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Finite sum of gluon ladders and high energy cross sections
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A model for the Pomeron att50 is suggested. It is based on the idea of a finite sum of ladder diagrams in
QCD. Accordingly, the number ofs-channel gluon rungs and correspondingly the powers of logarithms in the
forward scattering amplitude depends on the phase space~energy! available, i.e., as energy increases, progres-
sively new prongs with additional gluon rungs in thes-channel open. Explicit expressions for the total cross
section involving two and three rungs or, alternatively, three and four prongs@with ln2(s) and ln3(s) as highest
terms, respectively# are fitted to the proton-proton and proton-antiproton total cross section data in the accel-
erator region. Both QCD calculation and fits to the data indicate fast convergence of the series. In the fit, two
terms~a constant and a logarithmically rising one! almost saturate the whole series, the ln2(s) term being small
and the next one, ln3(s), negligible. Theoretical predictions for the photon-photon total cross section are also
given.
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I. INTRODUCTION

It is widely accepted that the Pomeron in QCD cor
sponds to an infinite sum of gluon ladders with Reggeiz
gluons on the vertical lines~see Fig. 1!, resulting@1–3# in the
so-called supercritical behaviors t;saP(0), aP(0).1,
whereaP(0) is the intercept of the Pomeron trajectory.
that approach, the main contribution to the inelastic am
tude and to the absorptive part of the elastic amplitude in
forward direction arises from the multi-Regge kinematics
the limit s→` and leading logarithmic approximation. In th
next-to-leading logarithmic approximation~NLLA !, correc-
tions require also the contribution from the quasi-mu
Regge kinematics@4#. Hence, the subenergies betwe
neighborings-channel gluons must be large enough to be
the Regge domain. At finite total energies, this implies t
the amplitude is represented by a finite sum ofN terms@5#,
whereN increases like lns, rather than by the solution of th
Balitskiı̆-Fadin-Kuraev-Lipatov ~BFKL! integral equation
@1–3#. The interest in the first few terms of the series
related to the fact that the energies reached by the pre
accelerators are not high enough to accommodate a l
number ofs-channel gluons that eventually hadronize a
give rise to clusters of secondary particles.

The lowest order diagram is that of two-gluon exchan
first considered by Low and Nussinov@6#. The next order,
involving an s-channel gluon rung was studied, e.g., in t
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papers@2,7#. The problem of calculating these diagrams
twofold. The first one is connected with the nonperturbat
contributions to the scattering amplitude in the ‘‘soft’’ re
gion. It may be ignored by ‘‘freezing’’ the running couplin
constant at some fixed value of the momenta transferred
assuming that the forward amplitude can be cast by a sm
interpolation to t50. More consistently, one introduces
nonperturbative model@8# of the gluon propagator valid als
in the forward direction. The second problem is more te
nical: ass→` the number of Feynman diagrams that co
tribute to the leading order rapidly increases and, in each
them, only the leading contribution is usually evaluated.
any order in the coupling, subleading terms coming b
from the neglected diagrams and from the calculated o
are present. Although functionally the result is always t
sum of increasing powers of logarithms, the numerical v
ues of the coefficients entering the sum is lost unless
diagrams are calculated.

FIG. 1. Schematic representation of the total cross section in
leading ln(s) approximation~first row!. Double lines represent pro
tons or antiprotons, vertical zig-zag lines are Reggeized gluons,
horizontal wavy lines are gluons. The effective vertex for tw
Reggeized gluons and one gluon is defined in the second row. H
external lines can represent quark or gluons.
©2001 The American Physical Society10-1
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Conversely, one can expand the ‘‘supercritical’’ Pomer
;sa(0) in powers of ln(s). Such and expansion is legitima
within the range of active accelerators, i.e., near and be
the TeV energy region, where fits to total cross sections b
power or logarithms are known@9# to be equivalent numeri
cally. Moreover, forward scattering data~total cross sections
and the ratio of the real to the imaginary part of the forwa
scattering amplitude! do not discriminate even between
single and quadratic fit in ln(s) to the data.

