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We study the chiral fermion meson model which is the well-known linear sigma model of Gell-Mann and
Levy at finite temperature. A modified self-consistent resummaié®CR) which resums higher order terms
in the perturbative expansion is proposed. It is shown that with the MSCR the problem of tachyonic masses is
solved, the renormalization of the gap equations is carried out, and Goldstone’s theorem is verified. We also
apply the method to investigate another known case at high temperature and compare with results found in the
literature.
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I. INTRODUCTION expansion was proposed by Parwghl] in order to go be-
yond leading order in the same model. More recently, Chiku
Several models have been proposed to describe hadr@md Hatsudd12] in the study of theO(N) ¢* model pre-
properties in the regime of low energies. Among these modsented a novel resummation adding a mass parameter deter-
els, we adopt the linear model of Gell-Mann and Levj1] mined later by the fastest apparent convergdi@eC) con-
which is a phenomenological model of quantum chromody-dition. We employ imaginary-time formulation(ITF)
namics (QCD) that incorporates two important features of whereas in12] real-time formulation(RTF) is used in the
QCD: chiral symmetry and partial conservation of axial vec-development of the optimized perturbation the@@PT). In
tor current PCAC. The model was originally proposed as ahis paper we develop a modified self-consistent resumma-
model for strong interactionisl], but nowadays it serves as tion at finite temperature and apply it to the investigation of
an effective model for the low-energglow-temperaturge  the chiral fermion meson model. We study the temperature
phase of QCD. It has the advantage of being renormalizabldependence of the chiral condensate and the effective meson
at zero[2] and finite temperaturg3]. Although the linear and fermion masses by this self-consistent nonperturbative
sigma model Lagrangian exhibits chiral symmetry, quantumapproximation up to one-loop order in the perturbative ex-
effects break this symmetry spontaneously. Both from theopansion. In the application of the modified self-consistent
retical[4] and experimentdl5] points of view, there exists a resummatior(MSCR) to the study of the chiral fermion me-
great amount of interest in the study of chiral symmetry resson model at finite temperature, we divided the problem into
toration at finite temperature. three physical regions: low, intermediate, and high tempera-
However, quantum field theory at high temperature has aures. This is essential to identify the regions where resum-
well known problem, that is, the breakdown of the perturba-mation is crucial. In each region renormalization and satis-
tive expansior{6—8]. This happens in theories with sponta- faction of Goldstone’s theorem are discussed in detail. Our
neous symmetry breakin@SB or in massless field theories study addresses problems found in the context of the well
because powers of the temperature can compensate for pogtudiedO(4) linear sigma model and deals with a usually
ers of the coupling constant. Resummation techniques whichvoided point: the inclusion of the fermions. Also, we reex-
try consistently to take into account higher loops are re-amine the chiral phase transition in static equilibrium in
quired. terms of the linear sigma model with our MSCR. Instead of
A systematic self-consistent approximation approacheslemanding an infinite gap equation, as has been done often
based on the meson sector of the lineamodel was previ- in the recent literature, we perform the renormalization in
ously studied by Baym and Grinste[8]. After, Banerjee stages in order to get finite gap equations.
and Mallik [10] proposed a modified perturbation expansion We also treat an explicit chiral symmetry breaking term in
with the objective of calculating the two-point functions up the Lagrangian which generates the realistic finite pion mass.
to second order in the ¢* theory. A resummed perturbative Symmetry is never restored in this case. It is shown that in
the limit of vanishing pion mass, namely, when the chiral
symmetry is exact, the inclusion of fermions does not change
*Email address: hcaldas@funrei.br the order(naturg of the phase transition but only lowers the
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value of the critical temperature. 9 AF=cm (4)

This paper is organized as follows. In Sec. Il we discuss
the chiral fermion meson model and some of its features at The effect of the ternta’ on the classical fundamental
zero temperature. In Sec. Ill the temperature is introducedtate can be found by looking at the minimum of the poten-
via the partition function of the model which lead to the tjal
thermodynamical potential. The inclusion of loop corrections \
and the thermal gap equations are addressed to Sec. IV. In V(o' )= 124 72 £2\2 /

)=+ +me—f)°—co’, 5

Sec. V we apply the MSCR to the study of the massleg$ oo’y m) 4 (074 m"=12) 7 ®
model in the weak coupling limit at high temperature. The

renormalization of the self-energy is studied in Sec. VI. The Nolo',m) oy o,
numerical results are presented in Sec. VII. Section VIII is T_)‘(‘T +tat-fr)e’—c=0, ©)
devoted to conclusions.
No(a",m) 12, 22 £2\ _a
Il. THE CHIRAL FERMION MESON MODEL ———=Mo"*+ 7 =) 7?=0 (7
AT ZERO TEMPERATURE om

The Lagrangian density of the chiral fermion meson
model which provides an explicit realization of chiral sym-
metry is given by[1] =0,

whose(unique solutions are

i 12 £2 r_
Loyn= Ti7 0, (0" +i9%7- D))t 3[(90")2+ (9777 Mog = fajoo=c. ®

N e o To first order inc, we have
—Z(O' +7—12)7, (1)

w

Cc
=V,
21 F2

(To—fﬂ.

(©)

where ¢, o', and 7 represent the quark, sigma, and pion
fields, respectively) andg are positive coupling constants,
andf_, is the pion decay constant in vacuum. From Eq.(9), we see thatr; has a nonzero vacuum expec-
If the up and down quark masses were zero, QCD wouldation value. It is convenient to redefine _the sigma field as
have a chiralSU(2), X SU(2)g symmetry. In the vacuum ¢ —o+v such thato has zero expectation value. As an
this symmetry is spontaneously broken by quantum eﬁects’?ffeCt of this shift the fermion field acquires a mass given by
with the result that there exists a triplet of Goldstone bosons. m,=gv. (10)
In reality the quark masses are very small but nonzero, so
that chiral symmetry is only approximate and the pion has a The shifted Lagrangian’s, of the new quantum theory
small masg13]. An explicit chiral symmetry breaking term reads
is added to the Lagrangian which generates the realistic finite

. A c
pion mass so that Esz—z(f;ﬁ— v2)2+Cv—)\<v3—vf727——

)\O'

E’ = £Sym+ ‘Csymbv (2) B 1 2
i N2 -2

with +liyta,—mylgt S[(9m) —mom
Loymo=c”, ® +(90)*=mio?]—gylo+iyim 1]y

wherec is small and positive.

The term Ly, is symmetric and invariant under a
SU(2) X SU(2)r chiral group andlgymy, is the symmetry
breaking term. Two Noether currents associated with(Eqg.

namely, the vector current and the axial vector current, are _ ) o
given by whereU(v) is the mean field energy densitg, is the free

Lagrangian, and’, is the interaction Lagrangian, defined by

NS -
- Z[(ﬂ'2+ 0%+ Avo(mP+ o?)]

