,5,6,7) which were here sim

ply set equal to zero~we will come back to this point later in
Sec. V!.

Completely analogous considerations produce the va
of c3 parameter in the ECH and TPS-PMS approximants.
details on the ECH and TPS-PMS methods, when applie
the NNLO TPSS[2] ~2!, we refer to Appendix C. Also in this
case, we make for the correspondingb functions the simple
TPS choice ECH RSch5(r2 ,c3 ,0, . . . ); TPS-PMS RSch
5(3r2/2,c3 ,0, . . . ). The obtained predictions forc3 for
these approximants are included in Table I. Again, PA@2/1#
and the highest order PA’s appear to give unreliable pre
tions. On the basis of the predictions of PAB̄’s of intermedi-
ate order, we will adopt the valuec3517 for the ECH case,
and c3516 for the TPS-PMS case. The actual values ofc3
must be exactly real.

In fact, we can apply this method of determining thec3
parameter of our approximant~and of ECH and TPS-PMS
approximants! to any QCD observable given at the NNL
and whose leading IR renormalon pole is known via large-b0
considerations. The method, however, is well motivated o
if there are indications that the leading IR renormalon co
tributions to the observable are larger than those of the le
ing UV renormalon. We wish to stress that our approxima
as well as the ECH and TPS-PMS approximants, are c
pletely independent of the original choice of the RScl a
RSch in the TPS of the observable, because the parametc3
is RScl and RSch invariant since it is determined by us
the RScl- and RSch-invariant Borel transformB̄(z).

A few remarks about the multiplicity of the discussed IR1
pole are in order. The simple Borel transform(r kz

k/k! of
S(Qph

2 ) behaves nearzpole (51/b0) as;1/(zpole2z)k where
the multiplicity is @32,34,29# k511(b1 /b0)zpole1(g/b0),
and g is the one-loop anomalous dimension of the cor
sponding two-dimensional operator appearing in the oper
product expansion forS ~usuallyg>0). On the other hand
the RScl- and RSch-invariant Borel transform~50! behaves
near zpole with the simpler pole multiplicity @31# k51
1(g/b0). To our knowledge, the anomalous dimensiong is
not known in this case. However, in the case of the Ad
function~logarithmic derivative of the correlation function o
quark current operators!, the one-loop anomalous dimensio
of the four-dimensional operator corresponding to the low
IR renormalon pole there (zpole52/b0) is known @32,33# to
be g50. If g50 also in the BPSR case, then the RScl- a
RSch-invariant Borel transform~48!–~50! hask51, i.e., the
leading IR renormalon pole is a simple pole, in contrast
the simple Borel transform wherek is noninteger. In such a
case, we may have an additional incentive to use, instea
the simple Borel transform, the invariant Borel transfor
~48!–~50! in conjunction with the aforedescribed PA’s o
Table I. Namely, PA’s are very good at discerning the loc

e
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tion of a pole if such a pole is simple, and are somewhat
successful in this job if the pole is multiple or with nonint
ger multiplicity.

IV. BPSR: PREDICTIONS FOR THE COUPLING
PARAMETER

Now that we have fixed the values of thec3 parameter in
the approximantsAA S2(a0 ;c3), ECH and TPS-PMS, the
only adjustable parameter in them is the numerical value
a0[as

MS(Qph
2 )/p, at suchQph

2 where three flavors are as
sumed active, e.g., atQph

2 53 or 5 GeV2. This a0 can be
obtained by requiring that it should reproduce the exp
mental values forS(Qph

2 ) of Eq. ~35!. The questions con
nected with the extraction of the values of the BPSR integ
~35! from the measured polarized structure functions are
present not quite settled. One source of the uncertainty a
from the fact that these structure functions have not b
measured at small values ofxBj and that, therefore, a theo
retical extrapolation to such smallxBj values is needed. Th
authors of Refs.@35,36# used the small-xBj extrapolation as
suggested by the Regge theory, the assumption made als
various experimentalist groups before 1997. The values
obtained in Refs.@35,36#, on the basis of measurements
SLAC and CERN before 1997, are

~Regge!:
1

6
ugAu@12S~Qph

2 53 GeV2!#50.16460.011.

~51!

On the other hand, the authors of Ref.@37# used a small-xBj
extrapolation based on the NLO version of the Dokshitz
Gribov-Lipatov-Altarelli-Parisi~DGLAP! equations@pertur-
bative QCD~PQCD!# as opposed to the Regge extrapolati
~see also Ref.@38#!. This leads to higher values and larg
uncertainties of the BPSR integral. The values extracted
this way by@37# ~their Table 4!, based on SLAC data, are

~ II !:
1

6
ugAu@12S~Qph

2 53 GeV2!#50.17760.018.

~52!

Furthermore, most of the experimentalist groups ha
adopted, since 1997, similar NLO PQCD approaches to
small-xBj extrapolation, e.g., SMC Collaboration@39# at
CERN, E154@40# and E155@19# Collaborations at SLAC.
The most recent and updated measurements of the pola
structure functions are those of Ref.@19#. Their combined
value of the BPSR integral atQph

2 55 GeV2 is

~ I!:
1

6
ugAu@12S~Qph

2 55GeV2!#50.17660.008. ~53!

Apart from the problem of the small-xBj extrapolation, there
is a problem of accounting for nuclear effects. Since
extraction of theg1

(n) structure function is based on the me
surements of the structure functions of the deuteron and3He,
nuclear effects have to be taken into consideration. T
~multiplicative! effects due to the nuclear wave functio
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have been taken into account in Eqs.~53! and~52!. However,
recently the authors of Ref.@41# argued that additiona
nuclear effects, originating from spin-one isosinglet 6-qua
clusters in deuteron and helium~which include the shadow
ing, EMC, and Fermi motion effects!, affect the extracted
values of the neutron structure functiong1

(n) in such a way
that the value of the BPSR integral increases by about 1
This would then change the E155 values of Eq.~53! to

~ I8!:
1

6
ugAu@12S~Qph

2 55 GeV2!#50.19360.009.

~54!

The values of Eq.~52!, at Qph
2 53 GeV2 would be increased

to about 0.19560.020. We will not consider this case II8 and
case I8 ~54! for the time being, but will briefly return to them
in Sec. VI.

In the following we will extract the values ofas
MS(Qph

2 )
from the BPSR-integral values~53! and~52!, and will simply
denote the corresponding cases as I and II, respectively

If we insert the value~38! for ugAu into Eqs.~53! and~52!,
we obtain

~ I!: S~Qph
2 55 GeV2!50.16760.038, ~55!

~ II !: S~Qph
2 53 GeV2!50.16260.085. ~56!

The present small uncertainty in the value ofugAu ~38! prac-
tically does not contribute to the uncertainties ofS(Qph

2 ) in
Eqs.~55!,~56!.

Our approximant gives, for example, fora0

[a(ln 3GeV2;c2
MS,c3

MS,0, . . . )50.09@⇔as
MS(Q253GeV2)

'0.283# the value 0.1585, which is not far from the midd
values in Eqs.~55!,~56!. Varying a0 in our approximant
~with c3512.5) in such a way that the middle and the en
point values of the right-hand side of Eqs.~55! or ~56! are
reproduced then results in the following predictions foras

~in MS RSch!:

as
MS~Q255 GeV2!50.289420.0345

10.0238 ~ I!;

as
MS~Q253 GeV2!50.285520.1024

10.0450 ~ II !. ~57!

We then evolved these predicted values via four-loop R
~3! to Q25MZ

2 , using the values of the four-loop coefficien
c3(nf) in the MS RSch @42# and the corresponding three
loop matching conditions@43# for the flavor thresholds. We
used the matching atm(nf)5kmq(nf) with the choicek
52, wheremq(nf) is the running quark massmq(mq) of the
nf th flavor andm(nf) is defined as the scale above whichnf

flavors are active.10 The resulting predictions foras(MZ
2) are

10If increasingk from 1.8 to 3 in case I, the predictions for th
central, upper, lower values ofas(MZ

2) decrease by 0.12, 0.15
0.09 %, respectively; increasingk from 1.5 to 3 in case II, the
respective numbers are 0.12, 0.17, 0.03 %. We assumedmc(mc)
51.25 GeV andmb(mb)54.25 GeV.
3-10
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TABLE II. Predictions for as
MS, derived from various resummation approximants to the BPSR

Qphoton
2 55GeV2, 3 GeV2. Predictions for the case I~53! and II ~52! are given in parallel.