Phenomenologically, more information on the nature
the series can be gained if thet dependence is also involved
The well-known~diffractive! dip-bump structure of the dif-
ferential cross section can be roughly imitated by
Glauber series, although more refined studies within the
pole Pomeron~DP! model @linear behavior in ln(s)# @10#
show that the relevant series is not just the Glauber one
generalization of the DP model including higher powers
ln(s) was considered in@11#. In a recent paper@12# the
Pomeron was considered as a finite series of ladder diagr
including one gluon rung besides the Low-Nussinov ‘‘Bo
term’’ and resulting in a constant plus logarithmic term
the total cross section. With a subleading Regge term ad
good fits to pp and pp̄ total as well as differential cros
section were obtained in@12#. There is however a substanti
difference between our approach and that of Ref.@12# or
simple decomposition in powers of ln(s), namely that we
consider the opening channels~in s) as threshold effects, th
relevant prongs being separated in rapidity by lns0, s0 being
a parameter related to the average subenergy in the lad
Although such an approach inevitably introduces new
rameters, we consider it more adequate in the framewor
the finite-ladder approach. We mention these attempts o
for the sake of completeness, although we stick to the s
plest case oft50, where there are hopes to have some c
nection with the QCD calculations.

In Sec. II we consider a new parametrization for to
cross sections based on the contribution from a finite se
of QCD diagrams with relative weights~coefficients! and
rapidity gaps to be determined from the data. Each set of
diagrams is ‘‘active’’ in ‘‘its zone,’’ i.e., the parameter
should be fitted in each energy interval separately and
relevant solutions should match. The matching proced
will be similar to that known for the wave functions in qua
tum mechanics, i.e., we require continuity of the total cro
section and of its first derivative. In Sec. III we present t
result of fits to thepp̄ andpp experimental data. Section IV
is devoted to a discussion of the truncated series in QCD
to the calculation of the coefficients of the powers of lns.
Finally, in Sec. V we will draw our conclusions.

II. DESCRIPTION OF THE MODEL

The Pomeron contribution to the total cross section is r
resented in the form

s t
(P)~s!5(

i 50

N

f iu~s2s0
i !u~s0

i 112s!, ~1!

where
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ai j L
j , ~2!

s0 is the prong threshold,u(x) is the step function andL
[ ln(s). Here and in the following, bys ands0 respectively,
s/(1 GeV2) and s0 /(1 GeV2) is implied. The main as-
sumption in Eq.~1! is that the widths of the rapidity gap
ln(s0) are the same along the ladder. The functionsf i are
polynomials inL of degreei, corresponding to finite gluon
ladder diagrams in QCD, where each power of the logarit
collects all the relevant diagrams. Whens increases and
reaches a new threshold, a new prong opens adding a
power in L. In the energy region between two neighborin
thresholds, the correspondingf i , given in Eq.~1!, is sup-
posed to represent adequately the total cross section. W
reference to Fig. 1, in our model a new threshold is reac
every time the imaginary part of the amplitude takes
contribution from the cut of an additionals-channel gluon
@2#.

In Eq. ~1! the sum overN is a finite one, sinceN is
proportional to ln(s), where s is the present squared c.m
energy. Hence this model is quite different from the us
approach where, in the limits→`, the infinite sum of the
leading logarithmic contributions gives rise to an integ
equation for the amplitude.

To make the idea clearer, we describe the mechanism
the case of three gaps~two rungs!. To remedy the effect of
the first threshold and get a smooth behavior at low energ
we have included also a Pomeron daughter, going like;1/s
in the first two gaps with parametersb0 andb1 respectively.
Then

f 0~s!5a001b0 /s for s<s0 , ~3!

f 1~s!5a101b1 /s1a11L for s0<s<s0
2 , ~4!

f 2~s!5a201a21L1a22L
2 for s0

2<s<s0
3 . ~5!

By imposing the requirement of continuity~of the cross sec-
tion and of its first derivative! one constrains the parameter
E.g., from the conditions f 1(s0)5 f 0(s0) and f 18(s0)
5 f 08(s0) the relations

b15a11s01b0 ,

a105a002a11 ln~s0!2a11

follow. Furthermore, from f 2(s0
2)5 f 1(s0

2) and f 28(s0
2)

5 f 18(s0
2) one gets

a205a22 ln2~s0
2!1a101b1@11 ln~s0

2!#/s0
2 ,

a215a1122a22 ln~s0
2!2b1 /s0

2 .