:_U(V)+£o+£|, (11)

>

- — T - >
V,u= lﬂ’yﬂzlﬂ‘f‘ X ﬁMW,

U(v)=—(f2—1?)2—cy, (12

>

>

R — T - -
A, =¢y,yss+o'd,m—7wd, o, —. 1 .
SR AR Lo= i ya,~m g+ S1(07)?

respectively. The equations of motion for the fields derived i s 9
from the Lagrangian densitii) give the PCAC relations —mimi+(do) -mio], (13
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gls_gﬁm—i)ﬁq}. ;)] W renormalization it is necessary to add £Q a counterterm
(CT) LagrangianLct, needed to render the theory finite
N -
- Z[(772+ 0?2+ 4vo (7’ + 0?)], (14 20},
£: £S+ LCT’ (20)

respectively.
The meson masses read out of the shifted Lagrar(gign ~ Where

are 4 4 4
LCT: CT+ Dlmw‘i‘ Dzmﬂ_‘i‘ D3m(r. (21)
m2=m?+\v?, (15) _ _
In Eq. (21) CT contains the appropriate counterterms to
m2=m2+ 3\ 02, (16) be used in the renormalization of the masses while

D1,2,3m4wyg are necessary to keep the thermodynamical po-
5 2 . - tential finite, as we will see further. As we are interested only
wherem®=—\f5<0. Itis easy to See that the coefficient of j, the study of the thermal effective masses at one loop order
the linear term in the sigma fielll(v”—»f7—C/A) in L&~ in the perturbative expansion, other counterterms necessary

grangian(11) is identically zero by the minimal condition 15 yenormalize the coupling constants are not explicitly
(8). This is due to the fact that the vacuum expectation valugpgwn.

of the sigma field o) should vanish at any order of pertur-
bation theory[14], even if we include thermal corrections
[15]. The one-loop thermal tadpole corrections will modify
this relation which will become temperature dependent. If

is allowed to be temperature dependent, the masses are tem-One of the most fundamental objects in thermodynamics
perature dependent as well. At any temperaturés such s the partition function, defined by

that(o)=0. At zero temperature, whencontinuously ap-

lll. THE PARTITION FUNCTION OF THE MODEL
AND THE LINK TO STATISTICAL MECHANICS

proaches zero, we have the solutidngy=0 and(c')=f, Z=Tre FH, (22
which minimize the potential satisfying Goldstone’s theo-
rem. whereH is the Hamiltonian of the systen8=1/kgT=T"1

The contact with phenomenology is made by fixing theyith the Boltzmann constarks set equal to 1 and the trace
parameters of the model to agree with the observable valugry) in Eq. (22) meaning the sum of the elements of the

of the particle masses in vacuum. Then, the tree level param- i e~ 8H in all independent states of the system. Al in-
eters of the Lagrangian are

formation concerning the equilibrium thermodynamic mac-
roscopic properties of the system are obtained fibm

In relativistic quantum field theory, the partition function
can be derived from the Feynman’s functional formalism
[21]. The bridge between gquantum mechanics and statistical
mechanics is achieved by the Heuristic introduction of a
variable defined ags=it. Also, the fields are constrained to
obey periodic(ant) boundary conditionsp(r,0)= ¢(r,B)

My.o(M5.0—3M2.o) for bosons andj(r,0)=— y(r,B) for fermions. Following

= , (19) ..
g f(m2o—2m?.) these prescriptions, we get

2 2
m(r'0_3m11"0
A= ——— T 1
T (17

c=vm’.o=f,m2.q, (18)

where m_.,=139 MeV, m,,=600 MeV, m,,=340 Z[l,b,t//,a',ﬂ']=N'J ’D[¢>]ex;{Jﬁdrj d3x£(¢,a¢)}
MeV, andf_ =93 MeV. 0

As we mentioned earlier, our goal in this work is to study
the chiral phase transition in the chiral fermion meson model :expf d*x
and to analyze the thermal behavior of the temperature de- B
pendent meson condensateand the meson and fermion
masses. So it will be necessary to compute all the one-loop +D2m‘7‘r+ ngfT
self-energies for the particles present in the model. Such self-
energy diagrams have divergent pieces which must be renor- ) ,
malized if we want reliable results. In most of the approxi- €€ We have introduced a short ha?d notaﬁyon fosr the Eu-
mations found in the literaturk9,16—18 several difficulties ~ clidean space-time integralS= [ zd"x L= [5d7[d*X L,
have been found in the tentative of renormalizing the diver-D[ ¢] is an abbreviation for the integral ové, ¢, o, and
gent gap equations. Sometimes the undesirable parts have N’ is an unimportant infinite constant, adis given by
been ignored19]. The renormalization of the self-energy is Eq. (20).
studied in Sec. VI whereas the effective potential renormal- Next we introduce the thermodynamical potentialde-
ization is performed in Appendix A. For the purpose of fined by

\
- Z(ff_r— v?)%+cr+ Dlmﬁf

N’j Dl pleSes. (23
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T ations, that in thermal equilibriunf) is a minimum with
Q(Tv)==gln Z, (24 respect to variations im [13]. Applying this extremum con-
dition, we have

where InZﬂV/T)[L)(vHDl,zy?,mjmo]+In Zy+In Z,. Since ST

the interaction actioi®, contains terms which are more than 1(T,v) -0 (29)

quadratic in the fields, it is not possible to carry out the Jdv '

functional integration above in closed form. For a while we __ B B ) ) 0

will neglect S, in our calculations. This amounts to consid- Smceng(T—30,v)—0, the divergent qzuant'twﬂl(”)/a”
=[[d°p(2m)°|[3N (120, + 1/2w ;) —89“(1/2w ) v repre-

ering only the tadpole contributions. Thus,
sents the sum of the tadpoles Bt0. On the other hand,
A oQ(T,v)/av is finite atT+#0 because of the natural cutoff
Q(T,v)= Z(ffr_ v?)2—cv 1/ (ePsm—(+)1)] present in the integrals. We could let
the counterterms absorb the finite partsaﬂ?(v)/&v to-
4 4 4 T gether with the infinities since the vacuum contribution is
—[Dimy,+Domz+Dam, |- v'n Zy irrelevant for the discussions of thermodynamics. But, as we
will see in Sec. IV C, these terms are important in the veri-

N L, 4 4 4 fication of the Goldstone theorem in our self-consistent treat-
=7 (Fz=v9) = cr—[Damy+Dmz+Dsm;] ment. After these considerations, Eg) is written as
f d3 1 T| 1 8 {F[ww,(r,ll/(mw,(r,t//)vT]+G[ww,(r,|//(m7r,(r,1//)]
sw,+TIn(1—e P
(2m)3 (2 Vo ( ) —\(f2=v?)}v—c=0, (29

3 where the function$ and G are defined as
+ 5w+ 3T In(1—e Aor)
F[ww,o',z//(mw,a',z//)v-r]

—2X2[w,+2TIn(1+e Foy)] (25 f d3p ( 1 )

2m? | agePor—1) " w (ePor—1)

with w2=p?+m’, w’=p?+m%, andw’=p?+mj. In the

third line of Eq.(25) the first factor 2 multiplying the bracket 1+ 8g? 1 (30)

which contains the fermion contribution, comes from the 0, (P9t 1) '

spin degrees of freedom, whereas the other factor two is due

the isospin degrees of freedom. Inside this same bracket Glw (m )]

there is another factor 2 corresponding to the particle and mo gL Tme g

antiparticle contributions. The thermodynamical poterfiial 3\ m?2 m?2

is precisely the one-loop effective potent{iél3] of the linear = m2inl == | +m?In| =<

sigma model, and it can be expressed as (4m? "\ u? 7\ w?

Oy(T,1)=U(») +Dypgm’, , + QA+ Q4T (26) 8 mj, D
(4,”_)2 14 MZ !

The equation of state of the noninteracting system composed ] . o
by a (free) relativistic boson and fermion gas is respectively. In Eq(31), u is the renormalization scale.
As a first approximation, we consider only the thermal

loop corrections to the effective potential. This approxima-

T
Po= vln Zo= —Qf(T,v) tion aIIo_V\_/s us to get an analytic expression for the approxi-
mate critical temperature:
d® 3
= —Tf p3[|n(1_efﬁwc) f d p 3\ nﬂ'(wﬂ') + no(wa')
(2m) (2m)° [ W,
+3In(1—e Pem—8In(l+e P20)], (2
( ) ( )1, (@7 o))
+89°——|v—A(f5,—v)v—c=0, (32

wherePy is the thermal pressure. @y

The integration over the temperature independent termgheren,, , andn, are the usual distribution functions for
Q(v)=J1d%p/(27)*[3w,+ 3w, —4w,] actually di- bosons and fermions given by
verges. It is exactly the counterterrﬁ)gzsmjm, which will

take care of these divergences. We discuss this further in N (o, .:T)= 1

_, 33
Sec. VI. It can be known, from thermodynamical consider- ' ePvmo—1 339
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that Goldstone’s theorem is not satisfied in the ordered phase
, (349  (whenc=0), i.e., replacing Eq.36) in Eq. (15), we obtain a
efut1 nonzero pion mass given by?2=—(\/2)(1+2g%3\) T2
his pathological behavior is due to the fact that in our ap-

