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Chiral fermion meson model at finite temperature
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We study the chiral fermion meson model which is the well-known linear sigma model of Gell-Mann and
Levy at finite temperature. A modified self-consistent resummation~MSCR! which resums higher order terms
in the perturbative expansion is proposed. It is shown that with the MSCR the problem of tachyonic masses is
solved, the renormalization of the gap equations is carried out, and Goldstone’s theorem is verified. We also
apply the method to investigate another known case at high temperature and compare with results found in the
literature.
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I. INTRODUCTION

Several models have been proposed to describe ha
properties in the regime of low energies. Among these m
els, we adopt the linears model of Gell-Mann and Levy@1#
which is a phenomenological model of quantum chromo
namics ~QCD! that incorporates two important features
QCD: chiral symmetry and partial conservation of axial ve
tor current PCAC. The model was originally proposed a
model for strong interactions@1#, but nowadays it serves a
an effective model for the low-energy~low-temperature!
phase of QCD. It has the advantage of being renormaliza
at zero @2# and finite temperature@3#. Although the linear
sigma model Lagrangian exhibits chiral symmetry, quant
effects break this symmetry spontaneously. Both from th
retical @4# and experimental@5# points of view, there exists a
great amount of interest in the study of chiral symmetry r
toration at finite temperature.

However, quantum field theory at high temperature ha
well known problem, that is, the breakdown of the perturb
tive expansion@6–8#. This happens in theories with spont
neous symmetry breaking~SSB! or in massless field theorie
because powers of the temperature can compensate for
ers of the coupling constant. Resummation techniques w
try consistently to take into account higher loops are
quired.

A systematic self-consistent approximation approac
based on the meson sector of the linears model was previ-
ously studied by Baym and Grinstein@9#. After, Banerjee
and Mallik @10# proposed a modified perturbation expansi
with the objective of calculating the two-point functions u
to second order in thelf4 theory. A resummed perturbativ
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expansion was proposed by Parwani@11# in order to go be-
yond leading order in the same model. More recently, Ch
and Hatsuda@12# in the study of theO(N) f4 model pre-
sented a novel resummation adding a mass parameter d
mined later by the fastest apparent convergence~FAC! con-
dition. We employ imaginary-time formulation~ITF!
whereas in@12# real-time formulation~RTF! is used in the
development of the optimized perturbation theory~OPT!. In
this paper we develop a modified self-consistent resum
tion at finite temperature and apply it to the investigation
the chiral fermion meson model. We study the temperat
dependence of the chiral condensate and the effective m
and fermion masses by this self-consistent nonperturba
approximation up to one-loop order in the perturbative e
pansion. In the application of the modified self-consiste
resummation~MSCR! to the study of the chiral fermion me
son model at finite temperature, we divided the problem i
three physical regions: low, intermediate, and high tempe
tures. This is essential to identify the regions where resu
mation is crucial. In each region renormalization and sa
faction of Goldstone’s theorem are discussed in detail. O
study addresses problems found in the context of the w
studiedO(4) linear sigma model and deals with a usua
avoided point: the inclusion of the fermions. Also, we ree
amine the chiral phase transition in static equilibrium
terms of the linear sigma model with our MSCR. Instead
demanding an infinite gap equation, as has been done o
in the recent literature, we perform the renormalization
stages in order to get finite gap equations.

We also treat an explicit chiral symmetry breaking term
the Lagrangian which generates the realistic finite pion ma
Symmetry is never restored in this case. It is shown tha
the limit of vanishing pion mass, namely, when the chi
symmetry is exact, the inclusion of fermions does not cha
the order~nature! of the phase transition but only lowers th
©2001 The American Physical Society11-1
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value of the critical temperature.
This paper is organized as follows. In Sec. II we discu

the chiral fermion meson model and some of its feature
zero temperature. In Sec. III the temperature is introdu
via the partition function of the model which lead to th
thermodynamical potential. The inclusion of loop correctio
and the thermal gap equations are addressed to Sec. IV
Sec. V we apply the MSCR to the study of the masslesslf4

model in the weak coupling limit at high temperature. T
renormalization of the self-energy is studied in Sec. VI. T
numerical results are presented in Sec. VII. Section VIII
devoted to conclusions.

II. THE CHIRAL FERMION MESON MODEL
AT ZERO TEMPERATURE

The Lagrangian density of the chiral fermion mes
model which provides an explicit realization of chiral sym
metry is given by@1#

Lsym5c̄@ igm]m2g~s81 ig5pW •tW !#c1
1

2
@~]s8!21~]pW !2#

2
l

4
~s821pW 22 f p

2 !2, ~1!

where c, s8, and p represent the quark, sigma, and pi
fields, respectively,l andg are positive coupling constants
and f p is the pion decay constant in vacuum.

If the up and down quark masses were zero, QCD wo
have a chiralSU(2)L3SU(2)R symmetry. In the vacuum
this symmetry is spontaneously broken by quantum effe
with the result that there exists a triplet of Goldstone boso
In reality the quark masses are very small but nonzero
that chiral symmetry is only approximate and the pion ha
small mass@13#. An explicit chiral symmetry breaking term
is added to the Lagrangian which generates the realistic fi
pion mass so that

L85Lsym1Lsymb, ~2!

with

Lsymb5cs8, ~3!

wherec is small and positive.
The term Lsym is symmetric and invariant under

SU(2)L3SU(2)R chiral group andLsymb is the symmetry
breaking term. Two Noether currents associated with Eq.~1!,
namely, the vector current and the axial vector current,
given by

VW m5c̄gm

tW

2
c1pW 3]mpW ,

AW m5c̄gmg5

tW

2
c1s8]mpW 2pW ]ms8,

respectively. The equations of motion for the fields deriv
from the Lagrangian density~1! give the PCAC relations
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]mAW m5cpW . ~4!

The effect of the termcs8 on the classical fundamenta
state can be found by looking at the minimum of the pote
tial

V0~s8,pW !5
l

4
~s821pW 22 f p

2 !22cs8, ~5!

]V0~s8,pW !

]s8
5l~s821pW 22 f p

2 !s82c50, ~6!

]V0~s8,pW !

]pa
5l~s821pW 22 f p

2 !pa50 ~7!

whose~unique! solutions are

pW 050,

l~s08
22 f p

2 !s085c. ~8!

To first order inc, we have

s085 f p1
c

2l f p
2

[n. ~9!

From Eq.~9!, we see thats08 has a nonzero vacuum expe
tation value. It is convenient to redefine the sigma field
s8→s1n such thats has zero expectation value. As a
effect of this shift the fermion field acquires a mass given

mc5gn. ~10!

The shifted Lagrangian,Ls , of the new quantum theory
reads

Ls52
l

4
~ f p

2 2n2!21cn2lS n32n f p
2 2

c

l Ds

1c̄@ igm]m2mc#c1
1

2
@~]pW !22mp

2 pW 2

1~]s!22ms
2s2#2gc̄@s1 ig5pW •tW !]c

2
l

4
@~pW 21s2!214ns~pW 21s2!#

52U~n!1L01LI , ~11!

whereU(n) is the mean field energy density,L0 is the free
Lagrangian, andLI is the interaction Lagrangian, defined b

U~n![
l

4
~ f p

2 2n2!22cn, ~12!

L0[c̄@ igm]m2mc#c1
1

2
@~]pW !2

2mp
2 pW 21~]s!22ms

2s2#, ~13!
1-2



of

lu
r-
s
fy
f
te

o

he
al
am

dy
de
d

n
oo
e
no
xi

er
ha
is
a
of

e

to
ile

po-
nly
rder
sary
itly

ics

e
e

n-
c-

n
m

tical
f a
o

Eu-

CHIRAL FERMION MESON MODEL AT FINITE TEMPERATURE PHYSICAL REVIEW D63 056011
LI[2gc̄@s1 ig5pW •tW !]c

2
l

4
@~pW 21s2!214ns~pW 21s2!#, ~14!

respectively.
The meson masses read out of the shifted Lagrangian~11!

are

mp
2 5m21ln2, ~15!

ms
25m213ln2, ~16!

wherem252l f p
2 ,0. It is easy to see that the coefficient

the linear term in the sigma fieldl(n32n f p
2 2c/l) in La-

grangian~11! is identically zero by the minimal condition
~8!. This is due to the fact that the vacuum expectation va
of the sigma field̂ s& should vanish at any order of pertu
bation theory@14#, even if we include thermal correction
@15#. The one-loop thermal tadpole corrections will modi
this relation which will become temperature dependent. In
is allowed to be temperature dependent, the masses are
perature dependent as well. At any temperature,n is such
that ^s&50. At zero temperature, whenc continuously ap-
proaches zero, we have the solutions^pW &50 and^s8&5 f p

which minimize the potential satisfying Goldstone’s the
rem.