Approximant as(5GeV2): ~I! as(3GeV2): ~II ! as(MZ
2): ~I! as(MZ

2): ~II !

NNLO TPS 0.328720.0530
10.0465 0.322120.1341

10.0989 0.125220.0078
10.0055 0.118320.0232

10.0095

N3LO TPS (r 35128.05) 0.312120.0464
10.0393 0.306520.1215

10.0823 0.123020.0073
10.0050 0.116320.0219

10.0089

@1/2#S ~NNLO! 0.305420.0426
10.0339 0.300320.1155

10.0693 0.122020.0069
10.0046 0.115520.0212

10.0079

@2/1#S ~NNLO! 0.300620.0404
10.0316 0.295920.1118

10.0637 0.121320.0066
10.0044 0.114920.0208

10.0075

A@2/2#S2 ~NNLO! 0.293720.0369
10.0271 0.289520.1061

10.0533 0.120320.0063
10.0039 0.114020.0200

10.0066

@2/2#S (N3LO, r 35128.05) 0.294420.0375
10.0282 0.290120.1067

10.0561 0.120420.0063
10.0040 0.114120.0201

10.0069

TPS-PMS~NNLO, c3516.0) 0.290720.0354
10.0259 0.286720.1035

1? 0.119820.0060
10.0038 0.113620.0197

1?

ECH ~NNLO, c3517.0) 0.289820.0348
10.0244 0.285920.1028

10.0468 0.119620.0059
10.0037 0.113520.0196

10.0060

AA S2
[2/2] ~NNLO, c3512.5) 0.289420.0345

10.0238 0.285520.1024
10.0450 0.119620.0059

10.0035 0.113520.0196
10.0058

TPS-PMS~NNLO, c350.0) 0.295720.0380
10.0296 0.291320.1077

1? 0.120620.0064
10.0042 0.114320.0203

1?

ECH ~NNLO, c350.0) 0.294720.0373
10.0273 0.290420.1068

10.0537 0.120420.0062
10.0039 0.114220.0202

10.0066

AA S2
[2/2] ~NNLO, c350.0) 0.296020.0378

10.0278 0.291620.1078
10.0545 0.120620.0063

10.0040 0.114320.0202
10.0067
of
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MS~MZ

2!50.119620.0059
10.0035 ~ I!; 0.113520.0196

10.0058 ~ II !.
~58!

In Table II, we give the values ofaMS
s as predicted from the

BPSR data~55! and ~56! by our approximant~with c3
512.5), by the ECH~with c3517), and by the TPS-PMS
~with c3516). For comparison, we include predictions
these three approximants whenc3 in them is set equal to
zero, i.e., for the case when the location of the leading
renormalon (IR1) pole in these approximants is not corre
Given are always three predictions foras , corresponding to
the three values ofS ~55! for case I, and~56! for case II. In
addition, predictions of the following approximants are i
cluded in Table II: TPSS[2] ~36! ~NNLO TPS!; TPS S[3]
with r 35128.05 (N3LO TPS!; off-diagonal Pade´ approxi-
mants ~PA’s! @1/2#S and @2/1#S , both based solely on th
NNLO TPSS[2] ~36!; square root of the diagonal PA~DPA!
@2/2#S2, which is based solely on the NNLO TPS~36!; @2/2#S
is the DPA constructed on the basis of the N3LO TPS S[3]
with r 35128.05. For@2/2#S and N3LO TPS we chose the
latter value ofr 3 ~in MS, at RSclQ0

25Qph
2 , nf53) because

then the@1/2# PA of the invariant Borel transformB̄S ~50!
predicts the IR1 pole ypole52.0. We wrote in Table II num-
bers with four digits in order to facilitate a clearer compa
son of predictions of various methods.

From Table II we see that the values ofas
MS(MZ

2) pre-
dicted by various approximants differ significantly from ea
other. Addition of the N3LO term in the TPS decreases th
central value ofas

MS(MZ
2) by 0.0022~0.0020 in case II!, and

application of the NNLO dPA approximant@2/2#S2
1/2 de-

creases this value by a further 0.0027~0.0023!. Our approx-
imant AA S2(c3512.5), which is an RScl- and RSch
invariant extension of the method of the DPA@2/2#S2

1/2,

decreases the centralas
MS(MZ

2) by a further amount of
0.0007 ~0.0005!. Predictions of the ECH and TPS-PM
methods are very close to those of our method if the valu
c3 in them is adjusted in the aforedescribed way. Howev
predictions of these two and of our method increase
05601
.

of
r,
d

come closer to the predictions of the NNLO DPA once w
simply set in these approximantsc350, thus abandoning the
requirement of the correct location of the IR1 pole. The pre-
dictions of the N3LO DPA @2/2#S are almost identical with
those of the NNLO DPA. All the PA resummations we
carried out with the RSclQ0

25Qph
2 (nf53) and inMS RSch,

and their predictions would change somewhat if the RScl
RSch were changed—in contrast to the presented predict
of AA S2, ECH and TPS-PMS.

We wish to point out that theas
MS predictions for the case

II ~52! were already presented in the short version@18#.
However, they were somewhat lower there@the central val-
ues of as

MS(MZ
2) were lower by about 0.0009–0.0011#—

because the value of theb-decay parameterugAu there
was taken from the Particle Data Book of 1994ugAu
51.257(60.2%) ~used also in@37#!, while the value used
here~38! is the updated value based on Ref.@24#.

In Fig. 1~a! we present various approximants forS(Qph
2 )

as functions ofas
MS(Qph

2 ) (nf53, e.g.,Qph
2 53 or 5 GeV2),

and in Fig. 1~b! the approximants forS(5 GeV2) as func-
tions of as

MS(MZ
2). There is one peculiarity of the~NNLO!

TPS-PMS method, as seen also in Figs. 1—for high val
of observableS this method does not give solutions. This
so because the polynomial form of the~NNLO! TPS-PMS
SPMS @see Eq. ~C4!# is bounded from above bySmax

PMS

5(2/3)3/2r2
21/2 which, in the considered case (r255.476),

is equal to 0.233 which is belowSmax50.247 in case II~see
Appendix C for more details!. This is also indicated in Table
II.

We wish to emphasize one aspect that makes the app
imant AA S2 conceptually quite different from the DPA
@2/2#S . Although both approximants incorporate informatio
about the location of the IR1 pole (ypole52), they do it in
two very different ways. The DPA@2/2#S is constructed on
the basis of the N3LO TPS withr 35128.05, where only this
latter coefficient contains approximate information on t
pole’s location. So this DPA is a pure N3LO construction
and is RSch and even RScl dependent~weakly!. The approx-
3-11
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FIG. 1. Predictions of various approximant
~a! for S(Qph

2 ) as functions ofas
MS(Qph

2 ) when
nf53; ~b! for S(Qph

2 55 GeV2) as functions of
as

MS(MZ
2). The values of thec3 parameter in our

approximant (c3512.5), ECH (c3517.0), and
TPS-PMS (c3516.0) have been adjusted to en
sure the correct location of the leading IR reno
malon pole. The experimental boundsSmin ,
Smax, andSmid are indicated as dashed horizont
lines for case I~55! (Qph

2 55 GeV2) and dotted
horizontal lines for case II~56! (Qph

2 53 GeV2).
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imantAA S2 is constructed on the basis of the NNLO TPS.
is a RScl andc2

(0) independent NNLO construction, and th
correct IR1 pole location is obtained by the adjustment of t
c3 parameter within the approximant. As argued previou
@see the second paragraph after Eq.~44!#, thec3 dependence
in AA S2(c3) is closely related with the sensitivity of th
approximant to the details of the RGE evolution, and
latter details are the more important the more nonpertu
tive the observable is. So it seems very natural that it is
intrinsic c3 parameter inAA S2(c3) that parametrizes the
~nonperturbative! IR1 pole location, and at the same time
makes the approximant fully RSch independent. The sam
true for the ECH and the TPS-PMS approximants.

On the other hand, it would be an ambiguous approac
implement this kind ofc3 fixing in the NNLO PA methods
(@1/2#S , @2/1#S , @2/2#S2

1/2)—because these resummations d
pend in addition on the leading RSch parameterc2 (⇔c2

(0))
and even on the RSclQ0

2. Therefore, it may not be so su
prising that the results of our method, ECH, and TPS-PM
05601
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with the mentionedc3 fixing, all give predictions that are
clustered closely together and are significantly distan
from the predictions of~D!PA’s.