Nw,;T)=

respectively. In the above expression, when one minimizegroximation we have neglected the interaction acrin
the effective potential, one is summing the thermal tadpol 9

contributions to the usually called mean field equation. Themhe Tﬁrr&c’dyn??:fnal tip?]teniag@irqu dreilljltirl]stghat thre i
chiral condensate’, which is a nontrivial solution of this €an TIeld approXimation can be trusted only € approxi-

integral equation now depends dn This equation can be mate prediction of a phase transitionTatgiven by Eq.(37).

solved with an explicit analytic form in the high—temperatureIt IS mcorrecLlr;] What (;oEcern the de;t;nptu.)n of the f|n|tse :
limit. The leading terms in the high-temperature approxima-ﬁtemper"’lture ehavior of the meson and fermion masses. S0 it
tion for this integral equation are is necessary to _mclude all lone-loop correctlo_ns from all one
particle irreducible (1Pl) diagrams present ir§ to the
c masses.
v— XZO' (35 Following the program of13] we expand the partition

function in powers of the interaction, in order to get the

The above equation has a real solution that is a slowly dedne-loop self-energy corrections:
creasing function of temperature, but does not vanish. Thus,

1 29?2
1+ 2 g2

2 3\ G

3
_|_
VT2

when c#0 the symmetry is never restored. On the other Spen
hand, wherc=0 the nontrivial solution of Eq(35) is = 4 | [d¢le™s
Inz=In| 1+ ——-——1. (38)
292 n=1 Nl [d¢le>
2_§2__ 2
=12 5 1+ 3)\)T. (36)

The one-loop 1PI graphs come fromZ4pt+In Z,, which
The critical temperature is defined as the temperaturare given by
where the condensate goes to zero. It is given by

2
c 2 ' nZ;=——-— (39
1+2g°/3\ 1 ,
It shows that the inclusion of fermions does not change the
order of the phase transition, but only lowers the value of 2
T.. Note that the interactions of the mesons with the fermi- f [dpleSs,
ons forces the “critical” temperature to depend on the cou- NZ.=— }
pling constanta. andg. If g=0 we recover the result of Ref. 2 2 [dpleS
[22].
So2
IV. INCLUSION OF LOOP CORRECTIONS 1 J [dele™s; (40)
A. The first necessity: Beyond the mean field approximation 2 [de¢le '

Let us analyze the finite temperature behavior of the tree-
level meson mass€&5) and(16) as functions of the thermal where the disconnected diagrams cancel if,land the dia-
expectation value of the sigma fieldT). Sincev?(T) de-  grams which gives rise to tadpoles in the self-energy are not
creases adJ increases anan’<0, the particle masses be- to be included, since their effect is already considered in the
come tachyonic. Another problem which arises is the facimean field equation. The terms which “survive” come from

N f[dq.’)]eSOJ' drf d3x( 72+ 0?)?
inZpoon—

| tagres

» [ ag 1m0 (0?24 (021 + 02 o+ (o7 707
+ Ef dTl def d3X1 d3X2 . (41)
’ f [dgle
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FIG. 1. The logarithm of the interaction par-
tition function 1PI. The solid line is the tree-level
pion meson propagator, the dashed line is the
tree-level sigma meson propagator, and the solid
line with an arrow is the tree-level fermion propa-
gator.

The 1PI graphs from this expression can be represented dia- To one-loop order the self-energy expressions are given

grammatically as shown in Fig. 1.

[13] by

The self-energy for bosons and fermions are defined, re-

spectively, by

D(wp,K) ;5= Dol @n,K) "1+, (w0, K), (42)

D(wpn,K) " 1=Dy(wpy,K) "1+ 3 (wy k), (43

whereDy, ,(wn,p) andDy(w,,p) are the tree-level boson

and fermion propagators, expressed, respectively, as

Dog.n(@n K) 1= wi+k3+m3 (44)

Do(wn k) " t=y,kk—m,,. (45)
Here, w, are the Matsubara frequencies, defined ws
=2n=T for bosons andw,=(2n+1)7T=w,; for fermi-

ons.

4
Hw(ko,k)=21 HW,—)\STE f

D07T Wn ,p)+)\T2 f

( sln z,2"°°p)
I, ,=-2|—(&— , (46)
Dog,n | 1p)
( sln 2,2"°°p)
N (L S @7
Doy 1PI

The self-energy graphs to each particle can be pictorially
represented as by cutting one of the corresponding loops in
the diagrams representing @) ,. After the integra-
tion in x, 7 and in the fields in (IZ*"°°") 5, and the differ-
entiations above, we obtain the following expressions for the
self-energies at one loop order:

DOU’(wn!p) 4)\2 ZTEJ )3 00’

d3
X (@ny) ,p+k)Dow(wn,p)+ng2 f(ZWigTr[vg’Dow(wnH P+K) Y Doyl @y ,p)], (48)
> d3p d3p
kO! 2 _3)\T; J‘(zﬂ)3Doa(wnvp)+3)\T; J(Z Dow(wn,p) N ZTEJ 3 071'
X(wn+lup+k)DOn—(‘”n: —18\%v ZTZ f DOo(wn-H p+k)D0¢r(wnvp)
d®p
QTS f oy Dost@ns1.p+ K Doglwn P, (49)
_§ —_g?TS d*p 2T d*p
Zko k)= 2, 2i=—g°T2 (277)3Doa(wn+| P+K)Doylen,p)=3¢7T 2 (27)3Dow(wn+| p+K)Doy(wn,p). (50
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l_[l—loop _ g ? - Lo f ? x + H;-loop _ 0'___:‘__‘__,':___0 . c___Q___cs +
) G) (m) (n)
T o v
T e
T s + fid i
' (0) ® (@
(k) I FIG. 3. One-loop self-energy for the meson sigma.

FIG. 2. -l If- for the pions. . .
G. 2. One-loop self-energy for the pions the physical masses are the values ofkhg . , which are

. . ) ) the zeros of the function®1), (52), and(53) above, i.e., the
The diagrams representing the pion, sigma, and nucleofy.4tion of the poles in the limik=0. The full self-energy
one-loop self-energies are drawn in Figs. 2, 3, and 4. expressiondl ., I1,, 3o, and 3 are shown explicitly in

We note her.e that we cc_)uld get the same results for thQ\ppendix B. The renormalization of the self-energy is stud-
self-energies directly applying Feynman rules to construcj,

he di ith th . bstitutions: #hfa ed in Sec. VI. Throughout this paper, we will use dimen-
the diagrams with the appropriate substitutions: #INC- g4 reqularization, but omitting, for notational simplicity

fcion at each vertex _is replaced 'with a Kroneckgr delta whicl'{he factoru2¢ which multiplies\. Since our calculation does
imposes conservation of the discrete e”e_”%’i"”n)’ an not require traces involving an odd number wf matrices,
rouhd each Igop of 3a thgrmal graph V‘."Df.[d Ki(2m)"] we use the definition o§® as in Refs[24,25.