The contact with phenomenology is made by fixing t
parameters of the model to agree with the observable v
of the particle masses in vacuum. Then, the tree level par
eters of the Lagrangian are

l5
ms;0

2 23mp;0
2

2 f p
2

, ~17!

c5nmp;0
2 . f pmp;0

2 , ~18!

g5
mc;0~ms;0

2 23mp;0
2 !

f p~ms;0
2 22mp;0

2 !
, ~19!

where mp;05139 MeV, ms;05600 MeV, mc;05340
MeV, and f p593 MeV.

As we mentioned earlier, our goal in this work is to stu
the chiral phase transition in the chiral fermion meson mo
and to analyze the thermal behavior of the temperature
pendent meson condensaten and the meson and fermio
masses. So it will be necessary to compute all the one-l
self-energies for the particles present in the model. Such s
energy diagrams have divergent pieces which must be re
malized if we want reliable results. In most of the appro
mations found in the literature@9,16–18# several difficulties
have been found in the tentative of renormalizing the div
gent gap equations. Sometimes the undesirable parts
been ignored@19#. The renormalization of the self-energy
studied in Sec. VI whereas the effective potential renorm
ization is performed in Appendix A. For the purpose
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renormalization it is necessary to add toLs a counterterm
~CT! LagrangianLCT, needed to render the theory finit
@20#,

L5Ls1LCT, ~20!

where

LCT5CT1D1mc
41D2mp

4 1D3ms
4 . ~21!

In Eq. ~21! CT contains the appropriate counterterms
be used in the renormalization of the masses wh
D1,2,3mc,p,s

4 are necessary to keep the thermodynamical
tential finite, as we will see further. As we are interested o
in the study of the thermal effective masses at one loop o
in the perturbative expansion, other counterterms neces
to renormalize the coupling constants are not explic
shown.

III. THE PARTITION FUNCTION OF THE MODEL
AND THE LINK TO STATISTICAL MECHANICS

One of the most fundamental objects in thermodynam
is the partition function, defined by

Z5Tr e2bĤ, ~22!

whereĤ is the Hamiltonian of the system,b51/kBT5T21

with the Boltzmann constantkB set equal to 1 and the trac
~Tr!, in Eq. ~22! meaning the sum of the elements of th
matrix e2bĤ in all independent states of the system. All i
formation concerning the equilibrium thermodynamic ma
roscopic properties of the system are obtained fromZ.

In relativistic quantum field theory, the partition functio
can be derived from the Feynman’s functional formalis
@21#. The bridge between quantum mechanics and statis
mechanics is achieved by the Heuristic introduction o
variable defined ast5 i t . Also, the fields are constrained t
obey periodic~anti! boundary conditionsf(r ,0)5f(r ,b)
for bosons andc(r ,0)52c(r ,b) for fermions. Following
these prescriptions, we get

Z@c̄,c,s,p#5N8E D@f#expF E
0

b

dtE d3x L~f,]f!G
5expE

b
d4xF2

l

4
~ f p

2 2n2!21cn1D1mc
4

1D2mp
4 1D3ms

4 GN8E D@f#eS0eSI. ~23!

Here we have introduced a short hand notation for the
clidean space-time integralS5*bd4x L[*0

bdt*d3x L,

D@f# is an abbreviation for the integral overc̄, c, s, and
p, N8 is an unimportant infinite constant, andL is given by
Eq. ~20!.

Next we introduce the thermodynamical potentialV de-
fined by
1-3
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V~T,n!52
T

V
ln Z, ~24!

where lnZ5(V/T)@U(n)1D1,2,3mc,p,s
4 #1 ln Z01ln ZI . Since

the interaction actionSI contains terms which are more tha
quadratic in the fields, it is not possible to carry out t
functional integration above in closed form. For a while w
will neglect SI in our calculations. This amounts to consi
ering only the tadpole contributions. Thus,

V1~T,n![
l

4
~ f p

2 2n2!22cn

2@D1mc
41D2mp

4 1D3ms
4 #2

T

V
ln Z0

5
l

4
~ f p

2 2n2!22cn2@D1mc
41D2mp

4 1D3ms
4 #

1E d3p

~2p!3 H 1

2
vs1T ln~12e2bvs!

1
3

2
vp13T ln~12e2bvp!

2232@vc12T ln~11e2bvc!#J ~25!

with vs
2[p21ms

2 , vp
2 [p21mp

2 , andvc
2[p21mc

2 . In the
third line of Eq.~25! the first factor 2 multiplying the bracke
which contains the fermion contribution, comes from t
spin degrees of freedom, whereas the other factor two is
the isospin degrees of freedom. Inside this same bra
there is another factor 2 corresponding to the particle
antiparticle contributions. The thermodynamical potentialV1
is precisely the one-loop effective potential@6,3# of the linear
sigma model, and it can be expressed as

V1~T,n!5U~n!1D1,2,3mc,p,s
4 1V1

0~n!1V1
b~T,n!. ~26!

The equation of state of the noninteracting system compo
by a ~free! relativistic boson and fermion gas is

P05
T

V
ln Z052V1

b~T,n!

52TE d3p

~2p!3
@ ln~12e2bvs!

13 ln~12e2bvp!28 ln~11e2bvc!#, ~27!

whereP0 is the thermal pressure.
The integration over the temperature independent te

V1
0(n)[*@d3p/(2p)3#@ 1

2 vs1 3
2 vp24vc# actually di-

verges. It is exactly the countertermsD1,2,3mc,p,s
4 which will

take care of these divergences. We discuss this furthe
Sec. VI. It can be known, from thermodynamical consid
05601
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ations, that in thermal equilibriumV is a minimum with
respect to variations inn @13#. Applying this extremum con-
dition, we have

]V1~T,n!

]n
50. ~28!

Since V1
b(T50,n)50, the divergent quantity]V1

0(n)/]n
5*@d3p(2p)3#@3l(1/2vs11/2vp)28g2(1/2vc)#n repre-
sents the sum of the tadpoles atT50. On the other hand
]V1

b(T,n)/]n is finite atTÞ0 because of the natural cuto
1/@(ebvsp,(c)2(1)1)# present in the integrals. We could le
the counterterms absorb the finite parts of]V1

0(n)/]n to-
gether with the infinities since the vacuum contribution
irrelevant for the discussions of thermodynamics. But, as
will see in Sec. IV C, these terms are important in the ve
fication of the Goldstone theorem in our self-consistent tre
ment. After these considerations, Eq.~28! is written as

$F@vp,s,c~mp,s,c!,T#1G@vp,s,c~mp,s,c!#

2l~ f p
2 2n2!%n2c50, ~29!

where the functionsF andG are defined as

F@vp,s,c~mp,s,c!,T#

[E d3p

~2p!3 F3lS 1

vs~ebvs21!
1

1

vp~ebvp21!
D

18g2
1

vc~ebvc11!
G , ~30!

G@vp,s,c~mp,s,c!#

[
3l

~4p!2 Fmp
2 lnS mp

2

m2 D 1ms
2 lnS ms

2

m2 D G
2

8g2

~4p!2
mc

2 lnS mc
2

m2 D , ~31!

respectively. In Eq.~31!, m is the renormalization scale.
As a first approximation, we consider only the therm

loop corrections to the effective potential. This approxim
tion allows us to get an analytic expression for the appro
mate critical temperature:

E d3p

~2p!3 F3lS np~vp!

vp
1

ns~vs!

vs
D

18g2
nc~vc!

vc
Gn2l~ f p

2 2n2!n2c50, ~32!

where np,s and nc are the usual distribution functions fo
bosons and fermions given by

np,s~vp,s ;T!5
1

ebvp,s21
, ~33!
1-4
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nc~vc ;T!5
1

ebvc11
, ~34!

respectively. In the above expression, when one minim
the effective potential, one is summing the thermal tadp
contributions to the usually called mean field equation. T
chiral condensaten, which is a nontrivial solution of this
integral equation now depends onT. This equation can be
solved with an explicit analytic form in the high-temperatu
limit. The leading terms in the high-temperature approxim
tion for this integral equation are

n31F1

2 S 11
2g2

3l DT22 f p
2 Gn2

c

l
50. ~35!

The above equation has a real solution that is a slowly
creasing function of temperature, but does not vanish. Th
when cÞ0 the symmetry is never restored. On the oth
hand, whenc50 the nontrivial solution of Eq.~35! is

n25 f p
2 2

1

2 S 11
2g2

3l DT2. ~36!

The critical temperature is defined as the tempera
where the condensate goes to zero. It is given by

Tc
25

2 f p
2

~112g2/3l!
. ~37!

It shows that the inclusion of fermions does not change
order of the phase transition, but only lowers the value
Tc . Note that the interactions of the mesons with the ferm
ons forces the ‘‘critical’’ temperature to depend on the co
pling constantsl andg. If g50 we recover the result of Ref
@22#.