There is another theoretical aspect which indicates
the predictions of the~NNLO! approximantAA S2 should in
general be better than those of the~NNLO! DPA @2/2#S2

1/2.
Namely, the latter DPA is just a one-loop approximation
our approximant. More specifically, DPA@2/2#S2

1/2 is similar
to ansatz~14!, but eachaj[a(ln Qj

2 ;c2
(j) ,c3, . . . ) is replaced

by the coupling parametera(12l.)( ln Q̄j
2) evolved from the

RScl Q0
2 to a Q̄j

2 by the one-loop RGE in the original (MS)
RSch. This follows from considerations in Refs.@15,16#, and
can also be checked directly as indicated in the paragr
after Eqs. ~9!–~11!. The DPA @2/2#S2

1/2 possesses residua
RScl dependence, and RSch dependence, the unphy
properties not shared by the true~unknown! sum. The ap-
proximantAA S2, however, possesses RScl and RSch in
pendence, and is thus better suited to bring us closer to
true sum.
3-12
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On the other hand, when compared with the structure
the ECH and TPS-PMS approximants,AA S2 possesses a
theoretically favorable ‘‘PA type’’ feature that the other tw
methods do not have: It represents an efficient quasiana
continuation of the NNLO TPSS[2] from the perturbative
~small-a) to the nonperturbative~large-a) regime. This is so
becauseAA S2 is related with the mentioned DPA metho
@2/2#S2

1/2 ~see above!. The ECH and the TPS-PMS approx
mants do not possess this strong type of mechanism of
sianalytic continuation, because they do not go beyond
polynomial TPS structure of the original TPSS[2] . These
two approximants do possess, however, a weaker typ
quasianalytic continuation mechanism, provided by the R
evolution of the coupling parametera itself. In the one-loop
limit, this would amount to the@1/1# PA-type quasianalytic
continuation mechanism fora itself, which may explain why
especially the ECH method appears to do well even in
deep nonperturbative regime~whereS has large values!.

The possibility to adjust the value of the N3LO coefficient
r 3 of Eq. ~36! by the IR1 pole requirementypole ([2b0z)
52 in the BPSR was suggested by the authors of Ref.@36#.
They choser 3 ~at RSclQ0

25Qph
2 and inMS RSch! approxi-

mately so that the PA@2/1# of the simple Borel transform o
that TPS gaveypole'2. In fact, they choser 35130.0, which
would correspond to theirypole'2.10, and then resumme
the obtained N3LO TPS for S(Qph

2 53 GeV2) by the @2/2#
DPA. However, as we argued in the paragraph following E
~47!, a procedure involving the simple~RScl- and RSch-
dependent! Borel transform leads in general to resumm
predictions which can have significant dependence on
RScl and RSch used in the original TPS~including c3

(0) de-
pendence!. Their approach~with r 35130.0 and@2/2# DPA!

would result in as
MS(Qph

2 )50.293420.0370
10.0276 for case I, and

0.289120.1058
10.0549 for case II; andas

MS(MZ
2)50.120220.0062

10.0040 for
case I and 0.114020.0201

10.0068 for case II. Comparing with result
in Table II, we see that these predictions are again very c
to the predictions of@2/2#S2

1/2, the latter being based solely o
the NNLO TPS~36!. Recently, in the context of the Bore
Padémethod of resummation~not used here!, the knowledge
of the location of renormalon poles was used in Ref.@44#, in
two physical examples, to fix the denominator structure
the PA’s of the Borel transform.

V. BPSR: USING PADÉ-RESUMMED b FUNCTIONS

Since nonperturbative physics appears to be of high
evance for the high-precision predictions in the case of
considered observable, one may go still one step further.
til now, we used for theb functions appearing in the inte
grated RGE~41! @see also Eq.~3!# simply their TPS to the
known order

TPSb~x!52b0x2~11c1x1 c̄2x21 c̄3x3!, ~59!

wherex[as /p, and the bar over symbols denotes that th
are different in different RSch’s. However, in the nonpert
bative region of largex, these TPS’s may give wrong nu
merical results. To address this question, we may inst
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construct PA’s based on these TPS’s. PA’s represent
proximate analytic continuations~i.e., quasianalytic continu-
ations! for the true b(x) functions from the perturbative
~small-x) into the nonperturbative~large-x) region. A com-
prehensive source on mathematical properties of PA’s is
book @45#. We have for Eq.~59! three PA candidates
@2/3#b , @3/2#b , and@4/1#b . Constructing these PA’s on th
basis of the TPS~59!, and then reexpanding in powers ofx,
gives us the higher order RSch parameterscj ( j >4) that
were up until now simply set equal to zero. Only our appro
imant AA S2, and the ECH and TPS-PMS approximants f
the NNLO TPS’s~2!, are sensitive to this change. Predi
tions as

MS(Qph
2 ) of Padé resummation approximants fo

S(Qph
2 ) in the previous section, and the TPS evaluatio

themselves~NNLO, N3LO), are not affected by this chang
~they were calculated inMS RSch and at RSclQ0

25Qph
2 ,

nf53).
For the approximantAA S2 the relevant RSch’s are thos

of a1 ~RSch1! and a2 ~RSch2!, i.e., those with the RSch
parameters (c2

(1) ,c3 , . . . ) and (c2
(2) ,c3 , . . . ), where the el-

lipses stand forck
(1) and ck

(2) (k>4) as determined by ou
choice of PA for the RSch1 and RSch2b functions, respec-
tively. Analogously, for the ECH and TPS-PMS approx
mants, the RSch’s are (r2 ,c3 , . . . ) and (3r2/2,c3 , . . . ),
where the dots stand for those RSch parameters determ
by our choice of the PA for the ECH and TPS-PMSb func-
tions. So, each of the three choices of the PA defines, by
aforementioned mechanism of quasianalytic continuat
into the nonperturbative sector, the unique schemes RS
ECH RSch, TPS-PMS RSch, andMS.

For RSch2, we have to keep in mind one detail: In ord
to avoid presumably unnecessary complications, the P
conditions~B1!,~B2! were written and used for the choic
c4

(2)5c4
(1) (dc450), so that the solutions~39!,~40! for Q1 ,

Q2 , c2
(1) , andc2

(2) were independent ofc3(5c3
(1)5c3

(2)) and
of all the other ck

( j ) (k>4; j 51,2). Therefore, once we
choose a specific@M /N#b of the RSch1, the predictedc4
must be reproduced also by the@M 8/N8#b of the RSch2.
This means that the order of the latter PA is by one u
higher than that of the former:M 81N85M1N11. Since
the PA choices for the RSch1b function are@2/3#, @3/2#, and
@4/1#, those for the RSch2b function are@2/4#, @3/3#, @4/2#,
@5/1#. As to the numerics, the situation does not change m
when different choices of@M 8/N8#b or even TPS for the
RSch2 are taken~with c4

(2)5c4
(1) , and always the same fixe

value of c3). This is so because, in the strong-coupling
gimesS>0.155,a1 is by a factor of 1.66 or more larger tha
a2. Concerning the choice of PAb of MS RSch, this choice
does not influence the predictions ofc3 at all, and influences
only little the subsequent predictions foras

MS(Qph
2 ). The lat-

ter is true mainly because of the hierarchya0,a2,a1 (Q0
.Q2.Q1 : Q1'0.343Qph, Q2'0.672Qph, Q05Qph
'1.73, or 2.24 GeV!.

For the various PAb choices of RSch1, RSch2, ECH
RSch, and TPS-PMS RSch, we can just redo the entire
culation of the invariant Borel transformsB̄S of Eq. ~50! and
of their PA’s, and find predictions forc3 that give us the
3-13
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correct IR1 pole ypole52. It turns out that the most stablec3

predictions in our approximantAA S2 are those with@2/3#b1
for RSch1 (b1) and @2/4#b2 for RSch2 (b2). The choice
@2/3#b1 and @5/1#b2 gives virtually the same and almost a
stable predictions forc3. For the ECH and TPS-PMS ap
proximants, all three choices@2/3#b , @3/2#b , and @4/1#b
give comparably stable and mutually quite similarc3 predic-
tions, but the choice@3/2#b seems to be slightly more stab
than the other two. The results, for the mentioned optim
choices of PAb’s for the three approximants, are given
Table III, in complete analogy with Table I. In some cas
there are also other solutions forc3, not included in the table
which differ significantly from those given in the table. W
will adopt the approximate predictions as suggested
PAB̄’s of intermediate orders~@3/1#, @4/1#, @2/2#, @3/2#, @1/3#,
@2/3#!: c3'15.5 forAA S2; c3'20 for the ECH;c3'19 for
the TPS-PMS. The actual values ofc3 must be exactly real

We recall that the results of the previous two sectio
including those of Table I, were for the simple choice
TPSb ~59! for the corresponding RSch’s~‘‘truncated
RSch’s,’’ with ck50 for k>4). Comparing those result
with the results of Table III, we see that the latter are som
what higher and significantly more stable under the cha
of the choice of PAB̄ . This latter fact can be regarded as
numerical indication that it makes sense to use certain
resummations for the pertainingb functions of approximants
when the considered observable~in this case BPSR! contains
nonperturbative effects.