_’('/'B)E”I[Id KI(2m) ],V\r/]hlchhare the f'lnlte-tem'perature Since these expressions are self-consistent they have to be
Feynman rule$13,23. When the summation OVeTis per- - g, eq numerically. For each fixed temperature one finds a

formed, each graph of the self-energies Is Sepafated into MWOhlue of M =0,y Which satisfies the equations above. On the
parts, namely, a temperature independent @rthis Stagk  qner hand, if one is interested only in the meson sector of

which is divergent, and a temperature dependent part cofpe jinear sigma model, the integrals in the self-energies

taining the Bose-Einstein distribution in the case of boson%omd be evaluated exactly in the high-temperature limit and

or ;[/r\'/e FE.EI{mGD'ﬁ% dlgtr]l_bgtt_lon f(f)r fermloP?. ite t ‘ at low frequency where the boson diagrams involving three-
€ will adopt the definition of mass at inite tempera urerpoint vertices which are proportional %?»?> may be ne-

as the real part of the pole of the corrected propagator at ze &ected. This is not consistent if one wants to study the be-
momentum k=0). Thus, from Eqs(42) and(43) we have havior of the condensate and the particle masses in all

ranges of temperatures. It is important to note that when
D, (wn,|k|=0) "= w2+ m2+1I_(w,,|k|=0) =0 the three-point vertex boson diagrams are significant in
the regionT;(~0)<T<T{ ~»(T)] and whenc#0, »(T)

_ 2 2 —
=0— kg, + M+ (T ko 7, [k[=0) #0 for any finite value ofT.

=0, (51
B. The second necessity: The resummation
— 1,2, 2 _
Dy(wn,|k|=0)"*=wp+my+T1,(w,,/k|=0) The expressions for the self-energies appearing in Egs.
—0— K2 +m2+T1 (T ko .[k|=0 (51, (52)_, and (53) are functlon_s ofw, , , which are ex-
— e e o(Tko [k =0) pressed in terms of the mean-field masses. As we discussed,
=0, (520 the meson masses become negative as the temperature in-
creases. Thus, in the computation of the one-loop correc-
_ tions, the masses running in the loops become tachyonic. A
— 1_ _
Dylnf,[k[=0)" =7k, —my+ 2+ y*X, proper resummation of higher order loops is naturally neces-
=0—koy+3o(T Koy, |k|=0) sary[6]. Various resummation methods have been proposed
u u in a tentative of curing the problem of the breaking down of
+34(T koylk|=0)—m, the perturbative expansion at high temperature. In effective
—o (53 models, when a phase transition occurs, one can find tachy-

onic masses even below.. The O(N) linear o model

which is one of the laboratory effective models employed to
where the arrow indicates an analytical continuation fromstudy QCD has been investigated by different authors using
discrete to continuous energies in Minkowski space. Hencédifferent techniques. One of these methods is the Cornwall-
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Jackiw-Tombouli CJT) formalism[26] which provides for for O<T<T*, whereT* is the temperature wherg(T*)

a consistent loop expansion of the effective potential in terms=f .. This implies tha’me:O and consequently the appear-
of the full propagator. The CJT formalism elegantly providesance of infrared divergences in the self-energy.

for a gap equation from stationarity conditions for the daisy Step 1.Start with the mean-field effective Lagrangian
and superdaisy effective potential. However some authorghere the condensate and the masses are given by

use this nonperturbative approach with an ansatz for the full

(correctedl propagator in which the thermal corrections are {Fl@mo.lMa0,p:0), T+ Glog oy (M7 5 yr0)]
momentum in_depende_nt. Thes_e cprrections are the finite —\(f2—1¥)}v—c=0, (54)
piece of the divergent integrélvhich is temperature depen-

dent through the gap equ_ation fM) plus the finite explicit. Mio: mi: m2+ A v2, (55)
temperature dependent piece. This is the Hartree approxima- '

tion, and means resuming only the “bubble diagrams” that Mi,o: mi: m2+ 3\ 12, (56)

are dominant at high temperatures. Another nonperturbative
approach widely found in the literature is the lafgeap-
proximation. TheN— oo limit facilitates the calculations, but

can lead to inaccuracig7,19. One must be careful in tak-  step 2 Evaluate the one-loop self-energy corrections to
ing the largeN limit since its truncation depends on the these masses from the equations presented in Appendix B

problem to be studied and the relevant valueNof27]. In - and define the condensate and the first order corrected
this case the three-point vertex diagrams are omitted whickhasses as

in principle makes sense only in tiN— oo limit since these
sunset diagrams are of ordeNL/in these two kinds of treat- {F[wmw( M0 TIHGloq e Mz o]
ment one cannot study the bosons interacting with fermions 2

(with the interactions of the linear sigma moysince the AT v)pr—c=0, (58)
self-energy diagrams are momentum dependent which in-
validates the ansatz cited above. It is worth remembering that
the Hartree approximation does not satisfy the Goldstone
theorem[19,2§. This fact may be attributed to the non in-

Mlﬂ,O: ml//:gV (57)

M fr,lz M 727,0"' (M 727,0 M i,o My0

=(A;+E +1)m2+ (A +E + 1)\ 12

clusion of these diagrams. Although the finite temperature +Hw(Mi,o,M§,0aMw,o)

mass in these approaches is the pole of the corrected propa- 5 b Rem a2 5

gator, it is not the true mass, since thHir, ,, are not the true =m*+ A+ TI25AMZ o, M5 0, M0, (59)
one-loop self-energy functionsee discussion belowThe

corrections included only shift the masses. Once we are in- M2 1=M? o+11,(M2 5, M2 ;M 0)

terested in the study of the masses behavior also in the range

0<T<T, (if c=0) the three-particle vertex diagrams will =(By+Fy+1)m?+ (Fy+ 1)\ v

not be neglected. The inclusion of these diagrams brings an
additional complication since the self-energy now depends
on the momentum.

+(By+1)20 2+ 11,(M2 5, M2 ;M )

=m?+ 3N 2+ 115 (MZ o, M2 0, M, 0),
(60)
C. A nonperturbative resummation method: The MSCR
— 2 2

Let us now introduce our procedure which resums higher Mya=My o2 (M50, Mir0.Myo)
loop diagrams in the mean-fie(tree-level propagators. The
method consists in recalculating the self-energy, in steps,
using in each step the masses obtained in the previous one Rem ka2 5
such thaM2=(A,+1)M2_,+II(M,_,), wheren is the or- =gr—32"TM7 5,M5 0, My0), (61)
der of the nonperturbative correction aAd is the coeffi- o
cient of the appropriate counterterm. With this procedure it i8¥n€ré Iz o=1Il7 (Ko7 o =Mz o k=0)"+117 (T:Ko 7 o
easier to identify and absorb the divergent parts of the self=0;k=0)#, A;, A;, By, By, C;, E;, andF; are the ap-
energy in order to have finite gap equations. The goal is t@ropriate coefficients of the counterterms added to the mean-
make renormalization possible since the masses which mufield effective Lagrangian needed to render the model finite
tiply the divergences are necessarily the same as in counteyp to this order, which are shown in Sec. VI. The require-
terms. ment thatko , ,=0 in Hﬁvl, excludes the possibility of ta-

Application of MSCRHere we apply the MSCR in the chyonic tree-level masses since thermal effects provides for
study of the chiral fermion meson model at finite tempera-the pion a nonzero width due to the Landau damping pro-
ture. The analysis of the problem has to be done carefullgess. For the fermions we adopt the requirement Hhat
which will be divided into three regions. =3 (koy=M,;k=0)°+3(T;ke,=0:k=0)? to prevent a

Region I: The low-temperature regiomhe first region is  similar consequence. The resummation has to be done

=(Cy+1)gr—3(M24,M24,M,,0)
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exactly to avoid this problem. In this range there is no ne4n the counterterms. The coefficients of the counterterms are

cessity of resummation since the masses running in the loogsund in Sec. VI.

are positive, i.e.M?2 o0, M2 500, andM¢,0>O Goldstone’s theorenin the exact chiral limit ¢=0) and
Renormalization The renormallzatlon is done normally low-temperature phas@vhere v#0) from Eq. (51) at (kg

since the masses multiplying the divergences are the same as0,/ k| =0), we have

M 37,1: M fr,o"' II,(ko—0,/k|=0)

=m2+ A2+ 117*k,—0/]k|=0)

