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Finite sum of gluon ladders and high energy cross sections
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A model for the Pomeron at=0 is suggested. It is based on the idea of a finite sum of ladder diagrams in
QCD. Accordingly, the number afchannel gluon rungs and correspondingly the powers of logarithms in the
forward scattering amplitude depends on the phase dpaeegy available, i.e., as energy increases, progres-
sively new prongs with additional gluon rungs in teehannel open. Explicit expressions for the total cross
section involving two and three rungs or, alternatively, three and four pravitis In%(s) and Ir¥(s) as highest
terms, respectivelyare fitted to the proton-proton and proton-antiproton total cross section data in the accel-
erator region. Both QCD calculation and fits to the data indicate fast convergence of the series. In the fit, two
terms(a constant and a logarithmically rising oremost saturate the whole series, th&dnterm being small
and the next one, fits), negligible. Theoretical predictions for the photon-photon total cross section are also
given.
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I. INTRODUCTION papers[2,7]. The problem of calculating these diagrams is
twofold. The first one is connected with the nonperturbative
It is widely accepted that the Pomeron in QCD corre-contributions to the scattering amplitude in the “soft” re-
sponds to an infinite sum of gluon ladders with Reggeizedion. It may be ignored by “freezing” the running coupling
gluons on the vertical linesee Fig. 1, resulting[1-3]inthe ~ constant at some fixed value of the momenta transferred and
so-called supercritical behaviolo,~s*P(®,  ap(0)>1, assuming thatthe forward amplitude can be cast by a smooth

where ap(0) is the intercept of the Pomeron trajectory. In interpolation tot=0. More consistently, one introduces a
that approach, the main contribution to the inelastic ampli"enperturbative mod¢B] of the gluon propagator valid also
tude and to the absorptive part of the elastic amplitude in th&! thlg forward ?:recnon. Thef second problem is mﬁre tech-
forward direction arises from the multi-Regge kinematics in"ic@l: ass— the number of Feynman diagrams that con-
the limit s— o and leading logarithmic approximation. In the tribute to the Ieadlng order “f"p'O!'y increases and, in each of
next-to-leading logarithmic approximaticiNLLA ), correc- them, only the leading contribution is usually evaluated. At
. . o ' . . any order in the coupling, subleading terms coming both
tions require also the contribution from the quasi-multi-

. . . f h I i f h lcul
Regge Kinematics4]. Hence, the subenergies between rom the neglected diagrams and from the calculated ones

. are present. Although functionally the result is always the

neighborings-channel gluons must be large enough to be ing ;"o increasing powers of logarithms, the numerical val-

the Regge domain. At finite total energies, this implies thaj,es of the coefficients entering the sum is lost unless all
the amplitude is represented by a finite suniNoferms[5], diagrams are calculated.

whereN increases like I8, rather than by the solution of the
Balitskil-Fadin-Kuraev-Lipatov (BFKL) integral equation

[1-3]. The interest in the first few terms of the series is
related to the fact that the energies reached by the preser = + + e
accelerators are not high enough to accommodate a larg
number ofs-channel gluons that eventually hadronize and
give rise to clusters of secondary particles.
The lowest order diagram is that of two-gluon exchange,
first considered by Low and Nussing@]. The next order, E E
involving ans-channel gluon rung was studied, e.g., in the — + + ..

*Email address: fiore@cs.infn.it FIG. 1. Schematic representation of the total cross section in the

"Email address: jenk@gluk.org leading Ing) approximation(first row). Double lines represent pro-
*Email address: kuraev@thsunZl.jinr.ru tons or antiprotons, vertical zig-zag lines are Reggeized gluons, and
SEmail address: sasha@len.uzhgorod.ua horizontal wavy lines are gluons. The effective vertex for two
'Email address: paccanoni@pd.infn.it Reggeized gluons and one gluon is defined in the second row. Here
TEmail address: papa@cs.infn.it external lines can represent quark or gluons.
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Conversely, one can expand the “supercritical” Pomeron i
~s%9) in powers of In§). Such and expansion is legitimate fi=2> a;LJ, 2
within the range of active accelerators, i.e., near and below 1=0
the TeV energy region, where fits to total cross sections _by %0 is the prong thresholdg(x) is the step function and
power or logarithms are know[r®] to be equivalent numeri- —In(s). Here and in the following, bg ands, respectivel
cally. Moreover, forward scattering dat@tal cross sections 11 G \2 ds /(1 Ge\? '9, b$ lied OTh pect y,_
and the ratio of the real to the imaginary part of the forwards( eV) and so/( eV) is implied. The main as