When the order of PAB̄ is increased, the trend of the pre
dictions is similar as in Table I: The predictionsc3 tend to
stabilize at intermediate orders of the PAB̄’s. The lowest or-
der PAB̄’s (@1/2#, and above all@2/1#) give unreliable pre-
dictions forc3, apparently because of a too simple structu
of these PA’s. The highest order PAB̄’s (@5/1#, @4/2#, @3/3#)
also sometimes give unreliable predictions, apparently
cause of their ‘‘overkill’’ capacity—these PAB̄’s depend on
many terms in the power expansion of the approximant~up
to ;ã7), while the original TPS~36! on which the approxi-

TABLE III. As in Table I, but theb functions in the approxi-
mants are taken as@2/3#b ~RSch1!, @2/4#b ~RSch2; c4

(2)5c4
(1));

@3/2#b ~ECH RSch, and TPS-PMS RSch!.

PAB̄ c3 for
AA: @2/3#b1 , @2/4#b2

c3 for
ECH: @3/2#b

c3 for
TPS-PMS:@3/2#b

@2/1# 21.7 35.1 35.1
@3/1# 15.7 22.9 21.5
@4/1# 15.8 20.8 18.7
@5/1# 16.9 19.6 17.3
@1/2# 12.8 17.3 17.3
@2/2# 14.9 20.4 19.4
@3/2# 15.8 20.762.8i 17.363.6i
@4/2# 15.7 20.461.8i 17.062.6i
@1/3# 15.0 20.6 19.5
@2/3# 15.161.2i 19.3 18.5
@3/3# 14.061.7i 20.262.0i 16.962.7i
average '15.5 '20.0 '19.0
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mant is based is given only up to;a0
3 (;ã3). Therefore, it

seems plausible that the best and most stable prediction
given by PAB̄’s of intermediate orders (@3/1#, @4/1#, @2/2#,
@3/2#, @1/3#, @2/3#).

With these choices for the values ofc3 and for the per-
taining b functions, we could now go on to calculating pr
dictions of the three approximants foras

MS. Since the choice
of PAb for MS RSch will not matter much numerically, a
we argued above, we could just choose blindly a PAb or
even the TPS for it. But at this point, we want to point out
additional argument for the made PAb choices of RSch1/
RSch2, ECH RSch, and TPS-PMS RSch. This argum
will, in addition, lead us to a specific choice of PAb for MS
RSch.

In this context, we recall first that quasianalytic contin
ation, e.g., via PA’s, of the TPS of ab function into the
large-x ~nonperturbative! region leads in general to a pole o
such PAb(x) at some positivex. The authors of Ref.@46#
pointed out that these poles ‘‘suggest the occurrence of
namics in which both a strong and an asymptotically fr
phase share a common infrared attractor.’’ Now, if there
such a common pointxpole[as

pole/p where the two phase
meet, it is reasonable to expect that its numerical value d
not vary wildly when we change RSch—provided that t
RSch’s in question are themselves physically motiva
~physically reasonable! in the nonperturbative regime.11

Such physically motivated RSch’s should include those c
nected in some significant way with the calculation of t
considered observable and of the predicted coupling par
eters. In the case of our approximantAA S2, these are RSch1
and RSch2, and in additionMS when we want to extrac
as

MS(Qph
2 ) from the approximant. In Fig. 2 we present th

TPS’s of RSch1, RSch2 andMS b functions, as well as the
previously chosen@2/3#b1 of RSch1 and@2/4#b2 of RSch2
~see Table III;c3515.5), and we include also@2/3#b of MS
RSch. The figure shows that all these PAb functions have
about the samexpole (xpole50.334,0.325,0.311, respectively!.
The mutual proximity ofxpole’s of RSch1 and RSch2 PAb’s
is now yet another indication that these PAb’s, chosen pre-
viously on the basis of the stability ofc3 predictions, are the
reasonable ones. Further,@2/3#b appears to be the reasonab
choice forMS RSch. The choices@3/2#b and@4/1#b for MS
RSch givexpole50.119,0.213, respectively, which is furthe
away from thexpole of RSch1 and RSch2. We could choos
in principle, for RSch1 and RSch2 other PAb’s. We recall
that for RSch1 we can have:@2/3#b1 , @3/2#b1 , @4/1#b1; for
RSch2:@2/4#b2 , @3/3#b2 , @4/2#b2 , @5/1#b2. However, when
taking @3/2#b1 or @4/1#b1, we always end up either with a
situation when the two positivexpole values ofb1 andb2 are
far apart, or both are unphysically small, or one positivexpole
does not exist, or there are virtually no predictions forc3 ~not
even unstable ones!, or xpole values are very unstable unde
the change ofc3 in the interesting regionc3'12–16. Con-
cerning the latter point—when taking@3/2#b1, and for RSch2

11In the perturbative regime, all RSch’s are formally equivalen
3-14
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FIG. 2. TPS b functions for RSch1 and
RSch2 (c3515.5), andMS (nf53), and their
corresponding PA’s@2/3#, @2/4# (c4

(2)5c4
(1)), and

@2/3#, respectively.
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@3/3#b2 or @4/2#b2, the location ofxpole of the latter PAb’s
changes drastically whenc3 is varied around the interestin
values of 12–16, thus signalling instability of these PAb’s.
The choice@2/3#b1 and@5/1#b2, which gave very similar and
almost as stable results forc3 as the most preferred choic
@2/3#b1 and @2/4#b2, gives the corresponding poles aga
close to each other:xpole50.334,0.291, respectively. So, th
PAb choices@2/3#b1 and @2/4#b2 ~or @5/1#b2) for our ap-
proximant give us the most stablec3 predictionsandare the
only ones giving mutually similar~and reasonable! values of
xpole of RSch1 and RSch2.

It is also encouraging that the choices@3/2#b for the ECH
and TPS-PMS RSch’s give usxpole values comparable to th
ones previously mentioned:xpole50.263 for ECH withc3
520; xpole50.327 for TPS-PMS withc3519. Even other
choices of PAb for the ECH and TPS-PMS RSch’s (@2/3#b ,
@4/1#b), which also gave rather stable and similarc3 predic-
tions, give usxpole'0.27–0.41. Hence, also in this case w
see correlation between the stability of thec3 predictions on
the one hand andxpole'0.3–0.4 on the other.

The authors of Refs.@47,48# estimated the five-loop coef
ficient c4

MS of the MS b function, by applying their method
of asymptotic Pade´ approximation~APAP! @47# and its im-
provement using estimators over negative numbers of fla
~WAPAP! @48#. Their predicted values by two variants of th
latter method, when including the four-loop quartic Casim
contributions, arec4

MS5123.7,115.3~see Tables III and IV in
Ref. @48#, respectively;nf53). On the other hand, th
simple PA’s @2/3#, @3/2#, @4/1# for MS b function predict
c4

MS562.2,149.8,98.5, andxpole50.311,0.119,0.213, respec
tively. If we assume that the actual value ofc4

MS is close to
the one predicted by Ref.@48#, and if we were led just by the
requirement that the PA should reproduce well this val
then @4/1# would be the preferred choice. However, the a
thors of Ref.@48# indicated that their predicted value ofc4
may be changed significantly if new Casimir terms, appe
ing for the first time at the five-loop order, are large. O
choice@2/3# for MS b function was motivated by the valu
05601
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of xpole50.311 lying close toxpole of theb functions appear-
ing in the discussed approximants for the BPSR. Further,
precise choice of the PA forMS b function practically does
not influence the numerical results of our analysis, beca
a0[a(ln Qph

2 ;c2
MS, . . . ) issignificantly smaller than the cou

pling parametersaj[a(ln Qj
2 ;c2

(j) ,c3,c4,c5
(j) , . . . ) (j 51,2)

appearing in our approximant, and the parametersaECH and
aPMS appearing in the ECH and the TPS-PMS approximan

To summarize, the best choice in calculatingas
MS from

our approximantAA S2 is c3'15.5, the PAb choice @2/3#b
for RSch1,@2/4#b choice for RSch2 (c4

(2)5c4
(1)), and@2/3#b

for MS RSch; the best choice in calculatingas
MS from the

ECH and TPS-PMS approximants isc3'20 and 19, respec
tively, the PAb choice@3/2#b for ECH RSch and TPS-PMS
RSch; and@2/3#b for MS RSch; our, the ECH and the TPS
PMS approximants are completely independent of the or
nal choice of the RScl and RSch, because thec3 parameter is
determined by using the RScl or RSch invariant Borel tra
form B̄(z) of Sec. III.