3\ %0 892 M2
=— 5| MZln +M2In Lz Zoln —(/"20
(4) ol ew? eu? (4) en
=d N,(Myo N.(M, 5\ M2
. prj[%( (My) | il 0)) Mo ]| Mi,oln( ,20)
0 2 w(r(MU,O) (M0 wi//(Mwo) (47)? en
2 2
M
M2 gin| —=2| —M2 ;In| —22
5\ (=dp p? n, ) M2\ N (=dpp?n, A2 "0\ eu? 707 eu
+7 2 o Mool 2 2 2 -4 2 2 2
0 T W (4 ) eu o OF (4’77) M o0 M 7.0
=d n 1 n, 1 892 2 =dp p? n
_2)\2V2J’ ppz = — ——— — —|— 9 MZ«pOIn 40 +492J p_p2_¢
o 7 |Ox M MLy @o M —MZo| (4m)? T | ep? 0o 7 Wy
=0 (62
|
sinceM?2 ,—M?2 =2\ »? [in deriving Eq.(62) we have used {Fl@mo. oMy 5.4:0), TIH Gl 5 (M 4 40) ]
Eqg. (29)]. 22 B
Region II: The intermediate temperature regidfhis is —MfZ—v9)jr—c=0, (63

the region forT* <T<T_ where the resummation is really
necessary, since the masses in the loops are zero or tachy-
onic. The problem here is more complicated than in the other )
temperature regions since phase transition takes place. As is M7 o= m =m?+\v?, (64)
well known, around the critical temperature quantum fluc-
tuations become essential and one loop corrections may not
be enough. In fact, as we proceed to show here, this scheme
(i.e., allowing only one loop corrections in the perturbative MZ o=m3=m?+3\ 02, (65
expansioh prevents us from adequately renormalizing the
gap equations for the tree-level resummed masses and satis-
fying Goldstone’s theorem.
We show next that this is indeed the case and that a pos- My0=my,=gv. (66)
sible (but inconsistent way of achieving renormalization,
would be, e.g., to consider only the diagrams for whith

—TI,. This is very frequently implemented in the literature  Step 2.Evaluate the one-loop self-energy corrections to
[12, 18 19,28 these masses from the equations presented in Appendix B

We will adopt the point of view that the MSCR fails in and define the condensate and the first order corrected

this region and higher order loop corrections in the perturba- Masses as

tive expansion will be necessary at this stage. This is the
subject of current investigation. However, we explicitly
show where the problem appears.

Step 1.Start with the mean-field effective Lagrangian
where the condensate and the masses are given by —\(f2=)}v—c=0, (67)

{F[wﬂ',(r,w( M w,a,i//,O)vT] + G[w'rr,a',l//(M ﬂ',o’,lp,O)]
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M2 =M% o+ 1 (M2 5, M2 5. M, 0)
= (AL +E;+1)m?+ (A +Ey+ 1A
+H7(Mfr,01M§,o’M¢,o)
=m?+ A2+ IIEMZ o, M2, M0, (68)

M3 1=M2 o+, (M2 5, M2 5, M, o)
=(By+F;+1)m?+ (F,+1)Av?
+(By+1)20 2+ 11,(M2 5, M2 M, 0)

:m2+3)\V2+H§ertMiyo,MiyoyM|//,O)! (69)

M,1=M d/,O_E(qur,O'Mlz)',O’M 4.0
=(C1+1)gr—3(M% 5,M2 5, M, 0)
SN ME My, (70

At this stage of the application of the method, the renormal-
ization is possible, Goldstone’s theorem is verified, but the

tree-level masses are zero or tachyonic.

Step 3Now we take the masses computed in the previous

PHYSICAL REVIEW D63 056011

Mi,zz Mi,l—’_HU(Mi,l'Mi,l’M p1)
=(By+Fy+1)m?+(Fp+ 1)\ 02
+(By+1)2\v2+ (By+Fot 1)
XIIFEYMZ 5, M2 5, M .0)
+HU(MET,11M§,11M¢,1)
=m?+ 3N+ IR (M2 | M2 | M, )

)
(4m)?

1
NEM2 M2 My )=, (73)
€

My o= Mzp,l_z(Mi,lyMivl,M1//,1)(C2+ 1)gv
—(Cy+ 1)2Rer(Mfr,o-Mi,olM¢,o)
—3(MZ1,M2,,M,,1)

=gv—3RFNMZ |\ M2 | M. (74

It is shown that in the\ ¢* model, this(first) recalculation

step and improve the results defining a next-order nonpertufS €quivalent o .the” sum of an infinite set of diagrams,
bative correction. With this we get a new effective Lagrang-1@mely, the “daisy” sum([6] or the set of ring[13].

ian where the condensate and masses are given by

{Flwmre M, 000, TI+Glog oy (Mo, 4]
—N(f2—v?)lv—c=0, (72)
M 37,2: Mi’,l—i_ H']T(M 727111M5-111M l/,']_)
= (A, +Ey+ 1)m?+ (A, + Ep+ 1)A 12
+(K2+ E2+ 1)HEETM§T,oaM(2,,0.M ,/,,0)

+Hw(Mi,1’M§,1aM¢,1)

=m?+ A2+ TR YM2 | M2 My, )

1
HEETMi,lvM i,l!M p1)

- =, 72
(4)? € (72
v ¥
I-loop
v
T c

The coefficients of the temperature dependent mass counter-

termsA,, B,, andC, are fixed in a manner to cancel not
only divergences proportional toIf*{M?2 ;,M2 3,M (),
M2 o, M2 0 M), and SREYMZ M2 o M), re-

spectively, but also these terms together. That is, at each
stage of the procedure, far>1, in the expressions for
M. oyn, the self-energy I, (M, .02 [or

2 (M ,4n-2)] have to be canceled to avoid overcounting
of diagrams.

This shows explicitly that renormalization can not be per-
formed within this approximation scheme. This is not sur-
prising since in this temperature region quantum fluctuation
may need a more thorough description. So, there is no reason
to believe that only the “daisy” diagrams should be re-
summed at low and intermediate temperatures. In fact, the
“daisy” graphs contributions are dominant at high tempera-
ture [6].

Renormalization. Since in this region M2 —M?2 |
=2\v?+AIl, whereATI=II,—1II ., there is the presence
of undesirable nonrenormalizable terms. These terms are the
last ones on the right-hand side of E¢g2) and(73) which
come from Egs(B2) and (B6), respectively, and cannot be
absorbed in the counterterms.

Goldstone’s theorenin this region, Goldstone’s theorem
is satisfied only ifAIl—-0 and the contribution in Eq.
(B3) is decoupled into integrals proportional to. This
would assure the cancellation bf,, at (ko—0,/k|=0). The

FIG. 4. One-loop self-energy for the fermions. Note that thereason for this frustration is the same as for the lack of renor-

lowest corrections for the fermions are of ordgt

malizability.
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Step 4.(Applicable only in the case whe®II=0. This  pole of these equations it is necessary to sum and subtract the
guarantees that renormalization and Goldstone theorem cdinite quantitiesIT=*" and 3R which will be regarded as
be satisfactorily implemented at each step. In particular thisnass parametef§,10—13. This corresponds to the reorga-

will be the case for the high-temperature region as will benjzation of the perturbative expansion. Now we rewrite Eq.
shown nexi. (20) as

Proceeding with the iteration, in the limit—o the
massesM,, have formally the same expressions as the
massedM,,_; which are already renormalized. Thus, in this

limit we will have L:—Z(fi— V224 cv+ yYliyhd,—M 1y
1 . R
{F[w’rr,a',z//(Mﬂ,o,zﬂ,n)’T]+G[w'fr,o'|¢(M7T,0',zﬂ,n)] + E[((?W)z_ METWZ‘I‘((?O')Z_ Ml21.0'2]
—\(f2=v?)}v—c=0, (79

—glo+iyim D] y— %[(7;2-1-0'2)24-41/0'(7;'24-0'2)]

M2 =m?+ A2+ 17YM2 (M2 M), (76)

— 1 -
+ 3R+ ST w2+ 0%) + CT. (83)

2
Mrrn

=m +3)\V +HRerKM17n’ o,n? l//,n)’