: . P sumption in Eq.(1) is that the widths of the rapidity gaps
scattering amplitudedo not discriminate even between a :
single angd qugdrag)s fit in Isf to the data. In(s)) are the same along the ladder. The functidpsare

Phenomenologically, more information on the nature Ofpolynomials inL 9f degreel, coresponding to finite gluo_n
the series can be gained if theependence is also involved. ladder diagrams in QCD, where each power of the logarithm

The well-known(diffractive) dip-bump structure of the dif- collects all the relevant diagrams. Whesnmcrease; and
ferential cross section can be roughly imitated by thereache_s i nlevxihthreshold, anew gr?ng Opte\zl\rlls ad_dlrr:g a new
Glauber series, although more refined studies within the di_phowerr] 'Iré ' ?] € energy (;.er?'on oe wgerllz olnglg oring
pole Pomeron(DP) model [linear behavior in Ing)] [10] thresholds, the correspondirig, given in Eq.(1), is sup-
show that the relevant series is not just the Glauber one. Rosed to represent adequately the fotal cross section. With

generalization of the DP model including higher powers Ofreferenge to F|g._ L, In-our model a new threshold is reached
In(s) was considered if11]. In a recent papef12] the every time the imaginary part of the amplitude takes the

. . . . contribution from the cut of an additionatchannel gluon
Pomeron was considered as a finite series of ladder dlagram[%

including one gluon rung besides the Low-Nussinov “Born
term” and resulting in a constant plus logarithmic term in
the total cross section. With a subleading Regge term adde

good fits topp and pB total as well as differential cross
section were obtained {i12]. There is however a substantial |g4ding logarithmic contributions gives rise to an integral
difference between our approach and that of R&g] or equation for the amplitude.

simple decomposition in powers of B)( namely that we To make the idea clearer, we describe the mechanism in
consider the opening channéis s).as thrgshold effects_, the the case of three gagssvo rungs. To remedy the effect of
relevant prongs being separated in rapidity bglns, being  the first threshold and get a smooth behavior at low energies,
a parameter related to the average subenergy in the laddg{e have included also a Pomeron daughter, goingikds

Although such an approach inevitably introduces new pas, the first two gaps with parametelog andb, respectively.
rameters, we consider it more adequate in the framework ofy,qn

the finite-ladder approach. We mention these attempts only

In Eq. (1) the sum overN is a finite one, sinceN is
Broportional to In§), wheres is the present squared c.m.
ehergy. Hence this model is quite different from the usual
approach where, in the limg—oo, the infinite sum of the

for the sake of completeness, although we stick to the sim-  f (s)=ay,+by/s for s<sy, (3)

plest case of=0, where there are hopes to have some con-

nection with the QCD calculations. fi(s)=ajo+by/s+ayl for sy=s<sj, (4)
In Sec. Il we consider a new parametrization for total

cross sections based on the contribution from a finite series  f,(s)=a,g+ay,L+aynlL? for sgs sssg. 5)

of QCD diagrams with relative weight&oefficients and

rapidity gaps to be determined from the data. Each set of thBy imposing the requirement of continuigf the cross sec-
diagrams is “active” in “its zone,” i.e., the parameters tion and of its first derivativeone constrains the parameters.
should be fitted in each energy interval separately and the.g., from the conditionsfi(sg)="fy(sp) and fi(sp)
relevant solutions should match. The matching procedur&fé(so) the relations

will be similar to that known for the wave functions in quan-

tum mechanics, i.e., we require continuity of the total cross b;=a;S+ bg,
section and of its first derivative. In Sec. lll we present the
result of fits to thepp andpp experimental data. Section IV a10=2a00— @11IN(Sp) — @13

is devoted to a discussion of the truncated series in QCD an,
to the calculation of the coefficients of the powers of.In 7",
Finally, in Sec. V we will draw our conclusions. =f1(s) one gets

ollow. Furthermore, from f,(s3)=f,(s3) and fj(sd)

— 2,2 2 2
Il. DESCRIPTION OF THE MODEL 320= 822 IN"(Sp) a0 by[ 1H1In(s5) 1/ o,
The Pomeron contribution to the total cross section is rep- ar);=ag;— 2a22In(s§) — bllsg.

resented in the form
The same procedure can be repeated for any number of gaps.