IV. INCLUSION OF LOOP CORRECTIONS

A. The first necessity: Beyond the mean field approximation

Let us analyze the finite temperature behavior of the tr
level meson masses~15! and~16! as functions of the therma
expectation value of the sigma fieldn(T). Sincen2(T) de-
creases asT increases andm2,0, the particle masses be
come tachyonic. Another problem which arises is the f
s
le
e
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e-
s,
r

re

e
f

i-
-

-

t

that Goldstone’s theorem is not satisfied in the ordered ph
~whenc50), i.e., replacing Eq.~36! in Eq. ~15!, we obtain a
nonzero pion mass given bymp

2 52(l/2)(112g2/3l)T2.
This pathological behavior is due to the fact that in our a
proximation we have neglected the interaction actionSI in
the thermodynamical potential~24!. The result is that the
mean field approximation can be trusted only in the appro
mate prediction of a phase transition atTc given by Eq.~37!.
It is incorrect in what concern the description of the fin
temperature behavior of the meson and fermion masses.
is necessary to include all one-loop corrections from all o
particle irreducible ~1PI! diagrams present inSI to the
masses.

Following the program of@13# we expand the partition
function in powers of the interaction, in order to get th
one-loop self-energy corrections:

ln ZI5 lnS 11 (
n51

`
1

n!

E @df#eS0SI
n

@df#eS0
D . ~38!

The one-loop 1PI graphs come from lnZ11ln Z2, which
are given by

ln Z15

E @df#eS0SI

@df#eS0
, ~39!

ln Z252
1

2
S E @df#eS0SI

@df#eS0
D 2

1
1

2

E @df#eS0SI
2

@df#eS0
, ~40!

where the disconnected diagrams cancel in lnZ2 and the dia-
grams which gives rise to tadpoles in the self-energy are
to be included, since their effect is already considered in
mean field equation. The terms which ‘‘survive’’ come fro
ln ZI
2-loop52

l

4

E @df#eS0E dtE d3x~p21s2!2

E @df#eSo

1
1

2E0

b

dt1 dt2E d3x1 d3x2

E @df#eS0$l2n2@~sp2!21~s3!2#1g2@~ c̄sc!21~ c̄ ig5pW •tWc!2#%

E @df#eS0

. ~41!

056011-5
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FIG. 1. The logarithm of the interaction par
tition function 1PI. The solid line is the tree-leve
pion meson propagator, the dashed line is t
tree-level sigma meson propagator, and the so
line with an arrow is the tree-level fermion propa
gator.
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The 1PI graphs from this expression can be represented
grammatically as shown in Fig. 1.

The self-energy for bosons and fermions are defined,
spectively, by

D~vn ,k!s,p
21 5D0s,p~vn ,k!211Ps,p~vn ,k!, ~42!

D~vn ,k!215D0~vn ,k!211S~vn ,k!, ~43!

whereD0s,p(vn ,p) andD0(vn ,p) are the tree-level boso
and fermion propagators, expressed, respectively, as

D0s,p~vn ,k!215vn
21k21ms,p

2 , ~44!

D0~vn ,k!215gmkm2mc . ~45!

Here, vn are the Matsubara frequencies, defined asvn
52npT for bosons andvn5(2n11)pT[vn f for fermi-
ons.
05601
ia-

e-

To one-loop order the self-energy expressions are gi
@13# by

Ps,p522S d ln ZI
2-loop

dD0s,p
D

1P I

, ~46!

S5S d ln ZI
2-loop

dD0c
D

1PI

. ~47!

The self-energy graphs to each particle can be pictori
represented as by cutting one of the corresponding loop
the diagrams representing (lnZI

2-loop)1P I. After the integra-
tion in x, t and in the fields in (lnZI

2-loop)1PI and the differ-
entiations above, we obtain the following expressions for
self-energies at one loop order:
Pp~k0 ,k!5(
i 51

4

Pp i5l5T(
n
E d3p

~2p!3
D0p~vn ,p!1lT(

n
E d3p

~2p!3
D0s~vn ,p!24l2n2T(

n
E d3p

~2p!3
D0s

3~vn1 l ,p1k!D0p~vn ,p!1g2T(
n
E d3p

~2p!3
Tr@g5D0c~vn1 l ,p1k!g5D0c~vn ,p!#, ~48!

Ps~k0 ,k!5(
i 51

5

Ps i53lT(
n
E d3p

~2p!3
D0s~vn ,p!13lT(

n
E d3p

~2p!3
D0p~vn ,p!26l2n2T(

n
E d3p

~2p!3
D0p

3~vn1 l ,p1k!D0p~vn ,p!218l2n2T(
n
E d3p

~2p!3
D0s~vn1 l ,p1k!D0s~vn ,p!

1g2T(
n
E d3p

~2p!3
Tr@D0c~vn1 l ,p1k!D0c~vn ,p!#, ~49!

S~k0 ,k!5(
i 51

2

S i52g2T(
n
E d3p

~2p!3
D0s~vn1 l ,p1k!D0c~vn ,p!23g2T(

n
E d3p

~2p!3
D0p~vn1 l ,p1k!D0c~vn ,p!. ~50!
1-6
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The diagrams representing the pion, sigma, and nuc
one-loop self-energies are drawn in Figs. 2, 3, and 4.

We note here that we could get the same results for
self-energies directly applying Feynman rules to constr
the diagrams with the appropriate substitutions: thed func-
tion at each vertex is replaced with a Kronecker delta wh
imposes conservation of the discrete energy (k05 ivn), and
round each loop of a thermal graph with*@d4k/(2p)4#
→( i /b)(n*@d3k/(2p)3#,which are the finite-temperatur
Feynman rules@13,23#. When the summation overn is per-
formed, each graph of the self-energies is separated into
parts, namely, a temperature independent part~at this stage!,
which is divergent, and a temperature dependent part c
taining the Bose-Einstein distribution in the case of bos
or the Fermi-Dirac distribution for fermions.

We will adopt the definition of mass at finite temperatu
as the real part of the pole of the corrected propagator at
momentum (k50). Thus, from Eqs.~42! and ~43! we have

Dp~vn ,uku50!215vn
21mp

2 1Pp~vn ,uku50!

50→ 2k0,p
2 1mp

2 1Pp~T,k0,p ,uku50!

50, ~51!

Ds~vn ,uku50!215vn
21ms

21Ps~vn ,uku50!

50→2k0,s
2 1ms

21Ps~T,k0,s ,uku50!

50, ~52!

Dc~vnf ,uku50!215gmkm2mc1Ss1gmSm

50→k0,c1S0~T,k0,c ,uku50!

1Ss~T,k0,cuku50!2mc

50, ~53!

where the arrow indicates an analytical continuation fr
discrete to continuous energies in Minkowski space. He

FIG. 2. One-loop self-energy for the pions.
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the physical masses are the values of thek0;p,s,c which are
the zeros of the functions~51!, ~52!, and~53! above, i.e., the
location of the poles in the limitk50. The full self-energy
expressionsPp , Ps , S0, and Ss are shown explicitly in
Appendix B. The renormalization of the self-energy is stu
ied in Sec. VI. Throughout this paper, we will use dime
sional regularization, but omitting, for notational simplici
the factorm2e which multipliesl. Since our calculation doe
not require traces involving an odd number ofg5 matrices,
we use the definition ofg5 as in Refs.@24,25#.

Since these expressions are self-consistent they have
solved numerically. For each fixed temperature one find
value ofMp,s,c which satisfies the equations above. On t
other hand, if one is interested only in the meson secto
the linear sigma model, the integrals in the self-energ
could be evaluated exactly in the high-temperature limit a
at low frequency where the boson diagrams involving thr
point vertices which are proportional tol2n2 may be ne-
glected. This is not consistent if one wants to study the
havior of the condensaten and the particle masses in a
ranges of temperatures. It is important to note that whec
50 the three-point vertex boson diagrams are significan
the regionTi(;0),T,Tf@;n(T)# and whencÞ0, n(T)
Þ0 for any finite value ofT.