(77 The last two terms on the third line of E¢83) must be
considered as extra “interaction” terms and will naturally be
o Myn)- (78) present in IrZ;, Eqg. (41). The counterterm structure of Eq.
(83) is the same as the one present in the method for the pion
At each intermediate step, in the loops we %LW’ and fermion, differing only by numerical factors in the case

N M y.n-1 1N the computation OM o.un - ThIS ensures the of the sigma mass renormalization. By E() and(47) the
cancella‘uon of the divergences |n aII stages of the process
éxtra contribution to the self-energy read

since the masses in the counterterms will necessarily be thé
same as in the divergences. In the end, in the resulting equa-
tions of interest(to be solved nummerical]yKémb: M2,

Mwn gv— ERGTMwn!

extra__ extra__ Ren
as it should. By our MSCR we have gotten a set of four I =1, — I (84)
coupled nonlinear integral equations to be solved self-
consistently, with finite gap equations for the tree-level
masses, which read S exras 3 Ren (85

MZ=m?+ A2+ 153V ko, =M, ,|k|=0), (79

where we have defined
MZ=m?+ 3\ 2+ I17V ko, =M, k| =0)

(80)
Ren_ _ —_n\0 — =0)8
M =g BN ko, =M, [k =0) MR=11 (Ko ,= M, k=0)+TI (T ky=0k=0)#, (86)
=38 koy=My, k| =0), (81)
SRE=Y (Kg=M,, ,k=0)°+3(T,ko=0k=0)". (87
2 2
V|m2+)\V2+ 5| MZIn| —] +M3In —‘;”
(4) eu eu As a result, the final resummmed tree-level maddsss.
892 2 ~dp P (M) (79), (80), and(81)], may be used in Eq$51), (52), and(53)
— 21nl Z2£ +J' [3)\( AR if one wants to study, for instance, spectral functions as the
(am)? " en? 0 27 ws(My) authors of Ref[12], or decay width as in Ref28].
Goldstone’s theoremlf the sunset type graphs are ne-
+ (M ﬂ)> +8g2 ny(My) _ (82) glected, the self-energy function at one loop is not complete,
wo(M7) wy(My) ’ despite the fact that the definition of masses as poles of

propagators at zero momentum is still valid. Now, having the
where the renormalization scaje can be determined by a result for the full one-loogand higher-order loops contribu-
physical condition. We choose such that the pion mass has tions from the resummatigrself-energy function we can test
the correct value at =0. algebraically the fulfillment of Goldstone’s theorem in the
Now we have to go back to real world encoded by Egs.exact chiral limit ¢=0) and low-temperature phasehere
(51)—(53). In order to get finite physical masses from the »#0). From Eq.(51) at (ko—0,/k|=0), we have
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M2+ I10%=M2 +11,(ko—0,[k| = 0) + 12"

=m?+ N\ 2+ 17 ko— 0, k|=0)

3\ 2 2 892 M2 =d
=- 2in| —Z | +M2In 9 §,|n—¢’+f i
v e e v e 0 2
(4m)° p u?l ] (4m? w2 27
n,M, n. (M, n,(M 5\ M2\ 5\ (=dpp® n,
x[s)\( (M) | Dol ))+8 2 No(My) M2 In| — —f Py’ Ny
wO’(MO') wﬂ'(Mﬂ') wz//(Mxﬂ) (477)2 e,LL2 2 Jo 7T2 W
2 2
M2ZIn| —= | —=M2In| —=
N (_f, +£f°°dp p? n, 22 ew eu?
(4m)? en?/ 2Jo 7 w0, (4m)? MZ—M2
=d n, 1 n, 1 8g° M2 =d n
27\21/2] p2p2 AL L +4ng pzpz—*”zo (88)
0 Oz M—M,  @e MI—M (4r) eu 0 ° Wy

sinceM2—M2=2\+? [in deriving Eq.(88) we have used the high-temperature limit of these integrals, we find that

Eq. (82)]. T2=2f2/(1+2g%3\), as predicted by the mean-field analy-
In our opinion the satisfaction of Goldstone’s theorem issis in Eq.(37).

ultimately related to the preservation of the relation imposed Region Ill: The high-temperature regioithis is the re-

by chiral symmetry to the tree-level masses. Moreover, it iggion of high temperature$=T,, if c=0 andv=0 or T

crucial to keep all diagrams of a given order. This is due to=T,;, whereT,; is defined as an “inflexion” temperature, for

the fact that, strictly speaking, a loop expansion is an expanthe casec+0 andv<f, such thau\/lw0 M(ro m?:
sion in powers of the Lagrangian. As discussed in [RE3]

in order to respect the symmetries of the Lagrangian, one M2 =M2 (+11 (M2 4,M2 4, M o)
must retain all diagrams to the given number of loops.
Then, in the absence of the explicit chiral symmetry =m?+11,(MZ 5, M2 5, M0), (92

breaking term, one has, for<OT<T,, , , , ;
M o1 M 0',0+ Ho’( M 00 M 0,00 M lﬂyO)

M2 =0,
—m2+HU'(M7T0' U'O’Mz//,O)
=2\ 12, (89
=m?+11 (M2 4,M%4,M o)
for T=T,,
c =M2 =m?, (93
M2=M2=0, (90

szl—Mwo E(MwOa UO’ ;y,o)
and, forT>T,,

=gv—3(MZ,M2,,M,0). (94)
n =d n
M2=M2=m?+3\ dp P’ = 4gZJ p—zpz -t Note that the pion and sigma masses become degenerate
o m? wp o 7 @i and the problem encountered in the previous regidfi (

(9)  <T<T,) is no longer here sincAI1=0 in this region of
temperatures. In this case, the masses in the loops can be

which shows chiral symmetry restoration. Hératands for neglected, and we have

bosons and for fermions. We could interpret the result in
the right-hand side of Eq91) as if each independent pion Y g2
effectively “sees” one sigma and the other two pions and MZ=(A;+1)M5+ H(M0)=m2+2 ( 1+ —) T?
four fermions(since the chemical potential here is Ze©n

the other hand the sigma “sees” the three pions and four T2
fermions. This equation serves to define the critical tempera- =)\ffT 1 (95
ture in which the common masses of the particles vanish. In Te

056011-12



CHIRAL FERMION MESON MODEL AT FINITE TEMPERATURE

O o«

(a) (b)

FIG. 5. (@ The 1Pl one-loop self-energy diagram of theb*

model and(b) a “daisy” type diagram with three attached bubbles

which contributes to the self-energy.

If we setg=0 these results agree with the ones obtained b){

Bochkarev and Kapus{@2].
Following the iterations, we find for theth iterated mass
M2=(A,+1)M2_

1My o)

= 1 2" T?1- > M 96
“m gty rMo-a) (99
In the limit n—o0, we get
A 29?2 3
2_ 22 2l 2o
M m+2 1+ 3)\)T[l WTM} (97
which can be easily solved fo:
N2 T2 2 T2 . YZoanf2 T
2m T2 "\ T2 2m T2
(98)
ForT>T,,
A 29?2
2_ 0 =9 |42
M?=Z| 1+ 3)\)T. (99

V. THE MASSLESS A ¢* AT HIGH TEMPERATURE

Now we apply the MSCR to study a very popular model:

the masslesa ¢* model in the weak coupling limit

1 , N,
L=5(0,9)° = 776", (100
MOZO,
y AT?
M1=M0+H(MO)=ﬂ, (101

and at this stage of the procedure there is no necessity of
adding counterterms since up to this order there are no ultra-

violet divergences in dimensional regularizatigdil]. Here

IT is the 1PI one-loop self-energy to lowest order, namely, 1

the “bubble” of Fig. 5a):

PHYSICAL REVIEW D63 056011

MZ=MZ+TI(My)=(Ay+ 1)IIRYMg) +T1(M;)
AT 1 Hro2ina
Bz R A

=M

+0O(N2InN), (102

1/2
A
2
1-3
! ( 24772)

with the result that this correction to the mass is of order
232, which is a signature of the nonperturbative resumma-
ion. The temperature dependent counterterm is fixed so as to
cancel the divergence and avoid overcounting of diagrams,
as explained before. Sd\,=—1+[\/2(47)?](1/€). The
diagrams used, in a given number of loops, in any resumma-
tion method must be the same in all stages of the process.
What changes is the masses running in the loops at each
iteration. This is because one must keep the same fundamen-
tal theory in the recalculation of the self-energy. The result
shown in Eq.(102) is in agreement with the one obtained by
Parwani’'s resummed perturbative expansjdd] [see Eq.
(2.12 of his pape}. The second iteration corrected mass,
which was obtained in our method evaluating Figa) 3vith
M in that loop can equivalently be achieved calculating the
“daisy” sum, that is a summation of the infinite set of
“daisy” diagrams of Fig. %b) with Mg in the loops. In this
case all “daisy” types diagrams are IR divergent sirig
=0, but their sum is IR finit¢13,11].