N J—
i i In fitting the model to the data, we rely mainly pp data
(P) _ ) o i+1_
Ot (S)—i:EO fi0(s= o) (S s), @) that extend to the highe&icceleratorenergies, to which the
Pomeron is particularly sensitive. To increase the confidence
where level, pp data were included in the fit as well. To keep the
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90 : . . TABLE I. Value of the parameters in the case of 2 rungs. The
parameterd; anda  are given in units of 1 mb. The quantities in
round parentheses represent the errors. Parameters without error are
80 derived from the matching condition.
70 So «(0) app app
_ 147.97(93) 0.441(11) 71.7(3.4) 0.00(37)
0
E. 60
6 bo oo ai az

50 35.6(1.5) 38.097(23) 2.300(38) 0.857(61)

a0 a0 asn X*/DOF
40 24.3 110.1 —14.85 1.71
30 1 1 1
10 100 1000 . . .
V3 [GeV] erator region by four gaps, resulting in 3 gluon rungs and

consequently  as the maximal power. After the matching
FIG. 2. Total cross section calculated up to 2 gluon rungs angrocedure, we are left with ten free parameters: first asgll

fitted to thepp andpp data. thenagg,bg,a11,822,832,833, €ach determined in its range,

while the twoa’s and «(0) are fitted in the whole range of
number of the free parameters as small as possible and fdhe data. The final value fos, turned out to bes,
lowing the successful phenomenological approach of Don=42.5 GeV resulting in a sequence of energy intervals
nachie and Landshoff13], a single “effective” Reggeon ending at.s=1800 GeV. It is amusing to notice that a
trajectory with interceptz(0) will account for nonleading search for the phase space region where the production am-
contributions, thus leading to the following form for the total plitude in the multicluster configuration has a maximum
cross section: leads, with the help of cosmic ray data, to an average “sub-

energy” (s;)~44 Ge\? [15], that is very near to the value

ai(s)=a{7(s) +R(s), (6)  of s, found in the fit.

Y o ca(0)-1 Figure 3 shows our fit to thep andpp total cross section
wherea;™(s) is given by Eq.(1) andR(s)=as (the  gata. The values of the fitted parameters are quoted in Table
parameter is different forpp andpp and is considered as Il. The value of they?/DOF is ~1.38, much better than in
an additional free paramejer the case of two gluon rungs. It is interesting to observe that

Ideally, one would let free the width of the gag and  the coefficients in front of the leading logarithms are related
consequently the number of gluon rungsghest power of roughly by a factor of 1/10. Moreover, the coefficiemi;
L). Although possible, technically this is very difficult. turns out to be compatible with zero, in contrast with the
Therefore we considered only the cases of two and threexpectation from QCD calculation in the leading logarithmic
rungs and, for each of them, we treatgdas a free param-
eter. 90.0
Notice that the values of the parameters depend on the
energy range of the fitting procedure. For example, the val-

ues of the parameters iy if fitted in “its” range, i.e., for 80.0 ¢
s<sp, will get modified in f; with the higher energy data
and correspondingly higher order diagrams included. 700 E

lll. FITS TO THE pp AND pp DATA 60.0 F

5, Imb]

As a first attempt, only three rapidity gaps, that corre-
spond to two gluon rungs in the ladder were considered. Fits g q

to the paandpp data were performed fro_rd§=4 GeV up
to the highest energy Tevatron ddfar pp), including all

the results from therfl4]. The resulting fit is shown in Fig. 100

2 with a y?/d.o.f~1.71. The values of the fitted parameters

are quoted in Table I. Interestingly, the valuesgfturns out 30.0 s Py 1000

to be very close to 144 GéVi.e., the value for which the Vs [GeV]

energy range considered is covered with equal rapidity gaps

uniformly. FIG. 3. Total cross section calculated up to 3 gluon rungs and

Next, we covered the energy span available in the accelitted to thepp andpp data.
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TABLE II. Value of the parameters in the case of 3 rungs. The paramietensda  are given in units
of 1 mb. The quantities in round parenthesis represent the errors. Parameters without error are derived from
the matching condition.