B. The second necessity: The resummation

The expressions for the self-energies appearing in E
~51!, ~52!, and ~53! are functions ofvp,s,c which are ex-
pressed in terms of the mean-field masses. As we discus
the meson masses become negative as the temperatu
creases. Thus, in the computation of the one-loop cor
tions, the masses running in the loops become tachyoni
proper resummation of higher order loops is naturally nec
sary @6#. Various resummation methods have been propo
in a tentative of curing the problem of the breaking down
the perturbative expansion at high temperature. In effec
models, when a phase transition occurs, one can find ta
onic masses even belowTc . The O(N) linear s model
which is one of the laboratory effective models employed
study QCD has been investigated by different authors us
different techniques. One of these methods is the Cornw

FIG. 3. One-loop self-energy for the meson sigma.
1-7
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H. C. G. CALDAS, A. L. MOTA, AND M. C. NEMES PHYSICAL REVIEW D63 056011
Jackiw-Tomboulis~CJT! formalism @26# which provides for
a consistent loop expansion of the effective potential in te
of the full propagator. The CJT formalism elegantly provid
for a gap equation from stationarity conditions for the da
and superdaisy effective potential. However some auth
use this nonperturbative approach with an ansatz for the
~corrected! propagator in which the thermal corrections a
momentum independent. These corrections are the fi
piece of the divergent integral~which is temperature depen
dent through the gap equation forM ) plus the finite explicit
temperature dependent piece. This is the Hartree approx
tion, and means resuming only the ‘‘bubble diagrams’’ th
are dominant at high temperatures. Another nonperturba
approach widely found in the literature is the large-N ap-
proximation. TheN→` limit facilitates the calculations, bu
can lead to inaccuracies@27,19#. One must be careful in tak
ing the large-N limit since its truncation depends on th
problem to be studied and the relevant value ofN @27#. In
this case the three-point vertex diagrams are omitted wh
in principle makes sense only in theN→` limit since these
sunset diagrams are of order 1/N. In these two kinds of treat
ment one cannot study the bosons interacting with fermi
~with the interactions of the linear sigma model! since the
self-energy diagrams are momentum dependent which
validates the ansatz cited above. It is worth remembering
the Hartree approximation does not satisfy the Goldst
theorem@19,28#. This fact may be attributed to the non in
clusion of these diagrams. Although the finite temperat
mass in these approaches is the pole of the corrected pr
gator, it is not the true mass, since theirPp,s are not the true
one-loop self-energy functions~see discussion below!. The
corrections included only shift the masses. Once we are
terested in the study of the masses behavior also in the r
0,T,Tc ~if c50) the three-particle vertex diagrams w
not be neglected. The inclusion of these diagrams brings
additional complication since the self-energy now depe
on the momentum.

C. A nonperturbative resummation method: The MSCR

Let us now introduce our procedure which resums hig
loop diagrams in the mean-field~tree-level! propagators. The
method consists in recalculating the self-energy, in ste
using in each step the masses obtained in the previous
such thatMn

25(An11)Mn21
2 1P(Mn21), wheren is the or-

der of the nonperturbative correction andAn is the coeffi-
cient of the appropriate counterterm. With this procedure
easier to identify and absorb the divergent parts of the s
energy in order to have finite gap equations. The goal is
make renormalization possible since the masses which m
tiply the divergences are necessarily the same as in cou
terms.

Application of MSCR.Here we apply the MSCR in the
study of the chiral fermion meson model at finite tempe
ture. The analysis of the problem has to be done caref
which will be divided into three regions.

Region I: The low-temperature region.The first region is
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for 0<T,T* , whereT* is the temperature wheren(T* )
5 f p . This implies thatmp

2 50 and consequently the appea
ance of infrared divergences in the self-energy.

Step 1.Start with the mean-field effective Lagrangia
where the condensate and the masses are given by

$F@vp,s,c~mp,s,c;0!,T#1G@vp,s,c~mp,s,c;0!#

2l~ f p
2 2n2!%n2c50, ~54!

Mp,0
2 5mp

2 5m21ln2, ~55!

Ms,0
2 5ms

25m213ln2, ~56!

Mc,05mc5gn. ~57!

Step 2.Evaluate the one-loop self-energy corrections
these masses from the equations presented in Append
and define the condensate and the first order corre
masses as

$F@vp,s,c~Mp,s,c,0!,T#1G@vp,s,c~Mp,s,c,0!#

2l~ f p
2 2n2!%n2c50, ~58!

Mp,1
2 5Mp,0

2 1Pp~Mp,0
2 ,Ms,0

2 ,Mc,0!

5~A11E111!m21~Ā11E111!ln2

1Pp~Mp,0
2 ,Ms,0

2 ,Mc,0!

5m21ln21Pp
Ren~Mp,0

2 ,Ms,0
2 ,Mc,0!, ~59!

Ms,1
2 5Ms,0

2 1Ps~Mp,0
2 ,Ms,0

2 ,Mc,0!

5~B11F111!m21~F111!ln2

1~B̄111!2ln21Ps~Mp,0
2 ,Ms,0

2 ,Mc,0!

5m213ln21Ps
Ren~Mp,0

2 ,Ms,0
2 ,Mc,0!,

~60!

Mc,15Mc,02S~Mp,0
2 ,Ms,0

2 ,Mc,0!

5~C111!gn2S~Mp,0
2 ,Ms,0

2 ,Mc,0!

5gn2SRen~Mp,0
2 ,Ms,0

2 ,Mc,0!, ~61!

where Pp,s5Pp,s(k0,p,s5Mp,s ;k50)01Pp,s(T;k0,p,s

50;k50)b, A1 , Ā1 , B1 , B̄1 , C1 , E1, andF1 are the ap-
propriate coefficients of the counterterms added to the me
field effective Lagrangian needed to render the model fin
up to this order, which are shown in Sec. VI. The requi
ment thatk0,p,s50 in Pp,s

b excludes the possibility of ta
chyonic tree-level masses since thermal effects provides
the pion a nonzero width due to the Landau damping p
cess. For the fermions we adopt the requirement thaS
5S(k0,c5Mc ;k50)01S(T;k0,c50;k50)b to prevent a
similar consequence. The resummation has to be d
1-8
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exactly to avoid this problem. In this range there is no n
cessity of resummation since the masses running in the lo
are positive, i.e.,Mp,0

2 .0, Ms,0
2 .0, andMc,0.0.

Renormalization.The renormalization is done normall
since the masses multiplying the divergences are the sam
y
c
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in the counterterms. The coefficients of the counterterms
found in Sec. VI.

Goldstone’s theorem.In the exact chiral limit (c50) and
low-temperature phase~where nÞ0) from Eq. ~51! at (k0
→0,uku50), we have
Mp,1
2 5Mp,0

2 1Pp~k0→0,uku50!

5m21ln21Pp
Ren~k0→0,uku50!

52H 3l

~4p!2 FMp,0
2 lnS Mp,0

2

em2 D 1Ms,0
2 lnS Ms,0

2

em2 D G2
8g2

~4p!2
Mc,0

2 lnS Mc,0
2

em2 D
1E

0

`dp p2

2p2 F3lS ns~Ms,0!

vs~Ms,0!
1

np~Mp,0!

vp~Mp,0!
D18g2

nc~Mc,0!

vc~Mc,0!
G J 1

5l

~4p!2
Mp,0

2 lnS Mp,0
2

em2 D
1

5l

2 E
0

`dp p2

p2

np

vp
1

l

~4p!2
Ms,0

2 lnS Ms,0
2

em2 D 1
l

2E0

`dp p2

p2

ns

vs
24

l2n2

~4p!2

Mp,0
2 lnS Mp,0

2

em2 D 2Ms,0
2 lnS Ms,0

2

em2 D
Ms,0

2 2Mp,0
2

22l2n2E
0

`dp p2

p2 F np

vp

1

Ms,0
2 2Mp,0

2
2

ns

vs

1

Ms,0
2 2Mp,0

2 G2
8g2

~4p!2
Mc,0

2 lnS Mc,0
2

em2 D 14g2E
0

`dp p2

p2

nc

vc

50 ~62!
to
ix B
cted
sinceMs,0
2 2Mp,0

2 52ln2 @in deriving Eq.~62! we have used
Eq. ~29!#.

Region II: The intermediate temperature region.This is
the region forT* <T<Tc where the resummation is reall
necessary, since the masses in the loops are zero or ta
onic. The problem here is more complicated than in the ot
temperature regions since phase transition takes place.
well known, around the critical temperature quantum flu
tuations become essential and one loop corrections may
be enough. In fact, as we proceed to show here, this sch
~i.e., allowing only one loop corrections in the perturbati
expansion! prevents us from adequately renormalizing t
gap equations for the tree-level resummed masses and
fying Goldstone’s theorem.

We show next that this is indeed the case and that a
sible ~but inconsistent! way of achieving renormalization
would be, e.g., to consider only the diagrams for whichPp

5Ps . This is very frequently implemented in the literatu
@12,18,19,28#.

We will adopt the point of view that the MSCR fails i
this region and higher order loop corrections in the pertur
tive expansion will be necessary at this stage. This is
subject of current investigation. However, we explicit
show where the problem appears.

Step 1.Start with the mean-field effective Lagrangia
where the condensate and the masses are given by
hy-
er

is
-
ot

me

tis-

s-

-
e

$F@vp,s,c~mp,s,c;0!,T#1G@vp,s,c~mp,s,c;0!#

2l~ f p
2 2n2!%n2c50, ~63!

Mp,0
2 5mp

2 5m21ln2, ~64!

Ms,0
2 5ms

25m213ln2, ~65!

Mc,05mc5gn. ~66!

Step 2.Evaluate the one-loop self-energy corrections
these masses from the equations presented in Append
and define the condensate and the first order corre
masses as

$F@vp,s,c~Mp,s,c,0!,T#1G@vp,s,c~Mp,s,c,0!#

2l~ f p
2 2n2!%n2c50, ~67!
1-9
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Mp,1
2 5Mp,0

2 1Pp~Mp,0
2 ,Ms,0

2 ,Mc,0!