Continuing the iterations, we find for the next correction

M3=M3+T1(M,)

AT? 3M; 3|v|1 103
T 24 7T T ' (103
Whenx <1 we get
MZ—)\TZ - l/2+ o2 104
2|10 2] T2\ 20 109
and for thenth iteration, we obtain
)\TZ g L
M2=" 1> |-
=12- 24472
(105

The “superdaisy” suni6] corresponds to the limit—co of
Eqg. (105 and it can be summed yjfor A<1) to give

3 )\ 1/2
1__
AT2 2\ 2472
24 ﬂ?

2 (106

3/ X
2472
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FIG. 6. Tree-level resumed meson masses. T(MeV)
FIG. 7. Tree-level resumed fermion mass.
VI. RENORMALIZATION
A. Determination of the counterterms B. Comments related with the presence of the fermions

. L . . in the game
The divergences are regulated via dimensional regulariza-

tion. To renormalize the divergences, we use the minimal We must remark that, on EqéB4), (B9), and (B10) of
subtraction scheme where only the poles are eliminated bf\Ppendix B, the following terms:
the appropriate counterterms. The first-order parameters of

the temperature-dependent counterterms read 8_92m2} _ 8_92 mzf
am? e (am? Ve
A 6N 1 N 128 1 _ 4g? (109
Yamre Tt (am?e T (am?E ¢® [m2)1 ¢® [ ml1
- = S| AL |~ nd - 3_ ~
~ (47)2[ 2Ko/e (4m)2| 2koe
with 1/e=2/(4—d)— y+log(4), wherevy is the Euler con-
stant, should be neglected. As stated by the authors of R
and remarked by the authors of REf2], these terms will be
6L 1 _ 6N 1 492 1 canceled by contributions from higher order loops. Since we
Bi=——=, Bi=——=, 1= 5=, (108 are concerned only about the one-loop approximation, we do
(4m)° € (4m)° € (4m)° € not have to worry about them. Nevertheless, in ®gt)
linear sigma model, i.e., wheg= 0, none of the above terms
8g% 1 will be present, and our model will be order by order renor-
Ci= 5= (109  malizable in the regions of validity of the MSCR. This oc-
(4m)" € curs because our tree-level resummed masses are related by a
symmetry relation that always guarantees the cancellation of
1 1 1 1 the UV divergences.
Dl,l__ 2: 2,].: 2: )
64 647 €
VIl. NUMERICAL ANALYSIS
1 1 In this section, we present numerical solutions of the gap
3,1:@? (110 equations for the tree-level meson and fermion masses and

the condensate derived in Sec. IV C including all diagrams
which belong to the one loop order.

As an approximation, only for the sake of obtaining con-
_ — tinuous curves, in the numerical evaluation we considered
An=A1, A=A, E=E;,By=B1,By=B1,Fr=F1,Cy ATI=0 also in the intermediate temperature region. Rigor-
(112) ously speaking, the curves should only be trusted in the low

and high temperature regions. Figure 6 shows the tree-level

resummed meson masses, E@®) and(80), as functions of

the temperature. We show in Fig. 7 the tree-level fermion
_ _ _ resummed mass, E@1), as a function of temperature. The
A,=—-1+A;,B,=-1+B;,C,=—1-C;. (112 tree-level masses behavior exhibit the fact that the MSCR

For all steps we always have

=C,,D 1,230~ D 1,2,3,1s

and forn>1,
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chiral limit (M ,=0).
FIG. 8. Condensate as a function of the temperature.

has solved the problem of tachyonic masses. In Fig. 8 the VIII. CONCLUDING REMARKS

chiral condensate, Eq.(82), as a function of temperature is | this paper, we presented a modified self-consistent re-
shown whereas in Fig. 9 the condensate is plotted in the casgmmation(MSCR) at finite temperature. Results for the chi-
M.=0. ral fermion meson model and the masslegs' model in the
Since at low temperatures the condensate dominates, thgaak coupling limit were obtained and analyzed. We have
mesons masses Suffers |tS inﬂuence in th|S region. The Sign'ghown that our procedure proper'y resumes h|gher order
mass decreases and they approach each other to become g8ms which cures the problem of the breakdown of the per-
generate in a temperature of about 300 MeV. This confirmgpative expansion.
the results we found in a phenomenological approach to the e have also shown that the MSCR, when applied to the
linear sigma modefl30]. study of the chiral fermion meson model, has the essential
The condensate is a slowly decreasing function of thgeatures which lead to the satisfaction of Goldstone’s theo-
temperature, which is a signature of the order parametglem and renormalization of the UV divergences, in the low-
when the symmetry breaking term is present. The qualitativgng high-temperature regions. We have explicitly shown that
behavior of the results shown in Figs. 6 and 8 can be come scheme breaks down aroufig, i.e., in the region of
pared with the ones obtained by Chiku and Hatsltl  intermediate temperatures. The application of the MSCR in
since OPT also sums three-point vertex diagrams, as Oyhese three physically different regiofi®w, intermediate,
method does. Some differences may be attributed to the ignq high temperaturgsevealed a source of mistakes usually
corporation of the fermions, as performed in our method. Irfoynd in the literature, that is to treat all ranges of tempera-
the absence of the chiral symmetry breaking term, i.e., whefres in the same way. It is naive to expect that the same
c¢=0, the nonvanishing solutions of the extremum Condition,approximation which is valid, e.g., for high temperatures
Eq. (28), are obtained numerically by Eq82 with M%  would be enough in the intermediate-temperature region,
=0, M2=2\+?, and M¢=M¢(Mi=O,M,2,=2)\v2). The  since quantum fluctuations are known to play a major role
solution is depicted in Fig. 9 and gives an indication of firstthere.
order phase transition. This result agrees with the predictions This division was essential to identify the regions where
of first order phase transition found in previous analysis byhigher order terms and resummation are crucial. It is valid to
Roh and Matsu[18], Petropoulog19], Chiku and Hatsuda remember that even when higher order loops are taken into
[12], Randrud 31], and Bilic[32]. Of course we have to bear account, the resummation is still necessary since the tree-
in mind that our result is at one loop order in the perturbativelevel masses will become tachyonic even below the critical
expansion. It may well be that near the critical temperatureemperaturgin theories with spontaneous symmetry break-
higher order corrections become crucial and may change thieg) and break the perturbative expansion. This breakdown
order of the phase transition. of the perturbative expansion can also happen in massless
The tree fermion mass, Fig. 7, does not become zeréield theories, such as QCD, due to the appearance of infra-
when chiral symmetry is restored amd-0 since we consid- red divergences. As we discussed, the breakdown of pertur-
ered contributions from the mesons, given by Eg0). On  bative expansion in finite temperature field theory requires
the contrary, when the temperaturesi200 MeV these con- resummation techniques as the MSCR to recover the reliabil-
tributions dominate the variable and the fermion mass in- ity of perturbative expansion.
creases with temperature. The behavior of the fermion mass In each region renormalization and satisfaction of Gold-
is in agreement with the results found by Panda in &3]  stone’s theorem were discussed in detail. In our study, we
for the quark meson coupling model. have also addressed a usually avoided point: the inclusion of
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the fermions. Finally, we have reexamined the chiral phase 9Q°(m) dp 1
transition in static equilibrium in terms of the linear sigma L = f 3 2—=mL(m), (A2)
model with our MSCR. Jm (2m)° 20