In practice, this means that for our approximantAA S2 the
two coupling parametersaj[a(ln Qj

2 ;c2
(j) ,c3,c4,c5

(j) , . . . ) (j
51,2) are now related with the coupling param
eter a0[a(ln Q0

2;c2
MS,c3

MS,c4
MS, . . . ) via the following

~PA-!version of the subtracted Stevenson equation~41! @see
also Eqs.~A1!–~A2!#:

b0 lnS Qj
2

Q0
2D 5

1

aj
1c1 lnS c1aj

11c1aj
D

1E
0

aj
dx

$PAb j~x!1b0x2~11c1x!%

x2~11c1x!PAb j~x!

2
1

a0
2c1 lnS c1a0

11c1a0
D

2E
0

a0
dx

$@2/3#MSb~x!1b0x2~11c1x!%

x2~11c1x!@2/3#MSb~x!
,

~60!
3-15
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TABLE IV. Predictions foras
MS for our, ECH, and TPS-PMS approximants, when the PA-resummeb

functions in the approximants are taken as in Table III. Predictions for case I~53! and case II~52! are given
in parallel.

Approximant~with PAb’s! as(5 GeV2): ~I! as(3 GeV2): ~II ! as(MZ
2): ~I! as(MZ

2): ~II !

AA S2
[2/2] (c3515.5) 0.283820.0311

10.0182 0.280520.0977
10.0297 0.118720.0054

10.0028 0.112720.0189
10.0041

ECH (c3520.0) 0.285620.0321
10.0195 0.282220.0993

10.0325 0.119020.0056
10.0030 0.113020.0192

10.0044

TPS-PMS (c3519.0) 0.286720.0328
10.0202 0.283120.1001

1? 0.119220.0057
10.0030 0.113120.0192

1?
n

r

lues

s
e

ur-
-

where PAb j stands for the mentioned@2/3#b of RSch1~when
j 51) and@2/4#b of RSch2~when j 52), with c3515.5. We
recall that the scalesQj

2 and the parametersc2
( j ) ( j 51,2) of

the approximant, which are RScl- and RSch-invariant a
calculated in Secs. II and III@see Eqs.~39!,~40!#, are inde-
pendent of the parameterc3 and of any higher orde
b parameter ck

( j ) (k>4; j 51,2) appearing in aj

[a(ln Qj
2 ;c2

(j) ,c3,c4,c5
(j) , . . . ). For the ECH andTPS-PMS

the calculation is performed in an analogous way.
05601
d

The results of these calculations, i.e., the predicted va
of as

MS(Qph
2 ) and as

MS(MZ
2), are given in Table IV for the

approximantsAA S2, ECH and TPS-PMS. The prediction
are now a little, but still significantly, lower than those of th
corresponding approximants in Table II where all theb func-
tions were taken in the TPS form~59! and withc3512.5, 17,
16, respectively. The evolution fromas

MS(Qph
2 ) to as

MS(MZ
2)

was performed as in the previous section, i.e., with the fo
loop RGE~i.e., TPSb function of MS) and the correspond
e
e-
e

all
ing
re
FIG. 3. Predictions of our approximant~with
c3515.5), ECH~with c3520.0), and TPS-PMS
~with c3519.0): ~a! for S(Qph

2 ) as functions of
as

MS(Qph
2 ) whennf53; ~b! for S(Qph

2 55 GeV2)
as functions ofas

MS(MZ
2). The PA choices of the

RGE b functions were made as explained in th
text. For comparison, we include also the corr
sponding predictions from Figs. 1 when th
TPS’s~59! are used for theb functions. The val-
ues of thec3 parameter have been adjusted in
cases to ensure the correct location of the lead
IR renormalon pole. The experimental bounds a
denoted as in Fig. 1.
3-16
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ing three-loop flavor threshold matching conditions. If w
replace the TPSb function of MS by its PA @2/3#b in the
RGE for the evolutionas

MS(Qph
2 )°as

MS(MZ
2), the results for

as
MS(MZ

2) decrease insignificantly~by less than 0.04%) and
the numbers in Table IV do not change.

In Fig. 3~a! we present predictionsS(Qph
2 ) as functions of

as
MS(Qph

2 ) (nf53, e.g.Qph
2 53 or 5 GeV2), and in Fig. 3~b!

the predictions forS(5 GeV2) as functions ofas
MS(MZ

2), for
the three approximants with the aforementioned PA cho
for the b functions. For comparison, we include in the fi
ures also predictions of these three approximants when
the b functions have the TPS form~59! and the correspond
ingly smallerc3’s ~the latter curves are contained also in F
1!. Predictions of the PA resummation approximants~for S)
are not included, since these methods are insensitive to
mentioned PA quasianalytic continuation of theb functions
and the results remain for them the same as in Figs. 1
Table II. We presented in Figs. 3 the curves for the case
approximants with the mentioned PAb functions only so far
as the method works. More specifically, when the integrat
interval in the first integral of Eq.~60! starts including values
x larger than those at which the absolute value of the Pb
exceeds the value 2, we stop the calculation of the appr
mant since the latter would otherwise probe values too n
the pole of PAb ~i.e., too near the common point of th
asymptotically free and the strong phase! and would thus be
unreliable.

The considered BjPSR observableS(Qph
2 ) has a higher-

twist ~HT! contribution, estimated from QCD sum rule@49#12

S(HT)~Qph
2 !'

~0.0960.045! GeV2

Qph
2

, ~61!

which should be added to the perturbation series forS. If
adding this term in the numerical analysis, the predicted c
tral values ofas

MS(MZ
2) given in Table II decrease signifi

cantly. For example, the NNLO TPS central value pred
tions as

MS(MZ
2)50.1252 ~case I! and 0.1183~case II! then

decrease to 0.1200–0.1236~case I! and 0.1091–0.1157~case
II !, where the lower and upper values in each case co
spond to the largest and the smallest value choice in Eq.~61!.
This indicates numerically that our approximant (c3515.5,
Table IV!, which gives the central valuesas

MS(MZ
2)

50.1187 ~case I! and 0.1127~case II!, already contains a
least part of the nonperturbative effects from the lead
higher-twist operator (;1/Qph

2 ). The same is true for the
ECH (c3520.0) and TPS-PMS (c3519.0). In order to un-
derstand this numerical indication, we recall that the inf
mation on the location of the leading IR renormalon (IR1)
pole of the considered observable has already been inco
rated in these approximants, via the aforementioned fixing
the value of thec3 parameter. And the so called ambiguity

12Deficiencies of the QCD sum rule calculations were pointed
in Ref. @50#.
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the leading IR renormalon is of the same form;1/Qph
2 as the

higher-twist term~61!, and even the estimated coefficien
are of the same order of magnitude@51# ~see also Ref.@36#
on this point!. Our approximant, the ECH and the TPS-PM
via the discussedc3 fixing, implicitly provide approximant-
specific prescriptions of how to integrate in the Borel integ
over the IR1 pole, thus eliminating the~leading! renormalon
ambiguity.

VI. DISCUSSION OF THE NUMERICAL RESULTS

The main reason to apply our approach~and PA ap-
proaches! to the BPSR was to investigate efficiencies of va
ous methods and the influence of the nonperturbative se
Another reason was that the BPSR is a Euclidean observ
(qph

2 52Qph
2 ,0), and for such observables various resu

mation methods are believed to work well since no real p
ticle thresholds are involved in the observable@52,53#.

The main prediction of our approximantAA S2 can be
read off from Table IV, for two cases~53! and ~52! of the
BPSR-integral values atQph

2 55 and 3 GeV2, respectively,
extracted from experiments

as
MS~MZ

2!50.118720.0054
10.0028 ~ I!; 0.112720.0189

10.0041 ~ II !.
~62!