5~A11E111!m21~Ā11E111!ln2

1Pp~Mp,0
2 ,Ms,0

2 ,Mc,0!

5m21ln21Pp
Ren~Mp,0

2 ,Ms,0
2 ,Mc,0!, ~68!

Ms,1
2 5Ms,0

2 1Ps~Mp,0
2 ,Ms,0

2 ,Mc,0!

5~B11F111!m21~F111!ln2

1~B̄111!2ln21Ps~Mp,0
2 ,Ms,0

2 ,Mc,0!

5m213ln21Ps
Ren~Mp,0

2 ,Ms,0
2 ,Mc,0!, ~69!

Mc,15Mc,02S~Mp,0
2 ,Ms,0

2 ,Mc,0!

5~C111!gn2S~Mp,0
2 ,Ms,0

2 ,Mc,0!

5gn2SRen~Mp,0
2 ,Ms,0

2 ,Mc,0!. ~70!

At this stage of the application of the method, the renorm
ization is possible, Goldstone’s theorem is verified, but
tree-level masses are zero or tachyonic.

Step 3.Now we take the masses computed in the previ
step and improve the results defining a next-order nonpe
bative correction. With this we get a new effective Lagran
ian where the condensate and masses are given by

$F@vp,s,c~Mp,s,c,1!,T#1G@vp,s,c~Mp,s,c,1!#

2l~ f p
2 2n2!%n2c50, ~71!

Mp,2
2 5Mp,1

2 1Pp~Mp,1
2 ,Ms,1

2 ,Mc,1!

5~A21E211!m21~Ā21E211!ln2

1~ Ā̄21E211!Pp
Ren~Mp,0

2 ,Ms,0
2 ,Mc,0!

1Pp~Mp,1
2 ,Ms,1

2 ,Mc,1!

5m21ln21Pp
Ren~Mp,1

2 ,Ms,1
2 ,Mc,1!

2
l

~4p!2
Ps

Ren~Mp,1
2 ,Ms,1

2 ,Mc,1!
1

ẽ
, ~72!

FIG. 4. One-loop self-energy for the fermions. Note that t
lowest corrections for the fermions are of orderg2.
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Ms,2
2 5Ms,1

2 1Ps~Mp,1
2 ,Ms,1

2 ,Mc,1!

5~B21F211!m21~F211!ln2

1~B̄211!2ln21~ B̄̄21F211!

3Ps
Ren~Mp,0

2 ,Ms,0
2 ,Mc,0!

1Ps~Mp,1
2 ,Ms,1

2 ,Mc,1!

5m213ln21Ps
Ren~Mp,1

2 ,Ms,1
2 ,Mc,1!

2
3l

~4p!2
Pp

Ren~Mp,1
2 ,Ms,1

2 ,Mc,1!
1

ẽ
, ~73!

Mc,25Mc,12S~Mp,1
2 ,Ms,1

2 ,Mc,1!~C211!gn

2~C̄211!SRen~Mp,0
2 ,Ms,0

2 ,Mc,o!

2S~Mp,1
2 ,Ms,1

2 ,Mc,1!

5gn2SRen~Mp,1
2 ,Ms,1

2 ,Mc,1!. ~74!

It is shown that in thelf4 model, this~first! recalculation
is equivalent to the sum of an infinite set of diagram
namely, the ‘‘daisy’’ sum @6# or the set of ring @13#.
The coefficients of the temperature dependent mass cou

terms Ā̄2 , B̄̄2, and C̄2 are fixed in a manner to cancel no

only divergences proportional toPp
Ren(Mp,0

2 ,Ms,0
2 ,Mc,0),

Ps
Ren(Mp,0

2 ,Ms,0
2 ,Mc,0), and SRen(Mp,0

2 ,Ms,0
2 ,Mc,o), re-

spectively, but also these terms together. That is, at e
stage of the procedure, forn.1, in the expressions fo
Mp,s,c,n , the self-energy Pp,s(Mp,s,c,n22) @or
S(Mp,s,c,n22)# have to be canceled to avoid overcounti
of diagrams.

This shows explicitly that renormalization can not be p
formed within this approximation scheme. This is not su
prising since in this temperature region quantum fluctuat
may need a more thorough description. So, there is no rea
to believe that only the ‘‘daisy’’ diagrams should be r
summed at low and intermediate temperatures. In fact,
‘‘daisy’’ graphs contributions are dominant at high tempe
ture @6#.

Renormalization. Since in this region Ms,n
2 2Mp,n

2

52ln21DP, whereDP[Ps2Pp , there is the presenc
of undesirable nonrenormalizable terms. These terms are
last ones on the right-hand side of Eqs.~72! and ~73! which
come from Eqs.~B2! and ~B6!, respectively, and cannot b
absorbed in the counterterms.

Goldstone’s theorem.In this region, Goldstone’s theorem
is satisfied only if DP→0 and the contribution in Eq
~B3! is decoupled into integrals proportional tol. This
would assure the cancellation ofMp at (k0→0,uku50). The
reason for this frustration is the same as for the lack of ren
malizability.
1-10



c
th
b

th
is

es
t

qu

u
el
e

a
s

qs
he

t the

-
q.

e
.

pion
se

the

e-
te,
of

the
-
t
e

CHIRAL FERMION MESON MODEL AT FINITE TEMPERATURE PHYSICAL REVIEW D63 056011
Step 4.~Applicable only in the case whereDP50. This
guarantees that renormalization and Goldstone theorem
be satisfactorily implemented at each step. In particular
will be the case for the high-temperature region as will
shown next.!

Proceeding with the iteration, in the limitn→` the
massesMn have formally the same expressions as
massesMn21 which are already renormalized. Thus, in th
limit we will have

$F@vp,s,c~Mp,s,c,n!,T#1G@vp,s,c~Mp,s,c,n!#

2l~ f p
2 2n2!%n2c50, ~75!

Mp,n
2 5m21ln21Pp

Ren~Mp,n
2 ,Ms,n

2 ,Mc,n!, ~76!

Ms,n
2 5m213ln21Pp

Ren~Mp,n
2 ,Ms,n

2 ,Mc,n!,
~77!

Mc,n5gn2SRen~Mp,n
2 ,Ms,n

2 ,Mc,n!. ~78!

At each intermediate step, in the loops we setk0p,c
2

5Mp,c,n21
2 in the computation ofMp,s,c,n

2 . This ensures the
cancellation of the divergences in all stages of the proc
since the masses in the counterterms will necessarily be
same as in the divergences. In the end, in the resulting e
tions of interest~to be solved nummerically!, K0p,c

2 5Mp,c
2

as it should. By our MSCR we have gotten a set of fo
coupled nonlinear integral equations to be solved s
consistently, with finite gap equations for the tree-lev
masses, which read

Mp
2 5m21ln21Pp

Ren~k0p5Mp ,uku50!, ~79!

Ms
25m213ln21Pp

Ren~k0p5Mp ,uku50!,
~80!

Mc5gn2S0
Ren~k0c5Mc ,uku50!

2Ss
Ren~k0c5Mc ,uku50!, ~81!

nH m21ln21
3l

~4p!2 FMp
2 lnS Mp

2

em2D 1Ms
2 lnS Ms

2

em2D G
2

8g2

~4p!2
Mc

2 lnS Mc
2

em2D 1E
0

`dp p2

2p2 F3lS ns~Ms!

vs~Ms!

1
np~Mp!

vp~Mp! D18g2
nc~Mc!

vc~Mc!G J 5c, ~82!

where the renormalization scalem can be determined by
physical condition. We choosem such that the pion mass ha
the correct value atT50.

Now we have to go back to real world encoded by E
~51!–~53!. In order to get finite physical masses from t
05601
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e

e

s,
he
a-

r
f-
l

.

pole of these equations it is necessary to sum and subtrac
finite quantitiesPp

Ren and SRen which will be regarded as
mass parameters@7,10–12#. This corresponds to the reorga
nization of the perturbative expansion. Now we rewrite E
~20! as

L52
l

4
~ f p

2 2n2!21cn1c̄@ igm]m2Mc#c

1
1

2
@~]pW !22Mp

2 pW 21~]s!22Ms
2s2#

2gc̄@s1 ig5pW •tW !]c2
l

4
@~pW 21s2!214ns~pW 21s2!#

1SRenc̄c1
1

2
Pp

Ren~pW 21s2!1CT. ~83!

The last two terms on the third line of Eq.~83! must be
considered as extra ‘‘interaction’’ terms and will naturally b
present in lnZI , Eq. ~41!. The counterterm structure of Eq
~83! is the same as the one present in the method for the
and fermion, differing only by numerical factors in the ca
of the sigma mass renormalization. By Eqs.~46! and~47! the
extra contribution to the self-energy read

Pp
extra5Ps

extra52Pp
Ren, ~84!

Sextra5SRen, ~85!

where we have defined

Pp
Ren[Pp~k0,p5Mp ,k50!01Pp~T,k050,k50!b, ~86!

SRen[S~k05Mc ,k50!01S~T,k050,k50!b. ~87!