The same procedure can be repeated for any number of g
In fitting the model to the data, we rely mainly onpp̄ data

that extend to the highest~accelerator! energies, to which the
Pomeron is particularly sensitive. To increase the confide
level, pp data were included in the fit as well. To keep th
0-2
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number of the free parameters as small as possible and
lowing the successful phenomenological approach of D
nachie and Landshoff@13#, a single ‘‘effective’’ Reggeon
trajectory with intercepta(0) will account for nonleading
contributions, thus leading to the following form for the tot
cross section:

s t~s!5s t
(P)~s!1R~s!, ~6!

wheres t
(P)(s) is given by Eq.~1! andR(s)5asa(0)21 ~the

parametera is different forpp̄ andpp and is considered a
an additional free parameter!.

Ideally, one would let free the width of the gaps0 and
consequently the number of gluon rungs~highest power of
L). Although possible, technically this is very difficul
Therefore we considered only the cases of two and th
rungs and, for each of them, we treateds0 as a free param
eter.

Notice that the values of the parameters depend on
energy range of the fitting procedure. For example, the
ues of the parameters inf 0 if fitted in ‘‘its’’ range, i.e., for
s<s0, will get modified in f 1 with the higher energy data
and correspondingly higher order diagrams included.

III. FITS TO THE pp̄ AND pp DATA

As a first attempt, only three rapidity gaps, that cor
spond to two gluon rungs in the ladder were considered.
to thepp̄ andpp data were performed fromAs54 GeV up
to the highest energy Tevatron data~for pp̄), including all
the results from there@14#. The resulting fit is shown in Fig
2 with a x2/d.o.f.'1.71. The values of the fitted paramete
are quoted in Table I. Interestingly, the value ofs0 turns out
to be very close to 144 GeV2, i.e., the value for which the
energy range considered is covered with equal rapidity g
uniformly.

Next, we covered the energy span available in the ac

FIG. 2. Total cross section calculated up to 2 gluon rungs

fitted to thepp̄ andpp data.
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erator region by four gaps, resulting in 3 gluon rungs a
consequentlyL3 as the maximal power. After the matchin
procedure, we are left with ten free parameters: first of alls0,
thena00,b0 ,a11,a22,a32,a33, each determined in its range
while the twoa’s anda(0) are fitted in the whole range o
the data. The final value fors0 turned out to bes0
.42.5 GeV2 resulting in a sequence of energy interva
ending atAs51800 GeV. It is amusing to notice that
search for the phase space region where the production
plitude in the multicluster configuration has a maximu
leads, with the help of cosmic ray data, to an average ‘‘s
energy’’ ^si&;44 GeV2 @15#, that is very near to the value
of s0 found in the fit.

Figure 3 shows our fit to thepp̄ andpp total cross section
data. The values of the fitted parameters are quoted in T
II. The value of thex2/DOF is ;1.38, much better than in
the case of two gluon rungs. It is interesting to observe t
the coefficients in front of the leading logarithms are rela
roughly by a factor of 1/10. Moreover, the coefficienta33
turns out to be compatible with zero, in contrast with t
expectation from QCD calculation in the leading logarithm

d

TABLE I. Value of the parameters in the case of 2 rungs. T
parametersbi anda . . . are given in units of 1 mb. The quantities i
round parentheses represent the errors. Parameters without err
derived from the matching condition.

s0 a(0) app̄ app

147.97(93) 0.441(11) 71.7(3.4) 0.00(37)

b0 a00 a11 a22

35.6(1.5) 38.097(23) 2.300(38) 0.857(61)

a10 a20 a21 x2/DOF

24.3 110.1 214.85 1.71

FIG. 3. Total cross section calculated up to 3 gluon rungs

fitted to thepp̄ andpp data.
0-3
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TABLE II. Value of the parameters in the case of 3 rungs. The parametersbi anda . . . are given in units
of 1 mb. The quantities in round parenthesis represent the errors. Parameters without error are deriv
the matching condition.

s0 a(0) app̄ app b0 a00

42.43(53) 0.4295(95) 160.9(8.6) 85.2(6.6) 2180(18) 33.20(29)

a11 a22 a32 a33 a10 a20

2.631(86) 0.324(55) 0.19(22) 0.000(38) 20.7 38.6

a21 a30 a31 b1 x2/DOF

22.19 22.3 0.72 268.42 1.38
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appoximation~see next section!. The value of the effective
Reggeon intercept remains rather low, close to 0.45, com
rable with the value found in Ref.@16#.