The ECH and the TPS-PMS give results similar to the
when thec3 parameter in them is adjusted in the aforeme
tioned way—see Table IV. The diagonal PA~DPA! methods
give higher predictions, and the nondiagonal PA metho
even higher—see Table II and Fig. 1.

The result~62! for case II, which is based on the measur
ments before 1997 and a NLO PQCD extrapolation for l
xBj @37# ~52!, shows quite large uncertainties, a conseque
of the large uncertainties~56! @~52!#. The result~62! for case
I, based on the most recent measurements and a similar N
PQCD extrapolation for smallxBj , by the SLAC E155 Col-
laboration@19# ~53!, already shows significantly reduced u
certainties. This is so to a large degree because of additi
new measurements in the low-xBj regime. And most impor-
tantly, the central values of case I in Eq.~62! are now sig-
nificantly higher than those of~the older! case II. We recall
that the central values in Eq.~62! correspond to the centra
values of the BPSR integral~53! and ~52!. We did not at-
tempt to estimate the theoretical uncertainties originat
from the resummation method itself. However, the combin
results of Table IVas

MS(MZ
2)50.11920.006

10.003 for ~new! case I
could be regarded as containing nonconservatively estim
theoretical uncertainties.

The present world average isas
MS(MZ

2)50.1173
60.0020 by Ref.@54#, and 0.118460.0031 by Ref.@55#.
Predictions of the simple~NNLO! TPS evaluation in~new!
case I give 0.125220.0078

10.0055~see Table II!, the central value and
most of the interval lying significantly above the world a
erage. On the other hand, the simple~NNLO! TPS evaluation
in ~older! case II predicts 0.118320.0232

10.0095 ~see Table II!, the
central value agreeing well with the world average, but
uncertainty interval being much broader. However, the s
t
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ation changes drastically when employing more sophi
cated resummation methods. The values for BPSR-predi
as

MS(MZ
2) go down the more significantly, the more soph

ticated resummation we perform—see Table II for the
methods, and for TPS-PMS, ECH, andAA S2 when theb
functions have truncated form, and Table IV for the last th
methods when theb functions are resummed. The predi
tions of approximants in the latter table haveas

MS(MZ
2)

'0.11920.006
10.003~case I, new! and 0.11320.019

10.004~case II, old!. The
predictions of~new! case I now agree well with the worl
average 0.118460.0031 of Ref.@55#, while those of~older!
case II lie almost entirely below the world average interva

Thus, the use of resummation methods which account
nonperturbative contributions by the mechanism of quasia
lytic continuation and by incorporation of the information o
the leading IR renormalon pole, predict the values
as

MS(MZ
2) which agree well with the present world average

the most recent BPSR data@19# are used. This suggest
among other things, that for reliable predictions ofas

MS from
reasonably well measured low-energy QCD observables
have to know the NNLO terms (;a3), employ nontrivial
resummation methods, and possibly incorporate some n
perturbative~renormalon! information in the resummation.

Some of the recently performed analyses beyond
NLO, by other authors, gave predictionsas

MS(MZ
2)50.118

60.006 @56# from the CCFR data forxBjF3 structure func-
tion from nN deep inelastic scattering~DIS! ~NNLO!;
0.117260.0024 @57# from lN DIS ~NNLO!; 0.11560.008
@58#; and 0.11420.012

10.010 @59# from the Gross-Llewellyn-Smith
sum rule~NNLO!; 0.118160.0031 from hadronict decay
~NNLO, combined results,@55#!; 0.11560.004@60,54# from
lattice computations.

We note that the BPSR predictions deviate from the wo
average in case I8 ~54!, i.e., when we include in the exper
mental data of case I the nuclear effects originating fr
spin-one isosinglet 6-quark clusters in deuteron and hel
according to Ref.@41#, on top of the nuclear wavefunctio
effects and NLO PQCD small-xBj extrapolation effects:
as

MS(MZ
2)'0.10320.027

10.014 ~NNLO TPS!; 0.10120.025
10.013 ~DPA,

ECH, TPS-PMS, our approximant!. The combination of
~older! case II results and the mentioned 6-quark clus
nuclear effects~case II8) increases the value of the BPS
integral so much that the predicted values ofas

MS(MZ
2) are

unacceptably low: the central values would be 0.094–0.
for all approximants; the maximal allowed values would
about 0.113 by the methods of Table IV and 0.114 by
DPA.

The authors of Ref.@37# obtained, among other things, th
BPSR-predicted valuesas

MS(MZ
2)50.11820.026

10.010, apparently
using the simple NNLO TPS sum~36! directly in their analy-
sis. They used the BPSR-integral values~52!, i.e., here case
II, which were extracted by them from low-Qph

2 SLAC ex-
periments carried out before 1997. They used the value
ugAu51.257 known at the time, in contrast to the value of E
~38!. Their RGE evolution fromQph

2 53 GeV2 to MZ
2 was

apparently carried out at the three-loop level, since
fourth-loopb coefficientc3

MS(nf) @42# and the corresponding
05601
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three-loop flavor-threshold matching@53# were not known at
the time. These two effects largely neutralize each other
their result is then close to the NNLO TPS result for case
~Table II!: as

MS(MZ
2)50.11820.023

10.010.
The authors of Ref.@36# obtained the BPSR-predicte

values as
MS(MZ

2)50.11620.005
10.00360.003. They used a DPA

method of resummation@2/2#S mentioned towards the end o
Sec. IV. However, they took the BPSR-integral values~51!
where the naive Regge small-xBj extrapolation was used, an
apparently the valueugAu51.257 known at the time. Further
they included the effects of the higher-twist term~61! on top
of their DPA resummation. The additional uncertain
60.003 can be called the method uncertainty. It was e
mated by them by additionally using the results of the no
diagonal PA resummations@1/2#S and @2/1#S , the RScl de-
pendence of their DPA results, and the uncertainty of
higher-twist term.

When we reexpand the approximants in powers of
original a0 ~at RSclQ0

25Qph
2 , in MS RSch,nf53), we ob-

tain predictions for coefficientr 3 at a0
4 of expansion~36!—

cf. Eq. ~47! and the discussion following it. Our approx
mant, with c3515.5, predicts r 35125.82c3

MS/21c3

'130.8. The ECH approximant, withc3520.0, predictsr 3

5129.91(2c3
MS1c3)/2'129.4. The two predictions ar

close to each other, suggestingr 35130.061. This agrees
well with the prediction of Ref.@52# r 3'129.9 ('130.)
which was obtained from the ECH under the assumpt
(2c3

MS1c3)'0 ~note that c3
MS'21.0 @42# was not even

known at the time Ref.@52# was written!.
The predictions forr 3, as well as the values ofQ1

2, Q2
2,

c2
(1) , c2

(2) ~39!,~40! and of c3 ~Tables I, III!, are for nf53
and are, of course, independent of the specific values for
BPSR integral~53!, ~52! @~55!,~56!# that we subsequently
used to obtain values foras

MS(MZ
2).

VII. SUMMARY AND OUTLOOK

We presented an extension of our previous method
resummation@15–17# for truncated perturbation series~TPS!
of massless QCD observables given at the next-to-nex
leading order~NNLO!. While the previous method, partl
related to the method of the diagonal Pade´ approximants
~DPA’s!, completely eliminated the unphysical dependen
of the sum on the renormalization scale~RScl!, the extension
presented here eliminates in addition the unphysical dep
dence on the renormalization scheme~RSch!. The depen-
dence on the leading RSch parameterc2

(0)[b2
(0)/b0 is elimi-

nated by a variant of the method of the principle of minim
sensitivity ~PMS!. The dependence on the next-to-leadi
RSch parameterc3

(0)[b3
(0)/b0 is eliminated by fixing thec3

value in the approximant so that the correct value of
location of the leading infrared renormalon (IR1) pole is
obtained ~by PA’s of an RScl- and RSch-invariant Bore
transform!. Hence, in the approximant we useb functions
which go beyond the highest calculated order in the obse
able~NNLO!—in order to incorporate an important piece
nonperturbative information (IR1 pole location! which is not
3-18
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contained in the available NNLO TPS anyway. The resu
are apparently further improved when we resum thoseb
functions which are relevant for the calculation of the a
proximant ~RSch1 and RSch2b functions, fora1 and a2)
and of as

MS(Qph
2 ) (MS RSch!, by judiciously choosing cer-

tain PA forms for thoseb functions.
We applied this method to the Bjorken polarized sum r