As a result, the final resummmed tree-level masses@Eqs.
~79!, ~80!, and~81!#, may be used in Eqs.~51!, ~52!, and~53!
if one wants to study, for instance, spectral functions as
authors of Ref.@12#, or decay width as in Ref.@28#.

Goldstone’s theorem.If the sunset type graphs are n
glected, the self-energy function at one loop is not comple
despite the fact that the definition of masses as poles
propagators at zero momentum is still valid. Now, having
result for the full one-loop~and higher-order loops contribu
tions from the resummation! self-energy function we can tes
algebraically the fulfillment of Goldstone’s theorem in th
exact chiral limit (c50) and low-temperature phase~where
nÞ0). From Eq.~51! at (k0→0,uku50), we have
1-11
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Mp
2 1Pp

total5Mp
2 1Pp~k0→0,uku50!1Pp

extra

5m21ln21Pp
Ren~k0→0,uku50!

52H 3l

~4p!2 FMp
2 lnS Mp

2

em2D 1Ms
2 lnS Ms

2

em2D G2
8g2

~4p!2
Mc

2 lnS Mc
2

em2D 1E
0

`dp p2

2p2

3F3lS ns~Ms!

vs~Ms!
1

np~Mp!

vp~Mp! D18g2
nc~Mc!

vc~Mc!G J 1
5l

~4p!2
Mp

2 lnS Mp
2

em2D 1
5l

2 E
0

`dpp2

p2

np

vp

1
l

~4p!2
Ms

2 lnS Ms
2

em2D 1
l

2E0

`dp p2

p2

ns

vs
24

l2n2

~4p!2

Mp
2 lnS Mp

2

em2D 2Ms
2 lnS Ms

2

em2D
Ms

22Mp
2

22l2n2E
0

`dp p2

p2 F np

vp

1

Ms
22Mp

2
2

ns

vs

1

Ms
22Mp

2 G2
8g2

~4p!2
Mc

2 lnS Mc
2

em2D 14g2E
0

`dp p2

p2

nc

vc
50 ~88!
is
e

t i
t
a

on

try

n
n
nd

ou
r
.

at
y-

r

erate

n be
sinceMs
22Mp

2 52ln2 @in deriving Eq.~88! we have used
Eq. ~82!#.

In our opinion the satisfaction of Goldstone’s theorem
ultimately related to the preservation of the relation impos
by chiral symmetry to the tree-level masses. Moreover, i
crucial to keep all diagrams of a given order. This is due
the fact that, strictly speaking, a loop expansion is an exp
sion in powers of the Lagrangian. As discussed in Ref.@13#
in order to respect the symmetries of the Lagrangian,
must retain all diagrams to the given number of loops.

Then, in the absence of the explicit chiral symme
breaking term, one has, for 0,T,Tc ,

Mp
2 50,

Ms
252ln2, ~89!

for T5Tc ,

Mp
2 5Ms

250, ~90!

and, forT.Tc ,

Mp
2 5Ms

25m213lE
0

`dp p2

p2

nb

vb
14g2E

0

`dp p2

p2

nf

v f

~91!

which shows chiral symmetry restoration. Hereb stands for
bosons andf for fermions. We could interpret the result i
the right-hand side of Eq.~91! as if each independent pio
effectively ‘‘sees’’ one sigma and the other two pions a
four fermions~since the chemical potential here is zero!. On
the other hand the sigma ‘‘sees’’ the three pions and f
fermions. This equation serves to define the critical tempe
ture in which the common masses of the particles vanish
05601
d
s
o
n-

e

r
a-
In

the high-temperature limit of these integrals, we find th
Tc

252 f p
2 /(112g2/3l), as predicted by the mean-field anal

sis in Eq.~37!.
Region III: The high-temperature region.This is the re-

gion of high temperaturesT>Tc , if c50 and n50 or T
>Ti , whereTi is defined as an ‘‘inflexion’’ temperature, fo
the casecÞ0 andn! f p such thatMp,0

2 'Ms,0
2 5m2:

Mp,1
2 5Mp,0

2 1Pp~Mp,0
2 ,Ms,0

2 ,Mc,0!

5m21Pp~Mp,0
2 ,Ms,0

2 ,Mc,0!, ~92!

Ms,1
2 5Ms,0

2 1Ps~Mp,0
2 ,Ms,0

2 ,Mc,0!

5m21Ps~Mp,0
2 ,Ms,0

2 ,Mc,0!

5m21Pp~Mp,0
2 ,Ms,0

2 ,Mc,0!

5Mp,1
2 [M1

2 , ~93!

Mc,15Mc,02S~Mp,0
2 ,Ms,0

2 ,Mc,0!

5gn2S~Mp,0
2 ,Ms,0

2 ,Mc,0!. ~94!

Note that the pion and sigma masses become degen
and the problem encountered in the previous region (T*
<T<Tc) is no longer here sinceDP50 in this region of
temperatures. In this case, the masses in the loops ca
neglected, and we have

M1
25~A111!M0

21P~M0!5m21
l

2 S 11
2g2

3l DT2

5l f p
2 FT2

Tc
2

21G . ~95!
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If we setg50 these results agree with the ones obtained
Bochkarev and Kapusta@22#.

Following the iterations, we find for thenth iterated mass

Mn
25~An11!Mn21

2 1P~Mn21!

5m21
l

2 S 11
2g2

3l DT2F12
3

pT
Mn21G . ~96!

In the limit n→`, we get

M25m21
l

2 S 11
2g2

3l DT2F12
3

pT
M G , ~97!

which can be easily solved forM:

M5F S 3l f p
2

2p

T

Tc
2D 2

1l f p
2 S T2

Tc
2

21D G 1/2

2
3l f p

2

2p

T

Tc
2

.

~98!

For T@Tc ,

M25
l

2 S 11
2g2

3l DT2. ~99!

V. THE MASSLESS lf4 AT HIGH TEMPERATURE

Now we apply the MSCR to study a very popular mod
the masslesslf4 model in the weak coupling limit

L5
1

2
~]mf!22

l

4!
f4, ~100!

M050,

M1
25M0

21P~M0!5
lT2

24
, ~101!

and at this stage of the procedure there is no necessit
adding counterterms since up to this order there are no u
violet divergences in dimensional regularization@11#. Here
P is the 1PI one-loop self-energy to lowest order, name
the ‘‘bubble’’ of Fig. 5~a!:

FIG. 5. ~a! The 1PI one-loop self-energy diagram of thelf4

model and~b! a ‘‘daisy’’ type diagram with three attached bubble
which contributes to the self-energy.
05601
y

:

of
a-

,

M2
25M1

21P~M1!5~A211!PRen~M0!1P~M1!

5
lT2

24 S 12
3M1

pT D1O~l2 ln l!

5M1
2F123S l

24p2D 1/2G1O~l2 ln l!, ~102!

with the result that this correction to the mass is of ord
l3/2, which is a signature of the nonperturbative resumm
tion. The temperature dependent counterterm is fixed so a
cancel the divergence and avoid overcounting of diagra
as explained before. So,A25211@l/2(4p)2#(1/e). The
diagrams used, in a given number of loops, in any resum
tion method must be the same in all stages of the proc
What changes is the masses running in the loops at e
iteration. This is because one must keep the same fundam
tal theory in the recalculation of the self-energy. The res
shown in Eq.~102! is in agreement with the one obtained b
Parwani’s resummed perturbative expansion@11# @see Eq.
~2.12! of his paper#. The second iteration corrected massM2,
which was obtained in our method evaluating Fig. 5~a! with
M1 in that loop can equivalently be achieved calculating
‘‘daisy’’ sum, that is a summation of the infinite set o
‘‘daisy’’ diagrams of Fig. 5~b! with M0 in the loops. In this
case all ‘‘daisy’’ types diagrams are IR divergent sinceM0
50, but their sum is IR finite@13,11#.

Continuing the iterations, we find for the next correctio

M3
25M2

21P~M2!

5
lT2

24 F12
3M1

pT S 12
3M1

pT D 1/2G . ~103!

Whenl!1 we get

M3
25

lT2

24 F123S l

24p2D 1/2

1
9

2 S l

24p2D G ~104!

and for thenth iteration, we obtain

Mn
25

lT2

24 H 11(
j 51

n
1

2 j 21 F23S l

24p2D 1/2G jJ .

~105!

The ‘‘superdaisy’’ sum@6# corresponds to the limitn→` of
Eq. ~105! and it can be summed up~for l!1) to give

M25
lT2

24 F 12
3

2 S l

24p2D 1/2

11
3

2 S l

24p2D 1/2G . ~106!
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VI. RENORMALIZATION

A. Determination of the counterterms

The divergences are regulated via dimensional regular
tion. To renormalize the divergences, we use the minim
subtraction scheme where only the poles are eliminated
the appropriate counterterms. The first-order parameter
the temperature-dependent counterterms read

A15
6l

~4p!2

1

ẽ
, Ā15

12l

~4p!2

1

ẽ
, E15

4g2

~4p!2

1

ẽ
, ~107!

with 1/ẽ[2/(42d)2g1 log(4p), whereg is the Euler con-
stant,

B15
6l

~4p!2

1

ẽ
, B̄15

6l

~4p!2

1

ẽ
, F15

4g2

~4p!2

1

ẽ
, ~108!