IV. EXPLICIT ITERATIONS OF BFKL

From the theoretical point of view, the phenomenologi
model of Sec. II corresponds to the explicit evaluation
QCD of gluonic ladders with an increasing number
s-channel gluons. This correspondence is far from lite
since each term of the BFKL series takes into account o
the dominant logarithm in the limits→`. In the following
we give concrete expressions for the forward high ene
scattering amplitudes for photons and hadrons in the form
an expansion in powers of large logarithms, taking for si
plicity only the leading logarithmic terms.

We start from known results obtained in paper@2# where
an explicit expression for the total cross section for hadr
hadron scattering has been obtained. In the high energy l
it is convenient to introduce the Mellin transform of the am
plitude

A~v,t !5E
0

`

dS s

m2D S s

m2D2v21
Ims A~s,t !

s

and its inverse

Ims A~s,t !

s
5

1

2p i Ed2 i`

d1 i`

dvS s

m2D v

A~v,t !.

The general expression ofA(v,t) in the leading logarithmic
approximation~LLA ! has the form

A~v,t !5E d2k
Fa~k,q!Fv

b ~k,q!

k2~q2k!2
,

whereFa(k,q) andFb(k,q) ~see next equation! are the im-
pact factors of the colliding hadronsa and b, obeying the
gauge conditions F j (0,q)5F j (q,q)50 ( j 5a,b). The
quantityFv

b (k,q) obeys the BFKL equation:
05601
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vFv
b ~k,q!5Fb~k,q!1gE d2k8

2p

3
A~k,k8,q!Fv

b ~k8,q!2B~k,k8,q!Fv
b ~k,q!

~k2k8!2
,

with

A~k,k8,q!5
2q2~k2k8!21k2~q2k8!21k82~q2k!2

k82~q2k8!2
,

B~k,k8,q!5
k2

k821~k82k!2
1

~q2k!2

~q2k8!21~k2k8!2
,

and

g53
as

p
.

The strong couplingas is assumed to be frozen at a suitab
scale set, for example, by the external particles. The itera
procedure and the reciprocal Mellin transform give~besides
we putq50)

s t~s!5
Ims A~s,0!

s

5E d2k
Fa~k,0!

~k2!2 FF0
b~k!1rF1

b~k!1
1

2!
r2F2

b1•••G ,
where

r5
3as

p
lnS s

m2D ~7!

and the subsequent iterations begin fromF0
b(k)5Fb(k,0).

In the previous integral and everywhere in the following,
the momenta are 2-dimensional Euclidean vectors, living
the plane transverse to the one formed by the momenta o
colliding particles.

For the case of photon-photon scattering one has@2# ~see
also the references quoted there!
0-4
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Fg5(
i 51

2

t i i
gg~k,0!5

2

3
aasTS k2

m2D ,

where

TS k2

m2D 5
1

4
1

52b2

8b
lnS b11

b21D ,

b2511
4m2

k2
.1.

From the integrals1

1

pE d2k

T2S k2

m2D
~k2!2

5
0.673

m2
,

E
0

`dt

t
E

0

`dt8

t8
T~ t !FT~ t8!2T~ t !

ut2t8u
1

T~ t !

A
t214t82

G51.443,

we conclude

sgg→2q2q̄~s!5s0F116.4
as

p
lnS s

m2D G , ~8!

wheres0 is a constant and we used the approximated eq
ity (331.44)/0.6756.4.

To obtain the cross section of proton-proton scatteri
we use the ansatz of Ref.@17# for the impact factor of a
hadron in terms of its form factorF(q2):

Fp~k,q!5FpS q2

4 D2FpXS k2
q

2D 2C, Fp~0,q!5F~q,q!50.