SO CK(O) apg app bo aoo
42.43(53) 0.4295(95) 160.9(8.6) 85.2(6.6)  —180(18) 33.20(29)
aig ay asp asz a1 ao
2.631(86) 0.324(55) 0.19(22) 0.000(38) 20.7 38.6
az aszo aszy b, x*/DOF
—-2.19 22.3 0.72 —68.42 1.38
appoximation(see next section The value of the effective d?k’

Reggeon intercept remains rather low, close to 0.45, compa-@Fo(k,q)=®"(k,q) + ¥ on
rable with the value found in Ref16].

A(kK',a)F2(k',q)—B(k,k',q)F2(k,q)
IV. EXPLICIT ITERATIONS OF BFKL x (k— k’)2 ’

From the theoretical point of view, the phenomenological,;ith
model of Sec. Il corresponds to the explicit evaluation in

QCD of gluonic ladders with an increasing number of —92(k—K")2+k%(g—k')2+k'2(q—k)?
s-channel gluons. This correspondence is far from literal A(k,k’,q)= ,
since each term of the BFKL series takes into account only k Z(q—k’)z

the dominant logarithm in the limg—o. In the following

we give concrete expressions for the forward high energy k2 (q—k)2
scattering amplitudes for photons and hadrons in the form of B(k,k’,q)= " 5

an expansion in powers of large logarithms, taking for sim- k’2+(k'—k)2 (q—k")"+ (k=k')

plicity only the leading logarithmic terms.
We start from known results obtained in pap2f where and
an explicit expression for the total cross section for hadron-

hadron scattering has been obtained. In the high energy limit, y= 3%.
it is convenient to introduce the Mellin transform of the am- ™
litude
P The strong couplingyg is assumed to be frozen at a suitable
o1 scale set, for example, by the external particles. The iteration
Alot) = f*d S|[s ImsA(s,t) procedure and the reciprocal Mellin transform gibesides
e o \m?/\m? S we putq=0)
Img A(s,0)
and its inverse ay(s)= EEr—
w a
ImgA(s,t) 1 [é&+i= s f 4K (K, )[ BB(K) + 1,
il et = pdD(k)+—p<I>+-~,
S 2 i da)( m2 A(w,t). (k ) 21 2
where
The general expression &f( w,t) in the leading logarithmic
approximation(LLA ) has the form 3as s
p="—"Inl — @
™ m
5, P2k Fo(k,g) o |
Alw,t)=| d kW and the subsequent iterations begin frdrj(k) = ®°(k,0).

In the previous integral and everywhere in the following, all
the momenta are 2-dimensional Euclidean vectors, living in
where®?(k,q) and®P(k,q) (see next equatiorare the im-  the plane transverse to the one formed by the momenta of the
pact factors of the colliding hadrores and b, obeying the  colliding particles.

gauge conditions ®!(0,gq)=®!(q,q)=0 (j=a,b). The For the case of photon-photon scattering one[Bas$see
quantityFE,(k,q) obeys the BFKL equation: also the references quoted there
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z 2 k2
D= 7 (k,0 = —aasT(—z ,
i=1 m
where
k?\ 1 5- +1
T —|=-+ g In| —— P
m?| 4 88 "\p-1J

, . 4m?
B=1+ —EE—:>1.

i

k2)2

From the integrafs

=

2] t/
o
0 t’

k2
2

0.673
T2

m

T(1)

Vi2+4t'2

dt

f O°°_

t

T(t)-T®
+
t—t'|

=1.443,

we conclude

UWﬂZQZE(S) =0y

(8)

As
1+6.4—In| —
a n12

PHYSICAL REVIEW 3 056010

1d
¢n(k2) = fo rxx(wnfl(kzx) - ‘pn—l(kz))

= dx 2 1 2
+J1 =1 Un-a( X)_;'pnfl( )
and

ois)=7 | e L. o
0 n n

The integrations can be performed analytically, due to the
simple choice of the impact factor in E(P), and the final
result is

2

2b

2

o) = 2 1+2(n2)p+| 7 il T5+2(n2)?

2

1|7 3
+ 7(In2)+4(|n2)3—zg(3) p3+

3 (11

wherep is defined in Eq(7).