~BPSR! at low values of the momentum transfer of the v
tual photonQph

2 55 or 3 GeV2. Thec3 fixing by the IR1 pole
location is well motivated in this case, because the contri
tions of the leading ultraviolet renormalon (UV1) appear to
be sufficiently suppressed in comparison to those of the1.
We compared predictions of our resummation with the v
ues for the BPSR integral~53! and ~52! extracted from ex-
periments, and obtainedas

MS(MZ
2)50.118720.0054

10.0028 ~new case
I! and 0.112720.0189

10.0041 ~older case II!, respectively. Here, the
central values 0.1187 and 0.1127 correspond to the ce
values in Eqs.~53! and ~52!, respectively. For more discus
sion on the issue of the experimental values~53! and ~52!
~cases I, II! we refer to Secs. IV and VI. It is gratifying tha
the newest available experimental values~53! lead to predic-
tions for as

MS which agree well with the present world ave
age. The results of Grunberg’s method of the effect
charge~ECH! and of Stevenson’s TPS-PMS method gi
very similar results~see Table IV! if the c3 parameter in
these methods is fixed by the same aforementioned req
ment as in our approximant and PA forms of the pertainingb
functions are chosen analogously. The combined resul
Table IV, in case I, i.e., with the newest data of Ref.@19#, is

as
MS~MZ

2!50.11920.006
10.003. ~63!

The DPA methods of resummation ofSpredict higher values
~central values about 0.120 in case I; 0.114 in case II!, the
nondiagonal PA’s even higher~central values about 0.122 i
case I; 0.115 in case II!, and the NNLO TPS itself the highes
values~central value about 0.125 in case I; 0.118 in case!.

We expect that our approximantAA S2, as well as the
ECH and TPS-PMS, produced reliable resummation res
for the considered observable, because—via their dep
dence onc3—we can incorporate into them in the aforeme
tioned way important nonperturbative information about
IR1 pole, and simultaneously achieve full RSch indepe
dence. Thec3 dependence inAA S2, in the ECH and in the
TPS-PMS, is very closely related with the sensitivity of the
approximants to the details of the corresponding RGE e
lution. These details (c3 terms! in the RGE evolution are
numerically more important in the lower-energy regions, i
when the relevant energies for the observable are low. T
significantc3 dependence of these approximants signals
relevance of nonperturbative regimes for the observable@see
Eqs.~32!,~33!#. It then appears natural that thec3 parameter
in these approximants, i.e., the only parameter left free
made to parametrize the location of the~nonperturbative! IR1
pole. The~D!PA’s, in contrast, possess besides thec3 depen-
dence also dependence on the leading RSch-parametec2,
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and even on the RScl. Thus, the parameterc3 in them is not
in a special position, and there is more ambiguity as to h
to incorporate into the PA’s the information about the IR1

pole.
It appears that the leading higher-twist term contributi

to the BPSR (;1/Qph
2 ), or a part of it, is implicitly contained

in AA S2, as well as in the ECH and the TPS-PMS, via t
aforementionedc3 fixing. In this context, we point out tha
the so called renormalon ambiguity arising from the IR1 of
the BPSR has the form;1/Qph

2 , i.e., the form of the leading
higher-twist term. Even the coefficients of this term, as e
mated by the renormalon ambiguity arguments, are of
same order of magnitude as those predicted~estimated! from
QCD sum rule. One can say that the described approa
implicitly give approximate-specific prescriptions for th
elimination of the~leading IR! renormalon ambiguity.

Looking beyond the numerical analysis of the BPSR,
wish to stress that in cases of other QCD observables tha
~or eventually will be! known to the NNLO, the analogou
numerical analyses may give different hierarchies of num
cal results. Actual resummation analyses should be p
formed also for such observables, in order to shed more l
on the questions about the relative importance of vari
kinds of contributions.

The ~D!PA methods, when applied directly to th
~NNLO! TPS’s, are trying to include some nonperturbati
contributions through quasianalytic continuation of the T
from the perturbative~small-a) to the nonperturbative~large-
a) region. In the course of this continuation, the pole stru
ture of the Borel transform of the sum may be missed,
some other nonperturbative~but less singular! features of the
sum itself may be reproduced well. But our approxima
AA S2 would presumably do at least as good a job as
DPA’s in reproducing these latter nonperturbative featur
This is so becauseAA S2 ~14! reduces to the DPA@2/2#S2

1/2 in
the large-b0 ~one-loop RGE evolution! approximation when
thus the full RScl and RSch invariance requirements
abandoned, see discussion following Eqs.~9!–~11!. The
ECH and the TPS-PMS methods do not possess this st
‘‘ @2/2#1/2 PA type’’ mechanism of quasianalytic continua
tion, since these two methods fix the RScl and the RSch
the TPS itself without going beyond the~NNLO! polynomial
TPS form ina. The ECH, and somewhat less explicitly th
TPS-PMS, possess a weaker type of quasianalytic contin
tion, because the one-loop RGE-evolveda[as /p ~from a0)
is a @1/1# PA of a0.

Stated differently, our~NNLO! approximants, from a the
oretical viewpoint, combine the favorable feature of t
~D!PA’s ~strong quasianalytic continuation into the largea
regime! with the favorable feature of the TPS-form NNLO
approximants ECH and TPS-PMS~full RScl andc2 indepen-
dence!. The residual RSch dependence (c3 dependence! in
the latter approximants and in our approximant allows us
incorporate into them, often in a well-motivated mann
nonperturbative information on the location of the leading
renormalon pole, and to achieve in this way simultaneou
the full RSch independence as well.
3-19
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APPENDIX A: EXPANSION OF THE GENERAL
COUPLING a IN POWERS OF a0

We outline here the derivation of the expansion of QC
couplinga[a(ln Q2;c2,c3, . . . ) (a5as /p) in power series
of a0[a(ln Q0

2;c2
(0),c3

(0), . . . ). The starting point is the
Stevenson equation~see Ref.@2#, first entry, Appendix A!
which is obtained by integrating RGE~3!:

b0 lnS Q2

L̃2D 5
1

a
1c1 lnS c1a

11c1aD1E
0

a

dxF 1

x2~11c1x!

2
1

x2~11c1x1c2x21c3x31••• !
G . ~A1!

It can be shown thatL̃ here is a universal scale (;0.1 GeV!
independent of the scaleQ and of the scheme parameterscj
( j >2). Writing the analogous equation fora0, and subtract-
ing the two, we obtain

b0 lnS Q2

Q0
2D 5

1

a
1c1 lnS c1a

11c1aD
1E

0

a

dx
~c21c3x1••• !

~11c1x!~11c1x1c2x21c3x31••• !

2
1

a0
2c1 lnS c1a0

11c1a0
D2E

0

a0
dx

3
~c2

(0)1c3
(0)x1••• !

~11c1x!~11c1x1c2
(0)x21c3

(0)x31••• !
.

~A2!

This equation determinesa as function ofa0. The solutiona
in form of a power series ofa0 is the Taylor series for func
tion a of multiple arguments lnQ2 andcj ’s ( j >2). To obtain
this power series, one way would be to find first the deri
tives ]a/]cj @the derivative]a/] ln Q2 is already given by
RGE ~3!#. For this, we take the partial derivative of bo
sides of the above equation with respect tocj ( j >2) and
after some algebra we obtain

]a

]cj
5a2~11c1a1c2a21c3a31••• !

3E
0

a dxxj 22

~11c1x1c2x21c3x31••• !2
. ~A3!

Expanding the integrand in powers ofx and integrating out
each term, we obtain the partial derivatives as power se
05601
l-
e

-

s

]a

]c2
5a3S 11

c2

3
a21••• D , ~A4!

]a

]c3
5

1

2
a4S 12

c1

3
a1••• D , ~A5!

]a

]c4
5

1

3
a51•••. ~A6!

Repeated application of these equations, as well as of R
~3! itself, leads us to the following Taylor expansion ofa in
powers ofa0[a(ln Q0

2;c2
(0),c3

(0), . . . ):

a5a01a0
2~2x!1a0

3~x22c1x1dc2!1a0
4S 2x31

5

2
c1x2

2c2
(0)x23xdc21

1

2
dc3D1a0

5Fx42
13

3
c1x31S 3

2
c1

2

13c2
(0)16dc2D x21~2c3

(0)23c1dc222dc3!x

1S 1

3
c2

(0)dc21
5

3
~dc2!22

1

6
c1dc31

1

3
dc4D G1O~a0

6!,

~A7!

where we denoted

a[a~ ln Q2;c2 ,c3 , . . . !, a0[a0~ ln Q0
2 ;c2

(0) ,c3
(0) , . . . !,

~A8!

x[b0 ln
Q2

Q0
2

, dck[ck2ck
(0) . ~A9!