The gap equations for the tree-level masses are con- . ]
structed by our method and in the effective Lagrangian they'hereL(m) is the usual zero-temperature loop integral,
are renormalized. For the particular case of intermediate- A 4
temperature regions, the gap equations would be renormal- ( ):J p 1 :f d’p
ized in the(reorganizedl effective Lagrangian only iAIl ) 2m)* p2em? (2m)* p2+p2+m?’
=II1,—1II1,=0. In most of the approximations found in the
literature, the gap equations are reached by some technigyg@th d*p=dp, d3p being the four Euclidean momentum.

or via somead hocprocedure but the Lagrangian is yet the  The divergent integral(m) can be evaluated in the stan-
original one. This makes the renormalization process nongard manner

trivial, unless a finite cutoff is used and the theory is treated

(A3)

as an effective mod¢R7,28. As pointed out by Chiku and m2 2
Hatsuda[12], the resummation must be done also in the 5 —=z—1+In — (A4)
counterterms, which is essential to show the renormalization. (4) € H

At this point, it is extremely worth emphasizing that, al- 0 ) i i i i
though one has the freedom of adding and subtracting mass ' "€ quantity(2;(m) is then obtained with the integration
parameters to the Lagrangian, in this case they cannot gef mL(m)
completely arbitrary. If the mass parameters introduced were
different for the pion and sigma fieldsi.e., $M,o? Q%m)= m_"' Inﬂz— 3 1 (AB)
+1M,7? and, of course, the same quantities subtracted, ! 2\ u? 2 )
with M;# M), neither theO(4) linear o model is renor-
malizable in any given order nor Goldstone’s theorem is sat- With this expression we can find the zero-temperature ef-
isfied. This will happen even if the mass parameters are deective potential
termined by some physical condition as FAC or principle of
minimal sensitivity(PMS). So, the most important fact be- mb 1 o md 2 3
hind the fulfillment of Goldstone’s theorem and renormaliz-  Q3(v)=— ——> =+ ——| In— — 5) +3(My—m;)
ability of theories with SSB is the chiral symmetry that must 64r® e 64m"\ u
dictate which mass parameter should be introduced to the —8(m,—m,). (AB)
Lagrangian.

The renormalization of the thermodynamical potential at the
end amounts to the determination of the paramedgrss,
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TEMPERATURE
APPENDIX A: RENORMALIZATION OF THE EFFECTIVE At zero momentum the expressions for the self-energies
POTENTIAL are given by
As mentioned earlier the vacuum contributior(1g(T, v) 0
is divergent and requires renormalization. In this subsectim]l_l’fl(ko’|k| =0)=I5,+117,
we also use dimensional regularization in the computation of 5\ m2
the effective potential: = m2| —=—1+In| —=
(4m? 7| e w?
d°p 5\ [=dp p? n,
0 —
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M 2(ko, [K[=0)=T12,+11%, M yo(Ko, [k[=0)=T19,+11%,
R S B S . B S .
= ms| —=—1+In = ms| —=—1+In
(4m)? € u? (4m)? € %
N (=dp P? n, 3\ (=dpp® n,
*3)y (82 2o ey (59
I1,3(Ko, k| =0) =10, + 117,
I ;5(ko, [k|=0) 212 mZ
218—2 —=—2+In —
:H03+Hl33 (4) € M
2f,(k L
ael 1 m2\ K+m2-m2 *2fi(ko)arctan ¢ 5
= —=z—1+In| — |+
(4m)?| e w? 2k3 )
, o [=dp° N, 1
—18\“v 0 2 w_4 2,2
2 \/A—s ~dpp? ™ o 4w, Ko (B7)
XIn| — | + —>(Ag+As) | 2222 | ———
2 k% > 0 m?
7 M y4(Ko, K| =0)=T19,+11%,
Na —k§+mj—m’. N2p2 m?2
@r (—Kg+m2—m2)2—2k3( w2+ 0?) =6—— | —=—2+In| —
(4m) € M
n, —k3+m2—m? - +26.0k0) tr( 1 )
+ = , arctan ——
00— MR- 2(aEral)| dkojaretan o
n2y2 =dpp®n, 1
v 2 W A2 12’
O_I_ T 7 4w, —Kg (B8)
I 4(ko, [K[=0)=T12,+ 117,
I1,5(ko,|K| =0
_ 8¢ mz_k_‘2>1+ 8g° ! 0(|)| ;
@m2l ™ 2]T (amp? ~MostTles
2
2 2 :_8—92 mzl//_ﬁl_f_ 892
m 2 -~ 2
x| — mj—f)ln —Z’ +A,A— K2 (4m) 2le (am
K 1 m?
x| >(6m2—k2)In| — | +(4m2—k2)
= k2 2 w?
+4gzj ﬁﬁ 1_|_—0
0 7w’ wy 4w¢2—k(2) A,A, ) =dp p* n,
1)
(84) ° '
4m,2—k2
x| 1+ 2, (B9)
I ko, |K|=0) =T1%, + IT£, Ko~ dwy2
3\ 1 mi 21,2 21,2
- Sm| == —1+In| — where fy(ko)=\4m2/ki—1, f(ko)=V4mZ/ki—1, A,
4 (o
(4) ¢ " —I3(K3—4m?), A =arctan(IA/1-4m3/id), As=K{
4 3\ [dpp N, @ ~2OmTEm)E(mi-omDZ o Ag=arctani{kG (]

L
20772(1)0.

+m?)]/JA3} and Ag=arctank[k3— (m2+m2)]/\A3)},
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2(ko,|k|:0)
=(20+29)t3(20+29),
=(Sg+3f+3¢+30),+3(20+26+32+3D),
92 1 2 2 2 1 2 mzl// 92 2'//
=——Imy+ s—(kgtmj—m) = — mylIn| —|+Z|— k3+m2—m +Z
a2l ™ 2k T 2 ™ e (a2 5T
ngppZn [Ko( —k§+ w5+ w3) +my(—ki— o +w¢)] g dpp2 nw
®5 (K= (0,= 0,)?][KG— (0,+ 0,)?]
2kow?+m, (k32— w2+ »?
2[ 0wy, ,/;( o2 Tyl —+3(m,—m,), (B10)
[kO_(wd/_w(r) ][ko_(w.p"‘wzr) ]
|
where 34(T,kq,|k|=0) is the scalar contribution, propor- gz m2
tional to the unit matrix and o(T,ko,|k|=0) is the contri-  (39) =— ——m,/ In (—'2/’ +Z], (B13)
bution proportional to the matrix°, and (4m) M
(38) =92m¢’fcdp|o2
s/o 2772 0
g’ my,
n, mZ—m?2— K3 (3000 = 7 2k Kot M mo)| In| 5 +2),
@5 [k§—(0,~0,)?][Ko— (0,+ w,)?] (B14)
2 2 2
n mg,—m:+Kk
w_Z[kz ( w)ﬁ[kz ? ropa) B
— (W, w —(w w
0 Ty Fel R0 ATy R with Z defined as
9%k
=22 Capw
1 |[K3+m2-m?2 [m? A
Ny 0%+ 02—k} Z= =V S+Q(A7+A8) , (B15)
—— P 5 (4m)? 2kg mo) kg
Do [ko—(wy—wy)l[ko— (@, w4)°]
n 20>
v . . wz —~|. with Ag= k4 2k(m +mZ. )+ (mj—m2. )2, A7
@y [Ko— (0= 0,)][Kg— (@t 0,)°] =arctank[ k3 + +mU7T)]/\/_} and Ag=arctanlik3
(B12) —(mi+m§;w)/ 6)-
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