As stressed above, the coefficients of different powers of
In(g?) in Eq. (11) refer to the dominant contribution, at
asymptotic energies, for each perturbative order. In the fit,
instead, the Pomeron contribution is determined only from
the experimental data at high but finite energies. However,
we can obtain a rough estimate of the importance of the
subleading contributions by comparing Ed.1) with the
phenomenological fit of the previous section, in particular
with the amplitudef; relative to the last gap of the three

whereo is a constant and we used the approximated equakungs case. If we assume a commonly used value for the

ity (3%x1.44)/0.67%=6.4.

To obtain the cross section of proton-proton scattering
we use the ansatz of Refl7] for the impact factor of a
hadron in terms of its form factdf(g?):

2
L

Here the 2-dimensional Euclidean vectpis related to the
4-dimensional transferred momentuinby the relationQ?

= —(@°<0. Using the formulas given above, we obtain, for a
simplified but experimentally acceptable form of proton’s
impact factor in the forward directiom=0,

q
k=3

2
), PP(0,0)=P(q,q)=0.

Do(k)=ak?e P, 9)

wherea andb are in GeV 2. It is convenient to define

n( )
k?)=
‘/’n( )= K2

then(for n=1)

1s. Gevorkyan(private communication

strong coupling,as~0.5—0.7 [17], we must conclude that
subleading contributions to the QCD Pomeron are important.
Moreover, the coefficierd,; turns out to be compatible with
zero, in contrast with the result of E¢L1). These findings
may be related to the fact that energies reached by the
present accelerators are not yet asymptotic.

An approach similar the one followed in this section was
considered in Ref.18]. However, although in both cases the
LLA BFKL equation is used, our results are not comparable
with those of Ref[18], first of all because we use a definite
ansatz for the impact factors, different from a consfaet,
for instance, Eq(9)]. Moreover, differently fronj18], where
all orders of perturbation theory were taken into account, in
our case we consider a truncated iteration of the BFKL equa-
tion.

V. CONCLUSIONS

Although high quality fits were not the primary goal of
the present study, we still may conclude that they are com-
patible with those existing13], and there is still room for
further improvement. Our main goal instead was to seek for
an adequate picture of the Pomeron exchande-&t. In our
opinion, it is neither an infinite sum of gluon ladders as in the
BFKL approacH1-3], nor its power expansion. In fact, the
finite series—call it “threshold approach”—considered in
this and our previous papg5] realizes a nontrivial dynami-
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cal balance between the total reaction energy and the subemodel presented above. We have fitted it and compared suc-
ergies equally partitioned between the multiperipheral lad€essfully with the prediction from cosmic-ray data. However
ders. its value may be estimated, e.g., as the lowest energy where
The results of our fits, whose quality will be definitely the Pomeron exchange is manifest, although the latter is also
improved when future data from RHIC and LHC will be a matter of debate. Further fits of the model to new experi-
available, show also that few terms of powers ofsjrdre ~ mental data may settle some details left open by this paper.
sufficient to describe the data at all realistic energies. As a The results from the LLA BFKL equation do not re-
guess, we do not exclude that higher terms cancel consemble closely those from the numerical fits, thus leading to
pletely, but anyway they are negligibly small. The case ofthe conclusion that next-to-leading corrections cannot be
two terms(logarithmic rise ins) is particularly interesting as omitted in the analytical calculations.
it corresponds to a dipole Pomeron with a humber of attrac-
tive featureq 10] such as self-reproducibility with respect of
unitarity corrections. In case of as) rise (three termswe
still should not worry about the Froissart bound, so ulti- We thank V. Fadin, A. Kaidalov, and L. Lipatov for nu-
mately the Pomeron as viewed in this paper does not need toerous discussions on the Pomeron. One of(lug.) is
be unitarized. This conclusion is an important by-product ofgrateful to the Dipartimento di Fisica dell’'Universitiella
our paper. For the dipole Pomeron, relevant calculations fo€alabria and to the Istituto Nazionale di Fisica Nucleare—
t+#0 are interesting and important but difficult. In the case ofSezione di Padova e Gruppo Collegato di Cosenza for their
a single gluon rung they were performed in Rgf2] and,  warm hospitality and financial support. The work of L.J. was
with a nonperturbative gluon propagator, in the last referenceartly supported by INTAS, grant 97-1696 and CRDF, grant
of [8]. UP1-2119. This work was supported by the Ministero ital-
The role and the value of the width of the gap, is an  iano dell’'Universitae della Ricerca Scientifica e Tecnologica
important physical parametgver se independent of the and by the INTAS.
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