APPENDIX B: EXPLICIT PMS CONDITIONS

Here we will write explicitly the PMS-like conditions~31!

in its lowest order (;ā0
5). To do this, we calculate explicitly

the derivatives~31! and then expand them in powers ofā0

5a(ln Q0
2;c25c2

(s) ;c3; . . . ) to their lowest nontrivial order.13

We assume relation~34!, i.e., dc350, and in additiondc4

([c4
(1)2c4

(2))50. Further, we use relations~26!,~27! and
notations ~28!–~30!. The results, obtained with help o
MATHEMATICA , are the following:

13In fact, a with any RScl and any RSch parameters would do
job and give the same coefficient at the leading nontrivial ordera5.
3-20
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]A S̃
[2/2]

]c2
(s) U

dc2

[2ā0
5$27~dc2!32157c1~dc2!2y228dc2y2

2 @227c1
2112c2

(s)134y2
2 28z0

2~c2
(s)!#

148c1y2
3 @13y2

2 23z0
2~c2

(s)!#%$6y2
2 @5c1dc2116y2

3 28z0
2~c2

(s)!y2#%211O~ ā0
6!

50, ~B1!

]A S̃
[2/2]

]~dc2!
U

c
2
(s)

[2ā0
5$27~dc2!42315c1~dc2!3y2164z0

4~c2
(s)!y2

2 @7c1
222c2

(s)13z0
2~c2

(s)!#280c1dc2y2

3@22c2
(s)y2

2 22c2
(s)z0

2~c2
(s)!112z0

2~c2
(s)!y2

2 13z0
4~c2

(s)!17c1
2
„y2

2 1z0
2~c2

(s)!…#

112~dc2!2@22c2
(s)y2

2 22c2
(s)z0

2~c2
(s)!115z0

2~c2
(s)!y2

2 13z0
4~c2

(s)!1c1
2
„82y2

2 17z0
2~c2

(s)!…#%

3$12y2
4 @5c1dc2116y2

3 28z0
2~c2

(s)!y2#%211O~ ā0
6!

50. ~B2!
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The actual PMS-type equations are now obtained by req
ing that the coefficients at;ā0

5 in Eqs. ~B1!,~B2! be zero.
When we have several possible solutions of the coupled
tem ~26! and Eqs.~B1!,~B2! for the three unknownsy2 ,
c2

(s) , anddc2, we have to choose, in the PMS spirit, amo
the resulting approximants that one which has the sma
curvature. The curvature can be calculated by first obtain
the eigenvaluesCA1 andCA2 of the curvature matrixCA :

CA5F ]2AS̃

]~c2
(1)!2

]2AS̃

]c2
(1)]c2

(2)

]2AS̃

]c2
(1)]c2

(2)

]2AS̃

]~c2
(2)!2

G , ~B3!

S CA1

CA2
D5

1

4

]2AS̃

]~c2
(s)!2

1
]2AS̃

]~dc2!2
6H S ]2AS̃

]~dc2!]c2
(s)D 2

1F1

4

]2AS̃

]~c2
(s)!2

2
]2AS̃

]~dc2!2G 2J 1/2

. ~B4!

In the last expression, we tradedc2
(1) and c2

(2) for c2
(s)

[(c2
(1)1c2

(2))/2 anddc2[(c2
(1)2c2

(2)). The curvatureCA of
the solutionA S2

[2/2] can be defined in at least two obviou
ways which are virtually equivalent

CA5uCA1u1uCA2u or CA5A~CA1!21~CA2!2.
~B5!

APPENDIX C: ECH AND TPS-PMS METHODS
FOR NNLO TPS

The effective charge method~ECH! @3# of resummation
of the NNLO TPSS[2] ~2! can be expressed by employme
of the subtracted version~A2! of Stevenson equation
05601
ir-

s-

st
g

2r 11
1

a0
1c1 lnS c1a0

11c1a0
D

1E
0

a0
dx

~c2
(0)1c3

(0)x1••• !

~11c1x!~11c1x1c2
(0)x21c3

(0)x31••• !

5
1

aECH
1c1 lnS c1aECH

11c1aECH
D

1E
0

aECH
dx

~r21c3x1••• !

~11c1x!~11c1x1r2x21c3x31••• !
.

~C1!

The ECH resummation value isSECH5aECH. In Eq. ~C1!,
superscript ‘‘(0)’’ denotes the original RSch ofS[2] ~for ex-
ampleMS RSch withnf53 in the considered BjPSR case!,
and c3 denotes the NNLO ECH value ofc3 ~in principle
unknown at NNLO!. Further,c2

ECH5r2, the latter RScl and
RSch invariant is defined in Eq.~24!. The coupling a0

[as
(0)/p is defineda0[a(ln Q0

2 ;c2
(0),c3

(0), . . . ) as in Eq.~4!,
Q0

2 being the original RScl in the TPS~chosen equal 3 GeV2

in the considered BPSR case!; r 152b0 ln(QECH
2 /Q0

2) is the
NLO TPS coefficient as staying in Eq.~2! at the original
RScl Q0

2. In the above relation~C1!, we often ignore the
terms}ck

(0) andck (k>4) since they are not known, i.e., w
often choose the TPS form for theb(x) functions. For a
given value ofa0, solving the above relation numerically fo
aECH gives us the resummed prediction for observableS. It is
dependent onc3 which, at this stage, is not known. Mor
explicitly

SECH~c3!5aECH~c3!5a~ ln QECH
2 ;r2 ,c3 , . . . !,

with QECH
2 5Q0

2 exp~2r 1 /b0!. ~C2!
3-21
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For the TPS-PMS method@2# applied to the NNLO TPS
S[2] , relation ~C1! still remains valid, but with the replace
ments

aECH~c3!°aPMS~c3!, c2
ECH[r2°c2

PMS[
3

2
r2 .

~C3!

The resummed expression in the~NNLO! TPS-PMS case is
the following TPS:
e

l.

A

. B

,
.
a-

ar
98
J

,

l,

05601
SPMS~c3!5aPMS2
1

2
r2aPMS

3 , with

aPMS~c3!5a~ ln QECH
2 ;~3/2!r2 ,c3 , . . . !, ~C4!

which again depends onc3. Expression~C4! is obtained by
imposing PMS conditions on the TPSS[2] ( ln Q2;c2,c3, . . . )
5SPMS: ]S[2] /] ln Q2;a5;]S[2] /]c2. It is straightforward to
verify that, if r2.0 ~as in the considered BPSR case!, SPMS

is bounded from above due to its specific TPS form:SPMS

<(2/3)3/2r2
21/2, which in the considered BPSR case~36! is

0.2326~becauser255.476).
al
,

tt.
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A. Schäfer, and L. Mankiewicz,ibid. 323, 439 ~1994!; G. G.
Ross and R. G. Roberts,ibid. 322, 425 ~1994!; E. Steinet al.,
ibid. 343, 369 ~1995!.

@50# X. Ji, Nucl. Phys.B448, 51 ~1995!.
@51# V. M. Braun, ‘‘QCD renormalons and higher twist effect

Proc. Moriond 1995,’’ hep-ph/9505317.
@52# A. L. Kataev and V. V. Starshenko, Mod. Phys. Lett. A10,

235 ~1995!.
@53# K. G. Chetyrkin, B. A. Kniehl, and A. Sirlin, Phys. Lett. B

402, 359 ~1997!.
@54# I. Hinchliffe and A. V. Manohar, hep-ph/0004186.
@55# S. Bethke, J. Phys. G26, R27 ~2000!.
@56# A. L. Kataev, G. Parente, and A. V. Sidorov, hep-ph/98095

Nucl. Phys.B573, 405 ~2000!.
@57# J. Santiago and F. J. Yndurain, Nucl. Phys.B563, 45 ~1999!.
@58# J. Chyla and A. L. Kataev, Phys. Lett. B297, 385 ~1992!.
@59# CCFR Collaboration, J. H. Kimet al., Phys. Rev. Lett.81,

3595 ~1998!.
@60# C. T. H. Davieset al., Phys. Rev. D56, 2755~1997!; SESAM

Collaboration, A. Spitzet al., ibid. 60, 074502~1999!.
3-23