Here the 2-dimensional Euclidean vectorq is related to the
4-dimensional transferred momentumQ by the relationQ2

52q2,0. Using the formulas given above, we obtain, fo
simplified but experimentally acceptable form of proton
impact factor in the forward direction,q50,

F0~k!5ak2e2bk2
, ~9!

wherea andb are in GeV22. It is convenient to define

cn~k2!5
Fn~k!

k2
,

then ~for n>1)

1S. Gevorkyan~private communication!.
05601
l-

,

cn~k2!5E
0

1 dx

12x
„cn21~k2x!2cn21~k2!…

1E
1

` dx

x21 S cn21~k2x!2
1

x
cn21~k2! D

and

s t~s!5pE
0

`

dk2c0~k2!(
n

cn~k2!
rn

n!
. ~10!

The integrations can be performed analytically, due to
simple choice of the impact factor in Eq.~9!, and the final
result is

s t~s!5
pa2

2b H 112~ ln 2!r1Fp2

12
12~ ln 2!2Gr2

1
1

3 Fp2

2
~ ln 2!14~ ln 2!32

3

4
z~3!Gr31•••J , ~11!

wherer is defined in Eq.~7!.
As stressed above, the coefficients of different powers

ln(s/m2) in Eq. ~11! refer to the dominant contribution, a
asymptotic energies, for each perturbative order. In the
instead, the Pomeron contribution is determined only fr
the experimental data at high but finite energies. Howev
we can obtain a rough estimate of the importance of
subleading contributions by comparing Eq.~11! with the
phenomenological fit of the previous section, in particu
with the amplitudef 3 relative to the last gap of the thre
rungs case. If we assume a commonly used value for
strong coupling,as;0.520.7 @17#, we must conclude tha
subleading contributions to the QCD Pomeron are importa
Moreover, the coefficienta33 turns out to be compatible with
zero, in contrast with the result of Eq.~11!. These findings
may be related to the fact that energies reached by
present accelerators are not yet asymptotic.

An approach similar the one followed in this section w
considered in Ref.@18#. However, although in both cases th
LLA BFKL equation is used, our results are not compara
with those of Ref.@18#, first of all because we use a defini
ansatz for the impact factors, different from a constant@see,
for instance, Eq.~9!#. Moreover, differently from@18#, where
all orders of perturbation theory were taken into account
our case we consider a truncated iteration of the BFKL eq
tion.

V. CONCLUSIONS

Although high quality fits were not the primary goal o
the present study, we still may conclude that they are co
patible with those existing@13#, and there is still room for
further improvement. Our main goal instead was to seek
an adequate picture of the Pomeron exchange att50. In our
opinion, it is neither an infinite sum of gluon ladders as in t
BFKL approach@1–3#, nor its power expansion. In fact, th
finite series—call it ‘‘threshold approach’’—considered
this and our previous paper@5# realizes a nontrivial dynami-
0-5
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cal balance between the total reaction energy and the su
ergies equally partitioned between the multiperipheral l
ders.

The results of our fits, whose quality will be definite
improved when future data from RHIC and LHC will b
available, show also that few terms of powers of ln(s) are
sufficient to describe the data at all realistic energies. A
guess, we do not exclude that higher terms cancel c
pletely, but anyway they are negligibly small. The case
two terms~logarithmic rise ins) is particularly interesting as
it corresponds to a dipole Pomeron with a number of attr
tive features@10# such as self-reproducibility with respect o
unitarity corrections. In case of a ln2(s) rise ~three terms! we
still should not worry about the Froissart bound, so u
mately the Pomeron as viewed in this paper does not nee
be unitarized. This conclusion is an important by-product
our paper. For the dipole Pomeron, relevant calculations
tÞ0 are interesting and important but difficult. In the case
a single gluon rung they were performed in Ref.@12# and,
with a nonperturbative gluon propagator, in the last refere
of @8#.

The role and the value of the width of the gap,s0, is an
important physical parameterper se, independent of the
A
s,’

.

N.
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model presented above. We have fitted it and compared
cessfully with the prediction from cosmic-ray data. Howev
its value may be estimated, e.g., as the lowest energy w
the Pomeron exchange is manifest, although the latter is
a matter of debate. Further fits of the model to new exp
mental data may settle some details left open by this pa

The results from the LLA BFKL equation do not re
semble closely those from the numerical fits, thus leading
the conclusion that next-to-leading corrections cannot
omitted in the analytical calculations.
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