C15
8g2

~4p!2

1

ẽ
, ~109!

D1,1528F 1

64p2

1

ẽ
G , D2,153F 1

64p2

1

ẽ
G ,

D3,15
1

64p2

1

ẽ
. ~110!

For all steps we always have

An5A1 ,Ān5Ā1 ,En5E1 ,Bn5B1 ,B̄n5B̄1 ,Fn5F1 ,Cn

5C1 ,D1,2,3,n5D1,2,3,1, ~111!

and forn.1,

Ā̄n5211A1 ,B̄̄n5211B1 ,C̄̄n5212C1 . ~112!

FIG. 6. Tree-level resumed meson masses.
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B. Comments related with the presence of the fermions
in the game

We must remark that, on Eqs.~B4!, ~B9!, and ~B10! of
Appendix B, the following terms:

8g2

~4p!2
mc

2 1

ẽ
, 2

8g2

~4p!2
3mc

2 1

ẽ
,

2
g2

~4p!2 F ms
2

2k0
G1
ẽ

, and 2
g2

~4p!2 F3
mp

2

2k0
G1
ẽ

should be neglected. As stated by the authors of Ref.@29#
and remarked by the authors of Ref.@12#, these terms will be
canceled by contributions from higher order loops. Since
are concerned only about the one-loop approximation, we
not have to worry about them. Nevertheless, in theO(4)
linear sigma model, i.e., wheng50, none of the above term
will be present, and our model will be order by order reno
malizable in the regions of validity of the MSCR. This o
curs because our tree-level resummed masses are related
symmetry relation that always guarantees the cancellatio
the UV divergences.

VII. NUMERICAL ANALYSIS

In this section, we present numerical solutions of the g
equations for the tree-level meson and fermion masses
the condensate derived in Sec. IV C including all diagra
which belong to the one loop order.

As an approximation, only for the sake of obtaining co
tinuous curves, in the numerical evaluation we conside
DP50 also in the intermediate temperature region. Rig
ously speaking, the curves should only be trusted in the
and high temperature regions. Figure 6 shows the tree-l
resummed meson masses, Eqs.~79! and~80!, as functions of
the temperature. We show in Fig. 7 the tree-level ferm
resummed mass, Eq.~81!, as a function of temperature. Th
tree-level masses behavior exhibit the fact that the MS

FIG. 7. Tree-level resumed fermion mass.
1-14
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has solved the problem of tachyonic masses. In Fig. 8
chiral condensaten, Eq. ~82!, as a function of temperature i
shown whereas in Fig. 9 the condensate is plotted in the
Mp50.

Since at low temperatures the condensate dominates
mesons masses suffers its influence in this region. The si
mass decreases and they approach each other to becom
generate in a temperature of about 300 MeV. This confir
the results we found in a phenomenological approach to
linear sigma model@30#.

The condensate is a slowly decreasing function of
temperature, which is a signature of the order param
when the symmetry breaking term is present. The qualita
behavior of the results shown in Figs. 6 and 8 can be co
pared with the ones obtained by Chiku and Hatsuda@12#
since OPT also sums three-point vertex diagrams, as
method does. Some differences may be attributed to the
corporation of the fermions, as performed in our method
the absence of the chiral symmetry breaking term, i.e., w
c50, the nonvanishing solutions of the extremum conditi
Eq. ~28!, are obtained numerically by Eq.~82! with Mp

2

50, Ms
252ln2, and Mc5Mc(Mp

2 50,Ms
252ln2). The

solution is depicted in Fig. 9 and gives an indication of fi
order phase transition. This result agrees with the predict
of first order phase transition found in previous analysis
Roh and Matsui@18#, Petropoulos@19#, Chiku and Hatsuda
@12#, Randrup@31#, and Bilic @32#. Of course we have to bea
in mind that our result is at one loop order in the perturbat
expansion. It may well be that near the critical temperat
higher order corrections become crucial and may change
order of the phase transition.

The tree fermion mass, Fig. 7, does not become z
when chiral symmetry is restored andn→0 since we consid-
ered contributions from the mesons, given by Eq.~50!. On
the contrary, when the temperature is>200 MeV these con-
tributions dominate the variablen and the fermion mass in
creases with temperature. The behavior of the fermion m
is in agreement with the results found by Panda in Ref.@33#
for the quark meson coupling model.

FIG. 8. Condensaten as a function of the temperature.
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VIII. CONCLUDING REMARKS

In this paper, we presented a modified self-consistent
summation~MSCR! at finite temperature. Results for the ch
ral fermion meson model and the masslesslf4 model in the
weak coupling limit were obtained and analyzed. We ha
shown that our procedure properly resumes higher or
terms which cures the problem of the breakdown of the p
turbative expansion.

We have also shown that the MSCR, when applied to
study of the chiral fermion meson model, has the essen
features which lead to the satisfaction of Goldstone’s th
rem and renormalization of the UV divergences, in the lo
and high-temperature regions. We have explicitly shown t
the scheme breaks down aroundTc , i.e., in the region of
intermediate temperatures. The application of the MSCR
these three physically different regions~low, intermediate,
and high temperatures! revealed a source of mistakes usua
found in the literature, that is to treat all ranges of tempe
tures in the same way. It is naive to expect that the sa
approximation which is valid, e.g., for high temperatur
would be enough in the intermediate-temperature reg
since quantum fluctuations are known to play a major r
there.

This division was essential to identify the regions whe
higher order terms and resummation are crucial. It is valid
remember that even when higher order loops are taken
account, the resummation is still necessary since the t
level masses will become tachyonic even below the criti
temperature~in theories with spontaneous symmetry brea
ing! and break the perturbative expansion. This breakdo
of the perturbative expansion can also happen in mass
field theories, such as QCD, due to the appearance of in
red divergences. As we discussed, the breakdown of pe
bative expansion in finite temperature field theory requi
resummation techniques as the MSCR to recover the relia
ity of perturbative expansion.

In each region renormalization and satisfaction of Go
stone’s theorem were discussed in detail. In our study,
have also addressed a usually avoided point: the inclusio

FIG. 9. Condensaten as a function of the temperature in th
chiral limit (Mp50).
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the fermions. Finally, we have reexamined the chiral ph
transition in static equilibrium in terms of the linear sigm
model with our MSCR.

The gap equations for the tree-level masses are c
structed by our method and in the effective Lagrangian t
are renormalized. For the particular case of intermedia
temperature regions, the gap equations would be renor
ized in the ~reorganized! effective Lagrangian only ifDP
5Ps2Pp50. In most of the approximations found in th
literature, the gap equations are reached by some techn
or via somead hocprocedure but the Lagrangian is yet th
original one. This makes the renormalization process n
trivial, unless a finite cutoff is used and the theory is trea
as an effective model@27,28#. As pointed out by Chiku and
Hatsuda@12#, the resummation must be done also in t
counterterms, which is essential to show the renormalizat

At this point, it is extremely worth emphasizing that, a
though one has the freedom of adding and subtracting m
parameters to the Lagrangian, in this case they canno
completely arbitrary. If the mass parameters introduced w
different for the pion and sigma fields~i.e., 1

2 M1s2

1 1
2 M2pW 2 and, of course, the same quantities subtrac

with M1ÞM2), neither theO(4) linear s model is renor-
malizable in any given order nor Goldstone’s theorem is s
isfied. This will happen even if the mass parameters are
termined by some physical condition as FAC or principle
minimal sensitivity~PMS!. So, the most important fact be
hind the fulfillment of Goldstone’s theorem and renormal
ability of theories with SSB is the chiral symmetry that mu
dictate which mass parameter should be introduced to
Lagrangian.
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APPENDIX A: RENORMALIZATION OF THE EFFECTIVE
POTENTIAL

As mentioned earlier the vacuum contribution toV1(T,n)
is divergent and requires renormalization. In this subsec
we also use dimensional regularization in the computation
the effective potential:

V1
0~m![E d3p

~2p!3

v

2
, ~A1!
05601
e

n-
y

e-
al-

ue

n-
d

n.

ss
be
re

d,

t-
e-
f

-
t
e

is
e

n-
d

ort

n
f

]V1
0~m!

]m
5mE d3p

~2p!3

1

2v
5mL~m!, ~A2!

whereL(m) is the usual zero-temperature loop integral,

L~m![E d4p

~2p!4

1

p21m2
5E d4p

~2p!4

1

p4
21p21m2

, ~A3!

with d4p5dp4 d3p being the four Euclidean momentum.
The divergent integralL(m) can be evaluated in the stan

dard manner

m2

~4p!2 F2
1

ẽ
211 lnS m2

m2D G . ~A4!

The quantityV1
0(m) is then obtained with the integratio

of mL(m)

V1
0~m!5

m4

64p2 S ln
m2

m2
2

3

2
2

1

ẽ
D . ~A5!

With this expression we can find the zero-temperature
fective potential

V1
0~n!52

ms
4

64p2

1

ẽ
1

ms
4

64p2 S ln
ms

2

m2
2

3

2D 13~ms↔mp!

28~ms↔mc!. ~A6!

The renormalization of the thermodynamical potential at
end amounts to the determination of the parametersD1,2,3,

D1528F 1

64p2

1

ẽ
G , ~A7!

D253F 1

64p2

1

ẽ
G , ~A8!

D35
1

64p2

1

ẽ
. ~A9!

APPENDIX B: ONE-LOOP SELF-ENERGY AT FINITE
TEMPERATURE

At zero momentum the expressions for the self-energ
are given by

Pp1~k0 ,uku50!5Pp1
0 1Pp1

b

5
5l

~4p!2
mp

2 F2
1

ẽ
211 lnS mp

2

m2 D G
1

5l

2 E
0

`dp p2

p2

np

vp
, ~B1!
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Pp2~k0 ,uku50!5Pp2
0 1Pp2

b

5
l

~4p!2
ms

2F2
1

ẽ
211 lnS ms

2

m2 D G
1

l

2E0

`dp p2

p2

ns

vs
, ~B2!

Pp3~k0 ,uku50!

5Pp3
0 1Pp3

b

5
4l2n2

~4p!2 F2
1

ẽ
211 lnS mp

2

m2 D 1
k0

21ms
22mp

2

2k0
2

3 lnS mp
2

ms
2 D 1

AD3

k0
2 ~D41D5!G22l2n2E

0

`dpp2

p2

3F np

vp

2k0
21ms

22mp
2

~2k0
21ms

22mp
2 !222k0

2~vp
2 1vs

2 !

1
ns

vs

2k0
21mp

2 2ms
2

~2k0
21mp

2 2ms
2 !222k0

2~vp
2 1vs

2 !
G , ~B3!

Pp4~k0 ,uku50!5Pp4
0 1Pp4

b

5
8g2

~4p!2 Fmc
22

k0
2

2 G1
ẽ

1
8g2

~4p!2

3F2S mc
22

k0
2

2 D lnS mc
2

m2 D 1D2AD12K0
2G

14g2E
0

`dpp2

p2

nc

vc
F11

k0
2

4vc22k0
2G ,

~B4!

Ps1~k0 ,uku50!5Ps1
0 1Ps1

b

5
3l

~4p!2
ms

2F2
1

ẽ
211 lnS ms

2

m2 D G
1

3l

2 E
0

`dpp2

p2

ns

vs
, ~B5!
05601
Ps2~k0 ,uku50!5Ps2
0 1Ps2

b

5
3l

~4p!2
mp

2 F2
1

ẽ
211 lnS mp

2

m2 D G
1

3l

2 E
0

`dp p2

p2

np

vp
, ~B6!

Ps3~k0 ,uku50!5Ps3
0 1Ps3

b

518
l2n2

~4p!2 F2
1

ẽ
221 lnS ms

2

m2 D
12 f 1~k0!arctanS 1

f 1~k0! D G
218l2n2E

0

`dp 2

p2

ns

vs

1

4vs
22k0

2
,

~B7!

Ps4~k0 ,uku50!5Ps4
0 1Ps4

b

56
l2n2

~4p!2 F2
1

ẽ
221 lnS mp

2

m2 D
12 f 2~k0!arctanS 1

f 2~k0! D G
26l2n2E

0

`dp p2

p2

np

vp

1

4vp
2 2k0

2
,

T ~B8!

Ps5~k0 ,uku50!

5Ps5
0 1Ps5

b

52
8g2

~4p!2 F3mc
22

k0
2

2 G1
ẽ

1
8g2

~4p!2

3F1

2
~6mc

22k0
2!lnS mc

2

m2 D 1~4mc
22k0

2!

3S D2AD1

k0
2

21D G14g2E
0

`dp p2

p2

nc

vc

3F11
4mc22k0

2

k0
224vc2

G , ~B9!

where f 1(k0)5A4ms
2 /k0

221, f 2(k0)5A4mp
2 /k0

221, D1

5k0
2(k0

224mc
2), D25arctan(1/A124mc

2 /k0
2), D35k0

4

22k0
2(mp

2 1ms
2)1(mp

2 2ms
2)2, D45arctanh$@k0

21(mp
2

1ms
2)#/AD3% andD55arctanh$@k0

22(mp
2 1ms

2)#/AD3%,
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S~k0 ,uku50!

5~S01Ss!s13~S01Ss!p

5~S0
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Z[
1

~4p!2 F k0
21ms

22mc
2

2k0
2

lnS mc
2

ms
2 D 1

AD6

k0
2 ~D71D8!G , ~B15!

with D65k0
422k0

2(mc
21ms;p

2 )1(mc
22ms;p

2 )2, D7

5arctanh$@k0
21(mc

21ms;p
2 )#/AD6% and D85arctanh@k0

2

2(mc
21ms;p

2 )/AD6#.
,

@1# M. Gell-Mann and M. Levy, Nuovo Cimento16, 705 ~1960!.
@2# D.H.T. Franco, H.C.G. Caldas, A.L. Mota, and M.C. Neme

Mod. Phys. Lett. A617, 464 ~1997!, and references therein.
@3# L.R. Ram Mohan, Phys. Rev. D14, 2670~1976!.
@4# Proceedings of Lattice 96@Nucl. Phys.B53, 1 ~1997!#.
@5# Proceedings of Quark Matter 97@Nucl. Phys.A638, 1 ~1998!#.
@6# L. Dolan and R. Jackiw, Phys. Rev. D9, 3320~1974!.
@7# S. Weinberg, Phys. Rev. D9, 3357~1974!.
@8# A. Linde, Rep. Prog. Phys.42, 389 ~1979!; D.J. Gross, R.D.

Pisarski, and L.G. Yaffe, Rev. Mod. Phys.53, 43 ~1981!.
@9# G. Baym and G. Grinstein, Phys. Rev. D15, 2897~1977!.

@10# N. Banerjee and S. Malik, Phys. Rev. D43, 3368~1991!.
@11# Rajesh R. Parwani, Phys. Rev. D45, 4695~1992!.
,
@12# S. Chiku and T. Hatsuda, Phys. Rev. D58, 076001

~1998!.
@13# J. Kapusta,Finite-Temperature Field Theory~Cambridge Uni-

versity Press, Cambridge, England, 1989!.
@14# B. Lee, Chiral Dynamics ~Gordon and Breach, New York

1970!.
@15# D.A. Kirzhnits and A.D. Linde, Phys. Lett.42B, 471 ~1972!;

Ann. Phys.~N.Y.! 101, 195 ~1976!.
@16# G. Amelino-Camelia and S.-Y. Pi, Phys. Rev. D47, 2356

~1993!.
@17# G. Amelino-Camelia, Phys. Rev. D49, 2740~1994!.
@18# H.-S. Roh and T. Matsui, Eur. Phys. J. A1, 205 ~1998!.
@19# N. Petropoulos, J. Phys. G25, 2225~1999!.
1-18



. d

ys.

CHIRAL FERMION MESON MODEL AT FINITE TEMPERATURE PHYSICAL REVIEW D63 056011
@20# P. Ramond,Field Theory: A Modern Primer~Addison Wesley,
New York, 1990!.

@21# C.W. Bernard, Phys. Rev. D9, 3312~1974!.
@22# A. Bochkarev and J.I. Kapusta, Phys. Rev. D54, 4066~1996!.
@23# P.V. Landshoff, hep-ph/9808362.
@24# M. Chanowitz, M. Furman, and I. Hinchliffe, Nucl. Phys

B159, 225 ~1979!.
@25# Peter Arnold and Olivier Espinosa, Phys. Rev. D47, 3546

~1993!.
@26# J.M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D10,

2428~1974!; G. Amelino-Camelia and S.-Y. Pi,ibid. 47, 2356
05601
~1993!.
@27# G. Amelino-Camelia, Phys. Lett. B407, 268 ~1994!.
@28# J.T. Lenaghan and D.H. Rischke, J. Phys. G26, 431 ~2000!.
@29# F. Karsch, A. Patks, and P. Petreczky, Phys. Lett. B401, 69

~1997!.
@30# H.C.G. Caldas, D.H.T. Franco, A.L. Mota, F.A. Oliveira, an

M.C. Nemes, Nucl. Phys.A617, 464 ~1997!.
@31# J. Randrup, Phys. Rev. D55, 1188~1997!.
@32# N. Bilic and H. Nikolie, Eur. Phys. J. C6, 513 ~1999!.
@33# P.K. Panda, A. Mishra, J.M. Eisemberg, and W. Greiner, Ph

Rev. C56, 3134~1997!.
1-19


